The dataset viewer is not available for this split.
Error code: InfoError Exception: ConnectionError Message: Couldn't reach 'proxima-fusion/constellaration' on the Hub (ReadTimeout) Traceback: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 208, in compute_first_rows_from_streaming_response info = get_dataset_config_info(path=dataset, config_name=config, token=hf_token) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 268, in get_dataset_config_info builder = load_dataset_builder( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1132, in load_dataset_builder dataset_module = dataset_module_factory( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1031, in dataset_module_factory raise e1 from None File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 967, in dataset_module_factory raise ConnectionError(f"Couldn't reach '{path}' on the Hub ({e.__class__.__name__})") from e ConnectionError: Couldn't reach 'proxima-fusion/constellaration' on the Hub (ReadTimeout)
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
Dataset Card for ConStellaration
A dataset of diverse quasi-isodynamic (QI) stellarator boundary shapes with corresponding performance metrics and ideal magneto-hydrodynamic (MHD) equilibria, as well as settings for their generation.
Dataset Details
Dataset Description
Stellarators are magnetic confinement devices that are being pursued to deliver steady-state carbon-free fusion energy. Their design involves a high-dimensional, constrained optimization problem that requires expensive physics simulations and significant domain expertise. Specifically, QI-stellarators are seen as a promising path to commercial fusion due to their intrinsic avoidance of current-driven disruptions. With the release of this dataset, we aim to lower the barrier for optimization and machine learning researchers to contribute to stellarator design, and to accelerate cross-disciplinary progress toward bringing fusion energy to the grid.
- Curated by: Proxima Fusion
- License: MIT
Dataset Sources
- Repository: https://huggingface.co/datasets/proxima-fusion/constellaration
- Paper: https://arxiv.org/abs/2506.19583
- Code: https://github.com/proximafusion/constellaration
Dataset Structure
The dataset consists of 2 tabular parts. Both parts have a column plasma_config_id
in common which can be used to associate respective entries:
default | vmecpp_wout |
---|---|
Contains information about:
|
Contains, for each plasma boundary, a JSON-string representations of the "WOut" file as obtained when running VMEC, initialized on the boundary. The JSON representation can be converted to a VMEC2000 output file. |
The columns plasma_config_id
and vmecpp_wout_id
are present in both parts and link the two in both directions.
Uses
Install Huggingface Datasets: pip install datasets
Basic Usage
Load the dataset and convert to a Pandas Dataframe (here, torch
is used as an example; install it with" pip install torch
):
import datasets
import torch
from pprint import pprint
ds = datasets.load_dataset(
"proxima-fusion/constellaration",
split="train",
num_proc=4,
)
ds = ds.select_columns([c for c in ds.column_names
if c.startswith("boundary.")
or c.startswith("metrics.")])
ds = ds.filter(
lambda x: x == 3,
input_columns=["boundary.n_field_periods"],
num_proc=4,
)
ml_ds = ds.remove_columns([
"boundary.n_field_periods", "boundary.is_stellarator_symmetric", # all same value
"boundary.r_sin", "boundary.z_cos", # empty
"boundary.json", "metrics.json", "metrics.id", # not needed
])
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch_ds = ml_ds.with_format("torch", device=device) # other options: "jax", "tensorflow" etc.
for batch in torch.utils.data.DataLoader(torch_ds, batch_size=4, num_workers=4):
pprint(batch)
break
Output
{'boundary.r_cos': tensor([[[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 1.0000e+00,
-6.5763e-02, -3.8500e-02, 2.2178e-03, 4.6007e-04],
[-6.6648e-04, -1.0976e-02, 5.6475e-02, 1.4193e-02, 8.3476e-02,
-4.6767e-02, -1.3679e-02, 3.9562e-03, 1.0087e-04],
[-3.5474e-04, 4.7144e-03, 8.3967e-04, -1.9705e-02, -9.4592e-03,
-5.8859e-03, 1.0172e-03, 9.2020e-04, -2.0059e-04],
[ 2.9056e-03, 1.6125e-04, -4.0626e-04, -8.0189e-03, 1.3228e-03,
-5.3636e-04, -7.3536e-04, 3.4558e-05, 1.4845e-04],
[-1.2475e-04, -4.9942e-04, -2.6091e-04, -5.6161e-04, 8.3187e-05,
-1.2714e-04, -2.1174e-04, 4.1940e-06, -4.5643e-05]],
[[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 9.9909e-01,
-6.8512e-02, -8.1567e-02, 2.5140e-02, -2.4035e-03],
[-3.4328e-03, 1.6768e-02, 1.2305e-02, -3.6708e-02, 1.0285e-01,
1.1224e-02, -2.3418e-02, -5.4137e-04, 9.3986e-04],
[-2.8389e-03, 1.4652e-03, 1.0112e-03, 9.8102e-04, -2.3162e-02,
-6.1180e-03, 1.5327e-03, 9.4122e-04, -1.2781e-03],
[ 3.9240e-04, -2.3131e-04, 4.5690e-04, -3.8244e-03, -1.5314e-03,
1.8863e-03, 1.1882e-03, -5.2338e-04, 2.6766e-04],
[-2.8441e-04, -3.4162e-04, 5.4013e-05, 7.4252e-04, 4.9895e-04,
-6.1110e-04, -8.7185e-04, -1.1714e-04, 9.9285e-08]],
[[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 1.0000e+00,
6.9176e-02, -1.8489e-02, -6.5094e-03, -7.6238e-04],
[ 1.4062e-03, 4.2645e-03, -1.0647e-02, -8.1579e-02, 1.0522e-01,
1.6914e-02, 6.5321e-04, 6.9397e-04, 2.0881e-04],
[-6.5155e-05, -1.2232e-03, -3.3660e-03, 9.8742e-03, -1.4611e-02,
6.0985e-03, 9.5693e-04, -1.0049e-04, 5.4173e-05],
[-4.3969e-04, -5.1155e-04, 6.9611e-03, -2.8698e-04, -5.8589e-03,
-5.4844e-05, -7.3797e-04, -5.4401e-06, -3.3698e-05],
[-1.9741e-04, 1.0003e-04, -2.0176e-04, 4.9546e-04, -1.6201e-04,
-1.9169e-04, -3.9886e-04, 3.3773e-05, -3.5972e-05]],
[[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 1.0000e+00,
1.1652e-01, -1.5593e-02, -1.0215e-02, -1.8656e-03],
[ 3.1697e-03, 2.1618e-02, 2.7072e-02, -2.4032e-02, 8.6125e-02,
-7.1168e-04, -1.2433e-02, -2.0902e-03, 1.5868e-04],
[-2.3877e-04, -4.9871e-03, -2.4145e-02, -2.1623e-02, -3.1477e-02,
-8.3460e-03, -8.8675e-04, -5.3290e-04, -2.2784e-04],
[-1.0006e-03, 2.1055e-05, -1.7186e-03, -5.2886e-03, 4.5186e-03,
-1.1530e-03, 6.2732e-05, 1.4212e-04, 4.3367e-05],
[ 7.8993e-05, -3.9503e-04, 1.5458e-03, -4.9707e-04, -3.9470e-04,
6.0808e-04, -3.6447e-04, 1.2936e-04, 6.3461e-07]]]),
'boundary.z_sin': tensor([[[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
-1.4295e-02, 1.4929e-02, -6.6461e-03, -3.0652e-04],
[ 9.6958e-05, -1.6067e-03, 5.7568e-02, -2.2848e-02, -1.6101e-01,
1.6560e-02, 1.5032e-02, -1.2463e-03, -4.0128e-04],
[-9.9541e-04, 3.6108e-03, -1.1401e-02, -1.8894e-02, -7.7459e-04,
9.4527e-03, -4.6871e-04, -5.5180e-04, 3.2248e-04],
[ 2.3465e-03, -2.4885e-03, -8.4212e-03, 8.9649e-03, -1.9880e-03,
-1.6269e-03, 8.4700e-04, 3.7171e-04, -6.8400e-05],
[-3.6228e-04, -1.8575e-04, 6.0890e-04, 5.0270e-04, -6.9953e-04,
-7.6356e-05, 2.3796e-04, -3.2524e-05, 5.3396e-05]],
[[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
-8.5341e-02, 2.4825e-02, 8.0996e-03, -7.1501e-03],
[-1.3470e-03, 4.6367e-03, 4.1579e-02, -3.6802e-02, -1.5076e-01,
7.1852e-02, -1.9793e-02, 8.2575e-03, -3.8958e-03],
[-2.3956e-03, -5.7497e-03, 5.8264e-03, 9.4471e-03, -3.5171e-03,
-1.0481e-02, -3.2885e-03, 4.0624e-03, 4.3130e-04],
[ 6.3403e-05, -9.2162e-04, -2.4765e-03, 5.4090e-04, 1.9999e-03,
-1.1500e-03, 2.7581e-03, -5.7271e-04, 3.0363e-04],
[ 4.6278e-04, 4.3696e-04, 8.0524e-05, -2.4660e-04, -2.3747e-04,
5.5060e-05, -1.3221e-04, -5.4823e-05, 1.6025e-04]],
[[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
-1.6090e-01, -1.4364e-02, 3.7923e-03, 1.8234e-03],
[ 1.2118e-03, 3.1261e-03, 3.2037e-03, -5.7482e-02, -1.5461e-01,
-1.8058e-03, -5.7149e-03, -7.4521e-04, 2.9463e-04],
[ 8.7049e-04, -3.2717e-04, -1.0188e-02, 1.1215e-02, -7.4697e-03,
-1.3592e-03, -1.4984e-03, -3.1362e-04, 1.5780e-06],
[ 1.2617e-04, -1.2257e-04, -6.9928e-04, 8.7431e-04, -2.5848e-03,
1.2087e-03, -2.4723e-04, -1.6535e-05, -6.4372e-05],
[-4.3932e-04, -1.8130e-04, 7.4368e-04, -6.1396e-04, -4.1518e-04,
4.8132e-04, 1.6036e-04, 5.3081e-05, 1.6636e-05]],
[[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
-1.1264e-02, -1.8349e-03, 7.2464e-03, 2.3807e-03],
[ 3.2969e-03, 1.9590e-02, 2.8355e-02, -1.0493e-02, -1.3216e-01,
1.7804e-02, 7.9768e-03, 2.1362e-03, -6.9118e-04],
[-5.2572e-04, -4.1409e-03, -3.6560e-02, 2.1644e-02, 1.6418e-02,
9.3557e-03, 3.3846e-03, 7.4172e-05, 1.8406e-04],
[-1.4907e-03, 2.0496e-03, -4.8581e-03, 3.5471e-03, -2.9191e-03,
-1.5056e-03, 7.7168e-04, -2.3136e-04, -1.2064e-05],
[-2.3742e-04, 4.5083e-04, -1.2933e-03, -4.4028e-04, 6.4168e-04,
-8.2755e-04, 4.1233e-04, -1.1037e-04, -6.3762e-06]]]),
'metrics.aspect_ratio': tensor([9.6474, 9.1036, 9.4119, 9.5872]),
'metrics.aspect_ratio_over_edge_rotational_transform': tensor([ 9.3211, 106.7966, 13.8752, 8.9834]),
'metrics.average_triangularity': tensor([-0.6456, -0.5325, -0.6086, -0.6531]),
'metrics.axis_magnetic_mirror_ratio': tensor([0.2823, 0.4224, 0.2821, 0.2213]),
'metrics.axis_rotational_transform_over_n_field_periods': tensor([0.2333, 0.0818, 0.1887, 0.1509]),
'metrics.edge_magnetic_mirror_ratio': tensor([0.4869, 0.5507, 0.3029, 0.2991]),
'metrics.edge_rotational_transform_over_n_field_periods': tensor([0.3450, 0.0284, 0.2261, 0.3557]),
'metrics.flux_compression_in_regions_of_bad_curvature': tensor([1.4084, 0.9789, 1.5391, 1.1138]),
'metrics.max_elongation': tensor([6.7565, 6.9036, 5.6105, 5.8703]),
'metrics.minimum_normalized_magnetic_gradient_scale_length': tensor([5.9777, 4.2971, 8.5928, 4.8531]),
'metrics.qi': tensor([0.0148, 0.0157, 0.0016, 0.0248]),
'metrics.vacuum_well': tensor([-0.2297, -0.1146, -0.0983, -0.1738])}
Advanced Usage
For advanced manipulation and visualization of data contained in this dataset, install constellaration
from here:
pip install constellaration
Load and instantiate plasma boundaries:
from constellaration.geometry import surface_rz_fourier
ds = datasets.load_dataset(
"proxima-fusion/constellaration",
columns=["plasma_config_id", "boundary.json"],
split="train",
num_proc=4,
)
pandas_ds = ds.to_pandas().set_index("plasma_config_id")
plasma_config_id = "DQ4abEQAQjFPGp9nPQN9Vjf"
boundary_json = pandas_ds.loc[plasma_config_id]["boundary.json"]
boundary = surface_rz_fourier.SurfaceRZFourier.model_validate_json(boundary_json)
Plot boundary:
from constellaration.utils import visualization
visualization.plot_surface(boundary).show()
visualization.plot_boundary(boundary).get_figure().show()
Stream and instantiate the VMEC ideal MHD equilibria:
from constellaration.mhd import vmec_utils
wout_ds = datasets.load_dataset(
"proxima-fusion/constellaration",
"vmecpp_wout",
split="train",
streaming=True,
)
row = next(wout_ds.__iter__())
vmecpp_wout_json = row["json"]
vmecpp_wout = vmec_utils.VmecppWOut.model_validate_json(vmecpp_wout_json)
# Fetch corresponding boundary
plasma_config_id = row["plasma_config_id"]
boundary_json = pandas_ds.loc[plasma_config_id]["boundary.json"]
boundary = surface_rz_fourier.SurfaceRZFourier.model_validate_json(boundary_json)
Plot flux surfaces:
from constellaration.utils import visualization
visualization.plot_flux_surfaces(vmecpp_wout, boundary)
Save ideal MHD equilibrium to VMEC2000 WOut file:
import pathlib
from constellaration.utils import file_exporter
file_exporter.to_vmec2000_wout_file(vmecpp_wout, pathlib.Path("vmec2000_wout.nc"))
Dataset Creation
Curation Rationale
Wide-spread community progress is currently bottlenecked by the lack of standardized optimization problems with strong baselines and datasets that enable data-driven approaches, particularly for quasi-isodynamic (QI) stellarator configurations.
Source Data
Data Collection and Processing
We generated this dataset by sampling diverse QI fields and optimizing stellarator plasma boundaries to target key properties, using four different methods.
Who are the source data producers?
Proxima Fusion's stellarator optimization team.
Personal and Sensitive Information
The dataset contains no personally identifiable information.
Citation
BibTeX:
@article{cadena2025constellaration,
title={ConStellaration: A dataset of QI-like stellarator plasma boundaries and optimization benchmarks},
author={Cadena, Santiago A and Merlo, Andrea and Laude, Emanuel and Bauer, Alexander and Agrawal, Atul and Pascu, Maria and Savtchouk, Marija and Guiraud, Enrico and Bonauer, Lukas and Hudson, Stuart and others},
journal={arXiv preprint arXiv:2506.19583},
year={2025}
}
Glossary
Abbreviation | Expansion |
---|---|
QI | Quasi-Isodynamic(ity) |
MHD | Magneto-Hydrodynamic |
DESC | Dynamical Equilibrium Solver for Confinement |
VMEC/VMEC++ | Variational Moments Equilibrium Code (Fortran/C++) |
QP | Quasi-Poloidal |
NAE | Near-Axis Expansion |
NFP | Number of Field Periods |
Dataset Card Authors
Alexander Bauer, Santiago A. Cadena
Dataset Card Contact
- Downloads last month
- 3,155