ghibli-dataset / scripts /gen_img.py
pulnip's picture
Update Repository Information
ddaa08a
import os
from PIL.Image import Image
from diffusers import StableDiffusionPipeline as SDP
from diffusers import AutoPipelineForText2Image as AP
from diffusers import DiffusionPipeline as DP
import torch
import json
import random
DEVICE = "mps" if torch.backends.mps.is_available() else \
"cuda" if torch.cuda.is_available() else "cpu"
# Model 1
pipe = SDP.from_pretrained("nitrosocke/Ghibli-Diffusion",
torch_dtype=torch.float16).to(DEVICE)
ID_PREFIX = "nitrosocke"
# Model 2
# pipe = AP.from_pretrained("black-forest-labs/FLUX.1-dev",
# torch_dtype=torch.bfloat16).to(DEVICE)
# pipe.load_lora_weights('openfree/flux-chatgpt-ghibli-lora',
# weight_name='flux-chatgpt-ghibli-lora.safetensors')
# ID_PREFIX = "openfree"
# Model 3
# pipe = DP.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0",
# torch_dtype=torch.float16, variant="fp16",
# use_safetensors=True,).to(DEVICE)
# pipe.load_lora_weights("KappaNeuro/studio-ghibli-style")
# pipe.to(DEVICE)
# pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
# pipe.enable_model_cpu_offload()
# ID_PREFIX = "KappaNeuro"
NUM_IMAGES = 3
out_dir = f"data/{ID_PREFIX}"
os.makedirs(out_dir, exist_ok=True)
with open("metadata.jsonl", "r", encoding="utf-8") as fin, \
open("ai_entries.jsonl", "w", encoding="utf-8") as fout, \
open("pairs.jsonl", "a", encoding="utf-8") as pairs:
for i, line in enumerate(fin):
sample = json.loads(line)
if sample["label"] != "real":
continue
description = sample["description"]
real_id: str = sample["id"]
aigen_id = real_id.replace("real", ID_PREFIX)
prompt = f"ghibli style, {description}"
seeds = [random.randrange(2**32) for _ in range(NUM_IMAGES)]
gens = [torch.Generator(device=DEVICE).manual_seed(s) for s in seeds]
images: list[Image] = pipe(prompt, num_images_per_prompt=NUM_IMAGES, generator=gens).images
src_path = sample["image"]
src_file: str = os.path.basename(src_path)
file_noext = src_file.split(".")[0]
for j, image in enumerate(images):
img_id = f"{aigen_id}-{j}"
dst_path = os.path.join(out_dir, f"{file_noext}_{j}.jpg")
fout.write(json.dumps({
"id": img_id,
"image": dst_path,
"label": ID_PREFIX,
"description": description,
}) + "\n")
pairs.write(json.dumps({
"real_image": src_path,
"ai_image": dst_path,
"description": description,
"seed": seeds[j]
}) + "\n")
image.save(dst_path)