
prithivMLmods/tooth-agenesis-siglip2
Image Classification
•
Updated
•
9
image
image | label
class label |
---|---|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
|
0Calculus
|
This dataset contains labeled dental images intended for training machine learning models on the classification of six different oral health conditions. It is designed for image classification tasks, specifically targeting types of tooth agenesis and other related dental conditions.
train
onlyThe dataset includes the following six categories of dental conditions:
Label ID | Class Name |
---|---|
0 | Calculus |
1 | Caries |
2 | Gingivitis |
3 | Mouth Ulcer |
4 | Tooth Discoloration |
5 | Hypodontia |
This dataset can be used for:
You can load this dataset using the Hugging Face datasets
library:
from datasets import load_dataset
dataset = load_dataset("strangerguardhf/Tooth-Agenesis-6_Types")
Access individual images and labels:
image = dataset["train"][0]["image"]
label = dataset["train"][0]["label"]