blob_id
stringlengths 40
40
| directory_id
stringlengths 40
40
| path
stringlengths 4
214
| content_id
stringlengths 40
40
| detected_licenses
listlengths 0
50
| license_type
stringclasses 2
values | repo_name
stringlengths 6
115
| snapshot_id
stringlengths 40
40
| revision_id
stringlengths 40
40
| branch_name
stringclasses 21
values | visit_date
timestamp[us] | revision_date
timestamp[us] | committer_date
timestamp[us] | github_id
int64 141k
586M
⌀ | star_events_count
int64 0
30.4k
| fork_events_count
int64 0
9.67k
| gha_license_id
stringclasses 8
values | gha_event_created_at
timestamp[us] | gha_created_at
timestamp[us] | gha_language
stringclasses 50
values | src_encoding
stringclasses 23
values | language
stringclasses 1
value | is_vendor
bool 1
class | is_generated
bool 1
class | length_bytes
int64 5
10.4M
| extension
stringclasses 29
values | filename
stringlengths 2
96
| content
stringlengths 5
10.4M
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
75b231c52698af55593a42e85ae3596d164d616f
|
a62e0da056102916ac0fe63d8475e3c4114f86b1
|
/set5/s_Electrical_And_Electronic_Principles_And_Technology_J._Bird_1529.zip/Electrical_And_Electronic_Principles_And_Technology_J._Bird_1529/CH7/EX7.4/7_04.sce
|
c4d67c5fac9de3f6355009f782c407dfee4467f3
|
[] |
no_license
|
hohiroki/Scilab_TBC
|
cb11e171e47a6cf15dad6594726c14443b23d512
|
98e421ab71b2e8be0c70d67cca3ecb53eeef1df6
|
refs/heads/master
| 2021-01-18T02:07:29.200029 | 2016-04-29T07:01:39 | 2016-04-29T07:01:39 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 353 |
sce
|
7_04.sce
|
errcatch(-1,"stop");mode(2);//Chapter 7, Problem 4
;
B=1.2; //Magnetic flux density
H=1250; //Magnetic field strength
uo=4*%pi*10^-7; //permeability of free space
ur=B/(uo*H); //Calculating relative permeability
printf("Relative permeability = %f",ur);
exit();
|
5b196de9b85386246b7db694f0484ee35ff1e1f4
|
2707da68619819d8105f9ae472647dc578c75730
|
/ForcedComponents.sci
|
d87e984356c59780b5bf2a600913ccaf40dcca44
|
[
"Apache-2.0"
] |
permissive
|
KrayzeX/ToE
|
1aa62db747841e960fb47fbd59e38c6afa3a0723
|
ad81dd433c0d3b23ebb00f0e65095ab6c1bed34e
|
refs/heads/master
| 2020-05-26T09:19:33.970171 | 2017-06-02T08:50:16 | 2017-06-02T08:50:16 | 82,474,743 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 533 |
sci
|
ForcedComponents.sci
|
// Чистяков А.А. Подгруппа №3
// Данный модуль принимает на вход матрику коэффицинтов при Uc, Il, I1(U1)
// Возвращает вынужденные составляющие цепи при постоянном воздействии uCв = const, iLв = const.
function[R] = ForcedComponents (KoefMatrix)
A = [KoefMatrix(1,1) KoefMatrix(1,2); KoefMatrix(2,1) KoefMatrix(2,2)];
f=[-KoefMatrix(1, 3); -KoefMatrix(2,3)];
R=A\f;
endfunction
|
2da997a30f1bfa3ee5957930787f0bf07e51947a
|
5f48beee3dc825617c83ba20a7c82c544061af65
|
/tests/s/37.tst
|
f7581797768cddea349184ed02b5b427769d5c69
|
[] |
no_license
|
grenkin/compiler
|
bed06cd6dac49c1ca89d2723174210cd3dc8efea
|
30634ec46fba10333cf284399f577be7fb8e5b61
|
refs/heads/master
| 2020-06-20T12:44:17.903582 | 2016-11-27T03:08:20 | 2016-11-27T03:08:20 | 74,863,612 | 3 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 50 |
tst
|
37.tst
|
int main(void)
{
typedef int arr[3];
arr x;
}
|
c33f4edb933298e86abfdf3e9fc4fbf38057e46e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/260/CH1/EX1.3/1_03.sce
|
b6af9334c2d61f8e51a052df1834512e7260acd7
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 228 |
sce
|
1_03.sce
|
//Eg No. 1.3
//Pg No. 12
clc ;
clear ;
close ;
deff('v = f(R,T,M)','v = sqrt(8*R*T/(3.14159*M))')
R = 8.314*(10^7)
M = input('Enter the value of M')
T = input ('Enter the value of T')
v = f(R,M,T)
disp('v = ')
disp(v)
|
2bb2baf06041880f5351db774a260370893d30d6
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3651/CH1/EX1.6/Ex1_6.sce
|
07ec4881c507b50b41b3611ef9e909e3aa88b5ab
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 473 |
sce
|
Ex1_6.sce
|
//variable declaration
I=5.14; //Ionization energy
A=3.65; //Electron Affinity
e=(1.6*10**-19);
E=8.85*10**-12;
r=236*10**-12;
//Calculations
E_c=I-A //Energy required
C=-(e**2/(4*%pi*E*r*e)) //Potentential energy in eV
BE=-(E_c+C) //Bond Energy
//Result
printf('Energy required= %0.2f eV\n",E_c)
printf('Energy required =%0.1f eV\n",C)
printf('Bond Energy =%0.2f eV",BE)
|
8268df820e841ef5cae12fa9b2e15dfffce90061
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1670/CH10/EX10.33/10_33.sce
|
96b9850dec1dc2f7f1c58b19fdebfa754ef0dccb
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 257 |
sce
|
10_33.sce
|
//Example 10.33
//Numerov Method
//Page no. 350
clc;clear;close;
k=0.5;h=%pi/6
y(1)=0;y(2)=k;
deff('y=f2(x,y)','y=-y')
deff('y=g()','y=-1')
fi=acos(((2+5*h^2*g()/6)-(1-h^2*g()/12)*y(1))/(2*(1-h^2*g()/12)))
y6=k*(sin(6*fi)/sin(fi))
disp(y6,"y6 = ")
|
12881f675ebe61654a67d82a4863b9a1957e1be2
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/608/CH3/EX3.04/3_04.sce
|
ba6bd1ed88e7f652404bbf45297811fc11ff99c2
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 396 |
sce
|
3_04.sce
|
//Problem 3.04: Calculate the resistance of a 2 km length of aluminium overhead power cable if the cross-sectional area of the cable is 100 mm2. Take the resistivity of aluminium to be 0.03E-6 ohm m.
//initializing the variables:
A = 100E-6; // in m2
L = 2000; // in m
p = 0.03E-6; // in ohm m
//calculation:
R = p*L/A
printf("\n\nResult\n\n")
printf("\nResistance %.1f Ohms\n",R)
|
1f98a7c558645899851fb873d1b10d77e276a643
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3681/CH4/EX4.2/Ex4_2.sce
|
45f094c7940aabc36e180f71e1fa5cd94c95de51
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 965 |
sce
|
Ex4_2.sce
|
// Calculating the loss that will be conducted across the the laminations
clc;
disp('Example 4.2, Page No. = 4.3')
// Given Data
Q_con_5 = 25;// Heat Dissipated
t_5 = 20;// Thickness of laminations in mm
S_5 = 2500;// Cross-section area of conduction in mm square
T_5 = 5;// Temperature difference in degree celsius
t_20 = 40;// Thickness of laminations in mm
S_20 = 6000;// Cross-section area of conduction in mm square
T_20 = 20;// Temperature difference in degree celsius
// Calculation of heat conducted across the laminations
p_along = (T_5*S_5*10^(-6))/(Q_con_5*t_5*10^(-3));// Thermal resistivity along the direction of laminations
p_across = 20*p_along;// Thermal resistivity across the direction of laminations
Q_con_20 = S_20*10^(-6)*T_20/(p_across*t_20*10^(-3));// Heat conducted across the the laminations
disp(Q_con_20,'Heat conducted across the the laminations(W)=');
//in book answer is 6 W. The answers vary due to round off error
|
2a7f4fda30ea590e5156ac4ec9d727039a67996e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1946/CH9/EX9.16/Ex_9_16.sce
|
944440b804736317d102b3f9af122476ebf5caea
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 234 |
sce
|
Ex_9_16.sce
|
// Example 9.16;//Maximuum bandwidth
clc;
clear;
close;
tr=4.5*10^-12;//electron transit time in second
G=80;//photo conductive gain
Bm=(1/(2*%pi*tr*G))*10^-9;//Maximum bandwidth
disp(Bm,"Maximum bandwidth in giga hertz is")
|
fd7bf46373ce1dacd4011fd692d58f8a1ec75eae
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/965/CH7/EX7.47/47.sci
|
88e206dc9347a3fb1be886023df096fd46c8edcb
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 427 |
sci
|
47.sci
|
clc;
clear all;
disp("incerease in bulk temperature")
tb1=200;//degree C
d=25.4/1000;//m diameter of tube
U=10;//m/s
tw=20;// degree C
L=3;//m length of tube
rho=1.493;//kg/m^3
mu=2.57*10^(-5);//Ns/m^2
k=0.0386;//W/m.C
cp=1025;// J/kg.C
Re=rho*U*d/mu
Pr=mu*cp/k
Nu=0.0023*Re^0.8*Pr^0.4
h=Nu*k/d
Q=h*%pi*d*(tb1-tw)
m=rho*%pi*d^2*U;
delT=Q/(m*cp);
disp("degree C",delT,"Increase in bulk temperature is = ")
|
653d1983a3dde23b0a8f662763830aa33546d853
|
efc2fec9dd841d0ca834702c904e00c52762a9f9
|
/TemplateMatcher/TemplateMatcher5.sce
|
50fb7a57b2ebb57cc294ed4176518474723cdb73
|
[] |
no_license
|
surajch77/Scilab-Computer-Vision-Toolbox-TestCases
|
64c8e0382e8b9d416c4c27c1ed4272f49bf45b51
|
969f9bcddefea05b42c623aeebe2e0cdcffd6eeb
|
refs/heads/master
| 2021-01-20T20:24:14.345296 | 2016-06-29T15:16:52 | 2016-06-29T15:16:52 | 61,932,313 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 127 |
sce
|
TemplateMatcher5.sce
|
I = imread('ararauna.jpg');
J = I(:, :, :);
T = TemplateMatcher(I, J);
size(T)
/// output:
/// single channel result 1 1
|
933046bede977b4cdad008f970fcab902b104ecc
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3176/CH2/EX2.5/Ex2_5.sce
|
326df7f35f3fd3b3f93ff753ce1d7502b5453c1b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 1,737 |
sce
|
Ex2_5.sce
|
//Ex2_5
//Addition of Noisy Images for Noise Reduction
// Version : Scilab 5.4.1
// Operating System : Window-xp, Window-7
//Toolbox: Image Processing Design 8.3.1-1
//Toolbox: SIVP 0.5.3.1-2
//Reference book name : Digital Image Processing
//book author: Rafael C. Gonzalez and Richard E. Woods
clc;
close;
clear;
xdel(winsid())//to close all currently open figure(s).
gray=imread("Ex2_5.tif");
//gray=rgb2gray(a);
gray=im2double(gray);
figure,ShowImage(gray,'Gray Image');
title('Original Image');
[nr nc]=size(gray);
noise_image=gray;
out_image=double(zeros(nr,nc));
level=[5 10 20 50 100];
for i=1:length(level)
No=level(i);
disp(No);
for k=1:No
noisy_image=imnoise(noise_image,'gaussian',0,0.02);
// figure,ShowImage(noisy_image,'Image corrupted by salt & pepper noise');//ShowImage() is used to sho w image, figure is command to view images in separate window.
// title('Image corrupted by Gaussian noise');//title() is used for providing a title to an image.
// disp(size(noise_image));
out_image=imadd(out_image,noisy_image);
end
out_image=out_image/No;
out_image=mat2gray(out_image);
figure,ShowImage(out_image,'Image Recoverd from the Noise');//ShowImage() is used to show image, figure is command to view images in separate window.
title('Image Recoverd from the Noise');//title() is used for providing a title to an image.
//Recoverd_Image=0.5*out_image.^0.15;//Gamma Transformation
//figure,ShowImage(Recoverd_Image,'Recoverd Image after Gamma Transormation');//ShowImage() is used to show image, figure is command to view images in separate window.
//title('Image Recoverd from the Noise');//title() is used for providing a title to an image.
end
|
cd4424434e4150d3aafbbda58b808a1865d68ddb
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1847/CH2/EX2.10/Ch02Ex10.sce
|
979c40c195ec2598662832650099117a96962a7d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 479 |
sce
|
Ch02Ex10.sce
|
// Scilab Code Ex2.10:: Page-2.12 (2009)
clc; clear;
D = 100; // Distance between slits and the screen, cm
d = 0.08; // Separation between the slits, cm
b = 2.121/25; // Fringe width of the interfernce pattern due to biprism, cm
lambda = b*d/D; // Wavelength of light in a biprism experiment, cm
printf("\nThe wavelength of light in a biprism experiment = %5.0f angstrom", lambda/1e-008);
// Result
// The wavelength of light in a biprism experiment = 6787 angstrom
|
5fb237b4fdd619a44b6a1389fcddc8c4c0e93be0
|
99b4e2e61348ee847a78faf6eee6d345fde36028
|
/Toolbox Test/peak2peak/peak2peak6.sce
|
71d9119ac311cec540890e5ea45efa395d0f7df6
|
[] |
no_license
|
deecube/fosseetesting
|
ce66f691121021fa2f3474497397cded9d57658c
|
e353f1c03b0c0ef43abf44873e5e477b6adb6c7e
|
refs/heads/master
| 2021-01-20T11:34:43.535019 | 2016-09-27T05:12:48 | 2016-09-27T05:12:48 | 59,456,386 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 271 |
sce
|
peak2peak6.sce
|
//check o/p when i/p dim is less than 1
a=[1 2 3;1 2 34;2 3 54];
y=peak2peak(a,0);
disp(y);
//output
//!--error 10000
//Dimension argument must be a positive integer scalar within indexing range.
//at line 27 of function peak2peak called by :
//y=peak2peak(a,0);
|
da514ab00809ad3723d5fb156bcbcb86fe094129
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2495/CH1/EX1.5.2/Ex1_5_2.sce
|
99e614d773830813eea27a70e092a163f9bbf102
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 243 |
sce
|
Ex1_5_2.sce
|
clear;
clc;
T1=373.15;//in K
P=1;//atm
Vv=1674;//in cm^3/gm
delPdelT=27.12;//in torr/K
R1=8.314;//in J
R2=0.082;//in atm/(dm)^3
delH=((delPdelT)/760)*T1*((Vv*10^-3)*18)*(R1/R2)
printf('delH =%d J/mol',delH)
////Example in page 15
|
cab0c1d8358c7138628c6f31c804456f4db67634
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/758/CH3/EX3.10/Ex_3_10.sce
|
9361d42d004dbbd47fd73c38b662c7f0c41e6d18
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 251 |
sce
|
Ex_3_10.sce
|
//Example 3.10
clc;clear;close;
s=poly(0,'s');
I=3*s/(s+2)/(s+4);
disp(I,'Given Transfer Function:');
zero=roots(numer(I));
pole=roots(denom(I));
disp(zero,'Zeros of transfer function: ');
disp(pole,'Poles of transfer function: ');
plzr(I);
|
7b21aa91fe635f55fe5d63538ace60a9216311e9
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1427/CH25/EX25.13/25_13.sce
|
e227c33a5826645a50c4f0dab9e098a0c4b72fdf
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 299 |
sce
|
25_13.sce
|
//ques-25.13
//Calculating pressure using van der Waals equation
clc
n=2;//moles of ammonia
T=300;//temperature (in K)
V=5*10^-3;//volume (in kL)
a=0.417;//(in Nm^4/mol^2)
b=0.037*10^-3;//(in kL/mol)
P=((n*8.314*T)/(V-n*b))-((a*n^2)/(V^2));
printf("The pressure required is %d N/m^2.",P);
|
683f324904d03fd154c3b44a52a3e7036cdfa3b2
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3041/CH2/EX2.2/Ex2_2.sce
|
3ffb4176af121ca77fe86851713247b9902cd195
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 1,042 |
sce
|
Ex2_2.sce
|
//Variable declaration
Vbb=5 //base voltage of bipolar transistor(V)
Vbe=0.7 //base emitter voltage drop(V) in active region
Rb=150 //base resistance(ohm)
beeta=125 //curret gain
Rc=3 //collector resistance(k ohms)
Vcc=10 //supply voltage(V)
Vce=0.2 //collector to emitter voltage(V)
//Calculations
//Part a
Ib=(Vbb-Vbe)/Rb //base current(mA)
Ic=beeta*Ib //collector current(mA)
Vcb=-Vbe-(Rc*Ic)+Vcc //collector base voltage drop(V)
//Part b -for npn transistor
Vbe=0.8 //base emitter voltage drop(V) in saturation
Ic=(Vcc-Vce)/Rc //collector current(mA)
Ib=(Vbb-Vbe)/Rb //base current(mA)
Ibmin=Ic/beeta //minimum base current(mA) to go into saturation(mA)
//Results
printf ("In active region, base current is %.1e mA and collector current is %.2f mA" ,Ib,Ic)
printf ("base current and collector current in npn are %.2e mA and %.2f mA resp.",Ib,Ic)
printf ("base current minimum is %.3f mA",Ibmin)
|
866afaf8c9b8b8379609c5389d96bae3de94f24d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/659/CH3/EX3.5/exm3_5.sce
|
93136c7b1ea8245da5eba1381b87d6e549f725e6
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 308 |
sce
|
exm3_5.sce
|
// Example 3.5
//Output of program shows round-off errors that can occur in computation of floating point numbers
//Sum of n terms of 1/n
count=1;
sum1=0;
n=input("Enter value of n:");
term=1.0/n;
while(count<=n)
sum1=sum1+term;
count=count+1;
end
printf("Sum= %f",sum1);
|
9388ebb230dc09e241dc9f574fc3e7d9b49cd568
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/773/CH8/EX8.03.01/8_02_01.sci
|
121e503ba4dbef30f23893286bc7398a3ddbb18a
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 333 |
sci
|
8_02_01.sci
|
//coefficient//
s=%s;
p=poly([10],'s','coeff');
q=poly([0 0 1],'s','coeff');
G=p/q;
H=0.7;
y=G*H; //type 2
disp(y,"G(s)H(s)=")
//refering the table 8.2 given in the book ,for type 1 Kp=%inf & Kv=%inf
printf("For type1 Kp=inf & Kv=inf \n")
syms s;
Ka=limit(s^2*y,s,0); //Ka=accelaration error coefficient
disp(Ka,"Ka=")
|
685661762bccaafe09ce8f743203b468cdf0a1f1
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/980/CH6/EX6.16/6_16.sce
|
3210388ba1b5c426e475b9dff2174d3c7fa1a091
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 214 |
sce
|
6_16.sce
|
clc;
clear;
format('e',11);
E=1;
epsilone_r=1.5;
Xe=epsilone_r-1; //Xe=electric susceptibility.
epsilone_0=8.85*10^-12;
P=epsilone_0*Xe*E;
disp(P,"The polarisation density(in C/m^2)=");
|
6c551a0e17f845464162862417376e14cc1ebe7b
|
73f78cdeffea591ff380589c4b1dd03d77d63e0a
|
/projects/08/test4/test4.tst
|
f928946733f817e7ffdebc8eb111757a07bec432
|
[] |
no_license
|
orensam/nand2tetris
|
bf7fe02f4580aff3dfa17e76145c0591112a9adb
|
dff1e1c014d27030037d4afb834cfdbf221c379d
|
refs/heads/master
| 2020-07-21T21:28:27.084153 | 2014-10-28T10:20:09 | 2014-10-28T10:20:09 | 17,370,144 | 1 | 5 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 183 |
tst
|
test4.tst
|
load test4.asm,
output-file test4.out,
compare-to test4.cmp,
output-list RAM[5000]%D1.6.1 RAM[5001]%D1.6.1 RAM[5010]%D1.6.1 RAM[5011]%D1.6.1;
repeat 1000000 {
ticktock;
}
output;
|
e8b0a96e4314ad79ae7ba780fa5a83c646dbaf27
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1682/CH3/EX3.9/Exa3_9.sce
|
286b03ada4fd5ce007de4af4734fd73814956386
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 261 |
sce
|
Exa3_9.sce
|
//Exa3_9
clc;
clear;
close;
//given data is :
P=5000;//in rupees
n=10;//in years
i=12;//% per annum
m=4;//no. of interest periods per year for quarterly
N=n*m;
r=i/m;
F=P*(1+r/100)^N;
disp("Maturity value after 10 years is : "+string(F)+" Rupees.");
|
579044a544b1fcd8a0f5dab5f954924cf1889ac0
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1844/CH5/EX5.1/1.sce
|
0478ddd81d16c9beb76c39918f09efc602c55ea9
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 144 |
sce
|
1.sce
|
clc
// doing only one of the given
// WCB to RB
a= 22.5
printf('a)R.B = N 22.5 E\n')
//RB to WCB
printf(' b)W.C.B = 12 degrees 24 min')
|
87e7c9189a9ca63f47cf192cf41613b2733c4e18
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1931/CH8/EX8.9/9.sce
|
4d1c952f79c4e7b5ed4bba8bb0a86f63203fbb44
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 420 |
sce
|
9.sce
|
clc
clear
//INPUT DATA
a=0.1*10^-9//width of high potential box in m
h=6.625*10^-34//Planck's constant in m^2 Kg /sec
m=9.11*10^-31//mass of electron in Kg
e=1.6*10^-19//charge of electron in coulombs
n=1//take n equal to one
//CALCULATION
E=((n^2*h^2)/(8*m*a^2*e))//The least energy of the particle can be obtained in eV
//OUTPUT
printf('The least energy of the particle can be obtained is %3.2f eV',E)
|
fcf7b275e0a1cbde5aa04c16ffce965cd2a5b962
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2135/CH2/EX2.4/Exa_2_4.sce
|
199794e50658432713ae8f4c4522f43041c6857d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 282 |
sce
|
Exa_2_4.sce
|
//Exa 2.4
clc;
clear;
close;
format('v',7);
//Given Data
Q1=120;//KJ
Q2=-16;//KJ
Q3=-48;//KJ
Q4=12;//KJ
W1=60000;//N-m
W2=68000;//N-m
W3=120000;//N-m
W4=44000;//N-m
Net_work=Q1+Q2+Q3+Q4;//KJ
disp(Net_work*1000,"Net Work in N-m : ");
disp("Option (ii) is true.")
|
b03bbc67e055294293d18cadd4fd304fbd84e049
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2048/CH10/EX10.2/smith.sce
|
2ae3fbc0aaf8d8a6589b9d6e24bf7f3a1f8f1027
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 1,360 |
sce
|
smith.sce
|
// Smith predictor for paper machine control in Example 10.2 on page 385.
// 10.2
exec('zpowk.sci',-1);
exec('poladd.sci',-1);
exec('polsize.sci',-1);
exec('pp_im.sci',-1);
exec('polsplit3.sci',-1);
exec('polmul.sci',-1);
exec('xdync.sci',-1);
exec('rowjoin.sci',-1);
exec('left_prm.sci',-1);
exec('t1calc.sci',-1);
exec('indep.sci',-1);
exec('makezero.sci',-1);
exec('move_sci.sci',-1);
exec('colsplit.sci',-1);
exec('clcoef.sci',-1);
exec('cindep.sci',-1);
exec('seshft.sci',-1);
exec('cosfil_ip.sci',-1);
exec('polyno.sci',-1);
Ts = 1; B = 0.63; A = [1 -0.37]; k = 3;
Bd = convol(B,[0 1]);
kd = k - 1;
[zkd,dzkd] = zpowk(kd);
[mzkd,dmzkd] = poladd(1,0,-zkd,dzkd);
// Desired transfer function
phi = [1 -0.5]; delta = 1;
// Controller design
[Rc,Sc,Tc,gamm] = pp_im(B,A,1,phi,delta);
// simulation parameters for smith_disc.xcos
st = 1.0; // desired change in setpoint
t_init = 0; // simulation start time
t_final = 20; // simulation end time
// simulation parameters for smith_disc.xcos
N_var = 0; C = 0; D = 1; N = 1;
[Tcp1,Tcp2] = cosfil_ip(Tc,1); // Tc/1
[Rcp1,Rcp2] = cosfil_ip(1,Rc); // 1/Rc
[Scp1,Scp2] = cosfil_ip(Sc,1); // Sc/1
[Bdp,Ap] = cosfil_ip(Bd,A); // Bd/Ad
[zkdp1,zkdp2] = cosfil_ip(zkd,1); // zkd/1
[mzkdp1,mzkdp2] = cosfil_ip(mzkd,1); // mzkd/1
[Cp,Dp] = cosfil_ip(C,D); // C/D
|
c0773645d4342911d5c8b612af0a67479cf18dfe
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1364/CH4/EX4.1.1/4_1_1.sce
|
718811988bcb38e1c6600a161c17790fa2c4ce67
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 188 |
sce
|
4_1_1.sce
|
clc
//initialisation of variables
H= 33 //ft lbf/lbf
Q= 100 //ft^3/min
w= 62.4 //lbf/ft^3
s= 0.8
//CALCULATIONS
P= s*w*Q*H/33000
//RESULTS
printf (' power required= %.2f h.p',P)
|
1a4626dbaedddfb697b954224dc2fd053c85cdc8
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/61/CH16/EX16.4/ex16_4.sce
|
58061595719c030de3fc4be974ddf82f54b0bae8
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 295 |
sce
|
ex16_4.sce
|
//ex16.4
R1=10*10^3;
R2=33*10^3;
R3=10*10^3;
C=0.01*10^-6;
f_r=(1/(4*R1*C))*(R2/R3);
disp(f_r,'frequency of oscillation in hertz')
//the value of R1 when frequency of oscillation is 20 kHz
f=20*10^3;
R1=(1/(4*f*C))*(R2/R3);
disp(R1,'value of R1 in ohms to make frequency 20 kiloHertz')
|
679b7a9a65b87902617a04e9debc20d783d77045
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2213/CH1/EX1.13/ex_1_13.sce
|
73ed835d3dc901eb1a35ad975ada924fc1226080
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 533 |
sce
|
ex_1_13.sce
|
//Example 1.13 //voltage ,current and frequency
clc;
clear;
close;
format('v',5)
vl=600;//in volts
p=200;//power absorbed in watts
pf=0.05;//power factor
f=30*10^6;//frequency in Hz
ep=8.854*10^-12;//constant
er=5;//
a=150;// in cm^2
t=0.02;// in meter
c=((ep*er*a*10^-4)/t);//capacitance in farads
vr=(sqrt(p/(2*%pi*f*c*pf)));//voltage is required in volts
i=p/(vr*pf);//current in amperes
f2=((f*(vr/vl)^2))*10^-6;//frequency in Mhz
disp(ceil(vr),"voltage in volts")
disp(round(i),"current in amperes")
disp(f2,"frequency in MHz")
|
ebb12e5d91776e69b879bbf17fe1e9c5d9699cfa
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1397/CH8/EX8.6/8_6.sce
|
d974d5e29fb985700bb304198de52351490cc5a9
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 338 |
sce
|
8_6.sce
|
//clc();
clear;
//To calculate numerical aperture and acceptance angle
n1=1.6; //refractive index of core
n2=1.4; //refractive index of cladding
n0=1.33; //water refractive index
NA=sqrt(n1^2-n2^2)/n0;
printf("numerical aperture is %f",NA);
theta0=asind(NA);
printf("acceptance angle is %f degrees",theta0);
|
a2372e984cb4bad3638e4d98ea7015fca3b1af08
|
897ce6a3fd5b682122c396af7e24fa53014c7cb3
|
/src_script/scilab/_import/rtsx_10/ReplaceLink.sci
|
816801902fdf90c2468074c6779f881d05793fb5
|
[] |
no_license
|
stub22/glue-ai-v1_friendularity
|
e66f5ab357eba45de2def6f7900f414e358a4125
|
74949dc3e9b0d08b39857735aad901915e61322d
|
refs/heads/master
| 2022-12-19T18:57:01.336831 | 2017-08-04T12:55:12 | 2017-08-04T12:55:12 | 284,544,364 | 0 | 0 | null | 2020-10-14T00:08:14 | 2020-08-02T21:24:34 |
Java
|
UTF-8
|
Scilab
| false | false | 2,310 |
sci
|
ReplaceLink.sci
|
//ReplaceLink.sci replace a robot link specified by li
// www.controlsystemslab.com August 2012
// usage: robot=ReplaceLink(robot,L,li);
// Example:
// --> robot = ReplaceLink(robot,L, 2) // remove link 2 with L
function robot=ReplaceLink(robot,L,li)
if argn(2)==0 then
ReplaceLinkHelp();
robot=[];
else
robot = _Replace_Link(robot,L,li);
end
endfunction
function robot=replacelink(robot,L,li)
if argn(2)==0 then
ReplaceLinkHelp();
robot=[];
else
robot = _Replace_Link(robot,L,li);
end
endfunction
function robot=_Replace_Link(robot,L,li)
if robot.mdh ~= L.mdh
if robot.mdh==0 printf("Robot model has standard DH parameters\n");
else printf("Robot model has modified DH parameters\n");
end
if L.mdh==0 printf("New link has standard DH parameters\n");
else printf("New link has modified DH parameters\n");
end
error("Cannot replace because new link has different DH conventions from robot");
end
if type(li)~=1 error ("Link index must be a number."); end
if type(L)~= 17 then error("Wrong data type for link argument");
end
nlinks=robot.nj;
if li<1 | li>nlinks
emsg=sprintf("Valid link index is between 1 - %d",nlinks);
error(emsg);
else
//robot.Link(li) = []; // first delete the specified link
robot.Link(li) = L; // then replace with L
end // if lidx<1 | lidx>nlinks+1
robotcfg = '';
for i=1:nlinks, // automatic update for some variables
if robot.Link(i).sigma then robotcfg=strcat([robotcfg,'P']);
else robotcfg=strcat([robotcfg,'R']);
end
end
robot.conf = robotcfg; // update configuration string
endfunction
function ReplaceLinkHelp()
printf("=============================================================\n");
printf("Usage: robot=ReplaceLink(robot,L,li)\n\n");
printf("replace link li of a robot with L\n");
printf("\tEx: robot=ReplaceLink(robot,L,2); // replace link 2 \n");
printf("=============================================================\n");
endfunction
|
563f032dabe341e0726730c96173202bb7d9fd0e
|
20392bee9b9ba080dc86418049e09f82be683a14
|
/Design_Experiment_1/MUX8WAY16.tst
|
521e77bf17e69aa54041f8110f82a39c07cd5456
|
[] |
no_license
|
Liveitabhi/CSD-LAB
|
698645e3fee27fadc70979c6c64d7de13c58ffbd
|
e91c386c9d575fcced2f5163eea958033ca1e245
|
refs/heads/master
| 2023-01-23T05:31:42.301079 | 2020-12-09T08:52:58 | 2020-12-09T08:52:58 | 298,178,775 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 872 |
tst
|
MUX8WAY16.tst
|
load MUX8WAY16.hdl,
output-file MUX8WAY16.out,
compare-to MUX8WAY16.cmp,
output-list x1%B1.16.1 x2%B1.16.1 x3%B1.16.1 x4%B1.16.1 x5%B1.16.1 x6%B1.16.1 x7%B1.16.1 x8%B1.16.1 s%B2.3.2 z%B1.16.1;
set x1 0,
set x2 0,
set x3 0,
set x4 0,
set x5 0,
set x6 0,
set x7 0,
set x8 0,
set s 0,
eval,
output;
set s 1,
eval,
output;
set s 2,
eval,
output;
set s 3,
eval,
output;
set s 4,
eval,
output;
set s 5,
eval,
output;
set s 6,
eval,
output;
set s 7,
eval,
output;
set x1 %B0001001000110100,
set x2 %B0010001101000101,
set x3 %B0011010001010110,
set x4 %B0100010101100111,
set x5 %B0101011001111000,
set x6 %B0110011110001001,
set x7 %B0111100010011010,
set x8 %B1000100110101011,
set s 0,
eval,
output;
set s 1,
eval,
output;
set s 2,
eval,
output;
set s 3,
eval,
output;
set s 4,
eval,
output;
set s 5,
eval,
output;
set s 6,
eval,
output;
set s 7,
eval,
output;
|
64174fb8ab1163a1bef2061d7cf6b4f2e330d4b1
|
527dd92897bc9b75dde0f2f306f31510deaefe20
|
/1547.1/Tests/WV/WV_1.tst
|
0fa17795d8c2aadf7611251b1f8da98d47b7dc64
|
[] |
no_license
|
BuiMCanmet/svp_1547.1
|
7520680bfc5895b36081487099d22aac2a0b90d4
|
5f6a8e5d55ff7f109d02b618fd594c8a4f9d4eae
|
refs/heads/master_python37
| 2021-06-29T02:31:53.200049 | 2021-01-11T16:37:37 | 2021-01-11T16:37:37 | 179,517,708 | 0 | 1 | null | 2020-08-27T18:40:17 | 2019-04-04T14:44:13 |
Python
|
UTF-8
|
Scilab
| false | false | 1,382 |
tst
|
WV_1.tst
|
<scriptConfig name="WV_1" script="WV">
<params>
<param name="eut_wv.test_1_t_r" type="float">10.0</param>
<param name="eut_wv.irr" type="string">100%</param>
<param name="eut.v_low" type="float">116.0</param>
<param name="eut.v_nom" type="float">120.0</param>
<param name="eut.v_high" type="float">132.0</param>
<param name="eut.v_in_nom" type="int">400</param>
<param name="eut.p_min" type="float">1000.0</param>
<param name="eut.var_rated" type="float">2000.0</param>
<param name="eut.p_rated" type="float">8000.0</param>
<param name="eut.s_rated" type="float">10000.0</param>
<param name="eut_wv.test_2" type="string">Disabled</param>
<param name="eut_wv.test_3" type="string">Disabled</param>
<param name="der.mode" type="string">Disabled</param>
<param name="gridsim.mode" type="string">Disabled</param>
<param name="gridsim.auto_config" type="string">Disabled</param>
<param name="pvsim.mode" type="string">Disabled</param>
<param name="das.mode" type="string">Disabled</param>
<param name="hil.mode" type="string">Disabled</param>
<param name="eut_wv.test_1" type="string">Enabled</param>
<param name="eut.abs_enable" type="string">No</param>
<param name="eut_wv.mode" type="string">Normal</param>
<param name="eut.phases" type="string">Three phase</param>
</params>
</scriptConfig>
|
4ea23ce48d2a54b439b85a032ff8984efeb9abb9
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1919/CH3/EX3.10/Ex3_10.sce
|
65467d0638469bb50f74e56187eea1e51093737f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 1,062 |
sce
|
Ex3_10.sce
|
// Theory and Problems of Thermodynamics
// Chapter 3
// Thermodynamic Properties of Fluids
// Example 10
clear ;clc;
//Given data
X = 0.8 // wet stream quality
P = 0.1 // Pressure in MPa
T = 300 // Temperature in C
h_f = 417.46 // Specific enthalpy of fluid
h_fg = 2258.0 // Specific enthalpy difference of gas and fluid
v_f = 0.001043 // Specific volume of liquid in m^3/kg
v_g = 1.6940 // Specific volume of vapor in m^3/kg
h2 = 3074.3 // specific enthalpy at 300C and 0.1MPa in kJ/kg
v2 = 2.639 // Specific volume at 300C and 0.1MPa in m^3/kg
P = P * 1e6 // Units conversion from MPa to Pa
// Calculations
h1 = h_f + X*h_fg
v1 = X*v_g + (1-X)*v_f
Q = h2 - h1 // heat interaction by the steam
W = P*(v2-v1) // Work done by the steam
W = W * 1e-3 // Units conversion from J to kJ
// Output Results
mprintf('heat interaction by the steam = %6.2f kJ/kg' ,Q)
mprintf('\n Work done by the steam = %6.2f kJ/kg' ,W)
|
d0578bd878ffd387cc24d5be56826b3acd06d84d
|
6e257f133dd8984b578f3c9fd3f269eabc0750be
|
/ScilabFromTheoryToPractice/Programming/testreturn.sce
|
ab0db528f3f6a9a6a525b693b48d750bfc034b00
|
[] |
no_license
|
markusmorawitz77/Scilab
|
902ef1b9f356dd38ea2dbadc892fe50d32b44bd0
|
7c98963a7d80915f66a3231a2235010e879049aa
|
refs/heads/master
| 2021-01-19T23:53:52.068010 | 2017-04-22T12:39:21 | 2017-04-22T12:39:21 | 89,051,705 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 255 |
sce
|
testreturn.sce
|
function foo(x)
txt_foo='x is equal to '+string(x)
txt_sci=return(txt_foo)
disp('what follows doesn''t get executed')
endfunction
foo(1)
txt_sci // the txt_sci variable does exist here
txt_foo // the txt_foo variable doesn't exist here
|
a5538e10d4f5479ab355bf62bddff34aa045178d
|
1bb72df9a084fe4f8c0ec39f778282eb52750801
|
/test/TEC2S.prev.tst
|
77a9e049e3e526776bc69cd782db77f7ed60fb34
|
[
"Apache-2.0",
"LicenseRef-scancode-unknown-license-reference"
] |
permissive
|
gfis/ramath
|
498adfc7a6d353d4775b33020fdf992628e3fbff
|
b09b48639ddd4709ffb1c729e33f6a4b9ef676b5
|
refs/heads/master
| 2023-08-17T00:10:37.092379 | 2023-08-04T07:48:00 | 2023-08-04T07:48:00 | 30,116,803 | 2 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 65,553 |
tst
|
TEC2S.prev.tst
|
Expanding for base=2, level=9, reasons+features=base,same,similiar,evenexp invall,showfail
Refined variables=x,y
[0+1x,0+1y]: unknown -> [1] [0,0] x²-y³+2
---------------- level 0
expanding queue[0]^-1,meter=[2,2]: x²-y³+2
[0+2x,0+2y]: failure constant=2, vgcd=4 [0,0] 4x²-8y³+2
[1+2x,0+2y]: failure constant=3, vgcd=4 [1,0] 4x+4x²-8y³+3
[0+2x,1+2y]: failure constant=1, vgcd=2 [0,1] 4x²-6y-12y²-8y³+1
[1+2x,1+2y]: unknown -> [1] [1,1] 4x+4x²-6y-12y²-8y³+2
endexp[0]
---------------- level 1
expanding queue[1]^0,meter=[2,2]: 4x+4x²-6y-12y²-8y³+2
[1+4x,1+4y]: failure constant=2, vgcd=4 [0,0] 8x+16x²-12y-48y²-64y³+2
[3+4x,1+4y]: failure constant=10, vgcd=4 [1,0] 24x+16x²-12y-48y²-64y³+10
[1+4x,3+4y]: unknown -> [2] [0,1] 8x+16x²-108y-144y²-64y³-24
-> solution [5,3],NONTRIVIAL
[3+4x,3+4y]: negative-1 [2] by {x=>-x-1}
endexp[1]
---------------- level 2
expanding queue[2]^1,meter=[2,2]: 8x+16x²-108y-144y²-64y³-24
[1+8x,3+8y]: unknown -> [3] [0,0] 16x+64x²-216y-576y²-512y³-24
[5+8x,3+8y]: unknown -> [4] [1,0] 80x+64x²-216y-576y²-512y³
-> solution [5,3],NONTRIVIAL
[1+8x,7+8y]: failure constant=-340, vgcd=8 [0,1] 16x+64x²-1176y-1344y²-512y³-340
[5+8x,7+8y]: failure constant=-316, vgcd=8 [1,1] 80x+64x²-1176y-1344y²-512y³-316
endexp[2]
---------------- level 3
expanding queue[3]^2,meter=[2,2]: 16x+64x²-216y-576y²-512y³-24
[1+16x,3+16y]: failure constant=-24, vgcd=16 [0,0] 32x+256x²-432y-2304y²-4096y³-24
[9+16x,3+16y]: failure constant=56, vgcd=16 [1,0] 288x+256x²-432y-2304y²-4096y³+56
[1+16x,11+16y]: unknown -> [5] [0,1] 32x+256x²-5808y-8448y²-4096y³-1328
[9+16x,11+16y]: unknown -> [6] [1,1] 288x+256x²-5808y-8448y²-4096y³-1248
endexp[3]
expanding queue[4]^2,meter=[2,2]: 80x+64x²-216y-576y²-512y³
[5+16x,3+16y]: unknown -> [7] [0,0] 160x+256x²-432y-2304y²-4096y³
-> solution [5,3],NONTRIVIAL
[13+16x,3+16y]: unknown -> [8] [1,0] 416x+256x²-432y-2304y²-4096y³+144
[5+16x,11+16y]: failure constant=-1304, vgcd=16 [0,1] 160x+256x²-5808y-8448y²-4096y³-1304
[13+16x,11+16y]: failure constant=-1160, vgcd=16 [1,1] 416x+256x²-5808y-8448y²-4096y³-1160
endexp[4]
---------------- level 4
expanding queue[5]^3,meter=[2,2]: 32x+256x²-5808y-8448y²-4096y³-1328
[1+32x,11+32y]: failure constant=-1328, vgcd=32 [0,0] 64x+1024x²-11616y-33792y²-32768y³-1328
[17+32x,11+32y]: failure constant=-1040, vgcd=32 [1,0] 1088x+1024x²-11616y-33792y²-32768y³-1040
[1+32x,27+32y]: unknown -> [9] [0,1] 64x+1024x²-69984y-82944y²-32768y³-19680
[17+32x,27+32y]: unknown -> [10] [1,1] 1088x+1024x²-69984y-82944y²-32768y³-19392
endexp[5]
expanding queue[6]^3,meter=[2,2]: 288x+256x²-5808y-8448y²-4096y³-1248
[9+32x,11+32y]: unknown -> [11] [0,0] 576x+1024x²-11616y-33792y²-32768y³-1248
[25+32x,11+32y]: unknown -> [12] [1,0] 1600x+1024x²-11616y-33792y²-32768y³-704
[9+32x,27+32y]: failure constant=-19600, vgcd=32 [0,1] 576x+1024x²-69984y-82944y²-32768y³-19600
[25+32x,27+32y]: failure constant=-19056, vgcd=32 [1,1] 1600x+1024x²-69984y-82944y²-32768y³-19056
endexp[6]
expanding queue[7]^4,meter=[2,2]: 160x+256x²-432y-2304y²-4096y³
[5+32x,3+32y]: unknown -> [13] [0,0] 320x+1024x²-864y-9216y²-32768y³
-> solution [5,3],NONTRIVIAL
[21+32x,3+32y]: unknown -> [14] [1,0] 1344x+1024x²-864y-9216y²-32768y³+416
[5+32x,19+32y]: failure constant=-6832, vgcd=32 [0,1] 320x+1024x²-34656y-58368y²-32768y³-6832
[21+32x,19+32y]: failure constant=-6416, vgcd=32 [1,1] 1344x+1024x²-34656y-58368y²-32768y³-6416
endexp[7]
expanding queue[8]^4,meter=[2,2]: 416x+256x²-432y-2304y²-4096y³+144
[13+32x,3+32y]: failure constant=144, vgcd=32 [0,0] 832x+1024x²-864y-9216y²-32768y³+144
[29+32x,3+32y]: failure constant=816, vgcd=32 [1,0] 1856x+1024x²-864y-9216y²-32768y³+816
[13+32x,19+32y]: unknown -> [15] [0,1] 832x+1024x²-34656y-58368y²-32768y³-6688
[29+32x,19+32y]: unknown -> [16] [1,1] 1856x+1024x²-34656y-58368y²-32768y³-6016
endexp[8]
---------------- level 5
expanding queue[9]^5,meter=[2,2]: 64x+1024x²-69984y-82944y²-32768y³-19680
[1+64x,27+64y]: failure constant=-19680, vgcd=64 [0,0] 128x+4096x²-139968y-331776y²-262144y³-19680
[33+64x,27+64y]: failure constant=-18592, vgcd=64 [1,0] 4224x+4096x²-139968y-331776y²-262144y³-18592
[1+64x,59+64y]: unknown -> [17] [0,1] 128x+4096x²-668352y-724992y²-262144y³-205376
[33+64x,59+64y]: unknown -> [18] [1,1] 4224x+4096x²-668352y-724992y²-262144y³-204288
endexp[9]
expanding queue[10]^5,meter=[2,2]: 1088x+1024x²-69984y-82944y²-32768y³-19392
[17+64x,27+64y]: unknown -> [19] [0,0] 2176x+4096x²-139968y-331776y²-262144y³-19392
[49+64x,27+64y]: unknown -> [20] [1,0] 6272x+4096x²-139968y-331776y²-262144y³-17280
[17+64x,59+64y]: failure constant=-205088, vgcd=64 [0,1] 2176x+4096x²-668352y-724992y²-262144y³-205088
[49+64x,59+64y]: failure constant=-202976, vgcd=64 [1,1] 6272x+4096x²-668352y-724992y²-262144y³-202976
endexp[10]
expanding queue[11]^6,meter=[2,2]: 576x+1024x²-11616y-33792y²-32768y³-1248
[9+64x,11+64y]: failure constant=-1248, vgcd=64 [0,0] 1152x+4096x²-23232y-135168y²-262144y³-1248
[41+64x,11+64y]: failure constant=352, vgcd=64 [1,0] 5248x+4096x²-23232y-135168y²-262144y³+352
[9+64x,43+64y]: unknown -> [21] [0,1] 1152x+4096x²-355008y-528384y²-262144y³-79424
[41+64x,43+64y]: unknown -> [22] [1,1] 5248x+4096x²-355008y-528384y²-262144y³-77824
endexp[11]
expanding queue[12]^6,meter=[2,2]: 1600x+1024x²-11616y-33792y²-32768y³-704
[25+64x,11+64y]: unknown -> [23] [0,0] 3200x+4096x²-23232y-135168y²-262144y³-704
[57+64x,11+64y]: unknown -> [24] [1,0] 7296x+4096x²-23232y-135168y²-262144y³+1920
[25+64x,43+64y]: failure constant=-78880, vgcd=64 [0,1] 3200x+4096x²-355008y-528384y²-262144y³-78880
[57+64x,43+64y]: failure constant=-76256, vgcd=64 [1,1] 7296x+4096x²-355008y-528384y²-262144y³-76256
endexp[12]
expanding queue[13]^7,meter=[2,2]: 320x+1024x²-864y-9216y²-32768y³
[5+64x,3+64y]: same 640x+4096x²-1728y-36864y²-262144y³ map {x=>x/8,y=>y/8} -> [4] 80x+64x²-216y-576y²-512y³
-> solution [5,3],NONTRIVIAL
[37+64x,3+64y]: unknown -> [25] [1,0] 4736x+4096x²-1728y-36864y²-262144y³+1344
[5+64x,35+64y]: failure constant=-42848, vgcd=64 [0,1] 640x+4096x²-235200y-430080y²-262144y³-42848
[37+64x,35+64y]: failure constant=-41504, vgcd=64 [1,1] 4736x+4096x²-235200y-430080y²-262144y³-41504
endexp[13]
expanding queue[14]^7,meter=[2,2]: 1344x+1024x²-864y-9216y²-32768y³+416
[21+64x,3+64y]: failure constant=416, vgcd=64 [0,0] 2688x+4096x²-1728y-36864y²-262144y³+416
[53+64x,3+64y]: failure constant=2784, vgcd=64 [1,0] 6784x+4096x²-1728y-36864y²-262144y³+2784
[21+64x,35+64y]: unknown -> [26] [0,1] 2688x+4096x²-235200y-430080y²-262144y³-42432
[53+64x,35+64y]: unknown -> [27] [1,1] 6784x+4096x²-235200y-430080y²-262144y³-40064
endexp[14]
expanding queue[15]^8,meter=[2,2]: 832x+1024x²-34656y-58368y²-32768y³-6688
[13+64x,19+64y]: failure constant=-6688, vgcd=64 [0,0] 1664x+4096x²-69312y-233472y²-262144y³-6688
[45+64x,19+64y]: failure constant=-4832, vgcd=64 [1,0] 5760x+4096x²-69312y-233472y²-262144y³-4832
[13+64x,51+64y]: unknown -> [28] [0,1] 1664x+4096x²-499392y-626688y²-262144y³-132480
[45+64x,51+64y]: unknown -> [29] [1,1] 5760x+4096x²-499392y-626688y²-262144y³-130624
endexp[15]
expanding queue[16]^8,meter=[2,2]: 1856x+1024x²-34656y-58368y²-32768y³-6016
[29+64x,19+64y]: unknown -> [30] [0,0] 3712x+4096x²-69312y-233472y²-262144y³-6016
[61+64x,19+64y]: unknown -> [31] [1,0] 7808x+4096x²-69312y-233472y²-262144y³-3136
[29+64x,51+64y]: failure constant=-131808, vgcd=64 [0,1] 3712x+4096x²-499392y-626688y²-262144y³-131808
[61+64x,51+64y]: failure constant=-128928, vgcd=64 [1,1] 7808x+4096x²-499392y-626688y²-262144y³-128928
endexp[16]
---------------- level 6
expanding queue[17]^9,meter=[2,2]: 128x+4096x²-668352y-724992y²-262144y³-205376
[1+128x,59+128y]: failure constant=-205376, vgcd=128 [0,0] 256x+16384x²-1336704y-2899968y²-2097152y³-205376
[65+128x,59+128y]: failure constant=-201152, vgcd=128 [1,0] 16640x+16384x²-1336704y-2899968y²-2097152y³-201152
[1+128x,123+128y]: unknown -> [32] [0,1] 256x+16384x²-5809536y-6045696y²-2097152y³-1860864
[65+128x,123+128y]: unknown -> [33] [1,1] 16640x+16384x²-5809536y-6045696y²-2097152y³-1856640
endexp[17]
expanding queue[18]^9,meter=[2,2]: 4224x+4096x²-668352y-724992y²-262144y³-204288
[33+128x,59+128y]: unknown -> [34] [0,0] 8448x+16384x²-1336704y-2899968y²-2097152y³-204288
[97+128x,59+128y]: unknown -> [35] [1,0] 24832x+16384x²-1336704y-2899968y²-2097152y³-195968
[33+128x,123+128y]: failure constant=-1859776, vgcd=128 [0,1] 8448x+16384x²-5809536y-6045696y²-2097152y³-1859776
[97+128x,123+128y]: failure constant=-1851456, vgcd=128 [1,1] 24832x+16384x²-5809536y-6045696y²-2097152y³-1851456
endexp[18]
expanding queue[19]^10,meter=[2,2]: 2176x+4096x²-139968y-331776y²-262144y³-19392
[17+128x,27+128y]: failure constant=-19392, vgcd=128 [0,0] 4352x+16384x²-279936y-1327104y²-2097152y³-19392
[81+128x,27+128y]: failure constant=-13120, vgcd=128 [1,0] 20736x+16384x²-279936y-1327104y²-2097152y³-13120
[17+128x,91+128y]: unknown -> [36] [0,1] 4352x+16384x²-3179904y-4472832y²-2097152y³-753280
[81+128x,91+128y]: unknown -> [37] [1,1] 20736x+16384x²-3179904y-4472832y²-2097152y³-747008
endexp[19]
expanding queue[20]^10,meter=[2,2]: 6272x+4096x²-139968y-331776y²-262144y³-17280
[49+128x,27+128y]: unknown -> [38] [0,0] 12544x+16384x²-279936y-1327104y²-2097152y³-17280
[113+128x,27+128y]: unknown -> [39] [1,0] 28928x+16384x²-279936y-1327104y²-2097152y³-6912
[49+128x,91+128y]: failure constant=-751168, vgcd=128 [0,1] 12544x+16384x²-3179904y-4472832y²-2097152y³-751168
[113+128x,91+128y]: failure constant=-740800, vgcd=128 [1,1] 28928x+16384x²-3179904y-4472832y²-2097152y³-740800
endexp[20]
expanding queue[21]^11,meter=[2,2]: 1152x+4096x²-355008y-528384y²-262144y³-79424
[9+128x,43+128y]: failure constant=-79424, vgcd=128 [0,0] 2304x+16384x²-710016y-2113536y²-2097152y³-79424
[73+128x,43+128y]: failure constant=-74176, vgcd=128 [1,0] 18688x+16384x²-710016y-2113536y²-2097152y³-74176
[9+128x,107+128y]: unknown -> [40] [0,1] 2304x+16384x²-4396416y-5259264y²-2097152y³-1224960
[73+128x,107+128y]: unknown -> [41] [1,1] 18688x+16384x²-4396416y-5259264y²-2097152y³-1219712
endexp[21]
expanding queue[22]^11,meter=[2,2]: 5248x+4096x²-355008y-528384y²-262144y³-77824
[41+128x,43+128y]: unknown -> [42] [0,0] 10496x+16384x²-710016y-2113536y²-2097152y³-77824
[105+128x,43+128y]: unknown -> [43] [1,0] 26880x+16384x²-710016y-2113536y²-2097152y³-68480
[41+128x,107+128y]: failure constant=-1223360, vgcd=128 [0,1] 10496x+16384x²-4396416y-5259264y²-2097152y³-1223360
[105+128x,107+128y]: failure constant=-1214016, vgcd=128 [1,1] 26880x+16384x²-4396416y-5259264y²-2097152y³-1214016
endexp[22]
expanding queue[23]^12,meter=[2,2]: 3200x+4096x²-23232y-135168y²-262144y³-704
[25+128x,11+128y]: failure constant=-704, vgcd=128 [0,0] 6400x+16384x²-46464y-540672y²-2097152y³-704
[89+128x,11+128y]: failure constant=6592, vgcd=128 [1,0] 22784x+16384x²-46464y-540672y²-2097152y³+6592
[25+128x,75+128y]: unknown -> [44] [0,1] 6400x+16384x²-2160000y-3686400y²-2097152y³-421248
[89+128x,75+128y]: unknown -> [45] [1,1] 22784x+16384x²-2160000y-3686400y²-2097152y³-413952
endexp[23]
expanding queue[24]^12,meter=[2,2]: 7296x+4096x²-23232y-135168y²-262144y³+1920
[57+128x,11+128y]: unknown -> [46] [0,0] 14592x+16384x²-46464y-540672y²-2097152y³+1920
[121+128x,11+128y]: unknown -> [47] [1,0] 30976x+16384x²-46464y-540672y²-2097152y³+13312
[57+128x,75+128y]: failure constant=-418624, vgcd=128 [0,1] 14592x+16384x²-2160000y-3686400y²-2097152y³-418624
[121+128x,75+128y]: failure constant=-407232, vgcd=128 [1,1] 30976x+16384x²-2160000y-3686400y²-2097152y³-407232
endexp[24]
expanding queue[25]^13,meter=[2,2]: 4736x+4096x²-1728y-36864y²-262144y³+1344
[37+128x,3+128y]: failure constant=1344, vgcd=128 [0,0] 9472x+16384x²-3456y-147456y²-2097152y³+1344
[101+128x,3+128y]: failure constant=10176, vgcd=128 [1,0] 25856x+16384x²-3456y-147456y²-2097152y³+10176
[37+128x,67+128y]: unknown -> [48] [0,1] 9472x+16384x²-1723776y-3293184y²-2097152y³-299392
[101+128x,67+128y]: unknown -> [49] [1,1] 25856x+16384x²-1723776y-3293184y²-2097152y³-290560
endexp[25]
expanding queue[26]^14,meter=[2,2]: 2688x+4096x²-235200y-430080y²-262144y³-42432
[21+128x,35+128y]: failure constant=-42432, vgcd=128 [0,0] 5376x+16384x²-470400y-1720320y²-2097152y³-42432
[85+128x,35+128y]: failure constant=-35648, vgcd=128 [1,0] 21760x+16384x²-470400y-1720320y²-2097152y³-35648
[21+128x,99+128y]: unknown -> [50] [0,1] 5376x+16384x²-3763584y-4866048y²-2097152y³-969856
[85+128x,99+128y]: unknown -> [51] [1,1] 21760x+16384x²-3763584y-4866048y²-2097152y³-963072
endexp[26]
expanding queue[27]^14,meter=[2,2]: 6784x+4096x²-235200y-430080y²-262144y³-40064
[53+128x,35+128y]: unknown -> [52] [0,0] 13568x+16384x²-470400y-1720320y²-2097152y³-40064
[117+128x,35+128y]: unknown -> [53] [1,0] 29952x+16384x²-470400y-1720320y²-2097152y³-29184
[53+128x,99+128y]: failure constant=-967488, vgcd=128 [0,1] 13568x+16384x²-3763584y-4866048y²-2097152y³-967488
[117+128x,99+128y]: failure constant=-956608, vgcd=128 [1,1] 29952x+16384x²-3763584y-4866048y²-2097152y³-956608
endexp[27]
expanding queue[28]^15,meter=[2,2]: 1664x+4096x²-499392y-626688y²-262144y³-132480
[13+128x,51+128y]: unknown -> [54] [0,0] 3328x+16384x²-998784y-2506752y²-2097152y³-132480
[77+128x,51+128y]: unknown -> [55] [1,0] 19712x+16384x²-998784y-2506752y²-2097152y³-126720
[13+128x,115+128y]: failure constant=-1520704, vgcd=128 [0,1] 3328x+16384x²-5078400y-5652480y²-2097152y³-1520704
[77+128x,115+128y]: failure constant=-1514944, vgcd=128 [1,1] 19712x+16384x²-5078400y-5652480y²-2097152y³-1514944
endexp[28]
expanding queue[29]^15,meter=[2,2]: 5760x+4096x²-499392y-626688y²-262144y³-130624
[45+128x,51+128y]: failure constant=-130624, vgcd=128 [0,0] 11520x+16384x²-998784y-2506752y²-2097152y³-130624
[109+128x,51+128y]: failure constant=-120768, vgcd=128 [1,0] 27904x+16384x²-998784y-2506752y²-2097152y³-120768
[45+128x,115+128y]: unknown -> [56] [0,1] 11520x+16384x²-5078400y-5652480y²-2097152y³-1518848
[109+128x,115+128y]: unknown -> [57] [1,1] 27904x+16384x²-5078400y-5652480y²-2097152y³-1508992
endexp[29]
expanding queue[30]^16,meter=[2,2]: 3712x+4096x²-69312y-233472y²-262144y³-6016
[29+128x,19+128y]: unknown -> [58] [0,0] 7424x+16384x²-138624y-933888y²-2097152y³-6016
[93+128x,19+128y]: unknown -> [59] [1,0] 23808x+16384x²-138624y-933888y²-2097152y³+1792
[29+128x,83+128y]: failure constant=-570944, vgcd=128 [0,1] 7424x+16384x²-2645376y-4079616y²-2097152y³-570944
[93+128x,83+128y]: failure constant=-563136, vgcd=128 [1,1] 23808x+16384x²-2645376y-4079616y²-2097152y³-563136
endexp[30]
expanding queue[31]^16,meter=[2,2]: 7808x+4096x²-69312y-233472y²-262144y³-3136
[61+128x,19+128y]: failure constant=-3136, vgcd=128 [0,0] 15616x+16384x²-138624y-933888y²-2097152y³-3136
[125+128x,19+128y]: failure constant=8768, vgcd=128 [1,0] 32000x+16384x²-138624y-933888y²-2097152y³+8768
[61+128x,83+128y]: unknown -> [60] [0,1] 15616x+16384x²-2645376y-4079616y²-2097152y³-568064
[125+128x,83+128y]: unknown -> [61] [1,1] 32000x+16384x²-2645376y-4079616y²-2097152y³-556160
endexp[31]
---------------- level 7
expanding queue[32]^17,meter=[2,2]: 256x+16384x²-5809536y-6045696y²-2097152y³-1860864
[1+256x,123+256y]: unknown -> [62] [0,0] 512x+65536x²-11619072y-24182784y²-16777216y³-1860864
[129+256x,123+256y]: unknown -> [63] [1,0] 66048x+65536x²-11619072y-24182784y²-16777216y³-1844224
[1+256x,251+256y]: failure constant=-15813248, vgcd=256 [0,1] 512x+65536x²-48384768y-49348608y²-16777216y³-15813248
[129+256x,251+256y]: failure constant=-15796608, vgcd=256 [1,1] 66048x+65536x²-48384768y-49348608y²-16777216y³-15796608
endexp[32]
expanding queue[33]^17,meter=[2,2]: 16640x+16384x²-5809536y-6045696y²-2097152y³-1856640
[65+256x,123+256y]: failure constant=-1856640, vgcd=256 [0,0] 33280x+65536x²-11619072y-24182784y²-16777216y³-1856640
[193+256x,123+256y]: failure constant=-1823616, vgcd=256 [1,0] 98816x+65536x²-11619072y-24182784y²-16777216y³-1823616
[65+256x,251+256y]: unknown -> [64] [0,1] 33280x+65536x²-48384768y-49348608y²-16777216y³-15809024
[193+256x,251+256y]: unknown -> [65] [1,1] 98816x+65536x²-48384768y-49348608y²-16777216y³-15776000
endexp[33]
expanding queue[34]^18,meter=[2,2]: 8448x+16384x²-1336704y-2899968y²-2097152y³-204288
[33+256x,59+256y]: unknown -> [66] [0,0] 16896x+65536x²-2673408y-11599872y²-16777216y³-204288
[161+256x,59+256y]: unknown -> [67] [1,0] 82432x+65536x²-2673408y-11599872y²-16777216y³-179456
[33+256x,187+256y]: failure constant=-6538112, vgcd=256 [0,1] 16896x+65536x²-26856192y-36765696y²-16777216y³-6538112
[161+256x,187+256y]: failure constant=-6513280, vgcd=256 [1,1] 82432x+65536x²-26856192y-36765696y²-16777216y³-6513280
endexp[34]
expanding queue[35]^18,meter=[2,2]: 24832x+16384x²-1336704y-2899968y²-2097152y³-195968
[97+256x,59+256y]: failure constant=-195968, vgcd=256 [0,0] 49664x+65536x²-2673408y-11599872y²-16777216y³-195968
[225+256x,59+256y]: failure constant=-154752, vgcd=256 [1,0] 115200x+65536x²-2673408y-11599872y²-16777216y³-154752
[97+256x,187+256y]: unknown -> [68] [0,1] 49664x+65536x²-26856192y-36765696y²-16777216y³-6529792
[225+256x,187+256y]: unknown -> [69] [1,1] 115200x+65536x²-26856192y-36765696y²-16777216y³-6488576
endexp[35]
expanding queue[36]^19,meter=[2,2]: 4352x+16384x²-3179904y-4472832y²-2097152y³-753280
[17+256x,91+256y]: failure constant=-753280, vgcd=256 [0,0] 8704x+65536x²-6359808y-17891328y²-16777216y³-753280
[145+256x,91+256y]: failure constant=-732544, vgcd=256 [1,0] 74240x+65536x²-6359808y-17891328y²-16777216y³-732544
[17+256x,219+256y]: unknown -> [70] [0,1] 8704x+65536x²-36834048y-43057152y²-16777216y³-10503168
[145+256x,219+256y]: unknown -> [71] [1,1] 74240x+65536x²-36834048y-43057152y²-16777216y³-10482432
endexp[36]
expanding queue[37]^19,meter=[2,2]: 20736x+16384x²-3179904y-4472832y²-2097152y³-747008
[81+256x,91+256y]: unknown -> [72] [0,0] 41472x+65536x²-6359808y-17891328y²-16777216y³-747008
[209+256x,91+256y]: unknown -> [73] [1,0] 107008x+65536x²-6359808y-17891328y²-16777216y³-709888
[81+256x,219+256y]: failure constant=-10496896, vgcd=256 [0,1] 41472x+65536x²-36834048y-43057152y²-16777216y³-10496896
[209+256x,219+256y]: failure constant=-10459776, vgcd=256 [1,1] 107008x+65536x²-36834048y-43057152y²-16777216y³-10459776
endexp[37]
expanding queue[38]^20,meter=[2,2]: 12544x+16384x²-279936y-1327104y²-2097152y³-17280
[49+256x,27+256y]: failure constant=-17280, vgcd=256 [0,0] 25088x+65536x²-559872y-5308416y²-16777216y³-17280
[177+256x,27+256y]: failure constant=11648, vgcd=256 [1,0] 90624x+65536x²-559872y-5308416y²-16777216y³+11648
[49+256x,155+256y]: unknown -> [74] [0,1] 25088x+65536x²-18451200y-30474240y²-16777216y³-3721472
[177+256x,155+256y]: unknown -> [75] [1,1] 90624x+65536x²-18451200y-30474240y²-16777216y³-3692544
endexp[38]
expanding queue[39]^20,meter=[2,2]: 28928x+16384x²-279936y-1327104y²-2097152y³-6912
[113+256x,27+256y]: unknown -> [76] [0,0] 57856x+65536x²-559872y-5308416y²-16777216y³-6912
[241+256x,27+256y]: unknown -> [77] [1,0] 123392x+65536x²-559872y-5308416y²-16777216y³+38400
[113+256x,155+256y]: failure constant=-3711104, vgcd=256 [0,1] 57856x+65536x²-18451200y-30474240y²-16777216y³-3711104
[241+256x,155+256y]: failure constant=-3665792, vgcd=256 [1,1] 123392x+65536x²-18451200y-30474240y²-16777216y³-3665792
endexp[39]
expanding queue[40]^21,meter=[2,2]: 2304x+16384x²-4396416y-5259264y²-2097152y³-1224960
[9+256x,107+256y]: unknown -> [78] [0,0] 4608x+65536x²-8792832y-21037056y²-16777216y³-1224960
[137+256x,107+256y]: unknown -> [79] [1,0] 70144x+65536x²-8792832y-21037056y²-16777216y³-1206272
[9+256x,235+256y]: failure constant=-12977792, vgcd=256 [0,1] 4608x+65536x²-42412800y-46202880y²-16777216y³-12977792
[137+256x,235+256y]: failure constant=-12959104, vgcd=256 [1,1] 70144x+65536x²-42412800y-46202880y²-16777216y³-12959104
endexp[40]
expanding queue[41]^21,meter=[2,2]: 18688x+16384x²-4396416y-5259264y²-2097152y³-1219712
[73+256x,107+256y]: failure constant=-1219712, vgcd=256 [0,0] 37376x+65536x²-8792832y-21037056y²-16777216y³-1219712
[201+256x,107+256y]: failure constant=-1184640, vgcd=256 [1,0] 102912x+65536x²-8792832y-21037056y²-16777216y³-1184640
[73+256x,235+256y]: unknown -> [80] [0,1] 37376x+65536x²-42412800y-46202880y²-16777216y³-12972544
[201+256x,235+256y]: unknown -> [81] [1,1] 102912x+65536x²-42412800y-46202880y²-16777216y³-12937472
endexp[41]
expanding queue[42]^22,meter=[2,2]: 10496x+16384x²-710016y-2113536y²-2097152y³-77824
[41+256x,43+256y]: unknown -> [82] [0,0] 20992x+65536x²-1420032y-8454144y²-16777216y³-77824
[169+256x,43+256y]: unknown -> [83] [1,0] 86528x+65536x²-1420032y-8454144y²-16777216y³-50944
[41+256x,171+256y]: failure constant=-4998528, vgcd=256 [0,1] 20992x+65536x²-22457088y-33619968y²-16777216y³-4998528
[169+256x,171+256y]: failure constant=-4971648, vgcd=256 [1,1] 86528x+65536x²-22457088y-33619968y²-16777216y³-4971648
endexp[42]
expanding queue[43]^22,meter=[2,2]: 26880x+16384x²-710016y-2113536y²-2097152y³-68480
[105+256x,43+256y]: failure constant=-68480, vgcd=256 [0,0] 53760x+65536x²-1420032y-8454144y²-16777216y³-68480
[233+256x,43+256y]: failure constant=-25216, vgcd=256 [1,0] 119296x+65536x²-1420032y-8454144y²-16777216y³-25216
[105+256x,171+256y]: unknown -> [84] [0,1] 53760x+65536x²-22457088y-33619968y²-16777216y³-4989184
[233+256x,171+256y]: unknown -> [85] [1,1] 119296x+65536x²-22457088y-33619968y²-16777216y³-4945920
endexp[43]
expanding queue[44]^23,meter=[2,2]: 6400x+16384x²-2160000y-3686400y²-2097152y³-421248
[25+256x,75+256y]: failure constant=-421248, vgcd=256 [0,0] 12800x+65536x²-4320000y-14745600y²-16777216y³-421248
[153+256x,75+256y]: failure constant=-398464, vgcd=256 [1,0] 78336x+65536x²-4320000y-14745600y²-16777216y³-398464
[25+256x,203+256y]: unknown -> [86] [0,1] 12800x+65536x²-31648512y-39911424y²-16777216y³-8364800
[153+256x,203+256y]: unknown -> [87] [1,1] 78336x+65536x²-31648512y-39911424y²-16777216y³-8342016
endexp[44]
expanding queue[45]^23,meter=[2,2]: 22784x+16384x²-2160000y-3686400y²-2097152y³-413952
[89+256x,75+256y]: unknown -> [88] [0,0] 45568x+65536x²-4320000y-14745600y²-16777216y³-413952
[217+256x,75+256y]: unknown -> [89] [1,0] 111104x+65536x²-4320000y-14745600y²-16777216y³-374784
[89+256x,203+256y]: failure constant=-8357504, vgcd=256 [0,1] 45568x+65536x²-31648512y-39911424y²-16777216y³-8357504
[217+256x,203+256y]: failure constant=-8318336, vgcd=256 [1,1] 111104x+65536x²-31648512y-39911424y²-16777216y³-8318336
endexp[45]
expanding queue[46]^24,meter=[2,2]: 14592x+16384x²-46464y-540672y²-2097152y³+1920
[57+256x,11+256y]: failure constant=1920, vgcd=256 [0,0] 29184x+65536x²-92928y-2162688y²-16777216y³+1920
[185+256x,11+256y]: failure constant=32896, vgcd=256 [1,0] 94720x+65536x²-92928y-2162688y²-16777216y³+32896
[57+256x,139+256y]: unknown -> [90] [0,1] 29184x+65536x²-14838528y-27328512y²-16777216y³-2682368
[185+256x,139+256y]: unknown -> [91] [1,1] 94720x+65536x²-14838528y-27328512y²-16777216y³-2651392
endexp[46]
expanding queue[47]^24,meter=[2,2]: 30976x+16384x²-46464y-540672y²-2097152y³+13312
[121+256x,11+256y]: unknown -> [92] [0,0] 61952x+65536x²-92928y-2162688y²-16777216y³+13312
[249+256x,11+256y]: unknown -> [93] [1,0] 127488x+65536x²-92928y-2162688y²-16777216y³+60672
[121+256x,139+256y]: failure constant=-2670976, vgcd=256 [0,1] 61952x+65536x²-14838528y-27328512y²-16777216y³-2670976
[249+256x,139+256y]: failure constant=-2623616, vgcd=256 [1,1] 127488x+65536x²-14838528y-27328512y²-16777216y³-2623616
endexp[47]
expanding queue[48]^25,meter=[2,2]: 9472x+16384x²-1723776y-3293184y²-2097152y³-299392
[37+256x,67+256y]: failure constant=-299392, vgcd=256 [0,0] 18944x+65536x²-3447552y-13172736y²-16777216y³-299392
[165+256x,67+256y]: failure constant=-273536, vgcd=256 [1,0] 84480x+65536x²-3447552y-13172736y²-16777216y³-273536
[37+256x,195+256y]: unknown -> [94] [0,1] 18944x+65536x²-29203200y-38338560y²-16777216y³-7413504
[165+256x,195+256y]: unknown -> [95] [1,1] 84480x+65536x²-29203200y-38338560y²-16777216y³-7387648
endexp[48]
expanding queue[49]^25,meter=[2,2]: 25856x+16384x²-1723776y-3293184y²-2097152y³-290560
[101+256x,67+256y]: unknown -> [96] [0,0] 51712x+65536x²-3447552y-13172736y²-16777216y³-290560
[229+256x,67+256y]: unknown -> [97] [1,0] 117248x+65536x²-3447552y-13172736y²-16777216y³-248320
[101+256x,195+256y]: failure constant=-7404672, vgcd=256 [0,1] 51712x+65536x²-29203200y-38338560y²-16777216y³-7404672
[229+256x,195+256y]: failure constant=-7362432, vgcd=256 [1,1] 117248x+65536x²-29203200y-38338560y²-16777216y³-7362432
endexp[49]
expanding queue[50]^26,meter=[2,2]: 5376x+16384x²-3763584y-4866048y²-2097152y³-969856
[21+256x,99+256y]: failure constant=-969856, vgcd=256 [0,0] 10752x+65536x²-7527168y-19464192y²-16777216y³-969856
[149+256x,99+256y]: failure constant=-948096, vgcd=256 [1,0] 76288x+65536x²-7527168y-19464192y²-16777216y³-948096
[21+256x,227+256y]: unknown -> [98] [0,1] 10752x+65536x²-39574272y-44630016y²-16777216y³-11696640
[149+256x,227+256y]: unknown -> [99] [1,1] 76288x+65536x²-39574272y-44630016y²-16777216y³-11674880
endexp[50]
expanding queue[51]^26,meter=[2,2]: 21760x+16384x²-3763584y-4866048y²-2097152y³-963072
[85+256x,99+256y]: unknown -> [100] [0,0] 43520x+65536x²-7527168y-19464192y²-16777216y³-963072
[213+256x,99+256y]: unknown -> [101] [1,0] 109056x+65536x²-7527168y-19464192y²-16777216y³-924928
[85+256x,227+256y]: failure constant=-11689856, vgcd=256 [0,1] 43520x+65536x²-39574272y-44630016y²-16777216y³-11689856
[213+256x,227+256y]: failure constant=-11651712, vgcd=256 [1,1] 109056x+65536x²-39574272y-44630016y²-16777216y³-11651712
endexp[51]
expanding queue[52]^27,meter=[2,2]: 13568x+16384x²-470400y-1720320y²-2097152y³-40064
[53+256x,35+256y]: failure constant=-40064, vgcd=256 [0,0] 27136x+65536x²-940800y-6881280y²-16777216y³-40064
[181+256x,35+256y]: failure constant=-10112, vgcd=256 [1,0] 92672x+65536x²-940800y-6881280y²-16777216y³-10112
[53+256x,163+256y]: unknown -> [102] [0,1] 27136x+65536x²-20404992y-32047104y²-16777216y³-4327936
[181+256x,163+256y]: unknown -> [103] [1,1] 92672x+65536x²-20404992y-32047104y²-16777216y³-4297984
endexp[52]
expanding queue[53]^27,meter=[2,2]: 29952x+16384x²-470400y-1720320y²-2097152y³-29184
[117+256x,35+256y]: unknown -> [104] [0,0] 59904x+65536x²-940800y-6881280y²-16777216y³-29184
[245+256x,35+256y]: unknown -> [105] [1,0] 125440x+65536x²-940800y-6881280y²-16777216y³+17152
[117+256x,163+256y]: failure constant=-4317056, vgcd=256 [0,1] 59904x+65536x²-20404992y-32047104y²-16777216y³-4317056
[245+256x,163+256y]: failure constant=-4270720, vgcd=256 [1,1] 125440x+65536x²-20404992y-32047104y²-16777216y³-4270720
endexp[53]
expanding queue[54]^28,meter=[2,2]: 3328x+16384x²-998784y-2506752y²-2097152y³-132480
[13+256x,51+256y]: failure constant=-132480, vgcd=256 [0,0] 6656x+65536x²-1997568y-10027008y²-16777216y³-132480
[141+256x,51+256y]: failure constant=-112768, vgcd=256 [1,0] 72192x+65536x²-1997568y-10027008y²-16777216y³-112768
[13+256x,179+256y]: unknown -> [106] [0,1] 6656x+65536x²-24607488y-35192832y²-16777216y³-5735168
[141+256x,179+256y]: unknown -> [107] [1,1] 72192x+65536x²-24607488y-35192832y²-16777216y³-5715456
endexp[54]
expanding queue[55]^28,meter=[2,2]: 19712x+16384x²-998784y-2506752y²-2097152y³-126720
[77+256x,51+256y]: unknown -> [108] [0,0] 39424x+65536x²-1997568y-10027008y²-16777216y³-126720
[205+256x,51+256y]: unknown -> [109] [1,0] 104960x+65536x²-1997568y-10027008y²-16777216y³-90624
[77+256x,179+256y]: failure constant=-5729408, vgcd=256 [0,1] 39424x+65536x²-24607488y-35192832y²-16777216y³-5729408
[205+256x,179+256y]: failure constant=-5693312, vgcd=256 [1,1] 104960x+65536x²-24607488y-35192832y²-16777216y³-5693312
endexp[55]
expanding queue[56]^29,meter=[2,2]: 11520x+16384x²-5078400y-5652480y²-2097152y³-1518848
[45+256x,115+256y]: unknown -> [110] [0,0] 23040x+65536x²-10156800y-22609920y²-16777216y³-1518848
[173+256x,115+256y]: unknown -> [111] [1,0] 88576x+65536x²-10156800y-22609920y²-16777216y³-1490944
[45+256x,243+256y]: failure constant=-14346880, vgcd=256 [0,1] 23040x+65536x²-45349632y-47775744y²-16777216y³-14346880
[173+256x,243+256y]: failure constant=-14318976, vgcd=256 [1,1] 88576x+65536x²-45349632y-47775744y²-16777216y³-14318976
endexp[56]
expanding queue[57]^29,meter=[2,2]: 27904x+16384x²-5078400y-5652480y²-2097152y³-1508992
[109+256x,115+256y]: failure constant=-1508992, vgcd=256 [0,0] 55808x+65536x²-10156800y-22609920y²-16777216y³-1508992
[237+256x,115+256y]: failure constant=-1464704, vgcd=256 [1,0] 121344x+65536x²-10156800y-22609920y²-16777216y³-1464704
[109+256x,243+256y]: unknown -> [112] [0,1] 55808x+65536x²-45349632y-47775744y²-16777216y³-14337024
[237+256x,243+256y]: unknown -> [113] [1,1] 121344x+65536x²-45349632y-47775744y²-16777216y³-14292736
endexp[57]
expanding queue[58]^30,meter=[2,2]: 7424x+16384x²-138624y-933888y²-2097152y³-6016
[29+256x,19+256y]: failure constant=-6016, vgcd=256 [0,0] 14848x+65536x²-277248y-3735552y²-16777216y³-6016
[157+256x,19+256y]: failure constant=17792, vgcd=256 [1,0] 80384x+65536x²-277248y-3735552y²-16777216y³+17792
[29+256x,147+256y]: unknown -> [114] [0,1] 14848x+65536x²-16595712y-28901376y²-16777216y³-3175680
[157+256x,147+256y]: unknown -> [115] [1,1] 80384x+65536x²-16595712y-28901376y²-16777216y³-3151872
endexp[58]
expanding queue[59]^30,meter=[2,2]: 23808x+16384x²-138624y-933888y²-2097152y³+1792
[93+256x,19+256y]: unknown -> [116] [0,0] 47616x+65536x²-277248y-3735552y²-16777216y³+1792
[221+256x,19+256y]: unknown -> [117] [1,0] 113152x+65536x²-277248y-3735552y²-16777216y³+41984
[93+256x,147+256y]: failure constant=-3167872, vgcd=256 [0,1] 47616x+65536x²-16595712y-28901376y²-16777216y³-3167872
[221+256x,147+256y]: failure constant=-3127680, vgcd=256 [1,1] 113152x+65536x²-16595712y-28901376y²-16777216y³-3127680
endexp[59]
expanding queue[60]^31,meter=[2,2]: 15616x+16384x²-2645376y-4079616y²-2097152y³-568064
[61+256x,83+256y]: unknown -> [118] [0,0] 31232x+65536x²-5290752y-16318464y²-16777216y³-568064
[189+256x,83+256y]: unknown -> [119] [1,0] 96768x+65536x²-5290752y-16318464y²-16777216y³-536064
[61+256x,211+256y]: failure constant=-9390208, vgcd=256 [0,1] 31232x+65536x²-34192128y-41484288y²-16777216y³-9390208
[189+256x,211+256y]: failure constant=-9358208, vgcd=256 [1,1] 96768x+65536x²-34192128y-41484288y²-16777216y³-9358208
endexp[60]
expanding queue[61]^31,meter=[2,2]: 32000x+16384x²-2645376y-4079616y²-2097152y³-556160
[125+256x,83+256y]: failure constant=-556160, vgcd=256 [0,0] 64000x+65536x²-5290752y-16318464y²-16777216y³-556160
[253+256x,83+256y]: failure constant=-507776, vgcd=256 [1,0] 129536x+65536x²-5290752y-16318464y²-16777216y³-507776
[125+256x,211+256y]: unknown -> [120] [0,1] 64000x+65536x²-34192128y-41484288y²-16777216y³-9378304
[253+256x,211+256y]: unknown -> [121] [1,1] 129536x+65536x²-34192128y-41484288y²-16777216y³-9329920
endexp[61]
---------------- level 8
expanding queue[62]^32,meter=[2,2]: 512x+65536x²-11619072y-24182784y²-16777216y³-1860864
[1+512x,123+512y]: failure constant=-1860864, vgcd=512 [0,0] 1024x+262144x²-23238144y-96731136y²-134217728y³-1860864
[257+512x,123+512y]: failure constant=-1794816, vgcd=512 [1,0] 263168x+262144x²-23238144y-96731136y²-134217728y³-1794816
[1+512x,379+512y]: unknown -> [122] [0,1] 1024x+262144x²-220632576y-298057728y²-134217728y³-54439936
[257+512x,379+512y]: unknown -> [123] [1,1] 263168x+262144x²-220632576y-298057728y²-134217728y³-54373888
endexp[62]
expanding queue[63]^32,meter=[2,2]: 66048x+65536x²-11619072y-24182784y²-16777216y³-1844224
[129+512x,123+512y]: unknown -> [124] [0,0] 132096x+262144x²-23238144y-96731136y²-134217728y³-1844224
[385+512x,123+512y]: unknown -> [125] [1,0] 394240x+262144x²-23238144y-96731136y²-134217728y³-1712640
[129+512x,379+512y]: failure constant=-54423296, vgcd=512 [0,1] 132096x+262144x²-220632576y-298057728y²-134217728y³-54423296
[385+512x,379+512y]: failure constant=-54291712, vgcd=512 [1,1] 394240x+262144x²-220632576y-298057728y²-134217728y³-54291712
endexp[63]
expanding queue[64]^33,meter=[2,2]: 33280x+65536x²-48384768y-49348608y²-16777216y³-15809024
[65+512x,251+512y]: unknown -> [126] [0,0] 66560x+262144x²-96769536y-197394432y²-134217728y³-15809024
[321+512x,251+512y]: unknown -> [127] [1,0] 328704x+262144x²-96769536y-197394432y²-134217728y³-15710208
[65+512x,507+512y]: failure constant=-130319616, vgcd=512 [0,1] 66560x+262144x²-394827264y-398721024y²-134217728y³-130319616
[321+512x,507+512y]: failure constant=-130220800, vgcd=512 [1,1] 328704x+262144x²-394827264y-398721024y²-134217728y³-130220800
endexp[64]
expanding queue[65]^33,meter=[2,2]: 98816x+65536x²-48384768y-49348608y²-16777216y³-15776000
[193+512x,251+512y]: failure constant=-15776000, vgcd=512 [0,0] 197632x+262144x²-96769536y-197394432y²-134217728y³-15776000
[449+512x,251+512y]: failure constant=-15611648, vgcd=512 [1,0] 459776x+262144x²-96769536y-197394432y²-134217728y³-15611648
[193+512x,507+512y]: unknown -> [128] [0,1] 197632x+262144x²-394827264y-398721024y²-134217728y³-130286592
[449+512x,507+512y]: unknown -> [129] [1,1] 459776x+262144x²-394827264y-398721024y²-134217728y³-130122240
endexp[65]
expanding queue[66]^34,meter=[2,2]: 16896x+65536x²-2673408y-11599872y²-16777216y³-204288
[33+512x,59+512y]: unknown -> [130] [0,0] 33792x+262144x²-5346816y-46399488y²-134217728y³-204288
[289+512x,59+512y]: unknown -> [131] [1,0] 295936x+262144x²-5346816y-46399488y²-134217728y³-121856
[33+512x,315+512y]: failure constant=-31254784, vgcd=512 [0,1] 33792x+262144x²-152409600y-247726080y²-134217728y³-31254784
[289+512x,315+512y]: failure constant=-31172352, vgcd=512 [1,1] 295936x+262144x²-152409600y-247726080y²-134217728y³-31172352
endexp[66]
expanding queue[67]^34,meter=[2,2]: 82432x+65536x²-2673408y-11599872y²-16777216y³-179456
[161+512x,59+512y]: failure constant=-179456, vgcd=512 [0,0] 164864x+262144x²-5346816y-46399488y²-134217728y³-179456
[417+512x,59+512y]: failure constant=-31488, vgcd=512 [1,0] 427008x+262144x²-5346816y-46399488y²-134217728y³-31488
[161+512x,315+512y]: unknown -> [132] [0,1] 164864x+262144x²-152409600y-247726080y²-134217728y³-31229952
[417+512x,315+512y]: unknown -> [133] [1,1] 427008x+262144x²-152409600y-247726080y²-134217728y³-31081984
endexp[67]
expanding queue[68]^35,meter=[2,2]: 49664x+65536x²-26856192y-36765696y²-16777216y³-6529792
[97+512x,187+512y]: failure constant=-6529792, vgcd=512 [0,0] 99328x+262144x²-53712384y-147062784y²-134217728y³-6529792
[353+512x,187+512y]: failure constant=-6414592, vgcd=512 [1,0] 361472x+262144x²-53712384y-147062784y²-134217728y³-6414592
[97+512x,443+512y]: unknown -> [134] [0,1] 99328x+262144x²-301438464y-348389376y²-134217728y³-86928896
[353+512x,443+512y]: unknown -> [135] [1,1] 361472x+262144x²-301438464y-348389376y²-134217728y³-86813696
endexp[68]
expanding queue[69]^35,meter=[2,2]: 115200x+65536x²-26856192y-36765696y²-16777216y³-6488576
[225+512x,187+512y]: unknown -> [136] [0,0] 230400x+262144x²-53712384y-147062784y²-134217728y³-6488576
[481+512x,187+512y]: unknown -> [137] [1,0] 492544x+262144x²-53712384y-147062784y²-134217728y³-6307840
[225+512x,443+512y]: failure constant=-86887680, vgcd=512 [0,1] 230400x+262144x²-301438464y-348389376y²-134217728y³-86887680
[481+512x,443+512y]: failure constant=-86706944, vgcd=512 [1,1] 492544x+262144x²-301438464y-348389376y²-134217728y³-86706944
endexp[69]
expanding queue[70]^36,meter=[2,2]: 8704x+65536x²-36834048y-43057152y²-16777216y³-10503168
[17+512x,219+512y]: unknown -> [138] [0,0] 17408x+262144x²-73668096y-172228608y²-134217728y³-10503168
[273+512x,219+512y]: unknown -> [139] [1,0] 279552x+262144x²-73668096y-172228608y²-134217728y³-10428928
[17+512x,475+512y]: failure constant=-107171584, vgcd=512 [0,1] 17408x+262144x²-346560000y-373555200y²-134217728y³-107171584
[273+512x,475+512y]: failure constant=-107097344, vgcd=512 [1,1] 279552x+262144x²-346560000y-373555200y²-134217728y³-107097344
endexp[70]
expanding queue[71]^36,meter=[2,2]: 74240x+65536x²-36834048y-43057152y²-16777216y³-10482432
[145+512x,219+512y]: failure constant=-10482432, vgcd=512 [0,0] 148480x+262144x²-73668096y-172228608y²-134217728y³-10482432
[401+512x,219+512y]: failure constant=-10342656, vgcd=512 [1,0] 410624x+262144x²-73668096y-172228608y²-134217728y³-10342656
[145+512x,475+512y]: unknown -> [140] [0,1] 148480x+262144x²-346560000y-373555200y²-134217728y³-107150848
[401+512x,475+512y]: unknown -> [141] [1,1] 410624x+262144x²-346560000y-373555200y²-134217728y³-107011072
endexp[71]
expanding queue[72]^37,meter=[2,2]: 41472x+65536x²-6359808y-17891328y²-16777216y³-747008
[81+512x,91+512y]: unknown -> [142] [0,0] 82944x+262144x²-12719616y-71565312y²-134217728y³-747008
[337+512x,91+512y]: unknown -> [143] [1,0] 345088x+262144x²-12719616y-71565312y²-134217728y³-640000
[81+512x,347+512y]: failure constant=-41775360, vgcd=512 [0,1] 82944x+262144x²-184948224y-272891904y²-134217728y³-41775360
[337+512x,347+512y]: failure constant=-41668352, vgcd=512 [1,1] 345088x+262144x²-184948224y-272891904y²-134217728y³-41668352
endexp[72]
expanding queue[73]^37,meter=[2,2]: 107008x+65536x²-6359808y-17891328y²-16777216y³-709888
[209+512x,91+512y]: failure constant=-709888, vgcd=512 [0,0] 214016x+262144x²-12719616y-71565312y²-134217728y³-709888
[465+512x,91+512y]: failure constant=-537344, vgcd=512 [1,0] 476160x+262144x²-12719616y-71565312y²-134217728y³-537344
[209+512x,347+512y]: unknown -> [144] [0,1] 214016x+262144x²-184948224y-272891904y²-134217728y³-41738240
[465+512x,347+512y]: unknown -> [145] [1,1] 476160x+262144x²-184948224y-272891904y²-134217728y³-41565696
endexp[73]
expanding queue[74]^38,meter=[2,2]: 25088x+65536x²-18451200y-30474240y²-16777216y³-3721472
[49+512x,155+512y]: failure constant=-3721472, vgcd=512 [0,0] 50176x+262144x²-36902400y-121896960y²-134217728y³-3721472
[305+512x,155+512y]: failure constant=-3630848, vgcd=512 [1,0] 312320x+262144x²-36902400y-121896960y²-134217728y³-3630848
[49+512x,411+512y]: unknown -> [146] [0,1] 50176x+262144x²-259462656y-323223552y²-134217728y³-69424128
[305+512x,411+512y]: unknown -> [147] [1,1] 312320x+262144x²-259462656y-323223552y²-134217728y³-69333504
endexp[74]
expanding queue[75]^38,meter=[2,2]: 90624x+65536x²-18451200y-30474240y²-16777216y³-3692544
[177+512x,155+512y]: unknown -> [148] [0,0] 181248x+262144x²-36902400y-121896960y²-134217728y³-3692544
[433+512x,155+512y]: unknown -> [149] [1,0] 443392x+262144x²-36902400y-121896960y²-134217728y³-3536384
[177+512x,411+512y]: failure constant=-69395200, vgcd=512 [0,1] 181248x+262144x²-259462656y-323223552y²-134217728y³-69395200
[433+512x,411+512y]: failure constant=-69239040, vgcd=512 [1,1] 443392x+262144x²-259462656y-323223552y²-134217728y³-69239040
endexp[75]
expanding queue[76]^39,meter=[2,2]: 57856x+65536x²-559872y-5308416y²-16777216y³-6912
[113+512x,27+512y]: failure constant=-6912, vgcd=512 [0,0] 115712x+262144x²-1119744y-21233664y²-134217728y³-6912
[369+512x,27+512y]: failure constant=116480, vgcd=512 [1,0] 377856x+262144x²-1119744y-21233664y²-134217728y³+116480
[113+512x,283+512y]: unknown -> [150] [0,1] 115712x+262144x²-123016704y-222560256y²-134217728y³-22652416
[369+512x,283+512y]: unknown -> [151] [1,1] 377856x+262144x²-123016704y-222560256y²-134217728y³-22529024
endexp[76]
expanding queue[77]^39,meter=[2,2]: 123392x+65536x²-559872y-5308416y²-16777216y³+38400
[241+512x,27+512y]: unknown -> [152] [0,0] 246784x+262144x²-1119744y-21233664y²-134217728y³+38400
[497+512x,27+512y]: unknown -> [153] [1,0] 508928x+262144x²-1119744y-21233664y²-134217728y³+227328
[241+512x,283+512y]: failure constant=-22607104, vgcd=512 [0,1] 246784x+262144x²-123016704y-222560256y²-134217728y³-22607104
[497+512x,283+512y]: failure constant=-22418176, vgcd=512 [1,1] 508928x+262144x²-123016704y-222560256y²-134217728y³-22418176
endexp[77]
expanding queue[78]^40,meter=[2,2]: 4608x+65536x²-8792832y-21037056y²-16777216y³-1224960
[9+512x,107+512y]: failure constant=-1224960, vgcd=512 [0,0] 9216x+262144x²-17585664y-84148224y²-134217728y³-1224960
[265+512x,107+512y]: failure constant=-1154816, vgcd=512 [1,0] 271360x+262144x²-17585664y-84148224y²-134217728y³-1154816
[9+512x,363+512y]: unknown -> [154] [0,1] 9216x+262144x²-202397184y-285474816y²-134217728y³-47832064
[265+512x,363+512y]: unknown -> [155] [1,1] 271360x+262144x²-202397184y-285474816y²-134217728y³-47761920
endexp[78]
expanding queue[79]^40,meter=[2,2]: 70144x+65536x²-8792832y-21037056y²-16777216y³-1206272
[137+512x,107+512y]: unknown -> [156] [0,0] 140288x+262144x²-17585664y-84148224y²-134217728y³-1206272
[393+512x,107+512y]: unknown -> [157] [1,0] 402432x+262144x²-17585664y-84148224y²-134217728y³-1070592
[137+512x,363+512y]: failure constant=-47813376, vgcd=512 [0,1] 140288x+262144x²-202397184y-285474816y²-134217728y³-47813376
[393+512x,363+512y]: failure constant=-47677696, vgcd=512 [1,1] 402432x+262144x²-202397184y-285474816y²-134217728y³-47677696
endexp[79]
expanding queue[80]^41,meter=[2,2]: 37376x+65536x²-42412800y-46202880y²-16777216y³-12972544
[73+512x,235+512y]: unknown -> [158] [0,0] 74752x+262144x²-84825600y-184811520y²-134217728y³-12972544
[329+512x,235+512y]: unknown -> [159] [1,0] 336896x+262144x²-84825600y-184811520y²-134217728y³-12869632
[73+512x,491+512y]: failure constant=-118365440, vgcd=512 [0,1] 74752x+262144x²-370300416y-386138112y²-134217728y³-118365440
[329+512x,491+512y]: failure constant=-118262528, vgcd=512 [1,1] 336896x+262144x²-370300416y-386138112y²-134217728y³-118262528
endexp[80]
expanding queue[81]^41,meter=[2,2]: 102912x+65536x²-42412800y-46202880y²-16777216y³-12937472
[201+512x,235+512y]: failure constant=-12937472, vgcd=512 [0,0] 205824x+262144x²-84825600y-184811520y²-134217728y³-12937472
[457+512x,235+512y]: failure constant=-12769024, vgcd=512 [1,0] 467968x+262144x²-84825600y-184811520y²-134217728y³-12769024
[201+512x,491+512y]: unknown -> [160] [0,1] 205824x+262144x²-370300416y-386138112y²-134217728y³-118330368
[457+512x,491+512y]: unknown -> [161] [1,1] 467968x+262144x²-370300416y-386138112y²-134217728y³-118161920
endexp[81]
expanding queue[82]^42,meter=[2,2]: 20992x+65536x²-1420032y-8454144y²-16777216y³-77824
[41+512x,43+512y]: unknown -> [162] [0,0] 41984x+262144x²-2840064y-33816576y²-134217728y³-77824
[297+512x,43+512y]: unknown -> [163] [1,0] 304128x+262144x²-2840064y-33816576y²-134217728y³+8704
[41+512x,299+512y]: failure constant=-26729216, vgcd=512 [0,1] 41984x+262144x²-137319936y-235143168y²-134217728y³-26729216
[297+512x,299+512y]: failure constant=-26642688, vgcd=512 [1,1] 304128x+262144x²-137319936y-235143168y²-134217728y³-26642688
endexp[82]
expanding queue[83]^42,meter=[2,2]: 86528x+65536x²-1420032y-8454144y²-16777216y³-50944
[169+512x,43+512y]: failure constant=-50944, vgcd=512 [0,0] 173056x+262144x²-2840064y-33816576y²-134217728y³-50944
[425+512x,43+512y]: failure constant=101120, vgcd=512 [1,0] 435200x+262144x²-2840064y-33816576y²-134217728y³+101120
[169+512x,299+512y]: unknown -> [164] [0,1] 173056x+262144x²-137319936y-235143168y²-134217728y³-26702336
[425+512x,299+512y]: unknown -> [165] [1,1] 435200x+262144x²-137319936y-235143168y²-134217728y³-26550272
endexp[83]
expanding queue[84]^43,meter=[2,2]: 53760x+65536x²-22457088y-33619968y²-16777216y³-4989184
[105+512x,171+512y]: failure constant=-4989184, vgcd=512 [0,0] 107520x+262144x²-44914176y-134479872y²-134217728y³-4989184
[361+512x,171+512y]: failure constant=-4869888, vgcd=512 [1,0] 369664x+262144x²-44914176y-134479872y²-134217728y³-4869888
[105+512x,427+512y]: unknown -> [166] [0,1] 107520x+262144x²-280057344y-335806464y²-134217728y³-77843456
[361+512x,427+512y]: unknown -> [167] [1,1] 369664x+262144x²-280057344y-335806464y²-134217728y³-77724160
endexp[84]
expanding queue[85]^43,meter=[2,2]: 119296x+65536x²-22457088y-33619968y²-16777216y³-4945920
[233+512x,171+512y]: unknown -> [168] [0,0] 238592x+262144x²-44914176y-134479872y²-134217728y³-4945920
[489+512x,171+512y]: unknown -> [169] [1,0] 500736x+262144x²-44914176y-134479872y²-134217728y³-4761088
[233+512x,427+512y]: failure constant=-77800192, vgcd=512 [0,1] 238592x+262144x²-280057344y-335806464y²-134217728y³-77800192
[489+512x,427+512y]: failure constant=-77615360, vgcd=512 [1,1] 500736x+262144x²-280057344y-335806464y²-134217728y³-77615360
endexp[85]
expanding queue[86]^44,meter=[2,2]: 12800x+65536x²-31648512y-39911424y²-16777216y³-8364800
[25+512x,203+512y]: failure constant=-8364800, vgcd=512 [0,0] 25600x+262144x²-63297024y-159645696y²-134217728y³-8364800
[281+512x,203+512y]: failure constant=-8286464, vgcd=512 [1,0] 287744x+262144x²-63297024y-159645696y²-134217728y³-8286464
[25+512x,459+512y]: unknown -> [170] [0,1] 25600x+262144x²-323606016y-360972288y²-134217728y³-96701952
[281+512x,459+512y]: unknown -> [171] [1,1] 287744x+262144x²-323606016y-360972288y²-134217728y³-96623616
endexp[86]
expanding queue[87]^44,meter=[2,2]: 78336x+65536x²-31648512y-39911424y²-16777216y³-8342016
[153+512x,203+512y]: unknown -> [172] [0,0] 156672x+262144x²-63297024y-159645696y²-134217728y³-8342016
[409+512x,203+512y]: unknown -> [173] [1,0] 418816x+262144x²-63297024y-159645696y²-134217728y³-8198144
[153+512x,459+512y]: failure constant=-96679168, vgcd=512 [0,1] 156672x+262144x²-323606016y-360972288y²-134217728y³-96679168
[409+512x,459+512y]: failure constant=-96535296, vgcd=512 [1,1] 418816x+262144x²-323606016y-360972288y²-134217728y³-96535296
endexp[87]
expanding queue[88]^45,meter=[2,2]: 45568x+65536x²-4320000y-14745600y²-16777216y³-413952
[89+512x,75+512y]: failure constant=-413952, vgcd=512 [0,0] 91136x+262144x²-8640000y-58982400y²-134217728y³-413952
[345+512x,75+512y]: failure constant=-302848, vgcd=512 [1,0] 353280x+262144x²-8640000y-58982400y²-134217728y³-302848
[89+512x,331+512y]: unknown -> [174] [0,1] 91136x+262144x²-168285696y-260308992y²-134217728y³-36256768
[345+512x,331+512y]: unknown -> [175] [1,1] 353280x+262144x²-168285696y-260308992y²-134217728y³-36145664
endexp[88]
expanding queue[89]^45,meter=[2,2]: 111104x+65536x²-4320000y-14745600y²-16777216y³-374784
[217+512x,75+512y]: unknown -> [176] [0,0] 222208x+262144x²-8640000y-58982400y²-134217728y³-374784
[473+512x,75+512y]: unknown -> [177] [1,0] 484352x+262144x²-8640000y-58982400y²-134217728y³-198144
[217+512x,331+512y]: failure constant=-36217600, vgcd=512 [0,1] 222208x+262144x²-168285696y-260308992y²-134217728y³-36217600
[473+512x,331+512y]: failure constant=-36040960, vgcd=512 [1,1] 484352x+262144x²-168285696y-260308992y²-134217728y³-36040960
endexp[89]
expanding queue[90]^46,meter=[2,2]: 29184x+65536x²-14838528y-27328512y²-16777216y³-2682368
[57+512x,139+512y]: unknown -> [178] [0,0] 58368x+262144x²-29677056y-109314048y²-134217728y³-2682368
[313+512x,139+512y]: unknown -> [179] [1,0] 320512x+262144x²-29677056y-109314048y²-134217728y³-2587648
[57+512x,395+512y]: failure constant=-61626624, vgcd=512 [0,1] 58368x+262144x²-239654400y-310640640y²-134217728y³-61626624
[313+512x,395+512y]: failure constant=-61531904, vgcd=512 [1,1] 320512x+262144x²-239654400y-310640640y²-134217728y³-61531904
endexp[90]
expanding queue[91]^46,meter=[2,2]: 94720x+65536x²-14838528y-27328512y²-16777216y³-2651392
[185+512x,139+512y]: failure constant=-2651392, vgcd=512 [0,0] 189440x+262144x²-29677056y-109314048y²-134217728y³-2651392
[441+512x,139+512y]: failure constant=-2491136, vgcd=512 [1,0] 451584x+262144x²-29677056y-109314048y²-134217728y³-2491136
[185+512x,395+512y]: unknown -> [180] [0,1] 189440x+262144x²-239654400y-310640640y²-134217728y³-61595648
[441+512x,395+512y]: unknown -> [181] [1,1] 451584x+262144x²-239654400y-310640640y²-134217728y³-61435392
endexp[91]
expanding queue[92]^47,meter=[2,2]: 61952x+65536x²-92928y-2162688y²-16777216y³+13312
[121+512x,11+512y]: unknown -> [182] [0,0] 123904x+262144x²-185856y-8650752y²-134217728y³+13312
[377+512x,11+512y]: unknown -> [183] [1,0] 386048x+262144x²-185856y-8650752y²-134217728y³+140800
[121+512x,267+512y]: failure constant=-19019520, vgcd=512 [0,1] 123904x+262144x²-109499904y-209977344y²-134217728y³-19019520
[377+512x,267+512y]: failure constant=-18892032, vgcd=512 [1,1] 386048x+262144x²-109499904y-209977344y²-134217728y³-18892032
endexp[92]
expanding queue[93]^47,meter=[2,2]: 127488x+65536x²-92928y-2162688y²-16777216y³+60672
[249+512x,11+512y]: failure constant=60672, vgcd=512 [0,0] 254976x+262144x²-185856y-8650752y²-134217728y³+60672
[505+512x,11+512y]: failure constant=253696, vgcd=512 [1,0] 517120x+262144x²-185856y-8650752y²-134217728y³+253696
[249+512x,267+512y]: unknown -> [184] [0,1] 254976x+262144x²-109499904y-209977344y²-134217728y³-18972160
[505+512x,267+512y]: unknown -> [185] [1,1] 517120x+262144x²-109499904y-209977344y²-134217728y³-18779136
endexp[93]
expanding queue[94]^48,meter=[2,2]: 18944x+65536x²-29203200y-38338560y²-16777216y³-7413504
[37+512x,195+512y]: failure constant=-7413504, vgcd=512 [0,0] 37888x+262144x²-58406400y-153354240y²-134217728y³-7413504
[293+512x,195+512y]: failure constant=-7329024, vgcd=512 [1,0] 300032x+262144x²-58406400y-153354240y²-134217728y³-7329024
[37+512x,451+512y]: unknown -> [186] [0,1] 37888x+262144x²-312423936y-354680832y²-134217728y³-91732480
[293+512x,451+512y]: unknown -> [187] [1,1] 300032x+262144x²-312423936y-354680832y²-134217728y³-91648000
endexp[94]
expanding queue[95]^48,meter=[2,2]: 84480x+65536x²-29203200y-38338560y²-16777216y³-7387648
[165+512x,195+512y]: unknown -> [188] [0,0] 168960x+262144x²-58406400y-153354240y²-134217728y³-7387648
[421+512x,195+512y]: unknown -> [189] [1,0] 431104x+262144x²-58406400y-153354240y²-134217728y³-7237632
[165+512x,451+512y]: failure constant=-91706624, vgcd=512 [0,1] 168960x+262144x²-312423936y-354680832y²-134217728y³-91706624
[421+512x,451+512y]: failure constant=-91556608, vgcd=512 [1,1] 431104x+262144x²-312423936y-354680832y²-134217728y³-91556608
endexp[95]
expanding queue[96]^49,meter=[2,2]: 51712x+65536x²-3447552y-13172736y²-16777216y³-290560
[101+512x,67+512y]: failure constant=-290560, vgcd=512 [0,0] 103424x+262144x²-6895104y-52690944y²-134217728y³-290560
[357+512x,67+512y]: failure constant=-173312, vgcd=512 [1,0] 365568x+262144x²-6895104y-52690944y²-134217728y³-173312
[101+512x,323+512y]: unknown -> [190] [0,1] 103424x+262144x²-160249344y-254017536y²-134217728y³-33688064
[357+512x,323+512y]: unknown -> [191] [1,1] 365568x+262144x²-160249344y-254017536y²-134217728y³-33570816
endexp[96]
expanding queue[97]^49,meter=[2,2]: 117248x+65536x²-3447552y-13172736y²-16777216y³-248320
[229+512x,67+512y]: unknown -> [192] [0,0] 234496x+262144x²-6895104y-52690944y²-134217728y³-248320
[485+512x,67+512y]: unknown -> [193] [1,0] 496640x+262144x²-6895104y-52690944y²-134217728y³-65536
[229+512x,323+512y]: failure constant=-33645824, vgcd=512 [0,1] 234496x+262144x²-160249344y-254017536y²-134217728y³-33645824
[485+512x,323+512y]: failure constant=-33463040, vgcd=512 [1,1] 496640x+262144x²-160249344y-254017536y²-134217728y³-33463040
endexp[97]
expanding queue[98]^50,meter=[2,2]: 10752x+65536x²-39574272y-44630016y²-16777216y³-11696640
[21+512x,227+512y]: unknown -> [194] [0,0] 21504x+262144x²-79148544y-178520064y²-134217728y³-11696640
[277+512x,227+512y]: unknown -> [195] [1,0] 283648x+262144x²-79148544y-178520064y²-134217728y³-11620352
[21+512x,483+512y]: failure constant=-112678144, vgcd=512 [0,1] 21504x+262144x²-358331904y-379846656y²-134217728y³-112678144
[277+512x,483+512y]: failure constant=-112601856, vgcd=512 [1,1] 283648x+262144x²-358331904y-379846656y²-134217728y³-112601856
endexp[98]
expanding queue[99]^50,meter=[2,2]: 76288x+65536x²-39574272y-44630016y²-16777216y³-11674880
[149+512x,227+512y]: failure constant=-11674880, vgcd=512 [0,0] 152576x+262144x²-79148544y-178520064y²-134217728y³-11674880
[405+512x,227+512y]: failure constant=-11533056, vgcd=512 [1,0] 414720x+262144x²-79148544y-178520064y²-134217728y³-11533056
[149+512x,483+512y]: unknown -> [196] [0,1] 152576x+262144x²-358331904y-379846656y²-134217728y³-112656384
[405+512x,483+512y]: unknown -> [197] [1,1] 414720x+262144x²-358331904y-379846656y²-134217728y³-112514560
endexp[99]
expanding queue[100]^51,meter=[2,2]: 43520x+65536x²-7527168y-19464192y²-16777216y³-963072
[85+512x,99+512y]: unknown -> [198] [0,0] 87040x+262144x²-15054336y-77856768y²-134217728y³-963072
[341+512x,99+512y]: unknown -> [199] [1,0] 349184x+262144x²-15054336y-77856768y²-134217728y³-854016
[85+512x,355+512y]: failure constant=-44731648, vgcd=512 [0,1] 87040x+262144x²-193574400y-279183360y²-134217728y³-44731648
[341+512x,355+512y]: failure constant=-44622592, vgcd=512 [1,1] 349184x+262144x²-193574400y-279183360y²-134217728y³-44622592
endexp[100]
expanding queue[101]^51,meter=[2,2]: 109056x+65536x²-7527168y-19464192y²-16777216y³-924928
[213+512x,99+512y]: failure constant=-924928, vgcd=512 [0,0] 218112x+262144x²-15054336y-77856768y²-134217728y³-924928
[469+512x,99+512y]: failure constant=-750336, vgcd=512 [1,0] 480256x+262144x²-15054336y-77856768y²-134217728y³-750336
[213+512x,355+512y]: unknown -> [200] [0,1] 218112x+262144x²-193574400y-279183360y²-134217728y³-44693504
[469+512x,355+512y]: unknown -> [201] [1,1] 480256x+262144x²-193574400y-279183360y²-134217728y³-44518912
endexp[101]
expanding queue[102]^52,meter=[2,2]: 27136x+65536x²-20404992y-32047104y²-16777216y³-4327936
[53+512x,163+512y]: unknown -> [202] [0,0] 54272x+262144x²-40809984y-128188416y²-134217728y³-4327936
[309+512x,163+512y]: unknown -> [203] [1,0] 316416x+262144x²-40809984y-128188416y²-134217728y³-4235264
[53+512x,419+512y]: failure constant=-73557248, vgcd=512 [0,1] 54272x+262144x²-269661696y-329515008y²-134217728y³-73557248
[309+512x,419+512y]: failure constant=-73464576, vgcd=512 [1,1] 316416x+262144x²-269661696y-329515008y²-134217728y³-73464576
endexp[102]
expanding queue[103]^52,meter=[2,2]: 92672x+65536x²-20404992y-32047104y²-16777216y³-4297984
[181+512x,163+512y]: failure constant=-4297984, vgcd=512 [0,0] 185344x+262144x²-40809984y-128188416y²-134217728y³-4297984
[437+512x,163+512y]: failure constant=-4139776, vgcd=512 [1,0] 447488x+262144x²-40809984y-128188416y²-134217728y³-4139776
[181+512x,419+512y]: unknown -> [204] [0,1] 185344x+262144x²-269661696y-329515008y²-134217728y³-73527296
[437+512x,419+512y]: unknown -> [205] [1,1] 447488x+262144x²-269661696y-329515008y²-134217728y³-73369088
endexp[103]
expanding queue[104]^53,meter=[2,2]: 59904x+65536x²-940800y-6881280y²-16777216y³-29184
[117+512x,35+512y]: unknown -> [206] [0,0] 119808x+262144x²-1881600y-27525120y²-134217728y³-29184
[373+512x,35+512y]: unknown -> [207] [1,0] 381952x+262144x²-1881600y-27525120y²-134217728y³+96256
[117+512x,291+512y]: failure constant=-24628480, vgcd=512 [0,1] 119808x+262144x²-130070016y-228851712y²-134217728y³-24628480
[373+512x,291+512y]: failure constant=-24503040, vgcd=512 [1,1] 381952x+262144x²-130070016y-228851712y²-134217728y³-24503040
endexp[104]
expanding queue[105]^53,meter=[2,2]: 125440x+65536x²-940800y-6881280y²-16777216y³+17152
[245+512x,35+512y]: failure constant=17152, vgcd=512 [0,0] 250880x+262144x²-1881600y-27525120y²-134217728y³+17152
[501+512x,35+512y]: failure constant=208128, vgcd=512 [1,0] 513024x+262144x²-1881600y-27525120y²-134217728y³+208128
[245+512x,291+512y]: unknown -> [208] [0,1] 250880x+262144x²-130070016y-228851712y²-134217728y³-24582144
[501+512x,291+512y]: unknown -> [209] [1,1] 513024x+262144x²-130070016y-228851712y²-134217728y³-24391168
endexp[105]
expanding queue[106]^54,meter=[2,2]: 6656x+65536x²-24607488y-35192832y²-16777216y³-5735168
[13+512x,179+512y]: failure constant=-5735168, vgcd=512 [0,0] 13312x+262144x²-49214976y-140771328y²-134217728y³-5735168
[269+512x,179+512y]: failure constant=-5662976, vgcd=512 [1,0] 275456x+262144x²-49214976y-140771328y²-134217728y³-5662976
[13+512x,435+512y]: unknown -> [210] [0,1] 13312x+262144x²-290649600y-342097920y²-134217728y³-82312704
[269+512x,435+512y]: unknown -> [211] [1,1] 275456x+262144x²-290649600y-342097920y²-134217728y³-82240512
endexp[106]
expanding queue[107]^54,meter=[2,2]: 72192x+65536x²-24607488y-35192832y²-16777216y³-5715456
[141+512x,179+512y]: unknown -> [212] [0,0] 144384x+262144x²-49214976y-140771328y²-134217728y³-5715456
[397+512x,179+512y]: unknown -> [213] [1,0] 406528x+262144x²-49214976y-140771328y²-134217728y³-5577728
[141+512x,435+512y]: failure constant=-82292992, vgcd=512 [0,1] 144384x+262144x²-290649600y-342097920y²-134217728y³-82292992
[397+512x,435+512y]: failure constant=-82155264, vgcd=512 [1,1] 406528x+262144x²-290649600y-342097920y²-134217728y³-82155264
endexp[107]
expanding queue[108]^55,meter=[2,2]: 39424x+65536x²-1997568y-10027008y²-16777216y³-126720
[77+512x,51+512y]: failure constant=-126720, vgcd=512 [0,0] 78848x+262144x²-3995136y-40108032y²-134217728y³-126720
[333+512x,51+512y]: failure constant=-21760, vgcd=512 [1,0] 340992x+262144x²-3995136y-40108032y²-134217728y³-21760
[77+512x,307+512y]: unknown -> [214] [0,1] 78848x+262144x²-144766464y-241434624y²-134217728y³-28928512
[333+512x,307+512y]: unknown -> [215] [1,1] 340992x+262144x²-144766464y-241434624y²-134217728y³-28823552
endexp[108]
expanding queue[109]^55,meter=[2,2]: 104960x+65536x²-1997568y-10027008y²-16777216y³-90624
[205+512x,51+512y]: unknown -> [216] [0,0] 209920x+262144x²-3995136y-40108032y²-134217728y³-90624
[461+512x,51+512y]: unknown -> [217] [1,0] 472064x+262144x²-3995136y-40108032y²-134217728y³+79872
[205+512x,307+512y]: failure constant=-28892416, vgcd=512 [0,1] 209920x+262144x²-144766464y-241434624y²-134217728y³-28892416
[461+512x,307+512y]: failure constant=-28721920, vgcd=512 [1,1] 472064x+262144x²-144766464y-241434624y²-134217728y³-28721920
endexp[109]
expanding queue[110]^56,meter=[2,2]: 23040x+65536x²-10156800y-22609920y²-16777216y³-1518848
[45+512x,115+512y]: failure constant=-1518848, vgcd=512 [0,0] 46080x+262144x²-20313600y-90439680y²-134217728y³-1518848
[301+512x,115+512y]: failure constant=-1430272, vgcd=512 [1,0] 308224x+262144x²-20313600y-90439680y²-134217728y³-1430272
[45+512x,371+512y]: unknown -> [218] [0,1] 46080x+262144x²-211416576y-291766272y²-134217728y³-51062784
[301+512x,371+512y]: unknown -> [219] [1,1] 308224x+262144x²-211416576y-291766272y²-134217728y³-50974208
endexp[110]
expanding queue[111]^56,meter=[2,2]: 88576x+65536x²-10156800y-22609920y²-16777216y³-1490944
[173+512x,115+512y]: unknown -> [220] [0,0] 177152x+262144x²-20313600y-90439680y²-134217728y³-1490944
[429+512x,115+512y]: unknown -> [221] [1,0] 439296x+262144x²-20313600y-90439680y²-134217728y³-1336832
[173+512x,371+512y]: failure constant=-51034880, vgcd=512 [0,1] 177152x+262144x²-211416576y-291766272y²-134217728y³-51034880
[429+512x,371+512y]: failure constant=-50880768, vgcd=512 [1,1] 439296x+262144x²-211416576y-291766272y²-134217728y³-50880768
endexp[111]
expanding queue[112]^57,meter=[2,2]: 55808x+65536x²-45349632y-47775744y²-16777216y³-14337024
[109+512x,243+512y]: unknown -> [222] [0,0] 111616x+262144x²-90699264y-191102976y²-134217728y³-14337024
[365+512x,243+512y]: unknown -> [223] [1,0] 373760x+262144x²-90699264y-191102976y²-134217728y³-14215680
[109+512x,499+512y]: failure constant=-124239616, vgcd=512 [0,1] 111616x+262144x²-382465536y-392429568y²-134217728y³-124239616
[365+512x,499+512y]: failure constant=-124118272, vgcd=512 [1,1] 373760x+262144x²-382465536y-392429568y²-134217728y³-124118272
endexp[112]
expanding queue[113]^57,meter=[2,2]: 121344x+65536x²-45349632y-47775744y²-16777216y³-14292736
[237+512x,243+512y]: failure constant=-14292736, vgcd=512 [0,0] 242688x+262144x²-90699264y-191102976y²-134217728y³-14292736
[493+512x,243+512y]: failure constant=-14105856, vgcd=512 [1,0] 504832x+262144x²-90699264y-191102976y²-134217728y³-14105856
[237+512x,499+512y]: unknown -> [224] [0,1] 242688x+262144x²-382465536y-392429568y²-134217728y³-124195328
[493+512x,499+512y]: unknown -> [225] [1,1] 504832x+262144x²-382465536y-392429568y²-134217728y³-124008448
endexp[113]
expanding queue[114]^58,meter=[2,2]: 14848x+65536x²-16595712y-28901376y²-16777216y³-3175680
[29+512x,147+512y]: failure constant=-3175680, vgcd=512 [0,0] 29696x+262144x²-33191424y-115605504y²-134217728y³-3175680
[285+512x,147+512y]: failure constant=-3095296, vgcd=512 [1,0] 291840x+262144x²-33191424y-115605504y²-134217728y³-3095296
[29+512x,403+512y]: unknown -> [226] [0,1] 29696x+262144x²-249460224y-316932096y²-134217728y³-65449984
[285+512x,403+512y]: unknown -> [227] [1,1] 291840x+262144x²-249460224y-316932096y²-134217728y³-65369600
endexp[114]
expanding queue[115]^58,meter=[2,2]: 80384x+65536x²-16595712y-28901376y²-16777216y³-3151872
[157+512x,147+512y]: unknown -> [228] [0,0] 160768x+262144x²-33191424y-115605504y²-134217728y³-3151872
[413+512x,147+512y]: unknown -> [229] [1,0] 422912x+262144x²-33191424y-115605504y²-134217728y³-3005952
[157+512x,403+512y]: failure constant=-65426176, vgcd=512 [0,1] 160768x+262144x²-249460224y-316932096y²-134217728y³-65426176
[413+512x,403+512y]: failure constant=-65280256, vgcd=512 [1,1] 422912x+262144x²-249460224y-316932096y²-134217728y³-65280256
endexp[115]
expanding queue[116]^59,meter=[2,2]: 47616x+65536x²-277248y-3735552y²-16777216y³+1792
[93+512x,19+512y]: failure constant=1792, vgcd=512 [0,0] 95232x+262144x²-554496y-14942208y²-134217728y³+1792
[349+512x,19+512y]: failure constant=114944, vgcd=512 [1,0] 357376x+262144x²-554496y-14942208y²-134217728y³+114944
[93+512x,275+512y]: unknown -> [230] [0,1] 95232x+262144x²-116160000y-216268800y²-134217728y³-20788224
[349+512x,275+512y]: unknown -> [231] [1,1] 357376x+262144x²-116160000y-216268800y²-134217728y³-20675072
endexp[116]
expanding queue[117]^59,meter=[2,2]: 113152x+65536x²-277248y-3735552y²-16777216y³+41984
[221+512x,19+512y]: unknown -> [232] [0,0] 226304x+262144x²-554496y-14942208y²-134217728y³+41984
[477+512x,19+512y]: unknown -> [233] [1,0] 488448x+262144x²-554496y-14942208y²-134217728y³+220672
[221+512x,275+512y]: failure constant=-20748032, vgcd=512 [0,1] 226304x+262144x²-116160000y-216268800y²-134217728y³-20748032
[477+512x,275+512y]: failure constant=-20569344, vgcd=512 [1,1] 488448x+262144x²-116160000y-216268800y²-134217728y³-20569344
endexp[117]
expanding queue[118]^60,meter=[2,2]: 31232x+65536x²-5290752y-16318464y²-16777216y³-568064
[61+512x,83+512y]: failure constant=-568064, vgcd=512 [0,0] 62464x+262144x²-10581504y-65273856y²-134217728y³-568064
[317+512x,83+512y]: failure constant=-471296, vgcd=512 [1,0] 324608x+262144x²-10581504y-65273856y²-134217728y³-471296
[61+512x,339+512y]: unknown -> [234] [0,1] 62464x+262144x²-176518656y-266600448y²-134217728y³-38954496
[317+512x,339+512y]: unknown -> [235] [1,1] 324608x+262144x²-176518656y-266600448y²-134217728y³-38857728
endexp[118]
expanding queue[119]^60,meter=[2,2]: 96768x+65536x²-5290752y-16318464y²-16777216y³-536064
[189+512x,83+512y]: unknown -> [236] [0,0] 193536x+262144x²-10581504y-65273856y²-134217728y³-536064
[445+512x,83+512y]: unknown -> [237] [1,0] 455680x+262144x²-10581504y-65273856y²-134217728y³-373760
[189+512x,339+512y]: failure constant=-38922496, vgcd=512 [0,1] 193536x+262144x²-176518656y-266600448y²-134217728y³-38922496
[445+512x,339+512y]: failure constant=-38760192, vgcd=512 [1,1] 455680x+262144x²-176518656y-266600448y²-134217728y³-38760192
endexp[119]
expanding queue[120]^61,meter=[2,2]: 64000x+65536x²-34192128y-41484288y²-16777216y³-9378304
[125+512x,211+512y]: unknown -> [238] [0,0] 128000x+262144x²-68384256y-165937152y²-134217728y³-9378304
[381+512x,211+512y]: unknown -> [239] [1,0] 390144x+262144x²-68384256y-165937152y²-134217728y³-9248768
[125+512x,467+512y]: failure constant=-101831936, vgcd=512 [0,1] 128000x+262144x²-334984704y-367263744y²-134217728y³-101831936
[381+512x,467+512y]: failure constant=-101702400, vgcd=512 [1,1] 390144x+262144x²-334984704y-367263744y²-134217728y³-101702400
endexp[120]
expanding queue[121]^61,meter=[2,2]: 129536x+65536x²-34192128y-41484288y²-16777216y³-9329920
[253+512x,211+512y]: failure constant=-9329920, vgcd=512 [0,0] 259072x+262144x²-68384256y-165937152y²-134217728y³-9329920
[509+512x,211+512y]: failure constant=-9134848, vgcd=512 [1,0] 521216x+262144x²-68384256y-165937152y²-134217728y³-9134848
[253+512x,467+512y]: unknown -> [240] [0,1] 259072x+262144x²-334984704y-367263744y²-134217728y³-101783552
[509+512x,467+512y]: unknown -> [241] [1,1] 521216x+262144x²-334984704y-367263744y²-134217728y³-101588480
endexp[121]
---------------- level 9
Maximum level 9 [242] mod 2: x²-y³+2
|
04a56ba2258ace01dda775fc18f3e5f97a930837
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2870/CH14/EX14.3/Ex14_3.sce
|
505c3449d97eee0d21f07bd6ba067b6993f95df8
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 480 |
sce
|
Ex14_3.sce
|
clc;clear;
//Example 14.3
//given data
T1=25;
T2=15;
P2=101.325;
//from Table A-2a & A-4
//at T1
Psat1=3.1698;
hg1=2546.5;
//at T2
Psat2=1.7057;
hfg2=2465.4;
hf2=62.982;
cp=1.005;
//calculations
w2=0.622*Psat2/(P2-Psat2);
w1=(cp*(T2-T1)+w2*hfg2)/(hg1-hf2);
disp(w1,'the specific humidity in kg water/kg of dry ai');
RH1=w1*P2/((0.622+w1)*Psat1);
disp(RH1,'the relative humidity');
h=cp*T1+w1*hg1;
disp(h,'the enthalpy of the air in kJ/kg of dry air')
|
8ea9f68b65977ac5fc2c6d7e5cc39509a60ffee1
|
9ce4292954000fd66bcdbd0797a280c306308d08
|
/mooc/nand2tetris/projects/03/b/RAM512.tst
|
4ec6fc22e1bad19e0c55af64c4988dba8615b2bd
|
[
"MIT"
] |
permissive
|
JiniousChoi/encyclopedia-in-code
|
0c786f2405bfc1d33291715d9574cae625ae45be
|
77bc551a03a2a3e3808e50016ece14adb5cfbd96
|
refs/heads/master
| 2021-06-27T07:50:10.789732 | 2020-05-29T12:50:46 | 2020-05-29T12:50:46 | 137,426,553 | 2 | 0 |
MIT
| 2020-10-13T08:56:12 | 2018-06-15T01:29:31 |
Python
|
UTF-8
|
Scilab
| false | false | 13,174 |
tst
|
RAM512.tst
|
// This file is part of www.nand2tetris.org
// and the book "The Elements of Computing Systems"
// by Nisan and Schocken, MIT Press.
// File name: projects/03/b/RAM512.tst
load RAM512.hdl,
output-file RAM512.out,
compare-to RAM512.cmp,
output-list time%S1.4.1 in%D1.6.1 load%B2.1.2 address%D2.3.2 out%D1.6.1;
set in 0,
set load 0,
set address 0,
tick,
output;
tock,
output;
set load 1,
tick,
output;
tock,
output;
set in 13099,
set load 0,
tick,
output;
tock,
output;
set load 1,
set address 130,
tick,
output;
tock,
output;
set load 0,
set address 0,
tick,
output;
tock,
output;
set in 4729,
set address 472,
tick,
output;
tock,
output;
set load 1,
tick,
output;
tock,
output;
set load 0,
tick,
output;
tock,
output;
set address 130,
eval,
output;
set in 5119,
tick,
output;
tock,
output;
set load 1,
set address 511,
tick,
output;
tock,
output;
set load 0,
tick,
output;
tock,
output;
set address 472,
eval,
output;
set address 511,
eval,
output;
set load 0,
set address %B010101000,
tick,
output;
tock,
output;
set address %B010101001,
eval,
output;
set address %B010101010,
eval,
output;
set address %B010101011,
eval,
output;
set address %B010101100,
eval,
output;
set address %B010101101,
eval,
output;
set address %B010101110,
eval,
output;
set address %B010101111,
eval,
output;
set load 1,
set in %B0101010101010101,
set address %B010101000,
tick,
output;
tock,
output;
set address %B010101001,
tick,
output,
tock,
output;
set address %B010101010,
tick,
output,
tock,
output;
set address %B010101011,
tick,
output,
tock,
output;
set address %B010101100,
tick,
output,
tock,
output;
set address %B010101101,
tick,
output,
tock,
output;
set address %B010101110,
tick,
output,
tock,
output;
set address %B010101111,
tick,
output,
tock,
output;
set load 0,
set address %B010101000,
tick,
output;
tock,
output;
set address %B010101001,
eval,
output;
set address %B010101010,
eval,
output;
set address %B010101011,
eval,
output;
set address %B010101100,
eval,
output;
set address %B010101101,
eval,
output;
set address %B010101110,
eval,
output;
set address %B010101111,
eval,
output;
set load 1,
set address %B010101000,
set in %B1010101010101010,
tick,
output;
tock,
output;
set load 0,
set address %B010101000,
tick,
output;
tock,
output;
set address %B010101001,
eval,
output;
set address %B010101010,
eval,
output;
set address %B010101011,
eval,
output;
set address %B010101100,
eval,
output;
set address %B010101101,
eval,
output;
set address %B010101110,
eval,
output;
set address %B010101111,
eval,
output;
set load 1,
set address %B010101000,
set in %B0101010101010101,
tick,
output,
tock,
output;
set address %B010101001,
set in %B1010101010101010,
tick,
output;
tock,
output;
set load 0,
set address %B010101000,
tick,
output;
tock,
output;
set address %B010101001,
eval,
output;
set address %B010101010,
eval,
output;
set address %B010101011,
eval,
output;
set address %B010101100,
eval,
output;
set address %B010101101,
eval,
output;
set address %B010101110,
eval,
output;
set address %B010101111,
eval,
output;
set load 1,
set address %B010101001,
set in %B0101010101010101,
tick,
output,
tock,
output;
set address %B010101010,
set in %B1010101010101010,
tick,
output;
tock,
output;
set load 0,
set address %B010101000,
tick,
output;
tock,
output;
set address %B010101001,
eval,
output;
set address %B010101010,
eval,
output;
set address %B010101011,
eval,
output;
set address %B010101100,
eval,
output;
set address %B010101101,
eval,
output;
set address %B010101110,
eval,
output;
set address %B010101111,
eval,
output;
set load 1,
set address %B010101010,
set in %B0101010101010101,
tick,
output,
tock,
output;
set address %B010101011,
set in %B1010101010101010,
tick,
output;
tock,
output;
set load 0,
set address %B010101000,
tick,
output;
tock,
output;
set address %B010101001,
eval,
output;
set address %B010101010,
eval,
output;
set address %B010101011,
eval,
output;
set address %B010101100,
eval,
output;
set address %B010101101,
eval,
output;
set address %B010101110,
eval,
output;
set address %B010101111,
eval,
output;
set load 1,
set address %B010101011,
set in %B0101010101010101,
tick,
output,
tock,
output;
set address %B010101100,
set in %B1010101010101010,
tick,
output;
tock,
output;
set load 0,
set address %B010101000,
tick,
output;
tock,
output;
set address %B010101001,
eval,
output;
set address %B010101010,
eval,
output;
set address %B010101011,
eval,
output;
set address %B010101100,
eval,
output;
set address %B010101101,
eval,
output;
set address %B010101110,
eval,
output;
set address %B010101111,
eval,
output;
set load 1,
set address %B010101100,
set in %B0101010101010101,
tick,
output,
tock,
output;
set address %B010101101,
set in %B1010101010101010,
tick,
output;
tock,
output;
set load 0,
set address %B010101000,
tick,
output;
tock,
output;
set address %B010101001,
eval,
output;
set address %B010101010,
eval,
output;
set address %B010101011,
eval,
output;
set address %B010101100,
eval,
output;
set address %B010101101,
eval,
output;
set address %B010101110,
eval,
output;
set address %B010101111,
eval,
output;
set load 1,
set address %B010101101,
set in %B0101010101010101,
tick,
output,
tock,
output;
set address %B010101110,
set in %B1010101010101010,
tick,
output;
tock,
output;
set load 0,
set address %B010101000,
tick,
output;
tock,
output;
set address %B010101001,
eval,
output;
set address %B010101010,
eval,
output;
set address %B010101011,
eval,
output;
set address %B010101100,
eval,
output;
set address %B010101101,
eval,
output;
set address %B010101110,
eval,
output;
set address %B010101111,
eval,
output;
set load 1,
set address %B010101110,
set in %B0101010101010101,
tick,
output,
tock,
output;
set address %B010101111,
set in %B1010101010101010,
tick,
output;
tock,
output;
set load 0,
set address %B010101000,
tick,
output;
tock,
output;
set address %B010101001,
eval,
output;
set address %B010101010,
eval,
output;
set address %B010101011,
eval,
output;
set address %B010101100,
eval,
output;
set address %B010101101,
eval,
output;
set address %B010101110,
eval,
output;
set address %B010101111,
eval,
output;
set load 1,
set address %B010101111,
set in %B0101010101010101,
tick,
output,
tock,
output;
set load 0,
set address %B010101000,
tick,
output;
tock,
output;
set address %B010101001,
eval,
output;
set address %B010101010,
eval,
output;
set address %B010101011,
eval,
output;
set address %B010101100,
eval,
output;
set address %B010101101,
eval,
output;
set address %B010101110,
eval,
output;
set address %B010101111,
eval,
output;
set load 0,
set address %B000101010,
tick,
output;
tock,
output;
set address %B001101010,
eval,
output;
set address %B010101010,
eval,
output;
set address %B011101010,
eval,
output;
set address %B100101010,
eval,
output;
set address %B101101010,
eval,
output;
set address %B110101010,
eval,
output;
set address %B111101010,
eval,
output;
set load 1,
set in %B0101010101010101,
set address %B000101010,
tick,
output;
tock,
output;
set address %B001101010,
tick,
output,
tock,
output;
set address %B010101010,
tick,
output,
tock,
output;
set address %B011101010,
tick,
output,
tock,
output;
set address %B100101010,
tick,
output,
tock,
output;
set address %B101101010,
tick,
output,
tock,
output;
set address %B110101010,
tick,
output,
tock,
output;
set address %B111101010,
tick,
output,
tock,
output;
set load 0,
set address %B000101010,
tick,
output;
tock,
output;
set address %B001101010,
eval,
output;
set address %B010101010,
eval,
output;
set address %B011101010,
eval,
output;
set address %B100101010,
eval,
output;
set address %B101101010,
eval,
output;
set address %B110101010,
eval,
output;
set address %B111101010,
eval,
output;
set load 1,
set address %B000101010,
set in %B1010101010101010,
tick,
output;
tock,
output;
set load 0,
set address %B000101010,
tick,
output;
tock,
output;
set address %B001101010,
eval,
output;
set address %B010101010,
eval,
output;
set address %B011101010,
eval,
output;
set address %B100101010,
eval,
output;
set address %B101101010,
eval,
output;
set address %B110101010,
eval,
output;
set address %B111101010,
eval,
output;
set load 1,
set address %B000101010,
set in %B0101010101010101,
tick,
output,
tock,
output;
set address %B001101010,
set in %B1010101010101010,
tick,
output;
tock,
output;
set load 0,
set address %B000101010,
tick,
output;
tock,
output;
set address %B001101010,
eval,
output;
set address %B010101010,
eval,
output;
set address %B011101010,
eval,
output;
set address %B100101010,
eval,
output;
set address %B101101010,
eval,
output;
set address %B110101010,
eval,
output;
set address %B111101010,
eval,
output;
set load 1,
set address %B001101010,
set in %B0101010101010101,
tick,
output,
tock,
output;
set address %B010101010,
set in %B1010101010101010,
tick,
output;
tock,
output;
set load 0,
set address %B000101010,
tick,
output;
tock,
output;
set address %B001101010,
eval,
output;
set address %B010101010,
eval,
output;
set address %B011101010,
eval,
output;
set address %B100101010,
eval,
output;
set address %B101101010,
eval,
output;
set address %B110101010,
eval,
output;
set address %B111101010,
eval,
output;
set load 1,
set address %B010101010,
set in %B0101010101010101,
tick,
output,
tock,
output;
set address %B011101010,
set in %B1010101010101010,
tick,
output;
tock,
output;
set load 0,
set address %B000101010,
tick,
output;
tock,
output;
set address %B001101010,
eval,
output;
set address %B010101010,
eval,
output;
set address %B011101010,
eval,
output;
set address %B100101010,
eval,
output;
set address %B101101010,
eval,
output;
set address %B110101010,
eval,
output;
set address %B111101010,
eval,
output;
set load 1,
set address %B011101010,
set in %B0101010101010101,
tick,
output,
tock,
output;
set address %B100101010,
set in %B1010101010101010,
tick,
output;
tock,
output;
set load 0,
set address %B000101010,
tick,
output;
tock,
output;
set address %B001101010,
eval,
output;
set address %B010101010,
eval,
output;
set address %B011101010,
eval,
output;
set address %B100101010,
eval,
output;
set address %B101101010,
eval,
output;
set address %B110101010,
eval,
output;
set address %B111101010,
eval,
output;
set load 1,
set address %B100101010,
set in %B0101010101010101,
tick,
output,
tock,
output;
set address %B101101010,
set in %B1010101010101010,
tick,
output;
tock,
output;
set load 0,
set address %B000101010,
tick,
output;
tock,
output;
set address %B001101010,
eval,
output;
set address %B010101010,
eval,
output;
set address %B011101010,
eval,
output;
set address %B100101010,
eval,
output;
set address %B101101010,
eval,
output;
set address %B110101010,
eval,
output;
set address %B111101010,
eval,
output;
set load 1,
set address %B101101010,
set in %B0101010101010101,
tick,
output,
tock,
output;
set address %B110101010,
set in %B1010101010101010,
tick,
output;
tock,
output;
set load 0,
set address %B000101010,
tick,
output;
tock,
output;
set address %B001101010,
eval,
output;
set address %B010101010,
eval,
output;
set address %B011101010,
eval,
output;
set address %B100101010,
eval,
output;
set address %B101101010,
eval,
output;
set address %B110101010,
eval,
output;
set address %B111101010,
eval,
output;
set load 1,
set address %B110101010,
set in %B0101010101010101,
tick,
output,
tock,
output;
set address %B111101010,
set in %B1010101010101010,
tick,
output;
tock,
output;
set load 0,
set address %B000101010,
tick,
output;
tock,
output;
set address %B001101010,
eval,
output;
set address %B010101010,
eval,
output;
set address %B011101010,
eval,
output;
set address %B100101010,
eval,
output;
set address %B101101010,
eval,
output;
set address %B110101010,
eval,
output;
set address %B111101010,
eval,
output;
set load 1,
set address %B111101010,
set in %B0101010101010101,
tick,
output,
tock,
output;
set load 0,
set address %B000101010,
tick,
output;
tock,
output;
set address %B001101010,
eval,
output;
set address %B010101010,
eval,
output;
set address %B011101010,
eval,
output;
set address %B100101010,
eval,
output;
set address %B101101010,
eval,
output;
set address %B110101010,
eval,
output;
set address %B111101010,
eval,
output;
|
8474c11ffaf11dcc1fee08eb8b22a7d858b63d78
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1694/CH3/EX3.20/EX3_20.sce
|
fb700dcea585cd22d7e5e77217532647840498c4
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 428 |
sce
|
EX3_20.sce
|
clear;
clc;
printf("\nEx3.20\n");
//page no.-135
//given
a=10^-10;........//width of box in m
h=6.625*10^-34;....//planck's constant in J-s
m=9.1*10^-31;......//mass of electron in kg
n=2;..............//quantum no.
e=1.6*10^-19;.....//charge
p=n*h/2*a.........//momentum in Kg*m/s
printf("\nmomentum is 6.625*10^-24 Kg*m/s\n");
E=(n^2*h^2)/(8*m*a^2*e).....//energy in eV
printf("\nenergy is 150.8 eV\n");
|
5f7ea57b8111be6bfec0e97c3fa34d9aadcbbed1
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/278/CH26/EX26.2/ex_26_2.sce
|
b59aa9ce2db9d3aeb3e4a23998d2042f9030c183
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 387 |
sce
|
ex_26_2.sce
|
//find
clc
//solution
//given
W=150000//N
d=0.3//m
N=1800//rpm
p=1.6//N/mm^2
Z=0.02//kg/m/s
c=0.25//mm
//let l be the length of bearing in mm
//A=l*d=300*l//mm^2
//pb=W/A
l=W/(300*p)//mm
printf("length of bearing is,%f mm\n",l)
u=(33/10^8)*(Z*N/p)*(d*1000/c)+0.002
printf("coeeficient of friction is,%f \n",u)
V=%pi*d*N/60//m/s
Qg=u*W*V
printf("heat gen is,%f W\n",Qg)
|
869d3366ffdb354c6199467d2c0091f70b0156bb
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3035/CH4/EX4.11/Ex4_11.sce
|
389ae612966d6c0d345fb5165a2e4564ce31f51e
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 758 |
sce
|
Ex4_11.sce
|
// Variable Declaration
h = 5 //Height of conductor above ground(m)
d = 1.5 //Conductor spacing(m)
r = 0.006 //Radius of conductor(m)
// Calculation Section
C_AB = %pi * 8.854*10**-9/log(d/(r*(1+((d*d)/(4*h*h)))**0.5)) //Capacitance with effect of earth(F/km)
C_AB1 = %pi * 8.854*10**-9/log(d/r) //Capacitance ignoring effect of earth(F/km)
ch = (C_AB - C_AB1)/C_AB * 100 //Change in capacitance with effect of earth(%)
// Result Section
printf('Line capacitance with effect of earth , C_AB = %.3e F/km' ,C_AB)
printf('Line capacitance ignoring effect of earth , C_AB = %.3e F/km' ,C_AB1)
printf('With effect of earth slight increase in capacitance = %.1f percent' ,ch)
|
29038fef38cffc844fc6193a2f51439629099463
|
6e257f133dd8984b578f3c9fd3f269eabc0750be
|
/ScilabFromTheoryToPractice/Computing/testrat.sce
|
5ec04d3dacefec1d68dc1cc26a903f1d0833b895
|
[] |
no_license
|
markusmorawitz77/Scilab
|
902ef1b9f356dd38ea2dbadc892fe50d32b44bd0
|
7c98963a7d80915f66a3231a2235010e879049aa
|
refs/heads/master
| 2021-01-19T23:53:52.068010 | 2017-04-22T12:39:21 | 2017-04-22T12:39:21 | 89,051,705 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 375 |
sce
|
testrat.sce
|
P=poly(1,'x') // variable 'x'
Q=poly(2,'x') // combination of polynomials
R=P/Q // fraction (x-1)/(x-2)
numer(R) // numerator
denom(R) // denominator
M=[1 R; P Q] // matrix of rational fractions
N=invr(M) // inverse matrix
N*M // =identity matrix
// computing the characteristic polynomial
X=poly(0,'x');
A=[1 2; 3 4]
P=det(A-X*eye(2,2))
|
750b86548b7500d5d2501e73d839ba534c0363c4
|
afd96675ead32880ce7928ad141c8e12ac66b141
|
/firstblock/macros/xcos_mean.sci
|
2be0ba73d710d843052c85af2cb49c8ee19c66ed
|
[] |
no_license
|
KWMalik/dspblock
|
a26c722c604e3db33734fb94f42dbcfe8b9b28d6
|
949c3411a292460c246cd52c0846f01c63e9c79d
|
refs/heads/master
| 2020-12-01T01:15:46.197082 | 2012-05-22T10:01:12 | 2012-05-22T10:01:12 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 2,164 |
sci
|
xcos_mean.sci
|
function [x,y,typ] = xcos_mean(job,arg1,arg2)
x=[];y=[];typ=[];
select job
case 'plot' then
standard_draw(arg1);
case 'getinputs' then
[x,y,typ]=standard_inputs(arg1);
case 'getoutputs' then
[x,y,typ]=standard_outputs(arg1);
case 'getorigin' then
[x,y]=standard_origin(arg1);
case 'set' then
x=arg1;
graphics = arg1.graphics;
exprs = graphics.exprs;
model = arg1.model;
while %t do
[ok, averagealong, exprs] = getvalue('Average matrix along? \n columns: 0 \n rows: 1 \n average all entries: 2',..
['Average along'],..
list('vec',1),..
exprs);
if ~ok
break;
end
if (averagealong ~= 0 | averagealong ~= 1 | averagealong ~= 2)
message(['Average along must be 0, 1 or 2']);
ok = %f;
end
if ok
[model, graphics, ok] = set_io(model, graphics, in, out, [], []);
if averagealong == [] then averagealong = 0;end
model.ipar = [averagealong];
model.label = nom;
graphics.id = nom;
graphics.exprs = exprs;
x.graphics = graphics;
x.model = model;
break;
end
end
case 'define' then
averagealong = 0;
model=scicos_model();
model.sim = list('my_mean', 5);
model.in = [-1];
model.in2 = [-2];
model.intyp = [1];
if averagealong == 0
model.out = [1];
model.out2 = [-2];
end
if averagealong == 1
model.out = [-1];
model.out2 = [1];
end
if averagealong == 2
model.out = [1];
model.out2 = [1];
end
model.outtyp= [1];
model.blocktype='c';
model.dep_ut=[%t %f]; //depends on input, not on time
exprs=string([]);
gr_i = [];
x=standard_define([2 2],model,exprs,gr_i);
end
endfunction
|
be4f37cd736dabecddd940f2f90a9125daa029fc
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/858/CH8/EX8.10/example_10.sce
|
2143578865aa1b2c05086b746886e370c8d3f616
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 827 |
sce
|
example_10.sce
|
clc
clear
printf("example 8.10 page number 370\n\n")
//to find the rate of oil flow in l/s
density_oil=900; //in kg/m3
viscosity_oil=38.8*10^-3; //in Pa-s
density_water = 1000; //in kg/m3
diameter=0.102 //in m
manometer_reading=0.9; //m of water
delta_H=manometer_reading*(density_water-density_oil)/density_oil;
printf("manometer reading as m of oil = %f m",delta_H)
maximum_velocity=(2*9.8*delta_H)^0.5;
printf("\n\nmaximum_velocity(Vmax) = %f m/s",maximum_velocity)
Re=diameter*maximum_velocity*density_oil/viscosity_oil;
printf("\n\nif Re<4000 then v=0.5*Vmax Re = %f",Re)
if Re<4000 then velocity=maximum_velocity*0.5;
end
printf("\n\nvelocity = %f m/s",velocity)
flow_rate=(3.14/4)*diameter^2*velocity*1000;
printf("\n\nflow rate =%f litre/s",flow_rate)
|
5464e9bd8c0ee6cd8f1a3b5d5270f3ccf99b5d2f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2873/CH6/EX6.13/Ex6_13.sce
|
6452e13d3be05487ecc436dce227c1052de96e7f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 1,136 |
sce
|
Ex6_13.sce
|
// Display mode
mode(0);
// Display warning for floating point exception
ieee(1);
clear;
clc;
disp("Engineering Thermodynamics by Onkar Singh Chapter 6 Example 13")
disp("fron S.F.S.E on steam turbine;")
disp("W=h1-h2")
disp("initially at 4Mpa,300 degree celcius the steam is super heated so enthalpy from superheated steam or mollier diagram")
disp("h1=2886.2 KJ/kg,s1=6.2285 KJ/kg K")
h1=2886.2;
s1=6.2285;
disp("reversible adiabatic expansion process has entropy remaining constant.on mollier diagram the state 2 can be simply located at intersection of constant temperature line for 50 degree celcius and isentropic expansion line.")
disp("else from steam tables at 50 degree celcius saturation temperature;")
disp("hf=209.33 KJ/kg,sf=0.7038 KJ/kg K")
hf=209.33;
sf=0.7038;
disp("hfg=2382.7 KJ/kg,sfg=7.3725 KJ/kg K")
hfg=2382.7;
sfg=7.3725;
disp("here s1=s2,let dryness fraction at 2 be x2")
disp("x2=(s1-sf)/sfg")
x2=(s1-sf)/sfg
disp("hence enthalpy at state 2")
disp("h2=hf+x2*hfg in KJ/kg")
h2=hf+x2*hfg
disp("steam turbine work(W)in KJ/kg")
disp("W=h1-h2")
W=h1-h2
disp("so turbine output=W")
W
|
47e63891bc6e24fcdbad6476874a7b695ed38ff4
|
776c9715b4adba254a4ce6ad7391bae87e8086a2
|
/mnewton/xrnr1.tst
|
d366d4b50580f1e0ac4a1321942dd9036d056264
|
[] |
no_license
|
TYMCOM-X/169279.tape
|
b0cf2f2cc6a400acb6b0ca2f44ef17f0a4854666
|
a80150749ad1dc588b6768dfd53c1a21cfc7d783
|
refs/heads/master
| 2023-03-23T08:41:21.289217 | 2021-03-19T11:26:42 | 2021-03-19T11:26:42 | 345,965,036 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 415 |
tst
|
xrnr1.tst
|
IF \MINRQA
ELSE
MINRQA EQ 0E
EI
patch(891115,1200,bpc,xmrr,,6)
j pa1ptr,,
conpatch(pa1ptr,,28)
clhi 4,1
je xm0
xm1 lb 1,cfxctb,4,
j xcmd00,,
xm0 lhl 1,scblks+scbrqa,rscb,
clhi 1,MINRQA
jge xm1
lis 4,3
j xm1
endpatch(doulbe check before we send RR)
:
|
6c7d8da80044f3d00d0558b98db1f876326669c9
|
99b4e2e61348ee847a78faf6eee6d345fde36028
|
/Toolbox Test/gaussdesign/gaussedesign9.sce
|
5f4357c4a4e0225211263ce4b26692dc997ac1ff
|
[] |
no_license
|
deecube/fosseetesting
|
ce66f691121021fa2f3474497397cded9d57658c
|
e353f1c03b0c0ef43abf44873e5e477b6adb6c7e
|
refs/heads/master
| 2021-01-20T11:34:43.535019 | 2016-09-27T05:12:48 | 2016-09-27T05:12:48 | 59,456,386 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 240 |
sce
|
gaussedesign9.sce
|
bt =- 0.3;
span = 4;
sps = 'a';
h = gaussdesign();
//output
//!--error 10000
//Not enough input arguments
//at line 3 of function checkNArgin called by :
//at line 16 of function gaussdesign called by :
//h = gaussdesign();
|
f81d891e681b9b4156ddac0d542f16b0b1e02819
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1478/CH3/EX3.7.16/3_7_16.sce
|
7b1150be2b8b1627740196a719c0aa76d6048b1b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 310 |
sce
|
3_7_16.sce
|
//lubricants//
//example 3.7.16//
clc
wt_oil=3//weight f oil saponified(gms)//
volume=.2//volume of alcoholic KOH consumed to neutralize fatty acids(ml)//
normality_KOH=0.025//normality of KOH //
A=volume*normality_KOH*56/wt_oil//formula for acid value//
printf("\nAcid value of oil is %.4f mgs KOH",A);
|
67de792fce904d764b4bcb35991c3fdf10b9711f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3845/CH17/EX17.8/Ex17_8.sce
|
74bb8e3daf8c5d1a009f977e1b3b5df8b3c3fd8e
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 753 |
sce
|
Ex17_8.sce
|
//Example 17.8
f_s=2500000;//Frequency of ultrasound (Hz)
v_w=1540;//Speed of sound in human tissue (m/s)
v_obs=20*10^-2;//Speed of blood (m/s)
f_obs=f_s*((v_w+v_obs)/v_w);//Frequency received by the blood (Hz)
printf('a.Frequency received by the blood = %7.0f Hz',f_obs)
v_b=v_obs;//Source velocity=velocity of blood (m/s)
f_obs=f_obs*(v_w/(v_w-v_b));//Frequency that returns to source (Hz)
printf('\nb.Frequency that returns to source = %7.0f Hz',f_obs)
f_B=abs(f_obs-f_s);//Beat frequency (Hz)
printf('\nc.Beat frequency produced = %0.2f Hz',f_B)
//Answer given in the textbook is wrong for (a)
//Answer varies for (c) due to round off error
//Openstax - College Physics
//Download for free at http://cnx.org/content/col11406/latest
|
9017073df223dadf2820b2ec595b304a771f9bfd
|
286a3b61feec58c992ceda8f1ce28b8e4db5caf5
|
/courbes_surfaces/tp5/scilab/questions.sce
|
fff68fb5ec918855a072ecf403097c3637f3df57
|
[] |
no_license
|
confiture/M2
|
970865ab3a52c5c65a84637f987dc27d6485542d
|
e95ca27c1eccd36337348ff042b8db144c08f0d5
|
refs/heads/master
| 2021-01-22T07:32:37.900029 | 2017-11-06T13:07:58 | 2017-11-06T13:07:58 | 1,020,201 | 1 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 4,747 |
sce
|
questions.sce
|
exec('util.sce')
exec('schemas.sce')
exec('tp5mat.sce')
////////////////////////////////////////////////////////////////////////
function traceChaikin()
P=inputpoly()
disp("yeye")
P1=chaikinIter(P,1)
plot(P1(1,:),P1(2,:),'r')
P2=chaikinIter(P,2)
plot(P2(1,:),P2(2,:),'g')
P3=chaikinIter(P,3)
plot(P3(1,:),P3(2,:),'b')
xs2jpg(0,'q11chaikin.jpg')
endfunction
////////////////////////////////////////////////////////////////////////
function traceClark(rang)
P=inputpoly()
P1=catmullClarkIter(P,1)
plot(P1(1,:),P1(2,:),'r')
P2=catmullClarkIter(P,2)
plot(P2(1,:),P2(2,:),'g')
P3=catmullClarkIter(P,3)
plot(P3(1,:),P3(2,:),'b')
xs2jpg(0,'q11clark.jpg')
endfunction
////////////////////////////////////////////////////////////////////////
function traceFourPts(rang)
P=inputpoly()
P1=fourPtsIter(P,1)
plot(P1(1,:),P1(2,:),'r')
P2=fourPtsIter(P,2)
plot(P2(1,:),P2(2,:),'g')
P3=fourPtsIter(P,3)
plot(P3(1,:),P3(2,:),'b')
xs2jpg(0,'q11fourPts.jpg')
endfunction
function traceCorner09025(rang)
P=inputpoly()
P1=cornerCutIter(P,0.9,0.25,1)
plot(P1(1,:),P1(2,:),'r')
P2=cornerCutIter(P,0.9,0.25,2)
plot(P2(1,:),P2(2,:),'g')
P3=cornerCutIter(P,0.9,0.25,3)
plot(P3(1,:),P3(2,:),'b')
xs2jpg(0,'q21cornerCut0.9-0.25.jpg')
endfunction
function traceCorner105(rang)
P=inputpoly()
P1=cornerCutIter(P,1,0.5,1)
plot(P1(1,:),P1(2,:),'r')
P2=cornerCutIter(P,1,0.5,2)
plot(P2(1,:),P2(2,:),'g')
P3=cornerCutIter(P,1,0.5,3)
plot(P3(1,:),P3(2,:),'b')
xs2jpg(0,'q21cornerCut1-0.5jpg')
endfunction
function traceCorner11025(rang)
P=inputpoly()
P1=cornerCutIter(P,1.1,0.25,1)
plot(P1(1,:),P1(2,:),'r')
P2=cornerCutIter(P,1.1,0.25,2)
plot(P2(1,:),P2(2,:),'g')
P3=cornerCutIter(P,1.1,0.25,3)
plot(P3(1,:),P3(2,:),'b')
xs2jpg(0,'q21cornerCut1.1-0.25jpg')
endfunction
function traceCorner025075(rang)
P=inputpoly()
P3=cornerCutIter(P,0.25,0.75,3)
plot(P3(1,:),P3(2,:),'b')
xs2jpg(0,'q21cornerCut0.25-0.75jpg')
endfunction
////////////////////////////////////////////////////////////////////////
function traceToutCorner()
P=inputpoly()
P3=cornerCutIter(P,0.9,0.25,10)
plot(P3(1,:),P3(2,:),'b')
xs2jpg(0,'q21cornerCut0.9-0.25.jpg')
P1=[]
P2=[]
P3=[]
clf
a=gca()
set(a,"data_bounds",[0,0;100,100])
for i=1:size(P,2)
plot(P(1,i),P(2,i),"go")
end
plot(P(1,:),P(2,:),"g-")
P3=cornerCutIter(P,1,0.5,10)
plot(P3(1,:),P3(2,:),'b')
xs2jpg(0,'q21cornerCut1-0.5jpg')
P1=[]
P2=[]
P3=[]
clf
a=gca()
set(a,"data_bounds",[0,0;100,100])
for i=1:size(P,2)
plot(P(1,i),P(2,i),"go")
end
plot(P(1,:),P(2,:),"g-")
P3=cornerCutIter(P,1.1,0.25,10)
plot(P3(1,:),P3(2,:),'b')
xs2jpg(0,'q21cornerCut1.1-0.25jpg')
P1=[]
P2=[]
P3=[]
clf
a=gca()
set(a,"data_bounds",[0,0;100,100])
for i=1:size(P,2)
plot(P(1,i),P(2,i),"go")
end
plot(P(1,:),P(2,:),"g-")
P3=cornerCutIter(P,0.25,0.75,10)
plot(P3(1,:),P3(2,:),'b')
xs2jpg(0,'q21cornerCut0.25-0.75jpg')
endfunction
function traceChou()
P=inputpoly()
P7=chouFleurIter(P,7)
plot(P7(1,:),P7(2,:))
xs2jpg(0,'q21chouFleur7.jpg')
clf
a=gca()
set(a,"data_bounds",[0,0;100,100])
for i=1:size(P,2)
plot(P(1,i),P(2,i),"go")
end
plot(P(1,:),P(2,:),"g-")
P8=chouFleurIter(P,8)
plot(P8(1,:),P8(2,:))
xs2jpg(0,'q21chouFleur8.jpg')
clf
a=gca()
set(a,"data_bounds",[0,0;100,100])
for i=1:size(P,2)
plot(P(1,i),P(2,i),"go")
end
plot(P(1,:),P(2,:),"g-")
P9=chouFleurIter(P,9)
plot(P9(1,:),P9(2,:))
xs2jpg(0,'q21chouFleur9.jpg')
clf
a=gca()
set(a,"data_bounds",[0,0;100,100])
for i=1:size(P,2)
plot(P(1,i),P(2,i),"go")
end
plot(P(1,:),P(2,:),"g-")
P10=chouFleurIter(P,10)
plot(P10(1,:),P10(2,:))
xs2jpg(0,'q21chouFleur10.jpg')
endfunction
function trace11()
P=inputpoly()
P1=chaikinIter(P,1)
plot(P1(1,:),P1(2,:),'r')
P2=chaikinIter(P,2)
plot(P2(1,:),P2(2,:),'g')
P3=chaikinIter(P,3)
plot(P3(1,:),P3(2,:),'b')
xs2jpg(0,'q11chaikin.jpg')
clf
a=gca()
set(a,"data_bounds",[0,0;100,100])
P1=catmullClarkIter(P,1)
plot(P1(1,:),P1(2,:),'r')
P2=catmullClarkIter(P,2)
plot(P2(1,:),P2(2,:),'g')
P3=catmullClarkIter(P,3)
plot(P3(1,:),P3(2,:),'b')
for i=1:size(P,2)
plot(P(1,i),P(2,i),"go")
end
plot(P(1,:),P(2,:),"g-")
xs2jpg(0,'q11clark.jpg')
clf
a=gca()
set(a,"data_bounds",[0,0;100,100])
P1=fourPtsIter(P,1)
plot(P1(1,:),P1(2,:),'r')
P2=fourPtsIter(P,2)
plot(P2(1,:),P2(2,:),'g')
P3=fourPtsIter(P,3)
plot(P3(1,:),P3(2,:),'b')
for i=1:size(P,2)
plot(P(1,i),P(2,i),"go")
end
plot(P(1,:),P(2,:),"g-")
xs2jpg(0,'q11fourPts.jpg')
endfunction
|
e9f708827453165b75aa3af060a30456427e2a50
|
a557f90da8513f81cafd8f65e37e2c0d66449a2f
|
/chebyshev.sce
|
c7f24a9b1d8e25657a236e08fcad5354e9dbc9f7
|
[] |
no_license
|
Sahil966121/SCI
|
484cd77d6247e54fe87d36b4f112965c83ab5d96
|
cf2921861486a4f2e2e83c3ca813a4e7710d3508
|
refs/heads/main
| 2023-03-03T17:43:08.236192 | 2021-02-03T05:19:43 | 2021-02-03T05:19:43 | 324,413,192 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 734 |
sce
|
chebyshev.sce
|
clc;
f1=input('Enter the pass band edge(Hz)=');
f2=input('Enter the stop band edge(Hz)=');
rp=input('Enter the pass band ripple(dB)=');
rs=input('Enter the stop band attenuation(dB)=');
fs=input('Enter the sampling rate(Hz)=');
rp_ratio=10^(rp/20);
w1=2*%pi*f1*1/fs;
w2=2*%pi*f2*1/fs;
o1=2*fs*tan(w1/2);
o2=2*fs*tan(w2/2);
or=o2/o1;
A2=10.^(-rs/10);
A=sqrt(A2);
epsilon2=(10.^(-rp/10)-1);
epsilon=sqrt(epsilon2);
g=((A2-1).^0.5./epsilon);
n=(acosh(g))/(acosh(or));
n=ceil(n);
oc=o1;
wc=2*atan(oc/(2*fs));
hs=analpf(n,'cheb1',[1-rp_ratio],oc);
hz=iir(n,'lp','cheb1',wc/(2*%pi),[1-rp_ratio 1]);
[hzm,fr]=frmag(hz,256);
magz=20*log10(hzm)';
figure();
plot2d(fr*(2*%pi),magz);xtitle('Digital IIR filter:lowpass','frequency','magnitude');
|
927e912b3ffff43c4084c83bd57f234bab47593f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1631/CH10/EX10.19/Ex10_19.sce
|
52d806d729556820ba53f3f25cf804eb4226ab31
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 349 |
sce
|
Ex10_19.sce
|
//Caption: code word
//Example 10.19
//page no 501
//Determine code word
clc;
clear;
m3=1;
m2=0;
m1=1;
m0=0;
//M=Message Matrix
//G=Generator Matrix
G=[1 0 0 0 1 0 1;0 1 0 0 1 1 1;0 0 1 0 1 1 0;0 0 0 1 0 1 1];
M=[m3 m2 m1 m0;];
X=M*G;
for i=1:7;
if X(i)>1
X(i)=0
end
end
disp(X,"The required code word ");
|
98472a0cca7410a89576d58e7a385a7e99386c2d
|
fe48ae0c518509ac5c57688957075e939956f2b1
|
/Energy eigen values of Hydrogen Atom.sce
|
2325fb98be35a89bc9646eb4e7d968a8c77f719a
|
[] |
no_license
|
dibakardhar/Scilab-Notes
|
d8161939a96b5d9f89106440059b6aaa717f5d79
|
6bc6a6caa5120a4c7a20f15430860e5b51e8014e
|
refs/heads/main
| 2023-07-09T18:48:56.525225 | 2021-08-15T16:32:36 | 2021-08-15T16:32:36 | 396,415,364 | 1 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 276 |
sce
|
Energy eigen values of Hydrogen Atom.sce
|
clc
h=[5,5,5,5,5];
n=[1,2,3,4,5];
E0=input("Enter the value of ground state in eV : ")'
En=E0./(n^2);
barh(En,h,0.01,"black");
ylabel("Energy eigen valuee En(eV) - - - - ->");
xtitle('Plot of energy eigen values of Hydrogen atom');
legend("$En=\frac{E0}{n^2}$",[5]);
|
eb9fdc9bf20273c4bfeb1888ccf0330f24cf679d
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/source/2.5/macros/robust/gcare.sci
|
1fad72cf89ef0010f4ab69abb5ed070dc58908cc
|
[
"LicenseRef-scancode-public-domain",
"LicenseRef-scancode-warranty-disclaimer"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111 | 2022-09-13T14:41:51 | 2022-09-13T14:41:51 | 258,270,193 | 0 | 1 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 295 |
sci
|
gcare.sci
|
function [X,F]=gcare(Sl)
//[X,F]=gcare(Sl)
//Generalized Control Algebraic Riccati Equation
//X = solution , F = gain
//!
//FD.
// Copyright INRIA
[A,B,C,D]=Sl(2:5);
S=eye()+D'*D;R=eye()+D*D';
Si=inv(S);
Ar=A-B*Si*D'*C;
H=[Ar,-B*Si*B';
-C'*inv(R)*C,-Ar'];
X=ric_desc(H);
F=-Si*(D'*C+B'*X)
|
9e4e4131e4e6a707a677c361e4c30db875d63247
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3557/CH3/EX3.12/Ex3_12.sce
|
c4ec37ffab1d7d1e7ab20708aa0af724e41e6963
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 164 |
sce
|
Ex3_12.sce
|
//Example 3.12//
//As the problem is in the statement in the book
mprintf("As the problem is in the statement in the book it cannot be solved using scilab")
|
e9b798fa6c80b92de742a3089f2c31a75b42918f
|
e0124ace5e8cdd9581e74c4e29f58b56f7f97611
|
/3899/CH2/EX2.6/Ex2_6.sci
|
08eeec87f4dca3341335c7342111683bb656acaf
|
[] |
no_license
|
psinalkar1988/Scilab-TBC-Uploads-1
|
159b750ddf97aad1119598b124c8ea6508966e40
|
ae4c2ff8cbc3acc5033a9904425bc362472e09a3
|
refs/heads/master
| 2021-09-25T22:44:08.781062 | 2018-10-26T06:57:45 | 2018-10-26T06:57:45 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 192 |
sci
|
Ex2_6.sci
|
clear all
A=1;
f0=1;
T0=1/f0;
theta=0;
t=0:1:10;
function y=f(t);
y=(A.*cos((2*%pi.*t)./T0+theta))^2
endfunction
a=T0/2;
b=-T0/2;
x=intg(b,a,f)
disp(x,'The signal power is:')
|
212a62c37156e1223a34b8d03277782302ec0700
|
ea619b33cae5a486fb22da8bdcfe0bc7d81c3032
|
/test/testcases/directed/rred3.tst
|
8967eb29a270c6b173408c82803195224209026b
|
[
"MIT",
"LicenseRef-scancode-unknown-license-reference"
] |
permissive
|
alexvonduar/optimized-routines
|
714ab0a7b8d7d28fc689b0bae1e7a885fd461a69
|
f59c54e97e2023a5981679b14637d8ee2abe2d2d
|
refs/heads/master
| 2020-03-08T14:07:45.302916 | 2018-11-27T09:34:42 | 2018-11-27T09:34:42 | 128,176,402 | 0 | 0 |
Apache-2.0
| 2018-11-27T09:34:43 | 2018-04-05T08:05:10 |
C
|
UTF-8
|
Scilab
| false | false | 41,586 |
tst
|
rred3.tst
|
; rred3.tst
;
; Copyright (c) 1999-2018, Arm Limited.
; SPDX-License-Identifier: MIT
func=rred op1=4f454f91.26ab5b7c result=bccabf68.428292b8.71a res2=00000003 errno=0
func=rred op1=4f569eab.0985179b result=bc561ece.c9c577fd.3e9 res2=00000003 errno=0
func=rred op1=4f5b7b07.c8260da4 result=3cd61dee.99d944a9.b99 res2=00000001 errno=0
func=rred op1=4f64d809.9ba17aa6 result=3cb123f9.b608e0bb.0c7 res2=00000001 errno=0
func=rred op1=4f68654c.7768b490 result=bcb285e6.a2a5383a.e06 res2=00000003 errno=0
func=rred op1=4f71868a.855f3127 result=bcdf60e1.eb2be0c7.29c res2=00000001 errno=0
func=rred op1=4f7f440e.697237f9 result=3cc9b5f6.910d5118.92b res2=00000003 errno=0
func=rred op1=4f808557.ebaaea77 result=3caf8419.92d91276.712 res2=00000001 errno=0
func=rred op1=4f8cb7fe.275f44bf result=bcb549c0.7bdde73a.883 res2=00000003 errno=0
func=rred op1=4f939201.7a980109 result=3ca9fc65.e067b477.218 res2=00000001 errno=0
func=rred op1=4f99ab54.98722e2d result=bcb80d9a.5516963a.300 res2=00000003 errno=0
func=rred op1=4fa51856.420e8c52 result=3c9dd9fc.f709f0f1.047 res2=00000001 errno=0
func=rred op1=4fa824ff.d0fba2e4 result=bcbd954e.0787f439.7fb res2=00000003 errno=0
func=rred op1=4fb0a57e.3ee1734d result=bce19716.baece8b3.584 res2=00000001 errno=0
func=rred op1=4fbfa481.6315d27b result=3cb6637d.b94774b4.c35 res2=00000003 errno=0
func=rred op1=4fc0956b.15462ee2 result=bcad509f.1805f781.fae res2=00000001 errno=0
func=rred op1=4fcb2196.364d750b result=3c512bbb.e07f2de1.317 res2=00000003 errno=0
func=rred op1=4fd2d6e0.abaa5d9a result=3cae635a.d60dea60.0e0 res2=00000001 errno=0
func=rred op1=4fd8e020.9fe94653 result=bcc5fc77.520479a1.7c3 res2=00000003 errno=0
func=rred op1=4fe1b625.e078463e result=bcac3de3.59fe04a3.e7d res2=00000003 errno=0
func=rred op1=4fec4251.017f8c67 result=3cc6ca84.208a6fc8.0a8 res2=00000003 errno=0
func=rred op1=4ff24683.461151ec result=3cb04469.290ee80e.1a1 res2=00000001 errno=0
func=rred op1=4ffa9138.d0b4695d result=bcc52e6a.837e837a.ede res2=00000001 errno=0
func=rred op1=5001fe54.9344cc15 result=bca7f2f4.61de392b.9b7 res2=00000003 errno=0
func=rred op1=500b69c4.e919fae2 result=3cc8669d.bd965c15.272 res2=00000003 errno=0
func=rred op1=50168ff5.64c92090 result=bc9eba2c.e33d4476.056 res2=00000003 errno=0
func=rred op1=501fb337.07d1c986 result=3cb8da47.194e7efe.b2d res2=00000001 errno=0
func=rred op1=50246b3c.556d393e result=3cccb18c.b5b6278d.738 res2=00000003 errno=0
func=rred op1=502d464f.45a95c5d result=bccbca39.fe45e1ba.5c2 res2=00000003 errno=0
func=rred op1=5030ebf8.0b96d86c result=bcb70ba1.aa6df358.841 res2=00000001 errno=0
func=rred op1=50357d98.dd1b2ce7 result=3cc50301.7ce6d66f.f22 res2=00000001 errno=0
func=rred op1=5043bdf6.b82ffc7e result=bccae2e7.46d59be7.44b res2=00000001 errno=0
func=rred op1=504df394.e2e6991d result=3cce8032.2496b333.a24 res2=00000003 errno=0
func=rred op1=505254f7.61e36a75 result=bcd8f744.78a1c79f.e46 res2=00000003 errno=0
func=rred op1=505f5c94.39332b26 result=3cdc948f.5662deec.41f res2=00000001 errno=0
func=rred op1=50698d45.78b193d2 result=3c9b1a80.f8d4304f.d3d res2=00000003 errno=0
func=rred op1=506af644.cefe25db result=bca12cec.66d32c4e.1b8 res2=00000001 errno=0
func=rred op1=507101a0.bf3e8004 result=bcd559f9.9ae0b053.86d res2=00000003 errno=0
func=rred op1=507f46eb.858b838e result=3ce5bed8.255a2f51.3f3 res2=00000001 errno=0
func=rred op1=50827574.6f5ee5d9 result=3cc98706.ceee3458.f22 res2=00000001 errno=0
func=rred op1=5083de73.c5ab77e2 result=bca4cc98.513c4074.4d1 res2=00000001 errno=0
func=rred op1=5096b5dc.9f2e85da result=3cb0b434.d0361015.ad4 res2=00000001 errno=0
func=rred op1=509dcdad.a88133d3 result=bcbf32e4.79da60ae.73a res2=00000003 errno=0
func=rred op1=50a54a28.326cfede result=bc90618e.0418c17a.7f3 res2=00000003 errno=0
func=rred op1=50a82191.0bf00cd6 result=3cd1ba4d.b0779c2d.553 res2=00000001 errno=0
func=rred op1=50b60002.68cdc25c result=3cbd5006.1f65efcc.bab res2=00000001 errno=0
func=rred op1=50bfef3c.4ba37e4d result=bca89255.06252237.bed res2=00000001 errno=0
func=rred op1=50c4ef3b.173c9d1f result=bccaf12d.92c58902.3cc res2=00000001 errno=0
func=rred op1=50c5a515.4d9d609d result=3cb51f3f.1d598f0f.7b2 res2=00000003 errno=0
func=rred op1=50d02514.b369f006 result=3ca9dcf0.369a5ca4.771 res2=00000001 errno=0
func=rred op1=50daca28.cca06f75 result=bc8b98af.465c9942.1d6 res2=00000001 errno=0
func=rred op1=50e2b79e.72eb7772 result=bcb3d4a3.ece454a2.c2e res2=00000001 errno=0
func=rred op1=50e8379f.0d1ee809 result=3cc365b4.28f3c57b.594 res2=00000003 errno=0
func=rred op1=50f16e59.932ab3bc result=3c982131.26d82006.d0b res2=00000003 errno=0
func=rred op1=50fc136d.ac61332b result=bccdbef5.e3567ef4.245 res2=00000003 errno=0
func=rred op1=510212fc.030b1597 result=bcc0d07d.c80950a1.e8c res2=00000001 errno=0
func=rred op1=510a2586.5cc00d9a result=3cb218e4.dd221805.1c8 res2=00000001 errno=0
func=rred op1=5115c9ef.f7f560ab result=3cbe297d.708e2808.84e res2=00000003 errno=0
func=rred op1=511f25bf.316b1c64 result=bcc89489.21819541.435 res2=00000003 errno=0
func=rred op1=512349d3.8d9fd946 result=3ce235ba.dbcc7553.b93 res2=00000001 errno=0
func=rred op1=512ca5a2.c71594ff result=bca9ee91.117df4f0.9b1 res2=00000001 errno=0
func=rred op1=5130809c.95f020f7 result=bc6cd5fe.aa5d4e9c.a57 res2=00000003 errno=0
func=rred op1=5134dc32.fabacde6 result=3cb73a81.31853591.eb8 res2=00000003 errno=0
func=rred op1=5146931f.ae82dafb result=bcbad541.06d0df65.804 res2=00000001 errno=0
func=rred op1=514aeeb6.134d87ea result=3cb56d21.46df60a8.213 res2=00000001 errno=0
func=rred op1=515389de.22397df9 result=bcbca2a0.f176b44f.4a9 res2=00000003 errno=0
func=rred op1=515df7f7.9f96e4ec result=3cb1d261.7193b6d4.8c8 res2=00000001 errno=0
func=rred op1=5162053d.5c14cf78 result=bcc01eb0.63612f11.6fa res2=00000003 errno=0
func=rred op1=516f7c98.65bb936d result=3ca539c3.8df8c65a.c65 res2=00000001 errno=0
func=rred op1=5177fe9a.7dd5da32 result=3c8b3b10.e3287c31.ce6 res2=00000001 errno=0
func=rred op1=5179833b.43fa88b3 result=bcc75430.0df882b8.990 res2=00000003 errno=0
func=rred op1=51837d4b.26d0a654 result=3cc38612.7fc63e97.a96 res2=00000003 errno=0
func=rred op1=518c7fe9.d4db0e10 result=bcb96e9c.8df83f16.6ba res2=00000001 errno=0
func=rred op1=5195bdf2.d2534043 result=3cc6ed74.9c2b4e1d.e33 res2=00000001 errno=0
func=rred op1=519a3f42.29587421 result=bcb29fd8.552e2009.f81 res2=00000003 errno=0
func=rred op1=51a31f47.b421b09d result=bca7a228.38c801fb.08f res2=00000001 errno=0
func=rred op1=51af1e94.f30c9db6 result=3c7cc745.5303d1b6.2be res2=00000001 errno=0
func=rred op1=51b6af44.eebd125f result=bcc88862.63602088.ba4 res2=00000003 errno=0
func=rred op1=51bb8e97.b8713bf4 result=3cbd0785.3858b94d.312 res2=00000001 errno=0
func=rred op1=51c15749.16d3ffbc result=bcb5d5b3.e397c4df.a63 res2=00000003 errno=0
func=rred op1=51cd5696.55beecd5 result=3cc05036.f15c99c1.fb5 res2=00000003 errno=0
func=rred op1=51d672f0.67a29dd8 result=3cc21cab.468cd6dd.5e1 res2=00000001 errno=0
func=rred op1=51d83aef.04f04eb9 result=bcad47c5.1dada0e4.366 res2=00000003 errno=0
func=rred op1=51e3e51c.bf3b4eca result=bc9dc844.e8577012.40e res2=00000003 errno=0
func=rred op1=51eac8c2.ad579dc7 result=3cc94e7c.9b4dcb4a.e90 res2=00000001 errno=0
func=rred op1=51f981d8.d923f640 result=3cb55534.18edf5b1.9bb res2=00000003 errno=0
func=rred op1=51fdd7ab.1ed8f62f result=bcb65633.ae41940d.b0a res2=00000001 errno=0
func=rred op1=520116be.b246fb0f result=bcd08066.dd5c4773.3f4 res2=00000003 errno=0
func=rred op1=5206b37a.cc2fa285 result=3c99c446.9308f6a1.ed0 res2=00000001 errno=0
func=rred op1=52105304.95e6a4f5 result=bca0e621.9ed2f4c1.4a5 res2=00000003 errno=0
func=rred op1=521d13f1.0278a015 result=3cc11bab.b1393881.491 res2=00000001 errno=0
func=rred op1=5223833f.b10b23bd result=3c91bc49.e86c03c1.456 res2=00000001 errno=0
func=rred op1=522d75ce.10a8cb22 result=bccb90bb.ab49ef9a.183 res2=00000001 errno=0
func=rred op1=5231eb22.2378e459 result=bca8ee1e.496fe7a1.f20 res2=00000003 errno=0
func=rred op1=52351b5d.3e9d6321 result=3cbe3359.0d23f792.3e6 res2=00000001 errno=0
func=rred op1=5242b730.ea42040b result=bc8cc751.840f8f82.b26 res2=00000001 errno=0
func=rred op1=52444f4e.77d4436f result=3cc388bf.00acfcb9.708 res2=00000003 errno=0
func=rred op1=52525129.86dd7432 result=bcbc8708.79f1d992.484 res2=00000003 errno=0
func=rred op1=52531d38.4da693e4 result=3cac46bf.6fd423a1.de3 res2=00000001 errno=0
func=rred op1=526c45cd.11154dfd result=bc501242.876d7c1a.84c res2=00000001 errno=0
func=rred op1=526cabd4.7479ddd6 result=3cc5350f.93df1ab9.66a res2=00000003 errno=0
func=rred op1=52777e7e.fdaba904 result=bcad47e3.984afb63.868 res2=00000001 errno=0
func=rred op1=5277e486.611038dd result=3cd1ac37.a5e49645.2ae res2=00000001 errno=0
func=rred op1=5280868d.923f797b result=3cab459b.475d4be0.35e res2=00000003 errno=0
func=rred op1=528e7670.6917d88d result=bcd20ca5.3511272d.ca0 res2=00000001 errno=0
func=rred op1=52919edf.3e40bec3 result=bcc5f5ea.b2383c8a.a4e res2=00000003 errno=0
func=rred op1=5296662d.51aa63bc result=3ca94352.f66f9c5c.e55 res2=00000003 errno=0
func=rred op1=52a112b6.68401c1f result=bcb0a63a.1d132d35.13d res2=00000001 errno=0
func=rred op1=52abb9a4.3b14ab59 result=3cd0cb38.027c997b.b79 res2=00000003 errno=0
func=rred op1=52b0cca1.fd3fcacd result=3cc2f27e.38d3b545.abf res2=00000001 errno=0
func=rred op1=52b6ac41.bcaab50e result=bcb4aaca.beee8c3b.b51 res2=00000001 errno=0
func=rred op1=52c0efac.32bff376 result=3c926220.de044084.c11 res2=00000003 errno=0
func=rred op1=52cc68d7.469576a6 result=bcd5d0ec.ccced044.012 res2=00000001 errno=0
func=rred op1=52d3cdf6.f7b55442 result=bcc25e86.a32e042b.1ce res2=00000001 errno=0
func=rred op1=52d96782.4c1fed31 result=3cab9331.4d0660c7.21a res2=00000001 errno=0
func=rred op1=52e7f85c.e9a53ccb result=3cd26053.c0992257.ef0 res2=00000003 errno=0
func=rred op1=52ead6a7.ae9a9d97 result=bcb25aec.6857c7d1.78b res2=00000001 errno=0
func=rred op1=52f1a73e.e3fd4ba9 result=bca253b7.f2ab4f1e.306 res2=00000003 errno=0
func=rred op1=52fa1f14.fd5d4564 result=3ca27089.c95d31eb.51c res2=00000003 errno=0
func=rred op1=53058760.980e9c6d result=3cc6fe43.505b8cff.958 res2=00000003 errno=0
func=rred op1=530eb6c9.62abee5b result=bca236e6.1bf96c51.0ef res2=00000001 errno=0
func=rred op1=5313974f.be05f40b result=3cbba8ce.ae0bcae0.fab res2=00000001 errno=0
func=rred op1=53182f04.23549d02 result=bcbb6f2b.00a80546.b7d res2=00000003 errno=0
func=rred op1=53229f47.51019fda result=bca1fd42.6e95a6b6.cc1 res2=00000001 errno=0
func=rred op1=5329270c.9058f133 result=3ca2e3d1.2424bd1f.d78 res2=00000003 errno=0
func=rred op1=53365f2e.272f729f result=3cd030e1.7b8a7d14.784 res2=00000001 errno=0
func=rred op1=533beeea.f9826fc7 result=bcbafbe3.a5e07a12.322 res2=00000003 errno=0
func=rred op1=53413b58.1c6ce090 result=3ca3ca5f.d9b3d388.e2f res2=00000003 errno=0
func=rred op1=534a8afb.c4edb07d result=bca03025.037779e4.b53 res2=00000001 errno=0
func=rred op1=5351ed4f.b6b74035 result=bcba1554.f05163a9.26b res2=00000003 errno=0
func=rred op1=5359d904.2aa350d8 result=3cbdaf8f.c68dbd4d.547 res2=00000001 errno=0
func=rred op1=53658a2e.238818b4 result=3cc8bcf7.d020c86b.1bb res2=00000003 errno=0
func=rred op1=536ed9d1.cc08e8a1 result=bcb67b1a.1a150a04.f8e res2=00000003 errno=0
func=rred op1=537362c3.1ffa7ca2 result=3cd643ab.d4ea4df9.ff5 res2=00000003 errno=0
func=rred op1=537cb266.c87b4c8f result=bccb6db2.1081fee7.31a res2=00000003 errno=0
func=rred op1=538027a2.9aa61287 result=3ce28db9.dc189650.54c res2=00000001 errno=0
func=rred op1=538fed87.4dcfb6aa result=bcd401ce.1ede8f93.dc8 res2=00000003 errno=0
func=rred op1=53944599.ae031379 result=bc6bb722.955e057c.c77 res2=00000003 errno=0
func=rred op1=5395594f.2fc9e182 result=3cb2eca6.c508e35c.fcb res2=00000001 errno=0
func=rred op1=53adde8b.c4213631 result=bcb6638b.17b4a40c.95a res2=00000003 errno=0
func=rred op1=53aef241.45e8043a result=3cb13134.9bb30305.304 res2=00000003 errno=0
func=rred op1=53b91212.b91224d5 result=bcb81efd.410a8464.622 res2=00000001 errno=0
func=rred op1=53ba25c8.3ad8f2de result=3ccb8541.12e264df.94e res2=00000001 errno=0
func=rred op1=53c1df5d.287b8acb result=3cab74a0.920e84ab.2eb res2=00000003 errno=0
func=rred op1=53c6abd6.338a9c27 result=bcbb95e1.93b64513.fb1 res2=00000001 errno=0
func=rred op1=53d3127b.6b3f4f22 result=3c9b321e.8ebf03d9.95f res2=00000003 errno=0
func=rred op1=53d578b7.f0c6d7d0 result=bcc141d5.1c86e339.967 res2=00000001 errno=0
func=rred op1=53ec9bb9.20def6b3 result=3cb46596.eb0f42e3.307 res2=00000001 errno=0
func=rred op1=53edced7.63a2bb0a result=bcb4ea9a.f1ae4486.61f res2=00000003 errno=0
func=rred op1=53f73d8b.24ad40bf result=3cd2d3b6.03cb130e.637 res2=00000001 errno=0
func=rred op1=53f870a9.67710516 result=bc9d462e.a93b0a66.5bc res2=00000001 errno=0
func=rred op1=5405c192.69582a1c result=3cb3e092.e470413f.ff0 res2=00000001 errno=0
func=rred op1=540b1fc0.6589e010 result=bcc89360.c6d5a5d3.2d6 res2=00000003 errno=0
func=rred op1=5417191d.e8649799 result=3c94f5ee.3f4af033.448 res2=00000003 errno=0
func=rred op1=5419c834.e67d7293 result=bccfe4ec.7124686c.c45 res2=00000001 errno=0
func=rred op1=5421a8b9.4e0e8d12 result=bca2cb37.8995924c.b98 res2=00000001 errno=0
func=rred op1=542c8982.82baa220 result=3cbe5b8a.0415b959.a14 res2=00000003 errno=0
func=rred op1=543a7d15.f515d39b result=bcbc30d3.4e605b73.164 res2=00000003 errno=0
func=rred op1=543fed7a.8f6bde22 result=3ca720a4.f5004e19.cf8 res2=00000001 errno=0
func=rred op1=5448cb19.eebd359a result=bc9ceb94.3c55acff.470 res2=00000003 errno=0
func=rred op1=544e3b7e.89134021 result=3cd211d9.a0aae670.0a9 res2=00000003 errno=0
func=rred op1=545539e9.9e65e156 result=bcc668aa.112047ec.a26 res2=00000003 errno=0
func=rred op1=545c5c4a.3f1489de result=3cafcb7f.cbd5c5b3.fb9 res2=00000001 errno=0
func=rred op1=54670281.c6918b78 result=bccda38f.2035b32c.742 res2=00000001 errno=0
func=rred op1=546a93b2.16e8dfbc result=3c76ff5c.7c00c5a5.a46 res2=00000003 errno=0
func=rred op1=5479af66.02d30aab result=bcbb7b9e.7495a0a4.ecc res2=00000003 errno=0
func=rred op1=547b77fe.2afeb4cd result=3cc09dba.c9cae907.2ae res2=00000001 errno=0
func=rred op1=54830a79.7d18d2bc result=bccc3399.5875a6d2.19e res2=00000003 errno=0
func=rred op1=5483eec5.912ea7cd result=3c913f85.5d00943c.3b4 res2=00000001 errno=0
func=rred op1=54910e75.585c765e result=3cd0f9b8.3bbaec1d.c17 res2=00000001 errno=0
func=rred op1=549d7402.4fbb112b result=bcc7e3b8.013581c3.0b1 res2=00000001 errno=0
func=rred op1=54a5d113.b7a2ab0d result=3cd3d9a3.cb3b04d2.760 res2=00000001 errno=0
func=rred op1=54af5650.762f146b result=bcc0b3eb.1a7543ff.47a res2=00000003 errno=0
func=rred op1=54b4dfec.a468a96d result=3cd82985.227b29e1.84d res2=00000001 errno=0
func=rred op1=54b9a28b.03aede1c result=bcb02850.d7e9f3c2.540 res2=00000003 errno=0
func=rred op1=54c37632.0791a6fd result=3c9b5c2e.905b478d.418 res2=00000003 errno=0
func=rred op1=54cfcee3.ffcc153b result=bcd1de13.c0efa83b.282 res2=00000001 errno=0
func=rred op1=54d3b27b.cc602765 result=3cd2f548.460648b5.0f6 res2=00000003 errno=0
func=rred op1=54d9ded4.c87d5e84 result=bc83d1cc.7de27fdd.9a1 res2=00000001 errno=0
func=rred op1=54e3580d.252a66c9 result=bcc1656d.9fc81bc0.2da res2=00000003 errno=0
func=rred op1=54e9fcf9.aae49eb8 result=3ccc994b.58396f8b.1b2 res2=00000003 errno=0
func=rred op1=54f3671f.965e06e3 result=bc9dbab2.bcd3bfcc.671 res2=00000003 errno=0
func=rred op1=54f9ede7.39b0fe9e result=3cca1f11.c87d1f8f.67e res2=00000001 errno=0
func=rred op1=55035f96.5dc436d6 result=bcd34118.cb9557bc.f41 res2=00000001 errno=0
func=rred op1=5509e65e.01172e91 result=3cc52a9e.a9047f98.016 res2=00000001 errno=0
func=rred op1=55102780.6101730c result=bcd5bb52.5b51a7b8.a76 res2=00000001 errno=0
func=rred op1=551d1e73.fdd9f25b result=3cb18efd.b4addf5b.023 res2=00000003 errno=0
func=rred op1=5521cb14.97fca4fe result=3c9e985d.d6f27db0.d4a res2=00000003 errno=0
func=rred op1=552842c9.ca1bfc9f result=bca8576a.104bc0e2.c9d res2=00000003 errno=0
func=rred op1=5535d4f4.b03d01c1 result=bcd1e846.a0735802.8cc res2=00000003 errno=0
func=rred op1=553ab09e.e3faf77d result=3cb6f246.6135de44.9f7 res2=00000001 errno=0
func=rred op1=554301ff.24ec226d result=3cd37883.921d0736.0f7 res2=00000003 errno=0
func=rred op1=554979b4.570b7a0e result=bc76523a.f15e29e2.a4f res2=00000003 errno=0
func=rred op1=5555a264.77840f86 result=3cbd333a.27dc9b12.aa5 res2=00000003 errno=0
func=rred op1=555d5104.3692e496 result=bcc163e4.721a12c5.a9c res2=00000001 errno=0
func=rred op1=55678e0c.6747c4ca result=3cba68f2.c9b0d5d6.55b res2=00000001 errno=0
func=rred op1=556b655c.46cf2f52 result=bcc2c908.212ff563.d41 res2=00000003 errno=0
func=rred op1=557883e0.5f299f6c result=3cb4d464.0d594b5d.ac8 res2=00000001 errno=0
func=rred op1=557a6f88.4eed54b0 result=bcc5934f.7f5bbaa0.28b res2=00000003 errno=0
func=rred op1=5588feca.5b1a8cbd result=3ca3568d.29546cd8.b41 res2=00000001 errno=0
func=rred op1=5589f49e.52fc675f result=bccb27de.3bb34518.d1f res2=00000003 errno=0
func=rred op1=5592ddd2.435024e2 result=bc77dd6e.404de84f.86c res2=00000001 errno=0
func=rred op1=559f1fc2.72e4f498 result=3cc41578.9b56dc1b.304 res2=00000003 errno=0
func=rred op1=55a5b0d9.513ce227 result=3cd474ee.545813bc.6e6 res2=00000001 errno=0
func=rred op1=55ac4cbb.64f83753 result=bc91e612.b03a6e3b.a51 res2=00000003 errno=0
func=rred op1=55b484ca.c83efa2d result=bcc88efd.476577aa.199 res2=00000003 errno=0
func=rred op1=55baa5c2.e0096208 result=3cc119ca.d34d1f11.3f7 res2=00000003 errno=0
func=rred op1=55c6c1ca.91acc375 result=3cbc3c3a.1686c40e.9d3 res2=00000003 errno=0
func=rred op1=55c868c3.169b98c0 result=bccd0881.f3741339.02d res2=00000001 errno=0
func=rred op1=55d5a34a.acf5ded1 result=bcd17fee.c1c3c6a6.724 res2=00000001 errno=0
func=rred op1=55d98742.fb527d64 result=3ca4ac4e.cc98aba5.f03 res2=00000003 errno=0
func=rred op1=55e6328a.9f515123 result=bcab0e8d.b40324f9.1d5 res2=00000003 errno=0
func=rred op1=55ecdbfb.5753a9a5 result=3ccb6ff2.399974e4.378 res2=00000001 errno=0
func=rred op1=55f32572.3c7dde0b result=3cbf0276.32e50178.e85 res2=00000001 errno=0
func=rred op1=55fc945b.5e25f07c result=bcb0b866.4db6cf26.254 res2=00000001 errno=0
func=rred op1=5604abfe.6de79797 result=3c8f9f43.f70ee3fe.57e res2=00000003 errno=0
func=rred op1=560e1ae7.8f8faa08 result=bcd6e074.2095712f.940 res2=00000003 errno=0
func=rred op1=5613e8b8.5532bad1 result=3cd07e35.392af7dc.66e res2=00000001 errno=0
func=rred op1=561bd115.457113b6 result=bca1a12a.9fe62c4d.1e8 res2=00000003 errno=0
func=rred op1=56250da1.7a4205fa result=bcc520b0.f5b05a39.6ce res2=00000001 errno=0
func=rred op1=562b6f72.3916a553 result=3cc437ec.a380fd12.739 res2=00000001 errno=0
func=rred op1=56314a44.885010b9 result=3c9bfc32.ae516f62.72b res2=00000003 errno=0
func=rred op1=563f32cf.2b089a94 result=bca5443b.e8a3a0e9.03b res2=00000001 errno=0
func=rred op1=5642fb21.7b1bd428 result=3cc34f28.51519feb.7a4 res2=00000003 errno=0
func=rred op1=564d81f2.383cd725 result=bcc6f239.9a0f1487.5f7 res2=00000001 errno=0
func=rred op1=5657661b.604673ef result=bcbfe659.dcf5715d.859 res2=00000003 errno=0
func=rred op1=565916f8.5312375e result=3cb15a14.b9ff9eed.f0d res2=00000001 errno=0
func=rred op1=5664582f.f44b4254 result=bc8f5139.75200fd8.96a res2=00000003 errno=0
func=rred op1=566dd5c0.b1d92c68 result=3cd2549e.85a89f6c.b59 res2=00000001 errno=0
func=rred op1=5676b794.23aebcd9 result=3cbeca02.455b3be0.cee res2=00000001 errno=0
func=rred op1=567e8447.ee70e37e result=bca77ceb.17d80be2.710 res2=00000001 errno=0
func=rred op1=56896e3b.f15e12e9 result=bcb392c3.e93409e7.5e2 res2=00000003 errno=0
func=rred op1=568bcda0.20c18d6e result=3cccd4ee.ae093ae3.457 res2=00000001 errno=0
func=rred op1=56909d77.de101cc7 result=bcda28ec.e2f0a362.db4 res2=00000003 errno=0
func=rred op1=569d28f4.07993876 result=3cc11679.221d34f2.0cf res2=00000003 errno=0
func=rred op1=56a8c091.fdf23d65 result=3c86ddc6.78d2d05c.1a6 res2=00000003 errno=0
func=rred op1=56add69d.fb050dfa result=bca999c7.d6eb5bc1.901 res2=00000003 errno=0
func=rred op1=56b4015a.fa955792 result=bcc60f0e.b04adedc.af5 res2=00000003 errno=0
func=rred op1=56bd7fc9.014f2338 result=3ccbc680.4e7f92f3.b5f res2=00000001 errno=0
func=rred op1=56c3d5f0.7dba6231 result=bc9c55c9.3503e727.05b res2=00000001 errno=0
func=rred op1=56cdab33.7e2a1899 result=3cbdf338.c613ca25.dbd res2=00000003 errno=0
func=rred op1=56d1609f.bd9e7497 result=bcc0579d.12162ac5.a8c res2=00000003 errno=0
func=rred op1=56d64b41.3dd64fcb result=3c9165c3.bca1b991.2f1 res2=00000001 errno=0
func=rred op1=56e51098.ddc858fe result=bca3a2e7.56b30a5e.6e3 res2=00000003 errno=0
func=rred op1=56e785e9.9de44698 result=3cbb3737.67fb3ec0.662 res2=00000001 errno=0
func=rred op1=56f0ad96.4f29fe80 result=3ce5eb3c.76a9c9cf.db6 res2=00000001 errno=0
func=rred op1=56ff98e5.4cac857d result=bcbd745b.020c8f8d.a54 res2=00000001 errno=0
func=rred op1=570069c6.d65d3e25 result=3c9e5140.4520d187.dff res2=00000003 errno=0
func=rred op1=570af213.45416aa4 result=bca81d2e.8ad5abf8.ec6 res2=00000001 errno=0
func=rred op1=57180156.1184e1d1 result=bcc9aa32.f968755c.a94 res2=00000001 errno=0
func=rred op1=571de2d0.78fdf377 result=3c88d046.e92c963b.ce3 res2=00000003 errno=0
func=rred op1=5724358e.73f10ffb result=bcc215e2.e82040fa.b15 res2=00000003 errno=0
func=rred op1=5727264b.a7ad98ce result=3cb242a8.ffb5fb8b.69b res2=00000001 errno=0
func=rred op1=57324faa.a5272710 result=bc976a16.2c7ec1b6.0a9 res2=00000003 errno=0
func=rred op1=573bfcec.aa340a8c result=3cd3b94a.627de7a6.ca6 res2=00000001 errno=0
func=rred op1=5744bafb.266a5fef result=3cbeaacc.744c46a9.50d res2=00000001 errno=0
func=rred op1=574b777f.f7baba98 result=bcb18f90.a15f1148.87f res2=00000001 errno=0
func=rred op1=5756e395.4e70f0d4 result=bcbd449b.b79e7223.8d4 res2=00000003 errno=0
func=rred op1=57594ee5.cfb429b3 result=3ccbbd89.aebc6e72.8f8 res2=00000001 errno=0
func=rred op1=576005b5.5082422e result=bcc47cd3.66eee97f.494 res2=00000001 errno=0
func=rred op1=576b98db.24590e95 result=3cda46e8.4bf48257.2ed res2=00000001 errno=0
func=rred op1=57712aaf.fad4b49f result=bcd5f374.c9b6d59a.a9f res2=00000001 errno=0
func=rred op1=577f07cb.235065e8 result=3ce814f6.37c8a02e.1dd res2=00000003 errno=0
func=rred op1=57808785.0f5c5168 result=bd0043a7.41699ccb.2c1 res2=00000001 errno=0
func=rred op1=578f899a.e22a7522 result=3cbcc116.86cdb576.a4a res2=00000003 errno=0
func=rred op1=5790e9c8.1b67ad02 result=3c955c01.693bcf02.685 res2=00000003 errno=0
func=rred op1=57920ec2.c5ba1f73 result=bcb21315.d22fcdf5.708 res2=00000003 errno=0
func=rred op1=57a95eac.291b8383 result=3cb00501.0eecdb41.ce3 res2=00000001 errno=0
func=rred op1=57aa83a6.d36df5f4 result=bcbecf2b.4a10a82a.46f res2=00000001 errno=0
func=rred op1=57b491bc.cd185f0a result=3cd261cb.8722118b.c5e res2=00000003 errno=0
func=rred op1=57be2b9b.851ea7fc result=bca2e653.c1a9b24f.bd4 res2=00000001 errno=0
func=rred op1=57c78ab1.d0432a7f result=3ca7d1af.10cdebb5.136 res2=00000001 errno=0
func=rred op1=57cc57a1.2c464ef8 result=bcd1c460.1d3d8a5f.1b2 res2=00000003 errno=0
func=rred op1=57d6a0b4.a3d6fdfd result=bcbc597d.a27e8b77.9be res2=00000003 errno=0
func=rred op1=57df1598.b18ad47e result=3cacbd0a.5ff2251a.699 res2=00000003 errno=0
func=rred op1=57e715b3.3a0d143e result=bc921f3a.46c27f0a.21c res2=00000001 errno=0
func=rred op1=57ef8a97.47c0eabf result=3cd43a0d.c4cfa711.c63 res2=00000001 errno=0
func=rred op1=57f315c0.7e4e341e result=bcc52a3b.0a820231.017 res2=00000001 errno=0
func=rred op1=57fb15a5.f5cbf45e result=3cb8353b.ce418557.e12 res2=00000003 errno=0
func=rred op1=580515b9.dc2da42e result=bcc9b209.9c32a1f3.89e res2=00000003 errno=0
func=rred op1=580915ac.97ec844e result=3cae4b3d.55c08ba5.a08 res2=00000001 errno=0
func=rred op1=581815af.e8fccc46 result=bc87ccdc.df11c9ba.8bf res2=00000001 errno=0
func=rred op1=581a15a9.46dc3c56 result=3ccfc80b.23b1a841.494 res2=00000003 errno=0
func=rred op1=582795b1.9184f042 result=bcc39c08.14b39ba5.ca8 res2=00000001 errno=0
func=rred op1=582895ae.4074a84a result=3cbb51a1.b9de526e.4f0 res2=00000003 errno=0
func=rred op1=5837d5b0.bd40de44 result=bcc695a3.b095d4dd.1c0 res2=00000003 errno=0
func=rred op1=583855af.14b8ba48 result=3cb55e6a.8219dfff.ac0 res2=00000001 errno=0
func=rred op1=5847f5b0.531ed545 result=bccc88da.e85a474b.bf0 res2=00000003 errno=0
func=rred op1=584835af.7edac347 result=3ca2eff8.2521f644.cc2 res2=00000001 errno=0
func=rred op1=58522043.b9ac94b5 result=bc837392.e7bf4dd6.ff5 res2=00000001 errno=0
func=rred op1=585e4b1b.4408f1d9 result=3cc42731.539deb22.3c1 res2=00000003 errno=0
func=rred op1=58652af9.9c43abfe result=3cb08185.c82a0c89.ec3 res2=00000003 errno=0
func=rred op1=586b2065.cb93e38f result=bcd27542.3e8b51ba.a0f res2=00000001 errno=0
func=rred op1=5879ab0a.a537536b result=bcc1fa8c.57f4ad30.75c res2=00000001 errno=0
func=rred op1=587cb5c0.87ce6ab4 result=3c9b1ef1.51299679.b23 res2=00000003 errno=0
func=rred op1=5885e5a7.2f71f410 result=bcc6d771.11e480a6.35a res2=00000001 errno=0
func=rred op1=5888f05d.12090b59 result=3cc3e563.f24f3f59.227 res2=00000001 errno=0
func=rred op1=58958850.65dad007 result=3cb45734.fcdf30db.45a res2=00000001 errno=0
func=rred op1=58994db3.dba02f62 result=bcc00fb4.bd9a1b07.c91 res2=00000003 errno=0
func=rred op1=58a00ee6.99fe5303 result=3cd59753.0761d8c0.bda res2=00000001 errno=0
func=rred op1=58ab01ba.31b74d0b result=bc9401e0.a82a7e57.7fc res2=00000003 errno=0
func=rred op1=58b11795.29d573dc result=3ca11e00.fd14574d.f24 res2=00000001 errno=0
func=rred op1=58bdbe6f.17a58b8d result=bccbd7e9.3bef203c.159 res2=00000003 errno=0
func=rred op1=58c275ef.9ccc931d result=bcbc90e1.26b4a9fe.78f res2=00000003 errno=0
func=rred op1=58c9a35f.bec02dca result=3cb9ad01.7b9e82f4.eb7 res2=00000003 errno=0
func=rred op1=58d55d7a.744ad0d3 result=3cc56581.3c596d21.6ed res2=00000001 errno=0
func=rred op1=58df479f.7c2caa02 result=bcbf74c0.d1cad108.067 res2=00000001 errno=0
func=rred op1=58e3e9b5.088bb1f8 result=bcacad7f.a96cf374.284 res2=00000003 errno=0
func=rred op1=58e82f9a.53010eef result=3c863a09.42eeec9e.f14 res2=00000001 errno=0
func=rred op1=58f280a5.193092ea result=3ccb10a2.0fcd71be.da8 res2=00000003 errno=0
func=rred op1=58fdde8f.8cd18af4 result=bcc5821f.bf11b697.1e3 res2=00000001 errno=0
func=rred op1=5903352d.10de2271 result=3cb973c4.762df009.8cc res2=00000001 errno=0
func=rred op1=590d2a07.9523fb6d result=bc89cdd9.99f81b54.dbe res2=00000003 errno=0
func=rred op1=591aacd0.f412852e result=3c9f8d25.b8e1cb93.74a res2=00000003 errno=0
func=rred op1=591fa73e.363571ac result=bcb4ca36.3b34808f.4b1 res2=00000001 errno=0
func=rred op1=592250d5.bc2c2f15 result=bcc8bbda.f250ba01.b9b res2=00000003 errno=0
func=rred op1=592e0e5e.e9d5eec9 result=3ce14bfb.5e0ba4cf.e71 res2=00000001 errno=0
func=rred op1=5932c301.668528c3 result=3cca2bad.fa0b2611.5fe res2=00000003 errno=0
func=rred op1=59354038.07969f02 result=bc940e8d.7b0e6b16.431 res2=00000003 errno=0
func=rred op1=5947f684.7dd49218 result=3cba8982.5a1e30cd.e3e res2=00000003 errno=0
func=rred op1=594fe054.0b61ee83 result=bcae15d4.3895a0a1.64a res2=00000001 errno=0
func=rred op1=5953e511.cc77a577 result=bccc4fab.4959e8b7.a44 res2=00000003 errno=0
func=rred op1=59569b5e.42b5988d result=3cb0823b.9c96fb42.c25 res2=00000001 errno=0
func=rred op1=59609dbd.23407407 result=3c99ebd3.7c3f16de.833 res2=00000003 errno=0
func=rred op1=596b3dd9.270bc388 result=bcab2731.37fd4abd.449 res2=00000003 errno=0
func=rred op1=59739c8d.b2fb064a result=3cc3bfb6.0c1ede1e.92c res2=00000001 errno=0
func=rred op1=597e3ca9.b6c655cb result=bc63b5db.bbe33dec.159 res2=00000001 errno=0
func=rred op1=59846e62.dd48d2a6 result=bcc45d64.e9fdf80d.f37 res2=00000001 errno=0
func=rred op1=59876d33.6d0364e9 result=3ca8b075.c080e2ff.c1d res2=00000003 errno=0
func=rred op1=599106a7.b8675a35 result=bcd0f87e.c2fe4eb6.4ad res2=00000003 errno=0
func=rred op1=599ad4ee.91e4dd5a result=3ca639ba.49047b42.3f2 res2=00000001 errno=0
func=rred op1=59a0d232.6dd3e71e result=bcb00a54.137b0d1c.24f res2=00000003 errno=0
func=rred op1=59ae0834.6c32e2b4 result=3cdcb30a.c55fa646.cb1 res2=00000001 errno=0
func=rred op1=59b5d390.7fdc623c result=3c98bd98.d625b898.68c res2=00000001 errno=0
func=rred op1=59b93b4b.a4bddaad result=bcc80f7e.1d3893aa.377 res2=00000001 errno=0
func=rred op1=59c352e1.76d824ad result=bcb9e541.f16cac12.2fc res2=00000003 errno=0
func=rred op1=59c8543f.88e09fcb result=3cc9516d.63c93255.4c4 res2=00000001 errno=0
func=rred op1=59d05eac.5fe549ad result=3cb28e32.a09c4a72.4e9 res2=00000003 errno=0
func=rred op1=59d8c7c5.96cf3d3c result=bcc6cd8e.d6a7f4ff.22a res2=00000003 errno=0
func=rred op1=59e45975.f462f4bc result=3cddf4fa.0bf044f1.dfe res2=00000001 errno=0
func=rred op1=59ecc28f.2b4ce84b result=bca0fd70.d82eaa33.503 res2=00000001 errno=0
func=rred op1=59f11bb9.a5a2006d result=3c8f009f.f7dc3994.626 res2=00000003 errno=0
func=rred op1=59fd7f9c.71099f0b result=bcd5d589.d6e91332.7f9 res2=00000001 errno=0
func=rred op1=5a06ef24.6877745c result=bcaa3ab9.b2664601.87c res2=00000001 errno=0
func=rred op1=5a0c6408.886e8ceb result=3cc22eea.698c2718.06d res2=00000001 errno=0
func=rred op1=5a114afc.f7112e1d result=bccb6c33.43c3c2e6.3e7 res2=00000003 errno=0
func=rred op1=5a1c934b.d9ddba9b result=3c831799.15d7ce4b.6a7 res2=00000001 errno=0
func=rred op1=5a21335b.4e599745 result=bcc3ac0b.45ccb481.25d res2=00000003 errno=0
func=rred op1=5a26d782.bfbfdd84 result=3cb1e343.1ea91693.9e8 res2=00000001 errno=0
func=rred op1=5a31278a.79fdcbd9 result=bca0aeed.277a5edb.d29 res2=00000003 errno=0
func=rred op1=5a3c877b.0581ef2f result=3cd3f920.c398626f.18d res2=00000001 errno=0
func=rred op1=5a46dd6b.29edc33a result=3c73455f.72eb7b7c.bf7 res2=00000003 errno=0
func=rred op1=5a4c9934.440ba051 result=bcc9a08e.b6ceea25.a1d res2=00000003 errno=0
func=rred op1=5a512496.44e6d8fe result=3cc27d6e.1a40726f.848 res2=00000001 errno=0
func=rred op1=5a5c9640.0ef4ad76 result=bcc014c2.2be302ff.ec9 res2=00000003 errno=0
func=rred op1=5a640100.b76a4e1c result=3cc3b1c4.116f2a27.507 res2=00000003 errno=0
func=rred op1=5a69b9d5.9c713858 result=bcbdc0d8.69689690.413 res2=00000001 errno=0
func=rred op1=5a756f35.f0ac08ab result=3cc61a6f.ffcc9996.e86 res2=00000003 errno=0
func=rred op1=5a784ba0.632f7dc9 result=bcb8ef80.8cadb7b1.115 res2=00000001 errno=0
func=rred op1=5a806ef5.c2d17524 result=3cc8831b.ee2a0906.805 res2=00000003 errno=0
func=rred op1=5a8d4be0.910a1150 result=bca4f6f1.ecfa3627.038 res2=00000001 errno=0
func=rred op1=5a951465.afa156be result=bcd17f4a.7253920d.011 res2=00000003 errno=0
func=rred op1=5a9a14a5.dd7bea45 result=3ca193cc.f8dcc0d2.7b5 res2=00000001 errno=0
func=rred op1=5aa2c1ad.b93965f1 result=3cbc0f45.ef59dbe5.fd1 res2=00000001 errno=0
func=rred op1=5aa5f8e8.6cc78cfc result=bcbf726a.e377513a.855 res2=00000003 errno=0
func=rred op1=5ab24f6c.5aa64ad2 result=bcca34ae.6838c3b0.c47 res2=00000001 errno=0
func=rred op1=5abdbe21.ef9d2c6f result=3cb8ac20.fb3c6691.74e res2=00000001 errno=0
func=rred op1=5ac07aae.5195a9bd result=bcd795d0.2a997ceb.e40 res2=00000001 errno=0
func=rred op1=5acf92df.f8adcd84 result=3cc36e64.7ffdd907.b40 res2=00000003 errno=0
func=rred op1=5ad19e2e.056787d7 result=3cb1e5d7.13017be8.647 res2=00000001 errno=0
func=rred op1=5ad372ec.0e7828ec result=bc8888d6.cfc5d1f4.f86 res2=00000003 errno=0
func=rred op1=5aeb57a4.0ca39c4d result=3cc05d49.a6051ec9.14f res2=00000001 errno=0
func=rred op1=5aed2c62.15b43d62 result=bca266a1.1bd45d77.ba4 res2=00000001 errno=0
func=rred op1=5af67ae9.09059212 result=3cd12190.5c834d58.bcb res2=00000003 errno=0
func=rred op1=5af84fa7.12163327 result=bcaeab0c.83b74672.367 res2=00000003 errno=0
func=rred op1=5b01eeed.91317459 result=bcda54e0.ea6d7c14.99e res2=00000001 errno=0
func=rred op1=5b0eb060.92faf1f5 result=3cc5feb5.5123b1b6.fd4 res2=00000003 errno=0
func=rred op1=5b10428f.4e05c985 result=bcdeee89.31629372.887 res2=00000003 errno=0
func=rred op1=5b1b8003.d288928e result=3caaa4bc.3d2039f7.883 res2=00000001 errno=0
func=rred op1=5b229cbc.ece25382 result=bca66cf1.626b69f2.689 res2=00000001 errno=0
func=rred op1=5b2f868f.b490c75f result=3cd64231.fecefeb7.4f4 res2=00000003 errno=0
func=rred op1=5b370e60.5fb57308 result=3caedc87.17d509fc.a7d res2=00000003 errno=0
func=rred op1=5b3beb1b.63537d43 result=bcc0d1b5.09d08f75.ce6 res2=00000003 errno=0
func=rred op1=5b44d58e.a64be345 result=bc9bfab7.5a0393d0.529 res2=00000001 errno=0
func=rred op1=5b494732.191f02cb result=3cd12def.018abe3b.591 res2=00000003 errno=0
func=rred op1=5b586055.04cfb044 result=bcd29160.7f70c8b2.d39 res2=00000003 errno=0
func=rred op1=5b5a9926.be394007 result=3c770e7d.ee8bb162.aa3 res2=00000001 errno=0
func=rred op1=5b67b75a.b24291a6 result=bca918e7.9c321da3.fd4 res2=00000003 errno=0
func=rred op1=5b6d7af2.ca2fee68 result=3cb25013.49bbfb2a.a93 res2=00000001 errno=0
func=rred op1=5b719f45.710ea595 result=3cc8964d.30c88293.a88 res2=00000003 errno=0
func=rred op1=5b7dcf6f.f3767db7 result=bcd8d79a.667d501b.d2e res2=00000001 errno=0
func=rred op1=5b833a6a.0bad446d result=bc9b2351.49d889e5.505 res2=00000003 errno=0
func=rred op1=5b861c36.17a3f2ce result=3ccb781c.ee99f8bf.fdc res2=00000003 errno=0
func=rred op1=5b96e9c8.64f3423a result=3c92f9aa.933ed8e0.042 res2=00000003 errno=0
func=rred op1=5b9b66b9.0b888f73 result=bcd484e2.c9c31ed9.52f res2=00000001 errno=0
func=rred op1=5ba2d3a0.e5059cb7 result=3cd37fad.f2efe8b8.a97 res2=00000003 errno=0
func=rred op1=5baeaf4e.3e26e58a result=bcb664e6.a508d3ad.4f4 res2=00000003 errno=0
func=rred op1=5bb30705.78597092 result=3cc96db3.40f38c7e.aab res2=00000003 errno=0
func=rred op1=5bbacc8b.518d13e2 result=bca9d022.b6d2ce7a.9a7 res2=00000001 errno=0
func=rred op1=5bc8db29.db402b0e result=3c984664.df55c68a.dba res2=00000001 errno=0
func=rred op1=5bccbdec.c7d9fcb6 result=bcccd8ef.52bd874b.f5e res2=00000003 errno=0
func=rred op1=5bd7e279.2019b6a4 result=3cc60277.2f2991b1.5f9 res2=00000001 errno=0
func=rred op1=5bd9d3da.96669f78 result=bcb3be89.7efd5cd7.e38 res2=00000003 errno=0
func=rred op1=5be85ed1.7dacf0d9 result=3ccc1410.66ff0354.168 res2=00000003 errno=0
func=rred op1=5be95782.38d36543 result=bc9e6d5c.3d49e649.d6d res2=00000001 errno=0
func=rred op1=5bf2e28b.9339bd65 result=3c921f6d.8161a6cb.e08 res2=00000003 errno=0
func=rred op1=5bffcc78.de6d0d21 result=bcc17a9b.ced127fe.677 res2=00000001 errno=0
func=rred op1=5c061d06.e6069154 result=bca55da5.7c9912e3.e69 res2=00000001 errno=0
func=rred op1=5c0c15a5.2e0cfefd result=3cd356c2.7f966f54.e2c res2=00000003 errno=0
func=rred op1=5c11837a.189cf088 result=bcd66a3e.2e907f34.605 res2=00000001 errno=0
func=rred op1=5c1df10f.063d060f result=3c9dc26b.0c547567.b4e res2=00000001 errno=0
func=rred op1=5c2095c5.2c84ecff result=bcc0063c.1d72ce2a.ece res2=00000003 errno=0
func=rred op1=5c2869cd.4cbb61ba result=3cb99008.4476c425.cdb res2=00000001 errno=0
func=rred op1=5c31bc28.5fdf5532 result=3c90c98b.1f76c507.9cc res2=00000003 errno=0
func=rred op1=5c37436a.1960f987 result=bcb12b42.b4bb61a1.ff5 res2=00000001 errno=0
func=rred op1=5c43ec97.a2f2f343 result=bcd4510c.caa1a693.6cc res2=00000003 errno=0
func=rred op1=5c4a9a3c.8fceffcb result=3ca92e50.af32278b.6b2 res2=00000001 errno=0
func=rred op1=5c536791.9b165854 result=3ccfdb9c.70434e08.a88 res2=00000003 errno=0
func=rred op1=5c58eed3.5497fca9 result=bcb5bf5d.11ddaf7e.492 res2=00000003 errno=0
func=rred op1=5c60e673.c243d3a1 result=bcaab52f.044499f4.f58 res2=00000001 errno=0
func=rred op1=5c69c487.f2337e3a result=3c8b779c.eaa3c069.0fe res2=00000001 errno=0
func=rred op1=5c75c058.290969b6 result=3cc28104.ee21010e.2dc res2=00000001 errno=0
func=rred op1=5c7dc8b7.bb5d92be result=bcb7463b.66f021e7.d39 res2=00000003 errno=0
func=rred op1=5c87c270.0d9e73f8 result=3cc5eff8.8b75791b.4fb res2=00000003 errno=0
func=rred op1=5c8bc69f.d6c8887c result=bcb06854.2c4731cd.8f9 res2=00000001 errno=0
func=rred op1=5c98c37b.ffe8f919 result=3ccccddf.c61e6935.93b res2=00000003 errno=0
func=rred op1=5c9ac593.e47e035b result=bc85642d.b7aa8cc8.3d0 res2=00000001 errno=0
func=rred op1=5ca3d3eb.eecbe13c result=3ca61e91.7cb91d37.00a res2=00000001 errno=0
func=rred op1=5ca4d4f7.e116665d result=bcc89c7e.426acab4.576 res2=00000003 errno=0
func=rred op1=5cb0db9d.ed1812bd result=bcb5c15f.9a31d4ff.9ed res2=00000003 errno=0
func=rred op1=5cbdbde1.e631d1da result=3cc096ed.1d8ad5e9.407 res2=00000003 errno=0
func=rred op1=5cc8c8e6.ea7ed98b result=3ccba635.dbe76484.c0c res2=00000001 errno=0
func=rred op1=5ccfba8e.e030fbaa result=bca4a9c9.f29bfc59.796 res2=00000001 errno=0
func=rred op1=5cd4d242.6bcb7624 result=3ca79359.06d63e14.87e res2=00000003 errno=0
func=rred op1=5cdbc3ea.617d9843 result=bcddde3d.37b39bd8.8e2 res2=00000003 errno=0
func=rred op1=5cea4668.a5fe38e7 result=bca1c03a.de61ba9e.6ae res2=00000001 errno=0
func=rred op1=5cef3b63.a1b13136 result=3cc1ae82.c520ae8f.65e res2=00000001 errno=0
func=rred op1=5cfa06d3.06be53ad result=3ccd782f.488bcd99.a9d res2=00000003 errno=0
func=rred op1=5cff7af9.40f11670 result=bc97da39.6bda6e50.9bd res2=00000001 errno=0
func=rred op1=5d04f20d.3b6b68c1 result=3cb19cca.abdfa280.60e res2=00000003 errno=0
func=rred op1=5d0f9ac4.1091090d result=bcd6276d.8959a33e.832 res2=00000001 errno=0
func=rred op1=5d179c3a.f0b4d0d4 result=bcb1e3ab.10e3d2bc.74e res2=00000003 errno=0
func=rred op1=5d1cd0cb.8ba7ae5d result=3cbd4306.fcc8a96c.9ae res2=00000003 errno=0
func=rred op1=5d23acdb.c896ae06 result=bcbdd0c7.c6d109e4.c2d res2=00000001 errno=0
func=rred op1=5d28e16c.63898b8f result=3cd01f27.1521fb9b.572 res2=00000001 errno=0
func=rred op1=5d31b52c.34879c9f result=bccad580.9955bc1a.af5 res2=00000001 errno=0
func=rred op1=5d3ec87b.1fb6bfc4 result=3cdbc563.660b0287.912 res2=00000001 errno=0
func=rred op1=5d4016bb.b115b68e result=bcf2de75.8f6ff7ca.323 res2=00000003 errno=0
func=rred op1=5d4f21ba.3053eb1a result=3caf594f.d184a1b7.aa4 res2=00000001 errno=0
func=rred op1=5d51888c.ac3906f4 result=bca05b23.06303ae9.8d6 res2=00000001 errno=0
func=rred op1=5d5ef51a.a805556f result=3cedbaf8.63234ca3.0bc res2=00000003 errno=0
func=rred op1=5d685523.6e467907 result=3cb72bbe.4e6c8442.e39 res2=00000003 errno=0
func=rred op1=5d6a4cd3.02558a6e result=bcb888b4.8948585e.542 res2=00000003 errno=0
func=rred op1=5d75eaaf.d74748b1 result=bcc471eb.c7bc49a3.f0c res2=00000001 errno=0
func=rred op1=5d7cb746.9954bac4 result=3cc314f5.8ce07588.803 res2=00000003 errno=0
func=rred op1=5d871fe9.a2c6e0dc result=3c95ce94.3581d4f7.96b res2=00000003 errno=0
func=rred op1=5d8b820c.cdd52299 result=bca5cefb.f19f8b57.4f7 res2=00000001 errno=0
func=rred op1=5d94543b.277ff3e8 result=bccdfc73.85b03b34.280 res2=00000003 errno=0
func=rred op1=5d9e4dbb.491c0f8d result=3cc8889a.9a40eac6.65e res2=00000001 errno=0
func=rred op1=5da157ef.3a1528a5 result=3cb05aef.28215fb9.b10 res2=00000001 errno=0
func=rred op1=5da5ba12.65236a62 result=bcc888ce.784fc5f6.425 res2=00000001 errno=0
func=rred op1=5db20ada.d8e6e3e2 result=3cd9e583.dd990815.df5 res2=00000001 errno=0
func=rred op1=5dbc34f8.6ca6ddd6 result=bcb05bbe.a05ccc79.229 res2=00000003 errno=0
func=rred op1=5dc3e276.9f052722 result=3c95cb56.549421f9.d07 res2=00000003 errno=0
func=rred op1=5dcebf7f.d196dc53 result=bcd72c19.130683d6.a54 res2=00000001 errno=0
func=rred op1=5dd80bb7.85d6027c result=bcbb44a7.ab949073.d10 res2=00000001 errno=0
func=rred op1=5dddd3b1.ee87bab3 result=3cb05880.bf6f197b.5c5 res2=00000001 errno=0
func=rred op1=5de1cdd6.2b9cb975 result=3ccdfad4.953961b5.44d res2=00000001 errno=0
func=rred op1=5defe852.61f02860 result=bc95e545.5c01b9e8.025 res2=00000001 errno=0
func=rred op1=5df9e564.807aa7c1 result=3cb05204.fd93b37f.cfe res2=00000001 errno=0
func=rred op1=5dfbfa04.f3e3156e result=bcce0150.5714c7b0.d15 res2=00000003 errno=0
func=rred op1=5e01eb4f.e7fe9da9 result=3cc30ead.a913eabc.d02 res2=00000001 errno=0
func=rred op1=5e07ee3d.c9741e48 result=bcb06bf4.05014b6e.01b res2=00000003 errno=0
func=rred op1=5e13f133.7d36193c result=bcbb5e96.b3022862.02e res2=00000001 errno=0
func=rred op1=5e1de26e.ccb8accd result=3ccde761.4fa72fc2.9f7 res2=00000001 errno=0
func=rred op1=5e21f2ae.571716b6 result=bcc8a1ee.0781f125.029 res2=00000001 errno=0
func=rred op1=5e2fe0f3.f2d7af53 result=3cdc890c.f9e71424.1f5 res2=00000003 errno=0
func=rred op1=5e30f36b.c4079573 result=bcd74399.b1c1d586.827 res2=00000001 errno=0
func=rred op1=5e3ee1b1.5fc82e10 result=3ced3837.24c721f3.5f6 res2=00000001 errno=0
func=rred op1=5e407779.b20c1158 result=bd0240b0.7732a570.d90 res2=00000003 errno=0
func=rred op1=5e4f6501.e0dc2b38 result=3ccd4bc7.2315a02d.747 res2=00000001 errno=0
func=rred op1=5e51b106.168d1822 result=3cad9a07.1c4f9915.c89 res2=00000001 errno=0
func=rred op1=5e52b048.a99c9965 result=bc9c6107.3767b574.780 res2=00000001 errno=0
func=rred op1=5e6b88cb.b4e32576 result=3c638ffe.4e7e3a15.09c res2=00000003 errno=0
func=rred op1=5e6c880e.47f2a6b9 result=bcc59705.62c7c0ff.ae2 res2=00000003 errno=0
func=rred op1=5e769ce8.e5b81ecc result=3cbe3687.0ec38ae6.70e res2=00000001 errno=0
func=rred op1=5e779c2b.78c7a00f result=bcccaf47.30a1ae5c.cc2 res2=00000001 errno=0
func=rred op1=5e8912da.4d4da221 result=3cbf6f86.f3ab6e87.c18 res2=00000003 errno=0
func=rred op1=5e8dfebd.1c78a8cb result=bcba8b87.600be002.7f1 res2=00000001 errno=0
func=rred op1=5e936ba0.13df9a6e result=3cc05443.6c49a914.891 res2=00000001 errno=0
func=rred op1=5e95e191.7b751dc3 result=bcb95287.7b23fc61.2e7 res2=00000003 errno=0
func=rred op1=5ea77a35.e4615ff2 result=3cc2c643.36197057.2a4 res2=00000001 errno=0
func=rred op1=5eaf9761.8564eafa result=bcb1fc88.1db4a699.4ad res2=00000003 errno=0
func=rred op1=5eb98180.cca242b4 result=3cc7aa42.c9b8fedc.6cb res2=00000001 errno=0
func=rred op1=5ebd9016.9d240838 result=bca06911.eceb131d.8bd res2=00000003 errno=0
func=rred op1=5ecc8c71.290396d7 result=3ca6b6ea.b011610c.87b res2=00000003 errno=0
func=rred op1=5ece93bc.11447999 result=bcc616cc.98ef6b60.adc res2=00000001 errno=0
func=rred op1=5ed5286b.81ba94c9 result=3cbeeb73.a686ea9b.4da res2=00000003 errno=0
func=rred op1=5ed62c10.f5db062a result=bcb89d9a.e3609cac.51c res2=00000001 errno=0
func=rred op1=5ee27a0e.22368523 result=bcc48356.6825d7e4.eec res2=00000003 errno=0
|
31eeab7db0e9de982d633cf69976aaeab2f5a52a
|
7b7be9b58f50415293def4aa99ef5795e6394954
|
/sim/scripts/set.tst
|
aec74d9069a21183a3456e5ed34349e16e54ea9e
|
[] |
no_license
|
sabualkaz/sim42
|
80d1174e4bc6ae14122f70c65e259a9a2472ad47
|
27b5afe75723c4e5414904710fa6425d5f27e13c
|
refs/heads/master
| 2022-07-30T06:23:20.119353 | 2020-05-23T16:30:01 | 2020-05-23T16:30:01 | 265,842,394 | 0 | 0 | null | 2020-05-21T12:26:00 | 2020-05-21T12:26:00 | null |
UTF-8
|
Scilab
| false | false | 602 |
tst
|
set.tst
|
# Simple set test
units SI
$thermo = VirtualMaterials.Peng-Robinson
/ -> $thermo
thermo + PROPANE n-BUTANE ISOBUTANE n-PENTANE
h1 = Heater.Heater()
h1.DeltaP.DP = 10
h2 = Heater.Heater()
set = Set.Set()
set.SignalType = DP # must be set before addition
set.multiplier = 2.
set.addition = 0.
h1.DeltaP -> set.Signal0
sig = Stream.Stream_Signal()
sig.In -> set.Signal1
sig.Out -> h2.DeltaP
h2.DeltaP
set.addition = None
h2.DeltaP
h2.DeltaP = 30
set.addition
set.multiplier = None
set.addition = 5
set.multiplier
sig.clonePort = Stream.ClonePort()
sig.clonePort
|
90e11979418af58861a0c66ad9f69f12f612c2cd
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2792/CH5/EX5.14/Ex5_14.sce
|
417bf480d950c123ad616b725c04ec8b46deb19b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 886 |
sce
|
Ex5_14.sce
|
clc
e = 1.6*10^-19
disp("e= "+string(e)+"C")//initializing value of charge of electron
I= 1*10^-3
disp("I= "+string(I)+"A") //initializing value of forward current
kbT = 0.026
disp("kbT = "+string(kbT)+"eV") //initializing value of kbT at 300K
Tp = 10^-6
disp("Tp= "+string(Tp)+"s")//inializing value of minority carrier lifetime
Gs = (I)/(kbT)
disp("The diode conductance is Gs = (e*I)/(kbT)= "+string(Gs)+"A/V")//calculation
Cdiff = (I*Tp)/(2*kbT)
disp("The diffusion capacitance is Cdiff = (e*I*Tp)/(2*kbT)= "+string(Cdiff)+" F")//calculation
// The diffusion capacitance is much larger than junction capacitance hence neglecting junction capacitance
Y = Gs+(%i*2*%pi*10^6*Cdiff)
disp("The admittance of the diode is Y = Gs+%i(2*%pi*10^6*Cdiff)= "+string(Y)+" A/V")//calculation
// Note : due to different precisions taken by me and the author ... my answer differ
|
dfb59450cdd7dbb19666ebfae32226dc8948f3f7
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2513/CH15/EX15.4/15_4.sce
|
342fd572d3ba3255e8b5b857a0ee5113a80104ab
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 345 |
sce
|
15_4.sce
|
clc
//initialisation of variables
a=42//in
d=45//mgd
d1=0.75//in
s=60//ft
p1=9//in
p2=8.4//in
p3=9//in
c1=13*63.6//sq in
c2=9*55.4//sq in
c3=9.21//sq ft
M=d*1.547//cfs
v=M/c3//fps
g=0.025*32.2//ft/sec^2
//CALCULATIONS
F=v/sqrt(g*(p1/12))//ft
S=s/d1//in
//RESULTS
printf('the port near the end of the diffuser pipe=% f in',F)
|
8a4de34ccc434c1dd28607f991f3123e262f3f3a
|
3a031f437fdd7426aec9731b31871506b540c723
|
/Linear Auto Correlation.sce
|
78351b476b03b000e44cc8cac215d0bd28406b07
|
[] |
no_license
|
mohammedkesury/Digital-Image-Processing
|
006294df3c05100912ade8f75dcadc59f518cbba
|
6589dcf0f400a803862fcd2194ff4b008ceb795e
|
refs/heads/master
| 2020-04-20T05:20:20.161398 | 2019-04-09T16:04:04 | 2019-04-09T16:04:04 | 168,653,548 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 153 |
sce
|
Linear Auto Correlation.sce
|
clc
x=input('Enter x:')
h=x
h1=h(:,$:-1:1)
disp(h1,"h1 = ")
h2=h1($:-1:1,:)
disp(h2,"h2 = ")
y=conv2(x,h2)
disp(y,"2D Circular Correlation = ")
|
9bc8211aa02d11bccb669945a49c1a6b6bfd2240
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1943/CH6/EX6.3/Ex6_3.sce
|
cd844c174b847342c5c0bf7f354c2f4af2b880e7
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 1,007 |
sce
|
Ex6_3.sce
|
clc
clear
//Input data
H=15;//The high of downcomer riser circuit in m
P=160;//The pressure at which downcomer riser circuit operates in bar
xe=0.5;//The exit quality of the steam
S=1.2;//Slip factor
vf=0.001711;//Specific volume of saturated liquid in m^3/kg
vg=0.009306;//Specific volume of saturated gas in m^3/kg
g=9.806;//Gravitational force constant in m/s^2
//Calculations
C=S*(vf/vg);//The part of calculation for the void fraction
VF=1/[1+((1-xe)*C)/xe];//The void fraction at riser exit
pf=1/vf;//Density of the saturated liquid in kg/m^3
pg=1/vg;//Density of the saturated gas in kg/m^3
pm=pf-[[(pf-pg)/(1-C)]*[1-{(1/((VF)*(1-C)))-1}*log(1/(1-(VF*(1-C))))]];//The average mixture density in the riser in kg/m^3
P1=g*(pf-pm)*H;//Pressure head developed due to natural circulation in N/m^2
P2=P1/1000;//ressure head developed due to natural circulation in kPa
//Output
printf('The pressure head developed due to natural circulation is %3.0f N/m^2 or %3.3f kPa',P1,P2)
|
bf119e2aeb4bdeeae60b282d97f2e57755e56c46
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/317/CH21/EX21.13/example13.sce
|
f59029ee814b6315c512005e3061d03b92c5e25e
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 516 |
sce
|
example13.sce
|
// find phase shift of output voltage
// Electronic Principles
// By Albert Malvino , David Bates
// Seventh Edition
// The McGraw-Hill Companies
// Example 21-13, page 833
clear;clc; close;
// Given data
C=100*10^-9;// capacitance in faraday
R=10^3;// resistance in ohms
f=10^3;// frequency in hertz
// Calculations
fo=1/(2*%pi*R*C);// cutoff frequency in hertz
angle=2*atan(fo/f)*180/%pi;// phase shift in degree
disp("degrees",angle,"phase shift=")
// Result
// Phase shift is 116 degrees
|
71c13833992741436cc9a3ed0c406f32ab101920
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3434/CH14/EX14.8/Ex14_8.sce
|
ba4ce98c6964c0b5a97541f75d475cb23e62c96f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 487 |
sce
|
Ex14_8.sce
|
clc
// given data
P=200000.0 //principal value in rs
i=10/100.0 // interest rate
n=25.0 // time in years
L=2.0 // power produced in kW
A=P*(i*(1+i)**n)/(-1+(1+i)**n) // annualised capital cost in rs
maintcost=P*0.05 // annual maintainence cost
Totalcost=A+maintcost // total annual cost
Elec=L*0.25*10*365 // annual electricity production
Cost=Totalcost/Elec // unit cost of electricity production
printf("unit cost of electricity production is Rs %.1f",Cost)
|
db3ee8cc1b1e2f6b4793a050ebdb129adf3eb5b3
|
92074377d2c131cb9b55fc3babf541cab2c3c38b
|
/Statistika/FungsiPeluang.sce
|
ff01c484f77306c8006e0ae0c4310d67e9d26859
|
[] |
no_license
|
LinggaWahyu/BelajarScilab
|
05f6173e0cad24d3d13bb324c6470bd87a4269cf
|
ea45563c3048f4f4f229ad1306245591fcb83e52
|
refs/heads/master
| 2020-07-31T10:41:28.629143 | 2019-10-24T23:12:17 | 2019-10-24T23:12:17 | 210,577,295 | 3 | 3 | null | 2019-10-24T23:12:18 | 2019-09-24T10:38:10 |
Scilab
|
UTF-8
|
Scilab
| false | false | 124 |
sce
|
FungsiPeluang.sce
|
function [fx] = FungsiD(x)
M = sum(x);
[m, n] = size(x);
for i = 1 : n
fx(i) = (x(i)) / M
end
endfunction
|
ecb82c362de284a0ef76f9a5707e56573db41b12
|
01697f0dc71290a6b6e233849a73d19a883845f1
|
/sem01/lab01/q07.sce
|
8e7c2ff3ded2fd04a04bdee8ca26d37c609e1cbd
|
[] |
no_license
|
aaruni96/Math-Lab
|
5d83a13547308bd9d1b7daa28be29a49e1020fbd
|
488469c9aba9251f5725e0851fb19e2aef38d234
|
refs/heads/master
| 2021-01-12T06:29:53.790743 | 2018-04-27T09:21:40 | 2018-04-27T09:21:40 | 77,370,232 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 115 |
sce
|
q07.sce
|
//primes between x and y
clc;
clear;
x=200;
y=50;
p=primes(x);
for i=1:length(p)
if p(i)>50
disp(p(i))
end
end
|
c718a1480dd6e23881859561174aaeeb94c58359
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2381/CH9/EX9.5/ex_5.sce
|
7ecbf5f05806788f6e19cb1c6cc4860cd24a4a5e
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 360 |
sce
|
ex_5.sce
|
//Example 5// Amplitude
clc;
clear;
close;
//given data :
v=(1/3)*10^3;// in m/s
p=1.25;// in kg/m^3
E=v^2*p;
n=10^4;// in rad/sec
disp(E,"Bulk modulus of medium,E(N/m^2) = ")
I=10^-12;// in W/m^2
A=sqrt(I/(2*%pi^2*n^2*p*v));
disp(A,"Amplitude of wave,A(m ) = ")
P=sqrt(2*I*p*v);
disp(P,"Pressure amplitude,P(N/m^2) = ")
// answer A and E is wrong in textbook
|
1cd171c86547684a9df840ba172bb43bf5df266b
|
6b1efb6adc12c52438a2f9d64327e944c1d818a8
|
/tabelDistribusiFrek.sce
|
8eee7ba4f544e2b8905e4956d410e111539c829f
|
[] |
no_license
|
Thoriq-ha/Tabel-Distribusi-Frekuensi
|
8c74a8a16136dffcd94936a71a3fc3fa237fcf2c
|
cff9c6513759e3799b2fd91ae875693d8034a9f7
|
refs/heads/master
| 2022-12-29T20:42:59.755473 | 2020-10-20T10:42:51 | 2020-10-20T10:42:51 | 295,775,068 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 1,814 |
sce
|
tabelDistribusiFrek.sce
|
//TDistribusiFrekuensi(x[1..n], k)
//Input: Array x[1..n], nilai k ditentukan
//Asumsi : Fungsi Max dan Min sudah ada
//Output : Tabel distribusi Frekuensi(interval, m, f, fr, fk)
function [interval, m, f, fr,fk] = TDistribusiFrekuensi(x, k, n)
x_min=min(x);
x_max=max(x);
R=x_max-x_min;
i=ceil(R/k);
for q=1:(k+1)
interval(q)= x_min + (q-1)*i;
end
for q=1:k
m(q)=interval(q)+0.5*i;
f(q)=0;
end
for p=1:n
for q=1:k
if x(p) >= interval(q) & x(p)< interval(q+1)
f(q)= f(q)+1;
end
end
end
//Frekuensi Relatif
for q=1:k
fr(q)=f(q)/n;
end
//Frekuensi Kumulatif
fk(1)=f(1);
for q=2:k
fk(q)=fk(q-1)+f(q);
end
endfunction
//MeanData(x[1..n])
//Input Array x[1..n]
//Output: mean (rata-rata)
function [mean] = MeanData(x, n)
jumlah = 0
for i=1:n
jumlah=jumlah + x(i);
end
mean = jumlah/n
endfunction
//MeanDataK (m[1..n], f[1..k], fk[k])
//input: Arrayx m[1..k], f[1..k], fk[k]
//Output: mean(rata-rata)
function [mean] = MeanDataK(m, f, fk, k)
jumlah=0
for i=1:k
jumlah=jumlah + m(i)*f(i);
end
mean=jumlah/fk(k)
endfunction
//VariansiData(x[1..n])
//input: Array x(1..n)
//Output: variansi
function [variansi] = VariansiData(x, n)
jumlah=0
for i=1:n
jumlah=jumlah+x(i)^2
end
variansi=(jumlah-n*(mean^2))/(n-1)
endfunction
//VariansiDataK(m[1..k], f[1..k], f[k])
//Input Array m(1..k), f(1..k), fk(k)
//Output variansi
function [variansi]=VariansiDataK(m, f, fk, k)
mean=MeanDataK(m, f, fk, k)
jumlah=0
for p=1:k
jumlah=jumlah + f(p)*(m(p)^2);//sqr is mean^2
end
variansi=(jumlah-fk(k)*mean^2)/(fk(k)-1)
endfunction
|
06ecc6f3b4c33d4608797a1e437484c6c427d669
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2132/CH6/EX6.10/Example6_10.sce
|
012daa33f939a4147b0ea02662d1e9c28a74fc37
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 496 |
sce
|
Example6_10.sce
|
//Example 6.10
clc;
clear;
close;
format('v',5);
//Given data :
g=9.81;//constant
H1=4-1;//meter
H2=4;//meter
Cv1=0.9;//Coefficient of velocity
Cv2=0.9;//Coefficient of velocity
//Cv1=Cv2 & x1=x2 at meeting point
//x1/sqrt(4*H1*y1)=x2/sqrt(4*H2*y2)
y1BYy2=H2/H1;
//y1=1+y2;
y2=1/(y1BYy2-1);//meter
y1=y1BYy2*y2;//meter
x1=Cv1*sqrt(4*H1*y1);//meter
disp(y1,x1,"Meeting point horizontal & vertical co-ordinates are(x1 & y1 in meter) : ");
//Answer in the book are not accurate.
|
6d615ee388f26e56e8dc282c8157f17edd413cc4
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2990/CH4/EX4.17/Ex4_17.sce
|
a2f777efc287270858f9023f562a8ad0fa722053
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 467 |
sce
|
Ex4_17.sce
|
funcprot(0);
// Initialization of Variable
function[dms]=degtodms(deg)
d = int(deg)
md = abs(deg - d) * 60
m = int(md)
sd = (md - m) * 60
sd=round(sd*100)/100
dms=[d m sd]
endfunction
Long=60.0;//longitude in derees east
LHA=5+30.0/60+20.0/3600;//local hour angle in hr
//calculation
LMT=LHA+12;
GMT=LMT-Long/15;
GMT=degtodms(GMT);
LMT=degtodms(LMT);
disp(LMT,"LMT in hr min sec");
disp(GMT,"GMT in hr min sec");
clear()
|
f14b69e71061918ce0d8fc213f78a5d0216c6600
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/534/CH14/EX14.5/14_5_Hydrogen_plastic_diffusion.sce
|
620f6325c307eebf13c5a5486c4884a70beeeefa
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 933 |
sce
|
14_5_Hydrogen_plastic_diffusion.sce
|
clear;
clc;
printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 14.5 Page 904 \n')// Example 14.5
// The Hydrogen mass diffusive flux nA (kg/s.m^2)
//A -> Hydrogen
//B -> Plastic
Dab = 8.7*10^-8 ;//[m^2/s] Diffusion coefficient
Sab = 1.5*10^-3 ;//[kmol/m^3.bar] Solubility
L = .0003 ;//[m] thickness of bar
p1 = 3 ;//[bar] pressure on one side
p2 = 1 ;//[bar] pressure on other side
Ma = 2 ;//[kg/mol] molecular mass of Hydrogen
//Surface molar concentrations of hydrogen from Equation 14.62
Ca1 = Sab*p1 ; //[kmol/m^3]
Ca2 = Sab*p2 ; //[kmol/m^3]
//From equation 14.42 to 14.53 for obtaining mass flux
N = Dab/L*(Ca1-Ca2) ; //[kmol/s.m^2]
n = Ma*N ; //[kg/s.m^2] on Mass basis
printf('\n The Hydrogen mass diffusive flux n = %.2e (kg/s.m^2)',n);
//END
|
8de972fc299c56cc7053680b4b5a81b492b7b75c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1247/CH3/EX3.20/example3_20.sce
|
a35c71124ff31051ccb6ec360c756b3df1bf0334
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 364 |
sce
|
example3_20.sce
|
clear;
clc;
// Stoichiometry
// Chapter 3
// Material Balances Without Chemical Reaction
// Example 3.20
// Page 86
printf("Example 3.20, Page 86 \n \n");
// solution
// concetration of the component after n times introduction of v volume of inert gas :
// Cn = Co/(1+1/n)^n
// we know limn-->infinity (1+1/n)^n = e
// therefore Cv = Co/e
|
8b2cff8b1f02ab4529783a018ded86b43b7e1833
|
2707da68619819d8105f9ae472647dc578c75730
|
/FindCD.sci
|
b9bbbb03e8e81cbf5c1e5fcde092d2152c1e730e
|
[
"Apache-2.0"
] |
permissive
|
KrayzeX/ToE
|
1aa62db747841e960fb47fbd59e38c6afa3a0723
|
ad81dd433c0d3b23ebb00f0e65095ab6c1bed34e
|
refs/heads/master
| 2020-05-26T09:19:33.970171 | 2017-06-02T08:50:16 | 2017-06-02T08:50:16 | 82,474,743 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 3,645 |
sci
|
FindCD.sci
|
//Марчук Л.Б. 5307 подгруппа 3
//Данный модуль принимает на вход контурную матрицу, матрицу сопротивлений ветвей,
//матрицу ЭДС источников, матрицу источников тока, контурные токи,
//матрицу коэффициентов уравнений состояния и номер исследуемой ветви;
//возвращает матрицу коэффициентов уравнений состояния для исследуемой ветви.
function [result] = FindCD(LoopMatrix, BranchResistance, EMFMatrix, CurrentMatrix, Currents, Branch)
disp(Currents);
halt;
[rows columns] = size(LoopMatrix);
result = zeros(1, 3);
for g = 1:1:3
for i = 1:1:columns
if g < 3
if EMFMatrix(i, g) ~= 0
//Найден ИН - находим ток
//Ищем контура, в которые входит исследуемая ветвь и суммируем токи
for k=1:1:rows
if LoopMatrix(k, Branch) ~= 0
result(1, g) = result(1, g) + LoopMatrix(k, Branch)*Currents(k, g);
end;
end;
break;
else
if CurrentMatrix(i, g) ~= 0
//Найден ИТ - находим напряжение
//Ищем контура, в которые входит исследуемая ветвь и суммируем токи
for k=1:1:rows
if LoopMatrix(k, Branch) ~= 0
result(1, g) = result(1, g) + LoopMatrix(k, Branch)*Currents(k, g);
end;
end;
//Ищем напряжение
result(1, g) = result(1, g) * BranchResistance(Branch, Branch);
break;
end;
end;
else
if CurrentMatrix(i, g) ~= 0
//Найден ИТ - находим ток
//Ищем контура, в которые входит исследуемая ветвь и суммируем токи
for k=1:1:rows
if LoopMatrix(k, Branch) ~= 0
result(1, g) = result(1, g) + LoopMatrix(k, Branch)*Currents(k, g);
end;
end;
break;
else
if EMFMatrix(i, g) ~= 0
//Найден ИН - находим напряжение
//Ищем контура, в которые входит исследуемая ветвь и суммируем токи
for k=1:1:rows
if LoopMatrix(k, Branch) ~= 0
result(1, g) = result(1, g) + LoopMatrix(k, Branch)*Currents(k, g);
end;
end;
//Ищем напряжение
result(1, g) = result(1, g) * BranchResistance(Branch, Branch);
break;
end;
end;
end;
end;
end;
endfunction
|
97ac990510d3a5742972fd11934ad665e0147f3e
|
67310b5d7500649b9d53cf62226ec2d23468413c
|
/tags/archive/TestCaseGenerator-Plugin-OpeningSequenceCoverage/trunk/tests/large-system-tests/inputs/RadioButton/ground_truth/OpeningSequenceCoverage/length-1/max-150/t10.tst
|
9d283006cbb2f32527c5c09741ef50c337eb8130
|
[] |
no_license
|
csnowleopard/guitar
|
e09cb77b2fe8b7e38d471be99b79eb7a66a5eb02
|
1fa5243fcf4de80286d26057db142b5b2357f614
|
refs/heads/master
| 2021-01-19T07:53:57.863136 | 2013-06-06T15:26:25 | 2013-06-06T15:26:25 | 10,353,457 | 1 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 661 |
tst
|
t10.tst
|
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<TestCase>
<Step>
<EventId>e35</EventId>
<ReachingStep>false</ReachingStep>
</Step>
<Step>
<EventId>e36</EventId>
<ReachingStep>false</ReachingStep>
</Step>
<Step>
<EventId>e67</EventId>
<ReachingStep>false</ReachingStep>
</Step>
<Step>
<EventId>e30</EventId>
<ReachingStep>false</ReachingStep>
</Step>
<Step>
<EventId>e77</EventId>
<ReachingStep>false</ReachingStep>
</Step>
<Step>
<EventId>e38</EventId>
<ReachingStep>false</ReachingStep>
</Step>
</TestCase>
|
7e4c8d430ba1ae4b8aa19ca5f36e55d3dfee6b12
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/575/CH3/EX3.3.3/3_3_3.sce
|
1c94c037a0e15cb1118214821df97040dfba297d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 424 |
sce
|
3_3_3.sce
|
clc
pathname=get_absolute_file_path('3_3_3.sce')
filename=pathname+filesep()+'333.sci'
exec(filename)
molO2=massO2/MO2
molCO=massCO/MCO
molCO2=massCO2/MCO2
molN2=massN2/MN2
TotalMol=molO2+molCO+molCO2+molN2
printf(" \n molefraction of O2=%f",molO2/TotalMol)
printf(" \n molefraction of CO=%f",molCO/TotalMol)
printf(" \n molefraction of CO2=%f",molCO2/TotalMol)
printf(" \n molefraction of N2=%f",molN2/TotalMol)
|
fbf6d495d18caa625a0ff404f261c57fec202e6f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/587/CH7/EX7.6/example7_6.sce
|
9bb91d08f200e330458021bf48a1180aa080be28
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 1,133 |
sce
|
example7_6.sce
|
clear;
clc;
//Example7.6[Cooling of a Steel Ball by Forced Air]
//Given:-
rho=8055;//[kg/m^3]
Pr = 0.7296;
Cp=480;//[J/kg.degree Celcius]
To=300;//Temp of oven[degree Celcius]
Ta=25;//Temp of air[degree Celcius]
va=3;//Velocity of air[m/s]
Ts=200;//Dropped temp of surface of ball[degree Celcius]
Ts_avg=(Ts+To)/2;//[degree Celcius]
d=0.25;//[m]
mu_s=2.76*10^(-5);//Dynamic Viscosity at average surface temperature[kg/m.s]
//Properties of air at 25 degree Celcius
k=0.02551;//[W/m.degree Celcius]
nu=1.562*10^(-5);//kinematic viscosity[m^2/s]
mu=1.849*10^(-5);//Dynamic viscosity of air at 25 degree C[kg/m.s]
//Solution:-
Re=va*d/nu;//[Reynolds Number]
Nu=2+[(0.4*(Re^(1/2)))+(0.06*(Re^(2/3)))]*(Pr^(0.4))*((mu/mu_s)^(1/4));
disp(ceil(Nu),"The Nusselt number is")
h=k*Nu/d;//[W/m^2.degree Celcius]
As=%pi*(d^2);//[m^2]
Q_avg=h*As*(Ts_avg-Ta);//[W]
disp("W",ceil(Q_avg),"The average rate of heat transfer from Newtons Law of cooling is")
m=rho*%pi*(d^3)/6;//[kg]
Q_total=m*Cp*(To-Ts);//[J]
disp("J",Q_total,"The total heat transferred from the ball is")
delta_t=Q_total/Q_avg;//[s]
disp("hour",delta_t/3600,"The time of cooling is")
|
a7ba75695741f79681ba669e0b97c1b6ff3e6064
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/539/CH4/EX4.3/Example_4_3.sce
|
14e42cfb3827ad45e1654f5d2716f7c84cd20aef
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 550 |
sce
|
Example_4_3.sce
|
//Composition Conversion- From weight percent to Atom percent
clear;
clc;
printf("\t Example 4.3\n");
//Conversion to Atom percent
function[C]=conc(C1,C2,A1,A2)
C=C1*A2*100/((C1*A2)+(C2*A1));
funcprot(0)
endfunction
C_Al=97; //Aluminium wt%
C_Cu=3; //Copper wt%
A_Al=26.98; //Atomic wt of Aluminium
A_Cu=63.55; //Atomic wt of Copper
CAl=conc(C_Al,C_Cu,A_Al,A_Cu);
CCu=conc(C_Cu,C_Al,A_Cu,A_Al);
printf("\nAtomic %% of Al is %.1f %%",CAl);
printf("\nAtomic %% of Cu is %.1f %%\n",CCu);
//End
|
635292ec39d274e6b4ddff58d1e6219f8ac81538
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2444/CH6/EX6.2/ex6_2.sce
|
504f3fb033627d90d8ea6df1f8f00dd6935cb532
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 244 |
sce
|
ex6_2.sce
|
// Exa 6.2
clc;
clear;
close;
format('v',7)
// Given data
Beta = 0.01;//feedback fraction
// Voltage gain with negative feedback
A = 3000;// unit less
Af = A/(1+(Beta*A));// unit less
disp(Af,"The voltage gain of the amplifier is");
|
95bbe01205d7f95502a199b0c0fead43be9754ab
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1784/CH38/EX38.3/EX38_3.sce
|
6a5ace367b7902776349539b05db9b147f2d2823
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 213 |
sce
|
EX38_3.sce
|
//chapter 38
//Example 3
clc
//given
L=10*(10^-3)// in henry
C=(10)^-6 //in farad
R=0.1 //in ohm
w=sqrt(1/(L*C))
disp(" Angular frequency in radians/sec=")
disp(w)
t=(2*L*log(2))/R
disp(" time in sec=")
disp(t)
|
5b544e840fdd1edce6ce35fb46b848503f7ae2a7
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/source/2.5/examples/macros-examples/g.sci
|
8f42b72f4a9573a06ddc7e08fa1b7669835ae061
|
[
"LicenseRef-scancode-public-domain",
"LicenseRef-scancode-warranty-disclaimer"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111 | 2022-09-13T14:41:51 | 2022-09-13T14:41:51 | 258,270,193 | 0 | 1 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 26 |
sci
|
g.sci
|
function [z]=g(x,y)
z=x+y
|
1981d3f1feb2a093a3e118f1f54801a5e85ed93f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1538/CH20/EX20.6/Ex20_6.sce
|
6913df1aca38918f685333a79b7074b2e1fddbb8
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 464 |
sce
|
Ex20_6.sce
|
//example-20.6
//page no-597
//given
//dielectric constant
Er1=6.0
Er2=3.0
//thickness of plates
d1=0.25*10^-3 //m
d2=0.1*10^-3 //m
//taking A1=A2
//we know that
//C=Er*E0*A/d
//for plate1
//C1=Er1*E0*A1/d1 -----------(1)
//for plate 2
//C2=Er1*E0*A2/d2 --------------(2)
//dividing 1 and 2
//we get
//C1/C2=Er1*d2/(Er2*d1)
//let C1/C2=c
C=Er1*d2/(Er2*d1)
//so we get
//C1=0.8*C2
printf ("the plastic film wil hold more charge")
|
72bb793f2bf9afdd4bb05071e28984f965e6fca0
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3507/CH28/EX28.7/Ex28_7.sce
|
69942683537d84cd695b4ed0f25b2e281478d0a6
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 789 |
sce
|
Ex28_7.sce
|
// chapter28
// example28.7
//page606
printf("Y = A . B + A . ( B + C ) + B . ( B + C ) \n")
printf("By thoerem 14 \n")
printf("Y = A . B + A . B + A . C + B . B + B .C \n")
printf("By theorem 6 \n")
printf("Y= A . B + A . B + A . C + B + B .C \n")
printf("By theorem 5 \n")
printf("Y = A . B + A . C + B + B . C \n")
printf("Factor B out of last 2 terms \n")
printf("Y = A . B + A . C + B . ( 1 + C ) \n")
printf("Apply cummulative law and theorem 7 \n")
printf("Y = A . B + A . C + B . 1 \n")
printf("Apply theorem 2 \n")
printf("Y = A . B + A . C + B \n")
printf("Factor B out of first and third terms \n")
printf("Y = B . ( A + 1 ) + A . C \n")
printf("Apply theorem 7 \n")
printf("Y = B . 1 + A . C \n")
printf("Apply theorem 2 \n")
printf("Y = B + A . C \n")
|
edeb697d5a917e977b4e267d4087c6fb4e89c3e1
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/source/2.4.1/macros/xdess/xclip.sci
|
880de59f84fadb2260cb1f52e330f026911d01f8
|
[
"LicenseRef-scancode-public-domain",
"LicenseRef-scancode-warranty-disclaimer"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111 | 2022-09-13T14:41:51 | 2022-09-13T14:41:51 | 258,270,193 | 0 | 1 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 336 |
sci
|
xclip.sci
|
function []=xclip(x,y,w,h)
// fixe une zone de clipping en cordonnees reelles
// (x,y,w,h) (Upper-Left,wide,Height)
//!
// Copyright INRIA
[lhs,rhs]=argn(0)
if rhs<=0, xset('clipoff');return;end
if rhs==1,if typeof(x)<>"string" then
xset('clipping',x(1),x(2),x(3),x(4));
else
xset(x);
end
else
xset('clipping',x,y,w,h);
end
|
62acabc304c7917c35bf9772199237d409474353
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1658/CH24/EX24.9/Ex24_9.sce
|
773f33809f2b03c467c664c919b255075592b0c1
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 756 |
sce
|
Ex24_9.sce
|
clc;
RC=4*10**3;
R1=40*10**3;
R2=10*10**3;
RE=2*10**3;
RS=1*10**3;
RL=2.2*10**3;
CS=10*10**-6;
CE=20*10**-6;
CC=1*10**-6;
B=100;
VCC=20;
VB=(R2*VCC)/(R2+R1);
IE=(VB-0.7)/RE;
re=(26*10**-3)/IE;
B*re;
vo=-(RC*RL)/(RC+RL);
Av=vo/re;
a=(R1*R2)/(R1+R2);
Ri=(a*(B*re))/(a+(B*re));
Rs=1*10**3;
vibyvs=Ri/(Ri+Rs);
Avs=Av*vibyvs;
a=(R1*R2)/(R1+R2);
Ri=(a*(B*re))/(a+(B*re));
fLS=1/(2*%pi*(Rs+Ri)*CS);
disp('HZ',fLS*1,"fLS=");
fLC=1/(2*%pi*(RC+RL)*CC);
disp('HZ',fLC*1,"fLC=");
a=(R1*R2)/(R1+R2);
RS=(a*RS)/(a+RS);
b=(RS/B+re);
Re=(RE*b)/(RE+b);
fLE=1/(2*%pi*Re*CE);
disp('HZ',fLE*1,"fLE=");
i=-21:3:0;
plot2d(i);
a=gca() //get the current axes
a.box="off";
a.x_location="top";
xlabel("f (log scale)");
ylabel( "Av(dB)");
|
7a14f327c3bec401cdea33356dd6a491d5d7eba6
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/275/CH1/EX1.1.50/Ch1_1_50.sce
|
5fbbe9983f438630a3248f6595476fab3ce85e22
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 310 |
sce
|
Ch1_1_50.sce
|
clc
disp("Example 1.50")
printf("\n")
disp("Find the maximum power at 80c")
T1=25
PT1=1000*10^-3 //maximum power dissipation at 25c
T2=80
D=4*10^-3 //derating factor
PT2=PT1-((T2-T1)*D) //maximum power dissipation at 80c
printf("Maximum Power dissipated at 80c=\n%f watt\n",PT2)
|
90ef98914449194998acec5485e714c11373c8a5
|
7dbe475cd217e686e9689cb0536a9a73f625a85b
|
/Rez/univariate-lcmsr-wavetime/bfa_mt/~LCM-SR-bfa_mt-nat.tst
|
31b11854a37bde18797f8b273c7e41b874e1ce21
|
[] |
no_license
|
jflournoy/lnt_pxvx
|
fac8d6b00b886fa3dc800dcaa288aa186027b9ea
|
3f1ddc64e4bf0aecddfa21d45f889620dbdd442d
|
refs/heads/master
| 2021-10-20T12:52:55.625243 | 2019-02-27T17:06:09 | 2019-02-27T17:06:09 | 64,423,528 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 1,999 |
tst
|
~LCM-SR-bfa_mt-nat.tst
|
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
1 2 3 4 5
________ ________ ________ ________ ________
1 0.446577D+00
2 -0.442966D-01 0.411333D-01
3 0.275950D-03 0.199680D-02 0.728681D-02
4 0.152691D+01 -0.324329D+00 0.132213D+01 0.441525D+03
5 0.220185D+00 0.233611D+00 0.747714D+00 0.137182D+03 0.106796D+03
6 0.875250D+00 0.468418D-01 -0.148055D+01 -0.397785D+03 -0.160271D+03
7 0.429868D+00 -0.654212D-01 0.476098D+00 0.137905D+03 0.467328D+02
8 -0.206765D+00 0.553792D-01 -0.269377D+00 -0.737273D+02 -0.289285D+02
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
6 7 8
________ ________ ________
6 0.670322D+03
7 -0.159158D+03 0.622811D+02
8 0.753678D+02 -0.286233D+02 0.166893D+02
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
1 2 3 4 5
________ ________ ________ ________ ________
1 1.000
2 -0.327 1.000
3 0.005 0.115 1.000
4 0.109 -0.076 0.737 1.000
5 0.032 0.111 0.848 0.632 1.000
6 0.051 0.009 -0.670 -0.731 -0.599
7 0.082 -0.041 0.707 0.832 0.573
8 -0.076 0.067 -0.772 -0.859 -0.685
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
6 7 8
________ ________ ________
6 1.000
7 -0.779 1.000
8 0.713 -0.888 1.000
|
52c53a36f1466aa4de63f433207518a9445f3f09
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2863/CH6/EX6.1/ex6_1.sce
|
e18dc42bb5b3a109f9b367414915a8d1787dbffc
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 599 |
sce
|
ex6_1.sce
|
//chapter 6
//horn antenna
printf("\n");
Ae=10;
del=0.2;
p=Ae^2/(8*del);
del1=0.375;
Thetae=2*atan((Ae/(2*p)))*180/(%pi);//flare angle
Thetah=2*acos(p/(p+del1))*180/(%pi);
Ah=2*p*tan(((Thetah*(%pi)/180)/2));
printf(" the length is %gm",p);
printf("\n the angle ThetaE is %g degree",Thetae);
printf("\n the angle ThetaH is %g degree",Thetah);
printf("\n the H plane aperture is %g",Ah);
HPBWH=67/Ah;
HPBWE=56/Ae;
Ddb=10*log10((7.5*Ae*Ah));
printf("\n the HPBWE is %g degree",HPBWE);
printf("\n the HPBWH is %g degree",HPBWH);
printf("\n the Directive gain in db is %gdb",Ddb);
|
6b263b542bc94f9c667d770037ec310ce4d57772
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3793/CH5/EX5.6/exp_5_6.sce
|
78ff89fb022276f276298b4f930568513a8defb5
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 394 |
sce
|
exp_5_6.sce
|
clear;
clc;
v1=66;
v2=11;
v3=6.6;
s1=20;
s2=10;
s3=5;
Xps=0.1;
Xpt=0.12;
Xst=.08;
//now these rectance in pu and converted into 50 MVA base
xps=Xps*(50/s1);
xpt=Xpt*(50/s1);
xst=Xst*(50/s2);
Xp=complex(0,((xps+xpt-xst)/2));
Xs=complex(0,((xps-xpt+xst)/2));
Xs1=complex(0,((-xps+xpt+xst)/2));
mprintf(" pu leakage reactances are %f, %f and %f",imag(Xp),imag(Xs),imag(Xs1));
|
3fedb4488a582736ae0ac1bc4cdc1019bce9fb8e
|
0845790d81f9fd3b8393b14fc9c2bdde0ffe46cf
|
/8_9_dft_idft/8and9_dftandidft_of_seq.sce
|
697721db59ba9273c3dd530c59ec95439c72575e
|
[] |
no_license
|
NARAYAN1201/Scilab
|
1a3fb62895b157f87b0d9e024ecd2f1c000eb6df
|
48980c28ab2def9939e7519867da572660c8ac97
|
refs/heads/main
| 2023-02-26T02:09:05.762483 | 2021-02-01T07:24:54 | 2021-02-01T07:24:54 | 335,216,077 | 0 | 0 | null | 2021-02-02T08:17:23 | 2021-02-02T08:17:23 | null |
UTF-8
|
Scilab
| false | false | 2,221 |
sce
|
8and9_dftandidft_of_seq.sce
|
// Caption : Program to find the spectral information of discrete time signal
clc ;
close ;
clear ;
xn = input ( "Enter the real input discrete sequence x[n]=") ;
N = length ( xn ) ;
XK = zeros (1 , N ) ;
IXK = zeros (1 , N ) ;
// Code block to find the DFT of the Sequence
for K = 0: N -1
for n = 0: N -1
XK ( K +1) = XK ( K +1) + xn ( n +1) *exp( - %i *2* %pi * K * n /N ) ;
end
end
[phase,db] = phasemag(XK)
disp ( "Discrete Fourier Transform X( k )= ", XK )
disp ( " Magnitude Spectral Sample s= " ,abs( XK ))
disp ( " Phase Spectral Sample s= ", phase ,)
n = 0:N -1;
K = 0:N -1;
subplot (2 ,2 ,1)
a = gca () ;
a.x_location = "origin";
a.y_location = "origin";
plot2d3 ( "gnn" ,n , xn )
xlabel ( " Time I n d e x n−−−−> " )
ylabel ( " Ampli tude xn−−−−> " )
title ( " D i s c r e t e I n p u t S e q u e n c e " )
subplot (2 ,2 ,2)
a = gca () ;
a.x_location = "origin";
a.y_location = "origin";
plot2d3 ( "gnn" ,K ,abs( XK ) )
xlabel ( " F r e q u e n c y Sample I n d e x K−−−−> " )
ylabel ( " |X(K)|−−−−> " )
title ( " Magni tude Spec t rum " )
subplot (2 ,2 ,3)
a = gca () ;
a.x_location = "origin";
a.y_location = "origin";
plot2d3 ( "gnn" ,K , phase )
xlabel ( " F r e q u e n c y Sample I n d e x K−−−−> " )
ylabel ( "<X(K) i n r a di a n s −−−−> " )
title ( " Phase Spec t rum " )
// Code block to find the IDFT of the sequence
for n = 0: N -1
for K = 0: N -1
IXK ( n +1) = IXK ( n +1) + XK ( K +1) * exp ( %i *2* %pi * K *n/ N ) ;
end
end
IXK = IXK / N;
ixn = real(IXK) ;
subplot (2 ,2 ,4)
a = gca () ;
a.x_location = "origin";
a.y_location = "origin";
plot2d3 ( "gnn",[0:N-1] , ixn )
xlabel ( " Discrete Time Index n −−−−> " )
ylabel ( " Amplitude x [ n]−−−−> " )
title ( " IDFT s e q u e n c e " )
//Example
//
// E n t e r t h e r e a l i n p u t d i s c r e t e s e q u e n c e x [ n
//] = [ 1 , 2 , 3 , 4 ]
//
// D i s c r e t e F o u r i e r T ran sfo rm X( k )=
//
// 1 0 . − 2 . + 2 . i − 2 . − 9 . 7 9 7D−16 i − 2 . − 2 . i
//
// Magni tude S p e c t r a l Sample s=
//
// 1 0 . 2 . 8 2 8 4 2 7 1 2 . 2 . 8 2 8 4 2 7 1
//
// Phase S p e c t r a l Sample s=
//
// 0 . 1 3 5 . 1 8 0 . 2 2 5 .
|
28363ec80ff65f6c079eeaeef73780bc86133214
|
b5a6d0e4c3d84d1a446434b60e55627f017991d7
|
/pruebas.sce
|
d122f2c427de5a9bacde97fa1399bc0ecf29b900
|
[] |
no_license
|
mayra-diaz/Scilab-Funciones-Matrices
|
249cdec506befa4e5e88da9aaf8f6752e401153f
|
dc89d7dccc7fd22851e6a31867f986cb543b4c50
|
refs/heads/master
| 2022-12-10T12:50:48.449166 | 2020-09-14T01:10:43 | 2020-09-14T01:10:43 | 259,477,803 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 1,485 |
sce
|
pruebas.sce
|
// Comando exec:
// exec('...ruta\archivo.sce', tipo)
// ------------------------------------------------------------------------//
// Algebra Lineal
//exec('~\mate-III\Algebra-Lineal-en-Scilab\algebra_lineal.sce', -1)
// Potencia Inversa
//exec('~\mate-III\Algebra-Lineal-en-Scilab\valores_propios.sce', -1)
// Rotacion
//exec('~\mate-III\Algebra-Lineal-en-Scilab\rotaciones.sce', -1)
// ------------------------------------------------------------------------//
// Punto fijo - Bisección
//exec('~\mate-III\Algebra-Lineal-en-Scilab\localizacion_raices.sce', -1)
// Jacobi - Gauss Seidel
//exec('~\mate-III\Algebra-Lineal-en-Scilab\aproximacion_sistemas.sce',-1)
// Minimos Cuadrados
//exec('~\mate-III\Algebra-Lineal-en-Scilab\minimos_cuadrados.sce',-1)
// Ajuste QR
//exec('~\mate-III\Algebra-Lineal-en-Scilab\ajuste_qr.sce', -1)
// Interpolacion Polinomial-Newton-Lagrange
//exec('~\mate-III\Algebra-Lineal-en-Scilab\interpolacion.sce', -1)
// Spline natural
//exec('~\mate-III\Algebra-Lineal-en-Scilab\spline_natural.sce', -1)
// Integracion numerica
//exec('~\mate-III\Algebra-Lineal-en-Scilab\integracion_numerica.sce', -1)
deff('y=f(x)', 'y=3*(x-4)-sin(2*x)')
a = 0
b = 5
c = (a+b)/2
err = (b-a)/2
disp("a b c f(a) f(b) f(c) error")
z = [a b c f(a) f(b) f(c) err]
for i = 1:it
if f(a)*f(c) < 0 then
b = c
else
a = c
end
c = (a+b)/2
err = err/2
z = [z; a b c f(a) f(b) f(c) err]
end
disp(z, 'z');
|
82333b734104554f9cd89f5b45779be96b96eab8
|
e82d1909ffc4f200b5f6d16cffb9868f3b695f2a
|
/Lista 2/NormaP.sce
|
2f30974e6a5c0203fcc78f5e29e765b7500b600f
|
[] |
no_license
|
AugustoCam95/Computational-Linear-Algebra
|
eb14307dd3b45ccc79617efe74d1faca639c36c5
|
99b1a1f9499fbc4343bd5c878444e9e281952774
|
refs/heads/master
| 2020-03-30T22:26:23.790763 | 2018-10-05T03:34:06 | 2018-10-05T03:34:06 | 151,666,289 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 775 |
sce
|
NormaP.sce
|
// José Augusto Câmara Filho - Matemática Industrial
//ATENÇÃO EXECUTAR ESTÁ FUNÇÃO JUNTO COM A FUNÇÃO AUXILIAR "norma".
function x= NormaP(A,p,m)
[l, c] = size(A);
//Armazena em l e c, o tamanho das linhas e das colunas
v= zeros(1,m);
//inicia um vetor com todos os elementos iguais a zero
for i=1:m
s(:,i)= rand(c,1);
//gera m vetores randômicos de acordo com a entrada do usuário
end
for i=1:m
v(i)= norma(A*s(:,i),p)/norma(s(:,i),p);
//calcula a norma através da função auxiliar "norma" com o p definido pelo usuário e em seguida armazena o valor no vetor v(i)
end
x = max(v);
//pega o maior elemento e armazena na variável x que será o retorno da função
endfunction
|
a9d9de52162092f50c13ed19652aca01240db2a6
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3556/CH2/EX2.17/Ex2_17.sce
|
0ffc708d07d9e3d07d1f13645559959d4e2a10de
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 1,018 |
sce
|
Ex2_17.sce
|
clc
// Fundamental of Electric Circuit
// Charles K. Alexander and Matthew N.O Sadiku
// Mc Graw Hill of New York
// 5th Edition
// Part 1 : DC Circuits
// Chapter 2: Basic Laws
// Example 2 - 17
clear; clc; close;
//
// Given data
V1 = 1.00;
V2 = 5.00;
V3 = 50.00;
V4 = 100.00;
Rm = 2000.00
Ifs = 0.00010
//
// Calculations
// Calculations R1
R1 = (V1/Ifs) - Rm;
// Calculations R2
R2 = (V2/Ifs) - Rm;
// Calculations R3
R3 = (V3/Ifs) - Rm;
// Calculations R4
R4 = (V4/Ifs) - Rm;
// Display the result
disp("Example 2-17 Solution : ");
printf(" \n R1 : Resistance for range 0 - 1 volt = %.3f Kilo-ohm ",R1/1000);
printf(" \n R2 : Resistance for range 0 - 5 volt = %.3f Kilo-ohm ",R2/1000);
printf(" \n R3 : Resistance for range 0 - 50 volt = %.3f Kilo-ohm ",R3/1000);
printf(" \n R4 : Resistance for range 0 - 100 volt = %.3f Kilo-ohm ",R4/1000);
|
4caa6bdac0de6d72ce10bdd825270872c049d488
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/608/CH43/EX43.15/43_15.sce
|
0e17c89439fa3ec5119a221294b4bc46e0b5d06f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 1,234 |
sce
|
43_15.sce
|
//Problem 43.15:A mutual inductor is used to couple a 20 ohm resistive load to a 50/_0° V generator as shown in Figure 43.18. The generator has an internal resistance of 5 ohm and the mutual inductor parameters are R1 = 20 ohm , L1 = 0.2 H, R2 = 25 ohm , L2 = 0.4 H and M = 0.1 H. The supply frequency is 75/pi Hz. Determine (a) the generator current I1 and (b) the load current I2 .
//initializing the variables:
E1 = 50; // in Volts
thetae1 = 0; // in degrees
r = 5; // in ohm
R1 = 20; // in ohm
L1 = 0.2; // in Henry
L2 = 0.4; // in Henry
R2 = 25; // in ohm
RL = 20; // in ohm
M = 0.1; // in Henry
f = 75/%pi; // in Hz
//calculation:
w = 2*%pi*f
//voltage
E1 = E1*cos(thetae1*%pi/180) + %i*E1*sin(thetae1*%pi/180)
//Applying Kirchhoff’s voltage law to the primary circuit gives
//(r + R1 + %i*w*L1)*I1 - %i*w*M*I2 = E1
//Applying Kirchhoff’s voltage law to the secondary circuit gives
//-1*%i*w*M*I1 + ( R2 + RL + %i*w*L2)*I2 = 0
//solving these two
I2 = E1/((r + R1 + %i*w*L1)*(R2 + RL + %i*w*L2)/(%i*w*M) + (-1*%i*w*M))
I1 = I2*(R2 + RL + %i*w*L2)/(%i*w*M)
printf("\n\n Result \n\n")
printf("\n primary current I1 is %.2f +(%.2f)i A",real(I1), imag(I1))
printf("\n load current I2 is %.2f +(%.2f)i A",real(I2), imag(I2))
|
505d6cccc8f6cd776ac4dc573b85fc56bb25e1e2
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/695/CH2/EX2.16/Ex2_16.sce
|
e49852d4382ad631a2a83cf94276af509d8cef64
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 569 |
sce
|
Ex2_16.sce
|
//Caption:Find the (a)Flux per pole (b)total number of conductors (c) torque
//Exa:2.16
clc;
clear;
close;
I_a=50;//in amperes
P=6;//no.of poles
E_g=200;//in volts
N=1500;//speed in rpm
A=6;
L=0.25;//in meter
d=0.2;//in meter
B=0.9;//in tesla
Theta=360/P;//angle subtended by pole shoe in degrees
l=%pi*L*Theta/360;//arc length of pole shoe in meter
area=l*d;//in meter^2
Phy=B*area;
disp(Phy,'(a) Flux per pole (in Weber)=');
Z=ceil(E_g*60/(Phy*N));
disp(Z,'(b) Total no. of conductors=');
T=9.55*E_g*I_a/N;
disp(T,'(c) Torque (in Newton-meter)=')
|
4c525f1675068226c22d5916ae4a0e8c4b53f911
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1862/CH20/EX20.7/C20P7.sce
|
c11b21ea6ee7fa79ed472b5c0a0d4f81810e5c05
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 618 |
sce
|
C20P7.sce
|
clear
clc
//to find speed of electron as fraction of c and as difference from c
//Given:
//kinetic energy of electron
K = 50//in GeV
//value of mc_square
mc_square = 0.511e-3//in GeV
//speed of light
c = 3.00e8//in m/s
//Solution:
//appiying fomule for relativistic energy
//speed of electron as fraction of c
v = sqrt(1-(1/(1+(K/mc_square)^2)))//times c
//speed of electron as difference from c
c_minus_v = (5.2e-11)*c//in m/s
printf ("\n\n Speed of electron as fraction of c v = \n\n %.12fc" ,v);
printf ("\n\n Speed of electron as difference from c c_minus_v = \n\n %.3f m/s" ,c_minus_v);
|
7ddc7a600fec2a29f48dffe1022dd0666cd670bb
|
2099a9bd609028f0b6e382b2a9d95bedeb63f999
|
/HackALU/HackALU.tst
|
42a44b7f1a2620ded0a2bde4d9e3ede36fda0f08
|
[] |
no_license
|
NothingToSay77/HackALU
|
3ace07fa37fb94e00ad0dc107a3d0a4d731abb42
|
11112c2d1f12a95414b34a5ddcd95963ac4e824a
|
refs/heads/main
| 2023-06-26T21:28:28.977155 | 2021-07-19T08:16:37 | 2021-07-19T08:16:37 | 387,389,770 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 5,157 |
tst
|
HackALU.tst
|
/*Script for HackALU*/
load HackALU.hdl,
output-file HackALU.out,
output-list x%B3.16.3 y%B3.16.3 zx%B3.1.3 nx%B3.1.3 zy%B3.1.3 ny%B3.1.3 f%B3.1.3 no%B3.1.3 Out%B3.16.3 zr%B3.1.3 ng%B3.1.3;
/*The test cases for x=13 y=6 i.e x>0 y>0 and x>y*/
set x %B0000000000001101,
set y %B0000000000000110,
set zx 1,
set nx 0,
set zy 1,
set ny 0,
set f 1,
set no 0,
eval,
output;
set x %B0000000000001101,
set y %B0000000000000110,
set zx 1,
set nx 1,
set zy 1,
set ny 1,
set f 1,
set no 1,
eval,
output;
set x %B0000000000001101,
set y %B0000000000000110,
set zx 1,
set nx 1,
set zy 1,
set ny 0,
set f 1,
set no 0,
eval,
output;
set x %B0000000000001101,
set y %B0000000000000110,
set zx 0,
set nx 0,
set zy 1,
set ny 1,
set f 0,
set no 0,
eval,
output;
set x %B0000000000001101,
set y %B0000000000000110,
set zx 1,
set nx 1,
set zy 0,
set ny 0,
set f 0,
set no 0,
eval,
output;
set x %B0000000000001101,
set y %B0000000000000110,
set zx 0,
set nx 0,
set zy 1,
set ny 1,
set f 0,
set no 1,
eval,
output;
set x %B0000000000001101,
set y %B0000000000000110,
set zx 1,
set nx 1,
set zy 0,
set ny 0,
set f 0,
set no 1,
eval,
output;
set x %B0000000000001101,
set y %B0000000000000110,
set zx 0,
set nx 0,
set zy 1,
set ny 1,
set f 1,
set no 1,
eval,
output;
set x %B0000000000001101,
set y %B0000000000000110,
set zx 1,
set nx 1,
set zy 0,
set ny 0,
set f 1,
set no 1,
eval,
output;
set x %B0000000000001101,
set y %B0000000000000110,
set zx 0,
set nx 1,
set zy 1,
set ny 1,
set f 1,
set no 1,
eval,
output;
set x %B0000000000001101,
set y %B0000000000000110,
set zx 1,
set nx 1,
set zy 0,
set ny 1,
set f 1,
set no 1,
eval,
output;
set x %B0000000000001101,
set y %B0000000000000110,
set zx 0,
set nx 0,
set zy 1,
set ny 1,
set f 1,
set no 0,
eval,
output;
set x %B0000000000001101,
set y %B0000000000000110,
set zx 1,
set nx 1,
set zy 0,
set ny 0,
set f 1,
set no 0,
eval,
output;
set x %B0000000000001101,
set y %B0000000000000110,
set zx 0,
set nx 0,
set zy 0,
set ny 0,
set f 1,
set no 0,
eval,
output;
set x %B0000000000001101,
set y %B0000000000000110,
set zx 0,
set nx 1,
set zy 0,
set ny 0,
set f 1,
set no 1,
eval,
output;
set x %B0000000000001101,
set y %B0000000000000110,
set zx 0,
set nx 0,
set zy 0,
set ny 1,
set f 1,
set no 1,
eval,
output;
set x %B0000000000001101,
set y %B0000000000000110,
set zx 0,
set nx 0,
set zy 0,
set ny 0,
set f 0,
set no 0,
eval,
output;
set x %B0000000000001101,
set y %B0000000000000110,
set zx 0,
set nx 1,
set zy 0,
set ny 1,
set f 0,
set no 1,
eval,
output;
/*Test cases for x=7 ,y=-2 i.e x>0 y<0 |x|>|y|*/
set x %B0000000000000111,
set y %B1111111111111110,
set zx 1,
set nx 0,
set zy 1,
set ny 0,
set f 1,
set no 0,
eval,
output;
set x %B0000000000000111,
set y %B1111111111111110,
set zx 1,
set nx 1,
set zy 1,
set ny 1,
set f 1,
set no 1,
eval,
output;
set x %B0000000000000111,
set y %B1111111111111110,
set zx 1,
set nx 1,
set zy 1,
set ny 0,
set f 1,
set no 0,
eval,
output;
set x %B0000000000000111,
set y %B1111111111111110,
set zx 0,
set nx 0,
set zy 1,
set ny 1,
set f 0,
set no 0,
eval,
output;
set x %B0000000000000111,
set y %B1111111111111110,
set zx 1,
set nx 1,
set zy 0,
set ny 0,
set f 0,
set no 0,
eval,
output;
set x %B0000000000000111,
set y %B1111111111111110,
set zx 0,
set nx 0,
set zy 1,
set ny 1,
set f 0,
set no 1,
eval,
output;
set x %B0000000000000111,
set y %B1111111111111110,
set zx 1,
set nx 1,
set zy 0,
set ny 0,
set f 0,
set no 1,
eval,
output;
set x %B0000000000000111,
set y %B1111111111111110,
set zx 0,
set nx 0,
set zy 1,
set ny 1,
set f 1,
set no 1,
eval,
output;
set x %B0000000000000111,
set y %B1111111111111110,
set zx 1,
set nx 1,
set zy 0,
set ny 0,
set f 1,
set no 1,
eval,
output;
set x %B0000000000000111,
set y %B1111111111111110,
set zx 0,
set nx 1,
set zy 1,
set ny 1,
set f 1,
set no 1,
eval,
output;
set x %B0000000000000111,
set y %B1111111111111110,
set zx 1,
set nx 1,
set zy 0,
set ny 1,
set f 1,
set no 1,
eval,
output;
set x %B0000000000000111,
set y %B1111111111111110,
set zx 0,
set nx 0,
set zy 1,
set ny 1,
set f 1,
set no 0,
eval,
output;
set x %B0000000000000111,
set y %B1111111111111110,
set zx 1,
set nx 1,
set zy 0,
set ny 0,
set f 1,
set no 0,
eval,
output;
set x %B0000000000000111,
set y %B1111111111111110,
set zx 0,
set nx 0,
set zy 0,
set ny 0,
set f 1,
set no 0,
eval,
output;
set x %B0000000000000111,
set y %B1111111111111110,
set zx 0,
set nx 1,
set zy 0,
set ny 0,
set f 1,
set no 1,
eval,
output;
set x %B0000000000000111,
set y %B1111111111111110,
set zx 0,
set nx 0,
set zy 0,
set ny 1,
set f 1,
set no 1,
eval,
output;
set x %B0000000000000111,
set y %B1111111111111110,
set zx 0,
set nx 0,
set zy 0,
set ny 0,
set f 0,
set no 0,
eval,
output;
set x %B0000000000000111,
set y %B1111111111111110,
set zx 0,
set nx 1,
set zy 0,
set ny 1,
set f 0,
set no 1,
eval,
output;
|
81e4173dfa6d3f0796a363c6cb0cec244fdadd43
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/10/CH7/EX4/cha7_4.sce
|
567e527df244d9c2774461f326e605411bc96996
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 2,986 |
sce
|
cha7_4.sce
|
V=120;F=60;Pole=4;Zm=1.5+4.0;Za=3+6;
Xa=6;Xm=4;Rm=1.5;Ra=3;
Ra=(Xa/Xm)*(Rm+sqrt(18.25))
C=(2*%pi*F)*(Xa+(Ra*Rm)/(Xm+sqrt(18.25)))
a=((-Xm*Ra)+(sqrt(18.25)*sqrt(13.2)))
Xc=Xa+(a/Rm)
Ia=V/(3+%i*6)
function[r,theta]=rect2polar(x,y)
r=sqrt(x^2+y^2);
theta=atan(y/x)*180/%pi;
endfunction
[Is,Angle]=rect2polar(8,-16)
Im=V/(1.5+%i*4)
function[r,theta]=rect2polar(x,y)
r=sqrt(x^2+y^2);
theta=atan(y/x)*180/%pi;
endfunction
[Is1,Angle1]=rect2polar(9.86,-26.3)
Alfa=Angle1-Angle
Ts=Is*sin(%pi*6.01/180)
function[x,y]=polar2rect(r,theta)
x=r*cos(theta*%pi/180);
y=r*sin(theta*%pi/180);
endfunction
[a,b]=polar2rect(Is1,Angle1)
X=a+%i*b
C=1/C*10^6
a=((-Xm*Ra)+(sqrt(18.25)*sqrt(13.2)))
Xc=Xa+(a/Rm)
C=10^6/(2*%pi*F*Xc)
Ia=V/(3+%i*6)
function[r,theta]=rect2polar(x,y)
r=sqrt(x^2+y^2);
theta=atan(y/x)*180/%pi;
endfunction
[Is,Angle]=rect2polar(8,-16)
Im=V/(1.5+%i*4)
[Is1,Angle1]=rect2polar(9.86,-26.3)
Alfa=Angle1-Angle
Ts=Is*sin(%pi*6.01/180)
function[x,y]=polar2rect(r,theta)
x=r*cos(theta*%pi/180);
y=r*sin(theta*%pi/180);
endfunction
[a,b]=polar2rect(Is1,Angle1)
X=a+%i*b
[c,d]=polar2rect(Is,Angle)
X1=c+%i*d
X2=X+X1
function[r,theta]=rect2polar(x,y)
r=sqrt(x^2+y^2);
theta=atan(y/x)*180/%pi;
endfunction
[I,Angle]=rect2polar(17.86,-42.3)
Ia=V/(Ra+%i*Xa)
function[r,theta]=rect2polar(x,y)
r=sqrt(x^2+y^2);
theta=atan(y/x)*180/%pi;
endfunction
[Ia,Angle]=rect2polar(9.3,-6.4)
Alfa=69.33-34.53
Ts=Ia*sin(%pi*Alfa/180)
function[x,y]=polar2rect(r,theta)
x=r*cos(theta*%pi/180);
y=r*sin(theta*%pi/180);
endfunction
[Is,Angle]=polar2rect(Ia,Angle)
[Is1,Angle1]=polar2rect(28.1,-69.44)
X=Is+%i*Angle
X1=Is1+%i*Angle1
X2=Is+%i*Angle
X=X1+X2
function[r,theta]=rect2polar(x,y)
r=sqrt(x^2+y^2);
theta=atan(y/x)*180/%pi;
endfunction
[Is,Angle]=rect2polar(19.1,-32.7)
Xc=10^6/(2*%pi*F*405)
Ia=V/(Ra+(%i*6+%i*6.55))
function[r,theta]=rect2polar(x,y)
r=sqrt(x^2+y^2);
theta=atan(y/x)*180/%pi;
endfunction
[Is,Angle]=rect2polar(2.16,-9.04)
Ia=V/(Ra+(%i*6-%i*6.55))
[Is,Angle]=rect2polar(38.6,7.09)
Alfa=69.44+Angle
Ts=Is*sin(%pi*Alfa/180)
function[x,y]=polar2rect(r,theta)
x=r*cos(theta*%pi/180);
y=r*sin(theta*%pi/180);
endfunction
[Is,Angle]=polar2rect(28.1,-69.44)
[Is1,Angle1]=polar2rect(39.34,10.4)
X1=Is+%i*Angle
X2=Is1+%i*Angle1
X=X1+X2
function[r,theta]=rect2polar(x,y)
r=sqrt(x^2+y^2);
theta=atan(y/x)*180/%pi;
endfunction
[Is,Angle]=rect2polar(48.56,-19.20)
Ia=V/(Ra+(%i*Xa-%i*Xc))
function[r,theta]=rect2polar(x,y)
r=sqrt(x^2+y^2);
theta=atan(y/x)*180/%pi;
endfunction
[I,Angle]=rect2polar(23.9,19.6)
Alfa=69.44+39.5
Ts=I*sin(%pi*Alfa/180)
function[x,y]=polar2rect(r,theta)
x=r*cos(theta*%pi/180);
y=r*sin(theta*%pi/180);
endfunction
[Is,Angle]=polar2rect(28.1,-69.44)
[Is1,Angle1]=polar2rect(I,39.35)
X=Is+%i*Angle
X1=Is1+%i*Angle1
X2=X+X1
function[r,theta]=rect2polar(x,y)
r=sqrt(x^2+y^2);
theta=atan(y/x)*180/%pi;
endfunction
[I,Angle]=rect2polar(33.7,-6.7)
|
b3ad375969a10bb063a77ade345f9acab3043744
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3532/CH7/EX7.4.1/Ex7_5.sce
|
c14b212b0fa9494bfe76e50525e6215f7a1d21e5
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 1,089 |
sce
|
Ex7_5.sce
|
clc
clear
mprintf('Mechanical vibrations by G.K.Grover\n Example 7.4.1\n')
//given data
E=1.96*10^11//youngs modulus in N/m^2
I=4*10^-7//moment of area in m^4
M1=100;M2=50//mass of discs 1 and 2 in Kgs
c=0.18//distance of disc 1 from support in m
l=0.3//distance of disc 2 from support in m
g=9.81//aceleration due to gravity in m/sec^2
//calculations
a=[(c^3/(3*E*I)),(c^2/(6*E*I)*(3*l-c));(c^2/(6*E*I)*(3*l-c)),(l^3/(3*E*I))]//from SOM
x1(1)=1;x2(1)=1
for i=1:10//upto 10th iteration for more perfect answer
F1(i)=100*x1(i)//'i' represents the dash(')
F2(i)=50*x2(i)
x1(i)=F1(i)*a(1,1)+F2(i)*a(1,2)
x2(i)=F1(i)*a(2,1)+F2(i)*a(2,2)
r=(x2(i)/x1(i))
x2(i+1)=r
x1(i+1)=1
end
x1dd=1
W1=(x1dd/x1(10))
W2=(r/x2(10))
Wn=sqrt((W1+W2)/2)//natural frequency in rad/sec
mprintf('The natural frequency of system in iilustrative example 7.2.1 obtained by\nStodala method is Wn=%f rad/sec',Wn)
mprintf('\nNOTE:The obtained answer is more near to the perfect answer \since 10 iterations/trials\nhas been carried out.In textbook only upto 3rd iteration has been carried out')
|
02a7761b18943e77ee83d5cd81b37d51b4145581
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1026/CH6/EX6.19/Example6_19.sce
|
a25c278aa30f10f29b03f7b4c50f34d792dff308
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 145 |
sce
|
Example6_19.sce
|
//chapter6,Example6_19,pg 148
Ie=1*10^-3
Ib=0.04*10^-3
Ic=Ie-Ib
alpha=Ic/Ie
printf("current gain\n")
printf("alpha=%.2f",alpha)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.