paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/recommendations-for-item-set-completion-on
|
Recommendations for Item Set Completion: On the Semantics of Item Co-Occurrence With Data Sparsity, Input Size, and Input Modalities
|
2105.04376
|
https://arxiv.org/abs/2105.04376v1
|
https://arxiv.org/pdf/2105.04376v1.pdf
|
https://github.com/lgalke/aae-recommender
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/active-fire-detection-in-landsat-8-imagery-a
|
Active Fire Detection in Landsat-8 Imagery: a Large-Scale Dataset and a Deep-Learning Study
|
2101.03409
|
https://arxiv.org/abs/2101.03409v2
|
https://arxiv.org/pdf/2101.03409v2.pdf
|
https://github.com/pereira-gha/activefire
| true | true | true |
tf
|
https://paperswithcode.com/paper/gift-learning-transformation-invariant-dense-1
|
GIFT: Learning Transformation-Invariant Dense Visual Descriptors via Group CNNs
|
1911.05932
|
https://arxiv.org/abs/1911.05932v1
|
https://arxiv.org/pdf/1911.05932v1.pdf
|
https://github.com/zju3dv/GIFT
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/trtr-visual-tracking-with-transformer
|
TrTr: Visual Tracking with Transformer
|
2105.03817
|
https://arxiv.org/abs/2105.03817v1
|
https://arxiv.org/pdf/2105.03817v1.pdf
|
https://github.com/tongtybj/TrTr
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/copula-based-normalizing-flows
|
Copula-Based Normalizing Flows
|
2107.07352
|
https://arxiv.org/abs/2107.07352v1
|
https://arxiv.org/pdf/2107.07352v1.pdf
|
https://github.com/MikeLasz/Copula-Based-Normalizing-Flows
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/maximum-likelihood-minimum-effort
|
Maximum Likelihood, Minimum Effort
|
1106.5458
|
https://arxiv.org/abs/1106.5458v2
|
https://arxiv.org/pdf/1106.5458v2.pdf
|
https://github.com/fbm2718/QREM
| false | false | true |
none
|
https://paperswithcode.com/paper/quantum-overlapping-tomography
|
Quantum Overlapping Tomography
|
1908.02754
|
https://arxiv.org/abs/1908.02754v2
|
https://arxiv.org/pdf/1908.02754v2.pdf
|
https://github.com/fbm2718/QREM
| false | false | true |
none
|
https://paperswithcode.com/paper/assortativity-in-cognition
|
Assortativity in cognition
|
2205.15114
|
https://arxiv.org/abs/2205.15114v1
|
https://arxiv.org/pdf/2205.15114v1.pdf
|
https://github.com/eugeniovicario/assortativity_in_cognition
| true | true | false |
none
|
https://paperswithcode.com/paper/training-time-friendly-network-for-real-time
|
Training-Time-Friendly Network for Real-Time Object Detection
|
1909.00700
|
https://arxiv.org/abs/1909.00700v3
|
https://arxiv.org/pdf/1909.00700v3.pdf
|
https://github.com/ximilar-com/xcenternet
| false | false | true |
tf
|
https://paperswithcode.com/paper/objects-as-points
|
Objects as Points
|
1904.07850
|
http://arxiv.org/abs/1904.07850v2
|
http://arxiv.org/pdf/1904.07850v2.pdf
|
https://github.com/ximilar-com/xcenternet
| false | false | true |
tf
|
https://paperswithcode.com/paper/deformable-convolutional-networks
|
Deformable Convolutional Networks
|
1703.06211
|
http://arxiv.org/abs/1703.06211v3
|
http://arxiv.org/pdf/1703.06211v3.pdf
|
https://github.com/ximilar-com/xcenternet
| false | false | true |
tf
|
https://paperswithcode.com/paper/barbershop-gan-based-image-compositing-using
|
Barbershop: GAN-based Image Compositing using Segmentation Masks
|
2106.01505
|
https://arxiv.org/abs/2106.01505v2
|
https://arxiv.org/pdf/2106.01505v2.pdf
|
https://github.com/ZPdesu/Barbershop
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/knowledge-distillation-from-bert-transformer
|
Knowledge Distillation from BERT Transformer to Speech Transformer for Intent Classification
|
2108.02598
|
https://arxiv.org/abs/2108.02598v1
|
https://arxiv.org/pdf/2108.02598v1.pdf
|
https://github.com/Jiang-Yidi/TransformerDistillation-SLU
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/doremi-first-glance-at-a-universal-omr
|
DoReMi: First glance at a universal OMR dataset
|
2107.07786
|
https://arxiv.org/abs/2107.07786v1
|
https://arxiv.org/pdf/2107.07786v1.pdf
|
https://github.com/apacha/OMR-Datasets
| false | false | true |
none
|
https://paperswithcode.com/paper/flex-unifying-evaluation-for-few-shot-nlp
|
FLEX: Unifying Evaluation for Few-Shot NLP
|
2107.07170
|
https://arxiv.org/abs/2107.07170v2
|
https://arxiv.org/pdf/2107.07170v2.pdf
|
https://github.com/allenai/unifew
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/few-shot-forecasting-of-time-series-with
|
Few-Shot Forecasting of Time-Series with Heterogeneous Channels
|
2204.03456
|
https://arxiv.org/abs/2204.03456v2
|
https://arxiv.org/pdf/2204.03456v2.pdf
|
https://github.com/radrumond/timehetnet
| true | true | true |
tf
|
https://paperswithcode.com/paper/speeding-up-bigclam-implementation-on-snap
|
Speeding Up BigClam Implementation on SNAP
|
1712.01209
|
https://arxiv.org/abs/1712.01209v2
|
https://arxiv.org/pdf/1712.01209v2.pdf
|
https://github.com/liuchbryan/snap/tree/master/contrib/ICL-bigclam_speedup
| true | false | false |
none
|
https://paperswithcode.com/paper/question-generation-for-adaptive-education
|
Question Generation for Adaptive Education
|
2106.04262
|
https://arxiv.org/abs/2106.04262v1
|
https://arxiv.org/pdf/2106.04262v1.pdf
|
https://github.com/meghabyte/acl2021-education
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/reconfigurable-intelligent-surfaces-a-signal
|
Reconfigurable Intelligent Surfaces: A Signal Processing Perspective With Wireless Applications
|
2102.00742
|
https://arxiv.org/abs/2102.00742v2
|
https://arxiv.org/pdf/2102.00742v2.pdf
|
https://github.com/emilbjornson/SP_Cup_2021
| false | false | true |
none
|
https://paperswithcode.com/paper/efficient-bitruss-decomposition-for-large
|
Efficient Bitruss Decomposition for Large-scale Bipartite Graphs
|
2001.06111
|
http://arxiv.org/abs/2001.06111v1
|
http://arxiv.org/pdf/2001.06111v1.pdf
|
https://github.com/kartiklakhotia/RECEIPT
| false | false | true |
none
|
https://paperswithcode.com/paper/scan-flood-fillscaff-an-efficient-automatic
|
Scan-flood Fill(SCAFF): an Efficient Automatic Precise Region Filling Algorithm for Complicated Regions
|
1906.03366
|
https://arxiv.org/abs/1906.03366v1
|
https://arxiv.org/pdf/1906.03366v1.pdf
|
https://github.com/SherylHYX/Scan-flood-Fill
| true | true | true |
none
|
https://paperswithcode.com/paper/revisiting-contrastive-methods-for
|
Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations
|
2106.05967
|
https://arxiv.org/abs/2106.05967v3
|
https://arxiv.org/pdf/2106.05967v3.pdf
|
https://github.com/wvangansbeke/Revisiting-Contrastive-SSL
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/learning-manifold-patch-based-representations-1
|
Learning Manifold Patch-Based Representations of Man-Made Shapes
|
1906.12337
|
https://arxiv.org/abs/1906.12337v3
|
https://arxiv.org/pdf/1906.12337v3.pdf
|
https://github.com/dmsm/LearningPatches
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/modeling-and-control-of-morphing-covers-for
|
Modeling and Control of Morphing Covers for the Adaptive Morphology of Humanoid Robots
|
2207.01025
|
https://arxiv.org/abs/2207.01025v2
|
https://arxiv.org/pdf/2207.01025v2.pdf
|
https://github.com/ami-iit/mystica
| true | true | false |
none
|
https://paperswithcode.com/paper/yolact-real-time-instance-segmentation
|
YOLACT: Real-time Instance Segmentation
|
1904.02689
|
https://arxiv.org/abs/1904.02689v2
|
https://arxiv.org/pdf/1904.02689v2.pdf
|
https://github.com/Abhijeet8901/Instance-Segmentation-using-YOLACT
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/computing-multiple-solutions-of-topology
|
Computing multiple solutions of topology optimization problems
|
2004.11797
|
https://arxiv.org/abs/2004.11797v2
|
https://arxiv.org/pdf/2004.11797v2.pdf
|
https://bitbucket.org/papadopoulos/deflatedbarrier
| true | true | false |
none
|
https://paperswithcode.com/paper/deep-learning-models-for-multilingual-hate
|
Deep Learning Models for Multilingual Hate Speech Detection
|
2004.06465
|
https://arxiv.org/abs/2004.06465v3
|
https://arxiv.org/pdf/2004.06465v3.pdf
|
https://github.com/hate-alert/DE-LIMIT
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/you-only-look-yourself-unsupervised-and
|
You Only Look Yourself: Unsupervised and Untrained Single Image Dehazing Neural Network
|
2006.16829
|
https://arxiv.org/abs/2006.16829v1
|
https://arxiv.org/pdf/2006.16829v1.pdf
|
https://github.com/XLearning-SCU/2021-IJCV-YOLY
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/hvsrweb-an-open-source-web-based-application
|
HVSRweb: An Open-Source, Web-Based Application for Horizontal-to-Vertical Spectral Ratio Processing
|
2106.06050
|
https://arxiv.org/abs/2106.06050v1
|
https://arxiv.org/pdf/2106.06050v1.pdf
|
https://github.com/jpvantassel/hvsrweb
| true | true | false |
none
|
https://paperswithcode.com/paper/an-inexact-augmented-lagrangian-method-for
|
An inexact augmented Lagrangian method for nonsmooth optimization on Riemannian manifold
|
1911.09900
|
http://arxiv.org/abs/1911.09900v2
|
http://arxiv.org/pdf/1911.09900v2.pdf
|
https://github.com/KKDeng/mialm_code_share
| true | false | true |
none
|
https://paperswithcode.com/paper/benchmarks-for-deep-off-policy-evaluation-1
|
Benchmarks for Deep Off-Policy Evaluation
|
2103.16596
|
https://arxiv.org/abs/2103.16596v1
|
https://arxiv.org/pdf/2103.16596v1.pdf
|
https://github.com/tedmoskovitz/TOP
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/structured-attention-for-unsupervised
|
Structured Attention for Unsupervised Dialogue Structure Induction
|
2009.08552
|
https://arxiv.org/abs/2009.08552v2
|
https://arxiv.org/pdf/2009.08552v2.pdf
|
https://github.com/Liang-Qiu/SVRNN-dialogues
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/cascade-cost-volume-for-high-resolution-multi
|
Cascade Cost Volume for High-Resolution Multi-View Stereo and Stereo Matching
|
1912.06378
|
https://arxiv.org/abs/1912.06378v3
|
https://arxiv.org/pdf/1912.06378v3.pdf
|
https://github.com/apchenstu/mvsnerf
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/structure-extraction-in-task-oriented
|
Structure Extraction in Task-Oriented Dialogues with Slot Clustering
|
2203.00073
|
https://arxiv.org/abs/2203.00073v3
|
https://arxiv.org/pdf/2203.00073v3.pdf
|
https://github.com/Liang-Qiu/SVRNN-dialogues
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/invariance-principle-meets-information
|
Invariance Principle Meets Information Bottleneck for Out-of-Distribution Generalization
|
2106.06607
|
https://arxiv.org/abs/2106.06607v2
|
https://arxiv.org/pdf/2106.06607v2.pdf
|
https://github.com/ahujak/IB-IRM
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/defending-against-backdoors-in-federated
|
Defending against Backdoors in Federated Learning with Robust Learning Rate
|
2007.03767
|
https://arxiv.org/abs/2007.03767v4
|
https://arxiv.org/pdf/2007.03767v4.pdf
|
https://github.com/TinfoilHat0/Defending-Against-Backdoors-with-Robust-Learning-Rate
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/mimicking-production-behavior-with-generated
|
Mimicking Production Behavior with Generated Mocks
|
2208.01321
|
https://arxiv.org/abs/2208.01321v4
|
https://arxiv.org/pdf/2208.01321v4.pdf
|
https://github.com/castor-software/rick-experiments
| true | true | false |
none
|
https://paperswithcode.com/paper/structext-structured-text-understanding-with
|
StrucTexT: Structured Text Understanding with Multi-Modal Transformers
|
2108.02923
|
https://arxiv.org/abs/2108.02923v3
|
https://arxiv.org/pdf/2108.02923v3.pdf
|
https://github.com/PaddlePaddle/VIMER/tree/main/StrucTexT
| true | false | false |
paddle
|
https://paperswithcode.com/paper/pair-diffusion-a-comprehensive-multimodal
|
PAIR Diffusion: A Comprehensive Multimodal Object-Level Image Editor
| null |
http://openaccess.thecvf.com//content/CVPR2024/html/Goel_PAIR_Diffusion_A_Comprehensive_Multimodal_Object-Level_Image_Editor_CVPR_2024_paper.html
|
http://openaccess.thecvf.com//content/CVPR2024/papers/Goel_PAIR_Diffusion_A_Comprehensive_Multimodal_Object-Level_Image_Editor_CVPR_2024_paper.pdf
|
https://github.com/picsart-ai-research/pair-diffusion
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/faster-ltn-a-neuro-symbolic-end-to-end-object
|
Faster-LTN: a neuro-symbolic, end-to-end object detection architecture
|
2107.01877
|
https://arxiv.org/abs/2107.01877v1
|
https://arxiv.org/pdf/2107.01877v1.pdf
|
https://gitlab.com/grains2/Faster-LTN
| true | true | false |
tf
|
https://paperswithcode.com/paper/optimizing-graphical-procedures-for
|
Optimizing Graphical Procedures for Multiplicity Control in a Confirmatory Clinical Trial via Deep Learning
|
1908.10262
|
https://arxiv.org/abs/1908.10262v2
|
https://arxiv.org/pdf/1908.10262v2.pdf
|
https://github.com/tian-yu-zhan/dnn_optimization
| true | true | false |
none
|
https://paperswithcode.com/paper/a-large-scale-study-on-research-code-quality
|
A large-scale study on research code quality and execution
|
2103.12793
|
https://arxiv.org/abs/2103.12793v1
|
https://arxiv.org/pdf/2103.12793v1.pdf
|
https://github.com/atrisovic/dataverse-r-study
| true | true | true |
none
|
https://paperswithcode.com/paper/fine-grained-continual-learning
|
Rehearsal-Free Continual Learning over Small Non-I.I.D. Batches
|
1907.03799
|
https://arxiv.org/abs/1907.03799v3
|
https://arxiv.org/pdf/1907.03799v3.pdf
|
https://github.com/vlomonaco/core50
| false | false | true |
none
|
https://paperswithcode.com/paper/hdr-environment-map-estimation-for-real-time
|
HDR Environment Map Estimation for Real-Time Augmented Reality
|
2011.10687
|
https://arxiv.org/abs/2011.10687v5
|
https://arxiv.org/pdf/2011.10687v5.pdf
|
https://github.com/apple/ml-envmapnet
| true | false | true |
none
|
https://paperswithcode.com/paper/potential-gap-using-reactive-policies-to
|
Potential Gap: Using Reactive Policies to Guarantee Safe Navigation
|
2103.11491
|
https://arxiv.org/abs/2103.11491v1
|
https://arxiv.org/pdf/2103.11491v1.pdf
|
https://github.com/ivaROS/PotentialGap
| false | false | true |
none
|
https://paperswithcode.com/paper/wkb-based-scheme-with-adaptive-step-size
|
WKB-based scheme with adaptive step size control for the Schrödinger equation in the highly oscillatory regime
|
2102.03107
|
https://arxiv.org/abs/2102.03107v2
|
https://arxiv.org/pdf/2102.03107v2.pdf
|
https://github.com/JannisKoerner/adaptive-WKB-marching-method
| true | true | true |
none
|
https://paperswithcode.com/paper/frustum-pointnets-for-3d-object-detection
|
Frustum PointNets for 3D Object Detection from RGB-D Data
|
1711.08488
|
http://arxiv.org/abs/1711.08488v2
|
http://arxiv.org/pdf/1711.08488v2.pdf
|
https://github.com/charlesq34/frustum-pointnets
| true | false | true |
tf
|
https://paperswithcode.com/paper/trajformer-trajectory-prediction-with-local
|
Trajformer: Trajectory Prediction with Local Self-Attentive Contexts for Autonomous Driving
|
2011.14910
|
https://arxiv.org/abs/2011.14910v1
|
https://arxiv.org/pdf/2011.14910v1.pdf
|
https://github.com/Manojbhat09/Trajformer
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/transition-based-bubble-parsing-improvements
|
Transition-based Bubble Parsing: Improvements on Coordination Structure Prediction
|
2107.06905
|
https://arxiv.org/abs/2107.06905v1
|
https://arxiv.org/pdf/2107.06905v1.pdf
|
https://github.com/tzshi/bubble-parser-acl21
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/terapipe-token-level-pipeline-parallelism-for
|
TeraPipe: Token-Level Pipeline Parallelism for Training Large-Scale Language Models
|
2102.07988
|
https://arxiv.org/abs/2102.07988v2
|
https://arxiv.org/pdf/2102.07988v2.pdf
|
https://github.com/zhuohan123/terapipe
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/global-context-enhanced-social-recommendation
|
Global Context Enhanced Social Recommendation with Hierarchical Graph Neural Networks
|
2110.04039
|
https://arxiv.org/abs/2110.04039v1
|
https://arxiv.org/pdf/2110.04039v1.pdf
|
https://github.com/xhcdream/sr-hgnn
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/recommendations-for-datasets-for-source-code
|
Recommendations for Datasets for Source Code Summarization
|
1904.02660
|
http://arxiv.org/abs/1904.02660v1
|
http://arxiv.org/pdf/1904.02660v1.pdf
|
https://github.com/sjj0403/Datasets-for-code-summarization-evaluation
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/star-sparse-transformer-based-action
|
STAR: Sparse Transformer-based Action Recognition
|
2107.07089
|
https://arxiv.org/abs/2107.07089v1
|
https://arxiv.org/pdf/2107.07089v1.pdf
|
https://github.com/imj2185/STAR
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/word-recognition-with-deep-conditional-random
|
Word Recognition with Deep Conditional Random Fields
|
1612.01072
|
http://arxiv.org/abs/1612.01072v1
|
http://arxiv.org/pdf/1612.01072v1.pdf
|
https://github.com/ganggit/deepCRFs
| true | true | false |
none
|
https://paperswithcode.com/paper/towards-end-to-end-semi-supervised-learning
|
Towards End-to-end Semi-supervised Learning for One-stage Object Detection
|
2302.11299
|
https://arxiv.org/abs/2302.11299v1
|
https://arxiv.org/pdf/2302.11299v1.pdf
|
https://github.com/luogen1996/oneteacher
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/addressing-function-approximation-error-in
|
Addressing Function Approximation Error in Actor-Critic Methods
|
1802.09477
|
http://arxiv.org/abs/1802.09477v3
|
http://arxiv.org/pdf/1802.09477v3.pdf
|
https://github.com/pkasala/ContinuesControl
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/machine-learning-kondo-physics-using
|
Machine learning of Kondo physics using variational autoencoders and symbolic regression
|
2107.08013
|
https://arxiv.org/abs/2107.08013v2
|
https://arxiv.org/pdf/2107.08013v2.pdf
|
https://github.com/ColeMiles/SpectralVAE
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/ms-mda-multisource-marginal-distribution
|
MS-MDA: Multisource Marginal Distribution Adaptation for Cross-subject and Cross-session EEG Emotion Recognition
|
2107.07740
|
https://arxiv.org/abs/2107.07740v1
|
https://arxiv.org/pdf/2107.07740v1.pdf
|
https://github.com/VoiceBeer/MS-MDA
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/approaches-to-constrained-quantum-approximate
|
Approaches to Constrained Quantum Approximate Optimization
|
2010.06660
|
https://arxiv.org/abs/2010.06660v3
|
https://arxiv.org/pdf/2010.06660v3.pdf
|
https://github.com/Quantum-Software-Tools/dqva-and-circuit-cutting
| false | false | true |
none
|
https://paperswithcode.com/paper/latentkeypointgan-controlling-gans-via-latent
|
LatentKeypointGAN: Controlling Images via Latent Keypoints
|
2103.15812
|
https://arxiv.org/abs/2103.15812v5
|
https://arxiv.org/pdf/2103.15812v5.pdf
|
https://github.com/DELTA37/LatentKeypointGAN
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/r-drop-regularized-dropout-for-neural
|
R-Drop: Regularized Dropout for Neural Networks
|
2106.14448
|
https://arxiv.org/abs/2106.14448v2
|
https://arxiv.org/pdf/2106.14448v2.pdf
|
https://github.com/zbp-xxxp/R-Drop-Paddle
| false | false | false |
paddle
|
https://paperswithcode.com/paper/generalized-variational-inference-in-function
|
Generalized Variational Inference in Function Spaces: Gaussian Measures meet Bayesian Deep Learning
|
2205.06342
|
https://arxiv.org/abs/2205.06342v2
|
https://arxiv.org/pdf/2205.06342v2.pdf
|
https://github.com/MrHuff/GWI
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/autoscore-survival-developing-interpretable
|
AutoScore-Survival: Developing interpretable machine learning-based time-to-event scores with right-censored survival data
|
2106.06957
|
https://arxiv.org/abs/2106.06957v1
|
https://arxiv.org/pdf/2106.06957v1.pdf
|
https://github.com/nliulab/AutoScore-Survival
| true | true | true |
none
|
https://paperswithcode.com/paper/atspy-automated-time-series-forecasting-in
|
AtsPy: Automated Time Series Forecasting in Python
| null |
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3580631
|
https://poseidon01.ssrn.com/delivery.php?ID=707091125114113026107095123106012077118020024084061089000004119106020064002075106096026057102032006102108123122117114083097012038034045078021105097124103065089098001069030017007065001016083087005002028016069112115112083121104114122001107118013017105025&EXT=pdf&INDEX=TRUE
|
https://github.com/firmai/atspy
| false | false | false |
tf
|
https://paperswithcode.com/paper/explanations-based-on-the-missing-towards
|
Explanations based on the Missing: Towards Contrastive Explanations with Pertinent Negatives
|
1802.07623
|
http://arxiv.org/abs/1802.07623v2
|
http://arxiv.org/pdf/1802.07623v2.pdf
|
https://github.com/IBM/Contrastive-Explanation-Method
| true | true | true |
tf
|
https://paperswithcode.com/paper/scalability-in-perception-for-autonomous
|
Scalability in Perception for Autonomous Driving: Waymo Open Dataset
|
1912.04838
|
https://arxiv.org/abs/1912.04838v7
|
https://arxiv.org/pdf/1912.04838v7.pdf
|
https://github.com/p-mc-grath/DMMFODS
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/u-net-convolutional-networks-for-biomedical
|
U-Net: Convolutional Networks for Biomedical Image Segmentation
|
1505.04597
|
http://arxiv.org/abs/1505.04597v1
|
http://arxiv.org/pdf/1505.04597v1.pdf
|
https://github.com/p-mc-grath/DMMFODS
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/densely-connected-convolutional-networks
|
Densely Connected Convolutional Networks
|
1608.06993
|
http://arxiv.org/abs/1608.06993v5
|
http://arxiv.org/pdf/1608.06993v5.pdf
|
https://github.com/p-mc-grath/DMMFODS
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/lale-consistent-automated-machine-learning
|
Lale: Consistent Automated Machine Learning
|
2007.01977
|
https://arxiv.org/abs/2007.01977v1
|
https://arxiv.org/pdf/2007.01977v1.pdf
|
https://github.com/IBM/Lale.jl
| false | false | true |
none
|
https://paperswithcode.com/paper/iranis-a-large-scale-dataset-of-farsi-license
|
Iranis: A Large-scale Dataset of Farsi License Plate Characters
|
2101.00295
|
https://arxiv.org/abs/2101.00295v1
|
https://arxiv.org/pdf/2101.00295v1.pdf
|
https://github.com/alitourani/Iranis-dataset
| true | false | true |
none
|
https://paperswithcode.com/paper/modeling-natural-language-emergence-with
|
Modeling natural language emergence with integral transform theory and reinforcement learning
|
1812.01431
|
http://arxiv.org/abs/1812.01431v1
|
http://arxiv.org/pdf/1812.01431v1.pdf
|
https://github.com/Quiltomics/NLERL
| true | true | false |
tf
|
https://paperswithcode.com/paper/accurate-liability-estimation-improves-power
|
Accurate Liability Estimation Improves Power in Ascertained Case Control Studies
|
1409.2448
|
http://arxiv.org/abs/1409.2448v3
|
http://arxiv.org/pdf/1409.2448v3.pdf
|
https://github.com/omerwe/LEAP
| true | true | false |
none
|
https://paperswithcode.com/paper/bag-tag-em-a-new-dutch-stemmer
|
Bag \& Tag'em - A New Dutch Stemmer
| null |
https://aclanthology.org/2020.lrec-1.477
|
https://aclanthology.org/2020.lrec-1.477.pdf
|
https://github.com/Anne-Jonker/Bag-Tag-em
| true | true | false |
none
|
https://paperswithcode.com/paper/guided-search-for-desired-functional
|
Guided search for desired functional responses via Bayesian optimization of generative model: hysteresis loop shape engineering in ferroelectrics
|
2004.12512
|
https://arxiv.org/abs/2004.12512v1
|
https://arxiv.org/pdf/2004.12512v1.pdf
|
https://github.com/ramav87/Ferrosim
| true | true | false |
none
|
https://paperswithcode.com/paper/to-vr-or-not-to-vr-is-virtual-reality
|
To VR or not to VR: Is virtual reality suitable to understand software development metrics?
|
2109.13768
|
https://arxiv.org/abs/2109.13768v1
|
https://arxiv.org/pdf/2109.13768v1.pdf
|
https://gitlab.com/babiaxr/aframe-babia-components
| true | true | false |
none
|
https://paperswithcode.com/paper/image-based-correction-of-continuous-and
|
Image-Based Correction of Continuous and Discontinuous Non-Planar Axial Distortion in Serial Section Microscopy
|
1511.01161
|
http://arxiv.org/abs/1511.01161v2
|
http://arxiv.org/pdf/1511.01161v2.pdf
|
https://github.com/saalfeldlab/em-thickness-estimation
| true | true | false |
none
|
https://paperswithcode.com/paper/spatial-temporal-transformer-for-dynamic
|
Spatial-Temporal Transformer for Dynamic Scene Graph Generation
|
2107.12309
|
https://arxiv.org/abs/2107.12309v2
|
https://arxiv.org/pdf/2107.12309v2.pdf
|
https://github.com/yrcong/sttran
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/yolox-exceeding-yolo-series-in-2021
|
YOLOX: Exceeding YOLO Series in 2021
|
2107.08430
|
https://arxiv.org/abs/2107.08430v2
|
https://arxiv.org/pdf/2107.08430v2.pdf
|
https://github.com/StephenStorm/YOLOX
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/probing-for-labeled-dependency-trees
|
Probing for Labeled Dependency Trees
|
2203.12971
|
https://arxiv.org/abs/2203.12971v1
|
https://arxiv.org/pdf/2203.12971v1.pdf
|
https://github.com/personads/depprobe
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/dropgnn-random-dropouts-increase-the
|
DropGNN: Random Dropouts Increase the Expressiveness of Graph Neural Networks
|
2111.06283
|
https://arxiv.org/abs/2111.06283v1
|
https://arxiv.org/pdf/2111.06283v1.pdf
|
https://github.com/karolismart/dropgnn
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/automatic-annotation-and-evaluation-of-error
|
Automatic Annotation and Evaluation of Error Types for Grammatical Error Correction
| null |
https://aclanthology.org/P17-1074
|
https://aclanthology.org/P17-1074.pdf
|
https://github.com/chrisjbryant/errant
| true | true | false |
none
|
https://paperswithcode.com/paper/epidemic-thresholds-of-infectious-diseases-on
|
Epidemic Thresholds of Infectious Diseases on Tie-Decay Networks
|
2009.12932
|
https://arxiv.org/abs/2009.12932v2
|
https://arxiv.org/pdf/2009.12932v2.pdf
|
https://github.com/qinyichen/tie-decay-epidemic-threshold
| true | true | true |
none
|
https://paperswithcode.com/paper/opinionated-practices-for-teaching
|
Opinionated practices for teaching reproducibility: motivation, guided instruction and practice
|
2109.13656
|
https://arxiv.org/abs/2109.13656v2
|
https://arxiv.org/pdf/2109.13656v2.pdf
|
https://github.com/UBC-MDS/opinionated-practices-for-teaching-reproducibility
| true | false | false |
none
|
https://paperswithcode.com/paper/parallel-peeling-of-bipartite-networks-for
|
Parallel Peeling of Bipartite Networks for Hierarchical Dense Subgraph Discovery
|
2110.12511
|
https://arxiv.org/abs/2110.12511v1
|
https://arxiv.org/pdf/2110.12511v1.pdf
|
https://github.com/kartiklakhotia/RECEIPT
| true | true | false |
none
|
https://paperswithcode.com/paper/pseudo-relevance-feedback-for-multiple
|
Pseudo-Relevance Feedback for Multiple Representation Dense Retrieval
|
2106.11251
|
https://arxiv.org/abs/2106.11251v2
|
https://arxiv.org/pdf/2106.11251v2.pdf
|
https://github.com/cmacdonald/pyterrier_colbert
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/implicit-svd-for-graph-representation
|
Implicit SVD for Graph Representation Learning
|
2111.06312
|
https://arxiv.org/abs/2111.06312v1
|
https://arxiv.org/pdf/2111.06312v1.pdf
|
https://github.com/samihaija/isvd
| true | true | false |
tf
|
https://paperswithcode.com/paper/a-consolidated-open-knowledge-representation
|
A Consolidated Open Knowledge Representation for Multiple Texts
| null |
https://aclanthology.org/W17-0902
|
https://aclanthology.org/W17-0902.pdf
|
https://github.com/vered1986/OKR
| true | true | false |
none
|
https://paperswithcode.com/paper/massformer-tandem-mass-spectrum-prediction
|
MassFormer: Tandem Mass Spectrum Prediction for Small Molecules using Graph Transformers
|
2111.04824
|
https://arxiv.org/abs/2111.04824v3
|
https://arxiv.org/pdf/2111.04824v3.pdf
|
https://github.com/samgoldman97/ms-pred
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/automatically-polyconvex-strain-energy
|
Data-driven Tissue Mechanics with Polyconvex Neural Ordinary Differential Equations
|
2110.03774
|
https://arxiv.org/abs/2110.03774v2
|
https://arxiv.org/pdf/2110.03774v2.pdf
|
https://github.com/tajtac/node
| true | true | false |
jax
|
https://paperswithcode.com/paper/scalable-visual-transformers-with
|
Scalable Vision Transformers with Hierarchical Pooling
|
2103.10619
|
https://arxiv.org/abs/2103.10619v2
|
https://arxiv.org/pdf/2103.10619v2.pdf
|
https://github.com/MonashAI/HVT
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/window-level-is-a-strong-denoising-surrogate
|
Window-Level is a Strong Denoising Surrogate
|
2105.07153
|
https://arxiv.org/abs/2105.07153v1
|
https://arxiv.org/pdf/2105.07153v1.pdf
|
https://github.com/zubaerimran/SSWL-IDN
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/galactic-diffuse-gamma-rays-meet-the-pev
|
Galactic diffuse gamma rays meet the PeV frontier
|
2203.15759
|
https://arxiv.org/abs/2203.15759v3
|
https://arxiv.org/pdf/2203.15759v3.pdf
|
https://github.com/tospines/gamma-variable_high-resolution
| true | true | false |
none
|
https://paperswithcode.com/paper/nifty-web-apps-build-a-web-app-for-any-text
|
Nifty Web Apps: Build a Web App for Any Text-Based Programming Assignment
|
2010.04671
|
https://arxiv.org/abs/2010.04671v1
|
https://arxiv.org/pdf/2010.04671v1.pdf
|
https://github.com/kevinlin1/nifty-web-apps
| true | false | true |
none
|
https://paperswithcode.com/paper/not-just-a-black-box-learning-important
|
Not Just a Black Box: Learning Important Features Through Propagating Activation Differences
|
1605.01713
|
http://arxiv.org/abs/1605.01713v3
|
http://arxiv.org/pdf/1605.01713v3.pdf
|
https://github.com/pytorch/captum
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/vit-cx-causal-explanation-of-vision
|
ViT-CX: Causal Explanation of Vision Transformers
|
2211.03064
|
https://arxiv.org/abs/2211.03064v3
|
https://arxiv.org/pdf/2211.03064v3.pdf
|
https://github.com/vaynexie/CausalX-ViT
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/mura-large-dataset-for-abnormality-detection
|
MURA: Large Dataset for Abnormality Detection in Musculoskeletal Radiographs
|
1712.06957
|
http://arxiv.org/abs/1712.06957v4
|
http://arxiv.org/pdf/1712.06957v4.pdf
|
https://github.com/anirudh2019/MURA-xception-inceptionV2
| false | false | true |
tf
|
https://paperswithcode.com/paper/agglomerative-fast-super-paramagnetic
|
Agglomerative Likelihood Clustering
|
1908.00951
|
https://arxiv.org/abs/1908.00951v4
|
https://arxiv.org/pdf/1908.00951v4.pdf
|
https://github.com/tehraio/timeseries_gen
| false | false | true |
none
|
https://paperswithcode.com/paper/graph2mda-a-multi-modal-variational-graph
|
Graph2MDA: a multi-modal variational graph embedding model for predicting microbe-drug associations
|
2108.06338
|
https://arxiv.org/abs/2108.06338v1
|
https://arxiv.org/pdf/2108.06338v1.pdf
|
https://github.com/moen-hyb/Graph2MDA
| true | false | false |
tf
|
https://paperswithcode.com/paper/syntactic-parse-fusion
|
Syntactic Parse Fusion
| null |
https://aclanthology.org/D15-1160
|
https://aclanthology.org/D15-1160.pdf
|
https://github.com/BLLIP/bllip-parser
| true | true | false |
none
|
https://paperswithcode.com/paper/improved-techniques-for-model-inversion-1
|
Knowledge-Enriched Distributional Model Inversion Attacks
|
2010.04092
|
https://arxiv.org/abs/2010.04092v4
|
https://arxiv.org/pdf/2010.04092v4.pdf
|
https://github.com/scccc21/knowledge-enriched-dmi
| true | true | true |
pytorch
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.