paper_url
stringlengths
36
81
paper_title
stringlengths
1
242
paper_arxiv_id
stringlengths
9
16
paper_url_abs
stringlengths
18
314
paper_url_pdf
stringlengths
21
935
repo_url
stringlengths
26
200
is_official
bool
2 classes
mentioned_in_paper
bool
2 classes
mentioned_in_github
bool
2 classes
framework
stringclasses
9 values
https://paperswithcode.com/paper/wasserstein-gan
Wasserstein GAN
1701.07875
http://arxiv.org/abs/1701.07875v3
http://arxiv.org/pdf/1701.07875v3.pdf
https://github.com/Mohammad-Rahmdel/WassersteinGAN-Tensorflow
false
false
true
tf
https://paperswithcode.com/paper/learning-speaker-representations-with-mutual
Learning Speaker Representations with Mutual Information
1812.00271
http://arxiv.org/abs/1812.00271v2
http://arxiv.org/pdf/1812.00271v2.pdf
https://github.com/Js-Mim/rl_singing_voice
false
false
true
pytorch
https://paperswithcode.com/paper/infogan-interpretable-representation-learning
InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
1606.03657
http://arxiv.org/abs/1606.03657v1
http://arxiv.org/pdf/1606.03657v1.pdf
https://github.com/openai/InfoGAN
false
false
true
tf
https://paperswithcode.com/paper/qt-opt-scalable-deep-reinforcement-learning
QT-Opt: Scalable Deep Reinforcement Learning for Vision-Based Robotic Manipulation
1806.10293
http://arxiv.org/abs/1806.10293v3
http://arxiv.org/pdf/1806.10293v3.pdf
https://github.com/hyecheol123/Summary_of_QT-Opt
false
false
true
none
https://paperswithcode.com/paper/simulation-based-lidar-super-resolution-for-1
Simulation-based Lidar Super-resolution for Ground Vehicles
2004.05242
https://arxiv.org/abs/2004.05242v1
https://arxiv.org/pdf/2004.05242v1.pdf
https://github.com/RobustFieldAutonomyLab/lidar_super_resolution
true
true
false
tf
https://paperswithcode.com/paper/integrating-multi-view-analysis-multi-view
Integrating Multi-view Analysis: Multi-view Mixture-of-Expert for Textual Personality Detection
2408.08551
https://arxiv.org/abs/2408.08551v1
https://arxiv.org/pdf/2408.08551v1.pdf
https://github.com/Hugo-Zhu/MvP
true
false
false
pytorch
https://paperswithcode.com/paper/the-many-faces-of-robustness-a-critical
The Many Faces of Robustness: A Critical Analysis of Out-of-Distribution Generalization
2006.16241
https://arxiv.org/abs/2006.16241v3
https://arxiv.org/pdf/2006.16241v3.pdf
https://github.com/hendrycks/imagenet-r
true
true
true
pytorch
https://paperswithcode.com/paper/answering-questions-on-covid-19-in-real-time
Answering Questions on COVID-19 in Real-Time
2006.15830
https://arxiv.org/abs/2006.15830v2
https://arxiv.org/pdf/2006.15830v2.pdf
https://github.com/dmis-lab/covidAsk
true
true
false
pytorch
https://paperswithcode.com/paper/influencers-identification-in-complex
Influencers identification in complex networks through reaction-diffusion dynamics
1803.01212
http://arxiv.org/abs/1803.01212v3
http://arxiv.org/pdf/1803.01212v3.pdf
https://github.com/kunda00/viralrank_centrality
true
true
true
none
https://paperswithcode.com/paper/segicp-integrated-deep-semantic-segmentation
SegICP: Integrated Deep Semantic Segmentation and Pose Estimation
1703.01661
http://arxiv.org/abs/1703.01661v2
http://arxiv.org/pdf/1703.01661v2.pdf
https://github.com/Pacific-cyber/KUKA_Catch_Project
false
false
true
tf
https://paperswithcode.com/paper/photospheric-prompt-emission-from-long-gamma
Photospheric Prompt Emission From Long Gamma Ray Burst Simulations -- I. Optical Emission
2105.06505
https://arxiv.org/abs/2105.06505v2
https://arxiv.org/pdf/2105.06505v2.pdf
https://github.com/parsotat/ProcessMCRaT
true
true
false
none
https://paperswithcode.com/paper/fade-a-task-agnostic-upsampling-operator-for
FADE: A Task-Agnostic Upsampling Operator for Encoder-Decoder Architectures
2407.13500
https://arxiv.org/abs/2407.13500v1
https://arxiv.org/pdf/2407.13500v1.pdf
https://github.com/poppinace/fade
true
true
false
pytorch
https://paperswithcode.com/paper/photospheric-prompt-emission-from-long-gamma
Photospheric Prompt Emission From Long Gamma Ray Burst Simulations -- I. Optical Emission
2105.06505
https://arxiv.org/abs/2105.06505v2
https://arxiv.org/pdf/2105.06505v2.pdf
https://github.com/lazzati-astro/MCRaT
true
true
false
none
https://paperswithcode.com/paper/an-end-to-end-trainable-neural-network-for
An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition
1507.05717
http://arxiv.org/abs/1507.05717v1
http://arxiv.org/pdf/1507.05717v1.pdf
https://github.com/Media-Smart/vedastr
false
false
true
pytorch
https://paperswithcode.com/paper/u-net-convolutional-networks-for-biomedical
U-Net: Convolutional Networks for Biomedical Image Segmentation
1505.04597
http://arxiv.org/abs/1505.04597v1
http://arxiv.org/pdf/1505.04597v1.pdf
https://github.com/fepegar/unet
false
false
true
pytorch
https://paperswithcode.com/paper/combining-stochastic-adaptive-cubic
Combining Stochastic Adaptive Cubic Regularization with Negative Curvature for Nonconvex Optimization
1906.11417
https://arxiv.org/abs/1906.11417v1
https://arxiv.org/pdf/1906.11417v1.pdf
https://github.com/seonho-park/Stochastic-Adaptive-cubic-regularization-with-Negative-Curvature
false
false
true
tf
https://paperswithcode.com/paper/geometry-aware-generation-of-adversarial-and-1
Geometry-Aware Generation of Adversarial Point Clouds
1912.11171
https://arxiv.org/abs/1912.11171v3
https://arxiv.org/pdf/1912.11171v3.pdf
https://github.com/Yuxin-Wen/GeoA3
true
true
true
pytorch
https://paperswithcode.com/paper/variational-deep-embedding-an-unsupervised
Variational Deep Embedding: An Unsupervised and Generative Approach to Clustering
1611.05148
http://arxiv.org/abs/1611.05148v3
http://arxiv.org/pdf/1611.05148v3.pdf
https://github.com/gudgud96/piano-synthesis
false
false
true
pytorch
https://paperswithcode.com/paper/does-causal-coherence-predict-online-spread
Does Causal Coherence Predict Online Spread of Social Media?
null
https://link.springer.com/chapter/10.1007/978-3-030-21741-9_19
https://link.springer.com/chapter/10.1007/978-3-030-21741-9_19
https://github.com/phosseini/SBP-BRiMS2019
true
false
false
none
https://paperswithcode.com/paper/generative-modelling-for-controllable-audio
Generative Modelling for Controllable Audio Synthesis of Expressive Piano Performance
2006.09833
https://arxiv.org/abs/2006.09833v2
https://arxiv.org/pdf/2006.09833v2.pdf
https://github.com/gudgud96/piano-synthesis
true
true
true
pytorch
https://paperswithcode.com/paper/recsim-a-configurable-simulation-platform-for
RecSim: A Configurable Simulation Platform for Recommender Systems
1909.04847
https://arxiv.org/abs/1909.04847v2
https://arxiv.org/pdf/1909.04847v2.pdf
https://github.com/google-research/recsim
true
true
true
tf
https://paperswithcode.com/paper/multi-domain-learning-and-identity-mining-for
Multi-Domain Learning and Identity Mining for Vehicle Re-Identification
2004.10547
https://arxiv.org/abs/2004.10547v2
https://arxiv.org/pdf/2004.10547v2.pdf
https://github.com/heshuting555/AICITY2020_DMT_VehicleReID
true
true
true
pytorch
https://paperswithcode.com/paper/saccadenet-a-fast-and-accurate-object
SaccadeNet: A Fast and Accurate Object Detector
2003.12125
https://arxiv.org/abs/2003.12125v1
https://arxiv.org/pdf/2003.12125v1.pdf
https://github.com/voidrank/SaccadeNet
false
false
true
pytorch
https://paperswithcode.com/paper/efficient-estimation-of-word-representations
Efficient Estimation of Word Representations in Vector Space
1301.3781
http://arxiv.org/abs/1301.3781v3
http://arxiv.org/pdf/1301.3781v3.pdf
https://github.com/chikalabouka/INF8225-TP4
false
false
true
none
https://paperswithcode.com/paper/unsupervised-domain-attention-adaptation
Unsupervised Domain Attention Adaptation Network for Caricature Attribute Recognition
2007.09344
https://arxiv.org/abs/2007.09344v1
https://arxiv.org/pdf/2007.09344v1.pdf
https://github.com/KeleiHe/DAAN
true
true
true
pytorch
https://paperswithcode.com/paper/mutan-multimodal-tucker-fusion-for-visual
MUTAN: Multimodal Tucker Fusion for Visual Question Answering
1705.06676
http://arxiv.org/abs/1705.06676v1
http://arxiv.org/pdf/1705.06676v1.pdf
https://github.com/vuhoangminh/vqa_medical
false
false
true
pytorch
https://paperswithcode.com/paper/hadamard-product-for-low-rank-bilinear
Hadamard Product for Low-rank Bilinear Pooling
1610.04325
http://arxiv.org/abs/1610.04325v4
http://arxiv.org/pdf/1610.04325v4.pdf
https://github.com/vuhoangminh/vqa_medical
false
false
true
pytorch
https://paperswithcode.com/paper/multimodal-compact-bilinear-pooling-for
Multimodal Compact Bilinear Pooling for Visual Question Answering and Visual Grounding
1606.01847
http://arxiv.org/abs/1606.01847v3
http://arxiv.org/pdf/1606.01847v3.pdf
https://github.com/vuhoangminh/vqa_medical
false
false
true
pytorch
https://paperswithcode.com/paper/generating-sequences-with-recurrent-neural
Generating Sequences With Recurrent Neural Networks
1308.0850
http://arxiv.org/abs/1308.0850v5
http://arxiv.org/pdf/1308.0850v5.pdf
https://github.com/swechhachoudhary/Handwriting-synthesis
false
false
true
pytorch
https://paperswithcode.com/paper/bidirectional-lstm-crf-models-for-sequence
Bidirectional LSTM-CRF Models for Sequence Tagging
1508.01991
http://arxiv.org/abs/1508.01991v1
http://arxiv.org/pdf/1508.01991v1.pdf
https://github.com/Akshayanti/supersense-sequence-labelling
false
false
true
none
https://paperswithcode.com/paper/bert-based-multi-head-selection-for-joint
BERT-Based Multi-Head Selection for Joint Entity-Relation Extraction
1908.05908
https://arxiv.org/abs/1908.05908v2
https://arxiv.org/pdf/1908.05908v2.pdf
https://github.com/jaykay233/EventExtraction
false
false
true
pytorch
https://paperswithcode.com/paper/linknet-exploiting-encoder-representations
LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation
1707.03718
http://arxiv.org/abs/1707.03718v1
http://arxiv.org/pdf/1707.03718v1.pdf
https://github.com/fourmi1995/IronSegExperiment-LinkNet
false
false
true
tf
https://paperswithcode.com/paper/u-net-convolutional-networks-for-biomedical
U-Net: Convolutional Networks for Biomedical Image Segmentation
1505.04597
http://arxiv.org/abs/1505.04597v1
http://arxiv.org/pdf/1505.04597v1.pdf
https://github.com/ajoshi944/Segmentation-severstal-steel
false
false
true
none
https://paperswithcode.com/paper/statmod-probability-calculations-for-the
statmod: Probability Calculations for the Inverse Gaussian Distribution
1603.06687
http://arxiv.org/abs/1603.06687v2
http://arxiv.org/pdf/1603.06687v2.pdf
https://cran.r-project.org/web/packages/statmod/index.html
false
false
false
none
https://paperswithcode.com/paper/clsgan-selective-attribute-editing-based-on
ClsGAN: Selective Attribute Editing Model Based On Classification Adversarial Network
1910.11764
https://arxiv.org/abs/1910.11764v2
https://arxiv.org/pdf/1910.11764v2.pdf
https://github.com/summar6/ClsGAN
true
true
true
pytorch
https://paperswithcode.com/paper/get-to-the-point-summarization-with-pointer
Get To The Point: Summarization with Pointer-Generator Networks
1704.04368
http://arxiv.org/abs/1704.04368v2
http://arxiv.org/pdf/1704.04368v2.pdf
https://github.com/AndreyKolomiets/News_Headline_Generation
false
false
true
tf
https://paperswithcode.com/paper/tackling-hybrid-heterogeneity-on-federated
On the Power of Adaptive Weighted Aggregation in Heterogeneous Federated Learning and Beyond
2310.02702
https://arxiv.org/abs/2310.02702v4
https://arxiv.org/pdf/2310.02702v4.pdf
https://github.com/dunzeng/more
false
false
true
pytorch
https://paperswithcode.com/paper/automated-discovery-of-local-rules-for
Automated Discovery of Local Rules for Desired Collective-Level Behavior Through Reinforcement Learning
null
https://www.frontiersin.org/articles/10.3389/fphy.2020.00200/full
https://pdfs.semanticscholar.org/de88/dc5bf1b9fd1383ff2da6709fadafd8d2cc31.pdf
https://gitlab.com/polavieja_lab/rl_collective_behaviour
false
true
false
none
https://paperswithcode.com/paper/the-cosmic-linear-anisotropy-solving-system-1
The Cosmic Linear Anisotropy Solving System (CLASS) II: Approximation schemes
1104.2933
http://arxiv.org/abs/1104.2933v3
http://arxiv.org/pdf/1104.2933v3.pdf
https://github.com/bufeo/class_v2.6_gcdm
false
false
true
none
https://paperswithcode.com/paper/visual-wake-words-dataset
Visual Wake Words Dataset
1906.05721
https://arxiv.org/abs/1906.05721v1
https://arxiv.org/pdf/1906.05721v1.pdf
https://github.com/arpit6232/visualwakeup_aesd
false
false
true
tf
https://paperswithcode.com/paper/bigfcm-fast-precise-and-scalable-fcm-on
BigFCM: Fast, Precise and Scalable FCM on Hadoop
1605.03047
http://arxiv.org/abs/1605.03047v1
http://arxiv.org/pdf/1605.03047v1.pdf
https://github.com/nghadiri/BigFCM
true
false
true
none
https://paperswithcode.com/paper/mask-wearing-status-estimation-with
Mask Wearing Status Estimation with Smartwatches
2205.06113
https://arxiv.org/abs/2205.06113v1
https://arxiv.org/pdf/2205.06113v1.pdf
https://github.com/aiotgroup/maskreminder
true
true
false
pytorch
https://paperswithcode.com/paper/uniformizing-techniques-to-process-ct-scans
Uniformizing Techniques to Process CT scans with 3D CNNs for Tuberculosis Prediction
2007.13224
https://arxiv.org/abs/2007.13224v1
https://arxiv.org/pdf/2007.13224v1.pdf
https://github.com/hasibzunair/uniformizing-3D
true
true
true
tf
https://paperswithcode.com/paper/symbolic-execution-and-debugging
Symbolic Execution and Debugging Synchronization
2006.16601
https://arxiv.org/abs/2006.16601v1
https://arxiv.org/pdf/2006.16601v1.pdf
https://github.com/andreafioraldi/angrgdb
false
false
true
none
https://paperswithcode.com/paper/prescriptive-business-process-monitoring-for
Prescriptive Business Process Monitoring for Recommending Next Best Actions
2008.08693
https://arxiv.org/abs/2008.08693v1
https://arxiv.org/pdf/2008.08693v1.pdf
https://github.com/fau-is/next-best-action
true
true
false
tf
https://paperswithcode.com/paper/ssd-single-shot-multibox-detector
SSD: Single Shot MultiBox Detector
1512.02325
http://arxiv.org/abs/1512.02325v5
http://arxiv.org/pdf/1512.02325v5.pdf
https://github.com/leejang/two_stream_ssd_caffe
false
false
true
none
https://paperswithcode.com/paper/prioritized-experience-replay
Prioritized Experience Replay
1511.05952
http://arxiv.org/abs/1511.05952v4
http://arxiv.org/pdf/1511.05952v4.pdf
https://github.com/SayhoKim/tetrisRL
false
false
true
tf
https://paperswithcode.com/paper/objective-comparison-of-methods-to-decode
Objective comparison of methods to decode anomalous diffusion
2105.06766
https://arxiv.org/abs/2105.06766v1
https://arxiv.org/pdf/2105.06766v1.pdf
https://github.com/AnDiChallenge/ANDI_datasets
true
true
false
none
https://paperswithcode.com/paper/m-nca-texture-generation-with-ultra-compact
$μ$NCA: Texture Generation with Ultra-Compact Neural Cellular Automata
2111.13545
https://arxiv.org/abs/2111.13545v1
https://arxiv.org/pdf/2111.13545v1.pdf
https://github.com/google-research/self-organising-systems/blob/master/notebooks/%CE%BCNCA_pytorch.ipynb
false
false
false
jax
https://paperswithcode.com/paper/learning-transferable-architectures-for
Learning Transferable Architectures for Scalable Image Recognition
1707.07012
http://arxiv.org/abs/1707.07012v4
http://arxiv.org/pdf/1707.07012v4.pdf
https://github.com/DataCanvasIO/Hypernets
false
false
false
tf
https://paperswithcode.com/paper/mobiledets-searching-for-object-detection
MobileDets: Searching for Object Detection Architectures for Mobile Accelerators
2004.14525
https://arxiv.org/abs/2004.14525v3
https://arxiv.org/pdf/2004.14525v3.pdf
https://github.com/DataCanvasIO/Hypernets
false
false
false
tf
https://paperswithcode.com/paper/efficient-neural-architecture-search-via-1
Efficient Neural Architecture Search via Parameter Sharing
1802.03268
http://arxiv.org/abs/1802.03268v2
http://arxiv.org/pdf/1802.03268v2.pdf
https://github.com/DataCanvasIO/Hypernets
false
false
false
tf
https://paperswithcode.com/paper/face-super-resolution-guided-by-3d-facial-1
Face Super-Resolution Guided by 3D Facial Priors
2007.09454
https://arxiv.org/abs/2007.09454v1
https://arxiv.org/pdf/2007.09454v1.pdf
https://github.com/HUuxiaobin/Face-Super-Resolution-Guided-by-3D-Facial-Priors
false
false
true
pytorch
https://paperswithcode.com/paper/rank-reduction-matrix-balancing-and-mean
Fast Rank Reduction for Non-negative Matrices via Mean Field Theory
2006.05321
https://arxiv.org/abs/2006.05321v2
https://arxiv.org/pdf/2006.05321v2.pdf
https://github.com/gkazunii/Legendre-tucker-rank-reduction
false
false
false
none
https://paperswithcode.com/paper/regularized-evolution-for-image-classifier
Regularized Evolution for Image Classifier Architecture Search
1802.01548
http://arxiv.org/abs/1802.01548v7
http://arxiv.org/pdf/1802.01548v7.pdf
https://github.com/DataCanvasIO/Hypernets
false
false
false
tf
https://paperswithcode.com/paper/neural-architecture-search-with-reinforcement
Neural Architecture Search with Reinforcement Learning
1611.01578
http://arxiv.org/abs/1611.01578v2
http://arxiv.org/pdf/1611.01578v2.pdf
https://github.com/DataCanvasIO/Hypernets
false
false
false
tf
https://paperswithcode.com/paper/tune-a-research-platform-for-distributed
Tune: A Research Platform for Distributed Model Selection and Training
1807.05118
http://arxiv.org/abs/1807.05118v1
http://arxiv.org/pdf/1807.05118v1.pdf
https://github.com/DataCanvasIO/Hypernets
false
false
false
tf
https://paperswithcode.com/paper/evaluation-of-a-tree-based-pipeline
Evaluation of a Tree-based Pipeline Optimization Tool for Automating Data Science
1603.06212
http://arxiv.org/abs/1603.06212v1
http://arxiv.org/pdf/1603.06212v1.pdf
https://github.com/DataCanvasIO/Hypernets
false
false
false
tf
https://paperswithcode.com/paper/efficient-and-robust-automated-machine
Efficient and Robust Automated Machine Learning
null
http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning
http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning.pdf
https://github.com/DataCanvasIO/Hypernets
false
false
false
tf
https://paperswithcode.com/paper/reconstructing-patchy-reionization-from-the
Reconstructing Patchy Reionization from the Cosmic Microwave Background
0812.1566
https://arxiv.org/abs/0812.1566v2
https://arxiv.org/pdf/0812.1566v2.pdf
https://github.com/abaleato/curved_sky_B_template
false
false
true
none
https://paperswithcode.com/paper/key-frame-proposal-network-for-efficient-pose
Key Frame Proposal Network for Efficient Pose Estimation in Videos
2007.15217
https://arxiv.org/abs/2007.15217v1
https://arxiv.org/pdf/2007.15217v1.pdf
https://github.com/Yuexiaoxi10/Key-Frame-Proposal-Network-for-Efficient-Pose-Estimation-in-Videos
true
true
true
pytorch
https://paperswithcode.com/paper/segnet-a-deep-convolutional-encoder-decoder
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
1511.00561
http://arxiv.org/abs/1511.00561v3
http://arxiv.org/pdf/1511.00561v3.pdf
https://github.com/ajoshi944/Segmentation-severstal-steel
false
false
true
none
https://paperswithcode.com/paper/evaluating-pronominal-anaphora-in-machine
Evaluating Pronominal Anaphora in Machine Translation: An Evaluation Measure and a Test Suite
1909.00131
https://arxiv.org/abs/1909.00131v1
https://arxiv.org/pdf/1909.00131v1.pdf
https://github.com/ntunlp/eval-anaphora
false
false
true
pytorch
https://paperswithcode.com/paper/shift-invert-diagonalization-of-large-many
Shift-invert diagonalization of large many-body localizing spin chains
1803.05395
http://arxiv.org/abs/1803.05395v3
http://arxiv.org/pdf/1803.05395v3.pdf
https://bitbucket.org/dluitz/sinvert_mbl
true
true
false
none
https://paperswithcode.com/paper/spin-glass-droplets-learning-and-approximate
Approximate optimization, sampling and spin-glass droplets discovery with tensor networks
1811.06518
https://arxiv.org/abs/1811.06518v5
https://arxiv.org/pdf/1811.06518v5.pdf
https://github.com/marekrams/tnac4o
true
true
true
none
https://paperswithcode.com/paper/gated-multimodal-units-for-information-fusion
Gated Multimodal Units for Information Fusion
1702.01992
http://arxiv.org/abs/1702.01992v1
http://arxiv.org/pdf/1702.01992v1.pdf
https://github.com/TashinAhmed/CNN_BERT
false
false
true
pytorch
https://paperswithcode.com/paper/how-to-0wn-the-nas-in-your-spare-time
How to 0wn the NAS in Your Spare Time
null
https://openreview.net/forum?id=S1erpeBFPB
https://openreview.net/pdf?id=S1erpeBFPB
https://github.com/Sanghyun-Hong/How-to-0wn-NAS-in-Your-Spare-Time
true
false
false
none
https://paperswithcode.com/paper/fast-guided-filter
Fast Guided Filter
1505.00996
http://arxiv.org/abs/1505.00996v1
http://arxiv.org/pdf/1505.00996v1.pdf
https://github.com/swehrwein/python-guided-filter
false
false
true
none
https://paperswithcode.com/paper/mobilenets-efficient-convolutional-neural
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
1704.04861
http://arxiv.org/abs/1704.04861v1
http://arxiv.org/pdf/1704.04861v1.pdf
https://github.com/christophmeyer/longboard-pothole-detection
false
false
true
tf
https://paperswithcode.com/paper/a-light-cnn-for-deep-face-representation-with
A Light CNN for Deep Face Representation with Noisy Labels
1511.02683
http://arxiv.org/abs/1511.02683v4
http://arxiv.org/pdf/1511.02683v4.pdf
https://github.com/ozora-ogino/LCNN
false
false
true
tf
https://paperswithcode.com/paper/monte-carlo-raytracing-method-for-calculating
Monte Carlo Raytracing Method for Calculating Secondary Electron Emission from Micro-Architected Surfaces
1806.00205
http://arxiv.org/abs/1806.00205v1
http://arxiv.org/pdf/1806.00205v1.pdf
https://github.com/irischang59/parallelSEE
false
false
true
none
https://paperswithcode.com/paper/ho-3d-a-multi-user-multi-object-dataset-for
HOnnotate: A method for 3D Annotation of Hand and Object Poses
1907.01481
https://arxiv.org/abs/1907.01481v6
https://arxiv.org/pdf/1907.01481v6.pdf
https://github.com/anilarmagan/HANDS19-Challenge-Toolbox
false
false
true
pytorch
https://paperswithcode.com/paper/end-to-end-recovery-of-human-shape-and-pose
End-to-end Recovery of Human Shape and Pose
1712.06584
http://arxiv.org/abs/1712.06584v2
http://arxiv.org/pdf/1712.06584v2.pdf
https://github.com/anilarmagan/HANDS19-Challenge-Toolbox
false
false
true
pytorch
https://paperswithcode.com/paper/turbocharging-treewidth-bounded-bayesian
Turbocharging Treewidth-Bounded Bayesian Network Structure Learning
2006.13843
https://arxiv.org/abs/2006.13843v2
https://arxiv.org/pdf/2006.13843v2.pdf
https://github.com/aditya95sriram/bn-slim
true
false
false
none
https://paperswithcode.com/paper/shape-from-polarization-for-complex-scenes-in
Shape from Polarization for Complex Scenes in the Wild
2112.11377
https://arxiv.org/abs/2112.11377v3
https://arxiv.org/pdf/2112.11377v3.pdf
https://github.com/chenyanglei/sfp-wild
true
true
true
pytorch
https://paperswithcode.com/paper/few-shot-text-classification-with-induction
Induction Networks for Few-Shot Text Classification
1902.10482
https://arxiv.org/abs/1902.10482v2
https://arxiv.org/pdf/1902.10482v2.pdf
https://github.com/hongshengxin/Induction_network
false
false
true
pytorch
https://paperswithcode.com/paper/using-deep-networks-for-scientific-discovery
Using Deep Networks for Scientific Discovery in Physiological Signals
2008.10936
https://arxiv.org/abs/2008.10936v1
https://arxiv.org/pdf/2008.10936v1.pdf
https://github.com/shalit-lab/deep-scientific-discovery
true
true
false
pytorch
https://paperswithcode.com/paper/self-supervised-gait-encoding-with-locality
Self-Supervised Gait Encoding with Locality-Aware Attention for Person Re-Identification
2008.09435
https://arxiv.org/abs/2008.09435v1
https://arxiv.org/pdf/2008.09435v1.pdf
https://github.com/Kali-Hac/SGE-LA
true
true
false
tf
https://paperswithcode.com/paper/ptt5-pretraining-and-validating-the-t5-model
PTT5: Pretraining and validating the T5 model on Brazilian Portuguese data
2008.09144
https://arxiv.org/abs/2008.09144v2
https://arxiv.org/pdf/2008.09144v2.pdf
https://github.com/unicamp-dl/PTT5
true
true
true
tf
https://paperswithcode.com/paper/graudally-applying-weakly-supervised-and
Graudally Applying Weakly Supervised and Active Learning for Mass Detection in Breast Ultrasound Images
2008.08416
https://arxiv.org/abs/2008.08416v1
https://arxiv.org/pdf/2008.08416v1.pdf
https://github.com/YeolJ00/faster-rcnn-pytorch
true
true
false
pytorch
https://paperswithcode.com/paper/meantime-mixture-of-attention-mechanisms-with
MEANTIME: Mixture of Attention Mechanisms with Multi-temporal Embeddings for Sequential Recommendation
2008.08273
https://arxiv.org/abs/2008.08273v2
https://arxiv.org/pdf/2008.08273v2.pdf
https://github.com/SungMinCho/MEANTIME
true
true
true
pytorch
https://paperswithcode.com/paper/relational-reflection-entity-alignment
Relational Reflection Entity Alignment
2008.07962
https://arxiv.org/abs/2008.07962v1
https://arxiv.org/pdf/2008.07962v1.pdf
https://github.com/MaoXinn/RREA
true
true
true
tf
https://paperswithcode.com/paper/continuous-optimization-benchmarks-by
Continuous Optimization Benchmarks by Simulation
2008.06249
https://arxiv.org/abs/2008.06249v1
https://arxiv.org/pdf/2008.06249v1.pdf
https://github.com/martinzaefferer/zaef20b
true
true
false
none
https://paperswithcode.com/paper/a-generalised-approach-for-encoding-and
A Generalised Approach for Encoding and Reasoning with Qualitative Theories in Answer Set Programming
2008.01519
https://arxiv.org/abs/2008.01519v1
https://arxiv.org/pdf/2008.01519v1.pdf
https://github.com/gmparg/ICLP2020
true
true
false
none
https://paperswithcode.com/paper/approximated-bilinear-modules-for-temporal-1
Approximated Bilinear Modules for Temporal Modeling
2007.12887
https://arxiv.org/abs/2007.12887v1
https://arxiv.org/pdf/2007.12887v1.pdf
https://github.com/zhuxinqimac/abm-pytorch
true
true
false
pytorch
https://paperswithcode.com/paper/representative-discriminative-learning-for
Representative-Discriminative Learning for Open-set Land Cover Classification of Satellite Imagery
2007.10891
https://arxiv.org/abs/2007.10891v1
https://arxiv.org/pdf/2007.10891v1.pdf
https://github.com/raziehkaviani/rdosr
true
true
true
tf
https://paperswithcode.com/paper/multitask-learning-strengthens-adversarial
Multitask Learning Strengthens Adversarial Robustness
2007.07236
https://arxiv.org/abs/2007.07236v2
https://arxiv.org/pdf/2007.07236v2.pdf
https://github.com/columbia/MTRobust
true
true
false
pytorch
https://paperswithcode.com/paper/gradient-centralization-a-new-optimization
Gradient Centralization: A New Optimization Technique for Deep Neural Networks
2004.01461
https://arxiv.org/abs/2004.01461v2
https://arxiv.org/pdf/2004.01461v2.pdf
https://github.com/Yonghongwei/Gradient-Centralization
true
true
true
pytorch
https://paperswithcode.com/paper/topic-scene-graph-generation-by-attention-1
Topic Scene Graph Generation by Attention Distillation from Caption
2110.05731
https://arxiv.org/abs/2110.05731v1
https://arxiv.org/pdf/2110.05731v1.pdf
https://github.com/Kenneth-Wong/MMSceneGraph
true
true
false
pytorch
https://paperswithcode.com/paper/autofis-automatic-feature-interaction
AutoFIS: Automatic Feature Interaction Selection in Factorization Models for Click-Through Rate Prediction
2003.11235
https://arxiv.org/abs/2003.11235v3
https://arxiv.org/pdf/2003.11235v3.pdf
https://github.com/zhuchenxv/AutoFIS
true
true
false
tf
https://paperswithcode.com/paper/modeling-and-solving-a-vehicle-sharing
Modeling and solving a vehicle-sharing problem considering multiple alternative modes of transport
2003.08207
https://arxiv.org/abs/2003.08207v2
https://arxiv.org/pdf/2003.08207v2.pdf
https://github.com/dts-ait/seamless
true
true
false
none
https://paperswithcode.com/paper/a-unified-2d3d-large-scale-software
A Unified 2D/3D Large Scale Software Environment for Nonlinear Inverse Problems
1703.09268
https://arxiv.org/abs/1703.09268v2
https://arxiv.org/pdf/1703.09268v2.pdf
https://github.com/slimgroup/WAVEFORM
true
true
true
none
https://paperswithcode.com/paper/a-flexible-framework-for-anomaly-detection
A Flexible Framework for Anomaly Detection via Dimensionality Reduction
1909.04060
https://arxiv.org/abs/1909.04060v1
https://arxiv.org/pdf/1909.04060v1.pdf
https://github.com/vafaei-ar/drama
true
true
true
tf
https://paperswithcode.com/paper/real-bogus-classification-for-the-zwicky
Real-bogus classification for the Zwicky Transient Facility using deep learning
1907.11259
https://arxiv.org/abs/1907.11259v1
https://arxiv.org/pdf/1907.11259v1.pdf
https://github.com/dmitryduev/braai
true
true
true
tf
https://paperswithcode.com/paper/collaborative-policy-learning-for-open
Collaborative Policy Learning for Open Knowledge Graph Reasoning
1909.00230
https://arxiv.org/abs/1909.00230v1
https://arxiv.org/pdf/1909.00230v1.pdf
https://github.com/shanzhenren/CPL
true
true
true
tf
https://paperswithcode.com/paper/nuclei-segmentation-via-a-deep-panoptic-model
Nuclei Segmentation via a Deep Panoptic Model with Semantic Feature Fusion
null
https://www.researchgate.net/publication/334843766_Nuclei_Segmentation_via_a_Deep_Panoptic_Model_with_Semantic_Feature_Fusion
https://www.ijcai.org/proceedings/2019/0121.pdf
https://github.com/dliu5812/PFFNet
true
false
false
pytorch
https://paperswithcode.com/paper/does-bert-agree-evaluating-knowledge-of
Does BERT agree? Evaluating knowledge of structure dependence through agreement relations
1908.09892
https://arxiv.org/abs/1908.09892v1
https://arxiv.org/pdf/1908.09892v1.pdf
https://github.com/geoffbacon/does-bert-agree
true
true
true
none
https://paperswithcode.com/paper/190807899
Evaluating Defensive Distillation For Defending Text Processing Neural Networks Against Adversarial Examples
1908.07899
https://arxiv.org/abs/1908.07899v1
https://arxiv.org/pdf/1908.07899v1.pdf
https://github.com/Top-Ranger/text_adversarial_attack
true
true
false
tf
https://paperswithcode.com/paper/learning-fixed-points-in-generative
Learning Fixed Points in Generative Adversarial Networks: From Image-to-Image Translation to Disease Detection and Localization
1908.06965
https://arxiv.org/abs/1908.06965v2
https://arxiv.org/pdf/1908.06965v2.pdf
https://github.com/jlianglab/Fixed-Point-GAN
true
true
true
pytorch
https://paperswithcode.com/paper/adn-artifact-disentanglement-network-for
ADN: Artifact Disentanglement Network for Unsupervised Metal Artifact Reduction
1908.01104
https://arxiv.org/abs/1908.01104v4
https://arxiv.org/pdf/1908.01104v4.pdf
https://github.com/liaohaofu/adn
true
true
true
pytorch