paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/cellular-automaton-with-cnn
|
Cellular Automaton With CNN
|
2503.02652
|
https://arxiv.org/abs/2503.02652v1
|
https://arxiv.org/pdf/2503.02652v1.pdf
|
https://github.com/ashuvalery/custom_cnn
| true | true | false |
tf
|
https://paperswithcode.com/paper/cold-atomic-gas-identified-by-hi-self
|
Cold atomic gas identified by HI self-absorption. Cold atomic clouds toward giant molecular filaments
|
2310.02077
|
https://arxiv.org/abs/2310.02077v1
|
https://arxiv.org/pdf/2310.02077v1.pdf
|
https://github.com/astrojoni89/astrosaber
| true | true | false |
none
|
https://paperswithcode.com/paper/semievol-semi-supervised-fine-tuning-for-llm
|
SemiEvol: Semi-supervised Fine-tuning for LLM Adaptation
|
2410.14745
|
https://arxiv.org/abs/2410.14745v1
|
https://arxiv.org/pdf/2410.14745v1.pdf
|
https://github.com/luo-junyu/robustft
| false | false | true |
none
|
https://paperswithcode.com/paper/pre-3-enabling-deterministic-pushdown
|
Pre$^3$: Enabling Deterministic Pushdown Automata for Faster Structured LLM Generation
|
2506.03887
|
https://arxiv.org/abs/2506.03887v1
|
https://arxiv.org/pdf/2506.03887v1.pdf
|
https://github.com/modeltc/lightllm
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/normal-quaternionic-matrices-and-finitely
|
Normal Quaternionic Matrices and Finitely Generated Witt Rings
|
2505.14485
|
https://arxiv.org/abs/2505.14485v1
|
https://arxiv.org/pdf/2505.14485v1.pdf
|
https://github.com/nicolo314/normalquaternionicmatrices
| true | true | false |
none
|
https://paperswithcode.com/paper/towards-temporally-consistent-referring-video
|
Temporally Consistent Referring Video Object Segmentation with Hybrid Memory
|
2403.19407
|
https://arxiv.org/abs/2403.19407v2
|
https://arxiv.org/pdf/2403.19407v2.pdf
|
https://github.com/bo-miao/HTR
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/linear-time-minimum-bayes-risk-decoding-with
|
Linear-time Minimum Bayes Risk Decoding with Reference Aggregation
|
2402.04251
|
https://arxiv.org/abs/2402.04251v2
|
https://arxiv.org/pdf/2402.04251v2.pdf
|
https://github.com/jvamvas/fastchrf
| true | true | true |
none
|
https://paperswithcode.com/paper/multi-modal-grounded-planning-and-efficient
|
Multi-Modal Grounded Planning and Efficient Replanning For Learning Embodied Agents with A Few Examples
|
2412.17288
|
https://arxiv.org/abs/2412.17288v1
|
https://arxiv.org/pdf/2412.17288v1.pdf
|
https://github.com/snumprlab/flare
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/vector-quantized-image-modeling-with-improved-1
|
Vector-quantized Image Modeling with Improved VQGAN
|
2110.04627
|
https://arxiv.org/abs/2110.04627v3
|
https://arxiv.org/pdf/2110.04627v3.pdf
|
https://github.com/thuanz123/enhancing-transformers
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/joint-viewpoint-and-keypoint-estimation-with
|
Joint Viewpoint and Keypoint Estimation with Real and Synthetic Data
|
1912.06274
|
https://arxiv.org/abs/1912.06274v1
|
https://arxiv.org/pdf/1912.06274v1.pdf
|
https://github.com/Heliot7/viewpoint-cnn-syn
| true | true | true |
none
|
https://paperswithcode.com/paper/klue-korean-language-understanding-evaluation
|
KLUE: Korean Language Understanding Evaluation
|
2105.09680
|
https://arxiv.org/abs/2105.09680v4
|
https://arxiv.org/pdf/2105.09680v4.pdf
|
https://github.com/iflytek/cino
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/on-the-structural-memory-of-llm-agents
|
On the Structural Memory of LLM Agents
|
2412.15266
|
https://arxiv.org/abs/2412.15266v1
|
https://arxiv.org/pdf/2412.15266v1.pdf
|
https://github.com/zengrh3/StructuralMemory
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/aware-net-adaptive-weighted-averaging-for
|
AWARE-NET: Adaptive Weighted Averaging for Robust Ensemble Network in Deepfake Detection
|
2505.00312
|
https://arxiv.org/abs/2505.00312v1
|
https://arxiv.org/pdf/2505.00312v1.pdf
|
https://github.com/recluzegeek/AWARE-NET
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/real-time-fake-news-from-adversarial-feedback
|
Real-time Fake News from Adversarial Feedback
|
2410.14651
|
https://arxiv.org/abs/2410.14651v2
|
https://arxiv.org/pdf/2410.14651v2.pdf
|
https://github.com/sanxing-chen/adv-fake
| true | true | true |
none
|
https://paperswithcode.com/paper/avibench-towards-evaluating-the-robustness-of
|
B-AVIBench: Towards Evaluating the Robustness of Large Vision-Language Model on Black-box Adversarial Visual-Instructions
|
2403.09346
|
https://arxiv.org/abs/2403.09346v2
|
https://arxiv.org/pdf/2403.09346v2.pdf
|
https://github.com/zhanghao5201/b-avibench
| true | true | false |
jax
|
https://paperswithcode.com/paper/efficient-parallel-genetic-algorithm-for
|
Efficient Parallel Genetic Algorithm for Perturbed Substructure Optimization in Complex Network
|
2412.20980
|
https://arxiv.org/abs/2412.20980v1
|
https://arxiv.org/pdf/2412.20980v1.pdf
|
https://github.com/netalsgroup/gapa
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/natural-language-fine-tuning
|
Natural Language Fine-Tuning
|
2412.20382
|
https://arxiv.org/abs/2412.20382v1
|
https://arxiv.org/pdf/2412.20382v1.pdf
|
https://github.com/julia-liuj/nlft
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/verifying-the-verifiers-unveiling-pitfalls
|
Verifying the Verifiers: Unveiling Pitfalls and Potentials in Fact Verifiers
|
2506.13342
|
https://arxiv.org/abs/2506.13342v1
|
https://arxiv.org/pdf/2506.13342v1.pdf
|
https://github.com/just1nseo/verifying-the-verifiers
| true | true | true |
none
|
https://paperswithcode.com/paper/accelerating-diffusion-transformers-with
|
Accelerating Diffusion Transformers with Token-wise Feature Caching
|
2410.05317
|
https://arxiv.org/abs/2410.05317v3
|
https://arxiv.org/pdf/2410.05317v3.pdf
|
https://github.com/shenyi-z/duca
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/accelerating-diffusion-transformers-with-dual
|
Accelerating Diffusion Transformers with Dual Feature Caching
|
2412.18911
|
https://arxiv.org/abs/2412.18911v1
|
https://arxiv.org/pdf/2412.18911v1.pdf
|
https://github.com/shenyi-z/duca
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/knowledge-graph-extraction-from-videos
|
Knowledge Graph Extraction from Videos
|
2007.10040
|
https://arxiv.org/abs/2007.10040v1
|
https://arxiv.org/pdf/2007.10040v1.pdf
|
https://github.com/Taniya-Das/video_annotation
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/causal-similarity-based-hierarchical-bayesian
|
Bayesian Meta-Learning for Improving Generalizability of Health Prediction Models With Similar Causal Mechanisms
|
2310.12595
|
https://arxiv.org/abs/2310.12595v3
|
https://arxiv.org/pdf/2310.12595v3.pdf
|
https://github.com/sophiewharrie/meta-learning-hierarchical-model-similar-causal-mechanisms
| true | true | true |
jax
|
https://paperswithcode.com/paper/federated-foundation-model-for-cardiac-ct
|
Real World Federated Learning with a Knowledge Distilled Transformer for Cardiac CT Imaging
|
2407.07557
|
https://arxiv.org/abs/2407.07557v2
|
https://arxiv.org/pdf/2407.07557v2.pdf
|
https://github.com/cardio-ai/fedkd-for-cardiac-ct
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/adaptershadow-adapting-segment-anything-model
|
AdapterShadow: Adapting Segment Anything Model for Shadow Detection
|
2311.08891
|
https://arxiv.org/abs/2311.08891v1
|
https://arxiv.org/pdf/2311.08891v1.pdf
|
https://github.com/leipingjie/adaptershadow
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/hybrid-genetic-optimisation-for-quantum
|
Hybrid Genetic Optimisation for Quantum Feature Map Design
|
2302.02980
|
https://arxiv.org/abs/2302.02980v1
|
https://arxiv.org/pdf/2302.02980v1.pdf
|
https://github.com/rowpj/hybrid-genetic-optimisation-for-quantum-feature-map-design
| true | true | true |
none
|
https://paperswithcode.com/paper/2506-06971
|
Chain-of-Code Collapse: Reasoning Failures in LLMs via Adversarial Prompting in Code Generation
|
2506.06971
|
https://arxiv.org/abs/2506.06971v2
|
https://arxiv.org/pdf/2506.06971v2.pdf
|
https://github.com/jrohsc/Chain-of-Code-Collapse
| true | true | true |
none
|
https://paperswithcode.com/paper/discovering-message-passing-hierarchies-for
|
EvoMesh: Adaptive Physical Simulation with Hierarchical Graph Evolutions
|
2410.03779
|
https://arxiv.org/abs/2410.03779v3
|
https://arxiv.org/pdf/2410.03779v3.pdf
|
https://github.com/hbell99/evomesh
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/fedpref-federated-learning-across
|
FedPref: Federated Learning Across Heterogeneous Multi-objective Preferences
|
2501.13604
|
https://arxiv.org/abs/2501.13604v1
|
https://arxiv.org/pdf/2501.13604v1.pdf
|
https://gitlab.com/maria.hartmann/FedPref
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/fast-multimodal-journey-planning-for-three
|
Fast Multimodal Journey Planning for Three Criteria
|
2110.12954
|
https://arxiv.org/abs/2110.12954v1
|
https://arxiv.org/pdf/2110.12954v1.pdf
|
https://github.com/TransitRouting/FLASH-TB
| false | false | true |
none
|
https://paperswithcode.com/paper/unlimited-transfers-for-multi-modal-route
|
UnLimited TRAnsfers for Multi-Modal Route Planning: An Efficient Solution
|
1906.04832
|
https://arxiv.org/abs/1906.04832v3
|
https://arxiv.org/pdf/1906.04832v3.pdf
|
https://github.com/TransitRouting/FLASH-TB
| false | false | true |
none
|
https://paperswithcode.com/paper/direct-preference-optimization-your-language
|
Direct Preference Optimization: Your Language Model is Secretly a Reward Model
|
2305.18290
|
https://arxiv.org/abs/2305.18290v3
|
https://arxiv.org/pdf/2305.18290v3.pdf
|
https://github.com/uppaal/detox-edit
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/kto-model-alignment-as-prospect-theoretic
|
KTO: Model Alignment as Prospect Theoretic Optimization
|
2402.01306
|
https://arxiv.org/abs/2402.01306v4
|
https://arxiv.org/pdf/2402.01306v4.pdf
|
https://github.com/uppaal/detox-edit
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/revisiting-in-context-learning-inference
|
Revisiting In-context Learning Inference Circuit in Large Language Models
|
2410.04468
|
https://arxiv.org/abs/2410.04468v3
|
https://arxiv.org/pdf/2410.04468v3.pdf
|
https://github.com/hc495/ICL_Circuit
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/diverse-preference-augmentation-with-multiple
|
Diverse Preference Augmentation with Multiple Domains for Cold-start Recommendations
|
2204.00327
|
https://arxiv.org/abs/2204.00327v1
|
https://arxiv.org/pdf/2204.00327v1.pdf
|
https://github.com/yixianqianzy/dpa
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/generating-structured-outputs-from-language
|
Generating Structured Outputs from Language Models: Benchmark and Studies
|
2501.10868
|
https://arxiv.org/abs/2501.10868v1
|
https://arxiv.org/pdf/2501.10868v1.pdf
|
https://github.com/guidance-ai/jsonschemabench
| true | true | true |
none
|
https://paperswithcode.com/paper/sciqag-a-framework-for-auto-generated
|
SciQAG: A Framework for Auto-Generated Science Question Answering Dataset with Fine-grained Evaluation
|
2405.09939
|
https://arxiv.org/abs/2405.09939v2
|
https://arxiv.org/pdf/2405.09939v2.pdf
|
https://github.com/masterai-eam/sciqag
| false | false | true |
none
|
https://paperswithcode.com/paper/locational-energy-storage-bid-bounds-for
|
Locational Energy Storage Bid Bounds for Facilitating Social Welfare Convergence
|
2502.18598
|
https://arxiv.org/abs/2502.18598v3
|
https://arxiv.org/pdf/2502.18598v3.pdf
|
https://github.com/thuqining/Storage_Pricing_for_Social_Welfare_Maximization
| true | false | false |
none
|
https://paperswithcode.com/paper/order-robust-class-incremental-learning-graph
|
Order-Robust Class Incremental Learning: Graph-Driven Dynamic Similarity Grouping
|
2502.20032
|
https://arxiv.org/abs/2502.20032v1
|
https://arxiv.org/pdf/2502.20032v1.pdf
|
https://github.com/aignlai/gddsg
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/c-drag-chain-of-thought-driven-motion
|
C-Drag: Chain-of-Thought Driven Motion Controller for Video Generation
|
2502.19868
|
https://arxiv.org/abs/2502.19868v1
|
https://arxiv.org/pdf/2502.19868v1.pdf
|
https://github.com/weslee88524/c-drag-official-repo
| true | true | true |
none
|
https://paperswithcode.com/paper/attentive-reasoning-queries-a-systematic
|
Attentive Reasoning Queries: A Systematic Method for Optimizing Instruction-Following in Large Language Models
|
2503.03669
|
https://arxiv.org/abs/2503.03669v1
|
https://arxiv.org/pdf/2503.03669v1.pdf
|
https://github.com/emcie-co/parlant
| true | true | false |
none
|
https://paperswithcode.com/paper/an-aspect-extraction-framework-using
|
An Aspect Extraction Framework using Different Embedding Types, Learning Models, and Dependency Structure
|
2503.03512
|
https://arxiv.org/abs/2503.03512v1
|
https://arxiv.org/pdf/2503.03512v1.pdf
|
https://github.com/alierkan/Turkish-ABSA
| true | false | false |
none
|
https://paperswithcode.com/paper/r-sparse-r-cnn-sar-ship-detection-based-on
|
R-Sparse R-CNN: SAR Ship Detection Based on Background-Aware Sparse Learnable Proposals
|
2504.18959
|
https://arxiv.org/abs/2504.18959v1
|
https://arxiv.org/pdf/2504.18959v1.pdf
|
https://github.com/ka-mirul/r-sparse-r-cnn
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/enigmatom-improve-llms-theory-of-mind
|
EnigmaToM: Improve LLMs' Theory-of-Mind Reasoning Capabilities with Neural Knowledge Base of Entity States
|
2503.03340
|
https://arxiv.org/abs/2503.03340v1
|
https://arxiv.org/pdf/2503.03340v1.pdf
|
https://github.com/seacowx/EnigmaToM
| true | false | false |
none
|
https://paperswithcode.com/paper/bhvit-binarized-hybrid-vision-transformer
|
BHViT: Binarized Hybrid Vision Transformer
|
2503.02394
|
https://arxiv.org/abs/2503.02394v2
|
https://arxiv.org/pdf/2503.02394v2.pdf
|
https://github.com/IMRL/BHViT
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/adaptive-lio-enhancing-robustness-and
|
Adaptive-LIO: Enhancing Robustness and Precision through Environmental Adaptation in LiDAR Inertial Odometry
|
2503.05077
|
https://arxiv.org/abs/2503.05077v1
|
https://arxiv.org/pdf/2503.05077v1.pdf
|
https://github.com/chengwei0427/adaptive_lio
| true | true | true |
none
|
https://paperswithcode.com/paper/distillm-towards-streamlined-distillation-for
|
DistiLLM: Towards Streamlined Distillation for Large Language Models
|
2402.03898
|
https://arxiv.org/abs/2402.03898v2
|
https://arxiv.org/pdf/2402.03898v2.pdf
|
https://github.com/jongwooko/distillm-2
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/sparse-r-cnn-obb-ship-target-detection-in-sar
|
Sparse R-CNN OBB: Ship Target Detection in SAR Images Based on Oriented Sparse Proposals
|
2409.07973
|
https://arxiv.org/abs/2409.07973v1
|
https://arxiv.org/pdf/2409.07973v1.pdf
|
https://github.com/ka-mirul/r-sparse-r-cnn
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/chatvla-unified-multimodal-understanding-and
|
ChatVLA: Unified Multimodal Understanding and Robot Control with Vision-Language-Action Model
|
2502.14420
|
https://arxiv.org/abs/2502.14420v2
|
https://arxiv.org/pdf/2502.14420v2.pdf
|
https://github.com/tutujingyugang1/ChatVLA_public
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/faster-iva-update-rules-for-independent
|
Faster IVA: Update Rules for Independent Vector Analysis based on Negentropy and the Majorize-Minimize Principle
|
2003.09531
|
https://arxiv.org/abs/2003.09531v2
|
https://arxiv.org/pdf/2003.09531v2.pdf
|
https://github.com/tky823/ssspy
| false | false | true |
none
|
https://paperswithcode.com/paper/independent-low-rank-matrix-analysis-based-on-3
|
Independent Low-Rank Matrix Analysis Based on Parametric Majorization-Equalization Algorithm
|
1710.01589
|
https://arxiv.org/abs/1710.01589v1
|
https://arxiv.org/pdf/1710.01589v1.pdf
|
https://github.com/tky823/ssspy
| false | false | true |
none
|
https://paperswithcode.com/paper/fnin-a-fourier-neural-operator-based
|
FNIN: A Fourier Neural Operator-based Numerical Integration Network for Surface-form-gradients
|
2501.11876
|
https://arxiv.org/abs/2501.11876v1
|
https://arxiv.org/pdf/2501.11876v1.pdf
|
https://github.com/nailwatts/fnin
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/fast-inexact-bilevel-optimization-for
|
Fast Inexact Bilevel Optimization for Analytical Deep Image Priors
|
2502.09758
|
https://arxiv.org/abs/2502.09758v2
|
https://arxiv.org/pdf/2502.09758v2.pdf
|
https://github.com/MohammadSadeghSalehi/Analytical-Deep-Priors
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/conceptrol-concept-control-of-zero-shot
|
Conceptrol: Concept Control of Zero-shot Personalized Image Generation
|
2503.06568
|
https://arxiv.org/abs/2503.06568v1
|
https://arxiv.org/pdf/2503.06568v1.pdf
|
https://github.com/qy-h00/conceptrol
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/text-iss-2-an-extension-of-iterative-source
|
ISS2: An Extension of Iterative Source Steering Algorithm for Majorization-Minimization-Based Independent Vector Analysis
|
2202.00875
|
https://arxiv.org/abs/2202.00875v3
|
https://arxiv.org/pdf/2202.00875v3.pdf
|
https://github.com/tky823/ssspy
| false | false | true |
none
|
https://paperswithcode.com/paper/physics-informed-neural-networks-for-solving-9
|
Physics-Informed Neural Networks for Solving the Two-Dimensional Shallow Water Equations with Terrain Topography and Rainfall Source Terms
|
2501.11372
|
https://arxiv.org/abs/2501.11372v1
|
https://arxiv.org/pdf/2501.11372v1.pdf
|
https://github.com/tianyongsen/PINN_SWE_open
| true | false | false |
jax
|
https://paperswithcode.com/paper/a-tutorial-on-multi-time-scale-optimization
|
A Tutorial on Multi-time Scale Optimization Models and Algorithms
|
2502.20568
|
https://arxiv.org/abs/2502.20568v2
|
https://arxiv.org/pdf/2502.20568v2.pdf
|
https://github.com/li-group/multiscaleopt-tutorial
| true | true | false |
none
|
https://paperswithcode.com/paper/badrefsr-backdoor-attacks-against-reference
|
BadRefSR: Backdoor Attacks Against Reference-based Image Super Resolution
|
2502.20943
|
https://arxiv.org/abs/2502.20943v1
|
https://arxiv.org/pdf/2502.20943v1.pdf
|
https://github.com/xuefusiji/badrefsr
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/trajectory-inference-with-smooth-schrodinger
|
Trajectory Inference with Smooth Schrödinger Bridges
|
2503.00530
|
https://arxiv.org/abs/2503.00530v1
|
https://arxiv.org/pdf/2503.00530v1.pdf
|
https://github.com/wanlihongc/smooth_sb
| true | true | false |
none
|
https://paperswithcode.com/paper/fast-population-based-reinforcement-learning
|
Fast Population-Based Reinforcement Learning on a Single Machine
|
2206.08888
|
https://arxiv.org/abs/2206.08888v1
|
https://arxiv.org/pdf/2206.08888v1.pdf
|
https://github.com/instadeepai/fastpbrl
| false | false | true |
jax
|
https://paperswithcode.com/paper/accurate-effective-fluid-approximation-for
|
Accurate effective fluid approximation for ultralight axions
|
2201.10238
|
https://arxiv.org/abs/2201.10238v2
|
https://arxiv.org/pdf/2201.10238v2.pdf
|
https://github.com/adammoss/axicamb
| false | false | true |
none
|
https://paperswithcode.com/paper/lotus-diffusion-based-visual-foundation-model
|
Lotus: Diffusion-based Visual Foundation Model for High-quality Dense Prediction
|
2409.18124
|
https://arxiv.org/abs/2409.18124v5
|
https://arxiv.org/pdf/2409.18124v5.pdf
|
https://github.com/envision-research/lotus
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/vision-language-action-model-with-open-world
|
ChatVLA-2: Vision-Language-Action Model with Open-World Embodied Reasoning from Pretrained Knowledge
|
2505.21906
|
https://arxiv.org/abs/2505.21906v2
|
https://arxiv.org/pdf/2505.21906v2.pdf
|
https://github.com/tutujingyugang1/ChatVLA_public
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/qwen2-vl-enhancing-vision-language-model-s
|
Qwen2-VL: Enhancing Vision-Language Model's Perception of the World at Any Resolution
|
2409.12191
|
https://arxiv.org/abs/2409.12191v2
|
https://arxiv.org/pdf/2409.12191v2.pdf
|
https://github.com/tutujingyugang1/ChatVLA_public
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/vlmevalkit-an-open-source-toolkit-for
|
VLMEvalKit: An Open-Source Toolkit for Evaluating Large Multi-Modality Models
|
2407.11691
|
https://arxiv.org/abs/2407.11691v2
|
https://arxiv.org/pdf/2407.11691v2.pdf
|
https://github.com/tutujingyugang1/ChatVLA_public
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/aligned-but-blind-alignment-increases
|
Aligned but Blind: Alignment Increases Implicit Bias by Reducing Awareness of Race
|
2506.00253
|
https://arxiv.org/abs/2506.00253v3
|
https://arxiv.org/pdf/2506.00253v3.pdf
|
https://github.com/slhleosun/aligned-but-blind
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/controlled-stochastic-processes-for-simulated
|
Controlled stochastic processes for simulated annealing
|
2504.08506
|
https://arxiv.org/abs/2504.08506v1
|
https://arxiv.org/pdf/2504.08506v1.pdf
|
https://github.com/vincentmolin/controlled_annealing
| true | true | true |
jax
|
https://paperswithcode.com/paper/computing-matrix-varphi-functions-arising-in
|
Computing matrix $\varphi$-functions arising in exponential integrators
|
2506.01193
|
https://arxiv.org/abs/2506.01193v1
|
https://arxiv.org/pdf/2506.01193v1.pdf
|
https://github.com/xiaobo-liu/phi_funm
| true | false | true |
none
|
https://paperswithcode.com/paper/pruning-then-reweighting-towards-data
|
Pruning then Reweighting: Towards Data-Efficient Training of Diffusion Models
|
2409.19128
|
https://arxiv.org/abs/2409.19128v2
|
https://arxiv.org/pdf/2409.19128v2.pdf
|
https://github.com/yeez-lee/data-selection-and-reweighting-for-diffusion-models
| true | true | true |
none
|
https://paperswithcode.com/paper/removing-degeneracy-and-multimodality-in
|
Removing degeneracy and multimodality in gravitational wave source parameters
|
2207.03508
|
https://arxiv.org/abs/2207.03508v2
|
https://arxiv.org/pdf/2207.03508v2.pdf
|
https://github.com/jroulet/cogwheel
| true | true | true |
none
|
https://paperswithcode.com/paper/fast-marginalization-algorithm-for-optimizing
|
Fast marginalization algorithm for optimizing gravitational wave detection, parameter estimation and sky localization
|
2404.02435
|
https://arxiv.org/abs/2404.02435v2
|
https://arxiv.org/pdf/2404.02435v2.pdf
|
https://github.com/jroulet/cogwheel
| true | true | true |
none
|
https://paperswithcode.com/paper/motion-x-a-large-scale-3d-expressive-whole
|
Motion-X: A Large-scale 3D Expressive Whole-body Human Motion Dataset
|
2307.00818
|
https://arxiv.org/abs/2307.00818v2
|
https://arxiv.org/pdf/2307.00818v2.pdf
|
https://github.com/idea-research/motion-x
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/an-openmind-for-3d-medical-vision-self
|
An OpenMind for 3D medical vision self-supervised learning
|
2412.17041
|
https://arxiv.org/abs/2412.17041v2
|
https://arxiv.org/pdf/2412.17041v2.pdf
|
https://github.com/mic-dkfz/nnssl
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/nanopub-java-a-java-library-for
|
nanopub-java: A Java Library for Nanopublications
|
1508.04977
|
http://arxiv.org/abs/1508.04977v1
|
http://arxiv.org/pdf/1508.04977v1.pdf
|
https://github.com/Nanopublication/nanopub-java
| true | true | true |
none
|
https://paperswithcode.com/paper/share-with-thy-neighbors-single-view
|
Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency
|
2204.10310
|
https://arxiv.org/abs/2204.10310v3
|
https://arxiv.org/pdf/2204.10310v3.pdf
|
https://github.com/xiaoqianruan1/partonomic_reconstruction
| false | false | true |
none
|
https://paperswithcode.com/paper/collisional-fragmentation-support-in-trace
|
Collisional Fragmentation Support in TRACE
|
2505.04399
|
https://arxiv.org/abs/2505.04399v1
|
https://arxiv.org/pdf/2505.04399v1.pdf
|
https://github.com/tigerchenlu98/rebound
| true | true | false |
none
|
https://paperswithcode.com/paper/efficient-connectivity-preserving-instance
|
Efficient Connectivity-Preserving Instance Segmentation with Supervoxel-Based Loss Function
|
2501.01022
|
https://arxiv.org/abs/2501.01022v3
|
https://arxiv.org/pdf/2501.01022v3.pdf
|
https://github.com/allenneuraldynamics/supervoxel-loss
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/pl-vins-real-time-monocular-visual-inertial
|
PL-VINS: Real-Time Monocular Visual-Inertial SLAM with Point and Line Features
|
2009.07462
|
https://arxiv.org/abs/2009.07462v3
|
https://arxiv.org/pdf/2009.07462v3.pdf
|
https://github.com/lihaoy-ux/mline-vins
| false | false | true |
none
|
https://paperswithcode.com/paper/dynamic-hologram-generation-with-automatic
|
Dynamic Hologram Generation with Automatic Differentiation
|
2503.03714
|
https://arxiv.org/abs/2503.03714v1
|
https://arxiv.org/pdf/2503.03714v1.pdf
|
https://github.com/xingyuzhang2018/holograd.jl
| true | true | true |
none
|
https://paperswithcode.com/paper/co-mtp-a-cooperative-trajectory-prediction
|
Co-MTP: A Cooperative Trajectory Prediction Framework with Multi-Temporal Fusion for Autonomous Driving
|
2502.16589
|
https://arxiv.org/abs/2502.16589v2
|
https://arxiv.org/pdf/2502.16589v2.pdf
|
https://github.com/xiaomiaozhang/Co-MTP
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/grasp-graph-structured-pyramidal-whole-slide
|
GRASP: GRAph-Structured Pyramidal Whole Slide Image Representation
|
2402.03592
|
https://arxiv.org/abs/2402.03592v2
|
https://arxiv.org/pdf/2402.03592v2.pdf
|
https://github.com/aimlab-ubc/grasp
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/adaptive-teachers-for-amortized-samplers
|
Adaptive teachers for amortized samplers
|
2410.01432
|
https://arxiv.org/abs/2410.01432v2
|
https://arxiv.org/pdf/2410.01432v2.pdf
|
https://github.com/alstn12088/adaptive-teacher
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/scrutinize-what-we-ignore-reining-task
|
Scrutinize What We Ignore: Reining In Task Representation Shift Of Context-Based Offline Meta Reinforcement Learning
|
2405.12001
|
https://arxiv.org/abs/2405.12001v4
|
https://arxiv.org/pdf/2405.12001v4.pdf
|
https://github.com/betray12138/task-representation-shift
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/neurolm-a-universal-multi-task-foundation
|
NeuroLM: A Universal Multi-task Foundation Model for Bridging the Gap between Language and EEG Signals
|
2409.00101
|
https://arxiv.org/abs/2409.00101v3
|
https://arxiv.org/pdf/2409.00101v3.pdf
|
https://github.com/935963004/neurolm
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/recgaze-the-first-eye-tracking-and-user
|
RecGaze: The First Eye Tracking and User Interaction Dataset for Carousel Interfaces
|
2504.20792
|
https://arxiv.org/abs/2504.20792v1
|
https://arxiv.org/pdf/2504.20792v1.pdf
|
https://github.com/santideleon/recgaze_dataset
| true | true | true |
none
|
https://paperswithcode.com/paper/llm-agent-operating-system
|
AIOS: LLM Agent Operating System
|
2403.16971
|
https://arxiv.org/abs/2403.16971v4
|
https://arxiv.org/pdf/2403.16971v4.pdf
|
https://github.com/agiresearch/aios
| true | true | true |
none
|
https://paperswithcode.com/paper/interaction-dataset-an-international
|
INTERACTION Dataset: An INTERnational, Adversarial and Cooperative moTION Dataset in Interactive Driving Scenarios with Semantic Maps
|
1910.03088
|
https://arxiv.org/abs/1910.03088v1
|
https://arxiv.org/pdf/1910.03088v1.pdf
|
https://github.com/westny/dronalize
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/the-highd-dataset-a-drone-dataset-of
|
The highD Dataset: A Drone Dataset of Naturalistic Vehicle Trajectories on German Highways for Validation of Highly Automated Driving Systems
|
1810.05642
|
http://arxiv.org/abs/1810.05642v1
|
http://arxiv.org/pdf/1810.05642v1.pdf
|
https://github.com/westny/dronalize
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/sind-a-drone-dataset-at-signalized
|
SIND: A Drone Dataset at Signalized Intersection in China
|
2209.02297
|
https://arxiv.org/abs/2209.02297v1
|
https://arxiv.org/pdf/2209.02297v1.pdf
|
https://github.com/westny/dronalize
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/molecular-fingerprints-are-strong-models-for
|
Molecular Fingerprints Are Strong Models for Peptide Function Prediction
|
2501.17901
|
https://arxiv.org/abs/2501.17901v1
|
https://arxiv.org/pdf/2501.17901v1.pdf
|
https://github.com/arch4ngel21/scikit-fingerprints
| false | false | true |
none
|
https://paperswithcode.com/paper/ensemble-adversarial-training-attacks-and
|
Ensemble Adversarial Training: Attacks and Defenses
|
1705.07204
|
https://arxiv.org/abs/1705.07204v5
|
https://arxiv.org/pdf/1705.07204v5.pdf
|
https://github.com/MindSpore-scientific-2/code-12/tree/main/fed-ensemble-main-ms
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/joint-flying-relay-location-and-routing
|
Joint Flying Relay Location and Routing Optimization for 6G UAV–IoT Networks: A Graph Neural Network-Based Approach
| null |
https://www.mdpi.com/2072-4292/14/17/4377
|
https://www.mdpi.com/2072-4292/14/17/4377/pdf
|
https://github.com/MindSpore-scientific/code-10/tree/main/RGNN
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/testeval-benchmarking-large-language-models
|
TESTEVAL: Benchmarking Large Language Models for Test Case Generation
|
2406.04531
|
https://arxiv.org/abs/2406.04531v2
|
https://arxiv.org/pdf/2406.04531v2.pdf
|
https://github.com/llm4softwaretesting/testeval
| true | true | false |
none
|
https://paperswithcode.com/paper/spatio-temporal-graph-neural-network-for
|
Spatio-Temporal Graph Neural Network for Urban Spaces: Interpolating Citywide Traffic Volume
|
2505.06292
|
https://arxiv.org/abs/2505.06292v1
|
https://arxiv.org/pdf/2505.06292v1.pdf
|
https://github.com/silkekaiser/GNNUI
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/llm-safety-alignment-is-divergence-estimation
|
LLM Safety Alignment is Divergence Estimation in Disguise
|
2502.00657
|
https://arxiv.org/abs/2502.00657v2
|
https://arxiv.org/pdf/2502.00657v2.pdf
|
https://github.com/rhaldarpurdue/kldo
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/sprint-an-assistant-for-issue-report
|
SPRINT: An Assistant for Issue Report Management
|
2502.04147
|
https://arxiv.org/abs/2502.04147v2
|
https://arxiv.org/pdf/2502.04147v2.pdf
|
https://github.com/sea-lab-wm/sprint_issue_report_assistant_tool
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/adversarial-attacks-on-multimodal-agents
|
Dissecting Adversarial Robustness of Multimodal LM Agents
|
2406.12814
|
https://arxiv.org/abs/2406.12814v3
|
https://arxiv.org/pdf/2406.12814v3.pdf
|
https://github.com/chenwu98/agent-attack
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/limesoda-a-dataset-collection-for
|
LimeSoDa: A Dataset Collection for Benchmarking of Machine Learning Regressors in Digital Soil Mapping
|
2502.20139
|
https://arxiv.org/abs/2502.20139v2
|
https://arxiv.org/pdf/2502.20139v2.pdf
|
https://github.com/JonasSchmidinger/LimeSoDa
| false | true | false |
none
|
https://paperswithcode.com/paper/vision-and-language-reference-prompt-into-sam
|
Vision and Language Reference Prompt into SAM for Few-shot Segmentation
|
2502.00719
|
https://arxiv.org/abs/2502.00719v1
|
https://arxiv.org/pdf/2502.00719v1.pdf
|
https://github.com/kosukesakurai1/vlp-sam
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/investalign-overcoming-data-scarcity-in
|
InvestAlign: Overcoming Data Scarcity in Aligning Large Language Models with Investor Decision-Making Processes under Herd Behavior
|
2507.06528
|
https://arxiv.org/abs/2507.06528v1
|
https://arxiv.org/pdf/2507.06528v1.pdf
|
https://github.com/thu-social-network-research-group/InvestAlign
| true | true | false |
none
|
https://paperswithcode.com/paper/barren-plateaus-are-swamped-with-traps
|
Barren plateaus are swamped with traps
|
2405.05332
|
https://arxiv.org/abs/2405.05332v1
|
https://arxiv.org/pdf/2405.05332v1.pdf
|
https://github.com/idnm/barren_traps
| false | false | true |
jax
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.