paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/fair-learning-with-private-demographic-data
|
Fair Learning with Private Demographic Data
|
2002.11651
|
https://arxiv.org/abs/2002.11651v2
|
https://arxiv.org/pdf/2002.11651v2.pdf
|
https://github.com/husseinmozannar/fairlearn_private_data
| true | true | true |
none
|
https://paperswithcode.com/paper/a-forward-modelling-approach-to-overcome-psf
|
A forward-modelling approach to overcome PSF smearing and fit flexible models to the chemical structure of galaxies
|
2403.08175
|
https://arxiv.org/abs/2403.08175v1
|
https://arxiv.org/pdf/2403.08175v1.pdf
|
https://github.com/astrobenji/lenstronomy-metals-notebooks
| true | true | true |
none
|
https://paperswithcode.com/paper/randomized-quantization-for-data-agnostic
|
Randomized Quantization: A Generic Augmentation for Data Agnostic Self-supervised Learning
|
2212.08663
|
https://arxiv.org/abs/2212.08663v2
|
https://arxiv.org/pdf/2212.08663v2.pdf
|
https://github.com/pipiPdesu/random_quantize
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/denis-sdn-software-defined-network-slicing
|
DENIS-SDN: Software-Defined Network Slicing Solution for Dense and Ultra-Dense IoT Networks
|
2312.13662
|
https://arxiv.org/abs/2312.13662v1
|
https://arxiv.org/pdf/2312.13662v1.pdf
|
https://github.com/swnrg/denis-sdn
| true | true | false |
none
|
https://paperswithcode.com/paper/phylogenetic-tree-distance-computation-over
|
Phylogenetic tree distance computation over succinct representations
|
2312.14029
|
https://arxiv.org/abs/2312.14029v1
|
https://arxiv.org/pdf/2312.14029v1.pdf
|
https://github.com/pedroparedesbranco/treediff
| true | true | false |
none
|
https://paperswithcode.com/paper/towards-machine-unlearning-benchmarks
|
Towards Machine Unlearning Benchmarks: Forgetting the Personal Identities in Facial Recognition Systems
|
2311.02240
|
https://arxiv.org/abs/2311.02240v2
|
https://arxiv.org/pdf/2311.02240v2.pdf
|
https://github.com/ndb796/machineunlearning
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/generating-continuations-in-multilingual
|
Generating Continuations in Multilingual Idiomatic Contexts
|
2310.20195
|
https://arxiv.org/abs/2310.20195v2
|
https://arxiv.org/pdf/2310.20195v2.pdf
|
https://github.com/portnlp/llm-in-idiomatic-context
| true | true | true |
none
|
https://paperswithcode.com/paper/high-fidelity-multi-qubit-generalized
|
High-fidelity, multi-qubit generalized measurements with dynamic circuits
|
2312.14087
|
https://arxiv.org/abs/2312.14087v2
|
https://arxiv.org/pdf/2312.14087v2.pdf
|
https://github.com/petr-ivashkov/dynamic-circuit-povms
| true | true | false |
none
|
https://paperswithcode.com/paper/a-contrastive-approach-to-online-change-point
|
A Contrastive Approach to Online Change Point Detection
|
2206.10143
|
https://arxiv.org/abs/2206.10143v3
|
https://arxiv.org/pdf/2206.10143v3.pdf
|
https://github.com/npuchkin/contrastive_change_point_detection_extended
| true | true | false |
none
|
https://paperswithcode.com/paper/multi-label-classification-with-high-rank-and
|
Multi-label Classification with High-rank and High-order Label Correlations
|
2207.04197
|
https://arxiv.org/abs/2207.04197v2
|
https://arxiv.org/pdf/2207.04197v2.pdf
|
https://github.com/chongjie-si/homi
| true | true | false |
none
|
https://paperswithcode.com/paper/investigating-and-scaling-up-code-switching
|
Investigating and Scaling up Code-Switching for Multilingual Language Model Pre-Training
|
2504.01801
|
https://arxiv.org/abs/2504.01801v1
|
https://arxiv.org/pdf/2504.01801v1.pdf
|
https://github.com/zjwang21/syncs
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/massively-parallel-multiview-stereopsis-by
|
Massively Parallel Multiview Stereopsis by Surface Normal Diffusion
| null |
http://openaccess.thecvf.com/content_iccv_2015/html/Galliani_Massively_Parallel_Multiview_ICCV_2015_paper.html
|
http://openaccess.thecvf.com/content_iccv_2015/papers/Galliani_Massively_Parallel_Multiview_ICCV_2015_paper.pdf
|
https://github.com/kysucix/gipuma
| true | false | false |
none
|
https://paperswithcode.com/paper/espaloma-0-3-0-machine-learned-molecular
|
Machine-learned molecular mechanics force field for the simulation of protein-ligand systems and beyond
|
2307.07085
|
https://arxiv.org/abs/2307.07085v4
|
https://arxiv.org/pdf/2307.07085v4.pdf
|
https://github.com/openmm/openmmforcefields
| false | false | true |
none
|
https://paperswithcode.com/paper/column-randomized-linear-programs-performance
|
Column-Randomized Linear Programs: Performance Guarantees and Applications
|
2007.10461
|
https://arxiv.org/abs/2007.10461v5
|
https://arxiv.org/pdf/2007.10461v5.pdf
|
https://github.com/yi-chun-akchen/column-randomized_lp
| true | true | false |
none
|
https://paperswithcode.com/paper/motioneditor-editing-video-motion-via-content
|
MotionEditor: Editing Video Motion via Content-Aware Diffusion
|
2311.18830
|
https://arxiv.org/abs/2311.18830v1
|
https://arxiv.org/pdf/2311.18830v1.pdf
|
https://github.com/Francis-Rings/MotionEditor
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/efficient-and-robust-jet-tagging-at-the-lhc
|
Efficient and Robust Jet Tagging at the LHC with Knowledge Distillation
|
2311.14160
|
https://arxiv.org/abs/2311.14160v1
|
https://arxiv.org/pdf/2311.14160v1.pdf
|
https://github.com/ryanliu30/kd4jets
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/a-multi-modal-contrastive-diffusion-model-for
|
A Multi-Modal Contrastive Diffusion Model for Therapeutic Peptide Generation
|
2312.15665
|
https://arxiv.org/abs/2312.15665v2
|
https://arxiv.org/pdf/2312.15665v2.pdf
|
https://github.com/wyky481l/mmcd
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/next-token-prediction-towards-multimodal
|
Next Token Prediction Towards Multimodal Intelligence: A Comprehensive Survey
|
2412.18619
|
https://arxiv.org/abs/2412.18619v2
|
https://arxiv.org/pdf/2412.18619v2.pdf
|
https://github.com/lmm101/awesome-multimodal-next-token-prediction
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/intuitionism-with-truth-tables-a-decision
|
Intuitionism with Truth Tables: A Decision Procedure for IPL Based on RNmatrices
|
2308.13664
|
https://arxiv.org/abs/2308.13664v2
|
https://arxiv.org/pdf/2308.13664v2.pdf
|
https://github.com/renatoleme/forest
| true | true | false |
none
|
https://paperswithcode.com/paper/mcpns-a-macropixel-collocated-position-and
|
MCPNS: A Macropixel Collocated Position and Its Neighbors Search for Plenoptic 2.0 Video Coding
|
2310.08006
|
https://arxiv.org/abs/2310.08006v3
|
https://arxiv.org/pdf/2310.08006v3.pdf
|
https://github.com/duongvinh/mcpns
| true | true | true |
none
|
https://paperswithcode.com/paper/mastering-diverse-domains-through-world
|
Mastering Diverse Domains through World Models
|
2301.04104
|
https://arxiv.org/abs/2301.04104v2
|
https://arxiv.org/pdf/2301.04104v2.pdf
|
https://github.com/Alescontrela/viper_rl
| false | false | true |
jax
|
https://paperswithcode.com/paper/prediction-powered-generalization-of-causal
|
Prediction-powered Generalization of Causal Inferences
|
2406.02873
|
https://arxiv.org/abs/2406.02873v1
|
https://arxiv.org/pdf/2406.02873v1.pdf
|
https://github.com/demireal/ppci
| true | true | false |
none
|
https://paperswithcode.com/paper/the-poset-of-normalized-ideals-of-numerical
|
The poset of normalized ideals of numerical semigroups with multiplicity three
|
2407.21697
|
https://arxiv.org/abs/2407.21697v1
|
https://arxiv.org/pdf/2407.21697v1.pdf
|
https://github.com/numerical-semigroups/ideal-class-monoid
| true | true | true |
none
|
https://paperswithcode.com/paper/factorized-linear-discriminant-analysis-for-1
|
Factorized Discriminant Analysis for Genetic Signatures of Neuronal Phenotypes
|
2010.02171
|
https://arxiv.org/abs/2010.02171v7
|
https://arxiv.org/pdf/2010.02171v7.pdf
|
https://github.com/muqiao0626/flda-in-computbiol
| true | true | true |
none
|
https://paperswithcode.com/paper/sequence-only-prediction-of-binding-affinity
|
Sequence-Only Prediction of Binding Affinity Changes: A Robust and Interpretable Model for Antibody Engineering
|
2505.20301
|
https://arxiv.org/abs/2505.20301v1
|
https://arxiv.org/pdf/2505.20301v1.pdf
|
https://github.com/code4luck/protattba
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/construct-3d-hand-skeleton-with-commercial
|
Construct 3D Hand Skeleton with Commercial WiFi
|
2312.15507
|
https://arxiv.org/abs/2312.15507v1
|
https://arxiv.org/pdf/2312.15507v1.pdf
|
https://github.com/sijieji/handfi
| true | true | false |
none
|
https://paperswithcode.com/paper/advancements-in-arabic-grammatical-error
|
Advancements in Arabic Grammatical Error Detection and Correction: An Empirical Investigation
|
2305.14734
|
https://arxiv.org/abs/2305.14734v2
|
https://arxiv.org/pdf/2305.14734v2.pdf
|
https://github.com/camel-lab/arabic-gec
| true | true | true |
jax
|
https://paperswithcode.com/paper/benchmarking-optimization-software-with
|
Benchmarking Optimization Software with Performance Profiles
|
cs/0102001
|
https://arxiv.org/abs/cs/0102001v2
|
https://arxiv.org/pdf/cs/0102001v2.pdf
|
https://github.com/corradocoppola97/CMA_v2
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/learned-compression-of-encoding-distributions
|
Learned Compression of Encoding Distributions
|
2406.13059
|
https://arxiv.org/abs/2406.13059v1
|
https://arxiv.org/pdf/2406.13059v1.pdf
|
https://github.com/multimedialabsfu/learned-compression-of-encoding-distributions
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/nonlinear-mpc-for-quadrotors-in-close
|
Nonlinear MPC for Quadrotors in Close-Proximity Flight with Neural Network Downwash Prediction
|
2304.07794
|
https://arxiv.org/abs/2304.07794v2
|
https://arxiv.org/pdf/2304.07794v2.pdf
|
https://github.com/li-jinjie/ndp_nmpc_qd
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/signguard-byzantine-robust-federated-learning
|
Byzantine-robust Federated Learning through Collaborative Malicious Gradient Filtering
|
2109.05872
|
https://arxiv.org/abs/2109.05872v2
|
https://arxiv.org/pdf/2109.05872v2.pdf
|
https://github.com/bladesteam/blades
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/andi-the-anomalous-diffusion-challenge
|
AnDi: The Anomalous Diffusion Challenge
|
2003.12036
|
http://arxiv.org/abs/2003.12036v1
|
http://arxiv.org/pdf/2003.12036v1.pdf
|
https://github.com/huangzih/AnDi-Challenge
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/combinatorial-multi-armed-bandit-based
|
Combinatorial Multi-Armed Bandit Based Unknown Worker Recruitment in Heterogeneous Crowdsensing
| null |
https://ieeexplore.ieee.org/document/9155518
|
https://cis.temple.edu/~wu/research/publications/Publication_files/gao_infocom_2020.pdf
|
https://github.com/DURUII/Replica-EUWR
| false | false | false |
none
|
https://paperswithcode.com/paper/transformer-in-transformer-as-backbone-for
|
Transformer in Transformer as Backbone for Deep Reinforcement Learning
|
2212.14538
|
https://arxiv.org/abs/2212.14538v2
|
https://arxiv.org/pdf/2212.14538v2.pdf
|
https://github.com/maohangyu/TIT_open_source
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/naturalcodebench-examining-coding-performance
|
NaturalCodeBench: Examining Coding Performance Mismatch on HumanEval and Natural User Prompts
|
2405.04520
|
https://arxiv.org/abs/2405.04520v1
|
https://arxiv.org/pdf/2405.04520v1.pdf
|
https://github.com/thudm/naturalcodebench
| false | false | true |
none
|
https://paperswithcode.com/paper/improving-gbdt-performance-on-imbalanced
|
Improving GBDT Performance on Imbalanced Datasets: An Empirical Study of Class-Balanced Loss Functions
|
2407.14381
|
https://arxiv.org/abs/2407.14381v1
|
https://arxiv.org/pdf/2407.14381v1.pdf
|
https://github.com/Luojiaqimath/ClassbalancedLoss4GBDT
| true | false | false |
none
|
https://paperswithcode.com/paper/reliable-object-tracking-by-multimodal-hybrid
|
Reliable Object Tracking by Multimodal Hybrid Feature Extraction and Transformer-Based Fusion
|
2405.17903
|
https://arxiv.org/abs/2405.17903v1
|
https://arxiv.org/pdf/2405.17903v1.pdf
|
https://github.com/GuoLab-UESTC/MMHT
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/uncovering-emergent-spacetime-supersymmetry
|
Uncovering Emergent Spacetime Supersymmetry with Rydberg Atom Arrays
|
2407.08194
|
https://arxiv.org/abs/2407.08194v3
|
https://arxiv.org/pdf/2407.08194v3.pdf
|
https://github.com/chengshul/RydbergSUSY
| true | false | false |
none
|
https://paperswithcode.com/paper/strategic-evaluation-in-optimizing-the
|
Strategic Evaluation in Optimizing the Internal Supply Chain Using TOPSIS: Evidence In A Coil Winding Machine Manufacturer
|
2007.10121
|
https://arxiv.org/abs/2007.10121v1
|
https://arxiv.org/pdf/2007.10121v1.pdf
|
https://github.com/hcshipra/researchpublication
| true | false | false |
none
|
https://paperswithcode.com/paper/provably-fast-convergence-of-independent
|
Provably Fast Convergence of Independent Natural Policy Gradient for Markov Potential Games
| null |
https://openreview.net/forum?id=mA7nTGXjD3
|
https://openreview.net/pdf?id=mA7nTGXjD3
|
https://github.com/sundave1998/independent-npg-mpg
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/adversarial-counterfactual-environment-model
|
Adversarial Counterfactual Environment Model Learning
| null |
https://openreview.net/forum?id=rHAX0LRwk8
|
https://openreview.net/pdf?id=rHAX0LRwk8
|
https://github.com/xionghuichen/galileo
| true | true | false |
tf
|
https://paperswithcode.com/paper/memory-encoding-model
|
Memory Encoding Model
|
2308.01175
|
https://arxiv.org/abs/2308.01175v1
|
https://arxiv.org/pdf/2308.01175v1.pdf
|
https://github.com/huzeyann/MemoryEncodingModel
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/can-mass-change-the-diffusion-coefficient-of
|
Mass changes the diffusion coefficient of particles with ligand-receptor contacts in the overdamped limit
|
2112.05266
|
https://arxiv.org/abs/2112.05266v2
|
https://arxiv.org/pdf/2112.05266v2.pdf
|
https://github.com/smarbach/dnacoatedcolloidsinteractions
| true | true | false |
none
|
https://paperswithcode.com/paper/a-machine-learning-approach-for-computing
|
A machine learning approach for computing solar flare locations in X-rays on-board Solar Orbiter/STIX
|
2408.16642
|
https://arxiv.org/abs/2408.16642v1
|
https://arxiv.org/pdf/2408.16642v1.pdf
|
https://github.com/paolomassa/STX_CFL_NN
| true | false | false |
tf
|
https://paperswithcode.com/paper/autoregressive-omni-aware-outpainting-for
|
Autoregressive Omni-Aware Outpainting for Open-Vocabulary 360-Degree Image Generation
|
2309.03467
|
https://arxiv.org/abs/2309.03467v2
|
https://arxiv.org/pdf/2309.03467v2.pdf
|
https://github.com/zhuqiangLu/AOG-NET-360
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/riemannian-preconditioned-algorithms-for
|
Riemannian preconditioned algorithms for tensor completion via tensor ring decomposition
|
2302.14456
|
https://arxiv.org/abs/2302.14456v2
|
https://arxiv.org/pdf/2302.14456v2.pdf
|
https://github.com/jimmypeng1998/lrtctr
| false | false | true |
none
|
https://paperswithcode.com/paper/chatillusion-efficient-aligning-interleaved
|
M$^{2}$Chat: Empowering VLM for Multimodal LLM Interleaved Text-Image Generation
|
2311.17963
|
https://arxiv.org/abs/2311.17963v2
|
https://arxiv.org/pdf/2311.17963v2.pdf
|
https://github.com/litwellchi/chatillusion
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/a-graph-theoretic-framework-for-understanding-1
|
A Graph-Theoretic Framework for Understanding Open-World Semi-Supervised Learning
|
2311.03524
|
https://arxiv.org/abs/2311.03524v1
|
https://arxiv.org/pdf/2311.03524v1.pdf
|
https://github.com/deeplearning-wisc/sorl
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/learning-anatomically-consistent-embedding
|
Learning Anatomically Consistent Embedding for Chest Radiography
|
2312.00335
|
https://arxiv.org/abs/2312.00335v2
|
https://arxiv.org/pdf/2312.00335v2.pdf
|
https://github.com/jlianglab/peac
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/introducing-rhetorical-parallelism-detection
|
Introducing Rhetorical Parallelism Detection: A New Task with Datasets, Metrics, and Baselines
|
2312.00100
|
https://arxiv.org/abs/2312.00100v1
|
https://arxiv.org/pdf/2312.00100v1.pdf
|
https://github.com/mythologos/augustinian-sermon-parallelisms
| true | true | false |
none
|
https://paperswithcode.com/paper/introducing-rhetorical-parallelism-detection
|
Introducing Rhetorical Parallelism Detection: A New Task with Datasets, Metrics, and Baselines
|
2312.00100
|
https://arxiv.org/abs/2312.00100v1
|
https://arxiv.org/pdf/2312.00100v1.pdf
|
https://github.com/mythologos/paibi-student-essays
| true | true | false |
none
|
https://paperswithcode.com/paper/introducing-rhetorical-parallelism-detection
|
Introducing Rhetorical Parallelism Detection: A New Task with Datasets, Metrics, and Baselines
|
2312.00100
|
https://arxiv.org/abs/2312.00100v1
|
https://arxiv.org/pdf/2312.00100v1.pdf
|
https://github.com/mythologos/intro-rpd
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/on-filter-generalization-for-music-bandwidth
|
On Filter Generalization for Music Bandwidth Extension Using Deep Neural Networks
|
2011.07274
|
https://arxiv.org/abs/2011.07274v2
|
https://arxiv.org/pdf/2011.07274v2.pdf
|
https://github.com/serkansulun/deep-music-enhancer
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/logic-of-thought-empowering-large-language
|
Logic-of-Thought: Empowering Large Language Models with Logic Programs for Solving Puzzles in Natural Language
|
2505.16114
|
https://arxiv.org/abs/2505.16114v1
|
https://arxiv.org/pdf/2505.16114v1.pdf
|
https://github.com/naiqili/logic-of-thought
| true | true | false |
none
|
https://paperswithcode.com/paper/predict-the-next-word-humans-exhibit
|
Predict the Next Word: Humans exhibit uncertainty in this task and language models _____
|
2402.17527
|
https://arxiv.org/abs/2402.17527v2
|
https://arxiv.org/pdf/2402.17527v2.pdf
|
https://github.com/evgeniael/predict_next_word
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/constructive-proofs-of-existence-and
|
Constructive proofs of existence and stability of solitary waves in the Whitham and capillary-gravity Whitham equations
|
2403.18718
|
https://arxiv.org/abs/2403.18718v3
|
https://arxiv.org/pdf/2403.18718v3.pdf
|
https://github.com/matthieucadiot/whithamsoliton.jl
| true | true | true |
none
|
https://paperswithcode.com/paper/c-nerf-representing-scene-changes-as
|
C-NERF: Representing Scene Changes as Directional Consistency Difference-based NeRF
|
2312.02751
|
https://arxiv.org/abs/2312.02751v2
|
https://arxiv.org/pdf/2312.02751v2.pdf
|
https://github.com/c-nerf/c-nerf
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/adnet-lane-shape-prediction-via-anchor
|
ADNet: Lane Shape Prediction via Anchor Decomposition
|
2308.10481
|
https://arxiv.org/abs/2308.10481v1
|
https://arxiv.org/pdf/2308.10481v1.pdf
|
https://github.com/code-implementation1/Code2/tree/main/ADNet
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/can-we-learn-communication-efficient
|
Can We Learn Communication-Efficient Optimizers?
|
2312.02204
|
https://arxiv.org/abs/2312.02204v1
|
https://arxiv.org/pdf/2312.02204v1.pdf
|
https://github.com/lefameuxbeding/learned_aggregation
| true | true | true |
none
|
https://paperswithcode.com/paper/seva-leveraging-sketches-to-evaluate-1
|
SEVA: Leveraging sketches to evaluate alignment between human and machine visual abstraction
|
2312.03035
|
https://arxiv.org/abs/2312.03035v1
|
https://arxiv.org/pdf/2312.03035v1.pdf
|
https://github.com/cogtoolslab/visual_abstractions_benchmarking_public2023
| true | true | false |
none
|
https://paperswithcode.com/paper/improving-bias-mitigation-through-bias
|
Improving Bias Mitigation through Bias Experts in Natural Language Understanding
|
2312.03577
|
https://arxiv.org/abs/2312.03577v1
|
https://arxiv.org/pdf/2312.03577v1.pdf
|
https://github.com/jej127/bias-experts
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/flashattention-fast-and-memory-efficient
|
FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness
|
2205.14135
|
https://arxiv.org/abs/2205.14135v2
|
https://arxiv.org/pdf/2205.14135v2.pdf
|
https://github.com/alibaba/megatron-llama
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/how-good-is-open-bicycle-infrastructure-data
|
How Good Is Open Bicycle Infrastructure Data? A Countrywide Case Study of Denmark
|
2312.02632
|
https://arxiv.org/abs/2312.02632v1
|
https://arxiv.org/pdf/2312.02632v1.pdf
|
https://github.com/anerv/bikedna_big
| true | true | false |
none
|
https://paperswithcode.com/paper/continual-driving-policy-optimization-with
|
Continual Driving Policy Optimization with Closed-Loop Individualized Curricula
|
2309.14209
|
https://arxiv.org/abs/2309.14209v4
|
https://arxiv.org/pdf/2309.14209v4.pdf
|
https://github.com/YizhouXu-THU/CLIC
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/combining-counting-processes-and
|
Combining Counting Processes and Classification Improves a Stopping Rule for Technology Assisted Review
|
2312.03171
|
https://arxiv.org/abs/2312.03171v1
|
https://arxiv.org/pdf/2312.03171v1.pdf
|
https://github.com/reembinhezam/tar_stopping_cp_clf
| true | true | false |
none
|
https://paperswithcode.com/paper/masked-autoencoders-are-scalable-vision
|
Masked Autoencoders Are Scalable Vision Learners
|
2111.06377
|
https://arxiv.org/abs/2111.06377v2
|
https://arxiv.org/pdf/2111.06377v2.pdf
|
https://github.com/facebookresearch/multimodal
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/flava-a-foundational-language-and-vision
|
FLAVA: A Foundational Language And Vision Alignment Model
|
2112.04482
|
https://arxiv.org/abs/2112.04482v3
|
https://arxiv.org/pdf/2112.04482v3.pdf
|
https://github.com/facebookresearch/multimodal
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/hierarchical-text-conditional-image
|
Hierarchical Text-Conditional Image Generation with CLIP Latents
|
2204.06125
|
https://arxiv.org/abs/2204.06125v1
|
https://arxiv.org/pdf/2204.06125v1.pdf
|
https://github.com/facebookresearch/multimodal
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/coca-contrastive-captioners-are-image-text
|
CoCa: Contrastive Captioners are Image-Text Foundation Models
|
2205.01917
|
https://arxiv.org/abs/2205.01917v2
|
https://arxiv.org/pdf/2205.01917v2.pdf
|
https://github.com/facebookresearch/multimodal
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/blip-2-bootstrapping-language-image-pre
|
BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models
|
2301.12597
|
https://arxiv.org/abs/2301.12597v3
|
https://arxiv.org/pdf/2301.12597v3.pdf
|
https://github.com/facebookresearch/multimodal
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/align-before-fuse-vision-and-language
|
Align before Fuse: Vision and Language Representation Learning with Momentum Distillation
|
2107.07651
|
https://arxiv.org/abs/2107.07651v2
|
https://arxiv.org/pdf/2107.07651v2.pdf
|
https://github.com/facebookresearch/multimodal
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/diffusion-models-beat-gans-on-image
|
Diffusion Models Beat GANs on Image Classification
|
2307.08702
|
https://arxiv.org/abs/2307.08702v1
|
https://arxiv.org/pdf/2307.08702v1.pdf
|
https://github.com/soumik-kanad/diffssl
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/tracking-with-human-intent-reasoning
|
Tracking with Human-Intent Reasoning
|
2312.17448
|
https://arxiv.org/abs/2312.17448v1
|
https://arxiv.org/pdf/2312.17448v1.pdf
|
https://github.com/jiawen-zhu/trackgpt
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/a-transformer-based-neural-architecture
|
A Transformer-based Neural Architecture Search Method
|
2505.01314
|
https://arxiv.org/abs/2505.01314v1
|
https://arxiv.org/pdf/2505.01314v1.pdf
|
https://github.com/ra225/mo-trans
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/tissue-cross-section-and-pen-marking
|
Tissue Cross-Section and Pen Marking Segmentation in Whole Slide Images
|
2401.13511
|
https://arxiv.org/abs/2401.13511v1
|
https://arxiv.org/pdf/2401.13511v1.pdf
|
https://github.com/rtlucassen/slidesegmenter
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/learning-to-detect-multi-class-anomalies-with
|
Learning to Detect Multi-class Anomalies with Just One Normal Image Prompt
|
2505.09264
|
https://arxiv.org/abs/2505.09264v1
|
https://arxiv.org/pdf/2505.09264v1.pdf
|
https://github.com/gaobb/onenip
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/modeling-sequential-sentence-relation-to
|
Modeling Sequential Sentence Relation to Improve Cross-lingual Dense Retrieval
|
2302.01626
|
https://arxiv.org/abs/2302.01626v1
|
https://arxiv.org/pdf/2302.01626v1.pdf
|
https://github.com/shunyuzh/MSM
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/understanding-the-effect-of-model-compression
|
Understanding the Effect of Model Compression on Social Bias in Large Language Models
|
2312.05662
|
https://arxiv.org/abs/2312.05662v2
|
https://arxiv.org/pdf/2312.05662v2.pdf
|
https://github.com/gsgoncalves/emnlp2023_llm_compression_and_social_bias
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/sharpness-aware-quantization-for-deep-neural
|
Sharpness-aware Quantization for Deep Neural Networks
|
2111.12273
|
https://arxiv.org/abs/2111.12273v5
|
https://arxiv.org/pdf/2111.12273v5.pdf
|
https://github.com/yangyucheng000/Paper-3/tree/main/SharpDRO-ms
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/udifftext-a-unified-framework-for-high
|
UDiffText: A Unified Framework for High-quality Text Synthesis in Arbitrary Images via Character-aware Diffusion Models
|
2312.04884
|
https://arxiv.org/abs/2312.04884v1
|
https://arxiv.org/pdf/2312.04884v1.pdf
|
https://github.com/zym-pku/udifftext
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/language-models-are-few-shot-learners
|
Language Models are Few-Shot Learners
|
2005.14165
|
https://arxiv.org/abs/2005.14165v4
|
https://arxiv.org/pdf/2005.14165v4.pdf
|
https://github.com/asahi417/lmppl
| false | false | true |
none
|
https://paperswithcode.com/paper/exploring-the-limits-of-transfer-learning
|
Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer
|
1910.10683
|
https://arxiv.org/abs/1910.10683v4
|
https://arxiv.org/pdf/1910.10683v4.pdf
|
https://github.com/asahi417/lmppl
| false | false | true |
none
|
https://paperswithcode.com/paper/the-merit-of-river-network-topology-for
|
The Merit of River Network Topology for Neural Flood Forecasting
|
2405.19836
|
https://arxiv.org/abs/2405.19836v1
|
https://arxiv.org/pdf/2405.19836v1.pdf
|
https://github.com/nkirschi/neural-flood-forecasting
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/solving-token-gradient-conflict-in-mixture-of
|
Solving Token Gradient Conflict in Mixture-of-Experts for Large Vision-Language Model
|
2406.19905
|
https://arxiv.org/abs/2406.19905v2
|
https://arxiv.org/pdf/2406.19905v2.pdf
|
https://github.com/longrongyang/stgc
| true | true | true |
none
|
https://paperswithcode.com/paper/radar-perception-in-autonomous-driving-1
|
Exploring Radar Data Representations in Autonomous Driving: A Comprehensive Review
|
2312.04861
|
https://arxiv.org/abs/2312.04861v3
|
https://arxiv.org/pdf/2312.04861v3.pdf
|
https://github.com/Radar-Camera-Fusion/Awesome-Radar-Perception
| true | false | true |
none
|
https://paperswithcode.com/paper/can-large-language-model-comprehend-ancient
|
Can Large Language Model Comprehend Ancient Chinese? A Preliminary Test on ACLUE
|
2310.09550
|
https://arxiv.org/abs/2310.09550v1
|
https://arxiv.org/pdf/2310.09550v1.pdf
|
https://github.com/isen-zhang/aclue
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/cross-domain-few-shot-learning-via-adaptive
|
Cross-Domain Few-Shot Learning via Adaptive Transformer Networks
|
2401.13987
|
https://arxiv.org/abs/2401.13987v1
|
https://arxiv.org/pdf/2401.13987v1.pdf
|
https://github.com/naeem-paeedeh/adapter
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/multi-view-neural-3d-reconstruction-of-micro
|
Multi-View Neural 3D Reconstruction of Micro-/Nanostructures with Atomic Force Microscopy
|
2401.11541
|
https://arxiv.org/abs/2401.11541v1
|
https://arxiv.org/pdf/2401.11541v1.pdf
|
https://github.com/zju3dv/mvn-afm
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/rlcoder-reinforcement-learning-for-repository
|
RLCoder: Reinforcement Learning for Repository-Level Code Completion
|
2407.19487
|
https://arxiv.org/abs/2407.19487v1
|
https://arxiv.org/pdf/2407.19487v1.pdf
|
https://github.com/DeepSoftwareAnalytics/RLCoder
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/morphable-diffusion-3d-consistent-diffusion
|
Morphable Diffusion: 3D-Consistent Diffusion for Single-image Avatar Creation
|
2401.04728
|
https://arxiv.org/abs/2401.04728v2
|
https://arxiv.org/pdf/2401.04728v2.pdf
|
https://github.com/xiyichen/morphablediffusion
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/eagles-efficient-accelerated-3d-gaussians
|
EAGLES: Efficient Accelerated 3D Gaussians with Lightweight EncodingS
|
2312.04564
|
https://arxiv.org/abs/2312.04564v3
|
https://arxiv.org/pdf/2312.04564v3.pdf
|
https://github.com/sharath-girish/efficientgaussian
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/deblurgan-blind-motion-deblurring-using
|
DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks
|
1711.07064
|
http://arxiv.org/abs/1711.07064v4
|
http://arxiv.org/pdf/1711.07064v4.pdf
|
https://github.com/pablodz/deblurgan
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/alpacare-instruction-tuned-large-language
|
AlpaCare:Instruction-tuned Large Language Models for Medical Application
|
2310.14558
|
https://arxiv.org/abs/2310.14558v6
|
https://arxiv.org/pdf/2310.14558v6.pdf
|
https://github.com/xzhang97666/alpacare
| true | true | true |
none
|
https://paperswithcode.com/paper/eyetrans-merging-human-and-machine-attention
|
EyeTrans: Merging Human and Machine Attention for Neural Code Summarization
|
2402.14096
|
https://arxiv.org/abs/2402.14096v3
|
https://arxiv.org/pdf/2402.14096v3.pdf
|
https://zenodo.org/record/10684985
| true | false | false |
none
|
https://paperswithcode.com/paper/cross-domain-random-pre-training-with
|
Cross-domain Random Pre-training with Prototypes for Reinforcement Learning
|
2302.05614
|
https://arxiv.org/abs/2302.05614v3
|
https://arxiv.org/pdf/2302.05614v3.pdf
|
https://github.com/liuxin0824/crptpro
| true | true | false |
none
|
https://paperswithcode.com/paper/towards-a-sat-encoding-for-quantum-circuits-a
|
Towards a SAT Encoding for Quantum Circuits: A Journey From Classical Circuits to Clifford Circuits and Beyond
|
2203.00698
|
https://arxiv.org/abs/2203.00698v1
|
https://arxiv.org/pdf/2203.00698v1.pdf
|
https://github.com/lucasberent/qsatencoder
| true | true | true |
none
|
https://paperswithcode.com/paper/quokka-an-open-source-large-language-model
|
Quokka: An Open-source Large Language Model ChatBot for Material Science
|
2401.01089
|
https://arxiv.org/abs/2401.01089v1
|
https://arxiv.org/pdf/2401.01089v1.pdf
|
https://github.com/xianjun-yang/quokka
| true | true | true |
none
|
https://paperswithcode.com/paper/more-is-more-addition-bias-in-large-language
|
More is More: Addition Bias in Large Language Models
|
2409.02569
|
https://arxiv.org/abs/2409.02569v1
|
https://arxiv.org/pdf/2409.02569v1.pdf
|
https://github.com/LucaSantagata/More-is-More-Addition-Bias-in-Large-Language-Models
| true | false | true |
none
|
https://paperswithcode.com/paper/ecc-polypdet-enhanced-centernet-with
|
ECC-PolypDet: Enhanced CenterNet with Contrastive Learning for Automatic Polyp Detection
|
2401.04961
|
https://arxiv.org/abs/2401.04961v1
|
https://arxiv.org/pdf/2401.04961v1.pdf
|
https://github.com/yuncheng97/ecc-polypdet
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/haltingvt-adaptive-token-halting-transformer
|
HaltingVT: Adaptive Token Halting Transformer for Efficient Video Recognition
|
2401.04975
|
https://arxiv.org/abs/2401.04975v1
|
https://arxiv.org/pdf/2401.04975v1.pdf
|
https://github.com/dun-research/haltingvt
| true | true | false |
pytorch
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.