blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
4
214
content_id
stringlengths
40
40
detected_licenses
listlengths
0
50
license_type
stringclasses
2 values
repo_name
stringlengths
6
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
21 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
141k
586M
star_events_count
int64
0
30.4k
fork_events_count
int64
0
9.67k
gha_license_id
stringclasses
8 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
50 values
src_encoding
stringclasses
23 values
language
stringclasses
1 value
is_vendor
bool
1 class
is_generated
bool
1 class
length_bytes
int64
5
10.4M
extension
stringclasses
29 values
filename
stringlengths
2
96
content
stringlengths
5
10.4M
75b231c52698af55593a42e85ae3596d164d616f
a62e0da056102916ac0fe63d8475e3c4114f86b1
/set5/s_Electrical_And_Electronic_Principles_And_Technology_J._Bird_1529.zip/Electrical_And_Electronic_Principles_And_Technology_J._Bird_1529/CH7/EX7.4/7_04.sce
c4d67c5fac9de3f6355009f782c407dfee4467f3
[]
no_license
hohiroki/Scilab_TBC
cb11e171e47a6cf15dad6594726c14443b23d512
98e421ab71b2e8be0c70d67cca3ecb53eeef1df6
refs/heads/master
2021-01-18T02:07:29.200029
2016-04-29T07:01:39
2016-04-29T07:01:39
null
0
0
null
null
null
null
UTF-8
Scilab
false
false
353
sce
7_04.sce
errcatch(-1,"stop");mode(2);//Chapter 7, Problem 4 ; B=1.2; //Magnetic flux density H=1250; //Magnetic field strength uo=4*%pi*10^-7; //permeability of free space ur=B/(uo*H); //Calculating relative permeability printf("Relative permeability = %f",ur); exit();
5b196de9b85386246b7db694f0484ee35ff1e1f4
2707da68619819d8105f9ae472647dc578c75730
/ForcedComponents.sci
d87e984356c59780b5bf2a600913ccaf40dcca44
[ "Apache-2.0" ]
permissive
KrayzeX/ToE
1aa62db747841e960fb47fbd59e38c6afa3a0723
ad81dd433c0d3b23ebb00f0e65095ab6c1bed34e
refs/heads/master
2020-05-26T09:19:33.970171
2017-06-02T08:50:16
2017-06-02T08:50:16
82,474,743
0
0
null
null
null
null
UTF-8
Scilab
false
false
533
sci
ForcedComponents.sci
// Чистяков А.А. Подгруппа №3 // Данный модуль принимает на вход матрику коэффицинтов при Uc, Il, I1(U1) // Возвращает вынужденные составляющие цепи при постоянном воздействии uCв = const, iLв = const. function[R] = ForcedComponents (KoefMatrix) A = [KoefMatrix(1,1) KoefMatrix(1,2); KoefMatrix(2,1) KoefMatrix(2,2)]; f=[-KoefMatrix(1, 3); -KoefMatrix(2,3)]; R=A\f; endfunction
2da997a30f1bfa3ee5957930787f0bf07e51947a
5f48beee3dc825617c83ba20a7c82c544061af65
/tests/s/37.tst
f7581797768cddea349184ed02b5b427769d5c69
[]
no_license
grenkin/compiler
bed06cd6dac49c1ca89d2723174210cd3dc8efea
30634ec46fba10333cf284399f577be7fb8e5b61
refs/heads/master
2020-06-20T12:44:17.903582
2016-11-27T03:08:20
2016-11-27T03:08:20
74,863,612
3
0
null
null
null
null
UTF-8
Scilab
false
false
50
tst
37.tst
int main(void) { typedef int arr[3]; arr x; }
c33f4edb933298e86abfdf3e9fc4fbf38057e46e
449d555969bfd7befe906877abab098c6e63a0e8
/260/CH1/EX1.3/1_03.sce
b6af9334c2d61f8e51a052df1834512e7260acd7
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
228
sce
1_03.sce
//Eg No. 1.3 //Pg No. 12 clc ; clear ; close ; deff('v = f(R,T,M)','v = sqrt(8*R*T/(3.14159*M))') R = 8.314*(10^7) M = input('Enter the value of M') T = input ('Enter the value of T') v = f(R,M,T) disp('v = ') disp(v)
2bb2baf06041880f5351db774a260370893d30d6
449d555969bfd7befe906877abab098c6e63a0e8
/3651/CH1/EX1.6/Ex1_6.sce
07ec4881c507b50b41b3611ef9e909e3aa88b5ab
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
473
sce
Ex1_6.sce
//variable declaration I=5.14; //Ionization energy A=3.65; //Electron Affinity e=(1.6*10**-19); E=8.85*10**-12; r=236*10**-12; //Calculations E_c=I-A //Energy required C=-(e**2/(4*%pi*E*r*e)) //Potentential energy in eV BE=-(E_c+C) //Bond Energy //Result printf('Energy required= %0.2f eV\n",E_c) printf('Energy required =%0.1f eV\n",C) printf('Bond Energy =%0.2f eV",BE)
8268df820e841ef5cae12fa9b2e15dfffce90061
449d555969bfd7befe906877abab098c6e63a0e8
/1670/CH10/EX10.33/10_33.sce
96b9850dec1dc2f7f1c58b19fdebfa754ef0dccb
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
257
sce
10_33.sce
//Example 10.33 //Numerov Method //Page no. 350 clc;clear;close; k=0.5;h=%pi/6 y(1)=0;y(2)=k; deff('y=f2(x,y)','y=-y') deff('y=g()','y=-1') fi=acos(((2+5*h^2*g()/6)-(1-h^2*g()/12)*y(1))/(2*(1-h^2*g()/12))) y6=k*(sin(6*fi)/sin(fi)) disp(y6,"y6 = ")
12881f675ebe61654a67d82a4863b9a1957e1be2
449d555969bfd7befe906877abab098c6e63a0e8
/608/CH3/EX3.04/3_04.sce
ba6bd1ed88e7f652404bbf45297811fc11ff99c2
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
396
sce
3_04.sce
//Problem 3.04: Calculate the resistance of a 2 km length of aluminium overhead power cable if the cross-sectional area of the cable is 100 mm2. Take the resistivity of aluminium to be 0.03E-6 ohm m. //initializing the variables: A = 100E-6; // in m2 L = 2000; // in m p = 0.03E-6; // in ohm m //calculation: R = p*L/A printf("\n\nResult\n\n") printf("\nResistance %.1f Ohms\n",R)
1f98a7c558645899851fb873d1b10d77e276a643
449d555969bfd7befe906877abab098c6e63a0e8
/3681/CH4/EX4.2/Ex4_2.sce
45f094c7940aabc36e180f71e1fa5cd94c95de51
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
965
sce
Ex4_2.sce
// Calculating the loss that will be conducted across the the laminations clc; disp('Example 4.2, Page No. = 4.3') // Given Data Q_con_5 = 25;// Heat Dissipated t_5 = 20;// Thickness of laminations in mm S_5 = 2500;// Cross-section area of conduction in mm square T_5 = 5;// Temperature difference in degree celsius t_20 = 40;// Thickness of laminations in mm S_20 = 6000;// Cross-section area of conduction in mm square T_20 = 20;// Temperature difference in degree celsius // Calculation of heat conducted across the laminations p_along = (T_5*S_5*10^(-6))/(Q_con_5*t_5*10^(-3));// Thermal resistivity along the direction of laminations p_across = 20*p_along;// Thermal resistivity across the direction of laminations Q_con_20 = S_20*10^(-6)*T_20/(p_across*t_20*10^(-3));// Heat conducted across the the laminations disp(Q_con_20,'Heat conducted across the the laminations(W)='); //in book answer is 6 W. The answers vary due to round off error
2a7f4fda30ea590e5156ac4ec9d727039a67996e
449d555969bfd7befe906877abab098c6e63a0e8
/1946/CH9/EX9.16/Ex_9_16.sce
944440b804736317d102b3f9af122476ebf5caea
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
234
sce
Ex_9_16.sce
// Example 9.16;//Maximuum bandwidth clc; clear; close; tr=4.5*10^-12;//electron transit time in second G=80;//photo conductive gain Bm=(1/(2*%pi*tr*G))*10^-9;//Maximum bandwidth disp(Bm,"Maximum bandwidth in giga hertz is")
fd7bf46373ce1dacd4011fd692d58f8a1ec75eae
449d555969bfd7befe906877abab098c6e63a0e8
/965/CH7/EX7.47/47.sci
88e206dc9347a3fb1be886023df096fd46c8edcb
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
427
sci
47.sci
clc; clear all; disp("incerease in bulk temperature") tb1=200;//degree C d=25.4/1000;//m diameter of tube U=10;//m/s tw=20;// degree C L=3;//m length of tube rho=1.493;//kg/m^3 mu=2.57*10^(-5);//Ns/m^2 k=0.0386;//W/m.C cp=1025;// J/kg.C Re=rho*U*d/mu Pr=mu*cp/k Nu=0.0023*Re^0.8*Pr^0.4 h=Nu*k/d Q=h*%pi*d*(tb1-tw) m=rho*%pi*d^2*U; delT=Q/(m*cp); disp("degree C",delT,"Increase in bulk temperature is = ")
653d1983a3dde23b0a8f662763830aa33546d853
efc2fec9dd841d0ca834702c904e00c52762a9f9
/TemplateMatcher/TemplateMatcher5.sce
50fb7a57b2ebb57cc294ed4176518474723cdb73
[]
no_license
surajch77/Scilab-Computer-Vision-Toolbox-TestCases
64c8e0382e8b9d416c4c27c1ed4272f49bf45b51
969f9bcddefea05b42c623aeebe2e0cdcffd6eeb
refs/heads/master
2021-01-20T20:24:14.345296
2016-06-29T15:16:52
2016-06-29T15:16:52
61,932,313
0
0
null
null
null
null
UTF-8
Scilab
false
false
127
sce
TemplateMatcher5.sce
I = imread('ararauna.jpg'); J = I(:, :, :); T = TemplateMatcher(I, J); size(T) /// output: /// single channel result 1 1
933046bede977b4cdad008f970fcab902b104ecc
449d555969bfd7befe906877abab098c6e63a0e8
/3176/CH2/EX2.5/Ex2_5.sce
326df7f35f3fd3b3f93ff753ce1d7502b5453c1b
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,737
sce
Ex2_5.sce
//Ex2_5 //Addition of Noisy Images for Noise Reduction // Version : Scilab 5.4.1 // Operating System : Window-xp, Window-7 //Toolbox: Image Processing Design 8.3.1-1 //Toolbox: SIVP 0.5.3.1-2 //Reference book name : Digital Image Processing //book author: Rafael C. Gonzalez and Richard E. Woods clc; close; clear; xdel(winsid())//to close all currently open figure(s). gray=imread("Ex2_5.tif"); //gray=rgb2gray(a); gray=im2double(gray); figure,ShowImage(gray,'Gray Image'); title('Original Image'); [nr nc]=size(gray); noise_image=gray; out_image=double(zeros(nr,nc)); level=[5 10 20 50 100]; for i=1:length(level) No=level(i); disp(No); for k=1:No noisy_image=imnoise(noise_image,'gaussian',0,0.02); // figure,ShowImage(noisy_image,'Image corrupted by salt & pepper noise');//ShowImage() is used to sho w image, figure is command to view images in separate window. // title('Image corrupted by Gaussian noise');//title() is used for providing a title to an image. // disp(size(noise_image)); out_image=imadd(out_image,noisy_image); end out_image=out_image/No; out_image=mat2gray(out_image); figure,ShowImage(out_image,'Image Recoverd from the Noise');//ShowImage() is used to show image, figure is command to view images in separate window. title('Image Recoverd from the Noise');//title() is used for providing a title to an image. //Recoverd_Image=0.5*out_image.^0.15;//Gamma Transformation //figure,ShowImage(Recoverd_Image,'Recoverd Image after Gamma Transormation');//ShowImage() is used to show image, figure is command to view images in separate window. //title('Image Recoverd from the Noise');//title() is used for providing a title to an image. end
cd4424434e4150d3aafbbda58b808a1865d68ddb
449d555969bfd7befe906877abab098c6e63a0e8
/1847/CH2/EX2.10/Ch02Ex10.sce
979c40c195ec2598662832650099117a96962a7d
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
479
sce
Ch02Ex10.sce
// Scilab Code Ex2.10:: Page-2.12 (2009) clc; clear; D = 100; // Distance between slits and the screen, cm d = 0.08; // Separation between the slits, cm b = 2.121/25; // Fringe width of the interfernce pattern due to biprism, cm lambda = b*d/D; // Wavelength of light in a biprism experiment, cm printf("\nThe wavelength of light in a biprism experiment = %5.0f angstrom", lambda/1e-008); // Result // The wavelength of light in a biprism experiment = 6787 angstrom
5fb237b4fdd619a44b6a1389fcddc8c4c0e93be0
99b4e2e61348ee847a78faf6eee6d345fde36028
/Toolbox Test/peak2peak/peak2peak6.sce
71d9119ac311cec540890e5ea45efa395d0f7df6
[]
no_license
deecube/fosseetesting
ce66f691121021fa2f3474497397cded9d57658c
e353f1c03b0c0ef43abf44873e5e477b6adb6c7e
refs/heads/master
2021-01-20T11:34:43.535019
2016-09-27T05:12:48
2016-09-27T05:12:48
59,456,386
0
0
null
null
null
null
UTF-8
Scilab
false
false
271
sce
peak2peak6.sce
//check o/p when i/p dim is less than 1 a=[1 2 3;1 2 34;2 3 54]; y=peak2peak(a,0); disp(y); //output //!--error 10000 //Dimension argument must be a positive integer scalar within indexing range. //at line 27 of function peak2peak called by : //y=peak2peak(a,0);
da514ab00809ad3723d5fb156bcbcb86fe094129
449d555969bfd7befe906877abab098c6e63a0e8
/2495/CH1/EX1.5.2/Ex1_5_2.sce
99e614d773830813eea27a70e092a163f9bbf102
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
243
sce
Ex1_5_2.sce
clear; clc; T1=373.15;//in K P=1;//atm Vv=1674;//in cm^3/gm delPdelT=27.12;//in torr/K R1=8.314;//in J R2=0.082;//in atm/(dm)^3 delH=((delPdelT)/760)*T1*((Vv*10^-3)*18)*(R1/R2) printf('delH =%d J/mol',delH) ////Example in page 15
cab0c1d8358c7138628c6f31c804456f4db67634
449d555969bfd7befe906877abab098c6e63a0e8
/758/CH3/EX3.10/Ex_3_10.sce
9361d42d004dbbd47fd73c38b662c7f0c41e6d18
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
251
sce
Ex_3_10.sce
//Example 3.10 clc;clear;close; s=poly(0,'s'); I=3*s/(s+2)/(s+4); disp(I,'Given Transfer Function:'); zero=roots(numer(I)); pole=roots(denom(I)); disp(zero,'Zeros of transfer function: '); disp(pole,'Poles of transfer function: '); plzr(I);
7b21aa91fe635f55fe5d63538ace60a9216311e9
449d555969bfd7befe906877abab098c6e63a0e8
/1427/CH25/EX25.13/25_13.sce
e227c33a5826645a50c4f0dab9e098a0c4b72fdf
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
299
sce
25_13.sce
//ques-25.13 //Calculating pressure using van der Waals equation clc n=2;//moles of ammonia T=300;//temperature (in K) V=5*10^-3;//volume (in kL) a=0.417;//(in Nm^4/mol^2) b=0.037*10^-3;//(in kL/mol) P=((n*8.314*T)/(V-n*b))-((a*n^2)/(V^2)); printf("The pressure required is %d N/m^2.",P);
683f324904d03fd154c3b44a52a3e7036cdfa3b2
449d555969bfd7befe906877abab098c6e63a0e8
/3041/CH2/EX2.2/Ex2_2.sce
3ffb4176af121ca77fe86851713247b9902cd195
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,042
sce
Ex2_2.sce
//Variable declaration Vbb=5 //base voltage of bipolar transistor(V) Vbe=0.7 //base emitter voltage drop(V) in active region Rb=150 //base resistance(ohm) beeta=125 //curret gain Rc=3 //collector resistance(k ohms) Vcc=10 //supply voltage(V) Vce=0.2 //collector to emitter voltage(V) //Calculations //Part a Ib=(Vbb-Vbe)/Rb //base current(mA) Ic=beeta*Ib //collector current(mA) Vcb=-Vbe-(Rc*Ic)+Vcc //collector base voltage drop(V) //Part b -for npn transistor Vbe=0.8 //base emitter voltage drop(V) in saturation Ic=(Vcc-Vce)/Rc //collector current(mA) Ib=(Vbb-Vbe)/Rb //base current(mA) Ibmin=Ic/beeta //minimum base current(mA) to go into saturation(mA) //Results printf ("In active region, base current is %.1e mA and collector current is %.2f mA" ,Ib,Ic) printf ("base current and collector current in npn are %.2e mA and %.2f mA resp.",Ib,Ic) printf ("base current minimum is %.3f mA",Ibmin)
866afaf8c9b8b8379609c5389d96bae3de94f24d
449d555969bfd7befe906877abab098c6e63a0e8
/659/CH3/EX3.5/exm3_5.sce
93136c7b1ea8245da5eba1381b87d6e549f725e6
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
308
sce
exm3_5.sce
// Example 3.5 //Output of program shows round-off errors that can occur in computation of floating point numbers //Sum of n terms of 1/n count=1; sum1=0; n=input("Enter value of n:"); term=1.0/n; while(count<=n) sum1=sum1+term; count=count+1; end printf("Sum= %f",sum1);
9388ebb230dc09e241dc9f574fc3e7d9b49cd568
449d555969bfd7befe906877abab098c6e63a0e8
/773/CH8/EX8.03.01/8_02_01.sci
121e503ba4dbef30f23893286bc7398a3ddbb18a
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
333
sci
8_02_01.sci
//coefficient// s=%s; p=poly([10],'s','coeff'); q=poly([0 0 1],'s','coeff'); G=p/q; H=0.7; y=G*H; //type 2 disp(y,"G(s)H(s)=") //refering the table 8.2 given in the book ,for type 1 Kp=%inf & Kv=%inf printf("For type1 Kp=inf & Kv=inf \n") syms s; Ka=limit(s^2*y,s,0); //Ka=accelaration error coefficient disp(Ka,"Ka=")
685661762bccaafe09ce8f743203b468cdf0a1f1
449d555969bfd7befe906877abab098c6e63a0e8
/980/CH6/EX6.16/6_16.sce
3210388ba1b5c426e475b9dff2174d3c7fa1a091
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
214
sce
6_16.sce
clc; clear; format('e',11); E=1; epsilone_r=1.5; Xe=epsilone_r-1; //Xe=electric susceptibility. epsilone_0=8.85*10^-12; P=epsilone_0*Xe*E; disp(P,"The polarisation density(in C/m^2)=");
6c551a0e17f845464162862417376e14cc1ebe7b
73f78cdeffea591ff380589c4b1dd03d77d63e0a
/projects/08/test4/test4.tst
f928946733f817e7ffdebc8eb111757a07bec432
[]
no_license
orensam/nand2tetris
bf7fe02f4580aff3dfa17e76145c0591112a9adb
dff1e1c014d27030037d4afb834cfdbf221c379d
refs/heads/master
2020-07-21T21:28:27.084153
2014-10-28T10:20:09
2014-10-28T10:20:09
17,370,144
1
5
null
null
null
null
UTF-8
Scilab
false
false
183
tst
test4.tst
load test4.asm, output-file test4.out, compare-to test4.cmp, output-list RAM[5000]%D1.6.1 RAM[5001]%D1.6.1 RAM[5010]%D1.6.1 RAM[5011]%D1.6.1; repeat 1000000 { ticktock; } output;
e8b0a96e4314ad79ae7ba780fa5a83c646dbaf27
449d555969bfd7befe906877abab098c6e63a0e8
/1682/CH3/EX3.9/Exa3_9.sce
286b03ada4fd5ce007de4af4734fd73814956386
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
261
sce
Exa3_9.sce
//Exa3_9 clc; clear; close; //given data is : P=5000;//in rupees n=10;//in years i=12;//% per annum m=4;//no. of interest periods per year for quarterly N=n*m; r=i/m; F=P*(1+r/100)^N; disp("Maturity value after 10 years is : "+string(F)+" Rupees.");
579044a544b1fcd8a0f5dab5f954924cf1889ac0
449d555969bfd7befe906877abab098c6e63a0e8
/1844/CH5/EX5.1/1.sce
0478ddd81d16c9beb76c39918f09efc602c55ea9
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
144
sce
1.sce
clc // doing only one of the given // WCB to RB a= 22.5 printf('a)R.B = N 22.5 E\n') //RB to WCB printf(' b)W.C.B = 12 degrees 24 min')
87e7c9189a9ca63f47cf192cf41613b2733c4e18
449d555969bfd7befe906877abab098c6e63a0e8
/1931/CH8/EX8.9/9.sce
4d1c952f79c4e7b5ed4bba8bb0a86f63203fbb44
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
420
sce
9.sce
clc clear //INPUT DATA a=0.1*10^-9//width of high potential box in m h=6.625*10^-34//Planck's constant in m^2 Kg /sec m=9.11*10^-31//mass of electron in Kg e=1.6*10^-19//charge of electron in coulombs n=1//take n equal to one //CALCULATION E=((n^2*h^2)/(8*m*a^2*e))//The least energy of the particle can be obtained in eV //OUTPUT printf('The least energy of the particle can be obtained is %3.2f eV',E)
fcf7b275e0a1cbde5aa04c16ffce965cd2a5b962
449d555969bfd7befe906877abab098c6e63a0e8
/2135/CH2/EX2.4/Exa_2_4.sce
199794e50658432713ae8f4c4522f43041c6857d
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
282
sce
Exa_2_4.sce
//Exa 2.4 clc; clear; close; format('v',7); //Given Data Q1=120;//KJ Q2=-16;//KJ Q3=-48;//KJ Q4=12;//KJ W1=60000;//N-m W2=68000;//N-m W3=120000;//N-m W4=44000;//N-m Net_work=Q1+Q2+Q3+Q4;//KJ disp(Net_work*1000,"Net Work in N-m : "); disp("Option (ii) is true.")
b03bbc67e055294293d18cadd4fd304fbd84e049
449d555969bfd7befe906877abab098c6e63a0e8
/2048/CH10/EX10.2/smith.sce
2ae3fbc0aaf8d8a6589b9d6e24bf7f3a1f8f1027
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,360
sce
smith.sce
// Smith predictor for paper machine control in Example 10.2 on page 385. // 10.2 exec('zpowk.sci',-1); exec('poladd.sci',-1); exec('polsize.sci',-1); exec('pp_im.sci',-1); exec('polsplit3.sci',-1); exec('polmul.sci',-1); exec('xdync.sci',-1); exec('rowjoin.sci',-1); exec('left_prm.sci',-1); exec('t1calc.sci',-1); exec('indep.sci',-1); exec('makezero.sci',-1); exec('move_sci.sci',-1); exec('colsplit.sci',-1); exec('clcoef.sci',-1); exec('cindep.sci',-1); exec('seshft.sci',-1); exec('cosfil_ip.sci',-1); exec('polyno.sci',-1); Ts = 1; B = 0.63; A = [1 -0.37]; k = 3; Bd = convol(B,[0 1]); kd = k - 1; [zkd,dzkd] = zpowk(kd); [mzkd,dmzkd] = poladd(1,0,-zkd,dzkd); // Desired transfer function phi = [1 -0.5]; delta = 1; // Controller design [Rc,Sc,Tc,gamm] = pp_im(B,A,1,phi,delta); // simulation parameters for smith_disc.xcos st = 1.0; // desired change in setpoint t_init = 0; // simulation start time t_final = 20; // simulation end time // simulation parameters for smith_disc.xcos N_var = 0; C = 0; D = 1; N = 1; [Tcp1,Tcp2] = cosfil_ip(Tc,1); // Tc/1 [Rcp1,Rcp2] = cosfil_ip(1,Rc); // 1/Rc [Scp1,Scp2] = cosfil_ip(Sc,1); // Sc/1 [Bdp,Ap] = cosfil_ip(Bd,A); // Bd/Ad [zkdp1,zkdp2] = cosfil_ip(zkd,1); // zkd/1 [mzkdp1,mzkdp2] = cosfil_ip(mzkd,1); // mzkd/1 [Cp,Dp] = cosfil_ip(C,D); // C/D
c0773645d4342911d5c8b612af0a67479cf18dfe
449d555969bfd7befe906877abab098c6e63a0e8
/1364/CH4/EX4.1.1/4_1_1.sce
718811988bcb38e1c6600a161c17790fa2c4ce67
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
188
sce
4_1_1.sce
clc //initialisation of variables H= 33 //ft lbf/lbf Q= 100 //ft^3/min w= 62.4 //lbf/ft^3 s= 0.8 //CALCULATIONS P= s*w*Q*H/33000 //RESULTS printf (' power required= %.2f h.p',P)
1a4626dbaedddfb697b954224dc2fd053c85cdc8
449d555969bfd7befe906877abab098c6e63a0e8
/61/CH16/EX16.4/ex16_4.sce
58061595719c030de3fc4be974ddf82f54b0bae8
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
295
sce
ex16_4.sce
//ex16.4 R1=10*10^3; R2=33*10^3; R3=10*10^3; C=0.01*10^-6; f_r=(1/(4*R1*C))*(R2/R3); disp(f_r,'frequency of oscillation in hertz') //the value of R1 when frequency of oscillation is 20 kHz f=20*10^3; R1=(1/(4*f*C))*(R2/R3); disp(R1,'value of R1 in ohms to make frequency 20 kiloHertz')
679b7a9a65b87902617a04e9debc20d783d77045
449d555969bfd7befe906877abab098c6e63a0e8
/2213/CH1/EX1.13/ex_1_13.sce
73ed835d3dc901eb1a35ad975ada924fc1226080
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
533
sce
ex_1_13.sce
//Example 1.13 //voltage ,current and frequency clc; clear; close; format('v',5) vl=600;//in volts p=200;//power absorbed in watts pf=0.05;//power factor f=30*10^6;//frequency in Hz ep=8.854*10^-12;//constant er=5;// a=150;// in cm^2 t=0.02;// in meter c=((ep*er*a*10^-4)/t);//capacitance in farads vr=(sqrt(p/(2*%pi*f*c*pf)));//voltage is required in volts i=p/(vr*pf);//current in amperes f2=((f*(vr/vl)^2))*10^-6;//frequency in Mhz disp(ceil(vr),"voltage in volts") disp(round(i),"current in amperes") disp(f2,"frequency in MHz")
ebb12e5d91776e69b879bbf17fe1e9c5d9699cfa
449d555969bfd7befe906877abab098c6e63a0e8
/1397/CH8/EX8.6/8_6.sce
d974d5e29fb985700bb304198de52351490cc5a9
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
338
sce
8_6.sce
//clc(); clear; //To calculate numerical aperture and acceptance angle n1=1.6; //refractive index of core n2=1.4; //refractive index of cladding n0=1.33; //water refractive index NA=sqrt(n1^2-n2^2)/n0; printf("numerical aperture is %f",NA); theta0=asind(NA); printf("acceptance angle is %f degrees",theta0);
a2372e984cb4bad3638e4d98ea7015fca3b1af08
897ce6a3fd5b682122c396af7e24fa53014c7cb3
/src_script/scilab/_import/rtsx_10/ReplaceLink.sci
816801902fdf90c2468074c6779f881d05793fb5
[]
no_license
stub22/glue-ai-v1_friendularity
e66f5ab357eba45de2def6f7900f414e358a4125
74949dc3e9b0d08b39857735aad901915e61322d
refs/heads/master
2022-12-19T18:57:01.336831
2017-08-04T12:55:12
2017-08-04T12:55:12
284,544,364
0
0
null
2020-10-14T00:08:14
2020-08-02T21:24:34
Java
UTF-8
Scilab
false
false
2,310
sci
ReplaceLink.sci
//ReplaceLink.sci replace a robot link specified by li // www.controlsystemslab.com August 2012 // usage: robot=ReplaceLink(robot,L,li); // Example: // --> robot = ReplaceLink(robot,L, 2) // remove link 2 with L function robot=ReplaceLink(robot,L,li) if argn(2)==0 then ReplaceLinkHelp(); robot=[]; else robot = _Replace_Link(robot,L,li); end endfunction function robot=replacelink(robot,L,li) if argn(2)==0 then ReplaceLinkHelp(); robot=[]; else robot = _Replace_Link(robot,L,li); end endfunction function robot=_Replace_Link(robot,L,li) if robot.mdh ~= L.mdh if robot.mdh==0 printf("Robot model has standard DH parameters\n"); else printf("Robot model has modified DH parameters\n"); end if L.mdh==0 printf("New link has standard DH parameters\n"); else printf("New link has modified DH parameters\n"); end error("Cannot replace because new link has different DH conventions from robot"); end if type(li)~=1 error ("Link index must be a number."); end if type(L)~= 17 then error("Wrong data type for link argument"); end nlinks=robot.nj; if li<1 | li>nlinks emsg=sprintf("Valid link index is between 1 - %d",nlinks); error(emsg); else //robot.Link(li) = []; // first delete the specified link robot.Link(li) = L; // then replace with L end // if lidx<1 | lidx>nlinks+1 robotcfg = ''; for i=1:nlinks, // automatic update for some variables if robot.Link(i).sigma then robotcfg=strcat([robotcfg,'P']); else robotcfg=strcat([robotcfg,'R']); end end robot.conf = robotcfg; // update configuration string endfunction function ReplaceLinkHelp() printf("=============================================================\n"); printf("Usage: robot=ReplaceLink(robot,L,li)\n\n"); printf("replace link li of a robot with L\n"); printf("\tEx: robot=ReplaceLink(robot,L,2); // replace link 2 \n"); printf("=============================================================\n"); endfunction
563f032dabe341e0726730c96173202bb7d9fd0e
20392bee9b9ba080dc86418049e09f82be683a14
/Design_Experiment_1/MUX8WAY16.tst
521e77bf17e69aa54041f8110f82a39c07cd5456
[]
no_license
Liveitabhi/CSD-LAB
698645e3fee27fadc70979c6c64d7de13c58ffbd
e91c386c9d575fcced2f5163eea958033ca1e245
refs/heads/master
2023-01-23T05:31:42.301079
2020-12-09T08:52:58
2020-12-09T08:52:58
298,178,775
0
0
null
null
null
null
UTF-8
Scilab
false
false
872
tst
MUX8WAY16.tst
load MUX8WAY16.hdl, output-file MUX8WAY16.out, compare-to MUX8WAY16.cmp, output-list x1%B1.16.1 x2%B1.16.1 x3%B1.16.1 x4%B1.16.1 x5%B1.16.1 x6%B1.16.1 x7%B1.16.1 x8%B1.16.1 s%B2.3.2 z%B1.16.1; set x1 0, set x2 0, set x3 0, set x4 0, set x5 0, set x6 0, set x7 0, set x8 0, set s 0, eval, output; set s 1, eval, output; set s 2, eval, output; set s 3, eval, output; set s 4, eval, output; set s 5, eval, output; set s 6, eval, output; set s 7, eval, output; set x1 %B0001001000110100, set x2 %B0010001101000101, set x3 %B0011010001010110, set x4 %B0100010101100111, set x5 %B0101011001111000, set x6 %B0110011110001001, set x7 %B0111100010011010, set x8 %B1000100110101011, set s 0, eval, output; set s 1, eval, output; set s 2, eval, output; set s 3, eval, output; set s 4, eval, output; set s 5, eval, output; set s 6, eval, output; set s 7, eval, output;
64174fb8ab1163a1bef2061d7cf6b4f2e330d4b1
527dd92897bc9b75dde0f2f306f31510deaefe20
/1547.1/Tests/WV/WV_1.tst
0fa17795d8c2aadf7611251b1f8da98d47b7dc64
[]
no_license
BuiMCanmet/svp_1547.1
7520680bfc5895b36081487099d22aac2a0b90d4
5f6a8e5d55ff7f109d02b618fd594c8a4f9d4eae
refs/heads/master_python37
2021-06-29T02:31:53.200049
2021-01-11T16:37:37
2021-01-11T16:37:37
179,517,708
0
1
null
2020-08-27T18:40:17
2019-04-04T14:44:13
Python
UTF-8
Scilab
false
false
1,382
tst
WV_1.tst
<scriptConfig name="WV_1" script="WV"> <params> <param name="eut_wv.test_1_t_r" type="float">10.0</param> <param name="eut_wv.irr" type="string">100%</param> <param name="eut.v_low" type="float">116.0</param> <param name="eut.v_nom" type="float">120.0</param> <param name="eut.v_high" type="float">132.0</param> <param name="eut.v_in_nom" type="int">400</param> <param name="eut.p_min" type="float">1000.0</param> <param name="eut.var_rated" type="float">2000.0</param> <param name="eut.p_rated" type="float">8000.0</param> <param name="eut.s_rated" type="float">10000.0</param> <param name="eut_wv.test_2" type="string">Disabled</param> <param name="eut_wv.test_3" type="string">Disabled</param> <param name="der.mode" type="string">Disabled</param> <param name="gridsim.mode" type="string">Disabled</param> <param name="gridsim.auto_config" type="string">Disabled</param> <param name="pvsim.mode" type="string">Disabled</param> <param name="das.mode" type="string">Disabled</param> <param name="hil.mode" type="string">Disabled</param> <param name="eut_wv.test_1" type="string">Enabled</param> <param name="eut.abs_enable" type="string">No</param> <param name="eut_wv.mode" type="string">Normal</param> <param name="eut.phases" type="string">Three phase</param> </params> </scriptConfig>
4ea23ce48d2a54b439b85a032ff8984efeb9abb9
449d555969bfd7befe906877abab098c6e63a0e8
/1919/CH3/EX3.10/Ex3_10.sce
65467d0638469bb50f74e56187eea1e51093737f
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,062
sce
Ex3_10.sce
// Theory and Problems of Thermodynamics // Chapter 3 // Thermodynamic Properties of Fluids // Example 10 clear ;clc; //Given data X = 0.8 // wet stream quality P = 0.1 // Pressure in MPa T = 300 // Temperature in C h_f = 417.46 // Specific enthalpy of fluid h_fg = 2258.0 // Specific enthalpy difference of gas and fluid v_f = 0.001043 // Specific volume of liquid in m^3/kg v_g = 1.6940 // Specific volume of vapor in m^3/kg h2 = 3074.3 // specific enthalpy at 300C and 0.1MPa in kJ/kg v2 = 2.639 // Specific volume at 300C and 0.1MPa in m^3/kg P = P * 1e6 // Units conversion from MPa to Pa // Calculations h1 = h_f + X*h_fg v1 = X*v_g + (1-X)*v_f Q = h2 - h1 // heat interaction by the steam W = P*(v2-v1) // Work done by the steam W = W * 1e-3 // Units conversion from J to kJ // Output Results mprintf('heat interaction by the steam = %6.2f kJ/kg' ,Q) mprintf('\n Work done by the steam = %6.2f kJ/kg' ,W)
d0578bd878ffd387cc24d5be56826b3acd06d84d
6e257f133dd8984b578f3c9fd3f269eabc0750be
/ScilabFromTheoryToPractice/Programming/testreturn.sce
ab0db528f3f6a9a6a525b693b48d750bfc034b00
[]
no_license
markusmorawitz77/Scilab
902ef1b9f356dd38ea2dbadc892fe50d32b44bd0
7c98963a7d80915f66a3231a2235010e879049aa
refs/heads/master
2021-01-19T23:53:52.068010
2017-04-22T12:39:21
2017-04-22T12:39:21
89,051,705
0
0
null
null
null
null
UTF-8
Scilab
false
false
255
sce
testreturn.sce
function foo(x) txt_foo='x is equal to '+string(x) txt_sci=return(txt_foo) disp('what follows doesn''t get executed') endfunction foo(1) txt_sci // the txt_sci variable does exist here txt_foo // the txt_foo variable doesn't exist here
a5538e10d4f5479ab355bf62bddff34aa045178d
1bb72df9a084fe4f8c0ec39f778282eb52750801
/test/TEC2S.prev.tst
77a9e049e3e526776bc69cd782db77f7ed60fb34
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
gfis/ramath
498adfc7a6d353d4775b33020fdf992628e3fbff
b09b48639ddd4709ffb1c729e33f6a4b9ef676b5
refs/heads/master
2023-08-17T00:10:37.092379
2023-08-04T07:48:00
2023-08-04T07:48:00
30,116,803
2
0
null
null
null
null
UTF-8
Scilab
false
false
65,553
tst
TEC2S.prev.tst
Expanding for base=2, level=9, reasons+features=base,same,similiar,evenexp invall,showfail Refined variables=x,y [0+1x,0+1y]: unknown -> [1] [0,0] x²-y³+2 ---------------- level 0 expanding queue[0]^-1,meter=[2,2]: x²-y³+2 [0+2x,0+2y]: failure constant=2, vgcd=4 [0,0] 4x²-8y³+2 [1+2x,0+2y]: failure constant=3, vgcd=4 [1,0] 4x+4x²-8y³+3 [0+2x,1+2y]: failure constant=1, vgcd=2 [0,1] 4x²-6y-12y²-8y³+1 [1+2x,1+2y]: unknown -> [1] [1,1] 4x+4x²-6y-12y²-8y³+2 endexp[0] ---------------- level 1 expanding queue[1]^0,meter=[2,2]: 4x+4x²-6y-12y²-8y³+2 [1+4x,1+4y]: failure constant=2, vgcd=4 [0,0] 8x+16x²-12y-48y²-64y³+2 [3+4x,1+4y]: failure constant=10, vgcd=4 [1,0] 24x+16x²-12y-48y²-64y³+10 [1+4x,3+4y]: unknown -> [2] [0,1] 8x+16x²-108y-144y²-64y³-24 -> solution [5,3],NONTRIVIAL [3+4x,3+4y]: negative-1 [2] by {x=>-x-1} endexp[1] ---------------- level 2 expanding queue[2]^1,meter=[2,2]: 8x+16x²-108y-144y²-64y³-24 [1+8x,3+8y]: unknown -> [3] [0,0] 16x+64x²-216y-576y²-512y³-24 [5+8x,3+8y]: unknown -> [4] [1,0] 80x+64x²-216y-576y²-512y³ -> solution [5,3],NONTRIVIAL [1+8x,7+8y]: failure constant=-340, vgcd=8 [0,1] 16x+64x²-1176y-1344y²-512y³-340 [5+8x,7+8y]: failure constant=-316, vgcd=8 [1,1] 80x+64x²-1176y-1344y²-512y³-316 endexp[2] ---------------- level 3 expanding queue[3]^2,meter=[2,2]: 16x+64x²-216y-576y²-512y³-24 [1+16x,3+16y]: failure constant=-24, vgcd=16 [0,0] 32x+256x²-432y-2304y²-4096y³-24 [9+16x,3+16y]: failure constant=56, vgcd=16 [1,0] 288x+256x²-432y-2304y²-4096y³+56 [1+16x,11+16y]: unknown -> [5] [0,1] 32x+256x²-5808y-8448y²-4096y³-1328 [9+16x,11+16y]: unknown -> [6] [1,1] 288x+256x²-5808y-8448y²-4096y³-1248 endexp[3] expanding queue[4]^2,meter=[2,2]: 80x+64x²-216y-576y²-512y³ [5+16x,3+16y]: unknown -> [7] [0,0] 160x+256x²-432y-2304y²-4096y³ -> solution [5,3],NONTRIVIAL [13+16x,3+16y]: unknown -> [8] [1,0] 416x+256x²-432y-2304y²-4096y³+144 [5+16x,11+16y]: failure constant=-1304, vgcd=16 [0,1] 160x+256x²-5808y-8448y²-4096y³-1304 [13+16x,11+16y]: failure constant=-1160, vgcd=16 [1,1] 416x+256x²-5808y-8448y²-4096y³-1160 endexp[4] ---------------- level 4 expanding queue[5]^3,meter=[2,2]: 32x+256x²-5808y-8448y²-4096y³-1328 [1+32x,11+32y]: failure constant=-1328, vgcd=32 [0,0] 64x+1024x²-11616y-33792y²-32768y³-1328 [17+32x,11+32y]: failure constant=-1040, vgcd=32 [1,0] 1088x+1024x²-11616y-33792y²-32768y³-1040 [1+32x,27+32y]: unknown -> [9] [0,1] 64x+1024x²-69984y-82944y²-32768y³-19680 [17+32x,27+32y]: unknown -> [10] [1,1] 1088x+1024x²-69984y-82944y²-32768y³-19392 endexp[5] expanding queue[6]^3,meter=[2,2]: 288x+256x²-5808y-8448y²-4096y³-1248 [9+32x,11+32y]: unknown -> [11] [0,0] 576x+1024x²-11616y-33792y²-32768y³-1248 [25+32x,11+32y]: unknown -> [12] [1,0] 1600x+1024x²-11616y-33792y²-32768y³-704 [9+32x,27+32y]: failure constant=-19600, vgcd=32 [0,1] 576x+1024x²-69984y-82944y²-32768y³-19600 [25+32x,27+32y]: failure constant=-19056, vgcd=32 [1,1] 1600x+1024x²-69984y-82944y²-32768y³-19056 endexp[6] expanding queue[7]^4,meter=[2,2]: 160x+256x²-432y-2304y²-4096y³ [5+32x,3+32y]: unknown -> [13] [0,0] 320x+1024x²-864y-9216y²-32768y³ -> solution [5,3],NONTRIVIAL [21+32x,3+32y]: unknown -> [14] [1,0] 1344x+1024x²-864y-9216y²-32768y³+416 [5+32x,19+32y]: failure constant=-6832, vgcd=32 [0,1] 320x+1024x²-34656y-58368y²-32768y³-6832 [21+32x,19+32y]: failure constant=-6416, vgcd=32 [1,1] 1344x+1024x²-34656y-58368y²-32768y³-6416 endexp[7] expanding queue[8]^4,meter=[2,2]: 416x+256x²-432y-2304y²-4096y³+144 [13+32x,3+32y]: failure constant=144, vgcd=32 [0,0] 832x+1024x²-864y-9216y²-32768y³+144 [29+32x,3+32y]: failure constant=816, vgcd=32 [1,0] 1856x+1024x²-864y-9216y²-32768y³+816 [13+32x,19+32y]: unknown -> [15] [0,1] 832x+1024x²-34656y-58368y²-32768y³-6688 [29+32x,19+32y]: unknown -> [16] [1,1] 1856x+1024x²-34656y-58368y²-32768y³-6016 endexp[8] ---------------- level 5 expanding queue[9]^5,meter=[2,2]: 64x+1024x²-69984y-82944y²-32768y³-19680 [1+64x,27+64y]: failure constant=-19680, vgcd=64 [0,0] 128x+4096x²-139968y-331776y²-262144y³-19680 [33+64x,27+64y]: failure constant=-18592, vgcd=64 [1,0] 4224x+4096x²-139968y-331776y²-262144y³-18592 [1+64x,59+64y]: unknown -> [17] [0,1] 128x+4096x²-668352y-724992y²-262144y³-205376 [33+64x,59+64y]: unknown -> [18] [1,1] 4224x+4096x²-668352y-724992y²-262144y³-204288 endexp[9] expanding queue[10]^5,meter=[2,2]: 1088x+1024x²-69984y-82944y²-32768y³-19392 [17+64x,27+64y]: unknown -> [19] [0,0] 2176x+4096x²-139968y-331776y²-262144y³-19392 [49+64x,27+64y]: unknown -> [20] [1,0] 6272x+4096x²-139968y-331776y²-262144y³-17280 [17+64x,59+64y]: failure constant=-205088, vgcd=64 [0,1] 2176x+4096x²-668352y-724992y²-262144y³-205088 [49+64x,59+64y]: failure constant=-202976, vgcd=64 [1,1] 6272x+4096x²-668352y-724992y²-262144y³-202976 endexp[10] expanding queue[11]^6,meter=[2,2]: 576x+1024x²-11616y-33792y²-32768y³-1248 [9+64x,11+64y]: failure constant=-1248, vgcd=64 [0,0] 1152x+4096x²-23232y-135168y²-262144y³-1248 [41+64x,11+64y]: failure constant=352, vgcd=64 [1,0] 5248x+4096x²-23232y-135168y²-262144y³+352 [9+64x,43+64y]: unknown -> [21] [0,1] 1152x+4096x²-355008y-528384y²-262144y³-79424 [41+64x,43+64y]: unknown -> [22] [1,1] 5248x+4096x²-355008y-528384y²-262144y³-77824 endexp[11] expanding queue[12]^6,meter=[2,2]: 1600x+1024x²-11616y-33792y²-32768y³-704 [25+64x,11+64y]: unknown -> [23] [0,0] 3200x+4096x²-23232y-135168y²-262144y³-704 [57+64x,11+64y]: unknown -> [24] [1,0] 7296x+4096x²-23232y-135168y²-262144y³+1920 [25+64x,43+64y]: failure constant=-78880, vgcd=64 [0,1] 3200x+4096x²-355008y-528384y²-262144y³-78880 [57+64x,43+64y]: failure constant=-76256, vgcd=64 [1,1] 7296x+4096x²-355008y-528384y²-262144y³-76256 endexp[12] expanding queue[13]^7,meter=[2,2]: 320x+1024x²-864y-9216y²-32768y³ [5+64x,3+64y]: same 640x+4096x²-1728y-36864y²-262144y³ map {x=>x/8,y=>y/8} -> [4] 80x+64x²-216y-576y²-512y³ -> solution [5,3],NONTRIVIAL [37+64x,3+64y]: unknown -> [25] [1,0] 4736x+4096x²-1728y-36864y²-262144y³+1344 [5+64x,35+64y]: failure constant=-42848, vgcd=64 [0,1] 640x+4096x²-235200y-430080y²-262144y³-42848 [37+64x,35+64y]: failure constant=-41504, vgcd=64 [1,1] 4736x+4096x²-235200y-430080y²-262144y³-41504 endexp[13] expanding queue[14]^7,meter=[2,2]: 1344x+1024x²-864y-9216y²-32768y³+416 [21+64x,3+64y]: failure constant=416, vgcd=64 [0,0] 2688x+4096x²-1728y-36864y²-262144y³+416 [53+64x,3+64y]: failure constant=2784, vgcd=64 [1,0] 6784x+4096x²-1728y-36864y²-262144y³+2784 [21+64x,35+64y]: unknown -> [26] [0,1] 2688x+4096x²-235200y-430080y²-262144y³-42432 [53+64x,35+64y]: unknown -> [27] [1,1] 6784x+4096x²-235200y-430080y²-262144y³-40064 endexp[14] expanding queue[15]^8,meter=[2,2]: 832x+1024x²-34656y-58368y²-32768y³-6688 [13+64x,19+64y]: failure constant=-6688, vgcd=64 [0,0] 1664x+4096x²-69312y-233472y²-262144y³-6688 [45+64x,19+64y]: failure constant=-4832, vgcd=64 [1,0] 5760x+4096x²-69312y-233472y²-262144y³-4832 [13+64x,51+64y]: unknown -> [28] [0,1] 1664x+4096x²-499392y-626688y²-262144y³-132480 [45+64x,51+64y]: unknown -> [29] [1,1] 5760x+4096x²-499392y-626688y²-262144y³-130624 endexp[15] expanding queue[16]^8,meter=[2,2]: 1856x+1024x²-34656y-58368y²-32768y³-6016 [29+64x,19+64y]: unknown -> [30] [0,0] 3712x+4096x²-69312y-233472y²-262144y³-6016 [61+64x,19+64y]: unknown -> [31] [1,0] 7808x+4096x²-69312y-233472y²-262144y³-3136 [29+64x,51+64y]: failure constant=-131808, vgcd=64 [0,1] 3712x+4096x²-499392y-626688y²-262144y³-131808 [61+64x,51+64y]: failure constant=-128928, vgcd=64 [1,1] 7808x+4096x²-499392y-626688y²-262144y³-128928 endexp[16] ---------------- level 6 expanding queue[17]^9,meter=[2,2]: 128x+4096x²-668352y-724992y²-262144y³-205376 [1+128x,59+128y]: failure constant=-205376, vgcd=128 [0,0] 256x+16384x²-1336704y-2899968y²-2097152y³-205376 [65+128x,59+128y]: failure constant=-201152, vgcd=128 [1,0] 16640x+16384x²-1336704y-2899968y²-2097152y³-201152 [1+128x,123+128y]: unknown -> [32] [0,1] 256x+16384x²-5809536y-6045696y²-2097152y³-1860864 [65+128x,123+128y]: unknown -> [33] [1,1] 16640x+16384x²-5809536y-6045696y²-2097152y³-1856640 endexp[17] expanding queue[18]^9,meter=[2,2]: 4224x+4096x²-668352y-724992y²-262144y³-204288 [33+128x,59+128y]: unknown -> [34] [0,0] 8448x+16384x²-1336704y-2899968y²-2097152y³-204288 [97+128x,59+128y]: unknown -> [35] [1,0] 24832x+16384x²-1336704y-2899968y²-2097152y³-195968 [33+128x,123+128y]: failure constant=-1859776, vgcd=128 [0,1] 8448x+16384x²-5809536y-6045696y²-2097152y³-1859776 [97+128x,123+128y]: failure constant=-1851456, vgcd=128 [1,1] 24832x+16384x²-5809536y-6045696y²-2097152y³-1851456 endexp[18] expanding queue[19]^10,meter=[2,2]: 2176x+4096x²-139968y-331776y²-262144y³-19392 [17+128x,27+128y]: failure constant=-19392, vgcd=128 [0,0] 4352x+16384x²-279936y-1327104y²-2097152y³-19392 [81+128x,27+128y]: failure constant=-13120, vgcd=128 [1,0] 20736x+16384x²-279936y-1327104y²-2097152y³-13120 [17+128x,91+128y]: unknown -> [36] [0,1] 4352x+16384x²-3179904y-4472832y²-2097152y³-753280 [81+128x,91+128y]: unknown -> [37] [1,1] 20736x+16384x²-3179904y-4472832y²-2097152y³-747008 endexp[19] expanding queue[20]^10,meter=[2,2]: 6272x+4096x²-139968y-331776y²-262144y³-17280 [49+128x,27+128y]: unknown -> [38] [0,0] 12544x+16384x²-279936y-1327104y²-2097152y³-17280 [113+128x,27+128y]: unknown -> [39] [1,0] 28928x+16384x²-279936y-1327104y²-2097152y³-6912 [49+128x,91+128y]: failure constant=-751168, vgcd=128 [0,1] 12544x+16384x²-3179904y-4472832y²-2097152y³-751168 [113+128x,91+128y]: failure constant=-740800, vgcd=128 [1,1] 28928x+16384x²-3179904y-4472832y²-2097152y³-740800 endexp[20] expanding queue[21]^11,meter=[2,2]: 1152x+4096x²-355008y-528384y²-262144y³-79424 [9+128x,43+128y]: failure constant=-79424, vgcd=128 [0,0] 2304x+16384x²-710016y-2113536y²-2097152y³-79424 [73+128x,43+128y]: failure constant=-74176, vgcd=128 [1,0] 18688x+16384x²-710016y-2113536y²-2097152y³-74176 [9+128x,107+128y]: unknown -> [40] [0,1] 2304x+16384x²-4396416y-5259264y²-2097152y³-1224960 [73+128x,107+128y]: unknown -> [41] [1,1] 18688x+16384x²-4396416y-5259264y²-2097152y³-1219712 endexp[21] expanding queue[22]^11,meter=[2,2]: 5248x+4096x²-355008y-528384y²-262144y³-77824 [41+128x,43+128y]: unknown -> [42] [0,0] 10496x+16384x²-710016y-2113536y²-2097152y³-77824 [105+128x,43+128y]: unknown -> [43] [1,0] 26880x+16384x²-710016y-2113536y²-2097152y³-68480 [41+128x,107+128y]: failure constant=-1223360, vgcd=128 [0,1] 10496x+16384x²-4396416y-5259264y²-2097152y³-1223360 [105+128x,107+128y]: failure constant=-1214016, vgcd=128 [1,1] 26880x+16384x²-4396416y-5259264y²-2097152y³-1214016 endexp[22] expanding queue[23]^12,meter=[2,2]: 3200x+4096x²-23232y-135168y²-262144y³-704 [25+128x,11+128y]: failure constant=-704, vgcd=128 [0,0] 6400x+16384x²-46464y-540672y²-2097152y³-704 [89+128x,11+128y]: failure constant=6592, vgcd=128 [1,0] 22784x+16384x²-46464y-540672y²-2097152y³+6592 [25+128x,75+128y]: unknown -> [44] [0,1] 6400x+16384x²-2160000y-3686400y²-2097152y³-421248 [89+128x,75+128y]: unknown -> [45] [1,1] 22784x+16384x²-2160000y-3686400y²-2097152y³-413952 endexp[23] expanding queue[24]^12,meter=[2,2]: 7296x+4096x²-23232y-135168y²-262144y³+1920 [57+128x,11+128y]: unknown -> [46] [0,0] 14592x+16384x²-46464y-540672y²-2097152y³+1920 [121+128x,11+128y]: unknown -> [47] [1,0] 30976x+16384x²-46464y-540672y²-2097152y³+13312 [57+128x,75+128y]: failure constant=-418624, vgcd=128 [0,1] 14592x+16384x²-2160000y-3686400y²-2097152y³-418624 [121+128x,75+128y]: failure constant=-407232, vgcd=128 [1,1] 30976x+16384x²-2160000y-3686400y²-2097152y³-407232 endexp[24] expanding queue[25]^13,meter=[2,2]: 4736x+4096x²-1728y-36864y²-262144y³+1344 [37+128x,3+128y]: failure constant=1344, vgcd=128 [0,0] 9472x+16384x²-3456y-147456y²-2097152y³+1344 [101+128x,3+128y]: failure constant=10176, vgcd=128 [1,0] 25856x+16384x²-3456y-147456y²-2097152y³+10176 [37+128x,67+128y]: unknown -> [48] [0,1] 9472x+16384x²-1723776y-3293184y²-2097152y³-299392 [101+128x,67+128y]: unknown -> [49] [1,1] 25856x+16384x²-1723776y-3293184y²-2097152y³-290560 endexp[25] expanding queue[26]^14,meter=[2,2]: 2688x+4096x²-235200y-430080y²-262144y³-42432 [21+128x,35+128y]: failure constant=-42432, vgcd=128 [0,0] 5376x+16384x²-470400y-1720320y²-2097152y³-42432 [85+128x,35+128y]: failure constant=-35648, vgcd=128 [1,0] 21760x+16384x²-470400y-1720320y²-2097152y³-35648 [21+128x,99+128y]: unknown -> [50] [0,1] 5376x+16384x²-3763584y-4866048y²-2097152y³-969856 [85+128x,99+128y]: unknown -> [51] [1,1] 21760x+16384x²-3763584y-4866048y²-2097152y³-963072 endexp[26] expanding queue[27]^14,meter=[2,2]: 6784x+4096x²-235200y-430080y²-262144y³-40064 [53+128x,35+128y]: unknown -> [52] [0,0] 13568x+16384x²-470400y-1720320y²-2097152y³-40064 [117+128x,35+128y]: unknown -> [53] [1,0] 29952x+16384x²-470400y-1720320y²-2097152y³-29184 [53+128x,99+128y]: failure constant=-967488, vgcd=128 [0,1] 13568x+16384x²-3763584y-4866048y²-2097152y³-967488 [117+128x,99+128y]: failure constant=-956608, vgcd=128 [1,1] 29952x+16384x²-3763584y-4866048y²-2097152y³-956608 endexp[27] expanding queue[28]^15,meter=[2,2]: 1664x+4096x²-499392y-626688y²-262144y³-132480 [13+128x,51+128y]: unknown -> [54] [0,0] 3328x+16384x²-998784y-2506752y²-2097152y³-132480 [77+128x,51+128y]: unknown -> [55] [1,0] 19712x+16384x²-998784y-2506752y²-2097152y³-126720 [13+128x,115+128y]: failure constant=-1520704, vgcd=128 [0,1] 3328x+16384x²-5078400y-5652480y²-2097152y³-1520704 [77+128x,115+128y]: failure constant=-1514944, vgcd=128 [1,1] 19712x+16384x²-5078400y-5652480y²-2097152y³-1514944 endexp[28] expanding queue[29]^15,meter=[2,2]: 5760x+4096x²-499392y-626688y²-262144y³-130624 [45+128x,51+128y]: failure constant=-130624, vgcd=128 [0,0] 11520x+16384x²-998784y-2506752y²-2097152y³-130624 [109+128x,51+128y]: failure constant=-120768, vgcd=128 [1,0] 27904x+16384x²-998784y-2506752y²-2097152y³-120768 [45+128x,115+128y]: unknown -> [56] [0,1] 11520x+16384x²-5078400y-5652480y²-2097152y³-1518848 [109+128x,115+128y]: unknown -> [57] [1,1] 27904x+16384x²-5078400y-5652480y²-2097152y³-1508992 endexp[29] expanding queue[30]^16,meter=[2,2]: 3712x+4096x²-69312y-233472y²-262144y³-6016 [29+128x,19+128y]: unknown -> [58] [0,0] 7424x+16384x²-138624y-933888y²-2097152y³-6016 [93+128x,19+128y]: unknown -> [59] [1,0] 23808x+16384x²-138624y-933888y²-2097152y³+1792 [29+128x,83+128y]: failure constant=-570944, vgcd=128 [0,1] 7424x+16384x²-2645376y-4079616y²-2097152y³-570944 [93+128x,83+128y]: failure constant=-563136, vgcd=128 [1,1] 23808x+16384x²-2645376y-4079616y²-2097152y³-563136 endexp[30] expanding queue[31]^16,meter=[2,2]: 7808x+4096x²-69312y-233472y²-262144y³-3136 [61+128x,19+128y]: failure constant=-3136, vgcd=128 [0,0] 15616x+16384x²-138624y-933888y²-2097152y³-3136 [125+128x,19+128y]: failure constant=8768, vgcd=128 [1,0] 32000x+16384x²-138624y-933888y²-2097152y³+8768 [61+128x,83+128y]: unknown -> [60] [0,1] 15616x+16384x²-2645376y-4079616y²-2097152y³-568064 [125+128x,83+128y]: unknown -> [61] [1,1] 32000x+16384x²-2645376y-4079616y²-2097152y³-556160 endexp[31] ---------------- level 7 expanding queue[32]^17,meter=[2,2]: 256x+16384x²-5809536y-6045696y²-2097152y³-1860864 [1+256x,123+256y]: unknown -> [62] [0,0] 512x+65536x²-11619072y-24182784y²-16777216y³-1860864 [129+256x,123+256y]: unknown -> [63] [1,0] 66048x+65536x²-11619072y-24182784y²-16777216y³-1844224 [1+256x,251+256y]: failure constant=-15813248, vgcd=256 [0,1] 512x+65536x²-48384768y-49348608y²-16777216y³-15813248 [129+256x,251+256y]: failure constant=-15796608, vgcd=256 [1,1] 66048x+65536x²-48384768y-49348608y²-16777216y³-15796608 endexp[32] expanding queue[33]^17,meter=[2,2]: 16640x+16384x²-5809536y-6045696y²-2097152y³-1856640 [65+256x,123+256y]: failure constant=-1856640, vgcd=256 [0,0] 33280x+65536x²-11619072y-24182784y²-16777216y³-1856640 [193+256x,123+256y]: failure constant=-1823616, vgcd=256 [1,0] 98816x+65536x²-11619072y-24182784y²-16777216y³-1823616 [65+256x,251+256y]: unknown -> [64] [0,1] 33280x+65536x²-48384768y-49348608y²-16777216y³-15809024 [193+256x,251+256y]: unknown -> [65] [1,1] 98816x+65536x²-48384768y-49348608y²-16777216y³-15776000 endexp[33] expanding queue[34]^18,meter=[2,2]: 8448x+16384x²-1336704y-2899968y²-2097152y³-204288 [33+256x,59+256y]: unknown -> [66] [0,0] 16896x+65536x²-2673408y-11599872y²-16777216y³-204288 [161+256x,59+256y]: unknown -> [67] [1,0] 82432x+65536x²-2673408y-11599872y²-16777216y³-179456 [33+256x,187+256y]: failure constant=-6538112, vgcd=256 [0,1] 16896x+65536x²-26856192y-36765696y²-16777216y³-6538112 [161+256x,187+256y]: failure constant=-6513280, vgcd=256 [1,1] 82432x+65536x²-26856192y-36765696y²-16777216y³-6513280 endexp[34] expanding queue[35]^18,meter=[2,2]: 24832x+16384x²-1336704y-2899968y²-2097152y³-195968 [97+256x,59+256y]: failure constant=-195968, vgcd=256 [0,0] 49664x+65536x²-2673408y-11599872y²-16777216y³-195968 [225+256x,59+256y]: failure constant=-154752, vgcd=256 [1,0] 115200x+65536x²-2673408y-11599872y²-16777216y³-154752 [97+256x,187+256y]: unknown -> [68] [0,1] 49664x+65536x²-26856192y-36765696y²-16777216y³-6529792 [225+256x,187+256y]: unknown -> [69] [1,1] 115200x+65536x²-26856192y-36765696y²-16777216y³-6488576 endexp[35] expanding queue[36]^19,meter=[2,2]: 4352x+16384x²-3179904y-4472832y²-2097152y³-753280 [17+256x,91+256y]: failure constant=-753280, vgcd=256 [0,0] 8704x+65536x²-6359808y-17891328y²-16777216y³-753280 [145+256x,91+256y]: failure constant=-732544, vgcd=256 [1,0] 74240x+65536x²-6359808y-17891328y²-16777216y³-732544 [17+256x,219+256y]: unknown -> [70] [0,1] 8704x+65536x²-36834048y-43057152y²-16777216y³-10503168 [145+256x,219+256y]: unknown -> [71] [1,1] 74240x+65536x²-36834048y-43057152y²-16777216y³-10482432 endexp[36] expanding queue[37]^19,meter=[2,2]: 20736x+16384x²-3179904y-4472832y²-2097152y³-747008 [81+256x,91+256y]: unknown -> [72] [0,0] 41472x+65536x²-6359808y-17891328y²-16777216y³-747008 [209+256x,91+256y]: unknown -> [73] [1,0] 107008x+65536x²-6359808y-17891328y²-16777216y³-709888 [81+256x,219+256y]: failure constant=-10496896, vgcd=256 [0,1] 41472x+65536x²-36834048y-43057152y²-16777216y³-10496896 [209+256x,219+256y]: failure constant=-10459776, vgcd=256 [1,1] 107008x+65536x²-36834048y-43057152y²-16777216y³-10459776 endexp[37] expanding queue[38]^20,meter=[2,2]: 12544x+16384x²-279936y-1327104y²-2097152y³-17280 [49+256x,27+256y]: failure constant=-17280, vgcd=256 [0,0] 25088x+65536x²-559872y-5308416y²-16777216y³-17280 [177+256x,27+256y]: failure constant=11648, vgcd=256 [1,0] 90624x+65536x²-559872y-5308416y²-16777216y³+11648 [49+256x,155+256y]: unknown -> [74] [0,1] 25088x+65536x²-18451200y-30474240y²-16777216y³-3721472 [177+256x,155+256y]: unknown -> [75] [1,1] 90624x+65536x²-18451200y-30474240y²-16777216y³-3692544 endexp[38] expanding queue[39]^20,meter=[2,2]: 28928x+16384x²-279936y-1327104y²-2097152y³-6912 [113+256x,27+256y]: unknown -> [76] [0,0] 57856x+65536x²-559872y-5308416y²-16777216y³-6912 [241+256x,27+256y]: unknown -> [77] [1,0] 123392x+65536x²-559872y-5308416y²-16777216y³+38400 [113+256x,155+256y]: failure constant=-3711104, vgcd=256 [0,1] 57856x+65536x²-18451200y-30474240y²-16777216y³-3711104 [241+256x,155+256y]: failure constant=-3665792, vgcd=256 [1,1] 123392x+65536x²-18451200y-30474240y²-16777216y³-3665792 endexp[39] expanding queue[40]^21,meter=[2,2]: 2304x+16384x²-4396416y-5259264y²-2097152y³-1224960 [9+256x,107+256y]: unknown -> [78] [0,0] 4608x+65536x²-8792832y-21037056y²-16777216y³-1224960 [137+256x,107+256y]: unknown -> [79] [1,0] 70144x+65536x²-8792832y-21037056y²-16777216y³-1206272 [9+256x,235+256y]: failure constant=-12977792, vgcd=256 [0,1] 4608x+65536x²-42412800y-46202880y²-16777216y³-12977792 [137+256x,235+256y]: failure constant=-12959104, vgcd=256 [1,1] 70144x+65536x²-42412800y-46202880y²-16777216y³-12959104 endexp[40] expanding queue[41]^21,meter=[2,2]: 18688x+16384x²-4396416y-5259264y²-2097152y³-1219712 [73+256x,107+256y]: failure constant=-1219712, vgcd=256 [0,0] 37376x+65536x²-8792832y-21037056y²-16777216y³-1219712 [201+256x,107+256y]: failure constant=-1184640, vgcd=256 [1,0] 102912x+65536x²-8792832y-21037056y²-16777216y³-1184640 [73+256x,235+256y]: unknown -> [80] [0,1] 37376x+65536x²-42412800y-46202880y²-16777216y³-12972544 [201+256x,235+256y]: unknown -> [81] [1,1] 102912x+65536x²-42412800y-46202880y²-16777216y³-12937472 endexp[41] expanding queue[42]^22,meter=[2,2]: 10496x+16384x²-710016y-2113536y²-2097152y³-77824 [41+256x,43+256y]: unknown -> [82] [0,0] 20992x+65536x²-1420032y-8454144y²-16777216y³-77824 [169+256x,43+256y]: unknown -> [83] [1,0] 86528x+65536x²-1420032y-8454144y²-16777216y³-50944 [41+256x,171+256y]: failure constant=-4998528, vgcd=256 [0,1] 20992x+65536x²-22457088y-33619968y²-16777216y³-4998528 [169+256x,171+256y]: failure constant=-4971648, vgcd=256 [1,1] 86528x+65536x²-22457088y-33619968y²-16777216y³-4971648 endexp[42] expanding queue[43]^22,meter=[2,2]: 26880x+16384x²-710016y-2113536y²-2097152y³-68480 [105+256x,43+256y]: failure constant=-68480, vgcd=256 [0,0] 53760x+65536x²-1420032y-8454144y²-16777216y³-68480 [233+256x,43+256y]: failure constant=-25216, vgcd=256 [1,0] 119296x+65536x²-1420032y-8454144y²-16777216y³-25216 [105+256x,171+256y]: unknown -> [84] [0,1] 53760x+65536x²-22457088y-33619968y²-16777216y³-4989184 [233+256x,171+256y]: unknown -> [85] [1,1] 119296x+65536x²-22457088y-33619968y²-16777216y³-4945920 endexp[43] expanding queue[44]^23,meter=[2,2]: 6400x+16384x²-2160000y-3686400y²-2097152y³-421248 [25+256x,75+256y]: failure constant=-421248, vgcd=256 [0,0] 12800x+65536x²-4320000y-14745600y²-16777216y³-421248 [153+256x,75+256y]: failure constant=-398464, vgcd=256 [1,0] 78336x+65536x²-4320000y-14745600y²-16777216y³-398464 [25+256x,203+256y]: unknown -> [86] [0,1] 12800x+65536x²-31648512y-39911424y²-16777216y³-8364800 [153+256x,203+256y]: unknown -> [87] [1,1] 78336x+65536x²-31648512y-39911424y²-16777216y³-8342016 endexp[44] expanding queue[45]^23,meter=[2,2]: 22784x+16384x²-2160000y-3686400y²-2097152y³-413952 [89+256x,75+256y]: unknown -> [88] [0,0] 45568x+65536x²-4320000y-14745600y²-16777216y³-413952 [217+256x,75+256y]: unknown -> [89] [1,0] 111104x+65536x²-4320000y-14745600y²-16777216y³-374784 [89+256x,203+256y]: failure constant=-8357504, vgcd=256 [0,1] 45568x+65536x²-31648512y-39911424y²-16777216y³-8357504 [217+256x,203+256y]: failure constant=-8318336, vgcd=256 [1,1] 111104x+65536x²-31648512y-39911424y²-16777216y³-8318336 endexp[45] expanding queue[46]^24,meter=[2,2]: 14592x+16384x²-46464y-540672y²-2097152y³+1920 [57+256x,11+256y]: failure constant=1920, vgcd=256 [0,0] 29184x+65536x²-92928y-2162688y²-16777216y³+1920 [185+256x,11+256y]: failure constant=32896, vgcd=256 [1,0] 94720x+65536x²-92928y-2162688y²-16777216y³+32896 [57+256x,139+256y]: unknown -> [90] [0,1] 29184x+65536x²-14838528y-27328512y²-16777216y³-2682368 [185+256x,139+256y]: unknown -> [91] [1,1] 94720x+65536x²-14838528y-27328512y²-16777216y³-2651392 endexp[46] expanding queue[47]^24,meter=[2,2]: 30976x+16384x²-46464y-540672y²-2097152y³+13312 [121+256x,11+256y]: unknown -> [92] [0,0] 61952x+65536x²-92928y-2162688y²-16777216y³+13312 [249+256x,11+256y]: unknown -> [93] [1,0] 127488x+65536x²-92928y-2162688y²-16777216y³+60672 [121+256x,139+256y]: failure constant=-2670976, vgcd=256 [0,1] 61952x+65536x²-14838528y-27328512y²-16777216y³-2670976 [249+256x,139+256y]: failure constant=-2623616, vgcd=256 [1,1] 127488x+65536x²-14838528y-27328512y²-16777216y³-2623616 endexp[47] expanding queue[48]^25,meter=[2,2]: 9472x+16384x²-1723776y-3293184y²-2097152y³-299392 [37+256x,67+256y]: failure constant=-299392, vgcd=256 [0,0] 18944x+65536x²-3447552y-13172736y²-16777216y³-299392 [165+256x,67+256y]: failure constant=-273536, vgcd=256 [1,0] 84480x+65536x²-3447552y-13172736y²-16777216y³-273536 [37+256x,195+256y]: unknown -> [94] [0,1] 18944x+65536x²-29203200y-38338560y²-16777216y³-7413504 [165+256x,195+256y]: unknown -> [95] [1,1] 84480x+65536x²-29203200y-38338560y²-16777216y³-7387648 endexp[48] expanding queue[49]^25,meter=[2,2]: 25856x+16384x²-1723776y-3293184y²-2097152y³-290560 [101+256x,67+256y]: unknown -> [96] [0,0] 51712x+65536x²-3447552y-13172736y²-16777216y³-290560 [229+256x,67+256y]: unknown -> [97] [1,0] 117248x+65536x²-3447552y-13172736y²-16777216y³-248320 [101+256x,195+256y]: failure constant=-7404672, vgcd=256 [0,1] 51712x+65536x²-29203200y-38338560y²-16777216y³-7404672 [229+256x,195+256y]: failure constant=-7362432, vgcd=256 [1,1] 117248x+65536x²-29203200y-38338560y²-16777216y³-7362432 endexp[49] expanding queue[50]^26,meter=[2,2]: 5376x+16384x²-3763584y-4866048y²-2097152y³-969856 [21+256x,99+256y]: failure constant=-969856, vgcd=256 [0,0] 10752x+65536x²-7527168y-19464192y²-16777216y³-969856 [149+256x,99+256y]: failure constant=-948096, vgcd=256 [1,0] 76288x+65536x²-7527168y-19464192y²-16777216y³-948096 [21+256x,227+256y]: unknown -> [98] [0,1] 10752x+65536x²-39574272y-44630016y²-16777216y³-11696640 [149+256x,227+256y]: unknown -> [99] [1,1] 76288x+65536x²-39574272y-44630016y²-16777216y³-11674880 endexp[50] expanding queue[51]^26,meter=[2,2]: 21760x+16384x²-3763584y-4866048y²-2097152y³-963072 [85+256x,99+256y]: unknown -> [100] [0,0] 43520x+65536x²-7527168y-19464192y²-16777216y³-963072 [213+256x,99+256y]: unknown -> [101] [1,0] 109056x+65536x²-7527168y-19464192y²-16777216y³-924928 [85+256x,227+256y]: failure constant=-11689856, vgcd=256 [0,1] 43520x+65536x²-39574272y-44630016y²-16777216y³-11689856 [213+256x,227+256y]: failure constant=-11651712, vgcd=256 [1,1] 109056x+65536x²-39574272y-44630016y²-16777216y³-11651712 endexp[51] expanding queue[52]^27,meter=[2,2]: 13568x+16384x²-470400y-1720320y²-2097152y³-40064 [53+256x,35+256y]: failure constant=-40064, vgcd=256 [0,0] 27136x+65536x²-940800y-6881280y²-16777216y³-40064 [181+256x,35+256y]: failure constant=-10112, vgcd=256 [1,0] 92672x+65536x²-940800y-6881280y²-16777216y³-10112 [53+256x,163+256y]: unknown -> [102] [0,1] 27136x+65536x²-20404992y-32047104y²-16777216y³-4327936 [181+256x,163+256y]: unknown -> [103] [1,1] 92672x+65536x²-20404992y-32047104y²-16777216y³-4297984 endexp[52] expanding queue[53]^27,meter=[2,2]: 29952x+16384x²-470400y-1720320y²-2097152y³-29184 [117+256x,35+256y]: unknown -> [104] [0,0] 59904x+65536x²-940800y-6881280y²-16777216y³-29184 [245+256x,35+256y]: unknown -> [105] [1,0] 125440x+65536x²-940800y-6881280y²-16777216y³+17152 [117+256x,163+256y]: failure constant=-4317056, vgcd=256 [0,1] 59904x+65536x²-20404992y-32047104y²-16777216y³-4317056 [245+256x,163+256y]: failure constant=-4270720, vgcd=256 [1,1] 125440x+65536x²-20404992y-32047104y²-16777216y³-4270720 endexp[53] expanding queue[54]^28,meter=[2,2]: 3328x+16384x²-998784y-2506752y²-2097152y³-132480 [13+256x,51+256y]: failure constant=-132480, vgcd=256 [0,0] 6656x+65536x²-1997568y-10027008y²-16777216y³-132480 [141+256x,51+256y]: failure constant=-112768, vgcd=256 [1,0] 72192x+65536x²-1997568y-10027008y²-16777216y³-112768 [13+256x,179+256y]: unknown -> [106] [0,1] 6656x+65536x²-24607488y-35192832y²-16777216y³-5735168 [141+256x,179+256y]: unknown -> [107] [1,1] 72192x+65536x²-24607488y-35192832y²-16777216y³-5715456 endexp[54] expanding queue[55]^28,meter=[2,2]: 19712x+16384x²-998784y-2506752y²-2097152y³-126720 [77+256x,51+256y]: unknown -> [108] [0,0] 39424x+65536x²-1997568y-10027008y²-16777216y³-126720 [205+256x,51+256y]: unknown -> [109] [1,0] 104960x+65536x²-1997568y-10027008y²-16777216y³-90624 [77+256x,179+256y]: failure constant=-5729408, vgcd=256 [0,1] 39424x+65536x²-24607488y-35192832y²-16777216y³-5729408 [205+256x,179+256y]: failure constant=-5693312, vgcd=256 [1,1] 104960x+65536x²-24607488y-35192832y²-16777216y³-5693312 endexp[55] expanding queue[56]^29,meter=[2,2]: 11520x+16384x²-5078400y-5652480y²-2097152y³-1518848 [45+256x,115+256y]: unknown -> [110] [0,0] 23040x+65536x²-10156800y-22609920y²-16777216y³-1518848 [173+256x,115+256y]: unknown -> [111] [1,0] 88576x+65536x²-10156800y-22609920y²-16777216y³-1490944 [45+256x,243+256y]: failure constant=-14346880, vgcd=256 [0,1] 23040x+65536x²-45349632y-47775744y²-16777216y³-14346880 [173+256x,243+256y]: failure constant=-14318976, vgcd=256 [1,1] 88576x+65536x²-45349632y-47775744y²-16777216y³-14318976 endexp[56] expanding queue[57]^29,meter=[2,2]: 27904x+16384x²-5078400y-5652480y²-2097152y³-1508992 [109+256x,115+256y]: failure constant=-1508992, vgcd=256 [0,0] 55808x+65536x²-10156800y-22609920y²-16777216y³-1508992 [237+256x,115+256y]: failure constant=-1464704, vgcd=256 [1,0] 121344x+65536x²-10156800y-22609920y²-16777216y³-1464704 [109+256x,243+256y]: unknown -> [112] [0,1] 55808x+65536x²-45349632y-47775744y²-16777216y³-14337024 [237+256x,243+256y]: unknown -> [113] [1,1] 121344x+65536x²-45349632y-47775744y²-16777216y³-14292736 endexp[57] expanding queue[58]^30,meter=[2,2]: 7424x+16384x²-138624y-933888y²-2097152y³-6016 [29+256x,19+256y]: failure constant=-6016, vgcd=256 [0,0] 14848x+65536x²-277248y-3735552y²-16777216y³-6016 [157+256x,19+256y]: failure constant=17792, vgcd=256 [1,0] 80384x+65536x²-277248y-3735552y²-16777216y³+17792 [29+256x,147+256y]: unknown -> [114] [0,1] 14848x+65536x²-16595712y-28901376y²-16777216y³-3175680 [157+256x,147+256y]: unknown -> [115] [1,1] 80384x+65536x²-16595712y-28901376y²-16777216y³-3151872 endexp[58] expanding queue[59]^30,meter=[2,2]: 23808x+16384x²-138624y-933888y²-2097152y³+1792 [93+256x,19+256y]: unknown -> [116] [0,0] 47616x+65536x²-277248y-3735552y²-16777216y³+1792 [221+256x,19+256y]: unknown -> [117] [1,0] 113152x+65536x²-277248y-3735552y²-16777216y³+41984 [93+256x,147+256y]: failure constant=-3167872, vgcd=256 [0,1] 47616x+65536x²-16595712y-28901376y²-16777216y³-3167872 [221+256x,147+256y]: failure constant=-3127680, vgcd=256 [1,1] 113152x+65536x²-16595712y-28901376y²-16777216y³-3127680 endexp[59] expanding queue[60]^31,meter=[2,2]: 15616x+16384x²-2645376y-4079616y²-2097152y³-568064 [61+256x,83+256y]: unknown -> [118] [0,0] 31232x+65536x²-5290752y-16318464y²-16777216y³-568064 [189+256x,83+256y]: unknown -> [119] [1,0] 96768x+65536x²-5290752y-16318464y²-16777216y³-536064 [61+256x,211+256y]: failure constant=-9390208, vgcd=256 [0,1] 31232x+65536x²-34192128y-41484288y²-16777216y³-9390208 [189+256x,211+256y]: failure constant=-9358208, vgcd=256 [1,1] 96768x+65536x²-34192128y-41484288y²-16777216y³-9358208 endexp[60] expanding queue[61]^31,meter=[2,2]: 32000x+16384x²-2645376y-4079616y²-2097152y³-556160 [125+256x,83+256y]: failure constant=-556160, vgcd=256 [0,0] 64000x+65536x²-5290752y-16318464y²-16777216y³-556160 [253+256x,83+256y]: failure constant=-507776, vgcd=256 [1,0] 129536x+65536x²-5290752y-16318464y²-16777216y³-507776 [125+256x,211+256y]: unknown -> [120] [0,1] 64000x+65536x²-34192128y-41484288y²-16777216y³-9378304 [253+256x,211+256y]: unknown -> [121] [1,1] 129536x+65536x²-34192128y-41484288y²-16777216y³-9329920 endexp[61] ---------------- level 8 expanding queue[62]^32,meter=[2,2]: 512x+65536x²-11619072y-24182784y²-16777216y³-1860864 [1+512x,123+512y]: failure constant=-1860864, vgcd=512 [0,0] 1024x+262144x²-23238144y-96731136y²-134217728y³-1860864 [257+512x,123+512y]: failure constant=-1794816, vgcd=512 [1,0] 263168x+262144x²-23238144y-96731136y²-134217728y³-1794816 [1+512x,379+512y]: unknown -> [122] [0,1] 1024x+262144x²-220632576y-298057728y²-134217728y³-54439936 [257+512x,379+512y]: unknown -> [123] [1,1] 263168x+262144x²-220632576y-298057728y²-134217728y³-54373888 endexp[62] expanding queue[63]^32,meter=[2,2]: 66048x+65536x²-11619072y-24182784y²-16777216y³-1844224 [129+512x,123+512y]: unknown -> [124] [0,0] 132096x+262144x²-23238144y-96731136y²-134217728y³-1844224 [385+512x,123+512y]: unknown -> [125] [1,0] 394240x+262144x²-23238144y-96731136y²-134217728y³-1712640 [129+512x,379+512y]: failure constant=-54423296, vgcd=512 [0,1] 132096x+262144x²-220632576y-298057728y²-134217728y³-54423296 [385+512x,379+512y]: failure constant=-54291712, vgcd=512 [1,1] 394240x+262144x²-220632576y-298057728y²-134217728y³-54291712 endexp[63] expanding queue[64]^33,meter=[2,2]: 33280x+65536x²-48384768y-49348608y²-16777216y³-15809024 [65+512x,251+512y]: unknown -> [126] [0,0] 66560x+262144x²-96769536y-197394432y²-134217728y³-15809024 [321+512x,251+512y]: unknown -> [127] [1,0] 328704x+262144x²-96769536y-197394432y²-134217728y³-15710208 [65+512x,507+512y]: failure constant=-130319616, vgcd=512 [0,1] 66560x+262144x²-394827264y-398721024y²-134217728y³-130319616 [321+512x,507+512y]: failure constant=-130220800, vgcd=512 [1,1] 328704x+262144x²-394827264y-398721024y²-134217728y³-130220800 endexp[64] expanding queue[65]^33,meter=[2,2]: 98816x+65536x²-48384768y-49348608y²-16777216y³-15776000 [193+512x,251+512y]: failure constant=-15776000, vgcd=512 [0,0] 197632x+262144x²-96769536y-197394432y²-134217728y³-15776000 [449+512x,251+512y]: failure constant=-15611648, vgcd=512 [1,0] 459776x+262144x²-96769536y-197394432y²-134217728y³-15611648 [193+512x,507+512y]: unknown -> [128] [0,1] 197632x+262144x²-394827264y-398721024y²-134217728y³-130286592 [449+512x,507+512y]: unknown -> [129] [1,1] 459776x+262144x²-394827264y-398721024y²-134217728y³-130122240 endexp[65] expanding queue[66]^34,meter=[2,2]: 16896x+65536x²-2673408y-11599872y²-16777216y³-204288 [33+512x,59+512y]: unknown -> [130] [0,0] 33792x+262144x²-5346816y-46399488y²-134217728y³-204288 [289+512x,59+512y]: unknown -> [131] [1,0] 295936x+262144x²-5346816y-46399488y²-134217728y³-121856 [33+512x,315+512y]: failure constant=-31254784, vgcd=512 [0,1] 33792x+262144x²-152409600y-247726080y²-134217728y³-31254784 [289+512x,315+512y]: failure constant=-31172352, vgcd=512 [1,1] 295936x+262144x²-152409600y-247726080y²-134217728y³-31172352 endexp[66] expanding queue[67]^34,meter=[2,2]: 82432x+65536x²-2673408y-11599872y²-16777216y³-179456 [161+512x,59+512y]: failure constant=-179456, vgcd=512 [0,0] 164864x+262144x²-5346816y-46399488y²-134217728y³-179456 [417+512x,59+512y]: failure constant=-31488, vgcd=512 [1,0] 427008x+262144x²-5346816y-46399488y²-134217728y³-31488 [161+512x,315+512y]: unknown -> [132] [0,1] 164864x+262144x²-152409600y-247726080y²-134217728y³-31229952 [417+512x,315+512y]: unknown -> [133] [1,1] 427008x+262144x²-152409600y-247726080y²-134217728y³-31081984 endexp[67] expanding queue[68]^35,meter=[2,2]: 49664x+65536x²-26856192y-36765696y²-16777216y³-6529792 [97+512x,187+512y]: failure constant=-6529792, vgcd=512 [0,0] 99328x+262144x²-53712384y-147062784y²-134217728y³-6529792 [353+512x,187+512y]: failure constant=-6414592, vgcd=512 [1,0] 361472x+262144x²-53712384y-147062784y²-134217728y³-6414592 [97+512x,443+512y]: unknown -> [134] [0,1] 99328x+262144x²-301438464y-348389376y²-134217728y³-86928896 [353+512x,443+512y]: unknown -> [135] [1,1] 361472x+262144x²-301438464y-348389376y²-134217728y³-86813696 endexp[68] expanding queue[69]^35,meter=[2,2]: 115200x+65536x²-26856192y-36765696y²-16777216y³-6488576 [225+512x,187+512y]: unknown -> [136] [0,0] 230400x+262144x²-53712384y-147062784y²-134217728y³-6488576 [481+512x,187+512y]: unknown -> [137] [1,0] 492544x+262144x²-53712384y-147062784y²-134217728y³-6307840 [225+512x,443+512y]: failure constant=-86887680, vgcd=512 [0,1] 230400x+262144x²-301438464y-348389376y²-134217728y³-86887680 [481+512x,443+512y]: failure constant=-86706944, vgcd=512 [1,1] 492544x+262144x²-301438464y-348389376y²-134217728y³-86706944 endexp[69] expanding queue[70]^36,meter=[2,2]: 8704x+65536x²-36834048y-43057152y²-16777216y³-10503168 [17+512x,219+512y]: unknown -> [138] [0,0] 17408x+262144x²-73668096y-172228608y²-134217728y³-10503168 [273+512x,219+512y]: unknown -> [139] [1,0] 279552x+262144x²-73668096y-172228608y²-134217728y³-10428928 [17+512x,475+512y]: failure constant=-107171584, vgcd=512 [0,1] 17408x+262144x²-346560000y-373555200y²-134217728y³-107171584 [273+512x,475+512y]: failure constant=-107097344, vgcd=512 [1,1] 279552x+262144x²-346560000y-373555200y²-134217728y³-107097344 endexp[70] expanding queue[71]^36,meter=[2,2]: 74240x+65536x²-36834048y-43057152y²-16777216y³-10482432 [145+512x,219+512y]: failure constant=-10482432, vgcd=512 [0,0] 148480x+262144x²-73668096y-172228608y²-134217728y³-10482432 [401+512x,219+512y]: failure constant=-10342656, vgcd=512 [1,0] 410624x+262144x²-73668096y-172228608y²-134217728y³-10342656 [145+512x,475+512y]: unknown -> [140] [0,1] 148480x+262144x²-346560000y-373555200y²-134217728y³-107150848 [401+512x,475+512y]: unknown -> [141] [1,1] 410624x+262144x²-346560000y-373555200y²-134217728y³-107011072 endexp[71] expanding queue[72]^37,meter=[2,2]: 41472x+65536x²-6359808y-17891328y²-16777216y³-747008 [81+512x,91+512y]: unknown -> [142] [0,0] 82944x+262144x²-12719616y-71565312y²-134217728y³-747008 [337+512x,91+512y]: unknown -> [143] [1,0] 345088x+262144x²-12719616y-71565312y²-134217728y³-640000 [81+512x,347+512y]: failure constant=-41775360, vgcd=512 [0,1] 82944x+262144x²-184948224y-272891904y²-134217728y³-41775360 [337+512x,347+512y]: failure constant=-41668352, vgcd=512 [1,1] 345088x+262144x²-184948224y-272891904y²-134217728y³-41668352 endexp[72] expanding queue[73]^37,meter=[2,2]: 107008x+65536x²-6359808y-17891328y²-16777216y³-709888 [209+512x,91+512y]: failure constant=-709888, vgcd=512 [0,0] 214016x+262144x²-12719616y-71565312y²-134217728y³-709888 [465+512x,91+512y]: failure constant=-537344, vgcd=512 [1,0] 476160x+262144x²-12719616y-71565312y²-134217728y³-537344 [209+512x,347+512y]: unknown -> [144] [0,1] 214016x+262144x²-184948224y-272891904y²-134217728y³-41738240 [465+512x,347+512y]: unknown -> [145] [1,1] 476160x+262144x²-184948224y-272891904y²-134217728y³-41565696 endexp[73] expanding queue[74]^38,meter=[2,2]: 25088x+65536x²-18451200y-30474240y²-16777216y³-3721472 [49+512x,155+512y]: failure constant=-3721472, vgcd=512 [0,0] 50176x+262144x²-36902400y-121896960y²-134217728y³-3721472 [305+512x,155+512y]: failure constant=-3630848, vgcd=512 [1,0] 312320x+262144x²-36902400y-121896960y²-134217728y³-3630848 [49+512x,411+512y]: unknown -> [146] [0,1] 50176x+262144x²-259462656y-323223552y²-134217728y³-69424128 [305+512x,411+512y]: unknown -> [147] [1,1] 312320x+262144x²-259462656y-323223552y²-134217728y³-69333504 endexp[74] expanding queue[75]^38,meter=[2,2]: 90624x+65536x²-18451200y-30474240y²-16777216y³-3692544 [177+512x,155+512y]: unknown -> [148] [0,0] 181248x+262144x²-36902400y-121896960y²-134217728y³-3692544 [433+512x,155+512y]: unknown -> [149] [1,0] 443392x+262144x²-36902400y-121896960y²-134217728y³-3536384 [177+512x,411+512y]: failure constant=-69395200, vgcd=512 [0,1] 181248x+262144x²-259462656y-323223552y²-134217728y³-69395200 [433+512x,411+512y]: failure constant=-69239040, vgcd=512 [1,1] 443392x+262144x²-259462656y-323223552y²-134217728y³-69239040 endexp[75] expanding queue[76]^39,meter=[2,2]: 57856x+65536x²-559872y-5308416y²-16777216y³-6912 [113+512x,27+512y]: failure constant=-6912, vgcd=512 [0,0] 115712x+262144x²-1119744y-21233664y²-134217728y³-6912 [369+512x,27+512y]: failure constant=116480, vgcd=512 [1,0] 377856x+262144x²-1119744y-21233664y²-134217728y³+116480 [113+512x,283+512y]: unknown -> [150] [0,1] 115712x+262144x²-123016704y-222560256y²-134217728y³-22652416 [369+512x,283+512y]: unknown -> [151] [1,1] 377856x+262144x²-123016704y-222560256y²-134217728y³-22529024 endexp[76] expanding queue[77]^39,meter=[2,2]: 123392x+65536x²-559872y-5308416y²-16777216y³+38400 [241+512x,27+512y]: unknown -> [152] [0,0] 246784x+262144x²-1119744y-21233664y²-134217728y³+38400 [497+512x,27+512y]: unknown -> [153] [1,0] 508928x+262144x²-1119744y-21233664y²-134217728y³+227328 [241+512x,283+512y]: failure constant=-22607104, vgcd=512 [0,1] 246784x+262144x²-123016704y-222560256y²-134217728y³-22607104 [497+512x,283+512y]: failure constant=-22418176, vgcd=512 [1,1] 508928x+262144x²-123016704y-222560256y²-134217728y³-22418176 endexp[77] expanding queue[78]^40,meter=[2,2]: 4608x+65536x²-8792832y-21037056y²-16777216y³-1224960 [9+512x,107+512y]: failure constant=-1224960, vgcd=512 [0,0] 9216x+262144x²-17585664y-84148224y²-134217728y³-1224960 [265+512x,107+512y]: failure constant=-1154816, vgcd=512 [1,0] 271360x+262144x²-17585664y-84148224y²-134217728y³-1154816 [9+512x,363+512y]: unknown -> [154] [0,1] 9216x+262144x²-202397184y-285474816y²-134217728y³-47832064 [265+512x,363+512y]: unknown -> [155] [1,1] 271360x+262144x²-202397184y-285474816y²-134217728y³-47761920 endexp[78] expanding queue[79]^40,meter=[2,2]: 70144x+65536x²-8792832y-21037056y²-16777216y³-1206272 [137+512x,107+512y]: unknown -> [156] [0,0] 140288x+262144x²-17585664y-84148224y²-134217728y³-1206272 [393+512x,107+512y]: unknown -> [157] [1,0] 402432x+262144x²-17585664y-84148224y²-134217728y³-1070592 [137+512x,363+512y]: failure constant=-47813376, vgcd=512 [0,1] 140288x+262144x²-202397184y-285474816y²-134217728y³-47813376 [393+512x,363+512y]: failure constant=-47677696, vgcd=512 [1,1] 402432x+262144x²-202397184y-285474816y²-134217728y³-47677696 endexp[79] expanding queue[80]^41,meter=[2,2]: 37376x+65536x²-42412800y-46202880y²-16777216y³-12972544 [73+512x,235+512y]: unknown -> [158] [0,0] 74752x+262144x²-84825600y-184811520y²-134217728y³-12972544 [329+512x,235+512y]: unknown -> [159] [1,0] 336896x+262144x²-84825600y-184811520y²-134217728y³-12869632 [73+512x,491+512y]: failure constant=-118365440, vgcd=512 [0,1] 74752x+262144x²-370300416y-386138112y²-134217728y³-118365440 [329+512x,491+512y]: failure constant=-118262528, vgcd=512 [1,1] 336896x+262144x²-370300416y-386138112y²-134217728y³-118262528 endexp[80] expanding queue[81]^41,meter=[2,2]: 102912x+65536x²-42412800y-46202880y²-16777216y³-12937472 [201+512x,235+512y]: failure constant=-12937472, vgcd=512 [0,0] 205824x+262144x²-84825600y-184811520y²-134217728y³-12937472 [457+512x,235+512y]: failure constant=-12769024, vgcd=512 [1,0] 467968x+262144x²-84825600y-184811520y²-134217728y³-12769024 [201+512x,491+512y]: unknown -> [160] [0,1] 205824x+262144x²-370300416y-386138112y²-134217728y³-118330368 [457+512x,491+512y]: unknown -> [161] [1,1] 467968x+262144x²-370300416y-386138112y²-134217728y³-118161920 endexp[81] expanding queue[82]^42,meter=[2,2]: 20992x+65536x²-1420032y-8454144y²-16777216y³-77824 [41+512x,43+512y]: unknown -> [162] [0,0] 41984x+262144x²-2840064y-33816576y²-134217728y³-77824 [297+512x,43+512y]: unknown -> [163] [1,0] 304128x+262144x²-2840064y-33816576y²-134217728y³+8704 [41+512x,299+512y]: failure constant=-26729216, vgcd=512 [0,1] 41984x+262144x²-137319936y-235143168y²-134217728y³-26729216 [297+512x,299+512y]: failure constant=-26642688, vgcd=512 [1,1] 304128x+262144x²-137319936y-235143168y²-134217728y³-26642688 endexp[82] expanding queue[83]^42,meter=[2,2]: 86528x+65536x²-1420032y-8454144y²-16777216y³-50944 [169+512x,43+512y]: failure constant=-50944, vgcd=512 [0,0] 173056x+262144x²-2840064y-33816576y²-134217728y³-50944 [425+512x,43+512y]: failure constant=101120, vgcd=512 [1,0] 435200x+262144x²-2840064y-33816576y²-134217728y³+101120 [169+512x,299+512y]: unknown -> [164] [0,1] 173056x+262144x²-137319936y-235143168y²-134217728y³-26702336 [425+512x,299+512y]: unknown -> [165] [1,1] 435200x+262144x²-137319936y-235143168y²-134217728y³-26550272 endexp[83] expanding queue[84]^43,meter=[2,2]: 53760x+65536x²-22457088y-33619968y²-16777216y³-4989184 [105+512x,171+512y]: failure constant=-4989184, vgcd=512 [0,0] 107520x+262144x²-44914176y-134479872y²-134217728y³-4989184 [361+512x,171+512y]: failure constant=-4869888, vgcd=512 [1,0] 369664x+262144x²-44914176y-134479872y²-134217728y³-4869888 [105+512x,427+512y]: unknown -> [166] [0,1] 107520x+262144x²-280057344y-335806464y²-134217728y³-77843456 [361+512x,427+512y]: unknown -> [167] [1,1] 369664x+262144x²-280057344y-335806464y²-134217728y³-77724160 endexp[84] expanding queue[85]^43,meter=[2,2]: 119296x+65536x²-22457088y-33619968y²-16777216y³-4945920 [233+512x,171+512y]: unknown -> [168] [0,0] 238592x+262144x²-44914176y-134479872y²-134217728y³-4945920 [489+512x,171+512y]: unknown -> [169] [1,0] 500736x+262144x²-44914176y-134479872y²-134217728y³-4761088 [233+512x,427+512y]: failure constant=-77800192, vgcd=512 [0,1] 238592x+262144x²-280057344y-335806464y²-134217728y³-77800192 [489+512x,427+512y]: failure constant=-77615360, vgcd=512 [1,1] 500736x+262144x²-280057344y-335806464y²-134217728y³-77615360 endexp[85] expanding queue[86]^44,meter=[2,2]: 12800x+65536x²-31648512y-39911424y²-16777216y³-8364800 [25+512x,203+512y]: failure constant=-8364800, vgcd=512 [0,0] 25600x+262144x²-63297024y-159645696y²-134217728y³-8364800 [281+512x,203+512y]: failure constant=-8286464, vgcd=512 [1,0] 287744x+262144x²-63297024y-159645696y²-134217728y³-8286464 [25+512x,459+512y]: unknown -> [170] [0,1] 25600x+262144x²-323606016y-360972288y²-134217728y³-96701952 [281+512x,459+512y]: unknown -> [171] [1,1] 287744x+262144x²-323606016y-360972288y²-134217728y³-96623616 endexp[86] expanding queue[87]^44,meter=[2,2]: 78336x+65536x²-31648512y-39911424y²-16777216y³-8342016 [153+512x,203+512y]: unknown -> [172] [0,0] 156672x+262144x²-63297024y-159645696y²-134217728y³-8342016 [409+512x,203+512y]: unknown -> [173] [1,0] 418816x+262144x²-63297024y-159645696y²-134217728y³-8198144 [153+512x,459+512y]: failure constant=-96679168, vgcd=512 [0,1] 156672x+262144x²-323606016y-360972288y²-134217728y³-96679168 [409+512x,459+512y]: failure constant=-96535296, vgcd=512 [1,1] 418816x+262144x²-323606016y-360972288y²-134217728y³-96535296 endexp[87] expanding queue[88]^45,meter=[2,2]: 45568x+65536x²-4320000y-14745600y²-16777216y³-413952 [89+512x,75+512y]: failure constant=-413952, vgcd=512 [0,0] 91136x+262144x²-8640000y-58982400y²-134217728y³-413952 [345+512x,75+512y]: failure constant=-302848, vgcd=512 [1,0] 353280x+262144x²-8640000y-58982400y²-134217728y³-302848 [89+512x,331+512y]: unknown -> [174] [0,1] 91136x+262144x²-168285696y-260308992y²-134217728y³-36256768 [345+512x,331+512y]: unknown -> [175] [1,1] 353280x+262144x²-168285696y-260308992y²-134217728y³-36145664 endexp[88] expanding queue[89]^45,meter=[2,2]: 111104x+65536x²-4320000y-14745600y²-16777216y³-374784 [217+512x,75+512y]: unknown -> [176] [0,0] 222208x+262144x²-8640000y-58982400y²-134217728y³-374784 [473+512x,75+512y]: unknown -> [177] [1,0] 484352x+262144x²-8640000y-58982400y²-134217728y³-198144 [217+512x,331+512y]: failure constant=-36217600, vgcd=512 [0,1] 222208x+262144x²-168285696y-260308992y²-134217728y³-36217600 [473+512x,331+512y]: failure constant=-36040960, vgcd=512 [1,1] 484352x+262144x²-168285696y-260308992y²-134217728y³-36040960 endexp[89] expanding queue[90]^46,meter=[2,2]: 29184x+65536x²-14838528y-27328512y²-16777216y³-2682368 [57+512x,139+512y]: unknown -> [178] [0,0] 58368x+262144x²-29677056y-109314048y²-134217728y³-2682368 [313+512x,139+512y]: unknown -> [179] [1,0] 320512x+262144x²-29677056y-109314048y²-134217728y³-2587648 [57+512x,395+512y]: failure constant=-61626624, vgcd=512 [0,1] 58368x+262144x²-239654400y-310640640y²-134217728y³-61626624 [313+512x,395+512y]: failure constant=-61531904, vgcd=512 [1,1] 320512x+262144x²-239654400y-310640640y²-134217728y³-61531904 endexp[90] expanding queue[91]^46,meter=[2,2]: 94720x+65536x²-14838528y-27328512y²-16777216y³-2651392 [185+512x,139+512y]: failure constant=-2651392, vgcd=512 [0,0] 189440x+262144x²-29677056y-109314048y²-134217728y³-2651392 [441+512x,139+512y]: failure constant=-2491136, vgcd=512 [1,0] 451584x+262144x²-29677056y-109314048y²-134217728y³-2491136 [185+512x,395+512y]: unknown -> [180] [0,1] 189440x+262144x²-239654400y-310640640y²-134217728y³-61595648 [441+512x,395+512y]: unknown -> [181] [1,1] 451584x+262144x²-239654400y-310640640y²-134217728y³-61435392 endexp[91] expanding queue[92]^47,meter=[2,2]: 61952x+65536x²-92928y-2162688y²-16777216y³+13312 [121+512x,11+512y]: unknown -> [182] [0,0] 123904x+262144x²-185856y-8650752y²-134217728y³+13312 [377+512x,11+512y]: unknown -> [183] [1,0] 386048x+262144x²-185856y-8650752y²-134217728y³+140800 [121+512x,267+512y]: failure constant=-19019520, vgcd=512 [0,1] 123904x+262144x²-109499904y-209977344y²-134217728y³-19019520 [377+512x,267+512y]: failure constant=-18892032, vgcd=512 [1,1] 386048x+262144x²-109499904y-209977344y²-134217728y³-18892032 endexp[92] expanding queue[93]^47,meter=[2,2]: 127488x+65536x²-92928y-2162688y²-16777216y³+60672 [249+512x,11+512y]: failure constant=60672, vgcd=512 [0,0] 254976x+262144x²-185856y-8650752y²-134217728y³+60672 [505+512x,11+512y]: failure constant=253696, vgcd=512 [1,0] 517120x+262144x²-185856y-8650752y²-134217728y³+253696 [249+512x,267+512y]: unknown -> [184] [0,1] 254976x+262144x²-109499904y-209977344y²-134217728y³-18972160 [505+512x,267+512y]: unknown -> [185] [1,1] 517120x+262144x²-109499904y-209977344y²-134217728y³-18779136 endexp[93] expanding queue[94]^48,meter=[2,2]: 18944x+65536x²-29203200y-38338560y²-16777216y³-7413504 [37+512x,195+512y]: failure constant=-7413504, vgcd=512 [0,0] 37888x+262144x²-58406400y-153354240y²-134217728y³-7413504 [293+512x,195+512y]: failure constant=-7329024, vgcd=512 [1,0] 300032x+262144x²-58406400y-153354240y²-134217728y³-7329024 [37+512x,451+512y]: unknown -> [186] [0,1] 37888x+262144x²-312423936y-354680832y²-134217728y³-91732480 [293+512x,451+512y]: unknown -> [187] [1,1] 300032x+262144x²-312423936y-354680832y²-134217728y³-91648000 endexp[94] expanding queue[95]^48,meter=[2,2]: 84480x+65536x²-29203200y-38338560y²-16777216y³-7387648 [165+512x,195+512y]: unknown -> [188] [0,0] 168960x+262144x²-58406400y-153354240y²-134217728y³-7387648 [421+512x,195+512y]: unknown -> [189] [1,0] 431104x+262144x²-58406400y-153354240y²-134217728y³-7237632 [165+512x,451+512y]: failure constant=-91706624, vgcd=512 [0,1] 168960x+262144x²-312423936y-354680832y²-134217728y³-91706624 [421+512x,451+512y]: failure constant=-91556608, vgcd=512 [1,1] 431104x+262144x²-312423936y-354680832y²-134217728y³-91556608 endexp[95] expanding queue[96]^49,meter=[2,2]: 51712x+65536x²-3447552y-13172736y²-16777216y³-290560 [101+512x,67+512y]: failure constant=-290560, vgcd=512 [0,0] 103424x+262144x²-6895104y-52690944y²-134217728y³-290560 [357+512x,67+512y]: failure constant=-173312, vgcd=512 [1,0] 365568x+262144x²-6895104y-52690944y²-134217728y³-173312 [101+512x,323+512y]: unknown -> [190] [0,1] 103424x+262144x²-160249344y-254017536y²-134217728y³-33688064 [357+512x,323+512y]: unknown -> [191] [1,1] 365568x+262144x²-160249344y-254017536y²-134217728y³-33570816 endexp[96] expanding queue[97]^49,meter=[2,2]: 117248x+65536x²-3447552y-13172736y²-16777216y³-248320 [229+512x,67+512y]: unknown -> [192] [0,0] 234496x+262144x²-6895104y-52690944y²-134217728y³-248320 [485+512x,67+512y]: unknown -> [193] [1,0] 496640x+262144x²-6895104y-52690944y²-134217728y³-65536 [229+512x,323+512y]: failure constant=-33645824, vgcd=512 [0,1] 234496x+262144x²-160249344y-254017536y²-134217728y³-33645824 [485+512x,323+512y]: failure constant=-33463040, vgcd=512 [1,1] 496640x+262144x²-160249344y-254017536y²-134217728y³-33463040 endexp[97] expanding queue[98]^50,meter=[2,2]: 10752x+65536x²-39574272y-44630016y²-16777216y³-11696640 [21+512x,227+512y]: unknown -> [194] [0,0] 21504x+262144x²-79148544y-178520064y²-134217728y³-11696640 [277+512x,227+512y]: unknown -> [195] [1,0] 283648x+262144x²-79148544y-178520064y²-134217728y³-11620352 [21+512x,483+512y]: failure constant=-112678144, vgcd=512 [0,1] 21504x+262144x²-358331904y-379846656y²-134217728y³-112678144 [277+512x,483+512y]: failure constant=-112601856, vgcd=512 [1,1] 283648x+262144x²-358331904y-379846656y²-134217728y³-112601856 endexp[98] expanding queue[99]^50,meter=[2,2]: 76288x+65536x²-39574272y-44630016y²-16777216y³-11674880 [149+512x,227+512y]: failure constant=-11674880, vgcd=512 [0,0] 152576x+262144x²-79148544y-178520064y²-134217728y³-11674880 [405+512x,227+512y]: failure constant=-11533056, vgcd=512 [1,0] 414720x+262144x²-79148544y-178520064y²-134217728y³-11533056 [149+512x,483+512y]: unknown -> [196] [0,1] 152576x+262144x²-358331904y-379846656y²-134217728y³-112656384 [405+512x,483+512y]: unknown -> [197] [1,1] 414720x+262144x²-358331904y-379846656y²-134217728y³-112514560 endexp[99] expanding queue[100]^51,meter=[2,2]: 43520x+65536x²-7527168y-19464192y²-16777216y³-963072 [85+512x,99+512y]: unknown -> [198] [0,0] 87040x+262144x²-15054336y-77856768y²-134217728y³-963072 [341+512x,99+512y]: unknown -> [199] [1,0] 349184x+262144x²-15054336y-77856768y²-134217728y³-854016 [85+512x,355+512y]: failure constant=-44731648, vgcd=512 [0,1] 87040x+262144x²-193574400y-279183360y²-134217728y³-44731648 [341+512x,355+512y]: failure constant=-44622592, vgcd=512 [1,1] 349184x+262144x²-193574400y-279183360y²-134217728y³-44622592 endexp[100] expanding queue[101]^51,meter=[2,2]: 109056x+65536x²-7527168y-19464192y²-16777216y³-924928 [213+512x,99+512y]: failure constant=-924928, vgcd=512 [0,0] 218112x+262144x²-15054336y-77856768y²-134217728y³-924928 [469+512x,99+512y]: failure constant=-750336, vgcd=512 [1,0] 480256x+262144x²-15054336y-77856768y²-134217728y³-750336 [213+512x,355+512y]: unknown -> [200] [0,1] 218112x+262144x²-193574400y-279183360y²-134217728y³-44693504 [469+512x,355+512y]: unknown -> [201] [1,1] 480256x+262144x²-193574400y-279183360y²-134217728y³-44518912 endexp[101] expanding queue[102]^52,meter=[2,2]: 27136x+65536x²-20404992y-32047104y²-16777216y³-4327936 [53+512x,163+512y]: unknown -> [202] [0,0] 54272x+262144x²-40809984y-128188416y²-134217728y³-4327936 [309+512x,163+512y]: unknown -> [203] [1,0] 316416x+262144x²-40809984y-128188416y²-134217728y³-4235264 [53+512x,419+512y]: failure constant=-73557248, vgcd=512 [0,1] 54272x+262144x²-269661696y-329515008y²-134217728y³-73557248 [309+512x,419+512y]: failure constant=-73464576, vgcd=512 [1,1] 316416x+262144x²-269661696y-329515008y²-134217728y³-73464576 endexp[102] expanding queue[103]^52,meter=[2,2]: 92672x+65536x²-20404992y-32047104y²-16777216y³-4297984 [181+512x,163+512y]: failure constant=-4297984, vgcd=512 [0,0] 185344x+262144x²-40809984y-128188416y²-134217728y³-4297984 [437+512x,163+512y]: failure constant=-4139776, vgcd=512 [1,0] 447488x+262144x²-40809984y-128188416y²-134217728y³-4139776 [181+512x,419+512y]: unknown -> [204] [0,1] 185344x+262144x²-269661696y-329515008y²-134217728y³-73527296 [437+512x,419+512y]: unknown -> [205] [1,1] 447488x+262144x²-269661696y-329515008y²-134217728y³-73369088 endexp[103] expanding queue[104]^53,meter=[2,2]: 59904x+65536x²-940800y-6881280y²-16777216y³-29184 [117+512x,35+512y]: unknown -> [206] [0,0] 119808x+262144x²-1881600y-27525120y²-134217728y³-29184 [373+512x,35+512y]: unknown -> [207] [1,0] 381952x+262144x²-1881600y-27525120y²-134217728y³+96256 [117+512x,291+512y]: failure constant=-24628480, vgcd=512 [0,1] 119808x+262144x²-130070016y-228851712y²-134217728y³-24628480 [373+512x,291+512y]: failure constant=-24503040, vgcd=512 [1,1] 381952x+262144x²-130070016y-228851712y²-134217728y³-24503040 endexp[104] expanding queue[105]^53,meter=[2,2]: 125440x+65536x²-940800y-6881280y²-16777216y³+17152 [245+512x,35+512y]: failure constant=17152, vgcd=512 [0,0] 250880x+262144x²-1881600y-27525120y²-134217728y³+17152 [501+512x,35+512y]: failure constant=208128, vgcd=512 [1,0] 513024x+262144x²-1881600y-27525120y²-134217728y³+208128 [245+512x,291+512y]: unknown -> [208] [0,1] 250880x+262144x²-130070016y-228851712y²-134217728y³-24582144 [501+512x,291+512y]: unknown -> [209] [1,1] 513024x+262144x²-130070016y-228851712y²-134217728y³-24391168 endexp[105] expanding queue[106]^54,meter=[2,2]: 6656x+65536x²-24607488y-35192832y²-16777216y³-5735168 [13+512x,179+512y]: failure constant=-5735168, vgcd=512 [0,0] 13312x+262144x²-49214976y-140771328y²-134217728y³-5735168 [269+512x,179+512y]: failure constant=-5662976, vgcd=512 [1,0] 275456x+262144x²-49214976y-140771328y²-134217728y³-5662976 [13+512x,435+512y]: unknown -> [210] [0,1] 13312x+262144x²-290649600y-342097920y²-134217728y³-82312704 [269+512x,435+512y]: unknown -> [211] [1,1] 275456x+262144x²-290649600y-342097920y²-134217728y³-82240512 endexp[106] expanding queue[107]^54,meter=[2,2]: 72192x+65536x²-24607488y-35192832y²-16777216y³-5715456 [141+512x,179+512y]: unknown -> [212] [0,0] 144384x+262144x²-49214976y-140771328y²-134217728y³-5715456 [397+512x,179+512y]: unknown -> [213] [1,0] 406528x+262144x²-49214976y-140771328y²-134217728y³-5577728 [141+512x,435+512y]: failure constant=-82292992, vgcd=512 [0,1] 144384x+262144x²-290649600y-342097920y²-134217728y³-82292992 [397+512x,435+512y]: failure constant=-82155264, vgcd=512 [1,1] 406528x+262144x²-290649600y-342097920y²-134217728y³-82155264 endexp[107] expanding queue[108]^55,meter=[2,2]: 39424x+65536x²-1997568y-10027008y²-16777216y³-126720 [77+512x,51+512y]: failure constant=-126720, vgcd=512 [0,0] 78848x+262144x²-3995136y-40108032y²-134217728y³-126720 [333+512x,51+512y]: failure constant=-21760, vgcd=512 [1,0] 340992x+262144x²-3995136y-40108032y²-134217728y³-21760 [77+512x,307+512y]: unknown -> [214] [0,1] 78848x+262144x²-144766464y-241434624y²-134217728y³-28928512 [333+512x,307+512y]: unknown -> [215] [1,1] 340992x+262144x²-144766464y-241434624y²-134217728y³-28823552 endexp[108] expanding queue[109]^55,meter=[2,2]: 104960x+65536x²-1997568y-10027008y²-16777216y³-90624 [205+512x,51+512y]: unknown -> [216] [0,0] 209920x+262144x²-3995136y-40108032y²-134217728y³-90624 [461+512x,51+512y]: unknown -> [217] [1,0] 472064x+262144x²-3995136y-40108032y²-134217728y³+79872 [205+512x,307+512y]: failure constant=-28892416, vgcd=512 [0,1] 209920x+262144x²-144766464y-241434624y²-134217728y³-28892416 [461+512x,307+512y]: failure constant=-28721920, vgcd=512 [1,1] 472064x+262144x²-144766464y-241434624y²-134217728y³-28721920 endexp[109] expanding queue[110]^56,meter=[2,2]: 23040x+65536x²-10156800y-22609920y²-16777216y³-1518848 [45+512x,115+512y]: failure constant=-1518848, vgcd=512 [0,0] 46080x+262144x²-20313600y-90439680y²-134217728y³-1518848 [301+512x,115+512y]: failure constant=-1430272, vgcd=512 [1,0] 308224x+262144x²-20313600y-90439680y²-134217728y³-1430272 [45+512x,371+512y]: unknown -> [218] [0,1] 46080x+262144x²-211416576y-291766272y²-134217728y³-51062784 [301+512x,371+512y]: unknown -> [219] [1,1] 308224x+262144x²-211416576y-291766272y²-134217728y³-50974208 endexp[110] expanding queue[111]^56,meter=[2,2]: 88576x+65536x²-10156800y-22609920y²-16777216y³-1490944 [173+512x,115+512y]: unknown -> [220] [0,0] 177152x+262144x²-20313600y-90439680y²-134217728y³-1490944 [429+512x,115+512y]: unknown -> [221] [1,0] 439296x+262144x²-20313600y-90439680y²-134217728y³-1336832 [173+512x,371+512y]: failure constant=-51034880, vgcd=512 [0,1] 177152x+262144x²-211416576y-291766272y²-134217728y³-51034880 [429+512x,371+512y]: failure constant=-50880768, vgcd=512 [1,1] 439296x+262144x²-211416576y-291766272y²-134217728y³-50880768 endexp[111] expanding queue[112]^57,meter=[2,2]: 55808x+65536x²-45349632y-47775744y²-16777216y³-14337024 [109+512x,243+512y]: unknown -> [222] [0,0] 111616x+262144x²-90699264y-191102976y²-134217728y³-14337024 [365+512x,243+512y]: unknown -> [223] [1,0] 373760x+262144x²-90699264y-191102976y²-134217728y³-14215680 [109+512x,499+512y]: failure constant=-124239616, vgcd=512 [0,1] 111616x+262144x²-382465536y-392429568y²-134217728y³-124239616 [365+512x,499+512y]: failure constant=-124118272, vgcd=512 [1,1] 373760x+262144x²-382465536y-392429568y²-134217728y³-124118272 endexp[112] expanding queue[113]^57,meter=[2,2]: 121344x+65536x²-45349632y-47775744y²-16777216y³-14292736 [237+512x,243+512y]: failure constant=-14292736, vgcd=512 [0,0] 242688x+262144x²-90699264y-191102976y²-134217728y³-14292736 [493+512x,243+512y]: failure constant=-14105856, vgcd=512 [1,0] 504832x+262144x²-90699264y-191102976y²-134217728y³-14105856 [237+512x,499+512y]: unknown -> [224] [0,1] 242688x+262144x²-382465536y-392429568y²-134217728y³-124195328 [493+512x,499+512y]: unknown -> [225] [1,1] 504832x+262144x²-382465536y-392429568y²-134217728y³-124008448 endexp[113] expanding queue[114]^58,meter=[2,2]: 14848x+65536x²-16595712y-28901376y²-16777216y³-3175680 [29+512x,147+512y]: failure constant=-3175680, vgcd=512 [0,0] 29696x+262144x²-33191424y-115605504y²-134217728y³-3175680 [285+512x,147+512y]: failure constant=-3095296, vgcd=512 [1,0] 291840x+262144x²-33191424y-115605504y²-134217728y³-3095296 [29+512x,403+512y]: unknown -> [226] [0,1] 29696x+262144x²-249460224y-316932096y²-134217728y³-65449984 [285+512x,403+512y]: unknown -> [227] [1,1] 291840x+262144x²-249460224y-316932096y²-134217728y³-65369600 endexp[114] expanding queue[115]^58,meter=[2,2]: 80384x+65536x²-16595712y-28901376y²-16777216y³-3151872 [157+512x,147+512y]: unknown -> [228] [0,0] 160768x+262144x²-33191424y-115605504y²-134217728y³-3151872 [413+512x,147+512y]: unknown -> [229] [1,0] 422912x+262144x²-33191424y-115605504y²-134217728y³-3005952 [157+512x,403+512y]: failure constant=-65426176, vgcd=512 [0,1] 160768x+262144x²-249460224y-316932096y²-134217728y³-65426176 [413+512x,403+512y]: failure constant=-65280256, vgcd=512 [1,1] 422912x+262144x²-249460224y-316932096y²-134217728y³-65280256 endexp[115] expanding queue[116]^59,meter=[2,2]: 47616x+65536x²-277248y-3735552y²-16777216y³+1792 [93+512x,19+512y]: failure constant=1792, vgcd=512 [0,0] 95232x+262144x²-554496y-14942208y²-134217728y³+1792 [349+512x,19+512y]: failure constant=114944, vgcd=512 [1,0] 357376x+262144x²-554496y-14942208y²-134217728y³+114944 [93+512x,275+512y]: unknown -> [230] [0,1] 95232x+262144x²-116160000y-216268800y²-134217728y³-20788224 [349+512x,275+512y]: unknown -> [231] [1,1] 357376x+262144x²-116160000y-216268800y²-134217728y³-20675072 endexp[116] expanding queue[117]^59,meter=[2,2]: 113152x+65536x²-277248y-3735552y²-16777216y³+41984 [221+512x,19+512y]: unknown -> [232] [0,0] 226304x+262144x²-554496y-14942208y²-134217728y³+41984 [477+512x,19+512y]: unknown -> [233] [1,0] 488448x+262144x²-554496y-14942208y²-134217728y³+220672 [221+512x,275+512y]: failure constant=-20748032, vgcd=512 [0,1] 226304x+262144x²-116160000y-216268800y²-134217728y³-20748032 [477+512x,275+512y]: failure constant=-20569344, vgcd=512 [1,1] 488448x+262144x²-116160000y-216268800y²-134217728y³-20569344 endexp[117] expanding queue[118]^60,meter=[2,2]: 31232x+65536x²-5290752y-16318464y²-16777216y³-568064 [61+512x,83+512y]: failure constant=-568064, vgcd=512 [0,0] 62464x+262144x²-10581504y-65273856y²-134217728y³-568064 [317+512x,83+512y]: failure constant=-471296, vgcd=512 [1,0] 324608x+262144x²-10581504y-65273856y²-134217728y³-471296 [61+512x,339+512y]: unknown -> [234] [0,1] 62464x+262144x²-176518656y-266600448y²-134217728y³-38954496 [317+512x,339+512y]: unknown -> [235] [1,1] 324608x+262144x²-176518656y-266600448y²-134217728y³-38857728 endexp[118] expanding queue[119]^60,meter=[2,2]: 96768x+65536x²-5290752y-16318464y²-16777216y³-536064 [189+512x,83+512y]: unknown -> [236] [0,0] 193536x+262144x²-10581504y-65273856y²-134217728y³-536064 [445+512x,83+512y]: unknown -> [237] [1,0] 455680x+262144x²-10581504y-65273856y²-134217728y³-373760 [189+512x,339+512y]: failure constant=-38922496, vgcd=512 [0,1] 193536x+262144x²-176518656y-266600448y²-134217728y³-38922496 [445+512x,339+512y]: failure constant=-38760192, vgcd=512 [1,1] 455680x+262144x²-176518656y-266600448y²-134217728y³-38760192 endexp[119] expanding queue[120]^61,meter=[2,2]: 64000x+65536x²-34192128y-41484288y²-16777216y³-9378304 [125+512x,211+512y]: unknown -> [238] [0,0] 128000x+262144x²-68384256y-165937152y²-134217728y³-9378304 [381+512x,211+512y]: unknown -> [239] [1,0] 390144x+262144x²-68384256y-165937152y²-134217728y³-9248768 [125+512x,467+512y]: failure constant=-101831936, vgcd=512 [0,1] 128000x+262144x²-334984704y-367263744y²-134217728y³-101831936 [381+512x,467+512y]: failure constant=-101702400, vgcd=512 [1,1] 390144x+262144x²-334984704y-367263744y²-134217728y³-101702400 endexp[120] expanding queue[121]^61,meter=[2,2]: 129536x+65536x²-34192128y-41484288y²-16777216y³-9329920 [253+512x,211+512y]: failure constant=-9329920, vgcd=512 [0,0] 259072x+262144x²-68384256y-165937152y²-134217728y³-9329920 [509+512x,211+512y]: failure constant=-9134848, vgcd=512 [1,0] 521216x+262144x²-68384256y-165937152y²-134217728y³-9134848 [253+512x,467+512y]: unknown -> [240] [0,1] 259072x+262144x²-334984704y-367263744y²-134217728y³-101783552 [509+512x,467+512y]: unknown -> [241] [1,1] 521216x+262144x²-334984704y-367263744y²-134217728y³-101588480 endexp[121] ---------------- level 9 Maximum level 9 [242] mod 2: x²-y³+2
04a56ba2258ace01dda775fc18f3e5f97a930837
449d555969bfd7befe906877abab098c6e63a0e8
/2870/CH14/EX14.3/Ex14_3.sce
505c3449d97eee0d21f07bd6ba067b6993f95df8
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
480
sce
Ex14_3.sce
clc;clear; //Example 14.3 //given data T1=25; T2=15; P2=101.325; //from Table A-2a & A-4 //at T1 Psat1=3.1698; hg1=2546.5; //at T2 Psat2=1.7057; hfg2=2465.4; hf2=62.982; cp=1.005; //calculations w2=0.622*Psat2/(P2-Psat2); w1=(cp*(T2-T1)+w2*hfg2)/(hg1-hf2); disp(w1,'the specific humidity in kg water/kg of dry ai'); RH1=w1*P2/((0.622+w1)*Psat1); disp(RH1,'the relative humidity'); h=cp*T1+w1*hg1; disp(h,'the enthalpy of the air in kJ/kg of dry air')
8ea9f68b65977ac5fc2c6d7e5cc39509a60ffee1
9ce4292954000fd66bcdbd0797a280c306308d08
/mooc/nand2tetris/projects/03/b/RAM512.tst
4ec6fc22e1bad19e0c55af64c4988dba8615b2bd
[ "MIT" ]
permissive
JiniousChoi/encyclopedia-in-code
0c786f2405bfc1d33291715d9574cae625ae45be
77bc551a03a2a3e3808e50016ece14adb5cfbd96
refs/heads/master
2021-06-27T07:50:10.789732
2020-05-29T12:50:46
2020-05-29T12:50:46
137,426,553
2
0
MIT
2020-10-13T08:56:12
2018-06-15T01:29:31
Python
UTF-8
Scilab
false
false
13,174
tst
RAM512.tst
// This file is part of www.nand2tetris.org // and the book "The Elements of Computing Systems" // by Nisan and Schocken, MIT Press. // File name: projects/03/b/RAM512.tst load RAM512.hdl, output-file RAM512.out, compare-to RAM512.cmp, output-list time%S1.4.1 in%D1.6.1 load%B2.1.2 address%D2.3.2 out%D1.6.1; set in 0, set load 0, set address 0, tick, output; tock, output; set load 1, tick, output; tock, output; set in 13099, set load 0, tick, output; tock, output; set load 1, set address 130, tick, output; tock, output; set load 0, set address 0, tick, output; tock, output; set in 4729, set address 472, tick, output; tock, output; set load 1, tick, output; tock, output; set load 0, tick, output; tock, output; set address 130, eval, output; set in 5119, tick, output; tock, output; set load 1, set address 511, tick, output; tock, output; set load 0, tick, output; tock, output; set address 472, eval, output; set address 511, eval, output; set load 0, set address %B010101000, tick, output; tock, output; set address %B010101001, eval, output; set address %B010101010, eval, output; set address %B010101011, eval, output; set address %B010101100, eval, output; set address %B010101101, eval, output; set address %B010101110, eval, output; set address %B010101111, eval, output; set load 1, set in %B0101010101010101, set address %B010101000, tick, output; tock, output; set address %B010101001, tick, output, tock, output; set address %B010101010, tick, output, tock, output; set address %B010101011, tick, output, tock, output; set address %B010101100, tick, output, tock, output; set address %B010101101, tick, output, tock, output; set address %B010101110, tick, output, tock, output; set address %B010101111, tick, output, tock, output; set load 0, set address %B010101000, tick, output; tock, output; set address %B010101001, eval, output; set address %B010101010, eval, output; set address %B010101011, eval, output; set address %B010101100, eval, output; set address %B010101101, eval, output; set address %B010101110, eval, output; set address %B010101111, eval, output; set load 1, set address %B010101000, set in %B1010101010101010, tick, output; tock, output; set load 0, set address %B010101000, tick, output; tock, output; set address %B010101001, eval, output; set address %B010101010, eval, output; set address %B010101011, eval, output; set address %B010101100, eval, output; set address %B010101101, eval, output; set address %B010101110, eval, output; set address %B010101111, eval, output; set load 1, set address %B010101000, set in %B0101010101010101, tick, output, tock, output; set address %B010101001, set in %B1010101010101010, tick, output; tock, output; set load 0, set address %B010101000, tick, output; tock, output; set address %B010101001, eval, output; set address %B010101010, eval, output; set address %B010101011, eval, output; set address %B010101100, eval, output; set address %B010101101, eval, output; set address %B010101110, eval, output; set address %B010101111, eval, output; set load 1, set address %B010101001, set in %B0101010101010101, tick, output, tock, output; set address %B010101010, set in %B1010101010101010, tick, output; tock, output; set load 0, set address %B010101000, tick, output; tock, output; set address %B010101001, eval, output; set address %B010101010, eval, output; set address %B010101011, eval, output; set address %B010101100, eval, output; set address %B010101101, eval, output; set address %B010101110, eval, output; set address %B010101111, eval, output; set load 1, set address %B010101010, set in %B0101010101010101, tick, output, tock, output; set address %B010101011, set in %B1010101010101010, tick, output; tock, output; set load 0, set address %B010101000, tick, output; tock, output; set address %B010101001, eval, output; set address %B010101010, eval, output; set address %B010101011, eval, output; set address %B010101100, eval, output; set address %B010101101, eval, output; set address %B010101110, eval, output; set address %B010101111, eval, output; set load 1, set address %B010101011, set in %B0101010101010101, tick, output, tock, output; set address %B010101100, set in %B1010101010101010, tick, output; tock, output; set load 0, set address %B010101000, tick, output; tock, output; set address %B010101001, eval, output; set address %B010101010, eval, output; set address %B010101011, eval, output; set address %B010101100, eval, output; set address %B010101101, eval, output; set address %B010101110, eval, output; set address %B010101111, eval, output; set load 1, set address %B010101100, set in %B0101010101010101, tick, output, tock, output; set address %B010101101, set in %B1010101010101010, tick, output; tock, output; set load 0, set address %B010101000, tick, output; tock, output; set address %B010101001, eval, output; set address %B010101010, eval, output; set address %B010101011, eval, output; set address %B010101100, eval, output; set address %B010101101, eval, output; set address %B010101110, eval, output; set address %B010101111, eval, output; set load 1, set address %B010101101, set in %B0101010101010101, tick, output, tock, output; set address %B010101110, set in %B1010101010101010, tick, output; tock, output; set load 0, set address %B010101000, tick, output; tock, output; set address %B010101001, eval, output; set address %B010101010, eval, output; set address %B010101011, eval, output; set address %B010101100, eval, output; set address %B010101101, eval, output; set address %B010101110, eval, output; set address %B010101111, eval, output; set load 1, set address %B010101110, set in %B0101010101010101, tick, output, tock, output; set address %B010101111, set in %B1010101010101010, tick, output; tock, output; set load 0, set address %B010101000, tick, output; tock, output; set address %B010101001, eval, output; set address %B010101010, eval, output; set address %B010101011, eval, output; set address %B010101100, eval, output; set address %B010101101, eval, output; set address %B010101110, eval, output; set address %B010101111, eval, output; set load 1, set address %B010101111, set in %B0101010101010101, tick, output, tock, output; set load 0, set address %B010101000, tick, output; tock, output; set address %B010101001, eval, output; set address %B010101010, eval, output; set address %B010101011, eval, output; set address %B010101100, eval, output; set address %B010101101, eval, output; set address %B010101110, eval, output; set address %B010101111, eval, output; set load 0, set address %B000101010, tick, output; tock, output; set address %B001101010, eval, output; set address %B010101010, eval, output; set address %B011101010, eval, output; set address %B100101010, eval, output; set address %B101101010, eval, output; set address %B110101010, eval, output; set address %B111101010, eval, output; set load 1, set in %B0101010101010101, set address %B000101010, tick, output; tock, output; set address %B001101010, tick, output, tock, output; set address %B010101010, tick, output, tock, output; set address %B011101010, tick, output, tock, output; set address %B100101010, tick, output, tock, output; set address %B101101010, tick, output, tock, output; set address %B110101010, tick, output, tock, output; set address %B111101010, tick, output, tock, output; set load 0, set address %B000101010, tick, output; tock, output; set address %B001101010, eval, output; set address %B010101010, eval, output; set address %B011101010, eval, output; set address %B100101010, eval, output; set address %B101101010, eval, output; set address %B110101010, eval, output; set address %B111101010, eval, output; set load 1, set address %B000101010, set in %B1010101010101010, tick, output; tock, output; set load 0, set address %B000101010, tick, output; tock, output; set address %B001101010, eval, output; set address %B010101010, eval, output; set address %B011101010, eval, output; set address %B100101010, eval, output; set address %B101101010, eval, output; set address %B110101010, eval, output; set address %B111101010, eval, output; set load 1, set address %B000101010, set in %B0101010101010101, tick, output, tock, output; set address %B001101010, set in %B1010101010101010, tick, output; tock, output; set load 0, set address %B000101010, tick, output; tock, output; set address %B001101010, eval, output; set address %B010101010, eval, output; set address %B011101010, eval, output; set address %B100101010, eval, output; set address %B101101010, eval, output; set address %B110101010, eval, output; set address %B111101010, eval, output; set load 1, set address %B001101010, set in %B0101010101010101, tick, output, tock, output; set address %B010101010, set in %B1010101010101010, tick, output; tock, output; set load 0, set address %B000101010, tick, output; tock, output; set address %B001101010, eval, output; set address %B010101010, eval, output; set address %B011101010, eval, output; set address %B100101010, eval, output; set address %B101101010, eval, output; set address %B110101010, eval, output; set address %B111101010, eval, output; set load 1, set address %B010101010, set in %B0101010101010101, tick, output, tock, output; set address %B011101010, set in %B1010101010101010, tick, output; tock, output; set load 0, set address %B000101010, tick, output; tock, output; set address %B001101010, eval, output; set address %B010101010, eval, output; set address %B011101010, eval, output; set address %B100101010, eval, output; set address %B101101010, eval, output; set address %B110101010, eval, output; set address %B111101010, eval, output; set load 1, set address %B011101010, set in %B0101010101010101, tick, output, tock, output; set address %B100101010, set in %B1010101010101010, tick, output; tock, output; set load 0, set address %B000101010, tick, output; tock, output; set address %B001101010, eval, output; set address %B010101010, eval, output; set address %B011101010, eval, output; set address %B100101010, eval, output; set address %B101101010, eval, output; set address %B110101010, eval, output; set address %B111101010, eval, output; set load 1, set address %B100101010, set in %B0101010101010101, tick, output, tock, output; set address %B101101010, set in %B1010101010101010, tick, output; tock, output; set load 0, set address %B000101010, tick, output; tock, output; set address %B001101010, eval, output; set address %B010101010, eval, output; set address %B011101010, eval, output; set address %B100101010, eval, output; set address %B101101010, eval, output; set address %B110101010, eval, output; set address %B111101010, eval, output; set load 1, set address %B101101010, set in %B0101010101010101, tick, output, tock, output; set address %B110101010, set in %B1010101010101010, tick, output; tock, output; set load 0, set address %B000101010, tick, output; tock, output; set address %B001101010, eval, output; set address %B010101010, eval, output; set address %B011101010, eval, output; set address %B100101010, eval, output; set address %B101101010, eval, output; set address %B110101010, eval, output; set address %B111101010, eval, output; set load 1, set address %B110101010, set in %B0101010101010101, tick, output, tock, output; set address %B111101010, set in %B1010101010101010, tick, output; tock, output; set load 0, set address %B000101010, tick, output; tock, output; set address %B001101010, eval, output; set address %B010101010, eval, output; set address %B011101010, eval, output; set address %B100101010, eval, output; set address %B101101010, eval, output; set address %B110101010, eval, output; set address %B111101010, eval, output; set load 1, set address %B111101010, set in %B0101010101010101, tick, output, tock, output; set load 0, set address %B000101010, tick, output; tock, output; set address %B001101010, eval, output; set address %B010101010, eval, output; set address %B011101010, eval, output; set address %B100101010, eval, output; set address %B101101010, eval, output; set address %B110101010, eval, output; set address %B111101010, eval, output;
8474c11ffaf11dcc1fee08eb8b22a7d858b63d78
449d555969bfd7befe906877abab098c6e63a0e8
/1694/CH3/EX3.20/EX3_20.sce
fb700dcea585cd22d7e5e77217532647840498c4
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
428
sce
EX3_20.sce
clear; clc; printf("\nEx3.20\n"); //page no.-135 //given a=10^-10;........//width of box in m h=6.625*10^-34;....//planck's constant in J-s m=9.1*10^-31;......//mass of electron in kg n=2;..............//quantum no. e=1.6*10^-19;.....//charge p=n*h/2*a.........//momentum in Kg*m/s printf("\nmomentum is 6.625*10^-24 Kg*m/s\n"); E=(n^2*h^2)/(8*m*a^2*e).....//energy in eV printf("\nenergy is 150.8 eV\n");
5f7ea57b8111be6bfec0e97c3fa34d9aadcbbed1
449d555969bfd7befe906877abab098c6e63a0e8
/278/CH26/EX26.2/ex_26_2.sce
b59aa9ce2db9d3aeb3e4a23998d2042f9030c183
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
387
sce
ex_26_2.sce
//find clc //solution //given W=150000//N d=0.3//m N=1800//rpm p=1.6//N/mm^2 Z=0.02//kg/m/s c=0.25//mm //let l be the length of bearing in mm //A=l*d=300*l//mm^2 //pb=W/A l=W/(300*p)//mm printf("length of bearing is,%f mm\n",l) u=(33/10^8)*(Z*N/p)*(d*1000/c)+0.002 printf("coeeficient of friction is,%f \n",u) V=%pi*d*N/60//m/s Qg=u*W*V printf("heat gen is,%f W\n",Qg)
869d3366ffdb354c6199467d2c0091f70b0156bb
449d555969bfd7befe906877abab098c6e63a0e8
/3035/CH4/EX4.11/Ex4_11.sce
389ae612966d6c0d345fb5165a2e4564ce31f51e
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
758
sce
Ex4_11.sce
// Variable Declaration h = 5 //Height of conductor above ground(m) d = 1.5 //Conductor spacing(m) r = 0.006 //Radius of conductor(m) // Calculation Section C_AB = %pi * 8.854*10**-9/log(d/(r*(1+((d*d)/(4*h*h)))**0.5)) //Capacitance with effect of earth(F/km) C_AB1 = %pi * 8.854*10**-9/log(d/r) //Capacitance ignoring effect of earth(F/km) ch = (C_AB - C_AB1)/C_AB * 100 //Change in capacitance with effect of earth(%) // Result Section printf('Line capacitance with effect of earth , C_AB = %.3e F/km' ,C_AB) printf('Line capacitance ignoring effect of earth , C_AB = %.3e F/km' ,C_AB1) printf('With effect of earth slight increase in capacitance = %.1f percent' ,ch)
29038fef38cffc844fc6193a2f51439629099463
6e257f133dd8984b578f3c9fd3f269eabc0750be
/ScilabFromTheoryToPractice/Computing/testrat.sce
5ec04d3dacefec1d68dc1cc26a903f1d0833b895
[]
no_license
markusmorawitz77/Scilab
902ef1b9f356dd38ea2dbadc892fe50d32b44bd0
7c98963a7d80915f66a3231a2235010e879049aa
refs/heads/master
2021-01-19T23:53:52.068010
2017-04-22T12:39:21
2017-04-22T12:39:21
89,051,705
0
0
null
null
null
null
UTF-8
Scilab
false
false
375
sce
testrat.sce
P=poly(1,'x') // variable 'x' Q=poly(2,'x') // combination of polynomials R=P/Q // fraction (x-1)/(x-2) numer(R) // numerator denom(R) // denominator M=[1 R; P Q] // matrix of rational fractions N=invr(M) // inverse matrix N*M // =identity matrix // computing the characteristic polynomial X=poly(0,'x'); A=[1 2; 3 4] P=det(A-X*eye(2,2))
750b86548b7500d5d2501e73d839ba534c0363c4
afd96675ead32880ce7928ad141c8e12ac66b141
/firstblock/macros/xcos_mean.sci
2be0ba73d710d843052c85af2cb49c8ee19c66ed
[]
no_license
KWMalik/dspblock
a26c722c604e3db33734fb94f42dbcfe8b9b28d6
949c3411a292460c246cd52c0846f01c63e9c79d
refs/heads/master
2020-12-01T01:15:46.197082
2012-05-22T10:01:12
2012-05-22T10:01:12
null
0
0
null
null
null
null
UTF-8
Scilab
false
false
2,164
sci
xcos_mean.sci
function [x,y,typ] = xcos_mean(job,arg1,arg2) x=[];y=[];typ=[]; select job case 'plot' then standard_draw(arg1); case 'getinputs' then [x,y,typ]=standard_inputs(arg1); case 'getoutputs' then [x,y,typ]=standard_outputs(arg1); case 'getorigin' then [x,y]=standard_origin(arg1); case 'set' then x=arg1; graphics = arg1.graphics; exprs = graphics.exprs; model = arg1.model; while %t do [ok, averagealong, exprs] = getvalue('Average matrix along? \n columns: 0 \n rows: 1 \n average all entries: 2',.. ['Average along'],.. list('vec',1),.. exprs); if ~ok break; end if (averagealong ~= 0 | averagealong ~= 1 | averagealong ~= 2) message(['Average along must be 0, 1 or 2']); ok = %f; end if ok [model, graphics, ok] = set_io(model, graphics, in, out, [], []); if averagealong == [] then averagealong = 0;end model.ipar = [averagealong]; model.label = nom; graphics.id = nom; graphics.exprs = exprs; x.graphics = graphics; x.model = model; break; end end case 'define' then averagealong = 0; model=scicos_model(); model.sim = list('my_mean', 5); model.in = [-1]; model.in2 = [-2]; model.intyp = [1]; if averagealong == 0 model.out = [1]; model.out2 = [-2]; end if averagealong == 1 model.out = [-1]; model.out2 = [1]; end if averagealong == 2 model.out = [1]; model.out2 = [1]; end model.outtyp= [1]; model.blocktype='c'; model.dep_ut=[%t %f]; //depends on input, not on time exprs=string([]); gr_i = []; x=standard_define([2 2],model,exprs,gr_i); end endfunction
be4f37cd736dabecddd940f2f90a9125daa029fc
449d555969bfd7befe906877abab098c6e63a0e8
/858/CH8/EX8.10/example_10.sce
2143578865aa1b2c05086b746886e370c8d3f616
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
827
sce
example_10.sce
clc clear printf("example 8.10 page number 370\n\n") //to find the rate of oil flow in l/s density_oil=900; //in kg/m3 viscosity_oil=38.8*10^-3; //in Pa-s density_water = 1000; //in kg/m3 diameter=0.102 //in m manometer_reading=0.9; //m of water delta_H=manometer_reading*(density_water-density_oil)/density_oil; printf("manometer reading as m of oil = %f m",delta_H) maximum_velocity=(2*9.8*delta_H)^0.5; printf("\n\nmaximum_velocity(Vmax) = %f m/s",maximum_velocity) Re=diameter*maximum_velocity*density_oil/viscosity_oil; printf("\n\nif Re<4000 then v=0.5*Vmax Re = %f",Re) if Re<4000 then velocity=maximum_velocity*0.5; end printf("\n\nvelocity = %f m/s",velocity) flow_rate=(3.14/4)*diameter^2*velocity*1000; printf("\n\nflow rate =%f litre/s",flow_rate)
5464e9bd8c0ee6cd8f1a3b5d5270f3ccf99b5d2f
449d555969bfd7befe906877abab098c6e63a0e8
/2873/CH6/EX6.13/Ex6_13.sce
6452e13d3be05487ecc436dce227c1052de96e7f
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,136
sce
Ex6_13.sce
// Display mode mode(0); // Display warning for floating point exception ieee(1); clear; clc; disp("Engineering Thermodynamics by Onkar Singh Chapter 6 Example 13") disp("fron S.F.S.E on steam turbine;") disp("W=h1-h2") disp("initially at 4Mpa,300 degree celcius the steam is super heated so enthalpy from superheated steam or mollier diagram") disp("h1=2886.2 KJ/kg,s1=6.2285 KJ/kg K") h1=2886.2; s1=6.2285; disp("reversible adiabatic expansion process has entropy remaining constant.on mollier diagram the state 2 can be simply located at intersection of constant temperature line for 50 degree celcius and isentropic expansion line.") disp("else from steam tables at 50 degree celcius saturation temperature;") disp("hf=209.33 KJ/kg,sf=0.7038 KJ/kg K") hf=209.33; sf=0.7038; disp("hfg=2382.7 KJ/kg,sfg=7.3725 KJ/kg K") hfg=2382.7; sfg=7.3725; disp("here s1=s2,let dryness fraction at 2 be x2") disp("x2=(s1-sf)/sfg") x2=(s1-sf)/sfg disp("hence enthalpy at state 2") disp("h2=hf+x2*hfg in KJ/kg") h2=hf+x2*hfg disp("steam turbine work(W)in KJ/kg") disp("W=h1-h2") W=h1-h2 disp("so turbine output=W") W
47e63891bc6e24fcdbad6476874a7b695ed38ff4
776c9715b4adba254a4ce6ad7391bae87e8086a2
/mnewton/xrnr1.tst
d366d4b50580f1e0ac4a1321942dd9036d056264
[]
no_license
TYMCOM-X/169279.tape
b0cf2f2cc6a400acb6b0ca2f44ef17f0a4854666
a80150749ad1dc588b6768dfd53c1a21cfc7d783
refs/heads/master
2023-03-23T08:41:21.289217
2021-03-19T11:26:42
2021-03-19T11:26:42
345,965,036
0
0
null
null
null
null
UTF-8
Scilab
false
false
415
tst
xrnr1.tst
IF \MINRQA ELSE MINRQA EQ 0E EI patch(891115,1200,bpc,xmrr,,6) j pa1ptr,, conpatch(pa1ptr,,28) clhi 4,1 je xm0 xm1 lb 1,cfxctb,4, j xcmd00,, xm0 lhl 1,scblks+scbrqa,rscb, clhi 1,MINRQA jge xm1 lis 4,3 j xm1 endpatch(doulbe check before we send RR) :
6c7d8da80044f3d00d0558b98db1f876326669c9
99b4e2e61348ee847a78faf6eee6d345fde36028
/Toolbox Test/gaussdesign/gaussedesign9.sce
5f4357c4a4e0225211263ce4b26692dc997ac1ff
[]
no_license
deecube/fosseetesting
ce66f691121021fa2f3474497397cded9d57658c
e353f1c03b0c0ef43abf44873e5e477b6adb6c7e
refs/heads/master
2021-01-20T11:34:43.535019
2016-09-27T05:12:48
2016-09-27T05:12:48
59,456,386
0
0
null
null
null
null
UTF-8
Scilab
false
false
240
sce
gaussedesign9.sce
bt =- 0.3; span = 4; sps = 'a'; h = gaussdesign(); //output //!--error 10000 //Not enough input arguments //at line 3 of function checkNArgin called by : //at line 16 of function gaussdesign called by : //h = gaussdesign();
f81d891e681b9b4156ddac0d542f16b0b1e02819
449d555969bfd7befe906877abab098c6e63a0e8
/1478/CH3/EX3.7.16/3_7_16.sce
7b1150be2b8b1627740196a719c0aa76d6048b1b
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
310
sce
3_7_16.sce
//lubricants// //example 3.7.16// clc wt_oil=3//weight f oil saponified(gms)// volume=.2//volume of alcoholic KOH consumed to neutralize fatty acids(ml)// normality_KOH=0.025//normality of KOH // A=volume*normality_KOH*56/wt_oil//formula for acid value// printf("\nAcid value of oil is %.4f mgs KOH",A);
67de792fce904d764b4bcb35991c3fdf10b9711f
449d555969bfd7befe906877abab098c6e63a0e8
/3845/CH17/EX17.8/Ex17_8.sce
74bb8e3daf8c5d1a009f977e1b3b5df8b3c3fd8e
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
753
sce
Ex17_8.sce
//Example 17.8 f_s=2500000;//Frequency of ultrasound (Hz) v_w=1540;//Speed of sound in human tissue (m/s) v_obs=20*10^-2;//Speed of blood (m/s) f_obs=f_s*((v_w+v_obs)/v_w);//Frequency received by the blood (Hz) printf('a.Frequency received by the blood = %7.0f Hz',f_obs) v_b=v_obs;//Source velocity=velocity of blood (m/s) f_obs=f_obs*(v_w/(v_w-v_b));//Frequency that returns to source (Hz) printf('\nb.Frequency that returns to source = %7.0f Hz',f_obs) f_B=abs(f_obs-f_s);//Beat frequency (Hz) printf('\nc.Beat frequency produced = %0.2f Hz',f_B) //Answer given in the textbook is wrong for (a) //Answer varies for (c) due to round off error //Openstax - College Physics //Download for free at http://cnx.org/content/col11406/latest
9017073df223dadf2820b2ec595b304a771f9bfd
286a3b61feec58c992ceda8f1ce28b8e4db5caf5
/courbes_surfaces/tp5/scilab/questions.sce
fff68fb5ec918855a072ecf403097c3637f3df57
[]
no_license
confiture/M2
970865ab3a52c5c65a84637f987dc27d6485542d
e95ca27c1eccd36337348ff042b8db144c08f0d5
refs/heads/master
2021-01-22T07:32:37.900029
2017-11-06T13:07:58
2017-11-06T13:07:58
1,020,201
1
0
null
null
null
null
UTF-8
Scilab
false
false
4,747
sce
questions.sce
exec('util.sce') exec('schemas.sce') exec('tp5mat.sce') //////////////////////////////////////////////////////////////////////// function traceChaikin() P=inputpoly() disp("yeye") P1=chaikinIter(P,1) plot(P1(1,:),P1(2,:),'r') P2=chaikinIter(P,2) plot(P2(1,:),P2(2,:),'g') P3=chaikinIter(P,3) plot(P3(1,:),P3(2,:),'b') xs2jpg(0,'q11chaikin.jpg') endfunction //////////////////////////////////////////////////////////////////////// function traceClark(rang) P=inputpoly() P1=catmullClarkIter(P,1) plot(P1(1,:),P1(2,:),'r') P2=catmullClarkIter(P,2) plot(P2(1,:),P2(2,:),'g') P3=catmullClarkIter(P,3) plot(P3(1,:),P3(2,:),'b') xs2jpg(0,'q11clark.jpg') endfunction //////////////////////////////////////////////////////////////////////// function traceFourPts(rang) P=inputpoly() P1=fourPtsIter(P,1) plot(P1(1,:),P1(2,:),'r') P2=fourPtsIter(P,2) plot(P2(1,:),P2(2,:),'g') P3=fourPtsIter(P,3) plot(P3(1,:),P3(2,:),'b') xs2jpg(0,'q11fourPts.jpg') endfunction function traceCorner09025(rang) P=inputpoly() P1=cornerCutIter(P,0.9,0.25,1) plot(P1(1,:),P1(2,:),'r') P2=cornerCutIter(P,0.9,0.25,2) plot(P2(1,:),P2(2,:),'g') P3=cornerCutIter(P,0.9,0.25,3) plot(P3(1,:),P3(2,:),'b') xs2jpg(0,'q21cornerCut0.9-0.25.jpg') endfunction function traceCorner105(rang) P=inputpoly() P1=cornerCutIter(P,1,0.5,1) plot(P1(1,:),P1(2,:),'r') P2=cornerCutIter(P,1,0.5,2) plot(P2(1,:),P2(2,:),'g') P3=cornerCutIter(P,1,0.5,3) plot(P3(1,:),P3(2,:),'b') xs2jpg(0,'q21cornerCut1-0.5jpg') endfunction function traceCorner11025(rang) P=inputpoly() P1=cornerCutIter(P,1.1,0.25,1) plot(P1(1,:),P1(2,:),'r') P2=cornerCutIter(P,1.1,0.25,2) plot(P2(1,:),P2(2,:),'g') P3=cornerCutIter(P,1.1,0.25,3) plot(P3(1,:),P3(2,:),'b') xs2jpg(0,'q21cornerCut1.1-0.25jpg') endfunction function traceCorner025075(rang) P=inputpoly() P3=cornerCutIter(P,0.25,0.75,3) plot(P3(1,:),P3(2,:),'b') xs2jpg(0,'q21cornerCut0.25-0.75jpg') endfunction //////////////////////////////////////////////////////////////////////// function traceToutCorner() P=inputpoly() P3=cornerCutIter(P,0.9,0.25,10) plot(P3(1,:),P3(2,:),'b') xs2jpg(0,'q21cornerCut0.9-0.25.jpg') P1=[] P2=[] P3=[] clf a=gca() set(a,"data_bounds",[0,0;100,100]) for i=1:size(P,2) plot(P(1,i),P(2,i),"go") end plot(P(1,:),P(2,:),"g-") P3=cornerCutIter(P,1,0.5,10) plot(P3(1,:),P3(2,:),'b') xs2jpg(0,'q21cornerCut1-0.5jpg') P1=[] P2=[] P3=[] clf a=gca() set(a,"data_bounds",[0,0;100,100]) for i=1:size(P,2) plot(P(1,i),P(2,i),"go") end plot(P(1,:),P(2,:),"g-") P3=cornerCutIter(P,1.1,0.25,10) plot(P3(1,:),P3(2,:),'b') xs2jpg(0,'q21cornerCut1.1-0.25jpg') P1=[] P2=[] P3=[] clf a=gca() set(a,"data_bounds",[0,0;100,100]) for i=1:size(P,2) plot(P(1,i),P(2,i),"go") end plot(P(1,:),P(2,:),"g-") P3=cornerCutIter(P,0.25,0.75,10) plot(P3(1,:),P3(2,:),'b') xs2jpg(0,'q21cornerCut0.25-0.75jpg') endfunction function traceChou() P=inputpoly() P7=chouFleurIter(P,7) plot(P7(1,:),P7(2,:)) xs2jpg(0,'q21chouFleur7.jpg') clf a=gca() set(a,"data_bounds",[0,0;100,100]) for i=1:size(P,2) plot(P(1,i),P(2,i),"go") end plot(P(1,:),P(2,:),"g-") P8=chouFleurIter(P,8) plot(P8(1,:),P8(2,:)) xs2jpg(0,'q21chouFleur8.jpg') clf a=gca() set(a,"data_bounds",[0,0;100,100]) for i=1:size(P,2) plot(P(1,i),P(2,i),"go") end plot(P(1,:),P(2,:),"g-") P9=chouFleurIter(P,9) plot(P9(1,:),P9(2,:)) xs2jpg(0,'q21chouFleur9.jpg') clf a=gca() set(a,"data_bounds",[0,0;100,100]) for i=1:size(P,2) plot(P(1,i),P(2,i),"go") end plot(P(1,:),P(2,:),"g-") P10=chouFleurIter(P,10) plot(P10(1,:),P10(2,:)) xs2jpg(0,'q21chouFleur10.jpg') endfunction function trace11() P=inputpoly() P1=chaikinIter(P,1) plot(P1(1,:),P1(2,:),'r') P2=chaikinIter(P,2) plot(P2(1,:),P2(2,:),'g') P3=chaikinIter(P,3) plot(P3(1,:),P3(2,:),'b') xs2jpg(0,'q11chaikin.jpg') clf a=gca() set(a,"data_bounds",[0,0;100,100]) P1=catmullClarkIter(P,1) plot(P1(1,:),P1(2,:),'r') P2=catmullClarkIter(P,2) plot(P2(1,:),P2(2,:),'g') P3=catmullClarkIter(P,3) plot(P3(1,:),P3(2,:),'b') for i=1:size(P,2) plot(P(1,i),P(2,i),"go") end plot(P(1,:),P(2,:),"g-") xs2jpg(0,'q11clark.jpg') clf a=gca() set(a,"data_bounds",[0,0;100,100]) P1=fourPtsIter(P,1) plot(P1(1,:),P1(2,:),'r') P2=fourPtsIter(P,2) plot(P2(1,:),P2(2,:),'g') P3=fourPtsIter(P,3) plot(P3(1,:),P3(2,:),'b') for i=1:size(P,2) plot(P(1,i),P(2,i),"go") end plot(P(1,:),P(2,:),"g-") xs2jpg(0,'q11fourPts.jpg') endfunction
e9f708827453165b75aa3af060a30456427e2a50
a557f90da8513f81cafd8f65e37e2c0d66449a2f
/chebyshev.sce
c7f24a9b1d8e25657a236e08fcad5354e9dbc9f7
[]
no_license
Sahil966121/SCI
484cd77d6247e54fe87d36b4f112965c83ab5d96
cf2921861486a4f2e2e83c3ca813a4e7710d3508
refs/heads/main
2023-03-03T17:43:08.236192
2021-02-03T05:19:43
2021-02-03T05:19:43
324,413,192
0
0
null
null
null
null
UTF-8
Scilab
false
false
734
sce
chebyshev.sce
clc; f1=input('Enter the pass band edge(Hz)='); f2=input('Enter the stop band edge(Hz)='); rp=input('Enter the pass band ripple(dB)='); rs=input('Enter the stop band attenuation(dB)='); fs=input('Enter the sampling rate(Hz)='); rp_ratio=10^(rp/20); w1=2*%pi*f1*1/fs; w2=2*%pi*f2*1/fs; o1=2*fs*tan(w1/2); o2=2*fs*tan(w2/2); or=o2/o1; A2=10.^(-rs/10); A=sqrt(A2); epsilon2=(10.^(-rp/10)-1); epsilon=sqrt(epsilon2); g=((A2-1).^0.5./epsilon); n=(acosh(g))/(acosh(or)); n=ceil(n); oc=o1; wc=2*atan(oc/(2*fs)); hs=analpf(n,'cheb1',[1-rp_ratio],oc); hz=iir(n,'lp','cheb1',wc/(2*%pi),[1-rp_ratio 1]); [hzm,fr]=frmag(hz,256); magz=20*log10(hzm)'; figure(); plot2d(fr*(2*%pi),magz);xtitle('Digital IIR filter:lowpass','frequency','magnitude');
927e912b3ffff43c4084c83bd57f234bab47593f
449d555969bfd7befe906877abab098c6e63a0e8
/1631/CH10/EX10.19/Ex10_19.sce
52d806d729556820ba53f3f25cf804eb4226ab31
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
349
sce
Ex10_19.sce
//Caption: code word //Example 10.19 //page no 501 //Determine code word clc; clear; m3=1; m2=0; m1=1; m0=0; //M=Message Matrix //G=Generator Matrix G=[1 0 0 0 1 0 1;0 1 0 0 1 1 1;0 0 1 0 1 1 0;0 0 0 1 0 1 1]; M=[m3 m2 m1 m0;]; X=M*G; for i=1:7; if X(i)>1 X(i)=0 end end disp(X,"The required code word ");
98472a0cca7410a89576d58e7a385a7e99386c2d
fe48ae0c518509ac5c57688957075e939956f2b1
/Energy eigen values of Hydrogen Atom.sce
2325fb98be35a89bc9646eb4e7d968a8c77f719a
[]
no_license
dibakardhar/Scilab-Notes
d8161939a96b5d9f89106440059b6aaa717f5d79
6bc6a6caa5120a4c7a20f15430860e5b51e8014e
refs/heads/main
2023-07-09T18:48:56.525225
2021-08-15T16:32:36
2021-08-15T16:32:36
396,415,364
1
0
null
null
null
null
UTF-8
Scilab
false
false
276
sce
Energy eigen values of Hydrogen Atom.sce
clc h=[5,5,5,5,5]; n=[1,2,3,4,5]; E0=input("Enter the value of ground state in eV : ")' En=E0./(n^2); barh(En,h,0.01,"black"); ylabel("Energy eigen valuee En(eV) - - - - ->"); xtitle('Plot of energy eigen values of Hydrogen atom'); legend("$En=\frac{E0}{n^2}$",[5]);
eb9fdc9bf20273c4bfeb1888ccf0330f24cf679d
8217f7986187902617ad1bf89cb789618a90dd0a
/source/2.5/macros/robust/gcare.sci
1fad72cf89ef0010f4ab69abb5ed070dc58908cc
[ "LicenseRef-scancode-public-domain", "LicenseRef-scancode-warranty-disclaimer" ]
permissive
clg55/Scilab-Workbench
4ebc01d2daea5026ad07fbfc53e16d4b29179502
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
refs/heads/master
2023-05-31T04:06:22.931111
2022-09-13T14:41:51
2022-09-13T14:41:51
258,270,193
0
1
null
null
null
null
UTF-8
Scilab
false
false
295
sci
gcare.sci
function [X,F]=gcare(Sl) //[X,F]=gcare(Sl) //Generalized Control Algebraic Riccati Equation //X = solution , F = gain //! //FD. // Copyright INRIA [A,B,C,D]=Sl(2:5); S=eye()+D'*D;R=eye()+D*D'; Si=inv(S); Ar=A-B*Si*D'*C; H=[Ar,-B*Si*B'; -C'*inv(R)*C,-Ar']; X=ric_desc(H); F=-Si*(D'*C+B'*X)
9e4e4131e4e6a707a677c361e4c30db875d63247
449d555969bfd7befe906877abab098c6e63a0e8
/3557/CH3/EX3.12/Ex3_12.sce
c4ec37ffab1d7d1e7ab20708aa0af724e41e6963
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
164
sce
Ex3_12.sce
//Example 3.12// //As the problem is in the statement in the book mprintf("As the problem is in the statement in the book it cannot be solved using scilab")
e9b798fa6c80b92de742a3089f2c31a75b42918f
e0124ace5e8cdd9581e74c4e29f58b56f7f97611
/3899/CH2/EX2.6/Ex2_6.sci
08eeec87f4dca3341335c7342111683bb656acaf
[]
no_license
psinalkar1988/Scilab-TBC-Uploads-1
159b750ddf97aad1119598b124c8ea6508966e40
ae4c2ff8cbc3acc5033a9904425bc362472e09a3
refs/heads/master
2021-09-25T22:44:08.781062
2018-10-26T06:57:45
2018-10-26T06:57:45
null
0
0
null
null
null
null
UTF-8
Scilab
false
false
192
sci
Ex2_6.sci
clear all A=1; f0=1; T0=1/f0; theta=0; t=0:1:10; function y=f(t); y=(A.*cos((2*%pi.*t)./T0+theta))^2 endfunction a=T0/2; b=-T0/2; x=intg(b,a,f) disp(x,'The signal power is:')
212a62c37156e1223a34b8d03277782302ec0700
ea619b33cae5a486fb22da8bdcfe0bc7d81c3032
/test/testcases/directed/rred3.tst
8967eb29a270c6b173408c82803195224209026b
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
alexvonduar/optimized-routines
714ab0a7b8d7d28fc689b0bae1e7a885fd461a69
f59c54e97e2023a5981679b14637d8ee2abe2d2d
refs/heads/master
2020-03-08T14:07:45.302916
2018-11-27T09:34:42
2018-11-27T09:34:42
128,176,402
0
0
Apache-2.0
2018-11-27T09:34:43
2018-04-05T08:05:10
C
UTF-8
Scilab
false
false
41,586
tst
rred3.tst
; rred3.tst ; ; Copyright (c) 1999-2018, Arm Limited. ; SPDX-License-Identifier: MIT func=rred op1=4f454f91.26ab5b7c result=bccabf68.428292b8.71a res2=00000003 errno=0 func=rred op1=4f569eab.0985179b result=bc561ece.c9c577fd.3e9 res2=00000003 errno=0 func=rred op1=4f5b7b07.c8260da4 result=3cd61dee.99d944a9.b99 res2=00000001 errno=0 func=rred op1=4f64d809.9ba17aa6 result=3cb123f9.b608e0bb.0c7 res2=00000001 errno=0 func=rred op1=4f68654c.7768b490 result=bcb285e6.a2a5383a.e06 res2=00000003 errno=0 func=rred op1=4f71868a.855f3127 result=bcdf60e1.eb2be0c7.29c res2=00000001 errno=0 func=rred op1=4f7f440e.697237f9 result=3cc9b5f6.910d5118.92b res2=00000003 errno=0 func=rred op1=4f808557.ebaaea77 result=3caf8419.92d91276.712 res2=00000001 errno=0 func=rred op1=4f8cb7fe.275f44bf result=bcb549c0.7bdde73a.883 res2=00000003 errno=0 func=rred op1=4f939201.7a980109 result=3ca9fc65.e067b477.218 res2=00000001 errno=0 func=rred op1=4f99ab54.98722e2d result=bcb80d9a.5516963a.300 res2=00000003 errno=0 func=rred op1=4fa51856.420e8c52 result=3c9dd9fc.f709f0f1.047 res2=00000001 errno=0 func=rred op1=4fa824ff.d0fba2e4 result=bcbd954e.0787f439.7fb res2=00000003 errno=0 func=rred op1=4fb0a57e.3ee1734d result=bce19716.baece8b3.584 res2=00000001 errno=0 func=rred op1=4fbfa481.6315d27b result=3cb6637d.b94774b4.c35 res2=00000003 errno=0 func=rred op1=4fc0956b.15462ee2 result=bcad509f.1805f781.fae res2=00000001 errno=0 func=rred op1=4fcb2196.364d750b result=3c512bbb.e07f2de1.317 res2=00000003 errno=0 func=rred op1=4fd2d6e0.abaa5d9a result=3cae635a.d60dea60.0e0 res2=00000001 errno=0 func=rred op1=4fd8e020.9fe94653 result=bcc5fc77.520479a1.7c3 res2=00000003 errno=0 func=rred op1=4fe1b625.e078463e result=bcac3de3.59fe04a3.e7d res2=00000003 errno=0 func=rred op1=4fec4251.017f8c67 result=3cc6ca84.208a6fc8.0a8 res2=00000003 errno=0 func=rred op1=4ff24683.461151ec result=3cb04469.290ee80e.1a1 res2=00000001 errno=0 func=rred op1=4ffa9138.d0b4695d result=bcc52e6a.837e837a.ede res2=00000001 errno=0 func=rred op1=5001fe54.9344cc15 result=bca7f2f4.61de392b.9b7 res2=00000003 errno=0 func=rred op1=500b69c4.e919fae2 result=3cc8669d.bd965c15.272 res2=00000003 errno=0 func=rred op1=50168ff5.64c92090 result=bc9eba2c.e33d4476.056 res2=00000003 errno=0 func=rred op1=501fb337.07d1c986 result=3cb8da47.194e7efe.b2d res2=00000001 errno=0 func=rred op1=50246b3c.556d393e result=3cccb18c.b5b6278d.738 res2=00000003 errno=0 func=rred op1=502d464f.45a95c5d result=bccbca39.fe45e1ba.5c2 res2=00000003 errno=0 func=rred op1=5030ebf8.0b96d86c result=bcb70ba1.aa6df358.841 res2=00000001 errno=0 func=rred op1=50357d98.dd1b2ce7 result=3cc50301.7ce6d66f.f22 res2=00000001 errno=0 func=rred op1=5043bdf6.b82ffc7e result=bccae2e7.46d59be7.44b res2=00000001 errno=0 func=rred op1=504df394.e2e6991d result=3cce8032.2496b333.a24 res2=00000003 errno=0 func=rred op1=505254f7.61e36a75 result=bcd8f744.78a1c79f.e46 res2=00000003 errno=0 func=rred op1=505f5c94.39332b26 result=3cdc948f.5662deec.41f res2=00000001 errno=0 func=rred op1=50698d45.78b193d2 result=3c9b1a80.f8d4304f.d3d res2=00000003 errno=0 func=rred op1=506af644.cefe25db result=bca12cec.66d32c4e.1b8 res2=00000001 errno=0 func=rred op1=507101a0.bf3e8004 result=bcd559f9.9ae0b053.86d res2=00000003 errno=0 func=rred op1=507f46eb.858b838e result=3ce5bed8.255a2f51.3f3 res2=00000001 errno=0 func=rred op1=50827574.6f5ee5d9 result=3cc98706.ceee3458.f22 res2=00000001 errno=0 func=rred op1=5083de73.c5ab77e2 result=bca4cc98.513c4074.4d1 res2=00000001 errno=0 func=rred op1=5096b5dc.9f2e85da result=3cb0b434.d0361015.ad4 res2=00000001 errno=0 func=rred op1=509dcdad.a88133d3 result=bcbf32e4.79da60ae.73a res2=00000003 errno=0 func=rred op1=50a54a28.326cfede result=bc90618e.0418c17a.7f3 res2=00000003 errno=0 func=rred op1=50a82191.0bf00cd6 result=3cd1ba4d.b0779c2d.553 res2=00000001 errno=0 func=rred op1=50b60002.68cdc25c result=3cbd5006.1f65efcc.bab res2=00000001 errno=0 func=rred op1=50bfef3c.4ba37e4d result=bca89255.06252237.bed res2=00000001 errno=0 func=rred op1=50c4ef3b.173c9d1f result=bccaf12d.92c58902.3cc res2=00000001 errno=0 func=rred op1=50c5a515.4d9d609d result=3cb51f3f.1d598f0f.7b2 res2=00000003 errno=0 func=rred op1=50d02514.b369f006 result=3ca9dcf0.369a5ca4.771 res2=00000001 errno=0 func=rred op1=50daca28.cca06f75 result=bc8b98af.465c9942.1d6 res2=00000001 errno=0 func=rred op1=50e2b79e.72eb7772 result=bcb3d4a3.ece454a2.c2e res2=00000001 errno=0 func=rred op1=50e8379f.0d1ee809 result=3cc365b4.28f3c57b.594 res2=00000003 errno=0 func=rred op1=50f16e59.932ab3bc result=3c982131.26d82006.d0b res2=00000003 errno=0 func=rred op1=50fc136d.ac61332b result=bccdbef5.e3567ef4.245 res2=00000003 errno=0 func=rred op1=510212fc.030b1597 result=bcc0d07d.c80950a1.e8c res2=00000001 errno=0 func=rred op1=510a2586.5cc00d9a result=3cb218e4.dd221805.1c8 res2=00000001 errno=0 func=rred op1=5115c9ef.f7f560ab result=3cbe297d.708e2808.84e res2=00000003 errno=0 func=rred op1=511f25bf.316b1c64 result=bcc89489.21819541.435 res2=00000003 errno=0 func=rred op1=512349d3.8d9fd946 result=3ce235ba.dbcc7553.b93 res2=00000001 errno=0 func=rred op1=512ca5a2.c71594ff result=bca9ee91.117df4f0.9b1 res2=00000001 errno=0 func=rred op1=5130809c.95f020f7 result=bc6cd5fe.aa5d4e9c.a57 res2=00000003 errno=0 func=rred op1=5134dc32.fabacde6 result=3cb73a81.31853591.eb8 res2=00000003 errno=0 func=rred op1=5146931f.ae82dafb result=bcbad541.06d0df65.804 res2=00000001 errno=0 func=rred op1=514aeeb6.134d87ea result=3cb56d21.46df60a8.213 res2=00000001 errno=0 func=rred op1=515389de.22397df9 result=bcbca2a0.f176b44f.4a9 res2=00000003 errno=0 func=rred op1=515df7f7.9f96e4ec result=3cb1d261.7193b6d4.8c8 res2=00000001 errno=0 func=rred op1=5162053d.5c14cf78 result=bcc01eb0.63612f11.6fa res2=00000003 errno=0 func=rred op1=516f7c98.65bb936d result=3ca539c3.8df8c65a.c65 res2=00000001 errno=0 func=rred op1=5177fe9a.7dd5da32 result=3c8b3b10.e3287c31.ce6 res2=00000001 errno=0 func=rred op1=5179833b.43fa88b3 result=bcc75430.0df882b8.990 res2=00000003 errno=0 func=rred op1=51837d4b.26d0a654 result=3cc38612.7fc63e97.a96 res2=00000003 errno=0 func=rred op1=518c7fe9.d4db0e10 result=bcb96e9c.8df83f16.6ba res2=00000001 errno=0 func=rred op1=5195bdf2.d2534043 result=3cc6ed74.9c2b4e1d.e33 res2=00000001 errno=0 func=rred op1=519a3f42.29587421 result=bcb29fd8.552e2009.f81 res2=00000003 errno=0 func=rred op1=51a31f47.b421b09d result=bca7a228.38c801fb.08f res2=00000001 errno=0 func=rred op1=51af1e94.f30c9db6 result=3c7cc745.5303d1b6.2be res2=00000001 errno=0 func=rred op1=51b6af44.eebd125f result=bcc88862.63602088.ba4 res2=00000003 errno=0 func=rred op1=51bb8e97.b8713bf4 result=3cbd0785.3858b94d.312 res2=00000001 errno=0 func=rred op1=51c15749.16d3ffbc result=bcb5d5b3.e397c4df.a63 res2=00000003 errno=0 func=rred op1=51cd5696.55beecd5 result=3cc05036.f15c99c1.fb5 res2=00000003 errno=0 func=rred op1=51d672f0.67a29dd8 result=3cc21cab.468cd6dd.5e1 res2=00000001 errno=0 func=rred op1=51d83aef.04f04eb9 result=bcad47c5.1dada0e4.366 res2=00000003 errno=0 func=rred op1=51e3e51c.bf3b4eca result=bc9dc844.e8577012.40e res2=00000003 errno=0 func=rred op1=51eac8c2.ad579dc7 result=3cc94e7c.9b4dcb4a.e90 res2=00000001 errno=0 func=rred op1=51f981d8.d923f640 result=3cb55534.18edf5b1.9bb res2=00000003 errno=0 func=rred op1=51fdd7ab.1ed8f62f result=bcb65633.ae41940d.b0a res2=00000001 errno=0 func=rred op1=520116be.b246fb0f result=bcd08066.dd5c4773.3f4 res2=00000003 errno=0 func=rred op1=5206b37a.cc2fa285 result=3c99c446.9308f6a1.ed0 res2=00000001 errno=0 func=rred op1=52105304.95e6a4f5 result=bca0e621.9ed2f4c1.4a5 res2=00000003 errno=0 func=rred op1=521d13f1.0278a015 result=3cc11bab.b1393881.491 res2=00000001 errno=0 func=rred op1=5223833f.b10b23bd result=3c91bc49.e86c03c1.456 res2=00000001 errno=0 func=rred op1=522d75ce.10a8cb22 result=bccb90bb.ab49ef9a.183 res2=00000001 errno=0 func=rred op1=5231eb22.2378e459 result=bca8ee1e.496fe7a1.f20 res2=00000003 errno=0 func=rred op1=52351b5d.3e9d6321 result=3cbe3359.0d23f792.3e6 res2=00000001 errno=0 func=rred op1=5242b730.ea42040b result=bc8cc751.840f8f82.b26 res2=00000001 errno=0 func=rred op1=52444f4e.77d4436f result=3cc388bf.00acfcb9.708 res2=00000003 errno=0 func=rred op1=52525129.86dd7432 result=bcbc8708.79f1d992.484 res2=00000003 errno=0 func=rred op1=52531d38.4da693e4 result=3cac46bf.6fd423a1.de3 res2=00000001 errno=0 func=rred op1=526c45cd.11154dfd result=bc501242.876d7c1a.84c res2=00000001 errno=0 func=rred op1=526cabd4.7479ddd6 result=3cc5350f.93df1ab9.66a res2=00000003 errno=0 func=rred op1=52777e7e.fdaba904 result=bcad47e3.984afb63.868 res2=00000001 errno=0 func=rred op1=5277e486.611038dd result=3cd1ac37.a5e49645.2ae res2=00000001 errno=0 func=rred op1=5280868d.923f797b result=3cab459b.475d4be0.35e res2=00000003 errno=0 func=rred op1=528e7670.6917d88d result=bcd20ca5.3511272d.ca0 res2=00000001 errno=0 func=rred op1=52919edf.3e40bec3 result=bcc5f5ea.b2383c8a.a4e res2=00000003 errno=0 func=rred op1=5296662d.51aa63bc result=3ca94352.f66f9c5c.e55 res2=00000003 errno=0 func=rred op1=52a112b6.68401c1f result=bcb0a63a.1d132d35.13d res2=00000001 errno=0 func=rred op1=52abb9a4.3b14ab59 result=3cd0cb38.027c997b.b79 res2=00000003 errno=0 func=rred op1=52b0cca1.fd3fcacd result=3cc2f27e.38d3b545.abf res2=00000001 errno=0 func=rred op1=52b6ac41.bcaab50e result=bcb4aaca.beee8c3b.b51 res2=00000001 errno=0 func=rred op1=52c0efac.32bff376 result=3c926220.de044084.c11 res2=00000003 errno=0 func=rred op1=52cc68d7.469576a6 result=bcd5d0ec.ccced044.012 res2=00000001 errno=0 func=rred op1=52d3cdf6.f7b55442 result=bcc25e86.a32e042b.1ce res2=00000001 errno=0 func=rred op1=52d96782.4c1fed31 result=3cab9331.4d0660c7.21a res2=00000001 errno=0 func=rred op1=52e7f85c.e9a53ccb result=3cd26053.c0992257.ef0 res2=00000003 errno=0 func=rred op1=52ead6a7.ae9a9d97 result=bcb25aec.6857c7d1.78b res2=00000001 errno=0 func=rred op1=52f1a73e.e3fd4ba9 result=bca253b7.f2ab4f1e.306 res2=00000003 errno=0 func=rred op1=52fa1f14.fd5d4564 result=3ca27089.c95d31eb.51c res2=00000003 errno=0 func=rred op1=53058760.980e9c6d result=3cc6fe43.505b8cff.958 res2=00000003 errno=0 func=rred op1=530eb6c9.62abee5b result=bca236e6.1bf96c51.0ef res2=00000001 errno=0 func=rred op1=5313974f.be05f40b result=3cbba8ce.ae0bcae0.fab res2=00000001 errno=0 func=rred op1=53182f04.23549d02 result=bcbb6f2b.00a80546.b7d res2=00000003 errno=0 func=rred op1=53229f47.51019fda result=bca1fd42.6e95a6b6.cc1 res2=00000001 errno=0 func=rred op1=5329270c.9058f133 result=3ca2e3d1.2424bd1f.d78 res2=00000003 errno=0 func=rred op1=53365f2e.272f729f result=3cd030e1.7b8a7d14.784 res2=00000001 errno=0 func=rred op1=533beeea.f9826fc7 result=bcbafbe3.a5e07a12.322 res2=00000003 errno=0 func=rred op1=53413b58.1c6ce090 result=3ca3ca5f.d9b3d388.e2f res2=00000003 errno=0 func=rred op1=534a8afb.c4edb07d result=bca03025.037779e4.b53 res2=00000001 errno=0 func=rred op1=5351ed4f.b6b74035 result=bcba1554.f05163a9.26b res2=00000003 errno=0 func=rred op1=5359d904.2aa350d8 result=3cbdaf8f.c68dbd4d.547 res2=00000001 errno=0 func=rred op1=53658a2e.238818b4 result=3cc8bcf7.d020c86b.1bb res2=00000003 errno=0 func=rred op1=536ed9d1.cc08e8a1 result=bcb67b1a.1a150a04.f8e res2=00000003 errno=0 func=rred op1=537362c3.1ffa7ca2 result=3cd643ab.d4ea4df9.ff5 res2=00000003 errno=0 func=rred op1=537cb266.c87b4c8f result=bccb6db2.1081fee7.31a res2=00000003 errno=0 func=rred op1=538027a2.9aa61287 result=3ce28db9.dc189650.54c res2=00000001 errno=0 func=rred op1=538fed87.4dcfb6aa result=bcd401ce.1ede8f93.dc8 res2=00000003 errno=0 func=rred op1=53944599.ae031379 result=bc6bb722.955e057c.c77 res2=00000003 errno=0 func=rred op1=5395594f.2fc9e182 result=3cb2eca6.c508e35c.fcb res2=00000001 errno=0 func=rred op1=53adde8b.c4213631 result=bcb6638b.17b4a40c.95a res2=00000003 errno=0 func=rred op1=53aef241.45e8043a result=3cb13134.9bb30305.304 res2=00000003 errno=0 func=rred op1=53b91212.b91224d5 result=bcb81efd.410a8464.622 res2=00000001 errno=0 func=rred op1=53ba25c8.3ad8f2de result=3ccb8541.12e264df.94e res2=00000001 errno=0 func=rred op1=53c1df5d.287b8acb result=3cab74a0.920e84ab.2eb res2=00000003 errno=0 func=rred op1=53c6abd6.338a9c27 result=bcbb95e1.93b64513.fb1 res2=00000001 errno=0 func=rred op1=53d3127b.6b3f4f22 result=3c9b321e.8ebf03d9.95f res2=00000003 errno=0 func=rred op1=53d578b7.f0c6d7d0 result=bcc141d5.1c86e339.967 res2=00000001 errno=0 func=rred op1=53ec9bb9.20def6b3 result=3cb46596.eb0f42e3.307 res2=00000001 errno=0 func=rred op1=53edced7.63a2bb0a result=bcb4ea9a.f1ae4486.61f res2=00000003 errno=0 func=rred op1=53f73d8b.24ad40bf result=3cd2d3b6.03cb130e.637 res2=00000001 errno=0 func=rred op1=53f870a9.67710516 result=bc9d462e.a93b0a66.5bc res2=00000001 errno=0 func=rred op1=5405c192.69582a1c result=3cb3e092.e470413f.ff0 res2=00000001 errno=0 func=rred op1=540b1fc0.6589e010 result=bcc89360.c6d5a5d3.2d6 res2=00000003 errno=0 func=rred op1=5417191d.e8649799 result=3c94f5ee.3f4af033.448 res2=00000003 errno=0 func=rred op1=5419c834.e67d7293 result=bccfe4ec.7124686c.c45 res2=00000001 errno=0 func=rred op1=5421a8b9.4e0e8d12 result=bca2cb37.8995924c.b98 res2=00000001 errno=0 func=rred op1=542c8982.82baa220 result=3cbe5b8a.0415b959.a14 res2=00000003 errno=0 func=rred op1=543a7d15.f515d39b result=bcbc30d3.4e605b73.164 res2=00000003 errno=0 func=rred op1=543fed7a.8f6bde22 result=3ca720a4.f5004e19.cf8 res2=00000001 errno=0 func=rred op1=5448cb19.eebd359a result=bc9ceb94.3c55acff.470 res2=00000003 errno=0 func=rred op1=544e3b7e.89134021 result=3cd211d9.a0aae670.0a9 res2=00000003 errno=0 func=rred op1=545539e9.9e65e156 result=bcc668aa.112047ec.a26 res2=00000003 errno=0 func=rred op1=545c5c4a.3f1489de result=3cafcb7f.cbd5c5b3.fb9 res2=00000001 errno=0 func=rred op1=54670281.c6918b78 result=bccda38f.2035b32c.742 res2=00000001 errno=0 func=rred op1=546a93b2.16e8dfbc result=3c76ff5c.7c00c5a5.a46 res2=00000003 errno=0 func=rred op1=5479af66.02d30aab result=bcbb7b9e.7495a0a4.ecc res2=00000003 errno=0 func=rred op1=547b77fe.2afeb4cd result=3cc09dba.c9cae907.2ae res2=00000001 errno=0 func=rred op1=54830a79.7d18d2bc result=bccc3399.5875a6d2.19e res2=00000003 errno=0 func=rred op1=5483eec5.912ea7cd result=3c913f85.5d00943c.3b4 res2=00000001 errno=0 func=rred op1=54910e75.585c765e result=3cd0f9b8.3bbaec1d.c17 res2=00000001 errno=0 func=rred op1=549d7402.4fbb112b result=bcc7e3b8.013581c3.0b1 res2=00000001 errno=0 func=rred op1=54a5d113.b7a2ab0d result=3cd3d9a3.cb3b04d2.760 res2=00000001 errno=0 func=rred op1=54af5650.762f146b result=bcc0b3eb.1a7543ff.47a res2=00000003 errno=0 func=rred op1=54b4dfec.a468a96d result=3cd82985.227b29e1.84d res2=00000001 errno=0 func=rred op1=54b9a28b.03aede1c result=bcb02850.d7e9f3c2.540 res2=00000003 errno=0 func=rred op1=54c37632.0791a6fd result=3c9b5c2e.905b478d.418 res2=00000003 errno=0 func=rred op1=54cfcee3.ffcc153b result=bcd1de13.c0efa83b.282 res2=00000001 errno=0 func=rred op1=54d3b27b.cc602765 result=3cd2f548.460648b5.0f6 res2=00000003 errno=0 func=rred op1=54d9ded4.c87d5e84 result=bc83d1cc.7de27fdd.9a1 res2=00000001 errno=0 func=rred op1=54e3580d.252a66c9 result=bcc1656d.9fc81bc0.2da res2=00000003 errno=0 func=rred op1=54e9fcf9.aae49eb8 result=3ccc994b.58396f8b.1b2 res2=00000003 errno=0 func=rred op1=54f3671f.965e06e3 result=bc9dbab2.bcd3bfcc.671 res2=00000003 errno=0 func=rred op1=54f9ede7.39b0fe9e result=3cca1f11.c87d1f8f.67e res2=00000001 errno=0 func=rred op1=55035f96.5dc436d6 result=bcd34118.cb9557bc.f41 res2=00000001 errno=0 func=rred op1=5509e65e.01172e91 result=3cc52a9e.a9047f98.016 res2=00000001 errno=0 func=rred op1=55102780.6101730c result=bcd5bb52.5b51a7b8.a76 res2=00000001 errno=0 func=rred op1=551d1e73.fdd9f25b result=3cb18efd.b4addf5b.023 res2=00000003 errno=0 func=rred op1=5521cb14.97fca4fe result=3c9e985d.d6f27db0.d4a res2=00000003 errno=0 func=rred op1=552842c9.ca1bfc9f result=bca8576a.104bc0e2.c9d res2=00000003 errno=0 func=rred op1=5535d4f4.b03d01c1 result=bcd1e846.a0735802.8cc res2=00000003 errno=0 func=rred op1=553ab09e.e3faf77d result=3cb6f246.6135de44.9f7 res2=00000001 errno=0 func=rred op1=554301ff.24ec226d result=3cd37883.921d0736.0f7 res2=00000003 errno=0 func=rred op1=554979b4.570b7a0e result=bc76523a.f15e29e2.a4f res2=00000003 errno=0 func=rred op1=5555a264.77840f86 result=3cbd333a.27dc9b12.aa5 res2=00000003 errno=0 func=rred op1=555d5104.3692e496 result=bcc163e4.721a12c5.a9c res2=00000001 errno=0 func=rred op1=55678e0c.6747c4ca result=3cba68f2.c9b0d5d6.55b res2=00000001 errno=0 func=rred op1=556b655c.46cf2f52 result=bcc2c908.212ff563.d41 res2=00000003 errno=0 func=rred op1=557883e0.5f299f6c result=3cb4d464.0d594b5d.ac8 res2=00000001 errno=0 func=rred op1=557a6f88.4eed54b0 result=bcc5934f.7f5bbaa0.28b res2=00000003 errno=0 func=rred op1=5588feca.5b1a8cbd result=3ca3568d.29546cd8.b41 res2=00000001 errno=0 func=rred op1=5589f49e.52fc675f result=bccb27de.3bb34518.d1f res2=00000003 errno=0 func=rred op1=5592ddd2.435024e2 result=bc77dd6e.404de84f.86c res2=00000001 errno=0 func=rred op1=559f1fc2.72e4f498 result=3cc41578.9b56dc1b.304 res2=00000003 errno=0 func=rred op1=55a5b0d9.513ce227 result=3cd474ee.545813bc.6e6 res2=00000001 errno=0 func=rred op1=55ac4cbb.64f83753 result=bc91e612.b03a6e3b.a51 res2=00000003 errno=0 func=rred op1=55b484ca.c83efa2d result=bcc88efd.476577aa.199 res2=00000003 errno=0 func=rred op1=55baa5c2.e0096208 result=3cc119ca.d34d1f11.3f7 res2=00000003 errno=0 func=rred op1=55c6c1ca.91acc375 result=3cbc3c3a.1686c40e.9d3 res2=00000003 errno=0 func=rred op1=55c868c3.169b98c0 result=bccd0881.f3741339.02d res2=00000001 errno=0 func=rred op1=55d5a34a.acf5ded1 result=bcd17fee.c1c3c6a6.724 res2=00000001 errno=0 func=rred op1=55d98742.fb527d64 result=3ca4ac4e.cc98aba5.f03 res2=00000003 errno=0 func=rred op1=55e6328a.9f515123 result=bcab0e8d.b40324f9.1d5 res2=00000003 errno=0 func=rred op1=55ecdbfb.5753a9a5 result=3ccb6ff2.399974e4.378 res2=00000001 errno=0 func=rred op1=55f32572.3c7dde0b result=3cbf0276.32e50178.e85 res2=00000001 errno=0 func=rred op1=55fc945b.5e25f07c result=bcb0b866.4db6cf26.254 res2=00000001 errno=0 func=rred op1=5604abfe.6de79797 result=3c8f9f43.f70ee3fe.57e res2=00000003 errno=0 func=rred op1=560e1ae7.8f8faa08 result=bcd6e074.2095712f.940 res2=00000003 errno=0 func=rred op1=5613e8b8.5532bad1 result=3cd07e35.392af7dc.66e res2=00000001 errno=0 func=rred op1=561bd115.457113b6 result=bca1a12a.9fe62c4d.1e8 res2=00000003 errno=0 func=rred op1=56250da1.7a4205fa result=bcc520b0.f5b05a39.6ce res2=00000001 errno=0 func=rred op1=562b6f72.3916a553 result=3cc437ec.a380fd12.739 res2=00000001 errno=0 func=rred op1=56314a44.885010b9 result=3c9bfc32.ae516f62.72b res2=00000003 errno=0 func=rred op1=563f32cf.2b089a94 result=bca5443b.e8a3a0e9.03b res2=00000001 errno=0 func=rred op1=5642fb21.7b1bd428 result=3cc34f28.51519feb.7a4 res2=00000003 errno=0 func=rred op1=564d81f2.383cd725 result=bcc6f239.9a0f1487.5f7 res2=00000001 errno=0 func=rred op1=5657661b.604673ef result=bcbfe659.dcf5715d.859 res2=00000003 errno=0 func=rred op1=565916f8.5312375e result=3cb15a14.b9ff9eed.f0d res2=00000001 errno=0 func=rred op1=5664582f.f44b4254 result=bc8f5139.75200fd8.96a res2=00000003 errno=0 func=rred op1=566dd5c0.b1d92c68 result=3cd2549e.85a89f6c.b59 res2=00000001 errno=0 func=rred op1=5676b794.23aebcd9 result=3cbeca02.455b3be0.cee res2=00000001 errno=0 func=rred op1=567e8447.ee70e37e result=bca77ceb.17d80be2.710 res2=00000001 errno=0 func=rred op1=56896e3b.f15e12e9 result=bcb392c3.e93409e7.5e2 res2=00000003 errno=0 func=rred op1=568bcda0.20c18d6e result=3cccd4ee.ae093ae3.457 res2=00000001 errno=0 func=rred op1=56909d77.de101cc7 result=bcda28ec.e2f0a362.db4 res2=00000003 errno=0 func=rred op1=569d28f4.07993876 result=3cc11679.221d34f2.0cf res2=00000003 errno=0 func=rred op1=56a8c091.fdf23d65 result=3c86ddc6.78d2d05c.1a6 res2=00000003 errno=0 func=rred op1=56add69d.fb050dfa result=bca999c7.d6eb5bc1.901 res2=00000003 errno=0 func=rred op1=56b4015a.fa955792 result=bcc60f0e.b04adedc.af5 res2=00000003 errno=0 func=rred op1=56bd7fc9.014f2338 result=3ccbc680.4e7f92f3.b5f res2=00000001 errno=0 func=rred op1=56c3d5f0.7dba6231 result=bc9c55c9.3503e727.05b res2=00000001 errno=0 func=rred op1=56cdab33.7e2a1899 result=3cbdf338.c613ca25.dbd res2=00000003 errno=0 func=rred op1=56d1609f.bd9e7497 result=bcc0579d.12162ac5.a8c res2=00000003 errno=0 func=rred op1=56d64b41.3dd64fcb result=3c9165c3.bca1b991.2f1 res2=00000001 errno=0 func=rred op1=56e51098.ddc858fe result=bca3a2e7.56b30a5e.6e3 res2=00000003 errno=0 func=rred op1=56e785e9.9de44698 result=3cbb3737.67fb3ec0.662 res2=00000001 errno=0 func=rred op1=56f0ad96.4f29fe80 result=3ce5eb3c.76a9c9cf.db6 res2=00000001 errno=0 func=rred op1=56ff98e5.4cac857d result=bcbd745b.020c8f8d.a54 res2=00000001 errno=0 func=rred op1=570069c6.d65d3e25 result=3c9e5140.4520d187.dff res2=00000003 errno=0 func=rred op1=570af213.45416aa4 result=bca81d2e.8ad5abf8.ec6 res2=00000001 errno=0 func=rred op1=57180156.1184e1d1 result=bcc9aa32.f968755c.a94 res2=00000001 errno=0 func=rred op1=571de2d0.78fdf377 result=3c88d046.e92c963b.ce3 res2=00000003 errno=0 func=rred op1=5724358e.73f10ffb result=bcc215e2.e82040fa.b15 res2=00000003 errno=0 func=rred op1=5727264b.a7ad98ce result=3cb242a8.ffb5fb8b.69b res2=00000001 errno=0 func=rred op1=57324faa.a5272710 result=bc976a16.2c7ec1b6.0a9 res2=00000003 errno=0 func=rred op1=573bfcec.aa340a8c result=3cd3b94a.627de7a6.ca6 res2=00000001 errno=0 func=rred op1=5744bafb.266a5fef result=3cbeaacc.744c46a9.50d res2=00000001 errno=0 func=rred op1=574b777f.f7baba98 result=bcb18f90.a15f1148.87f res2=00000001 errno=0 func=rred op1=5756e395.4e70f0d4 result=bcbd449b.b79e7223.8d4 res2=00000003 errno=0 func=rred op1=57594ee5.cfb429b3 result=3ccbbd89.aebc6e72.8f8 res2=00000001 errno=0 func=rred op1=576005b5.5082422e result=bcc47cd3.66eee97f.494 res2=00000001 errno=0 func=rred op1=576b98db.24590e95 result=3cda46e8.4bf48257.2ed res2=00000001 errno=0 func=rred op1=57712aaf.fad4b49f result=bcd5f374.c9b6d59a.a9f res2=00000001 errno=0 func=rred op1=577f07cb.235065e8 result=3ce814f6.37c8a02e.1dd res2=00000003 errno=0 func=rred op1=57808785.0f5c5168 result=bd0043a7.41699ccb.2c1 res2=00000001 errno=0 func=rred op1=578f899a.e22a7522 result=3cbcc116.86cdb576.a4a res2=00000003 errno=0 func=rred op1=5790e9c8.1b67ad02 result=3c955c01.693bcf02.685 res2=00000003 errno=0 func=rred op1=57920ec2.c5ba1f73 result=bcb21315.d22fcdf5.708 res2=00000003 errno=0 func=rred op1=57a95eac.291b8383 result=3cb00501.0eecdb41.ce3 res2=00000001 errno=0 func=rred op1=57aa83a6.d36df5f4 result=bcbecf2b.4a10a82a.46f res2=00000001 errno=0 func=rred op1=57b491bc.cd185f0a result=3cd261cb.8722118b.c5e res2=00000003 errno=0 func=rred op1=57be2b9b.851ea7fc result=bca2e653.c1a9b24f.bd4 res2=00000001 errno=0 func=rred op1=57c78ab1.d0432a7f result=3ca7d1af.10cdebb5.136 res2=00000001 errno=0 func=rred op1=57cc57a1.2c464ef8 result=bcd1c460.1d3d8a5f.1b2 res2=00000003 errno=0 func=rred op1=57d6a0b4.a3d6fdfd result=bcbc597d.a27e8b77.9be res2=00000003 errno=0 func=rred op1=57df1598.b18ad47e result=3cacbd0a.5ff2251a.699 res2=00000003 errno=0 func=rred op1=57e715b3.3a0d143e result=bc921f3a.46c27f0a.21c res2=00000001 errno=0 func=rred op1=57ef8a97.47c0eabf result=3cd43a0d.c4cfa711.c63 res2=00000001 errno=0 func=rred op1=57f315c0.7e4e341e result=bcc52a3b.0a820231.017 res2=00000001 errno=0 func=rred op1=57fb15a5.f5cbf45e result=3cb8353b.ce418557.e12 res2=00000003 errno=0 func=rred op1=580515b9.dc2da42e result=bcc9b209.9c32a1f3.89e res2=00000003 errno=0 func=rred op1=580915ac.97ec844e result=3cae4b3d.55c08ba5.a08 res2=00000001 errno=0 func=rred op1=581815af.e8fccc46 result=bc87ccdc.df11c9ba.8bf res2=00000001 errno=0 func=rred op1=581a15a9.46dc3c56 result=3ccfc80b.23b1a841.494 res2=00000003 errno=0 func=rred op1=582795b1.9184f042 result=bcc39c08.14b39ba5.ca8 res2=00000001 errno=0 func=rred op1=582895ae.4074a84a result=3cbb51a1.b9de526e.4f0 res2=00000003 errno=0 func=rred op1=5837d5b0.bd40de44 result=bcc695a3.b095d4dd.1c0 res2=00000003 errno=0 func=rred op1=583855af.14b8ba48 result=3cb55e6a.8219dfff.ac0 res2=00000001 errno=0 func=rred op1=5847f5b0.531ed545 result=bccc88da.e85a474b.bf0 res2=00000003 errno=0 func=rred op1=584835af.7edac347 result=3ca2eff8.2521f644.cc2 res2=00000001 errno=0 func=rred op1=58522043.b9ac94b5 result=bc837392.e7bf4dd6.ff5 res2=00000001 errno=0 func=rred op1=585e4b1b.4408f1d9 result=3cc42731.539deb22.3c1 res2=00000003 errno=0 func=rred op1=58652af9.9c43abfe result=3cb08185.c82a0c89.ec3 res2=00000003 errno=0 func=rred op1=586b2065.cb93e38f result=bcd27542.3e8b51ba.a0f res2=00000001 errno=0 func=rred op1=5879ab0a.a537536b result=bcc1fa8c.57f4ad30.75c res2=00000001 errno=0 func=rred op1=587cb5c0.87ce6ab4 result=3c9b1ef1.51299679.b23 res2=00000003 errno=0 func=rred op1=5885e5a7.2f71f410 result=bcc6d771.11e480a6.35a res2=00000001 errno=0 func=rred op1=5888f05d.12090b59 result=3cc3e563.f24f3f59.227 res2=00000001 errno=0 func=rred op1=58958850.65dad007 result=3cb45734.fcdf30db.45a res2=00000001 errno=0 func=rred op1=58994db3.dba02f62 result=bcc00fb4.bd9a1b07.c91 res2=00000003 errno=0 func=rred op1=58a00ee6.99fe5303 result=3cd59753.0761d8c0.bda res2=00000001 errno=0 func=rred op1=58ab01ba.31b74d0b result=bc9401e0.a82a7e57.7fc res2=00000003 errno=0 func=rred op1=58b11795.29d573dc result=3ca11e00.fd14574d.f24 res2=00000001 errno=0 func=rred op1=58bdbe6f.17a58b8d result=bccbd7e9.3bef203c.159 res2=00000003 errno=0 func=rred op1=58c275ef.9ccc931d result=bcbc90e1.26b4a9fe.78f res2=00000003 errno=0 func=rred op1=58c9a35f.bec02dca result=3cb9ad01.7b9e82f4.eb7 res2=00000003 errno=0 func=rred op1=58d55d7a.744ad0d3 result=3cc56581.3c596d21.6ed res2=00000001 errno=0 func=rred op1=58df479f.7c2caa02 result=bcbf74c0.d1cad108.067 res2=00000001 errno=0 func=rred op1=58e3e9b5.088bb1f8 result=bcacad7f.a96cf374.284 res2=00000003 errno=0 func=rred op1=58e82f9a.53010eef result=3c863a09.42eeec9e.f14 res2=00000001 errno=0 func=rred op1=58f280a5.193092ea result=3ccb10a2.0fcd71be.da8 res2=00000003 errno=0 func=rred op1=58fdde8f.8cd18af4 result=bcc5821f.bf11b697.1e3 res2=00000001 errno=0 func=rred op1=5903352d.10de2271 result=3cb973c4.762df009.8cc res2=00000001 errno=0 func=rred op1=590d2a07.9523fb6d result=bc89cdd9.99f81b54.dbe res2=00000003 errno=0 func=rred op1=591aacd0.f412852e result=3c9f8d25.b8e1cb93.74a res2=00000003 errno=0 func=rred op1=591fa73e.363571ac result=bcb4ca36.3b34808f.4b1 res2=00000001 errno=0 func=rred op1=592250d5.bc2c2f15 result=bcc8bbda.f250ba01.b9b res2=00000003 errno=0 func=rred op1=592e0e5e.e9d5eec9 result=3ce14bfb.5e0ba4cf.e71 res2=00000001 errno=0 func=rred op1=5932c301.668528c3 result=3cca2bad.fa0b2611.5fe res2=00000003 errno=0 func=rred op1=59354038.07969f02 result=bc940e8d.7b0e6b16.431 res2=00000003 errno=0 func=rred op1=5947f684.7dd49218 result=3cba8982.5a1e30cd.e3e res2=00000003 errno=0 func=rred op1=594fe054.0b61ee83 result=bcae15d4.3895a0a1.64a res2=00000001 errno=0 func=rred op1=5953e511.cc77a577 result=bccc4fab.4959e8b7.a44 res2=00000003 errno=0 func=rred op1=59569b5e.42b5988d result=3cb0823b.9c96fb42.c25 res2=00000001 errno=0 func=rred op1=59609dbd.23407407 result=3c99ebd3.7c3f16de.833 res2=00000003 errno=0 func=rred op1=596b3dd9.270bc388 result=bcab2731.37fd4abd.449 res2=00000003 errno=0 func=rred op1=59739c8d.b2fb064a result=3cc3bfb6.0c1ede1e.92c res2=00000001 errno=0 func=rred op1=597e3ca9.b6c655cb result=bc63b5db.bbe33dec.159 res2=00000001 errno=0 func=rred op1=59846e62.dd48d2a6 result=bcc45d64.e9fdf80d.f37 res2=00000001 errno=0 func=rred op1=59876d33.6d0364e9 result=3ca8b075.c080e2ff.c1d res2=00000003 errno=0 func=rred op1=599106a7.b8675a35 result=bcd0f87e.c2fe4eb6.4ad res2=00000003 errno=0 func=rred op1=599ad4ee.91e4dd5a result=3ca639ba.49047b42.3f2 res2=00000001 errno=0 func=rred op1=59a0d232.6dd3e71e result=bcb00a54.137b0d1c.24f res2=00000003 errno=0 func=rred op1=59ae0834.6c32e2b4 result=3cdcb30a.c55fa646.cb1 res2=00000001 errno=0 func=rred op1=59b5d390.7fdc623c result=3c98bd98.d625b898.68c res2=00000001 errno=0 func=rred op1=59b93b4b.a4bddaad result=bcc80f7e.1d3893aa.377 res2=00000001 errno=0 func=rred op1=59c352e1.76d824ad result=bcb9e541.f16cac12.2fc res2=00000003 errno=0 func=rred op1=59c8543f.88e09fcb result=3cc9516d.63c93255.4c4 res2=00000001 errno=0 func=rred op1=59d05eac.5fe549ad result=3cb28e32.a09c4a72.4e9 res2=00000003 errno=0 func=rred op1=59d8c7c5.96cf3d3c result=bcc6cd8e.d6a7f4ff.22a res2=00000003 errno=0 func=rred op1=59e45975.f462f4bc result=3cddf4fa.0bf044f1.dfe res2=00000001 errno=0 func=rred op1=59ecc28f.2b4ce84b result=bca0fd70.d82eaa33.503 res2=00000001 errno=0 func=rred op1=59f11bb9.a5a2006d result=3c8f009f.f7dc3994.626 res2=00000003 errno=0 func=rred op1=59fd7f9c.71099f0b result=bcd5d589.d6e91332.7f9 res2=00000001 errno=0 func=rred op1=5a06ef24.6877745c result=bcaa3ab9.b2664601.87c res2=00000001 errno=0 func=rred op1=5a0c6408.886e8ceb result=3cc22eea.698c2718.06d res2=00000001 errno=0 func=rred op1=5a114afc.f7112e1d result=bccb6c33.43c3c2e6.3e7 res2=00000003 errno=0 func=rred op1=5a1c934b.d9ddba9b result=3c831799.15d7ce4b.6a7 res2=00000001 errno=0 func=rred op1=5a21335b.4e599745 result=bcc3ac0b.45ccb481.25d res2=00000003 errno=0 func=rred op1=5a26d782.bfbfdd84 result=3cb1e343.1ea91693.9e8 res2=00000001 errno=0 func=rred op1=5a31278a.79fdcbd9 result=bca0aeed.277a5edb.d29 res2=00000003 errno=0 func=rred op1=5a3c877b.0581ef2f result=3cd3f920.c398626f.18d res2=00000001 errno=0 func=rred op1=5a46dd6b.29edc33a result=3c73455f.72eb7b7c.bf7 res2=00000003 errno=0 func=rred op1=5a4c9934.440ba051 result=bcc9a08e.b6ceea25.a1d res2=00000003 errno=0 func=rred op1=5a512496.44e6d8fe result=3cc27d6e.1a40726f.848 res2=00000001 errno=0 func=rred op1=5a5c9640.0ef4ad76 result=bcc014c2.2be302ff.ec9 res2=00000003 errno=0 func=rred op1=5a640100.b76a4e1c result=3cc3b1c4.116f2a27.507 res2=00000003 errno=0 func=rred op1=5a69b9d5.9c713858 result=bcbdc0d8.69689690.413 res2=00000001 errno=0 func=rred op1=5a756f35.f0ac08ab result=3cc61a6f.ffcc9996.e86 res2=00000003 errno=0 func=rred op1=5a784ba0.632f7dc9 result=bcb8ef80.8cadb7b1.115 res2=00000001 errno=0 func=rred op1=5a806ef5.c2d17524 result=3cc8831b.ee2a0906.805 res2=00000003 errno=0 func=rred op1=5a8d4be0.910a1150 result=bca4f6f1.ecfa3627.038 res2=00000001 errno=0 func=rred op1=5a951465.afa156be result=bcd17f4a.7253920d.011 res2=00000003 errno=0 func=rred op1=5a9a14a5.dd7bea45 result=3ca193cc.f8dcc0d2.7b5 res2=00000001 errno=0 func=rred op1=5aa2c1ad.b93965f1 result=3cbc0f45.ef59dbe5.fd1 res2=00000001 errno=0 func=rred op1=5aa5f8e8.6cc78cfc result=bcbf726a.e377513a.855 res2=00000003 errno=0 func=rred op1=5ab24f6c.5aa64ad2 result=bcca34ae.6838c3b0.c47 res2=00000001 errno=0 func=rred op1=5abdbe21.ef9d2c6f result=3cb8ac20.fb3c6691.74e res2=00000001 errno=0 func=rred op1=5ac07aae.5195a9bd result=bcd795d0.2a997ceb.e40 res2=00000001 errno=0 func=rred op1=5acf92df.f8adcd84 result=3cc36e64.7ffdd907.b40 res2=00000003 errno=0 func=rred op1=5ad19e2e.056787d7 result=3cb1e5d7.13017be8.647 res2=00000001 errno=0 func=rred op1=5ad372ec.0e7828ec result=bc8888d6.cfc5d1f4.f86 res2=00000003 errno=0 func=rred op1=5aeb57a4.0ca39c4d result=3cc05d49.a6051ec9.14f res2=00000001 errno=0 func=rred op1=5aed2c62.15b43d62 result=bca266a1.1bd45d77.ba4 res2=00000001 errno=0 func=rred op1=5af67ae9.09059212 result=3cd12190.5c834d58.bcb res2=00000003 errno=0 func=rred op1=5af84fa7.12163327 result=bcaeab0c.83b74672.367 res2=00000003 errno=0 func=rred op1=5b01eeed.91317459 result=bcda54e0.ea6d7c14.99e res2=00000001 errno=0 func=rred op1=5b0eb060.92faf1f5 result=3cc5feb5.5123b1b6.fd4 res2=00000003 errno=0 func=rred op1=5b10428f.4e05c985 result=bcdeee89.31629372.887 res2=00000003 errno=0 func=rred op1=5b1b8003.d288928e result=3caaa4bc.3d2039f7.883 res2=00000001 errno=0 func=rred op1=5b229cbc.ece25382 result=bca66cf1.626b69f2.689 res2=00000001 errno=0 func=rred op1=5b2f868f.b490c75f result=3cd64231.fecefeb7.4f4 res2=00000003 errno=0 func=rred op1=5b370e60.5fb57308 result=3caedc87.17d509fc.a7d res2=00000003 errno=0 func=rred op1=5b3beb1b.63537d43 result=bcc0d1b5.09d08f75.ce6 res2=00000003 errno=0 func=rred op1=5b44d58e.a64be345 result=bc9bfab7.5a0393d0.529 res2=00000001 errno=0 func=rred op1=5b494732.191f02cb result=3cd12def.018abe3b.591 res2=00000003 errno=0 func=rred op1=5b586055.04cfb044 result=bcd29160.7f70c8b2.d39 res2=00000003 errno=0 func=rred op1=5b5a9926.be394007 result=3c770e7d.ee8bb162.aa3 res2=00000001 errno=0 func=rred op1=5b67b75a.b24291a6 result=bca918e7.9c321da3.fd4 res2=00000003 errno=0 func=rred op1=5b6d7af2.ca2fee68 result=3cb25013.49bbfb2a.a93 res2=00000001 errno=0 func=rred op1=5b719f45.710ea595 result=3cc8964d.30c88293.a88 res2=00000003 errno=0 func=rred op1=5b7dcf6f.f3767db7 result=bcd8d79a.667d501b.d2e res2=00000001 errno=0 func=rred op1=5b833a6a.0bad446d result=bc9b2351.49d889e5.505 res2=00000003 errno=0 func=rred op1=5b861c36.17a3f2ce result=3ccb781c.ee99f8bf.fdc res2=00000003 errno=0 func=rred op1=5b96e9c8.64f3423a result=3c92f9aa.933ed8e0.042 res2=00000003 errno=0 func=rred op1=5b9b66b9.0b888f73 result=bcd484e2.c9c31ed9.52f res2=00000001 errno=0 func=rred op1=5ba2d3a0.e5059cb7 result=3cd37fad.f2efe8b8.a97 res2=00000003 errno=0 func=rred op1=5baeaf4e.3e26e58a result=bcb664e6.a508d3ad.4f4 res2=00000003 errno=0 func=rred op1=5bb30705.78597092 result=3cc96db3.40f38c7e.aab res2=00000003 errno=0 func=rred op1=5bbacc8b.518d13e2 result=bca9d022.b6d2ce7a.9a7 res2=00000001 errno=0 func=rred op1=5bc8db29.db402b0e result=3c984664.df55c68a.dba res2=00000001 errno=0 func=rred op1=5bccbdec.c7d9fcb6 result=bcccd8ef.52bd874b.f5e res2=00000003 errno=0 func=rred op1=5bd7e279.2019b6a4 result=3cc60277.2f2991b1.5f9 res2=00000001 errno=0 func=rred op1=5bd9d3da.96669f78 result=bcb3be89.7efd5cd7.e38 res2=00000003 errno=0 func=rred op1=5be85ed1.7dacf0d9 result=3ccc1410.66ff0354.168 res2=00000003 errno=0 func=rred op1=5be95782.38d36543 result=bc9e6d5c.3d49e649.d6d res2=00000001 errno=0 func=rred op1=5bf2e28b.9339bd65 result=3c921f6d.8161a6cb.e08 res2=00000003 errno=0 func=rred op1=5bffcc78.de6d0d21 result=bcc17a9b.ced127fe.677 res2=00000001 errno=0 func=rred op1=5c061d06.e6069154 result=bca55da5.7c9912e3.e69 res2=00000001 errno=0 func=rred op1=5c0c15a5.2e0cfefd result=3cd356c2.7f966f54.e2c res2=00000003 errno=0 func=rred op1=5c11837a.189cf088 result=bcd66a3e.2e907f34.605 res2=00000001 errno=0 func=rred op1=5c1df10f.063d060f result=3c9dc26b.0c547567.b4e res2=00000001 errno=0 func=rred op1=5c2095c5.2c84ecff result=bcc0063c.1d72ce2a.ece res2=00000003 errno=0 func=rred op1=5c2869cd.4cbb61ba result=3cb99008.4476c425.cdb res2=00000001 errno=0 func=rred op1=5c31bc28.5fdf5532 result=3c90c98b.1f76c507.9cc res2=00000003 errno=0 func=rred op1=5c37436a.1960f987 result=bcb12b42.b4bb61a1.ff5 res2=00000001 errno=0 func=rred op1=5c43ec97.a2f2f343 result=bcd4510c.caa1a693.6cc res2=00000003 errno=0 func=rred op1=5c4a9a3c.8fceffcb result=3ca92e50.af32278b.6b2 res2=00000001 errno=0 func=rred op1=5c536791.9b165854 result=3ccfdb9c.70434e08.a88 res2=00000003 errno=0 func=rred op1=5c58eed3.5497fca9 result=bcb5bf5d.11ddaf7e.492 res2=00000003 errno=0 func=rred op1=5c60e673.c243d3a1 result=bcaab52f.044499f4.f58 res2=00000001 errno=0 func=rred op1=5c69c487.f2337e3a result=3c8b779c.eaa3c069.0fe res2=00000001 errno=0 func=rred op1=5c75c058.290969b6 result=3cc28104.ee21010e.2dc res2=00000001 errno=0 func=rred op1=5c7dc8b7.bb5d92be result=bcb7463b.66f021e7.d39 res2=00000003 errno=0 func=rred op1=5c87c270.0d9e73f8 result=3cc5eff8.8b75791b.4fb res2=00000003 errno=0 func=rred op1=5c8bc69f.d6c8887c result=bcb06854.2c4731cd.8f9 res2=00000001 errno=0 func=rred op1=5c98c37b.ffe8f919 result=3ccccddf.c61e6935.93b res2=00000003 errno=0 func=rred op1=5c9ac593.e47e035b result=bc85642d.b7aa8cc8.3d0 res2=00000001 errno=0 func=rred op1=5ca3d3eb.eecbe13c result=3ca61e91.7cb91d37.00a res2=00000001 errno=0 func=rred op1=5ca4d4f7.e116665d result=bcc89c7e.426acab4.576 res2=00000003 errno=0 func=rred op1=5cb0db9d.ed1812bd result=bcb5c15f.9a31d4ff.9ed res2=00000003 errno=0 func=rred op1=5cbdbde1.e631d1da result=3cc096ed.1d8ad5e9.407 res2=00000003 errno=0 func=rred op1=5cc8c8e6.ea7ed98b result=3ccba635.dbe76484.c0c res2=00000001 errno=0 func=rred op1=5ccfba8e.e030fbaa result=bca4a9c9.f29bfc59.796 res2=00000001 errno=0 func=rred op1=5cd4d242.6bcb7624 result=3ca79359.06d63e14.87e res2=00000003 errno=0 func=rred op1=5cdbc3ea.617d9843 result=bcddde3d.37b39bd8.8e2 res2=00000003 errno=0 func=rred op1=5cea4668.a5fe38e7 result=bca1c03a.de61ba9e.6ae res2=00000001 errno=0 func=rred op1=5cef3b63.a1b13136 result=3cc1ae82.c520ae8f.65e res2=00000001 errno=0 func=rred op1=5cfa06d3.06be53ad result=3ccd782f.488bcd99.a9d res2=00000003 errno=0 func=rred op1=5cff7af9.40f11670 result=bc97da39.6bda6e50.9bd res2=00000001 errno=0 func=rred op1=5d04f20d.3b6b68c1 result=3cb19cca.abdfa280.60e res2=00000003 errno=0 func=rred op1=5d0f9ac4.1091090d result=bcd6276d.8959a33e.832 res2=00000001 errno=0 func=rred op1=5d179c3a.f0b4d0d4 result=bcb1e3ab.10e3d2bc.74e res2=00000003 errno=0 func=rred op1=5d1cd0cb.8ba7ae5d result=3cbd4306.fcc8a96c.9ae res2=00000003 errno=0 func=rred op1=5d23acdb.c896ae06 result=bcbdd0c7.c6d109e4.c2d res2=00000001 errno=0 func=rred op1=5d28e16c.63898b8f result=3cd01f27.1521fb9b.572 res2=00000001 errno=0 func=rred op1=5d31b52c.34879c9f result=bccad580.9955bc1a.af5 res2=00000001 errno=0 func=rred op1=5d3ec87b.1fb6bfc4 result=3cdbc563.660b0287.912 res2=00000001 errno=0 func=rred op1=5d4016bb.b115b68e result=bcf2de75.8f6ff7ca.323 res2=00000003 errno=0 func=rred op1=5d4f21ba.3053eb1a result=3caf594f.d184a1b7.aa4 res2=00000001 errno=0 func=rred op1=5d51888c.ac3906f4 result=bca05b23.06303ae9.8d6 res2=00000001 errno=0 func=rred op1=5d5ef51a.a805556f result=3cedbaf8.63234ca3.0bc res2=00000003 errno=0 func=rred op1=5d685523.6e467907 result=3cb72bbe.4e6c8442.e39 res2=00000003 errno=0 func=rred op1=5d6a4cd3.02558a6e result=bcb888b4.8948585e.542 res2=00000003 errno=0 func=rred op1=5d75eaaf.d74748b1 result=bcc471eb.c7bc49a3.f0c res2=00000001 errno=0 func=rred op1=5d7cb746.9954bac4 result=3cc314f5.8ce07588.803 res2=00000003 errno=0 func=rred op1=5d871fe9.a2c6e0dc result=3c95ce94.3581d4f7.96b res2=00000003 errno=0 func=rred op1=5d8b820c.cdd52299 result=bca5cefb.f19f8b57.4f7 res2=00000001 errno=0 func=rred op1=5d94543b.277ff3e8 result=bccdfc73.85b03b34.280 res2=00000003 errno=0 func=rred op1=5d9e4dbb.491c0f8d result=3cc8889a.9a40eac6.65e res2=00000001 errno=0 func=rred op1=5da157ef.3a1528a5 result=3cb05aef.28215fb9.b10 res2=00000001 errno=0 func=rred op1=5da5ba12.65236a62 result=bcc888ce.784fc5f6.425 res2=00000001 errno=0 func=rred op1=5db20ada.d8e6e3e2 result=3cd9e583.dd990815.df5 res2=00000001 errno=0 func=rred op1=5dbc34f8.6ca6ddd6 result=bcb05bbe.a05ccc79.229 res2=00000003 errno=0 func=rred op1=5dc3e276.9f052722 result=3c95cb56.549421f9.d07 res2=00000003 errno=0 func=rred op1=5dcebf7f.d196dc53 result=bcd72c19.130683d6.a54 res2=00000001 errno=0 func=rred op1=5dd80bb7.85d6027c result=bcbb44a7.ab949073.d10 res2=00000001 errno=0 func=rred op1=5dddd3b1.ee87bab3 result=3cb05880.bf6f197b.5c5 res2=00000001 errno=0 func=rred op1=5de1cdd6.2b9cb975 result=3ccdfad4.953961b5.44d res2=00000001 errno=0 func=rred op1=5defe852.61f02860 result=bc95e545.5c01b9e8.025 res2=00000001 errno=0 func=rred op1=5df9e564.807aa7c1 result=3cb05204.fd93b37f.cfe res2=00000001 errno=0 func=rred op1=5dfbfa04.f3e3156e result=bcce0150.5714c7b0.d15 res2=00000003 errno=0 func=rred op1=5e01eb4f.e7fe9da9 result=3cc30ead.a913eabc.d02 res2=00000001 errno=0 func=rred op1=5e07ee3d.c9741e48 result=bcb06bf4.05014b6e.01b res2=00000003 errno=0 func=rred op1=5e13f133.7d36193c result=bcbb5e96.b3022862.02e res2=00000001 errno=0 func=rred op1=5e1de26e.ccb8accd result=3ccde761.4fa72fc2.9f7 res2=00000001 errno=0 func=rred op1=5e21f2ae.571716b6 result=bcc8a1ee.0781f125.029 res2=00000001 errno=0 func=rred op1=5e2fe0f3.f2d7af53 result=3cdc890c.f9e71424.1f5 res2=00000003 errno=0 func=rred op1=5e30f36b.c4079573 result=bcd74399.b1c1d586.827 res2=00000001 errno=0 func=rred op1=5e3ee1b1.5fc82e10 result=3ced3837.24c721f3.5f6 res2=00000001 errno=0 func=rred op1=5e407779.b20c1158 result=bd0240b0.7732a570.d90 res2=00000003 errno=0 func=rred op1=5e4f6501.e0dc2b38 result=3ccd4bc7.2315a02d.747 res2=00000001 errno=0 func=rred op1=5e51b106.168d1822 result=3cad9a07.1c4f9915.c89 res2=00000001 errno=0 func=rred op1=5e52b048.a99c9965 result=bc9c6107.3767b574.780 res2=00000001 errno=0 func=rred op1=5e6b88cb.b4e32576 result=3c638ffe.4e7e3a15.09c res2=00000003 errno=0 func=rred op1=5e6c880e.47f2a6b9 result=bcc59705.62c7c0ff.ae2 res2=00000003 errno=0 func=rred op1=5e769ce8.e5b81ecc result=3cbe3687.0ec38ae6.70e res2=00000001 errno=0 func=rred op1=5e779c2b.78c7a00f result=bcccaf47.30a1ae5c.cc2 res2=00000001 errno=0 func=rred op1=5e8912da.4d4da221 result=3cbf6f86.f3ab6e87.c18 res2=00000003 errno=0 func=rred op1=5e8dfebd.1c78a8cb result=bcba8b87.600be002.7f1 res2=00000001 errno=0 func=rred op1=5e936ba0.13df9a6e result=3cc05443.6c49a914.891 res2=00000001 errno=0 func=rred op1=5e95e191.7b751dc3 result=bcb95287.7b23fc61.2e7 res2=00000003 errno=0 func=rred op1=5ea77a35.e4615ff2 result=3cc2c643.36197057.2a4 res2=00000001 errno=0 func=rred op1=5eaf9761.8564eafa result=bcb1fc88.1db4a699.4ad res2=00000003 errno=0 func=rred op1=5eb98180.cca242b4 result=3cc7aa42.c9b8fedc.6cb res2=00000001 errno=0 func=rred op1=5ebd9016.9d240838 result=bca06911.eceb131d.8bd res2=00000003 errno=0 func=rred op1=5ecc8c71.290396d7 result=3ca6b6ea.b011610c.87b res2=00000003 errno=0 func=rred op1=5ece93bc.11447999 result=bcc616cc.98ef6b60.adc res2=00000001 errno=0 func=rred op1=5ed5286b.81ba94c9 result=3cbeeb73.a686ea9b.4da res2=00000003 errno=0 func=rred op1=5ed62c10.f5db062a result=bcb89d9a.e3609cac.51c res2=00000001 errno=0 func=rred op1=5ee27a0e.22368523 result=bcc48356.6825d7e4.eec res2=00000003 errno=0
31eeab7db0e9de982d633cf69976aaeab2f5a52a
7b7be9b58f50415293def4aa99ef5795e6394954
/sim/scripts/set.tst
aec74d9069a21183a3456e5ed34349e16e54ea9e
[]
no_license
sabualkaz/sim42
80d1174e4bc6ae14122f70c65e259a9a2472ad47
27b5afe75723c4e5414904710fa6425d5f27e13c
refs/heads/master
2022-07-30T06:23:20.119353
2020-05-23T16:30:01
2020-05-23T16:30:01
265,842,394
0
0
null
2020-05-21T12:26:00
2020-05-21T12:26:00
null
UTF-8
Scilab
false
false
602
tst
set.tst
# Simple set test units SI $thermo = VirtualMaterials.Peng-Robinson / -> $thermo thermo + PROPANE n-BUTANE ISOBUTANE n-PENTANE h1 = Heater.Heater() h1.DeltaP.DP = 10 h2 = Heater.Heater() set = Set.Set() set.SignalType = DP # must be set before addition set.multiplier = 2. set.addition = 0. h1.DeltaP -> set.Signal0 sig = Stream.Stream_Signal() sig.In -> set.Signal1 sig.Out -> h2.DeltaP h2.DeltaP set.addition = None h2.DeltaP h2.DeltaP = 30 set.addition set.multiplier = None set.addition = 5 set.multiplier sig.clonePort = Stream.ClonePort() sig.clonePort
90e11979418af58861a0c66ad9f69f12f612c2cd
449d555969bfd7befe906877abab098c6e63a0e8
/2792/CH5/EX5.14/Ex5_14.sce
417bf480d950c123ad616b725c04ec8b46deb19b
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
886
sce
Ex5_14.sce
clc e = 1.6*10^-19 disp("e= "+string(e)+"C")//initializing value of charge of electron I= 1*10^-3 disp("I= "+string(I)+"A") //initializing value of forward current kbT = 0.026 disp("kbT = "+string(kbT)+"eV") //initializing value of kbT at 300K Tp = 10^-6 disp("Tp= "+string(Tp)+"s")//inializing value of minority carrier lifetime Gs = (I)/(kbT) disp("The diode conductance is Gs = (e*I)/(kbT)= "+string(Gs)+"A/V")//calculation Cdiff = (I*Tp)/(2*kbT) disp("The diffusion capacitance is Cdiff = (e*I*Tp)/(2*kbT)= "+string(Cdiff)+" F")//calculation // The diffusion capacitance is much larger than junction capacitance hence neglecting junction capacitance Y = Gs+(%i*2*%pi*10^6*Cdiff) disp("The admittance of the diode is Y = Gs+%i(2*%pi*10^6*Cdiff)= "+string(Y)+" A/V")//calculation // Note : due to different precisions taken by me and the author ... my answer differ
dfb59450cdd7dbb19666ebfae32226dc8948f3f7
449d555969bfd7befe906877abab098c6e63a0e8
/2513/CH15/EX15.4/15_4.sce
342fd572d3ba3255e8b5b857a0ee5113a80104ab
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
345
sce
15_4.sce
clc //initialisation of variables a=42//in d=45//mgd d1=0.75//in s=60//ft p1=9//in p2=8.4//in p3=9//in c1=13*63.6//sq in c2=9*55.4//sq in c3=9.21//sq ft M=d*1.547//cfs v=M/c3//fps g=0.025*32.2//ft/sec^2 //CALCULATIONS F=v/sqrt(g*(p1/12))//ft S=s/d1//in //RESULTS printf('the port near the end of the diffuser pipe=% f in',F)
8a4de34ccc434c1dd28607f991f3123e262f3f3a
3a031f437fdd7426aec9731b31871506b540c723
/Linear Auto Correlation.sce
78351b476b03b000e44cc8cac215d0bd28406b07
[]
no_license
mohammedkesury/Digital-Image-Processing
006294df3c05100912ade8f75dcadc59f518cbba
6589dcf0f400a803862fcd2194ff4b008ceb795e
refs/heads/master
2020-04-20T05:20:20.161398
2019-04-09T16:04:04
2019-04-09T16:04:04
168,653,548
0
0
null
null
null
null
UTF-8
Scilab
false
false
153
sce
Linear Auto Correlation.sce
clc x=input('Enter x:') h=x h1=h(:,$:-1:1) disp(h1,"h1 = ") h2=h1($:-1:1,:) disp(h2,"h2 = ") y=conv2(x,h2) disp(y,"2D Circular Correlation = ")
9bc8211aa02d11bccb669945a49c1a6b6bfd2240
449d555969bfd7befe906877abab098c6e63a0e8
/1943/CH6/EX6.3/Ex6_3.sce
cd844c174b847342c5c0bf7f354c2f4af2b880e7
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,007
sce
Ex6_3.sce
clc clear //Input data H=15;//The high of downcomer riser circuit in m P=160;//The pressure at which downcomer riser circuit operates in bar xe=0.5;//The exit quality of the steam S=1.2;//Slip factor vf=0.001711;//Specific volume of saturated liquid in m^3/kg vg=0.009306;//Specific volume of saturated gas in m^3/kg g=9.806;//Gravitational force constant in m/s^2 //Calculations C=S*(vf/vg);//The part of calculation for the void fraction VF=1/[1+((1-xe)*C)/xe];//The void fraction at riser exit pf=1/vf;//Density of the saturated liquid in kg/m^3 pg=1/vg;//Density of the saturated gas in kg/m^3 pm=pf-[[(pf-pg)/(1-C)]*[1-{(1/((VF)*(1-C)))-1}*log(1/(1-(VF*(1-C))))]];//The average mixture density in the riser in kg/m^3 P1=g*(pf-pm)*H;//Pressure head developed due to natural circulation in N/m^2 P2=P1/1000;//ressure head developed due to natural circulation in kPa //Output printf('The pressure head developed due to natural circulation is %3.0f N/m^2 or %3.3f kPa',P1,P2)
bf119e2aeb4bdeeae60b282d97f2e57755e56c46
449d555969bfd7befe906877abab098c6e63a0e8
/317/CH21/EX21.13/example13.sce
f59029ee814b6315c512005e3061d03b92c5e25e
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
516
sce
example13.sce
// find phase shift of output voltage // Electronic Principles // By Albert Malvino , David Bates // Seventh Edition // The McGraw-Hill Companies // Example 21-13, page 833 clear;clc; close; // Given data C=100*10^-9;// capacitance in faraday R=10^3;// resistance in ohms f=10^3;// frequency in hertz // Calculations fo=1/(2*%pi*R*C);// cutoff frequency in hertz angle=2*atan(fo/f)*180/%pi;// phase shift in degree disp("degrees",angle,"phase shift=") // Result // Phase shift is 116 degrees
71c13833992741436cc9a3ed0c406f32ab101920
449d555969bfd7befe906877abab098c6e63a0e8
/3434/CH14/EX14.8/Ex14_8.sce
ba4ce98c6964c0b5a97541f75d475cb23e62c96f
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
487
sce
Ex14_8.sce
clc // given data P=200000.0 //principal value in rs i=10/100.0 // interest rate n=25.0 // time in years L=2.0 // power produced in kW A=P*(i*(1+i)**n)/(-1+(1+i)**n) // annualised capital cost in rs maintcost=P*0.05 // annual maintainence cost Totalcost=A+maintcost // total annual cost Elec=L*0.25*10*365 // annual electricity production Cost=Totalcost/Elec // unit cost of electricity production printf("unit cost of electricity production is Rs %.1f",Cost)
db3ee8cc1b1e2f6b4793a050ebdb129adf3eb5b3
92074377d2c131cb9b55fc3babf541cab2c3c38b
/Statistika/FungsiPeluang.sce
ff01c484f77306c8006e0ae0c4310d67e9d26859
[]
no_license
LinggaWahyu/BelajarScilab
05f6173e0cad24d3d13bb324c6470bd87a4269cf
ea45563c3048f4f4f229ad1306245591fcb83e52
refs/heads/master
2020-07-31T10:41:28.629143
2019-10-24T23:12:17
2019-10-24T23:12:17
210,577,295
3
3
null
2019-10-24T23:12:18
2019-09-24T10:38:10
Scilab
UTF-8
Scilab
false
false
124
sce
FungsiPeluang.sce
function [fx] = FungsiD(x) M = sum(x); [m, n] = size(x); for i = 1 : n fx(i) = (x(i)) / M end endfunction
ecb82c362de284a0ef76f9a5707e56573db41b12
01697f0dc71290a6b6e233849a73d19a883845f1
/sem01/lab01/q07.sce
8e7c2ff3ded2fd04a04bdee8ca26d37c609e1cbd
[]
no_license
aaruni96/Math-Lab
5d83a13547308bd9d1b7daa28be29a49e1020fbd
488469c9aba9251f5725e0851fb19e2aef38d234
refs/heads/master
2021-01-12T06:29:53.790743
2018-04-27T09:21:40
2018-04-27T09:21:40
77,370,232
0
0
null
null
null
null
UTF-8
Scilab
false
false
115
sce
q07.sce
//primes between x and y clc; clear; x=200; y=50; p=primes(x); for i=1:length(p) if p(i)>50 disp(p(i)) end end
c718a1480dd6e23881859561174aaeeb94c58359
449d555969bfd7befe906877abab098c6e63a0e8
/2381/CH9/EX9.5/ex_5.sce
7ecbf5f05806788f6e19cb1c6cc4860cd24a4a5e
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
360
sce
ex_5.sce
//Example 5// Amplitude clc; clear; close; //given data : v=(1/3)*10^3;// in m/s p=1.25;// in kg/m^3 E=v^2*p; n=10^4;// in rad/sec disp(E,"Bulk modulus of medium,E(N/m^2) = ") I=10^-12;// in W/m^2 A=sqrt(I/(2*%pi^2*n^2*p*v)); disp(A,"Amplitude of wave,A(m ) = ") P=sqrt(2*I*p*v); disp(P,"Pressure amplitude,P(N/m^2) = ") // answer A and E is wrong in textbook
1cd171c86547684a9df840ba172bb43bf5df266b
6b1efb6adc12c52438a2f9d64327e944c1d818a8
/tabelDistribusiFrek.sce
8eee7ba4f544e2b8905e4956d410e111539c829f
[]
no_license
Thoriq-ha/Tabel-Distribusi-Frekuensi
8c74a8a16136dffcd94936a71a3fc3fa237fcf2c
cff9c6513759e3799b2fd91ae875693d8034a9f7
refs/heads/master
2022-12-29T20:42:59.755473
2020-10-20T10:42:51
2020-10-20T10:42:51
295,775,068
0
0
null
null
null
null
UTF-8
Scilab
false
false
1,814
sce
tabelDistribusiFrek.sce
//TDistribusiFrekuensi(x[1..n], k) //Input: Array x[1..n], nilai k ditentukan //Asumsi : Fungsi Max dan Min sudah ada //Output : Tabel distribusi Frekuensi(interval, m, f, fr, fk) function [interval, m, f, fr,fk] = TDistribusiFrekuensi(x, k, n) x_min=min(x); x_max=max(x); R=x_max-x_min; i=ceil(R/k); for q=1:(k+1) interval(q)= x_min + (q-1)*i; end for q=1:k m(q)=interval(q)+0.5*i; f(q)=0; end for p=1:n for q=1:k if x(p) >= interval(q) & x(p)< interval(q+1) f(q)= f(q)+1; end end end //Frekuensi Relatif for q=1:k fr(q)=f(q)/n; end //Frekuensi Kumulatif fk(1)=f(1); for q=2:k fk(q)=fk(q-1)+f(q); end endfunction //MeanData(x[1..n]) //Input Array x[1..n] //Output: mean (rata-rata) function [mean] = MeanData(x, n) jumlah = 0 for i=1:n jumlah=jumlah + x(i); end mean = jumlah/n endfunction //MeanDataK (m[1..n], f[1..k], fk[k]) //input: Arrayx m[1..k], f[1..k], fk[k] //Output: mean(rata-rata) function [mean] = MeanDataK(m, f, fk, k) jumlah=0 for i=1:k jumlah=jumlah + m(i)*f(i); end mean=jumlah/fk(k) endfunction //VariansiData(x[1..n]) //input: Array x(1..n) //Output: variansi function [variansi] = VariansiData(x, n) jumlah=0 for i=1:n jumlah=jumlah+x(i)^2 end variansi=(jumlah-n*(mean^2))/(n-1) endfunction //VariansiDataK(m[1..k], f[1..k], f[k]) //Input Array m(1..k), f(1..k), fk(k) //Output variansi function [variansi]=VariansiDataK(m, f, fk, k) mean=MeanDataK(m, f, fk, k) jumlah=0 for p=1:k jumlah=jumlah + f(p)*(m(p)^2);//sqr is mean^2 end variansi=(jumlah-fk(k)*mean^2)/(fk(k)-1) endfunction
06ecc6f3b4c33d4608797a1e437484c6c427d669
449d555969bfd7befe906877abab098c6e63a0e8
/2132/CH6/EX6.10/Example6_10.sce
012daa33f939a4147b0ea02662d1e9c28a74fc37
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
496
sce
Example6_10.sce
//Example 6.10 clc; clear; close; format('v',5); //Given data : g=9.81;//constant H1=4-1;//meter H2=4;//meter Cv1=0.9;//Coefficient of velocity Cv2=0.9;//Coefficient of velocity //Cv1=Cv2 & x1=x2 at meeting point //x1/sqrt(4*H1*y1)=x2/sqrt(4*H2*y2) y1BYy2=H2/H1; //y1=1+y2; y2=1/(y1BYy2-1);//meter y1=y1BYy2*y2;//meter x1=Cv1*sqrt(4*H1*y1);//meter disp(y1,x1,"Meeting point horizontal & vertical co-ordinates are(x1 & y1 in meter) : "); //Answer in the book are not accurate.
6d615ee388f26e56e8dc282c8157f17edd413cc4
449d555969bfd7befe906877abab098c6e63a0e8
/2990/CH4/EX4.17/Ex4_17.sce
a2f777efc287270858f9023f562a8ad0fa722053
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
467
sce
Ex4_17.sce
funcprot(0); // Initialization of Variable function[dms]=degtodms(deg) d = int(deg) md = abs(deg - d) * 60 m = int(md) sd = (md - m) * 60 sd=round(sd*100)/100 dms=[d m sd] endfunction Long=60.0;//longitude in derees east LHA=5+30.0/60+20.0/3600;//local hour angle in hr //calculation LMT=LHA+12; GMT=LMT-Long/15; GMT=degtodms(GMT); LMT=degtodms(LMT); disp(LMT,"LMT in hr min sec"); disp(GMT,"GMT in hr min sec"); clear()
f14b69e71061918ce0d8fc213f78a5d0216c6600
449d555969bfd7befe906877abab098c6e63a0e8
/534/CH14/EX14.5/14_5_Hydrogen_plastic_diffusion.sce
620f6325c307eebf13c5a5486c4884a70beeeefa
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
933
sce
14_5_Hydrogen_plastic_diffusion.sce
clear; clc; printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 14.5 Page 904 \n')// Example 14.5 // The Hydrogen mass diffusive flux nA (kg/s.m^2) //A -> Hydrogen //B -> Plastic Dab = 8.7*10^-8 ;//[m^2/s] Diffusion coefficient Sab = 1.5*10^-3 ;//[kmol/m^3.bar] Solubility L = .0003 ;//[m] thickness of bar p1 = 3 ;//[bar] pressure on one side p2 = 1 ;//[bar] pressure on other side Ma = 2 ;//[kg/mol] molecular mass of Hydrogen //Surface molar concentrations of hydrogen from Equation 14.62 Ca1 = Sab*p1 ; //[kmol/m^3] Ca2 = Sab*p2 ; //[kmol/m^3] //From equation 14.42 to 14.53 for obtaining mass flux N = Dab/L*(Ca1-Ca2) ; //[kmol/s.m^2] n = Ma*N ; //[kg/s.m^2] on Mass basis printf('\n The Hydrogen mass diffusive flux n = %.2e (kg/s.m^2)',n); //END
8de972fc299c56cc7053680b4b5a81b492b7b75c
449d555969bfd7befe906877abab098c6e63a0e8
/1247/CH3/EX3.20/example3_20.sce
a35c71124ff31051ccb6ec360c756b3df1bf0334
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
364
sce
example3_20.sce
clear; clc; // Stoichiometry // Chapter 3 // Material Balances Without Chemical Reaction // Example 3.20 // Page 86 printf("Example 3.20, Page 86 \n \n"); // solution // concetration of the component after n times introduction of v volume of inert gas : // Cn = Co/(1+1/n)^n // we know limn-->infinity (1+1/n)^n = e // therefore Cv = Co/e
8b2cff8b1f02ab4529783a018ded86b43b7e1833
2707da68619819d8105f9ae472647dc578c75730
/FindCD.sci
b9bbbb03e8e81cbf5c1e5fcde092d2152c1e730e
[ "Apache-2.0" ]
permissive
KrayzeX/ToE
1aa62db747841e960fb47fbd59e38c6afa3a0723
ad81dd433c0d3b23ebb00f0e65095ab6c1bed34e
refs/heads/master
2020-05-26T09:19:33.970171
2017-06-02T08:50:16
2017-06-02T08:50:16
82,474,743
0
0
null
null
null
null
UTF-8
Scilab
false
false
3,645
sci
FindCD.sci
//Марчук Л.Б. 5307 подгруппа 3 //Данный модуль принимает на вход контурную матрицу, матрицу сопротивлений ветвей, //матрицу ЭДС источников, матрицу источников тока, контурные токи, //матрицу коэффициентов уравнений состояния и номер исследуемой ветви; //возвращает матрицу коэффициентов уравнений состояния для исследуемой ветви. function [result] = FindCD(LoopMatrix, BranchResistance, EMFMatrix, CurrentMatrix, Currents, Branch) disp(Currents); halt; [rows columns] = size(LoopMatrix); result = zeros(1, 3); for g = 1:1:3 for i = 1:1:columns if g < 3 if EMFMatrix(i, g) ~= 0 //Найден ИН - находим ток //Ищем контура, в которые входит исследуемая ветвь и суммируем токи for k=1:1:rows if LoopMatrix(k, Branch) ~= 0 result(1, g) = result(1, g) + LoopMatrix(k, Branch)*Currents(k, g); end; end; break; else if CurrentMatrix(i, g) ~= 0 //Найден ИТ - находим напряжение //Ищем контура, в которые входит исследуемая ветвь и суммируем токи for k=1:1:rows if LoopMatrix(k, Branch) ~= 0 result(1, g) = result(1, g) + LoopMatrix(k, Branch)*Currents(k, g); end; end; //Ищем напряжение result(1, g) = result(1, g) * BranchResistance(Branch, Branch); break; end; end; else if CurrentMatrix(i, g) ~= 0 //Найден ИТ - находим ток //Ищем контура, в которые входит исследуемая ветвь и суммируем токи for k=1:1:rows if LoopMatrix(k, Branch) ~= 0 result(1, g) = result(1, g) + LoopMatrix(k, Branch)*Currents(k, g); end; end; break; else if EMFMatrix(i, g) ~= 0 //Найден ИН - находим напряжение //Ищем контура, в которые входит исследуемая ветвь и суммируем токи for k=1:1:rows if LoopMatrix(k, Branch) ~= 0 result(1, g) = result(1, g) + LoopMatrix(k, Branch)*Currents(k, g); end; end; //Ищем напряжение result(1, g) = result(1, g) * BranchResistance(Branch, Branch); break; end; end; end; end; end; endfunction
97ac990510d3a5742972fd11934ad665e0147f3e
67310b5d7500649b9d53cf62226ec2d23468413c
/tags/archive/TestCaseGenerator-Plugin-OpeningSequenceCoverage/trunk/tests/large-system-tests/inputs/RadioButton/ground_truth/OpeningSequenceCoverage/length-1/max-150/t10.tst
9d283006cbb2f32527c5c09741ef50c337eb8130
[]
no_license
csnowleopard/guitar
e09cb77b2fe8b7e38d471be99b79eb7a66a5eb02
1fa5243fcf4de80286d26057db142b5b2357f614
refs/heads/master
2021-01-19T07:53:57.863136
2013-06-06T15:26:25
2013-06-06T15:26:25
10,353,457
1
0
null
null
null
null
UTF-8
Scilab
false
false
661
tst
t10.tst
<?xml version="1.0" encoding="UTF-8" standalone="yes"?> <TestCase> <Step> <EventId>e35</EventId> <ReachingStep>false</ReachingStep> </Step> <Step> <EventId>e36</EventId> <ReachingStep>false</ReachingStep> </Step> <Step> <EventId>e67</EventId> <ReachingStep>false</ReachingStep> </Step> <Step> <EventId>e30</EventId> <ReachingStep>false</ReachingStep> </Step> <Step> <EventId>e77</EventId> <ReachingStep>false</ReachingStep> </Step> <Step> <EventId>e38</EventId> <ReachingStep>false</ReachingStep> </Step> </TestCase>
7e4c8d430ba1ae4b8aa19ca5f36e55d3dfee6b12
449d555969bfd7befe906877abab098c6e63a0e8
/575/CH3/EX3.3.3/3_3_3.sce
1c94c037a0e15cb1118214821df97040dfba297d
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
424
sce
3_3_3.sce
clc pathname=get_absolute_file_path('3_3_3.sce') filename=pathname+filesep()+'333.sci' exec(filename) molO2=massO2/MO2 molCO=massCO/MCO molCO2=massCO2/MCO2 molN2=massN2/MN2 TotalMol=molO2+molCO+molCO2+molN2 printf(" \n molefraction of O2=%f",molO2/TotalMol) printf(" \n molefraction of CO=%f",molCO/TotalMol) printf(" \n molefraction of CO2=%f",molCO2/TotalMol) printf(" \n molefraction of N2=%f",molN2/TotalMol)
fbf6d495d18caa625a0ff404f261c57fec202e6f
449d555969bfd7befe906877abab098c6e63a0e8
/587/CH7/EX7.6/example7_6.sce
9bb91d08f200e330458021bf48a1180aa080be28
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,133
sce
example7_6.sce
clear; clc; //Example7.6[Cooling of a Steel Ball by Forced Air] //Given:- rho=8055;//[kg/m^3] Pr = 0.7296; Cp=480;//[J/kg.degree Celcius] To=300;//Temp of oven[degree Celcius] Ta=25;//Temp of air[degree Celcius] va=3;//Velocity of air[m/s] Ts=200;//Dropped temp of surface of ball[degree Celcius] Ts_avg=(Ts+To)/2;//[degree Celcius] d=0.25;//[m] mu_s=2.76*10^(-5);//Dynamic Viscosity at average surface temperature[kg/m.s] //Properties of air at 25 degree Celcius k=0.02551;//[W/m.degree Celcius] nu=1.562*10^(-5);//kinematic viscosity[m^2/s] mu=1.849*10^(-5);//Dynamic viscosity of air at 25 degree C[kg/m.s] //Solution:- Re=va*d/nu;//[Reynolds Number] Nu=2+[(0.4*(Re^(1/2)))+(0.06*(Re^(2/3)))]*(Pr^(0.4))*((mu/mu_s)^(1/4)); disp(ceil(Nu),"The Nusselt number is") h=k*Nu/d;//[W/m^2.degree Celcius] As=%pi*(d^2);//[m^2] Q_avg=h*As*(Ts_avg-Ta);//[W] disp("W",ceil(Q_avg),"The average rate of heat transfer from Newtons Law of cooling is") m=rho*%pi*(d^3)/6;//[kg] Q_total=m*Cp*(To-Ts);//[J] disp("J",Q_total,"The total heat transferred from the ball is") delta_t=Q_total/Q_avg;//[s] disp("hour",delta_t/3600,"The time of cooling is")
a7ba75695741f79681ba669e0b97c1b6ff3e6064
449d555969bfd7befe906877abab098c6e63a0e8
/539/CH4/EX4.3/Example_4_3.sce
14e42cfb3827ad45e1654f5d2716f7c84cd20aef
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
550
sce
Example_4_3.sce
//Composition Conversion- From weight percent to Atom percent clear; clc; printf("\t Example 4.3\n"); //Conversion to Atom percent function[C]=conc(C1,C2,A1,A2) C=C1*A2*100/((C1*A2)+(C2*A1)); funcprot(0) endfunction C_Al=97; //Aluminium wt% C_Cu=3; //Copper wt% A_Al=26.98; //Atomic wt of Aluminium A_Cu=63.55; //Atomic wt of Copper CAl=conc(C_Al,C_Cu,A_Al,A_Cu); CCu=conc(C_Cu,C_Al,A_Cu,A_Al); printf("\nAtomic %% of Al is %.1f %%",CAl); printf("\nAtomic %% of Cu is %.1f %%\n",CCu); //End
635292ec39d274e6b4ddff58d1e6219f8ac81538
449d555969bfd7befe906877abab098c6e63a0e8
/2444/CH6/EX6.2/ex6_2.sce
504f3fb033627d90d8ea6df1f8f00dd6935cb532
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
244
sce
ex6_2.sce
// Exa 6.2 clc; clear; close; format('v',7) // Given data Beta = 0.01;//feedback fraction // Voltage gain with negative feedback A = 3000;// unit less Af = A/(1+(Beta*A));// unit less disp(Af,"The voltage gain of the amplifier is");
95bbe01205d7f95502a199b0c0fead43be9754ab
449d555969bfd7befe906877abab098c6e63a0e8
/1784/CH38/EX38.3/EX38_3.sce
6a5ace367b7902776349539b05db9b147f2d2823
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
213
sce
EX38_3.sce
//chapter 38 //Example 3 clc //given L=10*(10^-3)// in henry C=(10)^-6 //in farad R=0.1 //in ohm w=sqrt(1/(L*C)) disp(" Angular frequency in radians/sec=") disp(w) t=(2*L*log(2))/R disp(" time in sec=") disp(t)
5b544e840fdd1edce6ce35fb46b848503f7ae2a7
8217f7986187902617ad1bf89cb789618a90dd0a
/source/2.5/examples/macros-examples/g.sci
8f42b72f4a9573a06ddc7e08fa1b7669835ae061
[ "LicenseRef-scancode-public-domain", "LicenseRef-scancode-warranty-disclaimer" ]
permissive
clg55/Scilab-Workbench
4ebc01d2daea5026ad07fbfc53e16d4b29179502
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
refs/heads/master
2023-05-31T04:06:22.931111
2022-09-13T14:41:51
2022-09-13T14:41:51
258,270,193
0
1
null
null
null
null
UTF-8
Scilab
false
false
26
sci
g.sci
function [z]=g(x,y) z=x+y
1981d3f1feb2a093a3e118f1f54801a5e85ed93f
449d555969bfd7befe906877abab098c6e63a0e8
/1538/CH20/EX20.6/Ex20_6.sce
6913df1aca38918f685333a79b7074b2e1fddbb8
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
464
sce
Ex20_6.sce
//example-20.6 //page no-597 //given //dielectric constant Er1=6.0 Er2=3.0 //thickness of plates d1=0.25*10^-3 //m d2=0.1*10^-3 //m //taking A1=A2 //we know that //C=Er*E0*A/d //for plate1 //C1=Er1*E0*A1/d1 -----------(1) //for plate 2 //C2=Er1*E0*A2/d2 --------------(2) //dividing 1 and 2 //we get //C1/C2=Er1*d2/(Er2*d1) //let C1/C2=c C=Er1*d2/(Er2*d1) //so we get //C1=0.8*C2 printf ("the plastic film wil hold more charge")
72bb793f2bf9afdd4bb05071e28984f965e6fca0
449d555969bfd7befe906877abab098c6e63a0e8
/3507/CH28/EX28.7/Ex28_7.sce
69942683537d84cd695b4ed0f25b2e281478d0a6
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
789
sce
Ex28_7.sce
// chapter28 // example28.7 //page606 printf("Y = A . B + A . ( B + C ) + B . ( B + C ) \n") printf("By thoerem 14 \n") printf("Y = A . B + A . B + A . C + B . B + B .C \n") printf("By theorem 6 \n") printf("Y= A . B + A . B + A . C + B + B .C \n") printf("By theorem 5 \n") printf("Y = A . B + A . C + B + B . C \n") printf("Factor B out of last 2 terms \n") printf("Y = A . B + A . C + B . ( 1 + C ) \n") printf("Apply cummulative law and theorem 7 \n") printf("Y = A . B + A . C + B . 1 \n") printf("Apply theorem 2 \n") printf("Y = A . B + A . C + B \n") printf("Factor B out of first and third terms \n") printf("Y = B . ( A + 1 ) + A . C \n") printf("Apply theorem 7 \n") printf("Y = B . 1 + A . C \n") printf("Apply theorem 2 \n") printf("Y = B + A . C \n")
edeb697d5a917e977b4e267d4087c6fb4e89c3e1
8217f7986187902617ad1bf89cb789618a90dd0a
/source/2.4.1/macros/xdess/xclip.sci
880de59f84fadb2260cb1f52e330f026911d01f8
[ "LicenseRef-scancode-public-domain", "LicenseRef-scancode-warranty-disclaimer" ]
permissive
clg55/Scilab-Workbench
4ebc01d2daea5026ad07fbfc53e16d4b29179502
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
refs/heads/master
2023-05-31T04:06:22.931111
2022-09-13T14:41:51
2022-09-13T14:41:51
258,270,193
0
1
null
null
null
null
UTF-8
Scilab
false
false
336
sci
xclip.sci
function []=xclip(x,y,w,h) // fixe une zone de clipping en cordonnees reelles // (x,y,w,h) (Upper-Left,wide,Height) //! // Copyright INRIA [lhs,rhs]=argn(0) if rhs<=0, xset('clipoff');return;end if rhs==1,if typeof(x)<>"string" then xset('clipping',x(1),x(2),x(3),x(4)); else xset(x); end else xset('clipping',x,y,w,h); end
62acabc304c7917c35bf9772199237d409474353
449d555969bfd7befe906877abab098c6e63a0e8
/1658/CH24/EX24.9/Ex24_9.sce
773f33809f2b03c467c664c919b255075592b0c1
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
756
sce
Ex24_9.sce
clc; RC=4*10**3; R1=40*10**3; R2=10*10**3; RE=2*10**3; RS=1*10**3; RL=2.2*10**3; CS=10*10**-6; CE=20*10**-6; CC=1*10**-6; B=100; VCC=20; VB=(R2*VCC)/(R2+R1); IE=(VB-0.7)/RE; re=(26*10**-3)/IE; B*re; vo=-(RC*RL)/(RC+RL); Av=vo/re; a=(R1*R2)/(R1+R2); Ri=(a*(B*re))/(a+(B*re)); Rs=1*10**3; vibyvs=Ri/(Ri+Rs); Avs=Av*vibyvs; a=(R1*R2)/(R1+R2); Ri=(a*(B*re))/(a+(B*re)); fLS=1/(2*%pi*(Rs+Ri)*CS); disp('HZ',fLS*1,"fLS="); fLC=1/(2*%pi*(RC+RL)*CC); disp('HZ',fLC*1,"fLC="); a=(R1*R2)/(R1+R2); RS=(a*RS)/(a+RS); b=(RS/B+re); Re=(RE*b)/(RE+b); fLE=1/(2*%pi*Re*CE); disp('HZ',fLE*1,"fLE="); i=-21:3:0; plot2d(i); a=gca() //get the current axes a.box="off"; a.x_location="top"; xlabel("f (log scale)"); ylabel( "Av(dB)");
7a14f327c3bec401cdea33356dd6a491d5d7eba6
449d555969bfd7befe906877abab098c6e63a0e8
/275/CH1/EX1.1.50/Ch1_1_50.sce
5fbbe9983f438630a3248f6595476fab3ce85e22
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
310
sce
Ch1_1_50.sce
clc disp("Example 1.50") printf("\n") disp("Find the maximum power at 80c") T1=25 PT1=1000*10^-3 //maximum power dissipation at 25c T2=80 D=4*10^-3 //derating factor PT2=PT1-((T2-T1)*D) //maximum power dissipation at 80c printf("Maximum Power dissipated at 80c=\n%f watt\n",PT2)
90ef98914449194998acec5485e714c11373c8a5
7dbe475cd217e686e9689cb0536a9a73f625a85b
/Rez/univariate-lcmsr-wavetime/bfa_mt/~LCM-SR-bfa_mt-nat.tst
31b11854a37bde18797f8b273c7e41b874e1ce21
[]
no_license
jflournoy/lnt_pxvx
fac8d6b00b886fa3dc800dcaa288aa186027b9ea
3f1ddc64e4bf0aecddfa21d45f889620dbdd442d
refs/heads/master
2021-10-20T12:52:55.625243
2019-02-27T17:06:09
2019-02-27T17:06:09
64,423,528
0
0
null
null
null
null
UTF-8
Scilab
false
false
1,999
tst
~LCM-SR-bfa_mt-nat.tst
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES 1 2 3 4 5 ________ ________ ________ ________ ________ 1 0.446577D+00 2 -0.442966D-01 0.411333D-01 3 0.275950D-03 0.199680D-02 0.728681D-02 4 0.152691D+01 -0.324329D+00 0.132213D+01 0.441525D+03 5 0.220185D+00 0.233611D+00 0.747714D+00 0.137182D+03 0.106796D+03 6 0.875250D+00 0.468418D-01 -0.148055D+01 -0.397785D+03 -0.160271D+03 7 0.429868D+00 -0.654212D-01 0.476098D+00 0.137905D+03 0.467328D+02 8 -0.206765D+00 0.553792D-01 -0.269377D+00 -0.737273D+02 -0.289285D+02 ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES 6 7 8 ________ ________ ________ 6 0.670322D+03 7 -0.159158D+03 0.622811D+02 8 0.753678D+02 -0.286233D+02 0.166893D+02 ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES 1 2 3 4 5 ________ ________ ________ ________ ________ 1 1.000 2 -0.327 1.000 3 0.005 0.115 1.000 4 0.109 -0.076 0.737 1.000 5 0.032 0.111 0.848 0.632 1.000 6 0.051 0.009 -0.670 -0.731 -0.599 7 0.082 -0.041 0.707 0.832 0.573 8 -0.076 0.067 -0.772 -0.859 -0.685 ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES 6 7 8 ________ ________ ________ 6 1.000 7 -0.779 1.000 8 0.713 -0.888 1.000
52c53a36f1466aa4de63f433207518a9445f3f09
449d555969bfd7befe906877abab098c6e63a0e8
/2863/CH6/EX6.1/ex6_1.sce
e18dc42bb5b3a109f9b367414915a8d1787dbffc
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
599
sce
ex6_1.sce
//chapter 6 //horn antenna printf("\n"); Ae=10; del=0.2; p=Ae^2/(8*del); del1=0.375; Thetae=2*atan((Ae/(2*p)))*180/(%pi);//flare angle Thetah=2*acos(p/(p+del1))*180/(%pi); Ah=2*p*tan(((Thetah*(%pi)/180)/2)); printf(" the length is %gm",p); printf("\n the angle ThetaE is %g degree",Thetae); printf("\n the angle ThetaH is %g degree",Thetah); printf("\n the H plane aperture is %g",Ah); HPBWH=67/Ah; HPBWE=56/Ae; Ddb=10*log10((7.5*Ae*Ah)); printf("\n the HPBWE is %g degree",HPBWE); printf("\n the HPBWH is %g degree",HPBWH); printf("\n the Directive gain in db is %gdb",Ddb);
6b263b542bc94f9c667d770037ec310ce4d57772
449d555969bfd7befe906877abab098c6e63a0e8
/3793/CH5/EX5.6/exp_5_6.sce
78ff89fb022276f276298b4f930568513a8defb5
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
394
sce
exp_5_6.sce
clear; clc; v1=66; v2=11; v3=6.6; s1=20; s2=10; s3=5; Xps=0.1; Xpt=0.12; Xst=.08; //now these rectance in pu and converted into 50 MVA base xps=Xps*(50/s1); xpt=Xpt*(50/s1); xst=Xst*(50/s2); Xp=complex(0,((xps+xpt-xst)/2)); Xs=complex(0,((xps-xpt+xst)/2)); Xs1=complex(0,((-xps+xpt+xst)/2)); mprintf(" pu leakage reactances are %f, %f and %f",imag(Xp),imag(Xs),imag(Xs1));
3fedb4488a582736ae0ac1bc4cdc1019bce9fb8e
0845790d81f9fd3b8393b14fc9c2bdde0ffe46cf
/8_9_dft_idft/8and9_dftandidft_of_seq.sce
697721db59ba9273c3dd530c59ec95439c72575e
[]
no_license
NARAYAN1201/Scilab
1a3fb62895b157f87b0d9e024ecd2f1c000eb6df
48980c28ab2def9939e7519867da572660c8ac97
refs/heads/main
2023-02-26T02:09:05.762483
2021-02-01T07:24:54
2021-02-01T07:24:54
335,216,077
0
0
null
2021-02-02T08:17:23
2021-02-02T08:17:23
null
UTF-8
Scilab
false
false
2,221
sce
8and9_dftandidft_of_seq.sce
// Caption : Program to find the spectral information of discrete time signal clc ; close ; clear ; xn = input ( "Enter the real input discrete sequence x[n]=") ; N = length ( xn ) ; XK = zeros (1 , N ) ; IXK = zeros (1 , N ) ; // Code block to find the DFT of the Sequence for K = 0: N -1 for n = 0: N -1 XK ( K +1) = XK ( K +1) + xn ( n +1) *exp( - %i *2* %pi * K * n /N ) ; end end [phase,db] = phasemag(XK) disp ( "Discrete Fourier Transform X( k )= ", XK ) disp ( " Magnitude Spectral Sample s= " ,abs( XK )) disp ( " Phase Spectral Sample s= ", phase ,) n = 0:N -1; K = 0:N -1; subplot (2 ,2 ,1) a = gca () ; a.x_location = "origin"; a.y_location = "origin"; plot2d3 ( "gnn" ,n , xn ) xlabel ( " Time I n d e x n−−−−> " ) ylabel ( " Ampli tude xn−−−−> " ) title ( " D i s c r e t e I n p u t S e q u e n c e " ) subplot (2 ,2 ,2) a = gca () ; a.x_location = "origin"; a.y_location = "origin"; plot2d3 ( "gnn" ,K ,abs( XK ) ) xlabel ( " F r e q u e n c y Sample I n d e x K−−−−> " ) ylabel ( " |X(K)|−−−−> " ) title ( " Magni tude Spec t rum " ) subplot (2 ,2 ,3) a = gca () ; a.x_location = "origin"; a.y_location = "origin"; plot2d3 ( "gnn" ,K , phase ) xlabel ( " F r e q u e n c y Sample I n d e x K−−−−> " ) ylabel ( "<X(K) i n r a di a n s −−−−> " ) title ( " Phase Spec t rum " ) // Code block to find the IDFT of the sequence for n = 0: N -1 for K = 0: N -1 IXK ( n +1) = IXK ( n +1) + XK ( K +1) * exp ( %i *2* %pi * K *n/ N ) ; end end IXK = IXK / N; ixn = real(IXK) ; subplot (2 ,2 ,4) a = gca () ; a.x_location = "origin"; a.y_location = "origin"; plot2d3 ( "gnn",[0:N-1] , ixn ) xlabel ( " Discrete Time Index n −−−−> " ) ylabel ( " Amplitude x [ n]−−−−> " ) title ( " IDFT s e q u e n c e " ) //Example // // E n t e r t h e r e a l i n p u t d i s c r e t e s e q u e n c e x [ n //] = [ 1 , 2 , 3 , 4 ] // // D i s c r e t e F o u r i e r T ran sfo rm X( k )= // // 1 0 . − 2 . + 2 . i − 2 . − 9 . 7 9 7D−16 i − 2 . − 2 . i // // Magni tude S p e c t r a l Sample s= // // 1 0 . 2 . 8 2 8 4 2 7 1 2 . 2 . 8 2 8 4 2 7 1 // // Phase S p e c t r a l Sample s= // // 0 . 1 3 5 . 1 8 0 . 2 2 5 .
28363ec80ff65f6c079eeaeef73780bc86133214
b5a6d0e4c3d84d1a446434b60e55627f017991d7
/pruebas.sce
d122f2c427de5a9bacde97fa1399bc0ecf29b900
[]
no_license
mayra-diaz/Scilab-Funciones-Matrices
249cdec506befa4e5e88da9aaf8f6752e401153f
dc89d7dccc7fd22851e6a31867f986cb543b4c50
refs/heads/master
2022-12-10T12:50:48.449166
2020-09-14T01:10:43
2020-09-14T01:10:43
259,477,803
0
0
null
null
null
null
UTF-8
Scilab
false
false
1,485
sce
pruebas.sce
// Comando exec: // exec('...ruta\archivo.sce', tipo) // ------------------------------------------------------------------------// // Algebra Lineal //exec('~\mate-III\Algebra-Lineal-en-Scilab\algebra_lineal.sce', -1) // Potencia Inversa //exec('~\mate-III\Algebra-Lineal-en-Scilab\valores_propios.sce', -1) // Rotacion //exec('~\mate-III\Algebra-Lineal-en-Scilab\rotaciones.sce', -1) // ------------------------------------------------------------------------// // Punto fijo - Bisección //exec('~\mate-III\Algebra-Lineal-en-Scilab\localizacion_raices.sce', -1) // Jacobi - Gauss Seidel //exec('~\mate-III\Algebra-Lineal-en-Scilab\aproximacion_sistemas.sce',-1) // Minimos Cuadrados //exec('~\mate-III\Algebra-Lineal-en-Scilab\minimos_cuadrados.sce',-1) // Ajuste QR //exec('~\mate-III\Algebra-Lineal-en-Scilab\ajuste_qr.sce', -1) // Interpolacion Polinomial-Newton-Lagrange //exec('~\mate-III\Algebra-Lineal-en-Scilab\interpolacion.sce', -1) // Spline natural //exec('~\mate-III\Algebra-Lineal-en-Scilab\spline_natural.sce', -1) // Integracion numerica //exec('~\mate-III\Algebra-Lineal-en-Scilab\integracion_numerica.sce', -1) deff('y=f(x)', 'y=3*(x-4)-sin(2*x)') a = 0 b = 5 c = (a+b)/2 err = (b-a)/2 disp("a b c f(a) f(b) f(c) error") z = [a b c f(a) f(b) f(c) err] for i = 1:it if f(a)*f(c) < 0 then b = c else a = c end c = (a+b)/2 err = err/2 z = [z; a b c f(a) f(b) f(c) err] end disp(z, 'z');
82333b734104554f9cd89f5b45779be96b96eab8
e82d1909ffc4f200b5f6d16cffb9868f3b695f2a
/Lista 2/NormaP.sce
2f30974e6a5c0203fcc78f5e29e765b7500b600f
[]
no_license
AugustoCam95/Computational-Linear-Algebra
eb14307dd3b45ccc79617efe74d1faca639c36c5
99b1a1f9499fbc4343bd5c878444e9e281952774
refs/heads/master
2020-03-30T22:26:23.790763
2018-10-05T03:34:06
2018-10-05T03:34:06
151,666,289
0
0
null
null
null
null
UTF-8
Scilab
false
false
775
sce
NormaP.sce
// José Augusto Câmara Filho - Matemática Industrial //ATENÇÃO EXECUTAR ESTÁ FUNÇÃO JUNTO COM A FUNÇÃO AUXILIAR "norma". function x= NormaP(A,p,m) [l, c] = size(A); //Armazena em l e c, o tamanho das linhas e das colunas v= zeros(1,m); //inicia um vetor com todos os elementos iguais a zero for i=1:m s(:,i)= rand(c,1); //gera m vetores randômicos de acordo com a entrada do usuário end for i=1:m v(i)= norma(A*s(:,i),p)/norma(s(:,i),p); //calcula a norma através da função auxiliar "norma" com o p definido pelo usuário e em seguida armazena o valor no vetor v(i) end x = max(v); //pega o maior elemento e armazena na variável x que será o retorno da função endfunction
a9d9de52162092f50c13ed19652aca01240db2a6
449d555969bfd7befe906877abab098c6e63a0e8
/3556/CH2/EX2.17/Ex2_17.sce
0ffc708d07d9e3d07d1f13645559959d4e2a10de
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,018
sce
Ex2_17.sce
clc // Fundamental of Electric Circuit // Charles K. Alexander and Matthew N.O Sadiku // Mc Graw Hill of New York // 5th Edition // Part 1 : DC Circuits // Chapter 2: Basic Laws // Example 2 - 17 clear; clc; close; // // Given data V1 = 1.00; V2 = 5.00; V3 = 50.00; V4 = 100.00; Rm = 2000.00 Ifs = 0.00010 // // Calculations // Calculations R1 R1 = (V1/Ifs) - Rm; // Calculations R2 R2 = (V2/Ifs) - Rm; // Calculations R3 R3 = (V3/Ifs) - Rm; // Calculations R4 R4 = (V4/Ifs) - Rm; // Display the result disp("Example 2-17 Solution : "); printf(" \n R1 : Resistance for range 0 - 1 volt = %.3f Kilo-ohm ",R1/1000); printf(" \n R2 : Resistance for range 0 - 5 volt = %.3f Kilo-ohm ",R2/1000); printf(" \n R3 : Resistance for range 0 - 50 volt = %.3f Kilo-ohm ",R3/1000); printf(" \n R4 : Resistance for range 0 - 100 volt = %.3f Kilo-ohm ",R4/1000);
4caa6bdac0de6d72ce10bdd825270872c049d488
449d555969bfd7befe906877abab098c6e63a0e8
/608/CH43/EX43.15/43_15.sce
0e17c89439fa3ec5119a221294b4bc46e0b5d06f
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,234
sce
43_15.sce
//Problem 43.15:A mutual inductor is used to couple a 20 ohm resistive load to a 50/_0° V generator as shown in Figure 43.18. The generator has an internal resistance of 5 ohm and the mutual inductor parameters are R1 = 20 ohm , L1 = 0.2 H, R2 = 25 ohm , L2 = 0.4 H and M = 0.1 H. The supply frequency is 75/pi Hz. Determine (a) the generator current I1 and (b) the load current I2 . //initializing the variables: E1 = 50; // in Volts thetae1 = 0; // in degrees r = 5; // in ohm R1 = 20; // in ohm L1 = 0.2; // in Henry L2 = 0.4; // in Henry R2 = 25; // in ohm RL = 20; // in ohm M = 0.1; // in Henry f = 75/%pi; // in Hz //calculation: w = 2*%pi*f //voltage E1 = E1*cos(thetae1*%pi/180) + %i*E1*sin(thetae1*%pi/180) //Applying Kirchhoff’s voltage law to the primary circuit gives //(r + R1 + %i*w*L1)*I1 - %i*w*M*I2 = E1 //Applying Kirchhoff’s voltage law to the secondary circuit gives //-1*%i*w*M*I1 + ( R2 + RL + %i*w*L2)*I2 = 0 //solving these two I2 = E1/((r + R1 + %i*w*L1)*(R2 + RL + %i*w*L2)/(%i*w*M) + (-1*%i*w*M)) I1 = I2*(R2 + RL + %i*w*L2)/(%i*w*M) printf("\n\n Result \n\n") printf("\n primary current I1 is %.2f +(%.2f)i A",real(I1), imag(I1)) printf("\n load current I2 is %.2f +(%.2f)i A",real(I2), imag(I2))
505d6cccc8f6cd776ac4dc573b85fc56bb25e1e2
449d555969bfd7befe906877abab098c6e63a0e8
/695/CH2/EX2.16/Ex2_16.sce
e49852d4382ad631a2a83cf94276af509d8cef64
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
569
sce
Ex2_16.sce
//Caption:Find the (a)Flux per pole (b)total number of conductors (c) torque //Exa:2.16 clc; clear; close; I_a=50;//in amperes P=6;//no.of poles E_g=200;//in volts N=1500;//speed in rpm A=6; L=0.25;//in meter d=0.2;//in meter B=0.9;//in tesla Theta=360/P;//angle subtended by pole shoe in degrees l=%pi*L*Theta/360;//arc length of pole shoe in meter area=l*d;//in meter^2 Phy=B*area; disp(Phy,'(a) Flux per pole (in Weber)='); Z=ceil(E_g*60/(Phy*N)); disp(Z,'(b) Total no. of conductors='); T=9.55*E_g*I_a/N; disp(T,'(c) Torque (in Newton-meter)=')
4c525f1675068226c22d5916ae4a0e8c4b53f911
449d555969bfd7befe906877abab098c6e63a0e8
/1862/CH20/EX20.7/C20P7.sce
c11b21ea6ee7fa79ed472b5c0a0d4f81810e5c05
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
618
sce
C20P7.sce
clear clc //to find speed of electron as fraction of c and as difference from c //Given: //kinetic energy of electron K = 50//in GeV //value of mc_square mc_square = 0.511e-3//in GeV //speed of light c = 3.00e8//in m/s //Solution: //appiying fomule for relativistic energy //speed of electron as fraction of c v = sqrt(1-(1/(1+(K/mc_square)^2)))//times c //speed of electron as difference from c c_minus_v = (5.2e-11)*c//in m/s printf ("\n\n Speed of electron as fraction of c v = \n\n %.12fc" ,v); printf ("\n\n Speed of electron as difference from c c_minus_v = \n\n %.3f m/s" ,c_minus_v);
7ddc7a600fec2a29f48dffe1022dd0666cd670bb
2099a9bd609028f0b6e382b2a9d95bedeb63f999
/HackALU/HackALU.tst
42a44b7f1a2620ded0a2bde4d9e3ede36fda0f08
[]
no_license
NothingToSay77/HackALU
3ace07fa37fb94e00ad0dc107a3d0a4d731abb42
11112c2d1f12a95414b34a5ddcd95963ac4e824a
refs/heads/main
2023-06-26T21:28:28.977155
2021-07-19T08:16:37
2021-07-19T08:16:37
387,389,770
0
0
null
null
null
null
UTF-8
Scilab
false
false
5,157
tst
HackALU.tst
/*Script for HackALU*/ load HackALU.hdl, output-file HackALU.out, output-list x%B3.16.3 y%B3.16.3 zx%B3.1.3 nx%B3.1.3 zy%B3.1.3 ny%B3.1.3 f%B3.1.3 no%B3.1.3 Out%B3.16.3 zr%B3.1.3 ng%B3.1.3; /*The test cases for x=13 y=6 i.e x>0 y>0 and x>y*/ set x %B0000000000001101, set y %B0000000000000110, set zx 1, set nx 0, set zy 1, set ny 0, set f 1, set no 0, eval, output; set x %B0000000000001101, set y %B0000000000000110, set zx 1, set nx 1, set zy 1, set ny 1, set f 1, set no 1, eval, output; set x %B0000000000001101, set y %B0000000000000110, set zx 1, set nx 1, set zy 1, set ny 0, set f 1, set no 0, eval, output; set x %B0000000000001101, set y %B0000000000000110, set zx 0, set nx 0, set zy 1, set ny 1, set f 0, set no 0, eval, output; set x %B0000000000001101, set y %B0000000000000110, set zx 1, set nx 1, set zy 0, set ny 0, set f 0, set no 0, eval, output; set x %B0000000000001101, set y %B0000000000000110, set zx 0, set nx 0, set zy 1, set ny 1, set f 0, set no 1, eval, output; set x %B0000000000001101, set y %B0000000000000110, set zx 1, set nx 1, set zy 0, set ny 0, set f 0, set no 1, eval, output; set x %B0000000000001101, set y %B0000000000000110, set zx 0, set nx 0, set zy 1, set ny 1, set f 1, set no 1, eval, output; set x %B0000000000001101, set y %B0000000000000110, set zx 1, set nx 1, set zy 0, set ny 0, set f 1, set no 1, eval, output; set x %B0000000000001101, set y %B0000000000000110, set zx 0, set nx 1, set zy 1, set ny 1, set f 1, set no 1, eval, output; set x %B0000000000001101, set y %B0000000000000110, set zx 1, set nx 1, set zy 0, set ny 1, set f 1, set no 1, eval, output; set x %B0000000000001101, set y %B0000000000000110, set zx 0, set nx 0, set zy 1, set ny 1, set f 1, set no 0, eval, output; set x %B0000000000001101, set y %B0000000000000110, set zx 1, set nx 1, set zy 0, set ny 0, set f 1, set no 0, eval, output; set x %B0000000000001101, set y %B0000000000000110, set zx 0, set nx 0, set zy 0, set ny 0, set f 1, set no 0, eval, output; set x %B0000000000001101, set y %B0000000000000110, set zx 0, set nx 1, set zy 0, set ny 0, set f 1, set no 1, eval, output; set x %B0000000000001101, set y %B0000000000000110, set zx 0, set nx 0, set zy 0, set ny 1, set f 1, set no 1, eval, output; set x %B0000000000001101, set y %B0000000000000110, set zx 0, set nx 0, set zy 0, set ny 0, set f 0, set no 0, eval, output; set x %B0000000000001101, set y %B0000000000000110, set zx 0, set nx 1, set zy 0, set ny 1, set f 0, set no 1, eval, output; /*Test cases for x=7 ,y=-2 i.e x>0 y<0 |x|>|y|*/ set x %B0000000000000111, set y %B1111111111111110, set zx 1, set nx 0, set zy 1, set ny 0, set f 1, set no 0, eval, output; set x %B0000000000000111, set y %B1111111111111110, set zx 1, set nx 1, set zy 1, set ny 1, set f 1, set no 1, eval, output; set x %B0000000000000111, set y %B1111111111111110, set zx 1, set nx 1, set zy 1, set ny 0, set f 1, set no 0, eval, output; set x %B0000000000000111, set y %B1111111111111110, set zx 0, set nx 0, set zy 1, set ny 1, set f 0, set no 0, eval, output; set x %B0000000000000111, set y %B1111111111111110, set zx 1, set nx 1, set zy 0, set ny 0, set f 0, set no 0, eval, output; set x %B0000000000000111, set y %B1111111111111110, set zx 0, set nx 0, set zy 1, set ny 1, set f 0, set no 1, eval, output; set x %B0000000000000111, set y %B1111111111111110, set zx 1, set nx 1, set zy 0, set ny 0, set f 0, set no 1, eval, output; set x %B0000000000000111, set y %B1111111111111110, set zx 0, set nx 0, set zy 1, set ny 1, set f 1, set no 1, eval, output; set x %B0000000000000111, set y %B1111111111111110, set zx 1, set nx 1, set zy 0, set ny 0, set f 1, set no 1, eval, output; set x %B0000000000000111, set y %B1111111111111110, set zx 0, set nx 1, set zy 1, set ny 1, set f 1, set no 1, eval, output; set x %B0000000000000111, set y %B1111111111111110, set zx 1, set nx 1, set zy 0, set ny 1, set f 1, set no 1, eval, output; set x %B0000000000000111, set y %B1111111111111110, set zx 0, set nx 0, set zy 1, set ny 1, set f 1, set no 0, eval, output; set x %B0000000000000111, set y %B1111111111111110, set zx 1, set nx 1, set zy 0, set ny 0, set f 1, set no 0, eval, output; set x %B0000000000000111, set y %B1111111111111110, set zx 0, set nx 0, set zy 0, set ny 0, set f 1, set no 0, eval, output; set x %B0000000000000111, set y %B1111111111111110, set zx 0, set nx 1, set zy 0, set ny 0, set f 1, set no 1, eval, output; set x %B0000000000000111, set y %B1111111111111110, set zx 0, set nx 0, set zy 0, set ny 1, set f 1, set no 1, eval, output; set x %B0000000000000111, set y %B1111111111111110, set zx 0, set nx 0, set zy 0, set ny 0, set f 0, set no 0, eval, output; set x %B0000000000000111, set y %B1111111111111110, set zx 0, set nx 1, set zy 0, set ny 1, set f 0, set no 1, eval, output;
81e4173dfa6d3f0796a363c6cb0cec244fdadd43
449d555969bfd7befe906877abab098c6e63a0e8
/10/CH7/EX4/cha7_4.sce
567e527df244d9c2774461f326e605411bc96996
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
2,986
sce
cha7_4.sce
V=120;F=60;Pole=4;Zm=1.5+4.0;Za=3+6; Xa=6;Xm=4;Rm=1.5;Ra=3; Ra=(Xa/Xm)*(Rm+sqrt(18.25)) C=(2*%pi*F)*(Xa+(Ra*Rm)/(Xm+sqrt(18.25))) a=((-Xm*Ra)+(sqrt(18.25)*sqrt(13.2))) Xc=Xa+(a/Rm) Ia=V/(3+%i*6) function[r,theta]=rect2polar(x,y) r=sqrt(x^2+y^2); theta=atan(y/x)*180/%pi; endfunction [Is,Angle]=rect2polar(8,-16) Im=V/(1.5+%i*4) function[r,theta]=rect2polar(x,y) r=sqrt(x^2+y^2); theta=atan(y/x)*180/%pi; endfunction [Is1,Angle1]=rect2polar(9.86,-26.3) Alfa=Angle1-Angle Ts=Is*sin(%pi*6.01/180) function[x,y]=polar2rect(r,theta) x=r*cos(theta*%pi/180); y=r*sin(theta*%pi/180); endfunction [a,b]=polar2rect(Is1,Angle1) X=a+%i*b C=1/C*10^6 a=((-Xm*Ra)+(sqrt(18.25)*sqrt(13.2))) Xc=Xa+(a/Rm) C=10^6/(2*%pi*F*Xc) Ia=V/(3+%i*6) function[r,theta]=rect2polar(x,y) r=sqrt(x^2+y^2); theta=atan(y/x)*180/%pi; endfunction [Is,Angle]=rect2polar(8,-16) Im=V/(1.5+%i*4) [Is1,Angle1]=rect2polar(9.86,-26.3) Alfa=Angle1-Angle Ts=Is*sin(%pi*6.01/180) function[x,y]=polar2rect(r,theta) x=r*cos(theta*%pi/180); y=r*sin(theta*%pi/180); endfunction [a,b]=polar2rect(Is1,Angle1) X=a+%i*b [c,d]=polar2rect(Is,Angle) X1=c+%i*d X2=X+X1 function[r,theta]=rect2polar(x,y) r=sqrt(x^2+y^2); theta=atan(y/x)*180/%pi; endfunction [I,Angle]=rect2polar(17.86,-42.3) Ia=V/(Ra+%i*Xa) function[r,theta]=rect2polar(x,y) r=sqrt(x^2+y^2); theta=atan(y/x)*180/%pi; endfunction [Ia,Angle]=rect2polar(9.3,-6.4) Alfa=69.33-34.53 Ts=Ia*sin(%pi*Alfa/180) function[x,y]=polar2rect(r,theta) x=r*cos(theta*%pi/180); y=r*sin(theta*%pi/180); endfunction [Is,Angle]=polar2rect(Ia,Angle) [Is1,Angle1]=polar2rect(28.1,-69.44) X=Is+%i*Angle X1=Is1+%i*Angle1 X2=Is+%i*Angle X=X1+X2 function[r,theta]=rect2polar(x,y) r=sqrt(x^2+y^2); theta=atan(y/x)*180/%pi; endfunction [Is,Angle]=rect2polar(19.1,-32.7) Xc=10^6/(2*%pi*F*405) Ia=V/(Ra+(%i*6+%i*6.55)) function[r,theta]=rect2polar(x,y) r=sqrt(x^2+y^2); theta=atan(y/x)*180/%pi; endfunction [Is,Angle]=rect2polar(2.16,-9.04) Ia=V/(Ra+(%i*6-%i*6.55)) [Is,Angle]=rect2polar(38.6,7.09) Alfa=69.44+Angle Ts=Is*sin(%pi*Alfa/180) function[x,y]=polar2rect(r,theta) x=r*cos(theta*%pi/180); y=r*sin(theta*%pi/180); endfunction [Is,Angle]=polar2rect(28.1,-69.44) [Is1,Angle1]=polar2rect(39.34,10.4) X1=Is+%i*Angle X2=Is1+%i*Angle1 X=X1+X2 function[r,theta]=rect2polar(x,y) r=sqrt(x^2+y^2); theta=atan(y/x)*180/%pi; endfunction [Is,Angle]=rect2polar(48.56,-19.20) Ia=V/(Ra+(%i*Xa-%i*Xc)) function[r,theta]=rect2polar(x,y) r=sqrt(x^2+y^2); theta=atan(y/x)*180/%pi; endfunction [I,Angle]=rect2polar(23.9,19.6) Alfa=69.44+39.5 Ts=I*sin(%pi*Alfa/180) function[x,y]=polar2rect(r,theta) x=r*cos(theta*%pi/180); y=r*sin(theta*%pi/180); endfunction [Is,Angle]=polar2rect(28.1,-69.44) [Is1,Angle1]=polar2rect(I,39.35) X=Is+%i*Angle X1=Is1+%i*Angle1 X2=X+X1 function[r,theta]=rect2polar(x,y) r=sqrt(x^2+y^2); theta=atan(y/x)*180/%pi; endfunction [I,Angle]=rect2polar(33.7,-6.7)
b3ad375969a10bb063a77ade345f9acab3043744
449d555969bfd7befe906877abab098c6e63a0e8
/3532/CH7/EX7.4.1/Ex7_5.sce
c14b212b0fa9494bfe76e50525e6215f7a1d21e5
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,089
sce
Ex7_5.sce
clc clear mprintf('Mechanical vibrations by G.K.Grover\n Example 7.4.1\n') //given data E=1.96*10^11//youngs modulus in N/m^2 I=4*10^-7//moment of area in m^4 M1=100;M2=50//mass of discs 1 and 2 in Kgs c=0.18//distance of disc 1 from support in m l=0.3//distance of disc 2 from support in m g=9.81//aceleration due to gravity in m/sec^2 //calculations a=[(c^3/(3*E*I)),(c^2/(6*E*I)*(3*l-c));(c^2/(6*E*I)*(3*l-c)),(l^3/(3*E*I))]//from SOM x1(1)=1;x2(1)=1 for i=1:10//upto 10th iteration for more perfect answer F1(i)=100*x1(i)//'i' represents the dash(') F2(i)=50*x2(i) x1(i)=F1(i)*a(1,1)+F2(i)*a(1,2) x2(i)=F1(i)*a(2,1)+F2(i)*a(2,2) r=(x2(i)/x1(i)) x2(i+1)=r x1(i+1)=1 end x1dd=1 W1=(x1dd/x1(10)) W2=(r/x2(10)) Wn=sqrt((W1+W2)/2)//natural frequency in rad/sec mprintf('The natural frequency of system in iilustrative example 7.2.1 obtained by\nStodala method is Wn=%f rad/sec',Wn) mprintf('\nNOTE:The obtained answer is more near to the perfect answer \since 10 iterations/trials\nhas been carried out.In textbook only upto 3rd iteration has been carried out')
02a7761b18943e77ee83d5cd81b37d51b4145581
449d555969bfd7befe906877abab098c6e63a0e8
/1026/CH6/EX6.19/Example6_19.sce
a25c278aa30f10f29b03f7b4c50f34d792dff308
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
145
sce
Example6_19.sce
//chapter6,Example6_19,pg 148 Ie=1*10^-3 Ib=0.04*10^-3 Ic=Ie-Ib alpha=Ic/Ie printf("current gain\n") printf("alpha=%.2f",alpha)