Datasets:

Modalities:
Tabular
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
Dask
License:
Dataset Viewer (First 5GB)
Auto-converted to Parquet
The dataset viewer is not available for this split.
The info cannot be fetched for the config 'default' of the dataset.
Error code:   InfoError
Exception:    ConnectionError
Message:      Couldn't reach 'proxima-fusion/constellaration' on the Hub (ReadTimeout)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 208, in compute_first_rows_from_streaming_response
                  info = get_dataset_config_info(path=dataset, config_name=config, token=hf_token)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 268, in get_dataset_config_info
                  builder = load_dataset_builder(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1132, in load_dataset_builder
                  dataset_module = dataset_module_factory(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1031, in dataset_module_factory
                  raise e1 from None
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 967, in dataset_module_factory
                  raise ConnectionError(f"Couldn't reach '{path}' on the Hub ({e.__class__.__name__})") from e
              ConnectionError: Couldn't reach 'proxima-fusion/constellaration' on the Hub (ReadTimeout)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

Dataset Card for ConStellaration

A dataset of diverse quasi-isodynamic (QI) stellarator boundary shapes with corresponding performance metrics and ideal magneto-hydrodynamic (MHD) equilibria, as well as settings for their generation.

Dataset Details

Dataset Description

Stellarators are magnetic confinement devices that are being pursued to deliver steady-state carbon-free fusion energy. Their design involves a high-dimensional, constrained optimization problem that requires expensive physics simulations and significant domain expertise. Specifically, QI-stellarators are seen as a promising path to commercial fusion due to their intrinsic avoidance of current-driven disruptions. With the release of this dataset, we aim to lower the barrier for optimization and machine learning researchers to contribute to stellarator design, and to accelerate cross-disciplinary progress toward bringing fusion energy to the grid.

  • Curated by: Proxima Fusion
  • License: MIT

Diagram of the computation of metrics of interest from a plasma boundary via the MHD equilibrium

Dataset Sources

Dataset Structure

The dataset consists of 2 tabular parts. Both parts have a column plasma_config_id in common which can be used to associate respective entries:

default vmecpp_wout
Contains information about:
  • Plasma boundaries
  • Ideal MHD metrics
  • Omnigenous field and targets, used as input for sampling of plasma boundaries
  • Sampling settings for various methods (DESC, VMEC, QP initialization, Near-axis expansion)
  • Miscellaneous information about errors that might have occurred during sampling or metrics computation.
For each of the components above there is an identifier column (ending with `.id`), a JSON column containing a JSON-string representation, as well as one column per leaf in the nested JSON structure (with `.` separating the keys on the JSON path to the respective leaf).
Contains, for each plasma boundary, a JSON-string representations of the "WOut" file as obtained when running VMEC, initialized on the boundary.
The JSON representation can be converted to a VMEC2000 output file.

The columns plasma_config_id and vmecpp_wout_id are present in both parts and link the two in both directions.

Uses

Install Huggingface Datasets: pip install datasets

Basic Usage

Load the dataset and convert to a Pandas Dataframe (here, torch is used as an example; install it with" pip install torch):

import datasets
import torch
from pprint import pprint

ds = datasets.load_dataset(
    "proxima-fusion/constellaration",
    split="train",
    num_proc=4,
)
ds = ds.select_columns([c for c in ds.column_names
                        if c.startswith("boundary.")
                        or c.startswith("metrics.")])
ds = ds.filter(
    lambda x: x == 3,
    input_columns=["boundary.n_field_periods"],
    num_proc=4,
)
ml_ds = ds.remove_columns([
    "boundary.n_field_periods", "boundary.is_stellarator_symmetric",  # all same value
    "boundary.r_sin", "boundary.z_cos",  # empty
    "boundary.json", "metrics.json", "metrics.id",  # not needed
])

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch_ds = ml_ds.with_format("torch", device=device)  # other options: "jax", "tensorflow" etc.

for batch in torch.utils.data.DataLoader(torch_ds, batch_size=4, num_workers=4):
    pprint(batch)
    break
Output
{'boundary.r_cos': tensor([[[ 0.0000e+00,  0.0000e+00,  0.0000e+00,  0.0000e+00,  1.0000e+00,
          -6.5763e-02, -3.8500e-02,  2.2178e-03,  4.6007e-04],
         [-6.6648e-04, -1.0976e-02,  5.6475e-02,  1.4193e-02,  8.3476e-02,
          -4.6767e-02, -1.3679e-02,  3.9562e-03,  1.0087e-04],
         [-3.5474e-04,  4.7144e-03,  8.3967e-04, -1.9705e-02, -9.4592e-03,
          -5.8859e-03,  1.0172e-03,  9.2020e-04, -2.0059e-04],
         [ 2.9056e-03,  1.6125e-04, -4.0626e-04, -8.0189e-03,  1.3228e-03,
          -5.3636e-04, -7.3536e-04,  3.4558e-05,  1.4845e-04],
         [-1.2475e-04, -4.9942e-04, -2.6091e-04, -5.6161e-04,  8.3187e-05,
          -1.2714e-04, -2.1174e-04,  4.1940e-06, -4.5643e-05]],

        [[ 0.0000e+00,  0.0000e+00,  0.0000e+00,  0.0000e+00,  9.9909e-01,
          -6.8512e-02, -8.1567e-02,  2.5140e-02, -2.4035e-03],
         [-3.4328e-03,  1.6768e-02,  1.2305e-02, -3.6708e-02,  1.0285e-01,
           1.1224e-02, -2.3418e-02, -5.4137e-04,  9.3986e-04],
         [-2.8389e-03,  1.4652e-03,  1.0112e-03,  9.8102e-04, -2.3162e-02,
          -6.1180e-03,  1.5327e-03,  9.4122e-04, -1.2781e-03],
         [ 3.9240e-04, -2.3131e-04,  4.5690e-04, -3.8244e-03, -1.5314e-03,
           1.8863e-03,  1.1882e-03, -5.2338e-04,  2.6766e-04],
         [-2.8441e-04, -3.4162e-04,  5.4013e-05,  7.4252e-04,  4.9895e-04,
          -6.1110e-04, -8.7185e-04, -1.1714e-04,  9.9285e-08]],

        [[ 0.0000e+00,  0.0000e+00,  0.0000e+00,  0.0000e+00,  1.0000e+00,
           6.9176e-02, -1.8489e-02, -6.5094e-03, -7.6238e-04],
         [ 1.4062e-03,  4.2645e-03, -1.0647e-02, -8.1579e-02,  1.0522e-01,
           1.6914e-02,  6.5321e-04,  6.9397e-04,  2.0881e-04],
         [-6.5155e-05, -1.2232e-03, -3.3660e-03,  9.8742e-03, -1.4611e-02,
           6.0985e-03,  9.5693e-04, -1.0049e-04,  5.4173e-05],
         [-4.3969e-04, -5.1155e-04,  6.9611e-03, -2.8698e-04, -5.8589e-03,
          -5.4844e-05, -7.3797e-04, -5.4401e-06, -3.3698e-05],
         [-1.9741e-04,  1.0003e-04, -2.0176e-04,  4.9546e-04, -1.6201e-04,
          -1.9169e-04, -3.9886e-04,  3.3773e-05, -3.5972e-05]],

        [[ 0.0000e+00,  0.0000e+00,  0.0000e+00,  0.0000e+00,  1.0000e+00,
           1.1652e-01, -1.5593e-02, -1.0215e-02, -1.8656e-03],
         [ 3.1697e-03,  2.1618e-02,  2.7072e-02, -2.4032e-02,  8.6125e-02,
          -7.1168e-04, -1.2433e-02, -2.0902e-03,  1.5868e-04],
         [-2.3877e-04, -4.9871e-03, -2.4145e-02, -2.1623e-02, -3.1477e-02,
          -8.3460e-03, -8.8675e-04, -5.3290e-04, -2.2784e-04],
         [-1.0006e-03,  2.1055e-05, -1.7186e-03, -5.2886e-03,  4.5186e-03,
          -1.1530e-03,  6.2732e-05,  1.4212e-04,  4.3367e-05],
         [ 7.8993e-05, -3.9503e-04,  1.5458e-03, -4.9707e-04, -3.9470e-04,
           6.0808e-04, -3.6447e-04,  1.2936e-04,  6.3461e-07]]]),
 'boundary.z_sin': tensor([[[ 0.0000e+00,  0.0000e+00,  0.0000e+00,  0.0000e+00,  0.0000e+00,
          -1.4295e-02,  1.4929e-02, -6.6461e-03, -3.0652e-04],
         [ 9.6958e-05, -1.6067e-03,  5.7568e-02, -2.2848e-02, -1.6101e-01,
           1.6560e-02,  1.5032e-02, -1.2463e-03, -4.0128e-04],
         [-9.9541e-04,  3.6108e-03, -1.1401e-02, -1.8894e-02, -7.7459e-04,
           9.4527e-03, -4.6871e-04, -5.5180e-04,  3.2248e-04],
         [ 2.3465e-03, -2.4885e-03, -8.4212e-03,  8.9649e-03, -1.9880e-03,
          -1.6269e-03,  8.4700e-04,  3.7171e-04, -6.8400e-05],
         [-3.6228e-04, -1.8575e-04,  6.0890e-04,  5.0270e-04, -6.9953e-04,
          -7.6356e-05,  2.3796e-04, -3.2524e-05,  5.3396e-05]],

        [[ 0.0000e+00,  0.0000e+00,  0.0000e+00,  0.0000e+00,  0.0000e+00,
          -8.5341e-02,  2.4825e-02,  8.0996e-03, -7.1501e-03],
         [-1.3470e-03,  4.6367e-03,  4.1579e-02, -3.6802e-02, -1.5076e-01,
           7.1852e-02, -1.9793e-02,  8.2575e-03, -3.8958e-03],
         [-2.3956e-03, -5.7497e-03,  5.8264e-03,  9.4471e-03, -3.5171e-03,
          -1.0481e-02, -3.2885e-03,  4.0624e-03,  4.3130e-04],
         [ 6.3403e-05, -9.2162e-04, -2.4765e-03,  5.4090e-04,  1.9999e-03,
          -1.1500e-03,  2.7581e-03, -5.7271e-04,  3.0363e-04],
         [ 4.6278e-04,  4.3696e-04,  8.0524e-05, -2.4660e-04, -2.3747e-04,
           5.5060e-05, -1.3221e-04, -5.4823e-05,  1.6025e-04]],

        [[ 0.0000e+00,  0.0000e+00,  0.0000e+00,  0.0000e+00,  0.0000e+00,
          -1.6090e-01, -1.4364e-02,  3.7923e-03,  1.8234e-03],
         [ 1.2118e-03,  3.1261e-03,  3.2037e-03, -5.7482e-02, -1.5461e-01,
          -1.8058e-03, -5.7149e-03, -7.4521e-04,  2.9463e-04],
         [ 8.7049e-04, -3.2717e-04, -1.0188e-02,  1.1215e-02, -7.4697e-03,
          -1.3592e-03, -1.4984e-03, -3.1362e-04,  1.5780e-06],
         [ 1.2617e-04, -1.2257e-04, -6.9928e-04,  8.7431e-04, -2.5848e-03,
           1.2087e-03, -2.4723e-04, -1.6535e-05, -6.4372e-05],
         [-4.3932e-04, -1.8130e-04,  7.4368e-04, -6.1396e-04, -4.1518e-04,
           4.8132e-04,  1.6036e-04,  5.3081e-05,  1.6636e-05]],

        [[ 0.0000e+00,  0.0000e+00,  0.0000e+00,  0.0000e+00,  0.0000e+00,
          -1.1264e-02, -1.8349e-03,  7.2464e-03,  2.3807e-03],
         [ 3.2969e-03,  1.9590e-02,  2.8355e-02, -1.0493e-02, -1.3216e-01,
           1.7804e-02,  7.9768e-03,  2.1362e-03, -6.9118e-04],
         [-5.2572e-04, -4.1409e-03, -3.6560e-02,  2.1644e-02,  1.6418e-02,
           9.3557e-03,  3.3846e-03,  7.4172e-05,  1.8406e-04],
         [-1.4907e-03,  2.0496e-03, -4.8581e-03,  3.5471e-03, -2.9191e-03,
          -1.5056e-03,  7.7168e-04, -2.3136e-04, -1.2064e-05],
         [-2.3742e-04,  4.5083e-04, -1.2933e-03, -4.4028e-04,  6.4168e-04,
          -8.2755e-04,  4.1233e-04, -1.1037e-04, -6.3762e-06]]]),
 'metrics.aspect_ratio': tensor([9.6474, 9.1036, 9.4119, 9.5872]),
 'metrics.aspect_ratio_over_edge_rotational_transform': tensor([  9.3211, 106.7966,  13.8752,   8.9834]),
 'metrics.average_triangularity': tensor([-0.6456, -0.5325, -0.6086, -0.6531]),
 'metrics.axis_magnetic_mirror_ratio': tensor([0.2823, 0.4224, 0.2821, 0.2213]),
 'metrics.axis_rotational_transform_over_n_field_periods': tensor([0.2333, 0.0818, 0.1887, 0.1509]),
 'metrics.edge_magnetic_mirror_ratio': tensor([0.4869, 0.5507, 0.3029, 0.2991]),
 'metrics.edge_rotational_transform_over_n_field_periods': tensor([0.3450, 0.0284, 0.2261, 0.3557]),
 'metrics.flux_compression_in_regions_of_bad_curvature': tensor([1.4084, 0.9789, 1.5391, 1.1138]),
 'metrics.max_elongation': tensor([6.7565, 6.9036, 5.6105, 5.8703]),
 'metrics.minimum_normalized_magnetic_gradient_scale_length': tensor([5.9777, 4.2971, 8.5928, 4.8531]),
 'metrics.qi': tensor([0.0148, 0.0157, 0.0016, 0.0248]),
 'metrics.vacuum_well': tensor([-0.2297, -0.1146, -0.0983, -0.1738])}

Advanced Usage

For advanced manipulation and visualization of data contained in this dataset, install constellaration from here: pip install constellaration

Load and instantiate plasma boundaries:

from constellaration.geometry import surface_rz_fourier

ds = datasets.load_dataset(
    "proxima-fusion/constellaration",
    columns=["plasma_config_id", "boundary.json"],
    split="train",
    num_proc=4,
)
pandas_ds = ds.to_pandas().set_index("plasma_config_id")

plasma_config_id = "DQ4abEQAQjFPGp9nPQN9Vjf"
boundary_json = pandas_ds.loc[plasma_config_id]["boundary.json"]
boundary = surface_rz_fourier.SurfaceRZFourier.model_validate_json(boundary_json)

Plot boundary:

from constellaration.utils import visualization

visualization.plot_surface(boundary).show()
visualization.plot_boundary(boundary).get_figure().show()
Boundary Cross-sections
Plot of plasma boundary Plot of boundary cross-sections

Stream and instantiate the VMEC ideal MHD equilibria:

from constellaration.mhd import vmec_utils

wout_ds = datasets.load_dataset(
    "proxima-fusion/constellaration",
    "vmecpp_wout",
    split="train",
    streaming=True,
)

row = next(wout_ds.__iter__())

vmecpp_wout_json = row["json"]
vmecpp_wout = vmec_utils.VmecppWOut.model_validate_json(vmecpp_wout_json)

# Fetch corresponding boundary

plasma_config_id = row["plasma_config_id"]
boundary_json = pandas_ds.loc[plasma_config_id]["boundary.json"]
boundary = surface_rz_fourier.SurfaceRZFourier.model_validate_json(boundary_json)

Plot flux surfaces:

from constellaration.utils import visualization

visualization.plot_flux_surfaces(vmecpp_wout, boundary)

Plot of flux surfaces Save ideal MHD equilibrium to VMEC2000 WOut file:

import pathlib
from constellaration.utils import file_exporter

file_exporter.to_vmec2000_wout_file(vmecpp_wout, pathlib.Path("vmec2000_wout.nc"))

Dataset Creation

Curation Rationale

Wide-spread community progress is currently bottlenecked by the lack of standardized optimization problems with strong baselines and datasets that enable data-driven approaches, particularly for quasi-isodynamic (QI) stellarator configurations.

Source Data

Data Collection and Processing

We generated this dataset by sampling diverse QI fields and optimizing stellarator plasma boundaries to target key properties, using four different methods.

Who are the source data producers?

Proxima Fusion's stellarator optimization team.

Personal and Sensitive Information

The dataset contains no personally identifiable information.

Citation

BibTeX:

@article{cadena2025constellaration,
  title={ConStellaration: A dataset of QI-like stellarator plasma boundaries and optimization benchmarks},
  author={Cadena, Santiago A and Merlo, Andrea and Laude, Emanuel and Bauer, Alexander and Agrawal, Atul and Pascu, Maria and Savtchouk, Marija and Guiraud, Enrico and Bonauer, Lukas and Hudson, Stuart and others},
  journal={arXiv preprint arXiv:2506.19583},
  year={2025}
}

Glossary

Abbreviation Expansion
QI Quasi-Isodynamic(ity)
MHD Magneto-Hydrodynamic
DESC Dynamical Equilibrium Solver for Confinement
VMEC/VMEC++ Variational Moments Equilibrium Code (Fortran/C++)
QP Quasi-Poloidal
NAE Near-Axis Expansion
NFP Number of Field Periods

Dataset Card Authors

Alexander Bauer, Santiago A. Cadena

Dataset Card Contact

alexbauer@proximafusion.com

Downloads last month
3,155

Space using proxima-fusion/constellaration 1