tamily-1 / README.md
sasicodes's picture
Update README.md
c2f35b1 verified
metadata
license: mit
dataset_info:
  features:
    - name: image
      dtype: image
    - name: text
      dtype: string
configs:
  - config_name: 0-5000
    data_files: data/train_shard_000-*
  - config_name: 5000-10000
    data_files: data/train_shard_001-*
  - config_name: 10000-15000
    data_files: data/train_shard_002-*
  - config_name: 15000-20000
    data_files: data/train_shard_003-*
  - config_name: 20000-25000
    data_files: data/train_shard_004-*
  - config_name: 25000-30000
    data_files: data/train_shard_005-*
  - config_name: 30000-35000
    data_files: data/train_shard_006-*
  - config_name: 35000-40000
    data_files: data/train_shard_007-*
  - config_name: 40000-45000
    data_files: data/train_shard_008-*
  - config_name: 45000-50000
    data_files: data/train_shard_009-*
  - config_name: 50000-55000
    data_files: data/train_shard_010-*
  - config_name: 55000-60000
    data_files: data/train_shard_011-*
  - config_name: 60000-65000
    data_files: data/train_shard_012-*
  - config_name: 65000-70000
    data_files: data/train_shard_013-*
  - config_name: 70000-75000
    data_files: data/train_shard_014-*
  - config_name: 75000-80000
    data_files: data/train_shard_015-*
  - config_name: 80000-85000
    data_files: data/train_shard_016-*
  - config_name: 85000-90000
    data_files: data/train_shard_017-*
  - config_name: 90000-95000
    data_files: data/train_shard_018-*
  - config_name: 95000-100000
    data_files: data/train_shard_019-*
  - config_name: 100000-105000
    data_files: data/train_shard_020-*
  - config_name: 105000-110000
    data_files: data/train_shard_021-*
  - config_name: 110000-115000
    data_files: data/train_shard_022-*
  - config_name: 115000-120000
    data_files: data/train_shard_023-*
  - config_name: 120000-125000
    data_files: data/train_shard_024-*
  - config_name: 125000-130000
    data_files: data/train_shard_025-*
  - config_name: 130000-135000
    data_files: data/train_shard_026-*
  - config_name: 135000-140000
    data_files: data/train_shard_027-*
  - config_name: 140000-145000
    data_files: data/train_shard_028-*
  - config_name: 145000-150000
    data_files: data/train_shard_029-*
  - config_name: 150000-155000
    data_files: data/train_shard_030-*
  - config_name: 155000-160000
    data_files: data/train_shard_031-*
  - config_name: 160000-165000
    data_files: data/train_shard_032-*
  - config_name: 165000-170000
    data_files: data/train_shard_033-*
  - config_name: 170000-175000
    data_files: data/train_shard_034-*
  - config_name: 175000-180000
    data_files: data/train_shard_035-*
  - config_name: 180000-185000
    data_files: data/train_shard_036-*
  - config_name: 185000-190000
    data_files: data/train_shard_037-*
  - config_name: 190000-195000
    data_files: data/train_shard_038-*
  - config_name: 195000-200000
    data_files: data/train_shard_039-*
pretty_name: tamily 1
language:
  - ta
source_datasets:
  - sasicodes/solvari-1
task_categories:
  - image-to-text
  - image-feature-extraction
tags:
  - Vaṭṭeḻuttu
size_categories:
  - 100K<n<1M

Tamily-1: Ancient Tamil OCR Synthetic Dataset

Tamizhi "தமிழி"

Description

Summary

Tamily-1 is an ancient Tamil OCR synthetic dataset generated from the first 200,000 rows of Solvari-1, a large Tamil text corpus. The dataset contains rendered images of Tamil text with various augmentations and styles, making it suitable for training OCR models.

Fields

  • image: PNG image of rendered Tamil text
  • text: Original Tamil text

Data Splits

The dataset is split into shards of 5,000 samples each, named as train_shard_XXX.

Annotation process

Each text is rendered with:

  • Random paper style (Palm Leaf, Pale Palm Leaf, Red Stone, White Stone, Paper)
  • Random background style (No Lines, With Lines, Blurred, With Lines and Noise)
  • Random augmentation (Rotation, Perspective, Stain, Ink Bleed)

License

MIT License

@misc{tamily-1,
  author = {sasicodes},
  title = {Tamily-1: Ancient Tamil OCR Synthetic Dataset},
  year = {2025},
  publisher = {Hugging Face},
  journal = {Hugging Face Hub},
  howpublished = {\url{https://huggingface.co/datasets/sasicodes/tamily-1}}
}