import os from PIL.Image import Image from diffusers import StableDiffusionPipeline as SDP from diffusers import AutoPipelineForText2Image as AP from diffusers import DiffusionPipeline as DP import torch import json import random DEVICE = "mps" if torch.backends.mps.is_available() else \ "cuda" if torch.cuda.is_available() else "cpu" # Model 1 pipe = SDP.from_pretrained("nitrosocke/Ghibli-Diffusion", torch_dtype=torch.float16).to(DEVICE) ID_PREFIX = "nitrosocke" # Model 2 # pipe = AP.from_pretrained("black-forest-labs/FLUX.1-dev", # torch_dtype=torch.bfloat16).to(DEVICE) # pipe.load_lora_weights('openfree/flux-chatgpt-ghibli-lora', # weight_name='flux-chatgpt-ghibli-lora.safetensors') # ID_PREFIX = "openfree" # Model 3 # pipe = DP.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", # torch_dtype=torch.float16, variant="fp16", # use_safetensors=True,).to(DEVICE) # pipe.load_lora_weights("KappaNeuro/studio-ghibli-style") # pipe.to(DEVICE) # pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) # pipe.enable_model_cpu_offload() # ID_PREFIX = "KappaNeuro" NUM_IMAGES = 3 out_dir = f"data/{ID_PREFIX}" os.makedirs(out_dir, exist_ok=True) with open("metadata.jsonl", "r", encoding="utf-8") as fin, \ open("ai_entries.jsonl", "w", encoding="utf-8") as fout, \ open("pairs.jsonl", "a", encoding="utf-8") as pairs: for i, line in enumerate(fin): sample = json.loads(line) if sample["label"] != "real": continue description = sample["description"] real_id: str = sample["id"] aigen_id = real_id.replace("real", ID_PREFIX) prompt = f"ghibli style, {description}" seeds = [random.randrange(2**32) for _ in range(NUM_IMAGES)] gens = [torch.Generator(device=DEVICE).manual_seed(s) for s in seeds] images: list[Image] = pipe(prompt, num_images_per_prompt=NUM_IMAGES, generator=gens).images src_path = sample["image"] src_file: str = os.path.basename(src_path) file_noext = src_file.split(".")[0] for j, image in enumerate(images): img_id = f"{aigen_id}-{j}" dst_path = os.path.join(out_dir, f"{file_noext}_{j}.jpg") fout.write(json.dumps({ "id": img_id, "image": dst_path, "label": ID_PREFIX, "description": description, }) + "\n") pairs.write(json.dumps({ "real_image": src_path, "ai_image": dst_path, "description": description, "seed": seeds[j] }) + "\n") image.save(dst_path)