Unnamed: 0
int64 0
10k
| function
stringlengths 79
138k
| label
stringclasses 20
values | info
stringlengths 42
261
|
---|---|---|---|
1,200 | def parse_char(txt):
if not txt: raise PreprocError("attempted to parse a null char")
if txt[0] != '\\':
return ord(txt)
c = txt[1]
if c == 'x':
if len(txt) == 4 and txt[3] in string.hexdigits: return int(txt[2:], 16)
return int(txt[2:], 16)
elif c.isdigit():
if c == '0' and len(txt)==2: return 0
for i in 3, 2, 1:
if len(txt) > i and txt[1:1+i].isdigit():
return (1+i, int(txt[1:1+i], 8))
else:
try: return chr_esc[c]
except __HOLE__: raise PreprocError("could not parse char literal '%s'" % txt) | KeyError | dataset/ETHPy150Open appcelerator-archive/poc-nodejs-desktop/Resources/nodejs/builds/linux/node/lib/node/wafadmin/Tools/preproc.py/parse_char |
1,201 | def tokenize(s):
"""convert a string into a list of tokens (shlex.split does not apply to c/c++/d)"""
ret = []
for match in re_clexer.finditer(s):
m = match.group
for name in tok_types:
v = m(name)
if v:
if name == IDENT:
try: v = g_optrans[v]; name = OP
except __HOLE__:
# c++ specific
if v.lower() == "true":
v = 1
name = NUM
elif v.lower() == "false":
v = 0
name = NUM
elif name == NUM:
if m('oct'): v = int(v, 8)
elif m('hex'): v = int(m('hex'), 16)
elif m('n0'): v = m('n0')
else:
v = m('char')
if v: v = parse_char(v)
else: v = m('n2') or m('n4')
elif name == OP:
if v == '%:': v = '#'
elif v == '%:%:': v = '##'
elif name == STR:
# remove the quotes around the string
v = v[1:-1]
ret.append((name, v))
break
return ret | KeyError | dataset/ETHPy150Open appcelerator-archive/poc-nodejs-desktop/Resources/nodejs/builds/linux/node/lib/node/wafadmin/Tools/preproc.py/tokenize |
1,202 | def addlines(self, node):
self.currentnode_stack.append(node.parent)
filepath = node.abspath(self.env)
self.count_files += 1
if self.count_files > recursion_limit: raise PreprocError("recursion limit exceeded")
pc = self.parse_cache
debug('preproc: reading file %r', filepath)
try:
lns = pc[filepath]
except __HOLE__:
pass
else:
self.lines = lns + self.lines
return
try:
lines = filter_comments(filepath)
lines.append((POPFILE, ''))
pc[filepath] = lines # cache the lines filtered
self.lines = lines + self.lines
except IOError:
raise PreprocError("could not read the file %s" % filepath)
except Exception:
if Logs.verbose > 0:
error("parsing %s failed" % filepath)
traceback.print_exc() | KeyError | dataset/ETHPy150Open appcelerator-archive/poc-nodejs-desktop/Resources/nodejs/builds/linux/node/lib/node/wafadmin/Tools/preproc.py/c_parser.addlines |
1,203 | def start(self, node, env):
debug('preproc: scanning %s (in %s)', node.name, node.parent.name)
self.env = env
variant = node.variant(env)
bld = node.__class__.bld
try:
self.parse_cache = bld.parse_cache
except __HOLE__:
bld.parse_cache = {}
self.parse_cache = bld.parse_cache
self.addlines(node)
if env['DEFLINES']:
self.lines = [('define', x) for x in env['DEFLINES']] + self.lines
while self.lines:
(kind, line) = self.lines.pop(0)
if kind == POPFILE:
self.currentnode_stack.pop()
continue
try:
self.process_line(kind, line)
except Exception, e:
if Logs.verbose:
debug('preproc: line parsing failed (%s): %s %s', e, line, Utils.ex_stack()) | AttributeError | dataset/ETHPy150Open appcelerator-archive/poc-nodejs-desktop/Resources/nodejs/builds/linux/node/lib/node/wafadmin/Tools/preproc.py/c_parser.start |
1,204 | def resolve_name(name):
ret = None
parts = name.split('.')
cursor = len(parts)
module_name = parts[:cursor]
last_exc = None
while cursor > 0:
try:
ret = __import__('.'.join(module_name))
break
except ImportError as exc:
last_exc = exc
if cursor == 0:
raise
cursor -= 1
module_name = parts[:cursor]
for part in parts[1:]:
try:
ret = getattr(ret, part)
except __HOLE__:
if last_exc is not None:
raise last_exc
raise ImportError(name)
if ret is None:
if last_exc is not None:
raise last_exc
raise ImportError(name)
return ret | AttributeError | dataset/ETHPy150Open circus-tent/circus/circus/tests/generic.py/resolve_name |
1,205 | def setup(self):
try:
global S3Storage
from depot.io.awss3 import S3Storage
except __HOLE__:
raise SkipTest('Boto not installed')
env = os.environ
access_key_id = env.get('AWS_ACCESS_KEY_ID')
secret_access_key = env.get('AWS_SECRET_ACCESS_KEY')
if access_key_id is None or secret_access_key is None:
raise SkipTest('Amazon S3 credentials not available')
PID = os.getpid()
NODE = str(uuid.uuid1()).rsplit('-', 1)[-1] # Travis runs multiple tests concurrently
self.default_bucket_name = 'filedepot-%s' % (access_key_id.lower(), )
self.cred = (access_key_id, secret_access_key)
self.fs = S3Storage(access_key_id, secret_access_key,
'filedepot-testfs-%s-%s-%s' % (access_key_id.lower(), NODE, PID)) | ImportError | dataset/ETHPy150Open amol-/depot/tests/test_awss3_storage.py/TestS3FileStorage.setup |
1,206 | def wait_network_port_idle(port):
"""Wait network port idle.
return after 5 minutes or network port idle.
TCP connect close TIME_WAIT max 2MSL(2minutes)
:param port: network port
"""
for i in range(0, 30): # 5 minutes
try:
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
sock.bind(('0.0.0.0', port))
sock.close() # close effect immediately if not data send
return
except __HOLE__:
if i == 0:
time.sleep(1) # sometime just need short wait
else:
log.info('closing port [%d], Please wait a moment.', port)
time.sleep(10)
# import gc
# from werkzeug.serving import BaseWSGIServer
# for o in gc.get_referrers(BaseWSGIServer):
# if o.__class__ is BaseWSGIServer:
# o.server_close() | OSError | dataset/ETHPy150Open remyzane/flask-http-api/http_api/assist/coding.py/wait_network_port_idle |
1,207 | def test_forbidden(webapp):
try:
urlopen("%s/test_forbidden" % webapp.server.http.base)
except __HOLE__ as e:
assert e.code == 403
assert e.msg == "Forbidden"
else:
assert False | HTTPError | dataset/ETHPy150Open circuits/circuits/tests/web/test_exceptions.py/test_forbidden |
1,208 | def test_notfound(webapp):
try:
urlopen("%s/test_notfound" % webapp.server.http.base)
except __HOLE__ as e:
assert e.code == 404
assert e.msg == "Not Found"
else:
assert False | HTTPError | dataset/ETHPy150Open circuits/circuits/tests/web/test_exceptions.py/test_notfound |
1,209 | def test_contenttype(webapp):
try:
urlopen("%s/test_contenttype" % webapp.server.http.base)
except __HOLE__ as e:
assert e.code == 500
assert e.msg == "Internal Server Error"
assert "text/html" in e.headers.get("Content-Type")
else:
assert False | HTTPError | dataset/ETHPy150Open circuits/circuits/tests/web/test_exceptions.py/test_contenttype |
1,210 | def test_contenttype_json(webapp):
try:
urlopen("%s/test_contenttype_json" % webapp.server.http.base)
except __HOLE__ as e:
assert "json" in e.headers.get("Content-Type")
result = json.loads(e.read().decode("utf-8"))
assert result["code"] == 500
assert result["name"] == "Internal Server Error"
assert result["description"] == ""
assert "raise Exception" in result["traceback"]
else:
assert False | HTTPError | dataset/ETHPy150Open circuits/circuits/tests/web/test_exceptions.py/test_contenttype_json |
1,211 | def test_contenttype_json_no_debug(webapp):
try:
f = urlopen("%s/test_contenttype_json_no_debug" %
webapp.server.http.base)
except __HOLE__ as e:
assert "json" in e.headers.get("Content-Type")
result = json.loads(e.read().decode("utf-8"))
assert result["code"] == 500
assert result["name"] == "Internal Server Error"
assert result["description"] == ""
assert "traceback" not in result
else:
assert False | HTTPError | dataset/ETHPy150Open circuits/circuits/tests/web/test_exceptions.py/test_contenttype_json_no_debug |
1,212 | def _cross_val(data, est, cv, n_jobs):
"""Helper to compute cross validation."""
try:
from sklearn.model_selection import cross_val_score
except __HOLE__:
# XXX support sklearn < 0.18
from sklearn.cross_validation import cross_val_score
return np.mean(cross_val_score(est, data, cv=cv, n_jobs=n_jobs,
scoring=_gaussian_loglik_scorer)) | ImportError | dataset/ETHPy150Open mne-tools/mne-python/mne/cov.py/_cross_val |
1,213 | def _auto_low_rank_model(data, mode, n_jobs, method_params, cv,
stop_early=True, verbose=None):
"""compute latent variable models."""
method_params = cp.deepcopy(method_params)
iter_n_components = method_params.pop('iter_n_components')
if iter_n_components is None:
iter_n_components = np.arange(5, data.shape[1], 5)
from sklearn.decomposition import PCA, FactorAnalysis
if mode == 'factor_analysis':
est = FactorAnalysis
elif mode == 'pca':
est = PCA
else:
raise ValueError('Come on, this is not a low rank estimator: %s' %
mode)
est = est(**method_params)
est.n_components = 1
scores = np.empty_like(iter_n_components, dtype=np.float64)
scores.fill(np.nan)
# make sure we don't empty the thing if it's a generator
max_n = max(list(cp.deepcopy(iter_n_components)))
if max_n > data.shape[1]:
warn('You are trying to estimate %i components on matrix '
'with %i features.' % (max_n, data.shape[1]))
for ii, n in enumerate(iter_n_components):
est.n_components = n
try: # this may fail depending on rank and split
score = _cross_val(data=data, est=est, cv=cv, n_jobs=n_jobs)
except __HOLE__:
score = np.inf
if np.isinf(score) or score > 0:
logger.info('... infinite values encountered. stopping estimation')
break
logger.info('... rank: %i - loglik: %0.3f' % (n, score))
if score != -np.inf:
scores[ii] = score
if (ii >= 3 and np.all(np.diff(scores[ii - 3:ii]) < 0.) and
stop_early is True):
# early stop search when loglik has been going down 3 times
logger.info('early stopping parameter search.')
break
# happens if rank is too low right form the beginning
if np.isnan(scores).all():
raise RuntimeError('Oh no! Could not estimate covariance because all '
'scores were NaN. Please contact the MNE-Python '
'developers.')
i_score = np.nanargmax(scores)
best = est.n_components = iter_n_components[i_score]
logger.info('... best model at rank = %i' % best)
runtime_info = {'ranks': np.array(iter_n_components),
'scores': scores,
'best': best,
'cv': cv}
return est, runtime_info | ValueError | dataset/ETHPy150Open mne-tools/mne-python/mne/cov.py/_auto_low_rank_model |
1,214 | def _regularized_covariance(data, reg=None):
"""Compute a regularized covariance from data using sklearn.
Parameters
----------
data : ndarray, shape (n_channels, n_times)
Data for covariance estimation.
reg : float | str | None (default None)
If not None, allow regularization for covariance estimation
if float, shrinkage covariance is used (0 <= shrinkage <= 1).
if str, optimal shrinkage using Ledoit-Wolf Shrinkage ('ledoit_wolf')
or Oracle Approximating Shrinkage ('oas').
Returns
-------
cov : ndarray, shape (n_channels, n_channels)
The covariance matrix.
"""
if reg is None:
# compute empirical covariance
cov = np.cov(data)
else:
no_sklearn_err = ('the scikit-learn package is missing and '
'required for covariance regularization.')
# use sklearn covariance estimators
if isinstance(reg, float):
if (reg < 0) or (reg > 1):
raise ValueError('0 <= shrinkage <= 1 for '
'covariance regularization.')
try:
import sklearn
sklearn_version = LooseVersion(sklearn.__version__)
from sklearn.covariance import ShrunkCovariance
except __HOLE__:
raise Exception(no_sklearn_err)
if sklearn_version < '0.12':
skl_cov = ShrunkCovariance(shrinkage=reg,
store_precision=False)
else:
# init sklearn.covariance.ShrunkCovariance estimator
skl_cov = ShrunkCovariance(shrinkage=reg,
store_precision=False,
assume_centered=True)
elif isinstance(reg, string_types):
if reg == 'ledoit_wolf':
try:
from sklearn.covariance import LedoitWolf
except ImportError:
raise Exception(no_sklearn_err)
# init sklearn.covariance.LedoitWolf estimator
skl_cov = LedoitWolf(store_precision=False,
assume_centered=True)
elif reg == 'oas':
try:
from sklearn.covariance import OAS
except ImportError:
raise Exception(no_sklearn_err)
# init sklearn.covariance.OAS estimator
skl_cov = OAS(store_precision=False,
assume_centered=True)
else:
raise ValueError("regularization parameter should be "
"'ledoit_wolf' or 'oas'")
else:
raise ValueError("regularization parameter should be "
"of type str or int (got %s)." % type(reg))
# compute regularized covariance using sklearn
cov = skl_cov.fit(data.T).covariance_
return cov | ImportError | dataset/ETHPy150Open mne-tools/mne-python/mne/cov.py/_regularized_covariance |
1,215 | def parse_arg(s):
try:
return json.loads(s)
except __HOLE__:
return s | ValueError | dataset/ETHPy150Open aerospike/aerospike-client-python/examples/client/scan_info.py/parse_arg |
1,216 | def main(argv=None):
if not argv:
argv = sys.argv
parser = E.OptionParser(
version="%prog version: $Id: data2histogram.py 2782 2009-09-10 11:40:29Z andreas $")
parser.add_option("-r", "--range", dest="range", type="string",
help="range to calculate histogram for.")
parser.add_option("-b", "--bin-size", dest="bin_size", type="string",
help="bin size.")
parser.add_option("-i", "--titles", dest="titles", action="store_true",
help="use supplied column titles.")
parser.add_option("--no-null", dest="nonull", action="store_true",
help="do not output null values")
parser.add_option("--no-titles", dest="titles", action="store_false",
help="no column titles given.")
parser.add_option("-c", "--columns", dest="columns", type="string",
help="columns to take for calculating histograms.")
parser.add_option("--min-data", dest="min_data", type="int",
help="minimum amount of data required, if less data, then the histogram will be empty [default=%default].")
parser.add_option("--min-value", dest="min_value", type="float",
help="minimum value for histogram.")
parser.add_option("--max-value", dest="max_value", type="float",
help="maximum value for histogram.")
parser.add_option("--no-empty-bins", dest="no_empty_bins", action="store_true",
help="do not display empty bins.")
parser.add_option("--with-empty-bins", dest="no_empty_bins", action="store_false",
help="display empty bins.")
parser.add_option("--normalize", dest="normalize", action="store_true",
help="normalize histogram.")
parser.add_option("--cumulative", dest="cumulative", action="store_true",
help="calculate cumulative histogram.")
parser.add_option("--reverse-cumulative", dest="reverse_cumulative", action="store_true",
help="calculate reverse cumulative histogram.")
parser.add_option("--header-names", dest="headers", type="string",
help="use the following headers.")
parser.add_option("--ignore-out-of-range", dest="ignore_out_of_range", action="store_true",
help="ignore values that are out of range (as opposed to truncating them to range border.")
parser.add_option("--missing-value", dest="missing_value", type="string",
help="entry for missing values [%default].")
parser.add_option("--use-dynamic-bins", dest="dynamic_bins", action="store_true",
help="each value constitutes its own bin.")
parser.add_option("--on-the-fly", dest="on_the_fly", action="store_true",
help="on the fly computation of histograms. Requires setting of min-value, max-value and bin_size.")
parser.set_defaults(
bin_size=None,
range=None,
titles=True,
columns="all",
append=(),
no_empty_bins=True,
min_value=None,
max_value=None,
normalize=False,
cumulative=False,
reverse_cumulative=False,
nonull=None,
ignore_out_of_range=False,
min_data=1,
headers=None,
missing_value="na",
dynamic_bins=False,
on_the_fly=False,
bin_format="%.2f",
value_format="%6.4f",
)
(options, args) = E.Start(parser)
if options.columns != "all":
options.columns = map(lambda x: int(x) - 1, options.columns.split(","))
if options.range:
options.min_value, options.max_value = map(
float, options.range.split(","))
if options.headers:
options.headers = options.headers.split(",")
if options.on_the_fly:
if options.min_value is None or options.max_value is None or options.bin_size is None:
raise "please supply columns, min-value, max-value and bin-size for on-the-fly computation."
# try to glean titles from table:
if options.titles:
while 1:
line = sys.stdin.readline()
if not line:
break
if line[0] == "#":
continue
data = line[:-1].split("\t")
break
if options.columns == "all":
options.titles = data
options.columns = range(len(data))
else:
options.titles = [data[x] for x in options.columns]
bins = numpy.arange(
options.min_value, options.max_value, float(options.bin_size))
hh = Histogram.fillHistograms(
sys.stdin, options.columns, [bins for x in range(len(options.columns))])
n = len(hh)
titles = ['bin']
if options.headers:
titles.append(options.headers[x])
elif options.titles:
titles.append(options.titles[x])
else:
for x in options.columns:
titles.append("col%i" % (x + 1))
if len(titles) > 1:
options.stdout.write("\t".join(titles) + "\n")
for x in range(len(bins)):
v = []
v.append(options.bin_format % bins[x])
for c in range(n):
v.append(options.value_format % hh[c][x])
options.stdout.write("\t".join(v) + "\n")
else:
# in-situ computation of histograms
# retrieve data
first = True
vals = []
# parse data, convert to floats
for l in options.stdin:
if l[0] == "#":
continue
data = string.split(l[:-1], "\t")
if first:
first = False
ncols = len(data)
if options.columns == "all":
options.columns = range(ncols)
vals = [[] for x in options.columns]
if options.titles:
try:
options.titles = [data[x] for x in options.columns]
except IndexError:
raise IndexError, "not all columns %s found in data %s" % (
str(options.columns), str(data))
continue
for x in range(len(options.columns)):
try:
v = string.atof(data[options.columns[x]])
except IndexError:
print "# IndexError in line:", l[:-1]
continue
except __HOLE__:
continue
vals[x].append(v)
lines = None
hists = []
titles = []
if not vals:
if options.loglevel >= 1:
options.stdlog.write("# no data\n")
E.Stop()
sys.exit(0)
for x in range(len(options.columns)):
if options.loglevel >= 1:
options.stdlog.write(
"# column=%i, num_values=%i\n" % (options.columns[x], len(vals[x])))
if len(vals[x]) < options.min_data:
continue
h = Histogram.Calculate(vals[x],
no_empty_bins=options.no_empty_bins,
increment=options.bin_size,
min_value=options.min_value,
max_value=options.max_value,
dynamic_bins=options.dynamic_bins,
ignore_out_of_range=options.ignore_out_of_range)
if options.normalize:
h = Histogram.Normalize(h)
if options.cumulative:
h = Histogram.Cumulate(h)
if options.reverse_cumulative:
h = Histogram.Cumulate(h, direction=0)
hists.append(h)
for m in options.append:
if m == "normalize":
hists.append(Histogram.Normalize(h))
if options.headers:
titles.append(options.headers[x])
elif options.titles:
titles.append(options.titles[x])
else:
titles.append("col%i" % options.columns[x])
if titles:
options.stdout.write("bin\t" + "\t".join(titles) + "\n")
if len(hists) == 1:
Histogram.Print(hists[0], nonull=options.nonull)
else:
combined_histogram = Histogram.Combine(
hists, missing_value=options.missing_value)
Histogram.Print(combined_histogram, nonull=options.nonull)
E.Stop() | ValueError | dataset/ETHPy150Open CGATOxford/cgat/scripts/data2histogram.py/main |
1,217 | @signalcommand
@custom_transaction
def handle(self, *fixture_labels, **options):
""" Main method of a Django command """
from django.db.models import get_apps
from django.core import serializers
from django.conf import settings
self.style = no_style()
verbosity = int(options.get('verbosity', 1))
show_traceback = options.get('traceback', False)
# Keep a count of the installed objects and fixtures
fixture_count = 0
object_count = 0
objects_per_fixture = []
models = set()
humanize = lambda dirname: dirname and "'%s'" % dirname or 'absolute path'
# Get a cursor (even though we don't need one yet). This has
# the side effect of initializing the test database (if
# it isn't already initialized).
cursor = connection.cursor()
app_fixtures = [os.path.join(os.path.dirname(app.__file__), 'fixtures') for app in get_apps()]
for fixture_label in fixture_labels:
parts = fixture_label.split('.')
if len(parts) == 1:
fixture_name = fixture_label
formats = serializers.get_public_serializer_formats()
else:
fixture_name, format = '.'.join(parts[:-1]), parts[-1]
if format in serializers.get_public_serializer_formats():
formats = [format]
else:
formats = []
if formats:
if verbosity > 1:
print("Loading '%s' fixtures..." % fixture_name)
else:
sys.stderr.write(self.style.ERROR("Problem installing fixture '%s': %s is not a known serialization format." % (fixture_name, format)))
transaction.rollback()
return
if os.path.isabs(fixture_name):
fixture_dirs = [fixture_name]
else:
fixture_dirs = app_fixtures + list(settings.FIXTURE_DIRS) + ['']
for fixture_dir in fixture_dirs:
if verbosity > 1:
print("Checking %s for fixtures..." % humanize(fixture_dir))
label_found = False
for format in formats:
if verbosity > 1:
print("Trying %s for %s fixture '%s'..." % (humanize(fixture_dir), format, fixture_name))
try:
full_path = os.path.join(fixture_dir, '.'.join([fixture_name, format]))
fixture = open(full_path, 'r')
if label_found:
fixture.close()
print(self.style.ERROR("Multiple fixtures named '%s' in %s. Aborting." % (fixture_name, humanize(fixture_dir))))
transaction.rollback()
return
else:
fixture_count += 1
objects_per_fixture.append(0)
if verbosity > 0:
print("Installing %s fixture '%s' from %s." % (format, fixture_name, humanize(fixture_dir)))
try:
objects_to_keep = {}
objects = serializers.deserialize(format, fixture)
for obj in objects:
object_count += 1
objects_per_fixture[-1] += 1
class_ = obj.object.__class__
if class_ not in objects_to_keep:
objects_to_keep[class_] = set()
objects_to_keep[class_].add(obj.object)
models.add(class_)
obj.save()
if options.get('remove'):
self.remove_objects_not_in(objects_to_keep, verbosity)
label_found = True
except (__HOLE__, KeyboardInterrupt):
raise
except Exception:
import traceback
fixture.close()
transaction.rollback()
if show_traceback:
traceback.print_exc()
else:
sys.stderr.write(self.style.ERROR("Problem installing fixture '%s': %s\n" % (full_path, traceback.format_exc())))
return
fixture.close()
except:
if verbosity > 1:
print("No %s fixture '%s' in %s." % (format, fixture_name, humanize(fixture_dir)))
# If any of the fixtures we loaded contain 0 objects, assume that an
# error was encountered during fixture loading.
if 0 in objects_per_fixture:
sys.stderr.write(
self.style.ERROR("No fixture data found for '%s'. (File format may be invalid.)" % fixture_name))
transaction.rollback()
return
# If we found even one object in a fixture, we need to reset the
# database sequences.
if object_count > 0:
sequence_sql = connection.ops.sequence_reset_sql(self.style, models)
if sequence_sql:
if verbosity > 1:
print("Resetting sequences")
for line in sequence_sql:
cursor.execute(line)
transaction.commit()
if object_count == 0:
if verbosity > 1:
print("No fixtures found.")
else:
if verbosity > 0:
print("Installed %d object(s) from %d fixture(s)" % (object_count, fixture_count))
# Close the DB connection. This is required as a workaround for an
# edge case in MySQL: if the same connection is used to
# create tables, load data, and query, the query can return
# incorrect results. See Django #7572, MySQL #37735.
connection.close() | SystemExit | dataset/ETHPy150Open django-extensions/django-extensions/django_extensions/management/commands/syncdata.py/Command.handle |
1,218 | def test_index_set_conversion(self):
try:
import AppKit
except __HOLE__:
from nose import SkipTest
raise SkipTest
from tinymail.ui_delegates import array_from_index_set
data = [
[],
[0],
[3],
[0, 1, 2],
[7, 8, 9, 22],
]
for value in data:
index_set = AppKit.NSMutableIndexSet.indexSet()
for i in value:
index_set.addIndex_(i)
converted = array_from_index_set(index_set)
self.assertEqual(value, converted) | ImportError | dataset/ETHPy150Open mgax/tinymail/src/tinymail/tests/test_indexsets.py/IndexSetConversionTest.test_index_set_conversion |
1,219 | def filenameToModule(fn):
"""
Given a filename, do whatever possible to return a module object matching
that file.
If the file in question is a module in Python path, properly import and
return that module. Otherwise, load the source manually.
@param fn: A filename.
@return: A module object.
@raise ValueError: If C{fn} does not exist.
"""
if not os.path.exists(fn):
raise ValueError("%r doesn't exist" % (fn,))
try:
ret = reflect.namedAny(reflect.filenameToModuleName(fn))
except (__HOLE__, AttributeError):
# Couldn't find module. The file 'fn' is not in PYTHONPATH
return _importFromFile(fn)
# ensure that the loaded module matches the file
retFile = os.path.splitext(ret.__file__)[0] + '.py'
# not all platforms (e.g. win32) have os.path.samefile
same = getattr(os.path, 'samefile', samefile)
if os.path.isfile(fn) and not same(fn, retFile):
del sys.modules[ret.__name__]
ret = _importFromFile(fn)
return ret | ValueError | dataset/ETHPy150Open nlloyd/SubliminalCollaborator/libs/twisted/trial/runner.py/filenameToModule |
1,220 | def name(thing):
"""
@param thing: an object from modules (instance of PythonModule,
PythonAttribute), a TestCase subclass, or an instance of a TestCase.
"""
if isTestCase(thing):
# TestCase subclass
theName = reflect.qual(thing)
else:
# thing from trial, or thing from modules.
# this monstrosity exists so that modules' objects do not have to
# implement id(). -jml
try:
theName = thing.id()
except __HOLE__:
theName = thing.name
return theName | AttributeError | dataset/ETHPy150Open nlloyd/SubliminalCollaborator/libs/twisted/trial/runner.py/name |
1,221 | def isTestCase(obj):
"""
@return: C{True} if C{obj} is a class that contains test cases, C{False}
otherwise. Used to find all the tests in a module.
"""
try:
return issubclass(obj, pyunit.TestCase)
except __HOLE__:
return False | TypeError | dataset/ETHPy150Open nlloyd/SubliminalCollaborator/libs/twisted/trial/runner.py/isTestCase |
1,222 | def _getDebugger(self):
dbg = pdb.Pdb()
try:
import readline
except ImportError:
print "readline module not available"
sys.exc_clear()
for path in ('.pdbrc', 'pdbrc'):
if os.path.exists(path):
try:
rcFile = file(path, 'r')
except __HOLE__:
sys.exc_clear()
else:
dbg.rcLines.extend(rcFile.readlines())
return dbg | IOError | dataset/ETHPy150Open nlloyd/SubliminalCollaborator/libs/twisted/trial/runner.py/TrialRunner._getDebugger |
1,223 | def parse_feature(obj):
""" Given a python object
attemp to a GeoJSON-like Feature from it
"""
# object implementing geo_interface
if hasattr(obj, '__geo_interface__'):
gi = obj.__geo_interface__
if gi['type'] in geom_types:
return wrap_geom(gi)
elif gi['type'] == 'Feature':
return gi
# wkt
try:
shape = wkt.loads(obj)
return wrap_geom(shape.__geo_interface__)
except (ReadingError, TypeError, AttributeError):
pass
# wkb
try:
shape = wkb.loads(obj)
return wrap_geom(shape.__geo_interface__)
except (ReadingError, TypeError):
pass
# geojson-like python mapping
try:
if obj['type'] in geom_types:
return wrap_geom(obj)
elif obj['type'] == 'Feature':
return obj
except (AssertionError, __HOLE__):
pass
raise ValueError("Can't parse %s as a geojson Feature object" % obj) | TypeError | dataset/ETHPy150Open perrygeo/python-rasterstats/src/rasterstats/io.py/parse_feature |
1,224 | def read_features(obj, layer=0):
features_iter = None
if isinstance(obj, string_types):
try:
# test it as fiona data source
with fiona.open(obj, 'r', layer=layer) as src:
assert len(src) > 0
def fiona_generator(obj):
with fiona.open(obj, 'r', layer=layer) as src:
for feature in src:
yield feature
features_iter = fiona_generator(obj)
except (AssertionError, TypeError, IOError, __HOLE__):
try:
mapping = json.loads(obj)
if 'type' in mapping and mapping['type'] == 'FeatureCollection':
features_iter = mapping['features']
elif mapping['type'] in geom_types + ['Feature']:
features_iter = [parse_feature(mapping)]
except ValueError:
# Single feature-like string
features_iter = [parse_feature(obj)]
elif isinstance(obj, Mapping):
if 'type' in obj and obj['type'] == 'FeatureCollection':
features_iter = obj['features']
else:
features_iter = [parse_feature(obj)]
elif isinstance(obj, bytes):
# Single binary object, probably a wkb
features_iter = [parse_feature(obj)]
elif hasattr(obj, '__geo_interface__'):
mapping = obj.__geo_interface__
if mapping['type'] == 'FeatureCollection':
features_iter = mapping['features']
else:
features_iter = [parse_feature(mapping)]
elif isinstance(obj, Iterable):
# Iterable of feature-like objects
features_iter = (parse_feature(x) for x in obj)
if not features_iter:
raise ValueError("Object is not a recognized source of Features")
return features_iter | OSError | dataset/ETHPy150Open perrygeo/python-rasterstats/src/rasterstats/io.py/read_features |
1,225 | def _modify_execution_status_in_database(
self, execution, new_status):
try:
execution_id = execution['id']
except __HOLE__:
execution_id = execution.id
storage_manager._get_instance().update_execution_status(
execution_id, new_status, error='')
updated_execution = self.client.executions.get(
execution_id=execution_id)
self.assertEqual(new_status, updated_execution['status']) | TypeError | dataset/ETHPy150Open cloudify-cosmo/cloudify-manager/rest-service/manager_rest/test/test_executions.py/ExecutionsTestCase._modify_execution_status_in_database |
1,226 | def get_by_natural_key(self, app_label, model):
try:
ct = self._cache[self.db][(app_label, model)]
except __HOLE__:
ct = self.get(app_label=app_label, model=model)
self._add_to_cache(self.db, ct)
return ct | KeyError | dataset/ETHPy150Open django/django/django/contrib/contenttypes/models.py/ContentTypeManager.get_by_natural_key |
1,227 | def get_for_model(self, model, for_concrete_model=True):
"""
Returns the ContentType object for a given model, creating the
ContentType if necessary. Lookups are cached so that subsequent lookups
for the same model don't hit the database.
"""
opts = self._get_opts(model, for_concrete_model)
try:
return self._get_from_cache(opts)
except __HOLE__:
pass
# The ContentType entry was not found in the cache, therefore we
# proceed to load or create it.
try:
try:
# We start with get() and not get_or_create() in order to use
# the db_for_read (see #20401).
ct = self.get(app_label=opts.app_label, model=opts.model_name)
except self.model.DoesNotExist:
# Not found in the database; we proceed to create it. This time we
# use get_or_create to take care of any race conditions.
ct, created = self.get_or_create(
app_label=opts.app_label,
model=opts.model_name,
)
except (OperationalError, ProgrammingError, IntegrityError):
# It's possible to migrate a single app before contenttypes,
# as it's not a required initial dependency (it's contrib!)
# Have a nice error for this.
raise RuntimeError(
"Error creating new content types. Please make sure contenttypes "
"is migrated before trying to migrate apps individually."
)
self._add_to_cache(self.db, ct)
return ct | KeyError | dataset/ETHPy150Open django/django/django/contrib/contenttypes/models.py/ContentTypeManager.get_for_model |
1,228 | def get_for_models(self, *models, **kwargs):
"""
Given *models, returns a dictionary mapping {model: content_type}.
"""
for_concrete_models = kwargs.pop('for_concrete_models', True)
# Final results
results = {}
# models that aren't already in the cache
needed_app_labels = set()
needed_models = set()
needed_opts = set()
for model in models:
opts = self._get_opts(model, for_concrete_models)
try:
ct = self._get_from_cache(opts)
except __HOLE__:
needed_app_labels.add(opts.app_label)
needed_models.add(opts.model_name)
needed_opts.add(opts)
else:
results[model] = ct
if needed_opts:
cts = self.filter(
app_label__in=needed_app_labels,
model__in=needed_models
)
for ct in cts:
model = ct.model_class()
if model._meta in needed_opts:
results[model] = ct
needed_opts.remove(model._meta)
self._add_to_cache(self.db, ct)
for opts in needed_opts:
# These weren't in the cache, or the DB, create them.
ct = self.create(
app_label=opts.app_label,
model=opts.model_name,
)
self._add_to_cache(self.db, ct)
results[ct.model_class()] = ct
return results | KeyError | dataset/ETHPy150Open django/django/django/contrib/contenttypes/models.py/ContentTypeManager.get_for_models |
1,229 | def get_for_id(self, id):
"""
Lookup a ContentType by ID. Uses the same shared cache as get_for_model
(though ContentTypes are obviously not created on-the-fly by get_by_id).
"""
try:
ct = self._cache[self.db][id]
except __HOLE__:
# This could raise a DoesNotExist; that's correct behavior and will
# make sure that only correct ctypes get stored in the cache dict.
ct = self.get(pk=id)
self._add_to_cache(self.db, ct)
return ct | KeyError | dataset/ETHPy150Open django/django/django/contrib/contenttypes/models.py/ContentTypeManager.get_for_id |
1,230 | def _log_context(self, context):
template = Template(self._get_template('context'))
keys = []
if isinstance(context, list):
for c in context:
keys += self._get_context_keys(c)
else:
keys += self._get_context_keys(context)
keys = set(keys)
# Skip some keys
for discardkey in DISCARD_CONTEXT_KEYS:
keys.discard(discardkey)
for key in keys:
val = force_unicode(context[key])
con = {
'key': key,
'value': val,
}
con = Context(safe_dict(con))
try:
#Avoid memory addy's which will change.
if not re.search("0x\w+", val):
self.log.info(template.render(con))
except __HOLE__, e:
pass | UnicodeDecodeError | dataset/ETHPy150Open ericholscher/django-test-utils/test_utils/testmaker/processors/base.py/Processer._log_context |
1,231 | def format_citation_details(self, entry, citation_template=None):
"""Return string."""
if citation_template is None:
citation_template = self.citation_template
try:
type_template = citation_template[entry.entry_type] #:note: recall entry_type was stored as lowercase
except __HOLE__: #no template exists for this entry_type -> use default
type_template = citation_template['default_type']
shared_logger.warning("Unknown entry type: "+entry.entry_type+". Using default format.")
#:note: entry will return None instead of KeyError
result = type_template % entry
return result | KeyError | dataset/ETHPy150Open dschwilk/bibstuff/bibstuff/bibstyles/shared.py/EntryFormatter.format_citation_details |
1,232 | def filterbots(fh, ip_ua_re, bots_ua, bots_ips,
parser=None, format=None, ip_ua_fields=None,
reverse=False, debug=False, **kwargs):
"""Filter bots from a log stream using
ip/useragent blacklists"""
bots_ua_dict, bots_ua_prefix_dict, bots_ua_suffix_dict, bots_ua_re = \
parse_bots_ua(bots_ua)
bots_ips = dict.fromkeys([l.strip() for l in bots_ips \
if not l.startswith("#")])
is_bot_ua_func = partial(is_bot_ua, bots_ua_dict=bots_ua_dict,
bots_ua_prefix_dict=bots_ua_prefix_dict,
bots_ua_suffix_dict=bots_ua_suffix_dict,
bots_ua_re=bots_ua_re)
_is_bot_func=None
if not parser:
# Regular expression-based matching
ua_ip_re = re.compile(ip_ua_re)
def _is_bot_func(line):
match = ua_ip_re.match(line)
if not match:
raise ValueError("No match for line: %s" % line)
logging.debug("Regular expression matched line: %s", match)
matchgroups = match.groupdict()
is_bot = False
ua = matchgroups.get('ua', None)
is_bot = is_bot_ua_func(ua)
if not is_bot and matchgroups.get('ip', None) in bots_ips:
# IP Is blacklisted
is_bot = True
return is_bot
else:
# Custom parser specified, use field-based matching
parser = eval(parser, vars(logtools.parsers), {})()
try:
fields_map = dict([tuple(k.split(':')) for k in ip_ua_fields.split(',')])
except __HOLE__:
raise ValueError("Invalid format for --field parameter. Use --help for usage instructions.")
is_indices = reduce(and_, (k.isdigit() for k in fields_map.values()), True)
if is_indices:
# Field index based matching
def _is_bot_func(line):
parsed_line = parser(line)
is_bot = False
if 'ua' in fields_map and parsed_line:
is_bot = is_bot_ua_func(parsed_line.by_index(fields_map['ua']))
if not is_bot and 'ip' in fields_map:
is_bot = parsed_line.by_index(fields_map['ip']) in bots_ips
return is_bot
else:
# Named field based matching
def _is_bot_func(line):
parsed_line = parser(line)
is_bot = False
if 'ua' in fields_map and parsed_line:
is_bot = is_bot_ua_func(parsed_line[fields_map['ua']])
if not is_bot and 'ip' in fields_map:
is_bot = parsed_line[fields_map['ip']] in bots_ips
return is_bot
num_lines=0
num_filtered=0
num_nomatch=0
for line in imap(lambda x: x.strip(), fh):
try:
is_bot = _is_bot_func(line)
except (KeyError, ValueError):
# Parsing error
logging.warn("No match for line: %s", line)
num_nomatch +=1
continue
if is_bot ^ reverse:
logging.debug("Filtering line: %s", line)
num_filtered+=1
continue
num_lines+=1
yield line
logging.info("Number of lines after bot filtering: %s", num_lines)
logging.info("Number of lines (bots) filtered: %s", num_filtered)
if num_nomatch:
logging.info("Number of lines could not match on: %s", num_nomatch)
return | ValueError | dataset/ETHPy150Open adamhadani/logtools/logtools/_filterbots.py/filterbots |
1,233 | def __init__(self, path, exclusive=False):
self.path = path
try:
self.fd = open(path, 'r+')
except IOError:
self.fd = open(path, 'r')
try:
if exclusive:
fcntl.lockf(self.fd, fcntl.LOCK_EX)
else:
fcntl.lockf(self.fd, fcntl.LOCK_SH)
# Python 3.2 raises IOError, Python3.3+ raises OSError
except (__HOLE__, OSError):
if exclusive:
raise self.WriteLockFailed(self.path)
else:
raise self.ReadLockFailed(self.path)
self.is_exclusive = exclusive | IOError | dataset/ETHPy150Open jborg/attic/attic/helpers.py/UpgradableLock.__init__ |
1,234 | def upgrade(self):
try:
fcntl.lockf(self.fd, fcntl.LOCK_EX)
# Python 3.2 raises IOError, Python3.3+ raises OSError
except (__HOLE__, OSError):
raise self.WriteLockFailed(self.path)
self.is_exclusive = True | IOError | dataset/ETHPy150Open jborg/attic/attic/helpers.py/UpgradableLock.upgrade |
1,235 | def prune_within(archives, within):
multiplier = {'H': 1, 'd': 24, 'w': 24*7, 'm': 24*31, 'y': 24*365}
try:
hours = int(within[:-1]) * multiplier[within[-1]]
except (__HOLE__, ValueError):
# I don't like how this displays the original exception too:
raise argparse.ArgumentTypeError('Unable to parse --within option: "%s"' % within)
if hours <= 0:
raise argparse.ArgumentTypeError('Number specified using --within option must be positive')
target = datetime.now(timezone.utc) - timedelta(seconds=hours*60*60)
return [a for a in archives if a.ts > target] | KeyError | dataset/ETHPy150Open jborg/attic/attic/helpers.py/prune_within |
1,236 | def is_cachedir(path):
"""Determines whether the specified path is a cache directory (and
therefore should potentially be excluded from the backup) according to
the CACHEDIR.TAG protocol
(http://www.brynosaurus.com/cachedir/spec.html).
"""
tag_contents = b'Signature: 8a477f597d28d172789f06886806bc55'
tag_path = os.path.join(path, 'CACHEDIR.TAG')
try:
if os.path.exists(tag_path):
with open(tag_path, 'rb') as tag_file:
tag_data = tag_file.read(len(tag_contents))
if tag_data == tag_contents:
return True
except __HOLE__:
pass
return False | OSError | dataset/ETHPy150Open jborg/attic/attic/helpers.py/is_cachedir |
1,237 | def memoize(function):
cache = {}
def decorated_function(*args):
try:
return cache[args]
except __HOLE__:
val = function(*args)
cache[args] = val
return val
return decorated_function | KeyError | dataset/ETHPy150Open jborg/attic/attic/helpers.py/memoize |
1,238 | @memoize
def uid2user(uid, default=None):
try:
return pwd.getpwuid(uid).pw_name
except __HOLE__:
return default | KeyError | dataset/ETHPy150Open jborg/attic/attic/helpers.py/uid2user |
1,239 | @memoize
def user2uid(user, default=None):
try:
return user and pwd.getpwnam(user).pw_uid
except __HOLE__:
return default | KeyError | dataset/ETHPy150Open jborg/attic/attic/helpers.py/user2uid |
1,240 | @memoize
def gid2group(gid, default=None):
try:
return grp.getgrgid(gid).gr_name
except __HOLE__:
return default | KeyError | dataset/ETHPy150Open jborg/attic/attic/helpers.py/gid2group |
1,241 | @memoize
def group2gid(group, default=None):
try:
return group and grp.getgrnam(group).gr_gid
except __HOLE__:
return default | KeyError | dataset/ETHPy150Open jborg/attic/attic/helpers.py/group2gid |
1,242 | def location_validator(archive=None):
def validator(text):
try:
loc = Location(text)
except __HOLE__:
raise argparse.ArgumentTypeError('Invalid location format: "%s"' % text)
if archive is True and not loc.archive:
raise argparse.ArgumentTypeError('"%s": No archive specified' % text)
elif archive is False and loc.archive:
raise argparse.ArgumentTypeError('"%s" No archive can be specified' % text)
return loc
return validator | ValueError | dataset/ETHPy150Open jborg/attic/attic/helpers.py/location_validator |
1,243 | def yield_timed_calls(filename):
try:
f = open(filename)
except __HOLE__, error:
print >> sys.stderr, "I/O error while opening file: %s" % error
return
for line in f:
try:
labels = line.split(':')[:3]
except Exception, error:
print >> sys.stderr, "Unhandled Exception:", error, filename
return
if labels[1:] in [['LOG', 'T']]:
if len(line.split(':')) != 5:
continue
try:
call = line.split(':')[3] + ':'
if call[:11] == "epoll_wait_":
call = "epoll_wait_:"
else:
call = re.sub(r'_B:|_D:|_E:|_F:|_f:|_K:|_k:|_P:|_p:|_S:|_U:', ':', call)
time = line.split(':')[4]
msec = int(time.split('.')[0]) * 10 ** 6 \
+ int(time.split('.')[1])
except Exception, error:
print >> sys.stderr, "Unhandled Exception:", error, filename
return
# special handling of epoll - it should go to cache later
yield call + str(msec)
f.close() | IOError | dataset/ETHPy150Open columbia/libtrack/libtrack/parser/scripts/patterns.py/yield_timed_calls |
1,244 | def visit_Call(self, node):
global game
if 'id' in dir(node.func):
self.stack.store()
if len(node.args) > 0:
self.generic_visit(node.args)
args = self.stack.current()
self.stack.wipe()
else:
args = []
# check this condition, seens strange
if node.func.id not in game.bitpaks:
obj = getattr(pynes.bitbag, node.func.id, None)
if (obj):
try:
bp = obj(game)
game.bitpaks[node.func.id] = bp
self.stack(bp(*args))
game += bp.asm()
except __HOLE__ as ex:
msg = ex.message.replace('__call__', node.func.id, 1)
raise(TypeError(msg))
else:
raise(NameError("name '%s' is not defined" % node.func.id))
else:
bp = game.bitpaks[node.func.id]
self.stack(bp(*args))
game += bp.asm()
else:
self.generic_visit(node)
attrib = getattr(
self.stack.current()[0], self.stack.current()[1], None)
self.stack.wipe()
if callable(attrib):
attrib() | TypeError | dataset/ETHPy150Open gutomaia/pyNES/pynes/composer.py/PyNesVisitor.visit_Call |
1,245 | def train(model, dataset, lr=1e-4, momentum=0.9,
batch_size=100, n_epochs=100, valid_freq=None,
patience_incr=2.0, lr_decr=0.5, epoch_waiting=10,
never_stop=False):
r"""Train the model with mini-batch Stochastic Gradient Descent(SGD).
Parameters
----------
model : NeuralNet
The model to be trained.
dataset : Dataset
The dataset to provide training, validation, and testing data.
lr : float or double, optional
The initial learning rate. Default is 1e-4.
momentum : float or double, optional
The coefficient of momentum term. Default is 0.9.
batch_size : int, optional
The number of samples in each mini-batch. Default is 100.
n_epochs : int, optional
The number of training epochs. Default is 100.
valid_freq : None or int, optional
The number of iterations between validations. If None, then it will be
set to the size of training batch plus one. Default is None.
patience_incr : float or double, optional
lr_decr : float or double, optional
epoch_waiting : float or double, optional
`patience` is utilized to stop training when the model converges. It is
initialized as `n_batches` * 20. After each validation process, if
`current_valid_error` < `best_valid_error`, then `patience` =
`current_iter` * `patience_incr`. Otherwise if there is no improvement
in the last `epoch_waiting` epochs, then `lr` = `lr` * `lr_decr`.
Default `patience_incr` is 2.0, `lr_decr` is 0.5, and epoch_waiting is
10.
never_stop : bool, optional
If True, then the training process will never stop until user
interrupts, otherwise it will stop when either reaches `n_epochs` or
`patience` is consumed.
"""
n_train = len(dataset.train_ind)
n_valid = len(dataset.valid_ind)
n_test = len(dataset.test_ind)
n_train_batches = n_train // batch_size
n_valid_batches = n_valid // batch_size
n_test_batches = n_test // batch_size
i = T.iscalar() # batch index
alpha = T.scalar() # learning rate
dummy = T.scalar() # for parameter updates
l, r = i * batch_size, (i + 1) * batch_size
# Comupute updates
grads = T.grad(model.cost, model.parameters,
consider_constant=model.consts)
incs = [create_empty(p) for p in model.parameters]
inc_updates = []
param_updates = []
for p, g, inc in zip(model.parameters, grads, incs):
inc_updates.append((inc, momentum * inc - alpha * g))
param_updates.append((p, p + inc))
# Build functions
inc_updates_func = theano.function(
inputs=[i, alpha], outputs=model.cost, updates=inc_updates,
givens=_bind_data(model, dataset.train, [l, r]),
on_unused_input='ignore')
param_updates_func = theano.function(
inputs=[dummy], outputs=dummy, updates=param_updates,
on_unused_input='ignore')
valid_func = theano.function(
inputs=[i], outputs=[model.cost, model.error],
givens=_bind_data(model, dataset.valid, [l, r]),
on_unused_input='ignore')
test_func = theano.function(
inputs=[i], outputs=[model.cost, model.error],
givens=_bind_data(model, dataset.test, [l, r]),
on_unused_input='ignore')
# Start training
best_valid_error = np.inf
test_error = np.inf
patience = n_train_batches * 20
last_improve_epoch = 0
if valid_freq is None:
valid_freq = n_train_batches + 1
print "Start training ..."
begin_time = time.clock()
try:
for epoch in xrange(n_epochs):
for j in xrange(n_train_batches):
cur_iter = epoch * n_train_batches + j
# training
dataset.train.prepare([j * batch_size, (j + 1) * batch_size])
batch_cost = inc_updates_func(j, lr)
param_updates_func(0)
print "[train] epoch {0} batch {1}/{2}, iter {3}, cost {4}".format(
epoch, j + 1, n_train_batches, cur_iter, batch_cost)
if (cur_iter + 1) % valid_freq == 0:
# validation
valid_cost, valid_error = [], []
for j in xrange(n_valid_batches):
dataset.valid.prepare([j * batch_size, (j + 1) * batch_size])
cost, error = valid_func(j)
valid_cost.append(cost)
valid_error.append(error)
valid_cost = np.mean(valid_cost)
valid_error = np.mean(valid_error)
print "[valid] cost {0}, error {1}".format(valid_cost, valid_error)
# testing
if valid_error < best_valid_error:
best_valid_error = valid_error
last_improve_epoch = epoch
patience = max(patience, cur_iter * patience_incr)
print "Update patience {0}".format(patience)
test_cost, test_error = [], []
for j in xrange(n_test_batches):
dataset.test.prepare([j * batch_size, (j + 1) * batch_size])
cost, error = test_func(j)
test_cost.append(cost)
test_error.append(error)
test_cost = np.mean(test_cost)
test_error = np.mean(test_error)
print "[test] cost {0}, error {1}".format(test_cost, test_error)
elif epoch >= last_improve_epoch + epoch_waiting:
# lr decreasing
lr *= lr_decr
last_improve_epoch = epoch
print "Update lr {0}".format(lr)
# early stopping
if cur_iter > patience and not never_stop:
break
except __HOLE__:
print "Keyboard interrupt. Stop training"
print "Training complete, time {0}".format(time.clock() - begin_time)
print "Best validation error {0}, test error {1}".format(best_valid_error,
test_error) | KeyboardInterrupt | dataset/ETHPy150Open Cysu/dlearn/dlearn/optimization/sgd.py/train |
1,246 | def train_dp(model, data_provider, lr=1e-4, momentum=0.9,
n_epochs=100, valid_freq=None,
patience_incr=2.0, lr_decr=0.1, epoch_waiting=10,
never_stop=False):
r"""Train the model with mini-batch Stochastic Gradient Descent(SGD).
Parameters
----------
model : NeuralNet
The model to be trained.
dataset : Dataset
The dataset to provide training, validation, and testing data.
lr : float or double, optional
The initial learning rate. Default is 1e-4.
momentum : float or double, optional
The coefficient of momentum term. Default is 0.9.
batch_size : int, optional
The number of samples in each mini-batch. Default is 100.
n_epochs : int, optional
The number of training epochs. Default is 100.
valid_freq : None or int, optional
The number of iterations between validations. If None, then it will be
set to the size of training batch plus one. Default is None.
patience_incr : float or double, optional
lr_decr : float or double, optional
epoch_waiting : float or double, optional
`patience` is utilized to stop training when the model converges. It is
initialized as `n_batches` * 20. After each validation process, if
`current_valid_error` < `best_valid_error`, then `patience` =
`current_iter` * `patience_incr`. Otherwise if there is no improvement
in the last `epoch_waiting` epochs, then `lr` = `lr` * `lr_decr`.
Default `patience_incr` is 2.0, `lr_decr` is 0.5, and epoch_waiting is
10.
never_stop : bool, optional
If True, then the training process will never stop until user
interrupts, otherwise it will stop when either reaches `n_epochs` or
`patience` is consumed.
"""
n_train_batches = data_provider.train.n_batches
n_valid_batches = data_provider.valid.n_batches
n_test_batches = data_provider.test.n_batches
alpha = T.scalar() # learning rate
dummy = T.scalar() # for parameter updates
# Comupute updates
grads = T.grad(model.cost, model.parameters,
consider_constant=model.consts)
incs = [create_empty(p) for p in model.parameters]
inc_updates = []
param_updates = []
for p, g, inc in zip(model.parameters, grads, incs):
inc_updates.append((inc, momentum * inc - alpha * g))
param_updates.append((p, p + inc))
# Build functions
inc_updates_func = theano.function(
inputs=[alpha], outputs=model.cost, updates=inc_updates,
givens=_bind_data(model, data_provider.train),
on_unused_input='ignore')
param_updates_func = theano.function(
inputs=[dummy], outputs=dummy, updates=param_updates,
on_unused_input='ignore')
valid_func = theano.function(
inputs=[], outputs=[model.cost, model.error],
givens=_bind_data(model, data_provider.valid),
on_unused_input='ignore')
test_func = theano.function(
inputs=[], outputs=[model.cost, model.error],
givens=_bind_data(model, data_provider.test),
on_unused_input='ignore')
# Start training
best_valid_cost = np.inf
last_improve_epoch = 0
train_costs = [0] * n_train_batches
if valid_freq is None:
valid_freq = n_train_batches + 1
print "Start training ..."
begin_time = time.clock()
try:
for epoch in xrange(n_epochs):
need_stop = False
for j in xrange(n_train_batches):
cur_iter = epoch * n_train_batches + j
# training
data_provider.train.prepare(j)
batch_cost = inc_updates_func(lr)
param_updates_func(0)
train_costs[j] = batch_cost
print "[train] epoch {0} batch {1}/{2}, iter {3}, cost {4}".format(
epoch, j + 1, n_train_batches, cur_iter, batch_cost)
if (cur_iter + 1) % valid_freq == 0:
# validation
valid_cost, valid_error = [], []
for j in xrange(n_valid_batches):
data_provider.valid.prepare(j)
cost, error = valid_func()
valid_cost.append(cost)
valid_error.append(error)
valid_cost = np.mean(valid_cost)
valid_error = np.mean(valid_error)
print "[valid] cost {0}, error {1}".format(valid_cost, valid_error)
# testing
if valid_cost < best_valid_cost:
best_valid_cost = valid_cost
best_valid_error = valid_error
last_improve_epoch = epoch
test_cost, test_error = [], []
for j in xrange(n_test_batches):
data_provider.test.prepare(j)
cost, error = test_func()
test_cost.append(cost)
test_error.append(error)
test_cost = np.mean(test_cost)
test_error = np.mean(test_error)
print "[test] cost {0}, error {1}".format(test_cost, test_error)
elif epoch >= last_improve_epoch + epoch_waiting:
# check overfitting
if np.mean(train_costs) < valid_cost * 0.85:
need_stop = True
break
# lr decreasing
if lr >= 1e-5:
lr *= lr_decr
print "Update lr {0}".format(lr)
last_improve_epoch = epoch
# early stopping
if not never_stop and need_stop:
break
except __HOLE__:
print "Keyboard interrupt. Stop training"
print "Training complete, time {0}".format(time.clock() - begin_time)
print "Best validation cost {0}, valid error {1}".format(best_valid_cost, best_valid_error)
print "Test cost {0}, test error {1}".format(test_cost, test_error) | KeyboardInterrupt | dataset/ETHPy150Open Cysu/dlearn/dlearn/optimization/sgd.py/train_dp |
1,247 | @staticmethod
def _parse(lines):
def coalesce_lines():
line_iter = iter(lines)
try:
buffer = ''
while True:
line = next(line_iter)
if line.strip().endswith('\\'):
# Continuation.
buffer += line.strip()[:-1]
else:
if buffer:
# Continuation join, preserve left hand ws (could be a kv separator)
buffer += line.rstrip()
else:
# Plain old line
buffer = line.strip()
try:
yield buffer
finally:
buffer = ''
except __HOLE__:
pass
def normalize(atom):
return re.sub(r'\\([:=\s])', r'\1', atom.strip())
def parse_line(line):
if line and not (line.startswith('#') or line.startswith('!')):
match = Properties._EXPLICIT_KV_SEP.search(line)
if match:
return normalize(line[:match.start()]), normalize(line[match.end():])
else:
space_sep = line.find(' ')
if space_sep == -1:
return normalize(line), ''
else:
return normalize(line[:space_sep]), normalize(line[space_sep:])
props = OrderedDict()
for line in coalesce_lines():
kv_pair = parse_line(line)
if kv_pair:
key, value = kv_pair
props[key] = value
return props | StopIteration | dataset/ETHPy150Open pantsbuild/pants/src/python/pants/backend/jvm/tasks/properties.py/Properties._parse |
1,248 | def load_caffe(model_desc, model_file):
"""
return a dict of params
"""
param_dict = {}
param_processors = get_processor()
with change_env('GLOG_minloglevel', '2'):
import caffe
caffe.set_mode_cpu()
net = caffe.Net(model_desc, model_file, caffe.TEST)
layer_names = net._layer_names
blob_names = net.blobs.keys()
for layername, layer in zip(layer_names, net.layers):
try:
prev_blob_name = blob_names[blob_names.index(layername)-1]
prev_data_shape = net.blobs[prev_blob_name].data.shape[1:]
except __HOLE__:
prev_data_shape = None
if layer.type in param_processors:
param_dict.update(param_processors[layer.type](
layername, layer.blobs, prev_data_shape))
else:
assert len(layer.blobs) == 0, len(layer.blobs)
logger.info("Model loaded from caffe. Params: " + \
" ".join(sorted(param_dict.keys())))
return param_dict | ValueError | dataset/ETHPy150Open ppwwyyxx/tensorpack/tensorpack/utils/loadcaffe.py/load_caffe |
1,249 | def get(self, key):
try:
expires, value = self._cache[key]
if expires == 0 or expires > time():
return pickle.loads(value)
except (__HOLE__, pickle.PickleError):
return None | KeyError | dataset/ETHPy150Open GoogleCloudPlatform/appengine-flask-skeleton/lib/werkzeug/contrib/cache.py/SimpleCache.get |
1,250 | def has(self, key):
try:
expires, value = self._cache[key]
return expires == 0 or expires > time()
except __HOLE__:
return False | KeyError | dataset/ETHPy150Open GoogleCloudPlatform/appengine-flask-skeleton/lib/werkzeug/contrib/cache.py/SimpleCache.has |
1,251 | def import_preferred_memcache_lib(self, servers):
"""Returns an initialized memcache client. Used by the constructor."""
try:
import pylibmc
except ImportError:
pass
else:
return pylibmc.Client(servers)
try:
from google.appengine.api import memcache
except __HOLE__:
pass
else:
return memcache.Client()
try:
import memcache
except ImportError:
pass
else:
return memcache.Client(servers)
# backwards compatibility | ImportError | dataset/ETHPy150Open GoogleCloudPlatform/appengine-flask-skeleton/lib/werkzeug/contrib/cache.py/MemcachedCache.import_preferred_memcache_lib |
1,252 | def __init__(self, host='localhost', port=6379, password=None,
db=0, default_timeout=300, key_prefix=None, **kwargs):
BaseCache.__init__(self, default_timeout)
if isinstance(host, string_types):
try:
import redis
except __HOLE__:
raise RuntimeError('no redis module found')
if kwargs.get('decode_responses', None):
raise ValueError('decode_responses is not supported by '
'RedisCache.')
self._client = redis.Redis(host=host, port=port, password=password,
db=db, **kwargs)
else:
self._client = host
self.key_prefix = key_prefix or '' | ImportError | dataset/ETHPy150Open GoogleCloudPlatform/appengine-flask-skeleton/lib/werkzeug/contrib/cache.py/RedisCache.__init__ |
1,253 | def load_object(self, value):
"""The reversal of :meth:`dump_object`. This might be called with
None.
"""
if value is None:
return None
if value.startswith(b'!'):
try:
return pickle.loads(value[1:])
except pickle.PickleError:
return None
try:
return int(value)
except __HOLE__:
# before 0.8 we did not have serialization. Still support that.
return value | ValueError | dataset/ETHPy150Open GoogleCloudPlatform/appengine-flask-skeleton/lib/werkzeug/contrib/cache.py/RedisCache.load_object |
1,254 | def __init__(self, cache_dir, threshold=500, default_timeout=300,
mode=0o600):
BaseCache.__init__(self, default_timeout)
self._path = cache_dir
self._threshold = threshold
self._mode = mode
try:
os.makedirs(self._path)
except __HOLE__ as ex:
if ex.errno != errno.EEXIST:
raise | OSError | dataset/ETHPy150Open GoogleCloudPlatform/appengine-flask-skeleton/lib/werkzeug/contrib/cache.py/FileSystemCache.__init__ |
1,255 | def _prune(self):
entries = self._list_dir()
if len(entries) > self._threshold:
now = time()
try:
for idx, fname in enumerate(entries):
remove = False
with open(fname, 'rb') as f:
expires = pickle.load(f)
remove = (expires != 0 and expires <= now) or idx % 3 == 0
if remove:
os.remove(fname)
except (IOError, __HOLE__):
pass | OSError | dataset/ETHPy150Open GoogleCloudPlatform/appengine-flask-skeleton/lib/werkzeug/contrib/cache.py/FileSystemCache._prune |
1,256 | def clear(self):
for fname in self._list_dir():
try:
os.remove(fname)
except (__HOLE__, OSError):
return False
return True | IOError | dataset/ETHPy150Open GoogleCloudPlatform/appengine-flask-skeleton/lib/werkzeug/contrib/cache.py/FileSystemCache.clear |
1,257 | def get(self, key):
filename = self._get_filename(key)
try:
with open(filename, 'rb') as f:
pickle_time = pickle.load(f)
if pickle_time == 0 or pickle_time >= time():
return pickle.load(f)
else:
os.remove(filename)
return None
except (IOError, __HOLE__, pickle.PickleError):
return None | OSError | dataset/ETHPy150Open GoogleCloudPlatform/appengine-flask-skeleton/lib/werkzeug/contrib/cache.py/FileSystemCache.get |
1,258 | def set(self, key, value, timeout=None):
if timeout is None:
timeout = int(time() + self.default_timeout)
elif timeout != 0:
timeout = int(time() + timeout)
filename = self._get_filename(key)
self._prune()
try:
fd, tmp = tempfile.mkstemp(suffix=self._fs_transaction_suffix,
dir=self._path)
with os.fdopen(fd, 'wb') as f:
pickle.dump(timeout, f, 1)
pickle.dump(value, f, pickle.HIGHEST_PROTOCOL)
rename(tmp, filename)
os.chmod(filename, self._mode)
except (__HOLE__, OSError):
return False
else:
return True | IOError | dataset/ETHPy150Open GoogleCloudPlatform/appengine-flask-skeleton/lib/werkzeug/contrib/cache.py/FileSystemCache.set |
1,259 | def delete(self, key):
try:
os.remove(self._get_filename(key))
except (__HOLE__, OSError):
return False
else:
return True | IOError | dataset/ETHPy150Open GoogleCloudPlatform/appengine-flask-skeleton/lib/werkzeug/contrib/cache.py/FileSystemCache.delete |
1,260 | def has(self, key):
filename = self._get_filename(key)
try:
with open(filename, 'rb') as f:
pickle_time = pickle.load(f)
if pickle_time == 0 or pickle_time >= time():
return True
else:
os.remove(filename)
return False
except (__HOLE__, OSError, pickle.PickleError):
return False | IOError | dataset/ETHPy150Open GoogleCloudPlatform/appengine-flask-skeleton/lib/werkzeug/contrib/cache.py/FileSystemCache.has |
1,261 | def consume_batch_async(self, batch):
op = self.operation()
op_mutate = op in ['set', 'add']
stdout = sys.stdout
msg_visitor = None
opts_etc = getattr(self.opts, "etc", None)
if opts_etc:
stdout = opts_etc.get("stdout", sys.stdout)
msg_visitor = opts_etc.get("msg_visitor", None)
for msg in batch.msgs:
if msg_visitor:
msg = msg_visitor(msg)
cmd, vbucket_id, key, flg, exp, cas, meta, val = msg
if self.skip(key, vbucket_id):
continue
try:
if cmd == couchbaseConstants.CMD_TAP_MUTATION:
if op_mutate:
# <op> <key> <flags> <exptime> <bytes> [noreply]\r\n
stdout.write("%s %s %s %s %s\r\n" %
(op, key, flg, exp, len(val)))
stdout.write(val)
stdout.write("\r\n")
elif op == 'get':
stdout.write("get %s\r\n" % (key))
elif cmd == couchbaseConstants.CMD_TAP_DELETE:
if op_mutate:
stdout.write("delete %s\r\n" % (key))
elif cmd == couchbaseConstants.CMD_GET:
stdout.write("get %s\r\n" % (key))
else:
return "error: StdOutSink - unknown cmd: " + str(cmd), None
except __HOLE__:
return "error: could not write to stdout", None
future = SinkBatchFuture(self, batch)
self.future_done(future, 0)
return 0, future
# -------------------------------------------------- | IOError | dataset/ETHPy150Open membase/membase-cli/pump.py/StdOutSink.consume_batch_async |
1,262 | def rest_request_json(host, port, user, pswd, path, reason=''):
err, conn, rest_json = rest_request(host, port, user, pswd, path,
reason=reason)
if err:
return err, None, None
if conn:
conn.close()
try:
return None, rest_json, json.loads(rest_json)
except __HOLE__, e:
return ("error: could not decode JSON from REST API: %s:%s%s" +
"; exception: %s" +
"; please check URL, username (-u) and password (-p)") % \
(host, port, path, e), None, None | ValueError | dataset/ETHPy150Open membase/membase-cli/pump.py/rest_request_json |
1,263 | def parse(self, timestr, default=None, ignoretz=False, settings=None, **kwargs):
# timestr needs to be a buffer as required by _parse
if isinstance(timestr, binary_type):
timestr = timestr.decode()
# Parse timestr
# handle dateutil>=2.5 tuple result first
try:
res, _ = self._parse(timestr, **kwargs)
except __HOLE__:
res = self._parse(timestr, **kwargs)
if res is None:
raise ValueError("unknown string format")
# Fill in missing date
new_date = self._populate(res, default, settings=settings)
# Clean hour and minutes, etc in case not defined
for e in ['hour', 'minute', 'second', 'microsecond']:
if not getattr(res, e):
new_date = new_date.replace(**{e: 0})
return new_date, self.get_period(res) | TypeError | dataset/ETHPy150Open scrapinghub/dateparser/dateparser/date_parser.py/new_parser.parse |
1,264 | def dateutil_parse(date_string, settings=None, **kwargs):
"""Wrapper function around dateutil.parser.parse
"""
today = datetime.utcnow()
kwargs.update(default=today)
date_string = re.sub(r'\b(year|month|week|day)\b', '', date_string, re.I)
# XXX: this is needed because of a bug in dateutil.parser
# that raises TypeError for an invalid string
# https://bugs.launchpad.net/dateutil/+bug/1042851
try:
return new_parser().parse(date_string, settings=settings, **kwargs)
except __HOLE__ as e:
raise ValueError(e, "Invalid date: %s" % date_string) | TypeError | dataset/ETHPy150Open scrapinghub/dateparser/dateparser/date_parser.py/dateutil_parse |
1,265 | def _format_external_gateway_info(info):
try:
return json.dumps(info)
except (__HOLE__, KeyError):
return '' | TypeError | dataset/ETHPy150Open dtroyer/python-openstackclient/openstackclient/network/v2/router.py/_format_external_gateway_info |
1,266 | def main():
class MyParser(argparse.ArgumentParser):
def error(self, message):
sys.stderr.write('error: {0}\n'.format(message))
self.print_help()
sys.exit(2)
class AppendDictAction(argparse.Action):
def __call__(self, parser, namespace, values, option_string=None):
items = getattr(namespace, self.dest, {})
try:
vals = values.split(',')
for t in vals:
k, v = t.split('=', 1)
items[k] = v
except ValueError:
parser.error("invalid argument {}".format(self.dest))
setattr(namespace, self.dest, items)
class CheckAction(argparse.Action):
def _check_command(self, command, package="", why=""):
if _util.command_exists(command):
print(" INSTALLED {}".format(command))
elif why and package:
print(" MISSING {:<20}needed for {}, part of the {} package".format(command, why, package))
elif why:
print(" MISSING {:<20}needed for {}".format(command, why))
elif package:
print(" MISSING {:<20}part of the {} package".format(command, package))
else:
print(" MISSING {}".format(command))
def _check_module(self, module, pip_name="", why=""):
if not pip_name:
pip_name = module
if module == "magic" and _util.module_exists(module):
import magic
if hasattr(magic, 'from_file'):
print(" INSTALLED {:<20}(Python package)".format(pip_name))
elif hasattr(magic, 'open'):
print(" INSTALLED {:<20}(system package)".format(pip_name))
else:
print(" ERROR {:<20}expecting {}, found other module named magic".format(pip_name, pip_name))
elif module != "magic" and _util.module_exists(module):
print(" INSTALLED {}".format(pip_name))
elif why:
print(" MISSING {:<20}needed for {}, install using pip".format(pip_name, why))
else:
print(" MISSING {:<20}install using pip".format(pip_name, why))
# noinspection PyShadowingNames
def __call__(self, parser, namespace, values, option_string=None):
print("The following commands are used by imagemounter internally. Without most commands, imagemounter "
"works perfectly fine, but may lack some detection or mounting capabilities.")
print("-- Mounting base disk images (at least one required, first three recommended) --")
self._check_command("xmount", "xmount", "several types of disk images")
self._check_command("ewfmount", "ewf-tools", "EWF images (partially covered by xmount)")
self._check_command("affuse", "afflib-tools", "AFF images (partially covered by xmount)")
self._check_command("vmware-mount", why="VMWare disks")
print("-- Detecting volumes and volume types (at least one required) --")
self._check_command("mmls", "sleuthkit")
self._check_module("pytsk3")
self._check_command("parted", "parted")
print("-- Detecting volume types (all recommended, first two highly recommended) --")
self._check_command("fsstat", "sleuthkit")
self._check_command("file", "libmagic1")
self._check_module("magic", "python-magic")
self._check_command("disktype", "disktype")
print("-- Enhanced mounting and detecting disks (install when needed) --")
self._check_command("mdadm", "mdadm", "RAID disks")
self._check_command("cryptsetup", "cryptsetup", "LUKS containers")
self._check_command("mountavfs", "avfs", "compressed disk images")
print("-- Mounting volumes (install when needed) --")
self._check_command("mount.xfs", "xfsprogs", "XFS volumes")
self._check_command("mount.ntfs", "ntfs-3g", "NTFS volumes")
self._check_command("lvm", "lvm2", "LVM volumes")
self._check_command("vmfs-fuse", "vmfs-tools", "VMFS volumes")
self._check_command("mount.jffs2", "mtd-tools", "JFFS2 volumes")
self._check_command("mount.squashfs", "squashfs-tools", "SquashFS volumes")
self._check_command("bdemount", "libbde-utils", "Bitlocker Drive Encryption volumes")
parser.exit()
parser = MyParser(description='Utility to mount volumes in Encase and dd images locally.')
parser.add_argument('images', nargs='*',
help='path(s) to the image(s) that you want to mount; generally just the first file (e.g. '
'the .E01 or .001 file) or the folder containing the files is enough in the case of '
'split files')
# Special options
parser.add_argument('--version', action='version', version=__version__, help='display version and exit')
parser.add_argument('--check', action=CheckAction, nargs=0,
help='do a system check and list which tools are installed')
# Utility specific
parser.add_argument('-u', '--unmount', action='store_true', default=False,
help='try to unmount left-overs of previous imount runs; may occasionally not be able to '
'detect all mountpoints or detect too much mountpoints; use --casename to limit '
'the unmount options')
parser.add_argument('-w', '--wait', action='store_true', default=False, help='pause on some additional warnings')
parser.add_argument('-k', '--keep', action='store_true', default=False,
help='keep volumes mounted after program exits')
parser.add_argument('--no-interaction', action='store_true', default=False,
help="do not ask for any user input, implies --keep")
parser.add_argument('-o', '--only-mount', default=None,
help="specify which volume(s) you want to mount, comma-separated")
parser.add_argument('-v', '--verbose', action='count', default=False, help='enable verbose output')
parser.add_argument('-c', '--color', action='store_true', default=False, help='force colorizing the output')
parser.add_argument('--no-color', action='store_true', default=False, help='prevent colorizing the output')
# Additional options
parser.add_argument('-r', '--reconstruct', action='store_true', default=False,
help='attempt to reconstruct the full filesystem tree; implies -s and mounts all partitions '
'at once')
parser.add_argument('--carve', action='store_true', default=False,
help='automatically carve the free space of a mounted volume for deleted files')
# Specify options to the subsystem
parser.add_argument('-md', '--mountdir', default=None,
help='specify other directory for volume mountpoints')
parser.add_argument('-p', '--pretty', action='store_true', default=False,
help='use pretty names for mount points; useful in combination with --mountdir')
parser.add_argument('-cn', '--casename', default=None,
help='name to add to the --mountdir, often used in conjunction with --pretty')
parser.add_argument('-rw', '--read-write', action='store_true', default=False,
help='mount image read-write by creating a local write-cache file in a temp directory; '
'implies --method=xmount')
parser.add_argument('-m', '--method', choices=['xmount', 'affuse', 'ewfmount', 'vmware-mount', 'avfs',
'auto', 'dummy'],
default='auto',
help='use other tool to mount the initial images; results may vary between methods and if '
'something doesn\'t work, try another method; dummy can be used when base should not be '
'mounted (default: auto)')
parser.add_argument('-d', '--detection', choices=['pytsk3', 'mmls', 'parted', 'auto'], default='auto',
help='use other volume detection method; pytsk3 and mmls should provide identical results, '
'though pytsk3 is using the direct C API of mmls, but requires pytsk3 to be installed; '
'auto distinguishes between pytsk3 and mmls only '
'(default: auto)')
parser.add_argument('--vstype', choices=VOLUME_SYSTEM_TYPES,
default="detect", help='specify type of volume system (partition table); if you don\'t know, '
'use "detect" to try to detect (default: detect)')
parser.add_argument('--fstypes', action=AppendDictAction, default={'?': 'unknown'},
help="allows the specification of the file system type per volume number; format: 0.1=lvm,...; "
"use volume number ? for all undetected file system types and * for all file systems; "
"accepted file systems types are {}".format(", ".join(FILE_SYSTEM_TYPES)) +
", and none only for the ? volume (defaults to unknown)")
parser.add_argument('--keys', action=AppendDictAction, default={},
help="allows the specification of key material per volume number; format: 0.1=p:pass,...; "
"exact format depends on volume type")
# Toggles for default settings you may perhaps want to override
toggroup = parser.add_argument_group('toggles')
toggroup.add_argument('--stats', action='store_true', default=False,
help='show limited information from fsstat, which will slow down mounting and may cause '
'random issues such as partitions being unreadable (default)')
toggroup.add_argument('--no-stats', action='store_true', default=False,
help='do not show limited information from fsstat')
toggroup.add_argument('--disktype', action='store_true', default=False,
help='use the disktype command to get even more information about the volumes (default)')
toggroup.add_argument('--no-disktype', action='store_true', default=False,
help='do not use disktype to get more information')
toggroup.add_argument('--raid', action='store_true', default=False,
help="try to detect whether the volume is part of a RAID array (default)")
toggroup.add_argument('--no-raid', action='store_true', default=False,
help="prevent trying to mount the volume in a RAID array")
toggroup.add_argument('--single', action='store_true', default=False,
help="do not try to find a volume system, but assume the image contains a single volume")
toggroup.add_argument('--no-single', action='store_true', default=False,
help="prevent trying to mount the image as a single volume if no volume system was found")
args = parser.parse_args()
# Colorize the output by default if the terminal supports it
if not args.color and args.no_color:
args.color = False
elif args.color:
args.color = True
else:
args.color = _util.terminal_supports_color()
if not args.color:
# noinspection PyUnusedLocal,PyShadowingNames
def col(s, *args, **kwargs):
return s
else:
from termcolor import colored
col = colored
class ImageMounterFormatter(logging.Formatter):
def format(self, record):
msg = record.getMessage()
if args.verbose >= 4 and record.exc_info:
if not record.exc_text:
record.exc_text = self.formatException(record.exc_info)
if msg[-1:] != "\n":
msg += "\n"
msg += record.exc_text
if record.levelno >= logging.WARNING:
return col("[-] " + msg, 'cyan')
elif record.levelno == logging.INFO:
return col("[+] " + msg, 'cyan')
elif msg.startswith('$'):
return col(" " + msg, 'cyan')
else:
return col(" " + msg, 'cyan')
# Set logging level for internal Python
handler = logging.StreamHandler()
handler.setFormatter(ImageMounterFormatter())
logger = logging.getLogger("imagemounter")
logger.setLevel({0: logging.CRITICAL, 1: logging.WARNING, 2: logging.INFO}.get(args.verbose, logging.DEBUG))
logger.addHandler(handler)
# Check some prerequisites
if os.geteuid(): # Not run as root
print(col('[!] Not running as root!', 'yellow'))
if 'a' in __version__ or 'b' in __version__:
print(col("Development release v{0}. Please report any bugs you encounter.".format(__version__),
attrs=['dark']))
print(col("Bug reports: use -vvvv to get maximum verbosity and include imount --check output in your report",
attrs=['dark']))
print(col("Critical bug? Use git tag to list all versions and use git checkout <version>", attrs=['dark']))
# Always assume stats, except when --no-stats is present, and --stats is not.
if not args.stats and args.no_stats:
args.stats = False
else:
args.stats = True
# Make args.disktype default to True
explicit_disktype = False
if not args.disktype and args.no_disktype:
args.disktype = False
else:
if args.disktype:
explicit_disktype = True
args.disktype = True
# Make args.raid default to True
explicit_raid = False
if not args.raid and args.no_raid:
args.raid = False
else:
if args.raid:
explicit_raid = True
args.raid = True
# Make args.single default to None
if args.single == args.no_single:
args.single = None
elif args.single:
args.single = True
elif args.no_single:
args.single = False
# If --no-interaction is specified, imply --keep and not --wait
if args.no_interaction:
args.keep = True
if args.wait:
print(col("[!] --no-interaction can't be used in conjunction with --wait", 'yellow'))
args.wait = False
# Check if mount method supports rw
if args.method not in ('xmount', 'auto') and args.read_write:
print(col("[!] {0} does not support mounting read-write! Will mount read-only.".format(args.method), 'yellow'))
args.read_write = False
# Check if mount method is available
mount_command = 'avfsd' if args.method == 'avfs' else args.method
if args.method not in ('auto', 'dummy') and not _util.command_exists(mount_command):
print(col("[-] {0} is not installed!".format(args.method), 'red'))
sys.exit(1)
elif args.method == 'auto' and not any(map(_util.command_exists, ('xmount', 'affuse', 'ewfmount', 'vmware-mount',
'avfsd'))):
print(col("[-] No tools installed to mount the image base! Please install xmount, affuse (afflib-tools), "
"ewfmount (ewf-tools), vmware-mount or avfs first.", 'red'))
sys.exit(1)
# Check if detection method is available
if args.detection == 'pytsk3' and not _util.module_exists('pytsk3'):
print(col("[-] pytsk3 module does not exist!", 'red'))
sys.exit(1)
elif args.detection in ('mmls', 'parted') and not _util.command_exists(args.detection):
print(col("[-] {0} is not installed!".format(args.detection), 'red'))
sys.exit(1)
elif args.detection == 'auto' and not any((_util.module_exists('pytsk3'), _util.command_exists('mmls'),
_util.command_exists('parted'))):
print(col("[-] No tools installed to detect volumes! Please install mmls (sleuthkit), pytsk3 or parted first.",
'red'))
sys.exit(1)
# Check if raid is available
if args.raid and not _util.command_exists('mdadm'):
if explicit_raid:
print(col("[!] RAID mount requires the mdadm command.", 'yellow'))
args.raid = False
if args.reconstruct and not args.stats: # Reconstruct implies use of fsstat
print("[!] You explicitly disabled stats, but --reconstruct implies the use of stats. Stats are re-enabled.")
args.stats = True
# Check if raid is available
if args.disktype and not _util.command_exists('disktype'):
if explicit_disktype:
print(col("[-] The disktype command can not be used in this session, as it is not installed.", 'yellow'))
args.disktype = False
if args.stats and not _util.command_exists('fsstat'):
print(col("[-] The fsstat command (part of sleuthkit package) is required to obtain stats, but is not "
"installed. Stats can not be obtained during this session.", 'yellow'))
args.stats = False
if args.reconstruct:
print(col("[-] Reconstruction requires stats to be obtained, but stats can not be enabled.", 'red'))
sys.exit(1)
if args.fstypes:
for k, v in args.fstypes.items():
if v.strip() not in FILE_SYSTEM_TYPES and not (k == '?' and v.strip().lower() == 'none'):
print("[!] Error while parsing --fstypes: {} is invalid".format(v))
sys.exit(1)
if '*' in args.fstypes:
print("[!] You are forcing the file system type to {0}. This may cause unexpected results."
.format(args.fstypes['*']))
elif '?' in args.fstypes and args.fstypes['?'] not in ('unknown', 'none'):
print("[!] You are using the file system type {0} as fallback. This may cause unexpected results."
.format(args.fstypes['?']))
if args.only_mount:
args.only_mount = args.only_mount.split(',')
if args.vstype != 'detect' and args.single:
print("[!] There's no point in using --single in combination with --vstype.")
if args.carve and not _util.command_exists('photorec'):
print(col("[-] The photorec command (part of testdisk package) is required to carve, but is not "
"installed. Carving will be disabled.", 'yellow'))
args.carve = False
if not args.images and not args.unmount:
print(col("[-] You must specify at least one path to a disk image", 'red'))
sys.exit(1)
if args.unmount:
unmounter = Unmounter(**vars(args))
commands = unmounter.preview_unmount()
if not commands:
print("[+] Nothing to do")
parser.exit()
print("[!] --unmount will rigorously clean anything that looks like a mount or volume group originating "
"from this utility. You may regret using this if you have other mounts or volume groups that are "
"similarly named. The following commands will be executed:")
for c in commands:
print(" {0}".format(c))
try:
input(">>> Press [enter] to continue or ^C to cancel... ")
unmounter.unmount()
except KeyboardInterrupt:
print("\n[-] Aborted.")
sys.exit(0)
# Enumerate over all images in the CLI
images = []
for num, image in enumerate(args.images):
# If is a directory, find a E01 file in the directory
if os.path.isdir(image):
for f in glob.glob(os.path.join(image, '*.[E0]01')):
images.append(f)
break
else:
print(col("[-] {0} is a directory not containing a .001 or .E01 file, aborting!".format(image), "red"))
break
continue
elif not os.path.exists(image):
print(col("[-] Image {0} does not exist, aborting!".format(image), "red"))
break
images.append(image)
else:
p = None
try:
p = ImageParser(images, **vars(args))
num = 0
found_raid = False
# Mount all disks. We could use .init, but where's the fun in that?
for disk in p.disks:
num += 1
print('[+] Mounting image {0} using {1}...'.format(p.paths[0], disk.method))
# Mount the base image using the preferred method
if not disk.mount():
print(col("[-] Failed mounting base image. Perhaps try another mount method than {0}?"
.format(disk.method), "red"))
return
if args.raid:
if disk.add_to_raid():
found_raid = True
if args.read_write:
print('[+] Created read-write cache at {0}'.format(disk.rwpath))
if args.disktype:
disk.volumes.load_disktype_data()
print('[+] Mounted raw image [{num}/{total}]'.format(num=num, total=len(args.images)))
sys.stdout.write("[+] Mounting volume...\r")
sys.stdout.flush()
has_left_mounted = False
for volume in p.mount_volumes(args.single, args.only_mount):
try:
# something failed?
if not volume.mountpoint and not volume.loopback:
if volume.exception and volume.size is not None and volume.size <= 1048576:
print(col('[-] Exception while mounting small volume {0}'.format(volume.get_description()),
'yellow'))
if args.wait:
input(col('>>> Press [enter] to continue... ', attrs=['dark']))
elif volume.exception:
print(col('[-] Exception while mounting {0}'.format(volume.get_description()), 'red'))
if not args.no_interaction:
input(col('>>> Press [enter] to continue... ', attrs=['dark']))
elif volume.flag != 'alloc':
if args.wait or args.verbose: # do not show skipped messages by default
print(col('[-] Skipped {0} {1} volume' .format(volume.get_description(), volume.flag),
'yellow'))
if args.wait:
input(col('>>> Press [enter] to continue... ', attrs=['dark']))
elif not volume._should_mount(args.only_mount):
print(col('[-] Skipped {0}'.format(volume.get_description()), 'yellow'))
else:
print(col('[-] Could not mount volume {0}'.format(volume.get_description()), 'yellow'))
if args.wait:
input(col('>>> Press [enter] to continue... ', attrs=['dark']))
if args.carve and volume.flag in ('alloc', 'unalloc'):
sys.stdout.write("[+] Carving volume...\r")
sys.stdout.flush()
if volume.carve(freespace=False):
print('[+] Carved data is available at {0}.'.format(col(volume.carvepoint, 'green',
attrs=['bold'])))
else:
print(col('[-] Carving failed.', 'red'))
else:
continue # we do not need the unmounting sequence
else:
# it all was ok
if volume.mountpoint:
print('[+] Mounted volume {0} on {1}.'.format(col(volume.get_description(), attrs=['bold']),
col(volume.mountpoint, 'green',
attrs=['bold'])))
elif volume.loopback: # fallback, generally indicates error.
print('[+] Mounted volume {0} as loopback on {1}.'.format(col(volume.get_description(),
attrs=['bold']),
col(volume.loopback, 'green',
attrs=['bold'])))
print(col('[-] Could not detect further volumes in the loopback device.', 'red'))
if args.carve:
sys.stdout.write("[+] Carving volume...\r")
sys.stdout.flush()
if volume.carve():
print('[+] Carved data is available at {0}.'.format(col(volume.carvepoint, 'green',
attrs=['bold'])))
else:
print(col('[-] Carving failed.', 'red'))
# Do not offer unmount when reconstructing
if args.reconstruct or args.keep:
has_left_mounted = True
continue
input(col('>>> Press [enter] to unmount the volume, or ^C to keep mounted... ', attrs=['dark']))
# Case where image should be unmounted, but has failed to do so. Keep asking whether the user wants
# to unmount.
while True:
if volume.unmount():
break
else:
try:
print(col("[-] Error unmounting volume. Perhaps files are still open?", "red"))
input(col('>>> Press [enter] to retry unmounting, or ^C to skip... ', attrs=['dark']))
except KeyboardInterrupt:
has_left_mounted = True
print("")
break
except KeyboardInterrupt:
has_left_mounted = True
print("")
sys.stdout.write("[+] Mounting volume...\r")
sys.stdout.flush()
for disk in p.disks:
if [x for x in disk.volumes if x.was_mounted] == 0:
if args.vstype != 'detect':
print(col('[?] Could not determine volume information of {0}. Image may be empty, '
'or volume system type {0} was incorrect.'.format(args.vstype.upper()), 'yellow'))
elif found_raid:
print(col('[?] Could not determine volume information. Image may be empty, or volume system '
'type could not be detected. Try explicitly providing the volume system type with '
'--vstype, or providing more volumes to complete the RAID array.', 'yellow'))
elif not args.raid or args.single is False:
print(col('[?] Could not determine volume information. Image may be empty, or volume system '
'type could not be detected. Try explicitly providing the volume system type with '
'--vstype, mounting as RAID with --raid and/or mounting as a single volume with '
'--single', 'yellow'))
else:
print(col('[?] Could not determine volume information. Image may be empty, or volume system '
'type could not be detected. Try explicitly providing the volume system type with '
'--vstype.', 'yellow'))
if args.wait:
input(col('>>> Press [enter] to continue... ', attrs=['dark']))
print('[+] Parsed all volumes!')
# Perform reconstruct if required
if args.reconstruct:
# Reverse order so '/' gets unmounted last
print("[+] Performing reconstruct... ")
root = p.reconstruct()
if not root:
print(col("[-] Failed reconstructing filesystem: could not find root directory.", 'red'))
else:
failed = []
for disk in p.disks:
failed.extend([x for x in disk.volumes if not x.bindmountpoint and x.mountpoint and x != root])
if failed:
print("[+] Parts of the filesystem are reconstructed in {0}.".format(col(root.mountpoint,
"green",
attrs=["bold"])))
for m in failed:
print(" {0} was not reconstructed".format(m.mountpoint))
else:
print("[+] The entire filesystem is reconstructed in {0}.".format(col(root.mountpoint,
"green", attrs=["bold"])))
if not args.keep:
input(col(">>> Press [enter] to unmount all volumes... ", attrs=['dark']))
elif has_left_mounted and not args.keep:
input(col(">>> Some volumes were left mounted. Press [enter] to unmount all... ", attrs=['dark']))
except KeyboardInterrupt:
print('\n[+] User pressed ^C, aborting...')
return
except Exception as e:
import traceback
traceback.print_exc()
print(col("[-] {0}".format(e), 'red'))
if not args.no_interaction:
input(col(">>> Press [enter] to continue.", attrs=['dark']))
finally:
if args.keep:
print("[+] Analysis complete.")
elif not p:
print("[-] Crashed before creating parser")
else:
print('[+] Analysis complete, unmounting...')
# All done with this image, unmount it
try:
remove_rw = p.rw_active() and 'y' in input('>>> Delete the rw cache file? [y/N] ').lower()
except KeyboardInterrupt:
remove_rw = False
while True:
if p.clean(remove_rw):
break
else:
try:
print(col("[-] Error unmounting base image. Perhaps volumes are still open?", 'red'))
input(col('>>> Press [enter] to retry unmounting, or ^C to cancel... ', attrs=['dark']))
except __HOLE__:
print("") # ^C does not print \n
break
print("[+] All cleaned up") | KeyboardInterrupt | dataset/ETHPy150Open ralphje/imagemounter/imagemounter/imount.py/main |
1,267 | def lookup_id(self, id):
try:
return self.Identities[id]
except __HOLE__:
if self.fallback:
return self.fallback.lookup_id(id)
else:
return None | KeyError | dataset/ETHPy150Open antong/ldaptor/ldaptor/protocols/pureber.py/BERDecoderContext.lookup_id |
1,268 | def test_is_length_failure(self):
try:
assert_that('foo').is_length(4)
fail('should have raised error')
except __HOLE__ as ex:
assert_that(str(ex)).is_equal_to('Expected <foo> to be of length <4>, but was <3>.') | AssertionError | dataset/ETHPy150Open ActivisionGameScience/assertpy/tests/test_string.py/TestString.test_is_length_failure |
1,269 | def test_contains_single_item_failure(self):
try:
assert_that('foo').contains('x')
fail('should have raised error')
except __HOLE__ as ex:
assert_that(str(ex)).is_equal_to('Expected <foo> to contain item <x>, but did not.') | AssertionError | dataset/ETHPy150Open ActivisionGameScience/assertpy/tests/test_string.py/TestString.test_contains_single_item_failure |
1,270 | def test_contains_multi_item_failure(self):
try:
assert_that('foo').contains('f','x','z')
fail('should have raised error')
except __HOLE__ as ex:
assert_that(str(ex)).is_equal_to("Expected <foo> to contain items ('f', 'x', 'z'), but did not contain <x>.") | AssertionError | dataset/ETHPy150Open ActivisionGameScience/assertpy/tests/test_string.py/TestString.test_contains_multi_item_failure |
1,271 | def test_contains_ignoring_case_type_failure(self):
try:
assert_that(123).contains_ignoring_case('f')
fail('should have raised error')
except __HOLE__ as ex:
assert_that(str(ex)).is_equal_to('val is not a string') | TypeError | dataset/ETHPy150Open ActivisionGameScience/assertpy/tests/test_string.py/TestString.test_contains_ignoring_case_type_failure |
1,272 | def test_contains_ignoring_case_missinge_item_failure(self):
try:
assert_that('foo').contains_ignoring_case()
fail('should have raised error')
except __HOLE__ as ex:
assert_that(str(ex)).is_equal_to('one or more args must be given') | ValueError | dataset/ETHPy150Open ActivisionGameScience/assertpy/tests/test_string.py/TestString.test_contains_ignoring_case_missinge_item_failure |
1,273 | def test_contains_ignoring_case_single_item_failure(self):
try:
assert_that('foo').contains_ignoring_case('X')
fail('should have raised error')
except __HOLE__ as ex:
assert_that(str(ex)).is_equal_to('Expected <foo> to case-insensitive contain item <X>, but did not.') | AssertionError | dataset/ETHPy150Open ActivisionGameScience/assertpy/tests/test_string.py/TestString.test_contains_ignoring_case_single_item_failure |
1,274 | def test_contains_ignoring_case_single_item_type_failure(self):
try:
assert_that('foo').contains_ignoring_case(12)
fail('should have raised error')
except __HOLE__ as ex:
assert_that(str(ex)).is_equal_to('given arg must be a string') | TypeError | dataset/ETHPy150Open ActivisionGameScience/assertpy/tests/test_string.py/TestString.test_contains_ignoring_case_single_item_type_failure |
1,275 | def test_contains_ignoring_case_multi_item_failure(self):
try:
assert_that('foo').contains_ignoring_case('F','X','Z')
fail('should have raised error')
except __HOLE__ as ex:
assert_that(str(ex)).is_equal_to("Expected <foo> to case-insensitive contain items ('F', 'X', 'Z'), but did not contain <X>.") | AssertionError | dataset/ETHPy150Open ActivisionGameScience/assertpy/tests/test_string.py/TestString.test_contains_ignoring_case_multi_item_failure |
1,276 | def test_contains_ignoring_case_multi_item_type_failure(self):
try:
assert_that('foo').contains_ignoring_case('F', 12)
fail('should have raised error')
except __HOLE__ as ex:
assert_that(str(ex)).is_equal_to('given args must all be strings') | TypeError | dataset/ETHPy150Open ActivisionGameScience/assertpy/tests/test_string.py/TestString.test_contains_ignoring_case_multi_item_type_failure |
1,277 | def test_does_not_contain_single_item_failure(self):
try:
assert_that('foo').does_not_contain('f')
fail('should have raised error')
except __HOLE__ as ex:
assert_that(str(ex)).is_equal_to('Expected <foo> to not contain item <f>, but did.') | AssertionError | dataset/ETHPy150Open ActivisionGameScience/assertpy/tests/test_string.py/TestString.test_does_not_contain_single_item_failure |
1,278 | def test_does_not_contain_list_item_failure(self):
try:
assert_that('foo').does_not_contain('x','y','f')
fail('should have raised error')
except __HOLE__ as ex:
assert_that(str(ex)).is_equal_to("Expected <foo> to not contain items ('x', 'y', 'f'), but did contain <f>.") | AssertionError | dataset/ETHPy150Open ActivisionGameScience/assertpy/tests/test_string.py/TestString.test_does_not_contain_list_item_failure |
1,279 | def test_is_empty_failure(self):
try:
assert_that('foo').is_empty()
fail('should have raised error')
except __HOLE__ as ex:
assert_that(str(ex)).is_equal_to('Expected <foo> to be empty string, but was not.') | AssertionError | dataset/ETHPy150Open ActivisionGameScience/assertpy/tests/test_string.py/TestString.test_is_empty_failure |
1,280 | def test_is_not_empty_failure(self):
try:
assert_that('').is_not_empty()
fail('should have raised error')
except __HOLE__ as ex:
assert_that(str(ex)).is_equal_to('Expected not empty string, but was empty.') | AssertionError | dataset/ETHPy150Open ActivisionGameScience/assertpy/tests/test_string.py/TestString.test_is_not_empty_failure |
1,281 | def test_is_equal_ignoring_case_failure(self):
try:
assert_that('foo').is_equal_to_ignoring_case('bar')
fail('should have raised error')
except __HOLE__ as ex:
assert_that(str(ex)).is_equal_to('Expected <foo> to be case-insensitive equal to <bar>, but was not.') | AssertionError | dataset/ETHPy150Open ActivisionGameScience/assertpy/tests/test_string.py/TestString.test_is_equal_ignoring_case_failure |
1,282 | def test_is_equal_ignoring_case_bad_value_type_failure(self):
try:
assert_that(123).is_equal_to_ignoring_case(12)
fail('should have raised error')
except __HOLE__ as ex:
assert_that(str(ex)).is_equal_to('val is not a string') | TypeError | dataset/ETHPy150Open ActivisionGameScience/assertpy/tests/test_string.py/TestString.test_is_equal_ignoring_case_bad_value_type_failure |
1,283 | def test_is_equal_ignoring_case_bad_arg_type_failure(self):
try:
assert_that('fred').is_equal_to_ignoring_case(12)
fail('should have raised error')
except __HOLE__ as ex:
assert_that(str(ex)).is_equal_to('given arg must be a string') | TypeError | dataset/ETHPy150Open ActivisionGameScience/assertpy/tests/test_string.py/TestString.test_is_equal_ignoring_case_bad_arg_type_failure |
1,284 | def test_starts_with_failure(self):
try:
assert_that('fred').starts_with('bar')
fail('should have raised error')
except __HOLE__ as ex:
assert_that(str(ex)).is_equal_to('Expected <fred> to start with <bar>, but did not.') | AssertionError | dataset/ETHPy150Open ActivisionGameScience/assertpy/tests/test_string.py/TestString.test_starts_with_failure |
1,285 | def test_starts_with_bad_value_type_failure(self):
try:
assert_that(123).starts_with(12)
fail('should have raised error')
except __HOLE__ as ex:
assert_that(str(ex)).is_equal_to('val is not a string or iterable') | TypeError | dataset/ETHPy150Open ActivisionGameScience/assertpy/tests/test_string.py/TestString.test_starts_with_bad_value_type_failure |
1,286 | def test_starts_with_bad_arg_none_failure(self):
try:
assert_that('fred').starts_with(None)
fail('should have raised error')
except __HOLE__ as ex:
assert_that(str(ex)).is_equal_to('given prefix arg must not be none') | TypeError | dataset/ETHPy150Open ActivisionGameScience/assertpy/tests/test_string.py/TestString.test_starts_with_bad_arg_none_failure |
1,287 | def test_starts_with_bad_arg_type_failure(self):
try:
assert_that('fred').starts_with(123)
fail('should have raised error')
except __HOLE__ as ex:
assert_that(str(ex)).is_equal_to('given prefix arg must be a string') | TypeError | dataset/ETHPy150Open ActivisionGameScience/assertpy/tests/test_string.py/TestString.test_starts_with_bad_arg_type_failure |
1,288 | def test_starts_with_bad_arg_empty_failure(self):
try:
assert_that('fred').starts_with('')
fail('should have raised error')
except __HOLE__ as ex:
assert_that(str(ex)).is_equal_to('given prefix arg must not be empty') | ValueError | dataset/ETHPy150Open ActivisionGameScience/assertpy/tests/test_string.py/TestString.test_starts_with_bad_arg_empty_failure |
1,289 | def test_ends_with_failure(self):
try:
assert_that('fred').ends_with('bar')
fail('should have raised error')
except __HOLE__ as ex:
assert_that(str(ex)).is_equal_to('Expected <fred> to end with <bar>, but did not.') | AssertionError | dataset/ETHPy150Open ActivisionGameScience/assertpy/tests/test_string.py/TestString.test_ends_with_failure |
1,290 | def test_ends_with_bad_value_type_failure(self):
try:
assert_that(123).ends_with(12)
fail('should have raised error')
except __HOLE__ as ex:
assert_that(str(ex)).is_equal_to('val is not a string or iterable') | TypeError | dataset/ETHPy150Open ActivisionGameScience/assertpy/tests/test_string.py/TestString.test_ends_with_bad_value_type_failure |
1,291 | def test_ends_with_bad_arg_none_failure(self):
try:
assert_that('fred').ends_with(None)
fail('should have raised error')
except __HOLE__ as ex:
assert_that(str(ex)).is_equal_to('given suffix arg must not be none') | TypeError | dataset/ETHPy150Open ActivisionGameScience/assertpy/tests/test_string.py/TestString.test_ends_with_bad_arg_none_failure |
1,292 | def test_ends_with_bad_arg_type_failure(self):
try:
assert_that('fred').ends_with(123)
fail('should have raised error')
except __HOLE__ as ex:
assert_that(str(ex)).is_equal_to('given suffix arg must be a string') | TypeError | dataset/ETHPy150Open ActivisionGameScience/assertpy/tests/test_string.py/TestString.test_ends_with_bad_arg_type_failure |
1,293 | def test_ends_with_bad_arg_empty_failure(self):
try:
assert_that('fred').ends_with('')
fail('should have raised error')
except __HOLE__ as ex:
assert_that(str(ex)).is_equal_to('given suffix arg must not be empty') | ValueError | dataset/ETHPy150Open ActivisionGameScience/assertpy/tests/test_string.py/TestString.test_ends_with_bad_arg_empty_failure |
1,294 | def test_matches_failure(self):
try:
assert_that('fred').matches('\d+')
fail('should have raised error')
except __HOLE__ as ex:
assert_that(str(ex)).is_equal_to('Expected <fred> to match pattern <\d+>, but did not.') | AssertionError | dataset/ETHPy150Open ActivisionGameScience/assertpy/tests/test_string.py/TestString.test_matches_failure |
1,295 | def test_matches_bad_value_type_failure(self):
try:
assert_that(123).matches(12)
fail('should have raised error')
except __HOLE__ as ex:
assert_that(str(ex)).is_equal_to('val is not a string') | TypeError | dataset/ETHPy150Open ActivisionGameScience/assertpy/tests/test_string.py/TestString.test_matches_bad_value_type_failure |
1,296 | def test_matches_bad_arg_type_failure(self):
try:
assert_that('fred').matches(123)
fail('should have raised error')
except __HOLE__ as ex:
assert_that(str(ex)).is_equal_to('given pattern arg must be a string') | TypeError | dataset/ETHPy150Open ActivisionGameScience/assertpy/tests/test_string.py/TestString.test_matches_bad_arg_type_failure |
1,297 | def test_matches_bad_arg_empty_failure(self):
try:
assert_that('fred').matches('')
fail('should have raised error')
except __HOLE__ as ex:
assert_that(str(ex)).is_equal_to('given pattern arg must not be empty') | ValueError | dataset/ETHPy150Open ActivisionGameScience/assertpy/tests/test_string.py/TestString.test_matches_bad_arg_empty_failure |
1,298 | def test_does_not_match_failure(self):
try:
assert_that('fred').does_not_match('\w+')
fail('should have raised error')
except __HOLE__ as ex:
assert_that(str(ex)).is_equal_to('Expected <fred> to not match pattern <\w+>, but did.') | AssertionError | dataset/ETHPy150Open ActivisionGameScience/assertpy/tests/test_string.py/TestString.test_does_not_match_failure |
1,299 | def test_does_not_match_bad_value_type_failure(self):
try:
assert_that(123).does_not_match(12)
fail('should have raised error')
except __HOLE__ as ex:
assert_that(str(ex)).is_equal_to('val is not a string') | TypeError | dataset/ETHPy150Open ActivisionGameScience/assertpy/tests/test_string.py/TestString.test_does_not_match_bad_value_type_failure |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.