Datasets:
metadata
license: mit
dataset_info:
features:
- name: image
dtype: image
- name: text
dtype: string
configs:
- config_name: 0-5000
data_files: data/train_shard_000-*
- config_name: 5000-10000
data_files: data/train_shard_001-*
- config_name: 10000-15000
data_files: data/train_shard_002-*
- config_name: 15000-20000
data_files: data/train_shard_003-*
- config_name: 20000-25000
data_files: data/train_shard_004-*
- config_name: 25000-30000
data_files: data/train_shard_005-*
- config_name: 30000-35000
data_files: data/train_shard_006-*
- config_name: 35000-40000
data_files: data/train_shard_007-*
- config_name: 40000-45000
data_files: data/train_shard_008-*
- config_name: 45000-50000
data_files: data/train_shard_009-*
- config_name: 50000-55000
data_files: data/train_shard_010-*
- config_name: 55000-60000
data_files: data/train_shard_011-*
- config_name: 60000-65000
data_files: data/train_shard_012-*
- config_name: 65000-70000
data_files: data/train_shard_013-*
- config_name: 70000-75000
data_files: data/train_shard_014-*
- config_name: 75000-80000
data_files: data/train_shard_015-*
- config_name: 80000-85000
data_files: data/train_shard_016-*
- config_name: 85000-90000
data_files: data/train_shard_017-*
- config_name: 90000-95000
data_files: data/train_shard_018-*
- config_name: 95000-100000
data_files: data/train_shard_019-*
- config_name: 100000-105000
data_files: data/train_shard_020-*
- config_name: 105000-110000
data_files: data/train_shard_021-*
- config_name: 110000-115000
data_files: data/train_shard_022-*
- config_name: 115000-120000
data_files: data/train_shard_023-*
- config_name: 120000-125000
data_files: data/train_shard_024-*
- config_name: 125000-130000
data_files: data/train_shard_025-*
- config_name: 130000-135000
data_files: data/train_shard_026-*
- config_name: 135000-140000
data_files: data/train_shard_027-*
- config_name: 140000-145000
data_files: data/train_shard_028-*
- config_name: 145000-150000
data_files: data/train_shard_029-*
- config_name: 150000-155000
data_files: data/train_shard_030-*
- config_name: 155000-160000
data_files: data/train_shard_031-*
- config_name: 160000-165000
data_files: data/train_shard_032-*
- config_name: 165000-170000
data_files: data/train_shard_033-*
- config_name: 170000-175000
data_files: data/train_shard_034-*
- config_name: 175000-180000
data_files: data/train_shard_035-*
- config_name: 180000-185000
data_files: data/train_shard_036-*
- config_name: 185000-190000
data_files: data/train_shard_037-*
- config_name: 190000-195000
data_files: data/train_shard_038-*
- config_name: 195000-200000
data_files: data/train_shard_039-*
pretty_name: tamily 1
language:
- ta
source_datasets:
- sasicodes/solvari-1
task_categories:
- image-to-text
- image-feature-extraction
tags:
- Vaṭṭeḻuttu
size_categories:
- 100K<n<1M
Tamily-1: Ancient Tamil OCR Synthetic Dataset
Tamizhi "தமிழி"
Description
- Repository: sasicodes/tamily-1
- Point of Contact: @sasicodes
Summary
Tamily-1 is an ancient Tamil OCR synthetic dataset generated from the first 200,000 rows of Solvari-1, a large Tamil text corpus. The dataset contains rendered images of Tamil text with various augmentations and styles, making it suitable for training OCR models.
Fields
image
: PNG image of rendered Tamil texttext
: Original Tamil text
Data Splits
The dataset is split into shards of 5,000 samples each, named as train_shard_XXX
.
Annotation process
Each text is rendered with:
- Random paper style (Palm Leaf, Pale Palm Leaf, Red Stone, White Stone, Paper)
- Random background style (No Lines, With Lines, Blurred, With Lines and Noise)
- Random augmentation (Rotation, Perspective, Stain, Ink Bleed)
License
MIT License
@misc{tamily-1,
author = {sasicodes},
title = {Tamily-1: Ancient Tamil OCR Synthetic Dataset},
year = {2025},
publisher = {Hugging Face},
journal = {Hugging Face Hub},
howpublished = {\url{https://huggingface.co/datasets/sasicodes/tamily-1}}
}