FaceMask / README.md
poolrf2001's picture
Update README.md
fcadb7e
metadata
annotations_creators:
  - expert-generated
language_creators:
  - expert-generated
language:
  - en
license:
  - mit
multilinguality:
  - monolingual
pretty_name: FaceMask
size_categories:
  - 1K<n<10K
source_datasets:
  - original
task_categories:
  - image-classification
task_ids:
  - multi-class-image-classification
dataset_info:
  features:
    - name: image
      dtype: image
    - name: labels
      dtype:
        class_label:
          names:
            '0': mask_weared_incorrect
            '1': with_mask
            '2': without_mask
  splits:
    - name: train
      num_bytes: 38806014
      num_examples: 1500
    - name: validation
      num_bytes: 4758962
      num_examples: 180
    - name: test
      num_bytes: 4693735
      num_examples: 180
  download_size: 48258711
  dataset_size: 49140913

Dataset Card for Beans

Table of Contents

Dataset Description

Dataset Summary

Beans leaf dataset with images of diseased and health leaves.

Supported Tasks and Leaderboards

  • image-classification: Based on a leaf image, the goal of this task is to predict the disease type (Angular Leaf Spot and Bean Rust), if any.

Languages

English

Dataset Structure

Data Instances

A sample from the training set is provided below:

{
    'image': <PIL.PngImagePlugin.PngImageFile image mode=RGB size=128x128 at 0x16BAA72A4A8>,
    'labels': 1
}

Data Fields

The data instances have the following fields:

  • image: A PIL.Image.Image object containing the image. Note that when accessing the image column: dataset[0]["image"] the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the "image" column, i.e. dataset[0]["image"] should always be preferred over dataset["image"][0].
  • labels: an int classification label.

Class Label Mappings:

{
  "mask_weared_incorrect": 0,
  "with_mask": 1,
  "without_mask": 2,
}

Data Splits

train validation test
# of examples 1500 180 180

Dataset Creation

Curation Rationale

[More Information Needed]

Source Data

Initial Data Collection and Normalization

[More Information Needed]

Who are the source language producers?

[More Information Needed]

Annotations

Annotation process

[More Information Needed]

Who are the annotators?

[More Information Needed]

Personal and Sensitive Information

[More Information Needed]

Considerations for Using the Data

Social Impact of Dataset

[More Information Needed]

Discussion of Biases

[More Information Needed]

Other Known Limitations

[More Information Needed]

Additional Information

Dataset Curators

[More Information Needed]

Licensing Information

[More Information Needed]

Citation Information

@ONLINE {beansdata,
    author="Pool",
    title="FaceMask dataset",
    month="January",
    year="2023",
    url="https://github.com/poolrf2001/maskFace"
}

Contributions