blob_id
stringlengths 40
40
| directory_id
stringlengths 40
40
| path
stringlengths 4
214
| content_id
stringlengths 40
40
| detected_licenses
listlengths 0
50
| license_type
stringclasses 2
values | repo_name
stringlengths 6
115
| snapshot_id
stringlengths 40
40
| revision_id
stringlengths 40
40
| branch_name
stringclasses 21
values | visit_date
timestamp[us] | revision_date
timestamp[us] | committer_date
timestamp[us] | github_id
int64 141k
586M
⌀ | star_events_count
int64 0
30.4k
| fork_events_count
int64 0
9.67k
| gha_license_id
stringclasses 8
values | gha_event_created_at
timestamp[us] | gha_created_at
timestamp[us] | gha_language
stringclasses 50
values | src_encoding
stringclasses 23
values | language
stringclasses 1
value | is_vendor
bool 1
class | is_generated
bool 1
class | length_bytes
int64 5
10.4M
| extension
stringclasses 29
values | filename
stringlengths 2
96
| content
stringlengths 5
10.4M
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
66fbb93adedededa84347ffa55ecd29ae9fa63e5
|
cb4516492965c75d14c9d499c387d3cd0b883bc4
|
/X3/Section 7 -Tools Environmental Effects/7.1 Joachim Diepstraten, Mike Eißele/cubetexturetest.tst
|
38be1130667d190770499494ada250459925527c
|
[
"LicenseRef-scancode-warranty-disclaimer"
] |
no_license
|
nedma/ShaderX
|
48367dfc1153e4e6ad6bb5c205777285b06376c5
|
0503dd6ae16f3d288f2e27b0f93ebdfbaf1f4436
|
refs/heads/master
| 2020-04-08T01:51:11.173038 | 2018-11-24T08:37:42 | 2018-11-24T08:37:42 | 158,911,553 | 0 | 3 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 24 |
tst
|
cubetexturetest.tst
|
\shader\texld_cube.psh
|
31aed65a68cc1323f03375b094a3c220d3bc738d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2321/CH15/EX15.8.2/EX15_8_2.sce
|
f69d6a5c7cf87de75c16f267da06a1b68065d6a2
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 568 |
sce
|
EX15_8_2.sce
|
//Example No. 15.8.2
clc;
clear;
close;
format('v',6);
Nm_D=400;//electron/cm^3(Maximum electron density)
Nm_E=5*10^5;//electron/cm^3(Maximum electron density)
Nm_F=2*10^6;//electron/cm^3(Maximum electron density)
fc_D=9*sqrt(Nm_D);//kHz(critical frequency of D-layer)
disp(fc_D,"Critical frequency for D-layer in kHz : ");
fc_E=9*sqrt(Nm_E);//kHz(critical frequency of E-layer)
disp(fc_E/1000,"Critical frequency for E-layer in MHz : ");
fc_F=9*sqrt(Nm_F);//kHz(critical frequency of F-layer)
disp(fc_F/1000,"Critical frequency for F-layer in MHz : ");
|
af42655c59449ae0c43aeed65ea7400928363003
|
42fdf741bf64ea2e63d1546bb08356286f994505
|
/test_0802_figure4_step_responses/graph_stepresponse_experiment01.sce
|
685f41b0847e46598e453ec69f59cc2d62cf0ffe
|
[] |
no_license
|
skim819/RASP_Workspace_sihwan
|
7e3cd403dc3965b8306ec203007490e3ea911e3b
|
0799e146586595577c8efa05c647b8cb92b962f4
|
refs/heads/master
| 2020-12-24T05:22:25.775823 | 2017-04-01T22:15:18 | 2017-04-01T22:15:18 | 41,511,563 | 1 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 10,109 |
sce
|
graph_stepresponse_experiment01.sce
|
clear data_00;clear data_01;clear data_02;clear data_03;clear data_04;
data_00 = fscanfMat('./DATA_storage_experiment1/Figure4_experiment1_case00.txt'); // time Vout Vin
data_01 = fscanfMat('./DATA_storage_experiment1/Figure4_experiment1_case01.txt');
data_02 = fscanfMat('./DATA_storage_experiment1/Figure4_experiment1_case02.txt');
data_03 = fscanfMat('./DATA_storage_experiment1/Figure4_experiment1_case03.txt');
data_04 = fscanfMat('./DATA_storage_experiment1/Figure4_experiment1_case04.txt');
//temp_1=[mean(data_00(7000:8000,2)); mean(data_01(7000:8000,2)); mean(data_02(7000:8000,2)); mean(data_03(7000:8000,2)); mean(data_04(7000:8000,2))];
//mean(temp_1); // constant = 1.324
data_00(:,4) = 1.324 - data_00(:,2);
data_01(:,4) = 1.324 - data_01(:,2);
data_02(:,4) = 1.324 - data_02(:,2);
data_03(:,4) = 1.324 - data_03(:,2);
data_04(:,4) = 1.324 - data_04(:,2);
scf(1);clf(1);
//plot2d("nn", data_00(:,1), data_00(:,2));p = get("hdl"); p.children.mark_style = 9; p.children.mark_foreground = 1;p.children.mark_mode = 'on';p.children.line_mode = 'off';
//plot2d("nn", data_00(:,1), data_00(:,3));p = get("hdl"); p.children.mark_style = 9; p.children.mark_foreground = 2;p.children.mark_mode = 'on';p.children.line_mode = 'off';
plot2d("nn",data_00(:,1), data_00(:,3));p = get("hdl"); p.children.line_style = 1; p.children.foreground = 1;p.children.line_mode = 'on';p.children.mark_mode = 'off';
plot2d("nn",data_00(:,1), data_00(:,2));p = get("hdl"); p.children.line_style = 1; p.children.foreground = 2;p.children.line_mode = 'on';p.children.mark_mode = 'off';
plot2d("nn",data_00(:,1), data_01(:,2));p = get("hdl"); p.children.line_style = 1; p.children.foreground = 3;p.children.line_mode = 'on';p.children.mark_mode = 'off';
plot2d("nn",data_00(:,1), data_02(:,2));p = get("hdl"); p.children.line_style = 1; p.children.foreground = 4;p.children.line_mode = 'on';p.children.mark_mode = 'off';
plot2d("nn",data_00(:,1), data_03(:,2));p = get("hdl"); p.children.line_style = 1; p.children.foreground = 5;p.children.line_mode = 'on';p.children.mark_mode = 'off';
plot2d("nn",data_00(:,1), data_04(:,2));p = get("hdl"); p.children.line_style = 1; p.children.foreground = 6;p.children.line_mode = 'on';p.children.mark_mode = 'off';
//plot2d("nn",range_gm , fit_gm);p = get("hdl"); p.children.line_style = 1; p.children.foreground = 2;p.children.line_mode = 'on';p.children.mark_mode = 'off';
a=gca();a.data_bounds(1,1)=-0.5E-04;a.data_bounds(1,2)=1.15;a.data_bounds(2,1)=4.5E-04;a.data_bounds(2,2)=1.35;
//a=gca();a.data_bounds(1,1)=-0.1;a.data_bounds(1,2)=0;a.data_bounds(2,1)=0.2;a.data_bounds(2,2)=20;
//legend("Target program 100nA","Target program 50nA","Target program 10nA","in_upper_left"); // "in_upper_left" "in_lower_right"
xtitle("","time [s]","V [V]");
scf(2);clf(2);
//plot2d("nn", data_00(:,1), data_00(:,2));p = get("hdl"); p.children.mark_style = 9; p.children.mark_foreground = 1;p.children.mark_mode = 'on';p.children.line_mode = 'off';
//plot2d("nn", data_00(:,1), data_00(:,3));p = get("hdl"); p.children.mark_style = 9; p.children.mark_foreground = 2;p.children.mark_mode = 'on';p.children.line_mode = 'off';
//plot2d("nn",data_00(:,1), data_00(:,3));p = get("hdl"); p.children.line_style = 1; p.children.foreground = 1;p.children.line_mode = 'on';p.children.mark_mode = 'off';
plot2d("nn",data_00(:,1), data_00(:,4));p = get("hdl"); p.children.line_style = 1; p.children.foreground = 2;p.children.line_mode = 'on';p.children.mark_mode = 'off';
plot2d("nn",data_00(:,1), data_01(:,4));p = get("hdl"); p.children.line_style = 1; p.children.foreground = 3;p.children.line_mode = 'on';p.children.mark_mode = 'off';
plot2d("nn",data_00(:,1), data_02(:,4));p = get("hdl"); p.children.line_style = 1; p.children.foreground = 4;p.children.line_mode = 'on';p.children.mark_mode = 'off';
plot2d("nn",data_00(:,1), data_03(:,4));p = get("hdl"); p.children.line_style = 1; p.children.foreground = 5;p.children.line_mode = 'on';p.children.mark_mode = 'off';
plot2d("nn",data_00(:,1), data_04(:,4));p = get("hdl"); p.children.line_style = 1; p.children.foreground = 6;p.children.line_mode = 'on';p.children.mark_mode = 'off';
//plot2d("nn",range_gm , fit_gm);p = get("hdl"); p.children.line_style = 1; p.children.foreground = 2;p.children.line_mode = 'on';p.children.mark_mode = 'off';
//a=gca();a.data_bounds(1,1)=-0.5E-04;a.data_bounds(1,2)=1.15;a.data_bounds(2,1)=4.5E-04;a.data_bounds(2,2)=1.35;
//a=gca();a.data_bounds(1,1)=-0.1;a.data_bounds(1,2)=0;a.data_bounds(2,1)=0.2;a.data_bounds(2,2)=20;
//legend("Target program 100nA","Target program 50nA","Target program 10nA","in_upper_left"); // "in_upper_left" "in_lower_right"
xtitle("","time [s]","Vconstant - Vout [V]");
scf(3);clf(3);
//plot2d("nn", data_00(:,1), data_00(:,2));p = get("hdl"); p.children.mark_style = 9; p.children.mark_foreground = 1;p.children.mark_mode = 'on';p.children.line_mode = 'off';
//plot2d("nn", data_00(:,1), data_00(:,3));p = get("hdl"); p.children.mark_style = 9; p.children.mark_foreground = 2;p.children.mark_mode = 'on';p.children.line_mode = 'off';
//plot2d("nn",data_00(:,1), data_00(:,3));p = get("hdl"); p.children.line_style = 1; p.children.foreground = 1;p.children.line_mode = 'on';p.children.mark_mode = 'off';
plot2d("nl",data_00(:,1), data_00(:,4));p = get("hdl"); p.children.line_style = 1; p.children.foreground = 2;p.children.line_mode = 'on';p.children.mark_mode = 'off';
plot2d("nl",data_00(:,1), data_01(:,4));p = get("hdl"); p.children.line_style = 1; p.children.foreground = 3;p.children.line_mode = 'on';p.children.mark_mode = 'off';
plot2d("nl",data_00(:,1), data_02(:,4));p = get("hdl"); p.children.line_style = 1; p.children.foreground = 4;p.children.line_mode = 'on';p.children.mark_mode = 'off';
plot2d("nl",data_00(:,1), data_03(:,4));p = get("hdl"); p.children.line_style = 1; p.children.foreground = 5;p.children.line_mode = 'on';p.children.mark_mode = 'off';
plot2d("nl",data_00(:,1), data_04(:,4));p = get("hdl"); p.children.line_style = 1; p.children.foreground = 6;p.children.line_mode = 'on';p.children.mark_mode = 'off';
//plot2d("nn",range_gm , fit_gm);p = get("hdl"); p.children.line_style = 1; p.children.foreground = 2;p.children.line_mode = 'on';p.children.mark_mode = 'off';
a=gca();a.data_bounds(1,1)=-0.5E-04;a.data_bounds(1,2)=1E-03;a.data_bounds(2,1)=1.0E-04;a.data_bounds(2,2)=1E-01;
//a=gca();a.data_bounds(1,1)=-0.1;a.data_bounds(1,2)=0;a.data_bounds(2,1)=0.2;a.data_bounds(2,2)=20;
//legend("Target program 100nA","Target program 50nA","Target program 10nA","in_upper_left"); // "in_upper_left" "in_lower_right"
xtitle("","time [s]","Vconstant - Vout [V]");
//polyfit
[p_00,S_00]=polyfit(data_00(1200:1300,1), log(data_00(1200:1300,4)),1);
[p_01,S_01]=polyfit(data_01(1200:1500,1), log(data_01(1200:1500,4)),1);
[p_02,S_02]=polyfit(data_02(1200:1800,1), log(data_02(1200:1800,4)),1);
[p_03,S_03]=polyfit(data_03(1200:2200,1), log(data_03(1200:2200,4)),1);
[p_04,S_04]=polyfit(data_04(1200:2500,1), log(data_04(1200:2500,4)),1);
// Eval
range_00 = data_00(1200,1):70E-09:data_00(1300,1);
range_01 = data_01(1200,1):70E-09:data_01(1500,1);
range_02 = data_02(1200,1):70E-09:data_02(1800,1);
range_03 = data_03(1200,1):70E-09:data_03(2200,1);
range_04 = data_04(1200,1):70E-09:data_04(2500,1);
fit_00 = polyval(p_00,range_00,S_00);
fit_01 = polyval(p_01,range_01,S_01);
fit_02 = polyval(p_02,range_02,S_02);
fit_03 = polyval(p_03,range_03,S_03);
fit_04 = polyval(p_04,range_04,S_04);
scf(4);clf(4);
plot2d("nl",data_00(1200:1300,1), data_00(1200:1300,4));p = get("hdl"); p.children.mark_style = 9; p.children.mark_foreground = 1;p.children.mark_mode = 'on';p.children.line_mode = 'off';
plot2d("nl",data_01(1200:1500,1), data_01(1200:1500,4));p = get("hdl"); p.children.mark_style = 9; p.children.mark_foreground = 2;p.children.mark_mode = 'on';p.children.line_mode = 'off';
plot2d("nl",data_02(1200:1800,1), data_02(1200:1800,4));p = get("hdl"); p.children.mark_style = 9; p.children.mark_foreground = 3;p.children.mark_mode = 'on';p.children.line_mode = 'off';
plot2d("nl",data_03(1200:2200,1), data_03(1200:2200,4));p = get("hdl"); p.children.mark_style = 9; p.children.mark_foreground = 4;p.children.mark_mode = 'on';p.children.line_mode = 'off';
plot2d("nl",data_04(1200:2500,1), data_04(1200:2500,4));p = get("hdl"); p.children.mark_style = 9; p.children.mark_foreground = 5;p.children.mark_mode = 'on';p.children.line_mode = 'off';
plot2d("nl",range_00, exp(fit_00));p = get("hdl"); p.children.line_style = 1; p.children.thickness = 2; p.children.foreground = 1;p.children.line_mode = 'on';p.children.mark_mode = 'off';
plot2d("nl",range_01, exp(fit_01));p = get("hdl"); p.children.line_style = 1; p.children.thickness = 2; p.children.foreground = 2;p.children.line_mode = 'on';p.children.mark_mode = 'off';
plot2d("nl",range_02, exp(fit_02));p = get("hdl"); p.children.line_style = 1; p.children.thickness = 2; p.children.foreground = 3;p.children.line_mode = 'on';p.children.mark_mode = 'off';
plot2d("nl",range_03, exp(fit_03));p = get("hdl"); p.children.line_style = 1; p.children.thickness = 2; p.children.foreground = 4;p.children.line_mode = 'on';p.children.mark_mode = 'off';
plot2d("nl",range_04, exp(fit_04));p = get("hdl"); p.children.line_style = 1; p.children.thickness = 2; p.children.foreground = 5;p.children.line_mode = 'on';p.children.mark_mode = 'off';
a=gca();a.data_bounds(1,1)=0;a.data_bounds(1,2)=1E-03;a.data_bounds(2,1)=10.0E-05;a.data_bounds(2,2)=1E-01;
xtitle("","time [s]","Vconstant - Vout [V]");
//disp(-1/p_00(1,1)*1E06); disp(-1/p_01(1,1)*1E06); disp(-1/p_02(1,1)*1E06); disp(-1/p_03(1,1)*1E06); disp(-1/p_04(1,1)*1E06);
//disp(-1/p_00(1,1)*169*1E-09*1E12); disp(-1/p_01(1,1)*169*1E-09*1E12); disp(-1/p_02(1,1)*169*1E-09*1E12); disp(-1/p_03(1,1)*169*1E-09*1E12); disp(-1/p_04(1,1)*169*1E-09*1E12);
disp(-1/p_00(1,1)*1E06); disp(-1/p_01(1,1)*1E06); disp(-1/p_02(1,1)*1E06); disp(-1/p_03(1,1)*1E06); disp(-1/p_04(1,1)*1E06);
disp(-1/p_00(1,1)*145*1E-09*1E12); disp(-1/p_01(1,1)*145*1E-09*1E12); disp(-1/p_02(1,1)*145*1E-09*1E12); disp(-1/p_03(1,1)*145*1E-09*1E12); disp(-1/p_04(1,1)*145*1E-09*1E12);
|
bb24d57ad6af11f62e5949fd5b51e92d5c1f0d86
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/source/2.1.1/tmp/ensta/tp.sci
|
510bb4e53def56108c65637f0fbc1ce63e8ed10a
|
[
"LicenseRef-scancode-public-domain",
"LicenseRef-scancode-warranty-disclaimer",
"MIT"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111 | 2022-09-13T14:41:51 | 2022-09-13T14:41:51 | 258,270,193 | 0 | 1 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 2,989 |
sci
|
tp.sci
|
// Initialisations ...
s = poly(0,'s'); s = syslin('c',s*s/s);
// approx(G,ll) returns approximation of G by elts in ll
deff('res=approx(G,ll)',...
['res=0';
'n=length(ll)';
'for k=1:n,res=res+ll(k);end';
'res=res+horner(clean(G-res),0)'])
// W3dg1(p) returns p(0) (p degree one)
deff('res=w3dg1(p)','res=horner(p,0)+0*poly(0,''s'')');
// W3dg2(p) returns p1 with damping(p1) = k damping(p)
deff('p1=w3dg2(p,k)',...
['damp=coeff(p,1)';
'p1=poly([coeff(p,0),k*damp,coeff(p,2)],''s'',''coeff'')';])
Gr=(s+1)*(s-1)*(s+2)*(s^2+0.3*s+1)/((s+0.5)*(s^2*(s^2-0.1*s+2)*(s^2+0.1*s+1)));
G=Gr/s;
r=size(G);
fmin=0.01;fmax=10;
frq=calfrq(G,fmin,fmax);
W=pfss(G,'c');
W(1)=clean(w(1));
appr=[];yesno=[];
for k=1:size(w);
appr=[appr;'G'+string(k-1);];yesno=[yesno;'yes'];
end
yesno=x_mdialog("Choose elements",appr,yesno)
appr=' ';
for k=1:size(w)-1;
if yesno(k)=='yes' then appr=appr+'W('+string(k)+'),';end
end
k=size(w);
if yesno(k)=='yes' then appr=appr+'W('+string(k)+')';end
execstr('bode([G;approx(G,list('+appr+'))],frq)')
[lnum,dcgain]=factors(G,'c');
nb=length(lnum);
denominators=[];
numerators=[];
for k=1:nb,
lnumk=lnum(k);
denominators=[denominators;pol2str(lnumk)];
if degree(lnumk)==1 then
numerators=[numerators;pol2str(w3dg1(lnumk))];end
if degree(lnumk)==2 then
numerators=[numerators;pol2str(w3dg2(lnumk,2))];end
end
Numerators=x_mdialog('Denominators Numerators',Denominators,Numerators);
// J(s)
Js=1;
for k=1:nb,
Js=Js*evstr(numerators(k))/evstr(denominators(k));
end
sp=poly(0,'s');
Ms=sp+1;Ns=(sp+1);
mnns=x_mdialog("Choose Ms and Ns",[pol2str(Ms);'1/'+pol2str(sp+1)],...
[pol2str(Ms);'1/'+pol2str(sp+1)]);
Ms=evstr(Mnns(1));
Ns=evstr(Mnns(2));
Sys1=sysdiag(1,1,1,1,Ms);Sys2=sysdiag(1,Ns);
W5is=[];
for k=1:nb
W5is=[W5is;'W5'+string(k)];
end
w5=x_mdialog('Choose W5i s',W5is,string(ones(nb,1)));
ww5=[];
for k=1:nb;ww5(k)=evstr(w5(k));end
Rg=[diag(ww5');ones(ww5')]*[W(1)+W(2);W(2);W(3);W(4)];
U=[0,-1;1,-1];
amin = 0; amax = 2;
while (amax -amin)/amax > 1e-2,
a = (amin + amax)/2; write(%io(2),a,'(f6.4)')
w3=(1/2)*horner((1+s^3),s/a)*w3coeff;
P=sysdiag(tf2ss(w3),Rg)*U;
Ptmp=Sys1*P*Sys2;
[sk,mu]=H_inf(Ptmp,r,0.8,1.2,1);
if mu == [] then amin = a; else amax = a; end
end
w3=(1/ab)*horner((1+s^3),s/amin)*w3coeff;
P=sysdiag(tf2ss(w3),Rg)*U;
//xbasc();
xset("window",1);gainplot([w3;errmul],.1,1,0.005);
Ptmp=Sys1*P*Sys2;
[Ktmp,mu]=H_inf(Ptmp,r,0.9,1.1,30);
K=ss2tf(Ktmp)/s;
ks=trfmod(K);
olp=ks*proc;
rep2 = repfreq(ks,frq);
xbasc(2);
xset("window",2);xselect();nyquist(olp,0.03,0.8,0.00015);
m_circle(20*log(2.05)/log(10));xset("dashes",0);
sensit = rep1 ./(rep3 + rep1.*rep2);
xbasc(3);
xset("window",3);xselect();gainplot(frq,[sensit;rep1;rep2],['G/(1+KG)';'G';'K']);
www=lft(Ptmp,Ktmp);
xbasc(5);xset("window",5);xselect();
gainplot(www,0.01,10);
www1=lft(ss2tf(P),r,ks);
xbasc(6);xset("window",6);xselect();
gainplot(www1,0.01,10,['W3G/(1+KG)';'W50G0/(1+KG)';'W51G1/(1+KG)';'W52G2/(1+KG)']);
|
676b6597339b74369dc4869b4c3b253cf7e5b784
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3685/CH7/EX7.7/Ex7_7.sce
|
89200fe6a6d5b3541ee2c04d752bdb4b0cee0df6
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 615 |
sce
|
Ex7_7.sce
|
clc
P1 = 0.5 // Initial pressure in MPa
V1 = 0.2 // Initial volume in m^3
V2 = 0.05 // Final volume in m^3
n = 1.3 // Polytropic index
printf("\n Example 7.7")
P2 = P1*(V1/V2)^n
function y = f(p)
y = ((P1*V1^n)/p)^(1/n)
endfunction
H = integrate('f','p',P1,P2) // H = H2-H1
U = H-(P2*V2-P1*V1)
W12 = -U
printf("\n Change in enthalpy is %f kJ",H*1e3)
printf("\n Change in internal energy is %f kJ",U*1000)
printf("\n The change in entropy and heat transfer are is %d kJ",0)
printf("\n The work transfer during the process is %f kJ",W12*1000)
//The answers vary due to round off error
|
5130518744ef0884b42aa4c39eb5a400eb933788
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1523/CH1/EX1.2/1_2.sce
|
6b450c818a5c117040e7615a194f104b307110c2
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 383 |
sce
|
1_2.sce
|
//Basic Circuit Concepts
//page no-1.10
//example1.2
disp("from the given fig:")
disp("I2-I3=13");
disp("-20*I1+8*I2=0");
disp("-12*I1-16*I3=0");
//solving these equations in the matrix form
A=[0 1 -1;-20 8 0;-12 0 -16]
B=[13 0 0]'
disp("A=")
disp(A)
disp("B=")
disp(B)
X=inv(A)*B
disp("X=")
disp(X)
disp("I1 = 4Ampere")
disp("I2 = 10Ampere")
disp("I3 = -3Ampere")
|
724ff516f834a0742ae4866ca22688c43d1c3566
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/965/CH7/EX7.5/5.sci
|
7e92e37eee2bbfb4d83b2316bfbf4837734c914d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 456 |
sci
|
5.sci
|
clc;
clear all;
disp("Boundary layer thickness")
//uU=X
//y/delta=Y
//X=2*Y-Y^2;
L=1.1;//m length of plate
w=0.9;// m width of plate
Re=2*10^5;// Reynold's number
v=0.15*10^(-4);//m^2/s stokes kinematic viscocity
U=12;//m/s velocity ofair
x=Re*v/U;
disp("m",x,"Maximum distance from the leading edge upto which laminar boundary layer exists, x =")
delta=5.48*x*1000/(Re)^0.5;//mm
disp("mm",delta,"Maximum thickness of boundary layer =")
|
f612b0ffe8f800b91517e2f2c58063d071253922
|
518b77b4f75f1e023ec173d2cfa465812d9ffa2b
|
/oqpskdemod/ex_oqpskdemod.sce
|
8b1177b19f67abba2271b65e043db87c87b5a989
|
[] |
no_license
|
senthilkumarIRTT/Scilab-communication-toolbox
|
94fd7d1ad7408805817bb22a37a8e8eef135733b
|
b1bfd518daf8496f3a2c056d4dd996de327e1acc
|
refs/heads/master
| 2021-01-10T20:30:24.937033 | 2015-12-20T00:17:31 | 2015-12-20T00:17:31 | 41,198,649 | 0 | 0 | null | 2015-08-22T10:01:31 | 2015-08-22T08:40:51 | null |
UTF-8
|
Scilab
| false | false | 635 |
sce
|
ex_oqpskdemod.sce
|
clear;
clc;
exec('genqammod.sci')
exec('oqpskmod.sci')
exec('intdump.sci')
exec('oqpskdemod.sci')
exec('genqamdemod.sci')
clc;
M =4;
x =0:M-1;
y = oqpskmod(x)
disp(y,'QPSK modulated output=')
z = oqpskdemod(y)
disp(z,'QPSK demodulated output=')
//RESULT
//QPSK modulated output=
//column 1 to 2
//0.7071068 0.7071068 + 0.7071068i
//column 3 to 4
//0.7071068 + 0.7071068i 0.7071068 - 0.7071068i
//column 5 to 6
//- 0.7071068 - 0.7071068i - 0.7071068 + 0.7071068i
//column 7 to 8
//- 0.7071068 + 0.7071068i - 0.7071068 - 0.7071068i
//column 9
// - 0.7071068i
//QPSK demodulated output=
// 0. 1. 2. 3.
|
62665170249bc98ea4d52a4c508ee3f79266c4b3
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1844/CH4/EX4.9/4Q9.sce
|
3f3f853f4ed5e54a5d0138825630312dd768a22c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 128 |
sce
|
4Q9.sce
|
clc
BE=60 //in m
GD=BE
GH=40
HB=80
HD=GH+GD
CB=48/0.4// by solving similar triangles CHD and CBE
printf('CB = %f m',CB)
|
e51dc83962f49dc1483255e8b06a9729a4bcd5f9
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2921/CH3/EX3.5/Ex3_5.sce
|
2648cc2e5cb66e95bd911bc53aa7fb41de4b605c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 1,256 |
sce
|
Ex3_5.sce
|
clc;
clear;
mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-3.5 Page No.53\n');
L=30; //[in] Length of link
d=5/8; //[in] Diameter of link
I=%pi*d^4/64; //[in^4] Moment of inertia
A=%pi*d^2/4; //[in^2] Area of cross section
E=30*10^6; //[lb/in^2] Modulus of elasticity
r=sqrt(I/A); //[in] Radius of gyration
mprintf('\n The radius of gyration %f in.',r);
K=1; //[] End support condition factor
Le=K*L; //[in] Effective length
mprintf('\n Effective length is %f in',Le);
SR=Le/r; //[] Slenderness ratio
mprintf('\n Slenderness ratio is %f.',SR)
Sy=42000; //[lb/in^2] Yield strength
Cc=sqrt(2*%pi^2*E/Sy); //[] Column constant
mprintf('The column constant is %f.',Cc);
if SR>Cc then
mprintf('\n Slenderness ratio is greater than column constant, so use the euler formula')
end
I=%pi*d^4/64; //[in^4] Moment of inertia
mprintf('\n The moment of inertia is %f in^4',I);
Pc=%pi^2*E*I/Le^2; //[lb] Critical force
//Note- In the book I=0.0075 in^4 is used instead of I=0.0074901 in^4
mprintf('\n The critical force is %f lb.',Pc);
|
fcf8d7956716c3c670b12f5102a333db85c9bc39
|
417f69e36190edf7e19a030d2bb6aa4f15bb390c
|
/SMTTests/tests/err_defineSort2.tst
|
bd2b82bfbef5c5fb441a17fecf849f19dc34c71e
|
[] |
no_license
|
IETS3/jSMTLIB
|
aeaa7ad19be88117c7454d807a944e8581184a66
|
c724ac63056101bfeeb39cc3f366c8719aa23f7b
|
refs/heads/master
| 2020-12-24T12:41:17.664907 | 2019-01-04T10:47:43 | 2019-01-04T10:47:43 | 76,446,229 | 1 | 0 | null | 2016-12-14T09:46:41 | 2016-12-14T09:46:41 | null |
UTF-8
|
Scilab
| false | false | 98 |
tst
|
err_defineSort2.tst
|
; defining a sort with the same name
(set-logic QF_UF)
(declare-sort A 0)
(define-sort A () Bool)
|
3cc8d56429241132666ccbf272f48d512614f0e1
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2990/CH5/EX5.5/Ex5_5.sce
|
182266d6e36f53d4111f00e0e348c4ccce4780ea
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 710 |
sce
|
Ex5_5.sce
|
funcprot(0);
// Initialization of Variable
function[dms]=degtodms(deg)
d = int(deg)
md = abs(deg - d) * 60
m = int(md)
sd = (md - m) * 60
sd=round(sd*100)/100
dms=[d m sd]
endfunction
MST=12+32.0/60+15.0/3600//mean sidereal time in hr
RA=15+45.0/60+10.0/3600;//RA in hr
theta=55+14.0/60+20.0/3600//latitude
delta=15+24.0/60+30.0/3600//declination
alpha=35+44.0/60+10.0/3600//zenith distance
//calculation
c=90-theta;
p=90-delta;
z=90-alpha;
H=acos(cos(z*%pi/180)/sin(c*%pi/180)/sin(p*%pi/180)-1/(tan(p*%pi/180)*tan(c*%pi/180)))
H=H/15*180/%pi;
LST=RA-H;
CE=MST-LST;
CE=degtodms(CE);
disp(CE,"chronometer error in hours,min,sec respectively (fast)");
clear()
|
d97b62e4139d08f6601480039a85551261630baf
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1994/CH1/EX1.2/Example1_2.sce
|
4b9172c042c8ba1c9d021a3756534ac25e95155d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 172 |
sce
|
Example1_2.sce
|
//Chapter-1,Example1_2,pg 1_18
Eav=9
Erms=10
Rm=500
Idc=2*10^-3
Edc=0.9*Erms
Rs=(Edc/Idc)-Rm
printf("required multiplier resistance")
printf("Rs=%.2f ohm \n",Rs )
|
b346a8ed694956ee5f8dc2a65b0f72ceb01f6ad1
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/149/CH21/EX21.14.1/ques14_1.sce
|
5da1741c484d4f65c16f49dfb6f8a7b5a4ebde9c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 138 |
sce
|
ques14_1.sce
|
//ques14
disp('To find the inverse laplace transform of the function');
syms s t a
f=s^2/(s-2)^3;
il=ilaplace(f,s,t);
disp(il);
|
3a64aa7c79fec3386ea8eb057f4dbadd8098d026
|
1b969fbb81566edd3ef2887c98b61d98b380afd4
|
/Rez/bivariate-lcmsr-post_mi/bfas_nw_hrz_ind/~BivLCM-SR-bfas_nw_hrz_ind-PLin-VLin.tst
|
b326a4cd56dd01903672b5459400176c443dbd52
|
[] |
no_license
|
psdlab/life-in-time-values-and-personality
|
35fbf5bbe4edd54b429a934caf289fbb0edfefee
|
7f6f8e9a6c24f29faa02ee9baffbe8ae556e227e
|
refs/heads/master
| 2020-03-24T22:08:27.964205 | 2019-03-04T17:03:26 | 2019-03-04T17:03:26 | 143,070,821 | 1 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 11,974 |
tst
|
~BivLCM-SR-bfas_nw_hrz_ind-PLin-VLin.tst
|
THE OPTIMIZATION ALGORITHM HAS CHANGED TO THE EM ALGORITHM.
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
1 2 3 4 5
________ ________ ________ ________ ________
1 0.443402D+00
2 -0.579900D-02 0.359482D-02
3 -0.167686D-01 0.153987D-02 0.214048D+00
4 0.101423D-02 -0.121605D-03 -0.185498D-02 0.179230D-02
5 -0.363983D-03 -0.357517D-04 -0.132689D-02 -0.689447D-05 0.203273D-02
6 0.324398D-03 -0.316152D-04 0.531057D-03 0.582159D-04 -0.268973D-04
7 0.461951D-03 -0.419625D-04 0.498251D-03 -0.279281D-04 -0.278541D-03
8 0.161168D-02 -0.130313D-03 -0.393584D-03 0.171643D-04 0.615336D-04
9 0.381232D+00 -0.384311D-01 0.191746D+00 -0.103346D-01 0.378669D-01
10 0.140077D+00 -0.552717D-02 -0.183352D-01 -0.291741D-02 0.123772D+00
11 0.679777D-02 -0.274950D-01 -0.298299D-02 -0.309020D-02 0.262521D-01
12 -0.242537D+00 -0.129306D-01 -0.425219D+00 0.473687D-01 0.191180D-01
13 0.111633D+00 0.357503D-03 -0.427192D-01 -0.109797D-02 -0.200629D-01
14 0.325033D+00 -0.111055D-01 -0.456598D+00 0.723780D-02 0.202679D-01
15 0.787700D+00 0.757528D-01 0.816554D+00 -0.979285D-02 -0.886935D-01
16 0.591149D-01 0.518401D-03 0.443769D-02 0.273845D-02 -0.243502D-03
17 -0.624267D-02 0.294588D-03 -0.927801D-03 0.216714D-03 -0.575827D-03
18 0.884150D+00 -0.108822D-01 -0.934949D-01 -0.192310D-01 0.861843D-04
19 -0.231044D-01 -0.340104D-02 -0.327382D-01 0.196818D-02 0.217756D-02
20 -0.252890D+00 -0.388834D-02 -0.448306D+00 -0.266873D-01 -0.298519D-01
21 0.405493D-01 0.658959D-02 0.435602D-01 -0.438493D-02 0.144287D-03
22 -0.259243D-02 0.251994D-03 -0.100040D-03 0.313345D-03 -0.738120D-04
23 -0.654523D-02 -0.604173D-04 0.315958D-02 -0.496197D-02 -0.647580D-04
24 0.970096D-03 0.175419D-03 -0.210240D-02 0.116831D-03 0.971474D-04
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
6 7 8 9 10
________ ________ ________ ________ ________
6 0.924931D-03
7 0.432249D-03 0.184868D-02
8 -0.293997D-03 0.895868D-04 0.238433D-02
9 0.856903D-02 -0.282508D-02 0.198755D-01 0.989256D+02
10 -0.151121D-02 -0.519414D-02 -0.741736D-03 0.633679D+00 0.261602D+02
11 0.419786D-01 0.415623D-01 -0.183309D-01 -0.896229D+01 0.250331D+01
12 -0.596002D-02 -0.292587D-01 0.641437D-01 0.624006D+01 0.124124D+01
13 0.498805D-01 0.749112D-01 -0.173886D-01 -0.116066D+01 -0.326263D+01
14 -0.278850D-01 0.731769D-02 0.180264D+00 0.328544D+01 0.621203D+01
15 0.367471D-01 0.784797D-01 -0.441433D-01 -0.114749D+02 -0.997119D+01
16 -0.152884D-02 -0.150061D-02 0.206574D-02 0.721657D+00 -0.659554D-01
17 0.189669D-04 -0.151866D-03 0.150299D-03 -0.191043D+00 -0.874528D-01
18 -0.354816D-01 -0.644986D-01 0.334374D-01 0.114682D+02 -0.417725D+00
19 -0.716625D-02 0.107271D-01 0.107618D-01 0.436262D-01 0.678713D+00
20 -0.120042D-03 -0.926640D-02 -0.123222D+00 -0.379287D+01 -0.239339D+01
21 0.903327D-02 -0.101985D-01 -0.132718D-01 -0.329241D+00 -0.284112D+00
22 -0.217996D-03 -0.221119D-03 -0.386340D-04 -0.565271D-01 -0.261890D-01
23 -0.488346D-03 -0.343201D-03 0.886246D-03 -0.875077D-01 -0.553550D-01
24 0.674771D-04 0.417857D-04 -0.339720D-03 0.219090D-01 0.917024D-02
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
11 12 13 14 15
________ ________ ________ ________ ________
11 0.446214D+02
12 0.378143D+01 0.121019D+03
13 -0.119481D+00 -0.461701D+01 0.161014D+02
14 -0.591555D+00 0.110596D+02 -0.174294D+00 0.451443D+02
15 0.638140D+01 0.204513D+01 0.661773D+01 -0.840209D+00 0.515423D+03
16 -0.366226D-01 0.254656D+00 -0.895296D-02 0.146650D+00 0.578089D+01
17 0.714323D-03 -0.152336D-01 -0.156170D-01 -0.524856D-01 -0.259424D+01
18 -0.473792D+01 0.175212D+01 -0.648113D+01 0.338509D+01 -0.364950D+02
19 0.271765D+01 0.372329D+01 -0.882060D+00 0.644993D+00 -0.486885D+01
20 0.230114D+01 -0.252403D+02 0.114072D+01 -0.177798D+02 0.202601D+02
21 -0.200590D+01 -0.380135D+01 0.834325D+00 -0.649813D+00 0.431516D+01
22 -0.817911D-01 -0.182176D-01 -0.176031D-01 -0.169449D-01 0.308867D-01
23 0.610037D-01 0.423203D+00 0.755955D-01 0.127795D+00 -0.956513D+00
24 0.139017D-01 -0.295046D-01 0.695777D-03 -0.487967D-01 -0.547077D-02
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
16 17 18 19 20
________ ________ ________ ________ ________
16 0.803775D+00
17 -0.707521D-01 0.286845D-01
18 -0.170624D+00 0.907968D-01 0.169008D+03
19 -0.470353D-01 0.462104D-01 0.890315D+00 0.471151D+01
20 -0.598951D+00 -0.271427D-01 0.494542D+01 -0.153656D+01 0.135899D+03
21 -0.238217D-01 -0.274830D-01 0.112940D+01 -0.441121D+01 0.294074D+01
22 0.825725D-02 0.951851D-03 -0.781992D+00 -0.230162D-01 -0.447861D-01
23 -0.145661D-02 0.789684D-02 0.808727D+00 0.880514D-01 0.157243D+01
24 0.528223D-02 0.183809D-03 -0.113805D+00 -0.684695D-03 -0.627694D+00
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
21 22 23 24
________ ________ ________ ________
21 0.518059D+01
22 -0.129415D-01 0.907352D-02
23 -0.566555D-01 -0.395694D-02 0.239161D+00
24 -0.672058D-02 0.776318D-03 -0.205604D-01 0.745330D-02
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
1 2 3 4 5
________ ________ ________ ________ ________
1 1.000
2 -0.145 1.000
3 -0.054 0.056 1.000
4 0.036 -0.048 -0.095 1.000
5 -0.012 -0.013 -0.064 -0.004 1.000
6 0.016 -0.017 0.038 0.045 -0.020
7 0.016 -0.016 0.025 -0.015 -0.144
8 0.050 -0.045 -0.017 0.008 0.028
9 0.058 -0.064 0.042 -0.025 0.084
10 0.041 -0.018 -0.008 -0.013 0.537
11 0.002 -0.069 -0.001 -0.011 0.087
12 -0.033 -0.020 -0.084 0.102 0.039
13 0.042 0.001 -0.023 -0.006 -0.111
14 0.073 -0.028 -0.147 0.025 0.067
15 0.052 0.056 0.078 -0.010 -0.087
16 0.099 0.010 0.011 0.072 -0.006
17 -0.055 0.029 -0.012 0.030 -0.075
18 0.102 -0.014 -0.016 -0.035 0.000
19 -0.016 -0.026 -0.033 0.021 0.022
20 -0.033 -0.006 -0.083 -0.054 -0.057
21 0.027 0.048 0.041 -0.046 0.001
22 -0.041 0.044 -0.002 0.078 -0.017
23 -0.020 -0.002 0.014 -0.240 -0.003
24 0.017 0.034 -0.053 0.032 0.025
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
6 7 8 9 10
________ ________ ________ ________ ________
6 1.000
7 0.331 1.000
8 -0.198 0.043 1.000
9 0.028 -0.007 0.041 1.000
10 -0.010 -0.024 -0.003 0.012 1.000
11 0.207 0.145 -0.056 -0.135 0.073
12 -0.018 -0.062 0.119 0.057 0.022
13 0.409 0.434 -0.089 -0.029 -0.159
14 -0.136 0.025 0.549 0.049 0.181
15 0.053 0.080 -0.040 -0.051 -0.086
16 -0.056 -0.039 0.047 0.081 -0.014
17 0.004 -0.021 0.018 -0.113 -0.101
18 -0.090 -0.115 0.053 0.089 -0.006
19 -0.109 0.115 0.102 0.002 0.061
20 0.000 -0.018 -0.216 -0.033 -0.040
21 0.130 -0.104 -0.119 -0.015 -0.024
22 -0.075 -0.054 -0.008 -0.060 -0.054
23 -0.033 -0.016 0.037 -0.018 -0.022
24 0.026 0.011 -0.081 0.026 0.021
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
11 12 13 14 15
________ ________ ________ ________ ________
11 1.000
12 0.051 1.000
13 -0.004 -0.105 1.000
14 -0.013 0.150 -0.006 1.000
15 0.042 0.008 0.073 -0.006 1.000
16 -0.006 0.026 -0.002 0.024 0.284
17 0.001 -0.008 -0.023 -0.046 -0.675
18 -0.055 0.012 -0.124 0.039 -0.124
19 0.187 0.156 -0.101 0.044 -0.099
20 0.030 -0.197 0.024 -0.227 0.077
21 -0.132 -0.152 0.091 -0.042 0.084
22 -0.129 -0.017 -0.046 -0.026 0.014
23 0.019 0.079 0.039 0.039 -0.086
24 0.024 -0.031 0.002 -0.084 -0.003
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
16 17 18 19 20
________ ________ ________ ________ ________
16 1.000
17 -0.466 1.000
18 -0.015 0.041 1.000
19 -0.024 0.126 0.032 1.000
20 -0.057 -0.014 0.033 -0.061 1.000
21 -0.012 -0.071 0.038 -0.893 0.111
22 0.097 0.059 -0.631 -0.111 -0.040
23 -0.003 0.095 0.127 0.083 0.276
24 0.068 0.013 -0.101 -0.004 -0.624
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
21 22 23 24
________ ________ ________ ________
21 1.000
22 -0.060 1.000
23 -0.051 -0.085 1.000
24 -0.034 0.094 -0.487 1.000
|
1dc61dba4a63f029eda29102cb93da72400e770c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3769/CH25/EX25.12/Ex25_12.sce
|
9585c0e1c822ed3a7695226488eb119ac906cc9c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 282 |
sce
|
Ex25_12.sce
|
clear
//Given
t=5000 //Days
t1=2000.0
a=0.693
//Calculation
//
dt=(a*t)/t1
N=log10(dt)
l=a*N/(t1)
//Result
printf("\n (i) The fraction remaining after 5000 days is %0.3f ",N)
printf("\n (ii) The activity of sample after 5000 days is %0.1f *10**8 Bq",l*10**5)
|
64587028c05e5f007adb48932959d606da3b121b
|
01ecab2f6eeeff384acae2c4861aa9ad1b3f6861
|
/sci2blif/block_doc_gen_fcn.sce
|
739ffff501f47ec4bf3e39015eec9dbfa6391fc3
|
[] |
no_license
|
jhasler/rasp30
|
9a7c2431d56c879a18b50c2d43e487d413ceccb0
|
3612de44eaa10babd7298d2e0a7cddf4a4b761f6
|
refs/heads/master
| 2023-05-25T08:21:31.003675 | 2023-05-11T16:19:59 | 2023-05-11T16:19:59 | 62,917,238 | 3 | 3 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 5,369 |
sce
|
block_doc_gen_fcn.sce
|
global block_doc_name block_doc_list block_doc_ni block_doc_no block_doc_pl block_doc_bdt block_doc_bdf;
function dir_callback()
disp(" ");
endfunction
function block_doc_name_callback()
global block_doc_name block_doc_list; block_name_obj = findobj('tag','block_doc_name'); block_doc_name = block_name_obj.string;
file_list=listfiles("/home/ubuntu/rasp30/sci2blif/documentation/blocks_latex/text/*.tex");
block_doc_list=[""];
size_flist=size(file_list,1);
for ii=1:size_flist
temp_file_list=strsplit(file_list(ii),["/";"."],100);
block_doc_list(ii)=temp_file_list(9);
if block_doc_list(ii) == block_doc_name then messagebox('You already have the block in doc list. This will overwrite it.', "warning", "warning"); end
end
endfunction
function block_doc_ni_callback()
global block_doc_ni;
block_obj = findobj('tag','block_doc_ni');
block_doc_ni = block_obj.string;
endfunction
function block_doc_no_callback()
global block_doc_no; block_obj = findobj('tag','block_doc_no'); block_doc_no = block_obj.string;
endfunction
function block_doc_pl_callback()
global block_doc_pl; block_obj = findobj('tag','block_doc_pl'); block_doc_pl = block_obj.string;
endfunction
function block_doc_bdt_callback()
global block_doc_bdt; block_obj = findobj('tag','block_doc_bdt'); block_doc_bdt = block_obj.string;
[a1,b1]=unix_g("ls "+block_doc_bdt); // b1: 0 if no error occurred, 1 if error.
if (b1~=0) then messagebox('Incorect file path or name. Please check it again.', "Block Description Text error", "error"); abort; end
endfunction
function block_doc_bdf_callback()
global block_doc_bdf; block_obj = findobj('tag','block_doc_bdf'); block_doc_bdf = block_obj.string;
[a1,b1]=unix_g("ls "+block_doc_bdf); // b1: 0 if no error occurred, 1 if error.
if (b1~=0) then messagebox('Incorect file path or name. Please check it again.', "Block Description Text error", "error"); abort; end
endfunction
function Gen_block_doc_callback()
global block_doc_name block_doc_list block_doc_ni block_doc_no block_doc_pl block_doc_bdt block_doc_bdf;
fd_w= mopen("/home/ubuntu/rasp30/sci2blif/documentation/blocks_latex/text/"+block_doc_name+".tex",'wt');
mputl("\pagebreak",fd_w);
mputl("",fd_w);
temp_bdn=strsplit(block_doc_name,["_";],100); size_temp_bdn=size(temp_bdn); temp_name1=temp_bdn(1);
for i=2:size_temp_bdn(1)
temp_name1=temp_name1+"\_"+temp_bdn(i);
end
mputl("Block name: "+temp_name1,fd_w);
mputl("",fd_w);
mputl("Number of inputs: "+block_doc_ni,fd_w);
mputl("",fd_w);
mputl("Number of outputs: "+block_doc_no,fd_w);
mputl("",fd_w);
temp_pl=strsplit(block_doc_pl,["_";],100); size_temp_pl=size(temp_pl); temp_name2=temp_pl(1);
for i=2:size_temp_pl(1)
temp_name2=temp_name2+"\_"+temp_pl(i);
end
mputl("Parameter list: "+temp_name2,fd_w);
mputl("",fd_w);
mputl("Block description: ",fd_w);
mclose(fd_w);
unix_w("cat /home/ubuntu/rasp30/sci2blif/documentation/blocks_latex/text/"+block_doc_name+".tex "+block_doc_bdt+" > /home/ubuntu/rasp30/sci2blif/documentation/blocks_latex/text/"+block_doc_name+".tex1");
unix_w("mv /home/ubuntu/rasp30/sci2blif/documentation/blocks_latex/text/"+block_doc_name+".tex1 /home/ubuntu/rasp30/sci2blif/documentation/blocks_latex/text/"+block_doc_name+".tex");
temp_string=strsplit(block_doc_bdf,["/";"."],100);
size_temp_string=size(temp_string,1);
unix_w("cp "+block_doc_bdf+" /home/ubuntu/rasp30/sci2blif/documentation/blocks_latex/figures/"+block_doc_name+"."+temp_string(size_temp_string));
fd_w= mopen("/home/ubuntu/rasp30/sci2blif/documentation/blocks_latex/text/"+block_doc_name+".tex",'a');
mputl("",fd_w);
mputl("\begin{figure}[H] % jpg, png, or pdf",fd_w);
mputl("\includegraphics[width=300pt]{/home/ubuntu/rasp30/sci2blif/documentation/blocks_latex/figures/"+block_doc_name+"."+temp_string(size_temp_string)+"}",fd_w);
mputl("\end{figure}",fd_w);
mputl("",fd_w);
mclose(fd_w);
file_list=listfiles("/home/ubuntu/rasp30/sci2blif/documentation/blocks_latex/text/*.tex");
block_doc_list=[""];
size_flist=size(file_list,1);
for ii=1:size_flist
temp_file_list=strsplit(file_list(ii),["/";"."],100);
block_doc_list(ii)=temp_file_list(9);
end
block_doc_list=gsort(block_doc_list,"g",'i');
fd_w= mopen("/home/ubuntu/rasp30/sci2blif/documentation/blocks_latex/block_list.tex",'wt');
for ii=1:size_flist
mputl("\input{/home/ubuntu/rasp30/sci2blif/documentation/blocks_latex/text/"+block_doc_list(ii)+".tex}",fd_w);
end
mclose(fd_w);
[a,b]=unix_g("cd /home/ubuntu/rasp30/sci2blif/documentation/blocks_latex/ && pdflatex /home/ubuntu/rasp30/sci2blif/documentation/blocks_latex/block_doc.tex");
if b == 1 then
messagebox("Texlive for latex compilation is not installed. It will install Texlive and take some time. Do not turn off it", "Texlive not installed yet!", "scilab");
unix_g("sudo apt-get install texlive");
end
[a,b]=unix_g("acroread /home/ubuntu/rasp30/sci2blif/documentation/blocks_latex/block_doc.pdf &");
if b == 1 then messagebox("Install Adobe Reader via the Documents menu. ", "Adode Reader not installed yet!", "scilab"); end
endfunction
|
57062afb4abb7d129b5e3a793f0da8f27d5ccf88
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2453/CH2/EX2.8/2_8.sce
|
cb043c7492e8701957eb05690b71f8b05095b30a
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 404 |
sce
|
2_8.sce
|
//To calculate the free volume per unit cell
r = 0.1249; //atomic radius, nm
a = 4*r/sqrt(3); //lattice constant, nm
a_m = a*10^-9; //lattice constant, m
V = a_m^3; //volume of unit cell, m^3
PF = 0.68; //packing factor for BCC
FV = 1 - PF; //free volume
FV1 = FV*V; //free volume per unit cell, m^3
printf("free volume per unit cell in m^3 is");
disp(FV1);
|
f6e905f550b65dcbae870cb70e13365658f5dc87
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3665/CH14/EX14.4/Ex14_4.sce
|
b7bfcb74789f63bb3cded846184826bd1ac55d7b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 399 |
sce
|
Ex14_4.sce
|
clc//
//
//
//Variable declaration
V=9500; //volume(m^3)
T=1.5; //time(s)
x=100; //absorption(sabines)
//Calculation
sigma_as=0.165*V/T; //total absorption in the hall(OWU)
T=0.165*V/(sigma_as+x); //new period of reverberation(s)
//Result
printf("\n total absorption in the hall is %0.3f OWU",sigma_as)
printf("\n new period of reverberation is %0.3f s",T)
|
4ea81e5e195b4f6193b6e5542c7f7613dbaa8223
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1682/CH7/EX7.1/Exa7_1.sce
|
6fac31bbe62891064fcb59ec33026c7cfe35fac7
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 796 |
sce
|
Exa7_1.sce
|
//Exa 7.1
clc;
clear;
close;
//Given data :
Ii=100000;//in Rs
Ar=30000;//in Rs
n=5;//in years
//Formula : (P/A,i,n)=(((1+i/100)^n)-1)/((i/100)*(1+i/100)^n)
// when i=10 %
i1=10;//in % per annum
PW1=-Ii+Ar*(((1+i1/100)^n)-1)/((i1/100)*(1+i1/100)^n);//in RS
disp(PW1,"The present worth for i=10% in RS. : ");
// when i=15 %
i2=15;//in % per annum
PW2=-Ii+Ar*(((1+i2/100)^n)-1)/((i2/100)*(1+i2/100)^n);//in RS
disp(PW2,"The present worth for i=15% in RS. : ");
// when i=18 %
i3=18;//in % per annum
PW3=-Ii+Ar*(((1+i3/100)^n)-1)/((i3/100)*(1+i3/100)^n);//in RS
disp(PW3,"The present worth for i=18% in RS. : ");
disp("Present worth for i=15% is suitable.");
i=15+(PW2-0)*(i3-i2)/(PW2-PW3);//in Rs.
disp(i,"Therefore, the rate of return for the new business in % per annum :");
|
b694abcb93fad87a178926a2a10be2d8646f58d4
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3802/CH5/EX5.7/Ex5_7.sce
|
af7c0c20a9258774a7b8ce0f2cd28bd5f46f283c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 512 |
sce
|
Ex5_7.sce
|
//Book Name:Fundamentals of Electrical Engineering
//Author:Rajendra Prasad
//Publisher: PHI Learning Private Limited
//Edition:Third ,2014
//Ex5_7.sce.
clc;
clear;
A=5e-4;
l=0.4;
N=200;
mew_r=380;
mew_not=4e-7*%pi;
mew=mew_r*mew_not;
printf("\n (a)")
R=(l*1e-6)/(mew*A);
printf("\n Reluctance of the core=%1.4f*10^6 AT/Wb \n",R)
printf("\n (b)")
phi=800e-6; //flux in weber
F=phi*1e6*R;
I=F/N;
printf("\n Magnetizing current=%1.4f A \n",I)
//Answer vary dueto round off error
|
bdeccab9d962d8ba60d9f098bfc6091254cd37ec
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2939/CH4/EX4.2/Ex4_2.sce
|
6f713ff17ac6ab70eef0225c8b1f5cac633f4d92
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 238 |
sce
|
Ex4_2.sce
|
// Ex4_2
clc;
// Given:
t1=1.3*10^9;// in years
w=0.0119;// wt %
// Solution:
N=(w*6.022*10^23)/(40*100);
k=(0.693*60)/(t1*3.16*10^7);
sa=N*k;// specific activity
printf("The specific activity is = %f dis min^-1 g^-1",sa)
|
a4021679e2adc1e1a4b074adb8b144368d3b6151
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1055/CH2/EX2.3/ch2_3.sce
|
1351a38b659fd59c3af91dbcc8461b3e47b50d25
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 513 |
sce
|
ch2_3.sce
|
//What will be the equivalent radius of bundle conductor having its part conductors 'r' on the periphery of circle of dia'd' if the number of conductors is 2,3,4 ,6 ?
clear
clc;
r=poly(0,"r");
D11=r^1;
D12=2*r;
D14=4*r
D13=sqrt(16-4)*r;
Ds1=((1*2*2*sqrt(3)*4*2*sqrt(3)*2*2)^(1/7))*r;
Ds7=((2*1*2*2**2*2*2)^(1/7))*r;//we get this after Taking r outside the 1/7th root
Ds=((((1*2*2*sqrt(3)*4*2*sqrt(3)*2*2)^(1/7))^6)*((2*1*2*2**2*2*2)^(1/7)))^(1/7)*r;
Dseq=((.7788)^(1/7))*Ds;
disp(Dseq,"Dseq.= ");
|
cf911cb45daa002c89879a210f5f3231a37b7ab4
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1820/CH12/EX12.4/Example12_4.sce
|
19011b15f86e1b9b169d1b8232e3722296f0f535
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 1,492 |
sce
|
Example12_4.sce
|
// ELECTRIC POWER TRANSMISSION SYSTEM ENGINEERING ANALYSIS AND DESIGN
// TURAN GONEN
// CRC PRESS
// SECOND EDITION
// CHAPTER : 12 : CONSTRUCTION OF OVERHEAD LINES
// EXAMPLE : 12.4 :
clear ; clc ; close ; // Clear the work space and console
// GIVEN DATA
T1 = 3000 ; // Bending moments in lb
T2 = 2500 ; // Bending moments in lb
h1 = 37.5 ; // Bending moments at heights in ft
h2 = 35.5 ; // Bending moments at heights in ft
h_g = 36.5 ; // Height at which Guy is attached to pole in ft
L = 15 ; // Lead of guy in ft
// CALCULATIONS
// For case (a)
T_h = ( T1*h1 + T2*h2 )/h_g ; // Horizontal component of tension in guy wire in lb . From equ 12.26
// For case (b)
bet = atand(h_g/L) ; // beta angle in degree . From equ 12.28
// For case (c)
T_v = T_h * tand(bet) ; // Vertical component of tension in guy wire in lb . From equ 12.34
// For case (d)
T_g = T_h/( cosd(bet )) ; // Tension in guy wire in lb . From equ 12.29
T_g1 = sqrt( T_h^2 + T_v^2 ) ; // Tension in guy wire in lb
// DISPLAY RESULTS
disp("EXAMPLE : 12.4 : SOLUTION :-") ;
printf("\n (a) Horizontal component of tension in guy wire , T_h = %.1f lb \n",T_h) ;
printf("\n (b) Angle β , β = %.2f degree \n",bet) ;
printf("\n (c) Vertical component of tension in guy wire , T_v = %.2f lb \n",T_v) ;
printf("\n (d) Tension in guy wire , T_g = %.1f lb \n",T_g) ;
printf("\n (or) From another equation , \n") ;
printf("\n Tension in guy wire , T_g = %.1f lb \n",T_g1) ;
|
fcc5c50e5567127db546706e905e9f389ef77a80
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2417/CH6/EX6.8/Ex6_8.sce
|
0ed5ce1c41efe487eb95bcdf90c239d1ae186135
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 464 |
sce
|
Ex6_8.sce
|
clear;
clc;
printf("\t\t\tProblem Number 6.8\n\n\n");
// Chapter 6: The Ideal Gas
// Problem 6.8 (page no. 246)
// Solution
//For CO2,
R=8.314/44; //Unit:kJ/kg*K //constant of proportionality //Molecular weight of CO2=44
p=500; //Unit:kPa //pressure
V=0.5; //Unit:m^3 //volume
T=(100+273); //Unit:K //Celsius converted to kelvin
//Applying p*V=m*R*T ,
m=(p*V)/(R*T); //mass //kg //ideal gas law
printf("The mass of gas in the tank is %f kg\n",m);
|
6fede42961a0db3f56c304c586e11d56fbbfcbb0
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3392/CH5/EX5.12/Ex5_12.sce
|
06ea3ede5393feab9210dc543cc306aa993cc3d4
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 801 |
sce
|
Ex5_12.sce
|
clc
// initialization of variables
clear
// Material properties and dimensions
E=72 //G Pa
P=10 //kN
Q=5 //kN
Aab=150 //mm^2
Abc=900 //mm^2
Acd=900 //mm^2
Ade=900 //mm^2
Abd=150 //mm^2
Abe=150 //mm^2
Lab=2 //m
Lbc=2.5 //m
Lbd=1.5 //m
Lbe=2.5 //m
Lcd=2 //m
Lde=2 //m
//calculations
E=E*10^9
P=P*10^3
Q=Q*10^3
Aab=150
Aab=Aab*10^-6
Abc=Abc*10^-6
Acd=Acd*10^-6
Ade=Ade*10^-6
Abd=Abd*10^-6
Abe=Abe*10^-6
M=0
Nab=4/3*(Q+2*P)-5*M/(3*Lbe)
dNab=-5/(3*Lbe)
Nbc=-5/3*(Q+P)
dNbc=0
Nbd=Q
dNbd=0
Nbe=5*P/3-4/3*M/Lbe
dNbe=-4/(3*Lbe)
Ncd=-4*P/3+5/3*M/Lbe
dNcd=5/(3*Lbe)
Nde=Ncd
thBE=Nab*Lab*dNab/(E*Aab)+Nbc*Lbc*dNbc/(E*Abc)+Nbd*Lbd*dNbd/(E*Abd)+Nbe*Lbe*dNbe/(E*Abe)+2*Ncd*Lcd*dNcd/(E*Lcd)
printf('The rotation of member BE is %.5f rad',thBE)
// Wrong answer in the text
|
00e83b48c15d6dcc3dbeec9ca9683f9bfa1169e8
|
54ec7978b285c41cc02aec8197e1d57dd5dbc31e
|
/scilab/arduinocontrol.sce
|
dd658cf5533267cb9320ca7499e504edb07c916f
|
[] |
no_license
|
Xx220xX/Projeto-Controle-digital
|
a6c95ac67e3cc16ea0a659b7df526e08b2fb7716
|
188ca2e55b1c11d2d5736077549406bc30352314
|
refs/heads/main
| 2023-06-19T22:00:48.607530 | 2021-06-16T00:03:41 | 2021-06-16T00:03:41 | 376,072,300 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 3,533 |
sce
|
arduinocontrol.sce
|
clc;
clear;
mtlb_close all;
function stairs(x, y)
n=length(x);
x_indices=int((1:2*n-1)/2)+1; // gives 1,2,2,3,3,...,2n-1,2n-1
x_ss=x(x_indices); // the stair step graph's x values
y_indices=int((2:2*n)/2); // gives 1,1,2,2,...,2n-2,2n-2,2n-1
y_ss=y(y_indices)
plot2d(x_ss,y_ss)
endfunction
function gflim(lim)
ax=gca(),// gat the handle on the current axes
a = ax.data_bounds
a(3:$) = lim
ax.data_bounds=a;
endfunction
function y=c2d(x, p)
y = ss2tf(cls2dls(tf2ss(syslin('c',x)),p))
endfunction
function yz = dsim(G,u)
yz = dsimul(tf2ss(Gz),u);
endfunction
s = %s;
z = %z;
pi = %pi;
// Modelo para o motor CC
function F = Motor()
Ra=8;
La=170e-3;
B=3e-3;
Jrotor=12e-3;
Jcarga=36e-3;
J=Jrotor+Jcarga;
kaphif=0.5;
G = 1/(Ra+s*La)*kaphif*1/(B+s*J);
F = G/(1+kaphif*G);
F = syslin('c',F);
// circuito
endfunction
// Verificar motor sem controlador
function vfMotor()
G = Motor()
endTime = 60;
t = 0:1e-3:endTime;
u = (-sin(t/endTime*2*pi*3)>0) .* 1;
u = u*0.5 + 0.8;
y = csim(u,t,G)
plot(t,u);
// mtlb_hold on
plot(t,y,'r')
legend('Entrada','Velocidade angular')
endfunction
//vfMotor();
function [Gc,Gs,T] = GeraCompensador(Mp,T5)
Gs = Motor();
[Gs_z Gs_p Gs_k] = tf2zp(Gs);
//Compensador com cancelamento de polos e zeros
//Mp = 1;//Sobressinal em %
//Mp=exp(-pi*(zeta/sqrt(1-zeta^2)))
zetamf = abs(log(Mp/100))/((%pi^2)+(log(Mp/100))^2)^(1/2);
//T5 = 0.4;//Tempo de acomodação de 5%
//T5 = 3/(wn*zeta)
wnmf = 3/(T5*zetamf);//wn
//Polos malha fechada Smf = -(zeta*wn)+/- i(wn*sqrt(1-zeta^2))
wdmf = (wnmf*sqrt(1-zetamf^2));
sigmamf = zetamf*wnmf;
smf = -sigmamf + wdmf*%i;//Raizes de Malha Fechada
//Determinando os polos do compensador
C1 = 1;
for i=1:length(Gs_z)
C1 = C1*(s-Gs_z(i));
end
C1=1/C1;
//Determinando os zeros do compensador
for i=1:length(Gs_p)
C1 = C1*(s-Gs_p(i));
end
//Determinando Kc
ppid = -2*sigmamf;
kc = -(smf*(smf-ppid))/Gs_k;
//Controlador PID em S
Gc = (kc/(s*(s-ppid)))*C1;
//FT equivalente do sistema realimentado
Gt = Gc*Gs/(1+Gc*Gs);//O mesmo que Gt = feedback(Gd, 1)
//Simulação
dT = 1e-1;//Tempo de amostragem da simulação
t = 0:dT:60;//tempo de simulação
//Entrada em degrau (amplitude 1) + onda quadrada com período de 20 [s]
//(Amplitude .25)
Tsq = 20;//período da onda quadrada
u = 1*ones(1,length(t)) - 0.25*squarewave((2*%pi*t)/Tsq);
y=csim(u,t,Gt);
figure(1)
plot(t,u,'-g',t,y,'-r');
title('Controle de velocidade ')
xlabel('Tempo [s]')
ylabel('Tensao [v]')
T = Gt;
endfunction
function Gz = DiscretizaCompensador(Gs,Ts)
Gz = syslin('d',c2d(Gs,Ts));
endfunction
Ts = 40e-3
[G,Gs,T ]= GeraCompensador(0.2,1)
Gz = DiscretizaCompensador(G,Ts);
fpGs = pfss(Gs)
//disp(Gs)
//disp(fpGs)
//disp(G)
//disp(Gz)
//disp(T)
t = 0:Ts:60;
//figure
u = ones(1,length(t));
ys = csim(u,t,G);
yz = dsimul(tf2ss(Gz),u);
figure(2)
plot(t,ys,'-r',t,yz,'-b')
legend ('Gcs','Gcz');
title("Discretização do compensador, subida em rampa")
//Gz = Gz/max(abs(coeff(Gz.num)));
a = coeff(Gz.den);
b = coeff(Gz.num);
a = a($:-1:1);
b = b($:-1:1);
disp(Gz)
printf("%f ,",a');
printf("\n");
printf("%f ,",b');
printf("\n");
printf("Ts = %f\n",Ts)
disp(abs(roots(Gz.den)))
/*
disp(Gs)
printf("%f ,",coeff(Gs.num)');
printf("\n");
printf("%f ,",coeff(Gs.den)');
printf("\n");
*/
|
abccab9dcf2d7251446128e2cef12cfb320a7f96
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1309/CH2/EX2.9/ch2_9.sce
|
e1bac49c5c444f79446e7d859b75020dc863fa63
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 1,099 |
sce
|
ch2_9.sce
|
clc;
clear;
printf("\t\t\tChapter2_example9\n\n\n");
// determination of heat transferred
k=136; // thermal conductivity of aluminium in BTU/(hr.ft.degree Rankine)from appendix table B1
L=9/(8*12);
W=9/(4*12);
delta=1/(32*12);
printf("\nLength=%.5f ft, Width=%.4f ft, Delta=%.6f ft",L,W,delta);
hc=0.8; // the convective heat transfer coefficient estimated as 1 BTU/(hr.ft^2. degree Rankine)
T_w=1000;// the root temperature in degree fahrenheit
T_inf=90; // the ambient temperature in degree fahrenheit
m=sqrt(hc/(k*delta));
printf("\nThe value of m is %.3f",m);
P=2*W;
A=2*delta*W;
printf("\n\t\t\tSolution to part (a)\n");
qz1=sqrt(hc*P*k*A)*(T_w-T_inf)*(sinh(m*L)+(hc/(m*k)*cosh(m*L)))/(cosh(m*L)+(hc/(m*k)*sinh(m*L)));
printf("\nThe heat transferred is %.2f BTU/hr",qz1);
printf("\n\n\t\t\tSolution to part (b)\n");
qz2=sqrt(k*A*hc*P)*(T_w-T_inf)*tanh(m*L);
printf("\nThe heat transferred is %.2f BTU/hr\n",qz2);
printf("\n\t\t\tSolution to part (c)\n");
Lc=L+delta;
qz3=k*A*m*(T_w-T_inf)*tanh(m*L*(1+delta/Lc));
printf("\nThe heat transferred is %.2f BTU/hr\n",qz3);
|
0542f0a480942372d2cfb67bf1ad183784dc4d27
|
b9602336613b26d0b9c22a09d219c0ed8e158b4e
|
/Examples/Examples_VecFunc/norm.sce
|
8a259bbcb88289156d3af22c0cc61698ec8a9334
|
[
"BSD-2-Clause"
] |
permissive
|
CEG-MCA-Scilab-Hackathon/Scilab_Armadillo_Toolbox
|
d0a366f5f058ee45d3c4be7a41e08ed419d4b7cd
|
70c97cda4e0dd54df0a638e9b99f380c09ffa37e
|
refs/heads/master
| 2022-12-11T01:28:28.742041 | 2020-08-26T12:24:27 | 2020-08-26T12:24:27 | 290,481,428 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 282 |
sce
|
norm.sce
|
// Function Name: norm
// Compute the p-norm
// 3rd parameter : "-inf"=1, "inf"=2, "fro"=default
// "-inf" is the minimum norm, "inf" is the maximum norm, while "fro" is the Frobenius norm
// Calculating the norm
inputvec1 = [1, 2, 3];
result = armaVec("norm",inputvec1)
|
5535d5f800e17140ca2fcb7c539147438c28c9ee
|
8781912fe931b72e88f06cb03f2a6e1e617f37fe
|
/scilab/scilab-examples/root/findrt.sce
|
9e5540e963580891c527bf377e5166f476f2cf03
|
[] |
no_license
|
mikeg2105/matlab-old
|
fe216267968984e9fb0a0bdc4b9ab5a7dd6e306e
|
eac168097f9060b4787ee17e3a97f2099f8182c1
|
refs/heads/master
| 2021-05-01T07:58:19.274277 | 2018-02-11T22:09:18 | 2018-02-11T22:09:18 | 121,167,118 | 1 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 517 |
sce
|
findrt.sce
|
// here is an example use of the while statement
// which is used for finding the root of a polynomial
// which is known to lie within a certain interval.
// a is the lower value of the range
// b is the upper value of the range
a= 0; fa = -%inf;
b =3 ; fb = %inf ;
while abs(b-a) > %eps*b
x = ( a + b ) / 2;
fx = x^3 - 2*x - 5 ;
if sign(fx) == sign(fa)
a=x;
fa = fx ;
else
b = x ;
fb = fx;
end
end
disp ( ' The root is :' );
disp (x) ;
|
dfc752f79a163bb0237d37b977681e3320bae1bd
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2627/CH1/EX1.15/Ex1_15.sce
|
2101d062a03f6d4853032b672f89ea68227009f7
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 225 |
sce
|
Ex1_15.sce
|
//Ex 1.15
clc;clear;close;
format('v',6);
E1=10;//V
V2=6;//V
V3=8;//V
//E1=V1+V2;//KCL for left loop
V1=E1-V2;//V
//-E2=-V2-V3;//KCL for right loop
E2=V2+V3;//V
disp(V1,"Voltage V1(V)");
disp(E2,"Voltage E2(V)");
|
8004341ce73b3931d34ae666a8373b2bc6c58b61
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/854/CH1/EX1.2/Example1_2.sce
|
ac185a2e17b0a6c8f6208010e9d238cbe565c610
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 775 |
sce
|
Example1_2.sce
|
//Caption: Program to find the phase angle between two vectors
//Example1.2
//page 11
clc;
clear
Q = [4,5,2]; //point Q
x = Q(1);
y = Q(2);
z = Q(3);
G = [y,-2.5*x,3]; //vector field
disp(G,'G(rQ) =')
aN = [2/3,1/3,-2/3]; //unit vector- direction of Q
G_dot_aN = sum(G.*aN); //dot product of G and aN
disp(G_dot_aN,'G.aN =')
G_dot_aN_aN = G_dot_aN*aN;
disp(G_dot_aN_aN,'(G.aN)aN=')
teta_Ga = 2 * atand(norm(G*norm(aN) - norm(G)*aN) / norm(G * norm(aN) + norm(G) * aN))
//phase angle between G and unit vector aN
disp(teta_Ga,'phase angle between G and unit vector aN in degrees =')
//Result
// G(rQ) = 5. - 10. 3.
// G.aN = - 2.
// (G.aN)aN = - 1.3333333 - 0.6666667 1.3333333
// phase angle between G and unit vector aN in degrees = 99.956489
|
ca1aa16aad85e0ee73bf07381f6beb02795b353c
|
1573c4954e822b3538692bce853eb35e55f1bb3b
|
/DSP Functions/iirpowcomp/test_5.sce
|
358f5d39b39312483df99d184fc9e06114a4b5d4
|
[] |
no_license
|
shreniknambiar/FOSSEE-DSP-Toolbox
|
1f498499c1bb18b626b77ff037905e51eee9b601
|
aec8e1cea8d49e75686743bb5b7d814d3ca38801
|
refs/heads/master
| 2020-12-10T03:28:37.484363 | 2017-06-27T17:47:15 | 2017-06-27T17:47:15 | 95,582,974 | 1 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 276 |
sce
|
test_5.sce
|
// Test #5 : Valid Input Arguments
exec('./iirpowcomp.sci',-1);
[b,p]=iirpowcomp([3.3 0.43],[1.21 0.12];
disp(a);
disp(b);
//
//Scilab Output
//a=1.21 0.12
//b=- 4.2513585
// 4.2513585
//
//Matlab Output
//b= -4.2514 4.2514
//a= 1.2100 0.1200
|
105ff1007106a70b050fe32561faab6c9d02d499
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1847/CH1/EX1.24/Ch01Ex24.sce
|
26d60e926e722dce77e78777acdbf80d4f72bcad
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 547 |
sce
|
Ch01Ex24.sce
|
// Scilab Code Ex1.24: : Page-1.31 (2009)
clc; clear;
h = 6.6e-034; // Planck's constant, Js
h_cross = h/(2*%pi); // Reduced Planck's constant, Js
delta_t = 1e-010; // Uncertainty in time, s
// From Energy-time uncertainty,
// delta_E*delta_t = h_cross/2, solving for delta_E
delta_E = h_cross/(2*delta_t); // Uncertainty in energy of an emitted photon, J
printf("\nThe uncertainty in energy of an emitted photon = %5.3e eV", delta_E/1.6e-019);
// Result
// The uncertainty in energy of an emitted photon = 3.283e-06 eV
|
aa46bb99e5fd36adce4337c54b2ae0bd73999b52
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3511/CH5/EX5.11/Ex5_11.sce
|
be77d3868c0cd709fcb279e4d8c128d02671fc9a
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 750 |
sce
|
Ex5_11.sce
|
clc;
Tmin=5+273; // Minimum operating temperature in kelvin
Tmax=839+273; // Maximum operating temperature in kelvin
Cp=1.005; // Specific heat at constant pressure in kJ/kg K
r=1.4; // Specific heat ratio
eff_carnot=1-Tmin/Tmax; // Efficiency of the carnot cycle
c=1/(1-eff_carnot);
p2_p1=c^(r/(r-1)); // Pressure ratio
disp (p2_p1,"(i).Pressure ratio at which efficiency equals Carnot cycle efficiency = ");
t=Tmax/Tmin; // Temperature ratio
// Pressure ratio for maximum work is obtained when
c=sqrt (t);
p2_p1=c^(r/(r-1)); // Pressure ratio
eff=1-1/c;// Efficiency at maximum work output
disp (p2_p1,"(ii).Pressure ratio at which maximum work is obtained = ");
disp ("%",eff*100,"(iii).Efficiency at maximum work output = ");
|
154f69044290ac827d849f6dcded97ee09676286
|
4f9238e3179944da841a672a8f85083e5a061099
|
/projet.sci
|
c6feb1e526aa2542933474379fa033053eee2780
|
[
"MIT"
] |
permissive
|
jordancharlier/Tatouage-Steganographie
|
1fe1e38d61fda0713c9806aec0051cd1829f2d13
|
5ecbb95f938f39219f1c03998268f58a7eec2c2f
|
refs/heads/master
| 2021-01-19T13:21:57.230147 | 2017-04-12T18:33:19 | 2017-04-12T18:33:19 | 88,082,522 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 4,412 |
sci
|
projet.sci
|
im=imread('C:\Users\sir\Downloads\td3.jpg');
//Execution: chargement de l'image im=imread('C:\Users\sir\Downloads\td3.jpg');
//c=[10,10,12]; Message un nombre = une letre ou un chiffre
//R=titi(im,c); R=toto(R); tata(R);
function bool=v(X,c)
taille_A=length(c)
[y,x,coul]= size(X);
if y<x then
temp=y;
else temp=x;
end
if temp>taille_A then
bool=1;
else
bool=0;
end
endfunction
function ValAbsolue=ValAbsolu(I)
if I<0 then
ValAbsolue=I*(-1);
else
ValAbsolue=I;
end
endfunction
function [R]= toto(X) //fonction qui décrypte
[y,x,coul]= size(X);
X=int16(X);
count=1;
//en haut a droite
if X(1,x,1)==X(2,x-1,1) then
for i=x-1:-1:1
R(count)=X(1,i,1)-X(2,i,1);
R(count)=ValAbsolu(R(count));
count=count+1;
// printf('Result is:=%d i=%d x=%d X(i,1,1)=%d X(i,2,1)=%d \n ',R(i-1),i,x,X(i,1,1),X(i,2,1))
end
end
//en haut a gauche
if X(1,1,1)==X(2,2,1) then
for i=2:x
R(i-1)=X(i,1,1)-X(i,2,1);
R(i-1)=ValAbsolu(R(i-1));
printf('Result is:=%d i=%d x=%d X(i,1,1)=%d X(i,2,1)=%d \n ',R(i-1),i,x,X(i,1,1),X(i,2,1))
end
end
//en bas a gauche
if X(y,1,1)==X(y-1,2,1) then
for i=y-1:-1:1
R(count)=X(i,1,1)-X(i,2,1);
R(count)=ValAbsolu(R(count));
count=count+1;
// printf('Result is:=%d i=%d x=%d X(i,1,1)=%d X(i,2,1)=%d \n ',R(i-1),i,x,X(i,1,1),X(i,2,1))
end
end
//en bas a droite
if X(y,x,1)==X(y-1,x-1,1) then
for i=y-1:-1:1
R(count)=X(y,i,1)-X(y-1,i,1);
R(count)=ValAbsolu(R(count));
count=count+1;
end
end
endfunction
function [Z]= tata(X) //Traduit code en chiffre ou lettre
taille_X=length(X);
for i=1: taille_X
temp=X(i);
temp=int32(temp);
if temp>0 then
if temp<27 then
Z(i)=temp+96;
printf(' LETTRE %d \n',Z(i));
end
if temp<= 38 & temp>=27 then
Z(i)=temp+21;
printf(' chiffre %d \n',Z(i));
end
end
end
Z=char(Z);
endfunction
function [Z]= titi(X,c) //fonction qui crypte
taille_A=length(c)
[y,x,coul]= size(X);
bool=v(X,c);
//TEST POUR VOIR SI LE MESSAGE EST SUFFISAMENT PETIT
if bool==0 then
printf('Message trop trop long NONONONONO')
else
// COPIE L'IMAGE EN COMMENCANT LA COPIE DE (1;1) à (2;2)
for i=1:x-10
for j=1:y-10
for couleur=1: coul
Z(i+1,j+1,couleur)=X(i,j,couleur)
end end end
Z=uint8(Z)
im2uint8(Z)//l'image est sous forme d'un tableau à 3 dimension (RGB)
Z(1,1,1)=Z(2,2,1)
Z(1,1,2)=Z(2,2,2)
Z(1,1,3)=Z(2,2,3)
for count=taille_A+2:x-9
for undeuxtrois=1:3
Z(1,count,undeuxtrois)=Z(2,count,undeuxtrois)
Z(count,1,undeuxtrois)=Z(count,2,undeuxtrois)
end end
for counter2=1:3
for counter=2:taille_A+1
bool=0;
bool=check(Z,counter);
bool2=0;
bool2=check2(Z,counter);
referenceX=Z(2,counter,counter2);
referenceY=Z(counter,2,counter2);
// if referenceX<217 then
if bool==0 then
Z(1,counter,counter2)=referenceX+c(counter-1)
else
Z(1,counter,counter2)=referenceX-c(counter-1)
end
if bool2==0 then
Z(counter,1,counter2)=referenceY+c(counter-1)
else
Z(counter,1,counter2)=referenceY-c(counter-1)
end end end
imshow(Z)
end
endfunction
function TF=check(Z,C) //Unifie le changement de couleur donc si un composant est sup à 217 les trois RGB dimninue de la valeur du chiffre
TF=0;
for rgb=1:3
if Z(2,C,rgb)>=217 then
TF=1;
end
end
endfunction
function TF=check2(Z,C)//PAreil mais verticalement
TF=0;
for rgb=1:3
if Z(C,2,rgb)>=217 then
TF=1;
end
end
endfunction
funcprot(0)
|
1153715ebc4b7382f60e7ebf187ee302f48163a0
|
7c8f8373b8f5e06d3ebe218c8485afadb95cf70f
|
/scilab/a/test.sce
|
ca13a7eb96b594d42118a1c271640579cbe16bb8
|
[] |
no_license
|
invalidCorgi/polibuda
|
432b41e3ebbd169812017f0fd462b59f428b9516
|
4a4cd16efee42e010140bd991fbd5cf034955507
|
refs/heads/master
| 2021-09-24T11:50:05.097437 | 2018-10-09T11:12:10 | 2018-10-09T11:12:10 | 119,171,250 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 14 |
sce
|
test.sce
|
for 1:5
end
|
8bcbb0581dd698601b701d2e5070f20a2d84a273
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2459/CH20/EX20.5/Ex20_5.sce
|
f9f4000657236572b3766f2f9e8ac86fce660d73
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 947 |
sce
|
Ex20_5.sce
|
//chapter20
//example20.5
//page441
Vin=24 // V
Vout=12 // V
Rs=160 // ohm
Rl_min=200 // ohm
Is=(Vin-Vout)/Rs // in ampere
// minimum load occurs when Rl tends to infinity so
Il_min=0
// maximum load occurs when Rl=200 ohm
Il_max=Vout/Rl_min // in ampere
Iz_min=Is-Il_max // in ampere
Iz_max=Is-Il_min // in ampere
printf("current through series reistance = %.3f mA \n \n",Is*1000)
printf("minimum load current = %.3f mA \n",Il_min*1000)
printf("maximum load current = %.3f mA \n",Il_max*1000)
printf("minimum zener current = %.3f mA \n",Iz_min*1000)
printf("maximum zener current = %.3f mA \n \n",Iz_max*1000)
printf("comment : current Is through Rs is constant.\nAs load current increases from 0 to 60 mA, zener current decreases from 75 to 15 mA, \nmaintaining Is constant.\nThis is the normal operation of zener regulator \ni.e.Is and Vout remain constant inspite of changes in load or source voltage.")
|
999e45af35ca636e5ca387d03df7852e6e4ec719
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2741/CH6/EX6.34/Chapter6_Example34.sce
|
c4b2b2f70ca41692320e77a42e7b271db86e52df
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 858 |
sce
|
Chapter6_Example34.sce
|
clc
clear
//Input data
m1=50;//Mass of water at 15 degree centigrade in g
m2=80;//Mass of water at 40 degree centigrade in g
t1=15;//The temperature of water in degree centigrade
t2=40;//The temperature of water in degree centigrade
//Calculations
T1=t1+273;//Temperature of water in K
T2=t2+273;//Tempearture of water in K
s=1;//The specific heat of water
T=((m2*s*T2)+(m1*s*T1))/((m1+m2)*s);//The final temperature of the mixture in K
S1=(m1*s*log(T/T1));//The change in entropy by 50 g of water when its temperature rises from 288 K to 303.4 K in cal/K
S2=(m2*s*log(T/T2));//The change in entropy by 80 g of water when its temperature falls from 313 K to 303.4 K in cal/K
S3=S1+S2;//The total gain in the entropy of the system in cal/K
//Output
printf('The net increase in the entropy of the system is %3.3f cal/K ',S3)
|
cc5a2aefbb8d9108bf96324906e9c7905b0e7dc0
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3886/CH6/EX6.12/6_12.sce
|
99d51ca1afca95a16f86f659f0117d83d9e64169
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 222 |
sce
|
6_12.sce
|
//required effort
//differential axle diameters
d1=300 //mm
d2=250 //mm
//wheel diameter
D=800 //mm
//load
W=20000 //N
eta=0.55
VR=(2*D)/(d2-d1)
MA=eta*VR
P=W/MA //N
printf("Required effort =%0.1f N",-P)
|
c7df236b4f8163e61b81bb08061bd8a610ff560b
|
e9affefd4e89b3c7e2064fee8833d7838c0e0abc
|
/aws-java-sdk-core/src/test/resources/resources/profileconfig/ProfileWithUnparseableCsmPort.tst
|
6e3232fb06d65407a31ba76bf69a79a0e122a4fb
|
[
"Apache-2.0"
] |
permissive
|
aws/aws-sdk-java
|
2c6199b12b47345b5d3c50e425dabba56e279190
|
bab987ab604575f41a76864f755f49386e3264b4
|
refs/heads/master
| 2023-08-29T10:49:07.379135 | 2023-08-28T21:05:55 | 2023-08-28T21:05:55 | 574,877 | 3,695 | 3,092 |
Apache-2.0
| 2023-09-13T23:35:28 | 2010-03-22T23:34:58 | null |
UTF-8
|
Scilab
| false | false | 76 |
tst
|
ProfileWithUnparseableCsmPort.tst
|
[aws_csm]
csm_enabled = true
csm_port = onetwothreefour
csm_client_id = foo
|
596b181615be8e28251151b1c3abcf27ba49df67
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3876/CH8/EX8.3/Ex8_3.sce
|
150ddf510f1f1445707964c6e9967a3ffac8a5ed
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 320 |
sce
|
Ex8_3.sce
|
//Chapter 8 Chemical Equlibrium
clc;
clear;
//Initialisation of Variables
k= 1.1*10**-5
V= 600 //ml
n= 0.4 //mole
//CALCULATIONS
m= n*1000/V
x= (-k+sqrt(k**2+4*4*0.67*k))/(2*4)
M= 2*x
P= x*100/m
//RESULTS
mprintf("Molar concentration of NO2= %.2e mol per litre",M)
mprintf("\nPer cent dissociation= %.2f percent",P)
|
8a17708b55c61dc37d82e7f0b80f2b6556ac6aae
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3673/CH8/EX8.a.6/Example_a_8_6.sce
|
37ff462642954f4736ccf5868374dc8e06e541fe
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 308 |
sce
|
Example_a_8_6.sce
|
//Example_a_8_6 page no:328
clc;
V=100;
I=0.7;
Vc=200;
omega=2*%pi*200;
C=I/(omega*200);
C=C*10^6;//converting to microFarad
Xc=200/0.7;
Xl=Xc;
L=Xl/(2*%pi*200);
R=(V/I)-50;
disp(C,"the capacitance is (in microFarad)");
disp(L,"the inductanc is (in H)");
disp(R,"the resistance is (in ohm)");
|
808257a211bd4dd9b3b759a92469cd0a5d7c061a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2375/CH7/EX7.8/ex7_8.sce
|
49a6922eb236730c89bcdf63e87856d772c22b51
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 632 |
sce
|
ex7_8.sce
|
// Exa 7.8
clc;
clear;
close;
format('v',5)
// Given data
I_D = 12*10^-3;// in A
V_DS = 6;// in V
V_P = 3;// in V
R_SS= 1*10^3;// in ohm
I_DSS = 20*10^-3;// in A
V_GS= poly(0,'V_GS');
V_GS= I_D-I_DSS*(1-V_GS/V_P)^2;
V_GS= roots(V_GS);// in V
V_GS= V_GS(1);// in V
disp(V_GS,"The value of V_GS in volts is : ")
// Applying KVL on it's input section, V_G= V_GS+I_D*R_SS+V_SS or
// I_D*RSS+V_SS= V_G-V_GS (i)
// V_DS+I_D*R_SS+V_SS= 0 (ii)
// From eq (i) and (ii)
V_G= V_GS-V_DS;// in V
disp(V_G,"The value of V_G in volts is : ")
V_SS= V_G-V_GS-I_D*R_SS;// in V
disp(V_SS,"The value of V_SS in V is : ")
|
ac89c8a2d1706a4af5f3e08f006d0e41cfb673e7
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/51/CH5/EX5.11/5_11.sce
|
4eb1de04860ca60c00dd23872f38b2658bf9d5f7
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 449 |
sce
|
5_11.sce
|
clc;
clear;
dia1=16;//mm
h=30;//mm
dia2=5;//mm
Q=0.6;//litre/sec
mass=0.1;//kg
p1=464;//kPa
d=999;//kg/m^3
m=d*Q/1000;//kg/s
A1=%pi*((dia1/1000)^2)/4;//m^2
w1=Q/(A1*1000);//m/s
A2=%pi*((dia2/1000)^2)/4;//m^2
w2=Q/(A2*1000);//m/s
Wnozzle=mass*9.81;//N
volwater=((1/12)*(%pi)*(h)*((dia1^2)+(dia2^2)+(dia1*dia2)))/(1000^3);//m^3
Wwater=d*volwater*9.81;//N
F=m*(w1-w2)+Wnozzle+(p1*1000*A1)+Wwater;//N
disp("N",F,"The anchoring force=")
|
9aedbf630aa2effc13aab2fdec53bd416593834a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2915/CH2/EX2.12/Ex2_12.sce
|
8ac62c25e1bbaa8b9942e4c37608315eeca099b7
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 722 |
sce
|
Ex2_12.sce
|
//Example 2.12
//To determine if a triangle can be formed with given dimension
clc,clear
c=9 //side oposite to vertex C
a=6 //side opposite to vertex A
b=7 //side opposite to vertex B
A=55 //angle at vertex A
B=60 //angle at vertex B
C=65 //angle at vertex C
printf('Sum of angles=180\n')
printf('Smallest and largest sides are opposite to smallest and largest angle respectively\n\n')
LHS = (a+b)/c
RHS = cosd((A-B)/2)/sind(C/2)
printf(' LHS = (a+b)/c = %.2f\n',LHS)
printf(' RHS = cos((A-B)/2)/sin(C/2) = %.2f\n\n',RHS)
printf('As we can see, LHS is not equal to RHS.\ni.e.Mollweides equation is not holding true.\n')
printf('THE TRIANGLE IS NOT POSSIBLE WITH GIVEN DIMENSIONS')
|
07de3e2494829e16c14d0db7f938007f21fa9ed0
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2234/CH6/EX6.2/ex6_2.sce
|
e3f52e9bd8fee493116e41063507401358c7e91c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 479 |
sce
|
ex6_2.sce
|
clc;
r=100; //resistance in Ohm
v=10; //in volt
d=10; //distance in feet
c=10*10^-6; //capacitor in Farad
i=v/r; //current
disp(i,"The wave travels the length of the line in 20 ns. The current that flows in the capacitor is the short-circuit current = "); //displaying result
ch=40*10^-9*0.1; //charge
disp(ch,"The charge that flows in 40 ns = "); //displaying result
v1=ch/c; //voltage
disp(v1,"Voltage in a 10*10^-6 Farad Capacitor = "); //displaying result
|
260495365de142768bb985f38e88938f1e68d923
|
a62e0da056102916ac0fe63d8475e3c4114f86b1
|
/set8/s_Elementary_Heat_Power_H._L._Solberg_2420.zip/Elementary_Heat_Power_H._L._Solberg_2420/CH2/EX2.11.a/2_11a.sce
|
ed9eb0ec32d71bd3b714d91c3b60aad50c3664fa
|
[] |
no_license
|
hohiroki/Scilab_TBC
|
cb11e171e47a6cf15dad6594726c14443b23d512
|
98e421ab71b2e8be0c70d67cca3ecb53eeef1df6
|
refs/heads/master
| 2021-01-18T02:07:29.200029 | 2016-04-29T07:01:39 | 2016-04-29T07:01:39 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 209 |
sce
|
2_11a.sce
|
errcatch(-1,"stop");mode(2);
//Initialization of variables
Gf=11.57 //lb per lb of fuel
tg=500 //F
ta=70 //F
//calculations
Q1=0.24*Gf*(tg-ta)
//results
printf("Heat loss = %d Btu per lb of fuel",Q1)
exit();
|
b8a654139e01be2fd1eb97c2c467281f03983eea
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3740/CH9/EX9.1/Ex9_1.sce
|
ceb977e244d30ef78c0eb7d724c631f72004c33c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 1,348 |
sce
|
Ex9_1.sce
|
//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
//Example 9.1
//OS=Windows XP sp3
//Scilab version 5.5.2
clc;
clear;
//given
eta=0.6;//Dimensionless Quantum Efficiency of photodiode
Lambda0=1.3e-6;//Wavelength in m
e=1.6e-19;//Electronic charge in C
P=10e-6;//Optical power in W
h=6.6e-34;//Planck's constant in SI Units
c=3e8;//Speed of light in m/s
iD=3e-9;//Reverse bias leakage current in A
Deltaf=500e6;//Bandwidth of system in Hz
k=1.38e-23;//Boltzmann constant in SI Units
Rl=50;//Load resistor in Ohms
T=300;//Absolute temperature in K
Fn=1;//Assumption
iLambda=eta*P*e*Lambda0/(h*c);//Corresponding photogenerated current in A
mprintf("\n iLambda = %.2f uA",iLambda/1e-6);//Dividing by 10^(-6) to convert to uA
//The answers vary due to round off error
//Let the total shot noise be Ishot
Ishot=sqrt(2*(iLambda+iD)*e*Deltaf);
mprintf("\n Ishot = %.1f nA",Ishot/1e-9);//Dividing by 10^(-9) to convert to nA
DeltaiJ=sqrt(4*k*T*Fn*Rl*Deltaf)/Rl;//Corresponding Johnson noise in A
mprintf("\n DeltaiJ = %.2f nA",DeltaiJ/1e-9);//Dividing by 10^(-9) to convert to nA
//The answers vary due to round off error
SNR=(iLambda^2)/(Ishot^2 + DeltaiJ^2);//Corresponding Dimensionless Signal to Noise Ratio
mprintf("\n (S/N) = %.2f",SNR);//The answers vary due to round off error
|
a16326e1a119f7f321289aaf40253fc12fa9aa9f
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/source/2.5/tests/examples/hilb.man.tst
|
e972df1cc6cd2dbcd858435d0d5a92a8658337ae
|
[
"LicenseRef-scancode-public-domain",
"LicenseRef-scancode-warranty-disclaimer"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111 | 2022-09-13T14:41:51 | 2022-09-13T14:41:51 | 258,270,193 | 0 | 1 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 31 |
tst
|
hilb.man.tst
|
clear;lines(0);
plot(hilb(51))
|
fda8f287ac837c4de05d7991334ed391a20f8ca5
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1868/CH6/EX6.5/Ch06Ex5.sce
|
a88aef7d7af0d43e3a64cafdc52d2b19b45d43ec
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 856 |
sce
|
Ch06Ex5.sce
|
// Scilab code Ex6.5: Pg 202 (2005)
clc; clear;
h = 6.626e-034; // Planck's constant, Js
m = 1e-06; // Mass of the object, kg
n = 1; // Quantum number for minimum energy level
L = 1e-02; // Distance between two rigid walls, m
E1 = n^2*h^2/(8*m*L^2); // Minimum energy of the object, J
v1 = sqrt(2*E1/m); // Minimum speed of the object, m/s
v = 3.00e-02; // Given speed of the objct, m/s
E = 1/2*m*v^2; // Energy of the object for given speed, J
n = sqrt(8*m*L^2*E)/h; // Quantum number corresponding to the given speed
printf("\nThe minimum speed of the object = %4.2e m/s", v1);
printf("\nThe quantum number corresponding to the speed of %4.2e m/s is n = %4.2e", v1, n);
// Result
// The minimum speed of the object = 3.31e-26 m/s
// The quantum number corresponding to the speed of 3.31e-26 m/s is n = 9.06e+23
|
a1ea29542ab4be63188717f4552ae3367dace42d
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/source/2.5/tests/examples/kpure.man.tst
|
ddbb1f38f486031b441ab6b1ebc948c4235ef416
|
[
"LicenseRef-scancode-public-domain",
"LicenseRef-scancode-warranty-disclaimer"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111 | 2022-09-13T14:41:51 | 2022-09-13T14:41:51 | 258,270,193 | 0 | 1 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 123 |
tst
|
kpure.man.tst
|
clear;lines(0);
s=poly(0,'s');
h=syslin('c',(s-1)/(1+5*s+s^2+s^3))
xbasc();evans(h)
g=kpure(h)
hf=h/.g(1)
roots(denom(hf))
|
715dfa90a499b68ea3afbb8fe1e0dacf3e704e20
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/196/CH8/EX8.3/example_8_3.sce
|
46b23b397bff9f821511240b28ae38e9719311d2
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 179 |
sce
|
example_8_3.sce
|
//Chapter 8
//Example 8-3
//ProbOnVoltageGain
//Page 223
clear;clc;
R = 25*10^3 ;
aR = 50 ;
a = aR / R ;
Gain = 1 + (2/a) ;
printf ( "\n\n Voltage Gain = %.4f " , Gain )
|
09dda4aadecea7c728c27af5f6e3522b5aa8749f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2144/CH1/EX1.6/ex1_6.sce
|
42c55e0976c6b033e9c1f47e754f1af6602bee29
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 149 |
sce
|
ex1_6.sce
|
// Exa 1.6
clc;
clear;
close;
// Given data
T = 287;// in degree C
T = T + 273;// in K
disp(T,"The temperature on absolute scale in K is");
|
dc7b24495158f5fa2f565a9580357bc21a40081a
|
3c47dba28e5d43bda9b77dca3b741855c25d4802
|
/microdaq/macros/microdaq_blocks/mdaq_mem_write.sci
|
08e9554a51f5dc50aee55096732dcb9f61607720
|
[
"BSD-3-Clause"
] |
permissive
|
microdaq/Scilab
|
78dd3b4a891e39ec20ebc4e9b77572fd12c90947
|
ce0baa6e6a1b56347c2fda5583fb1ccdb120afaf
|
refs/heads/master
| 2021-09-29T11:55:21.963637 | 2019-10-18T09:47:29 | 2019-10-18T09:47:29 | 35,049,912 | 6 | 3 |
BSD-3-Clause
| 2019-10-18T09:47:30 | 2015-05-04T17:48:48 |
Scilab
|
UTF-8
|
Scilab
| false | false | 3,858 |
sci
|
mdaq_mem_write.sci
|
function [x,y,typ] = mdaq_mem_write(job,arg1,arg2)
mem_write_desc = ["This block writes data to MicroDAQ memory.";
"Data written by this block must be accessed with ";
"mdaqMemRead function. It can be used in Ext and";
"Standalone mode to access DSP data. Up to 250000";
"values can be stored with this block. Memory used";
"by this block can be calculated with the formula: ";
"Number of vectors * Vector Size ";
"";
"Start index:";
"points to beginning of memory area, range 1-250000";
"";
"Number of vectors:";
"size of memory area, range 1-(250000/vector size)";
"";
"Vector size:";
"size of input vector.";
"";
"Rewind:";
"0 - do not write data when when end of";
" used memory area reached";
"1 - when the end of used memory area reached,";
" write from the start index";
"";
"Set block parameters:"];
x=[];y=[];typ=[];
select job
case 'set' then
x=arg1
model=arg1.model;
graphics=arg1.graphics;
exprs=graphics.exprs;
while %t do
try
[ok,start_idx,vec_num,vec_size,overwrite,exprs]=..
scicos_getvalue(mem_write_desc,..
['Start index:';
'Number of vectors:';
'Vector size:';
'Rewind:'],..
list('vec',1,'vec',1,'vec',1,'vec',1),exprs)
catch
[ok,start_idx,vec_num,vec_size,overwrite,exprs]=..
getvalue(mem_write_desc,..
['Start index:';
'Size:';
'Vector size:';
'Rewind:'],..
list('vec',1,'vec',1,'vec',1,'vec',1),exprs)
end;
if ~ok then
break
end
//1MB = 1 000 000B = 250 000 floats
MEM_MAX_DATA_SIZE = 250000;
max_data_size = MEM_MAX_DATA_SIZE-start_idx+1;
data_size = vec_size*vec_num;
if vec_num == -1 then
vec_num = max_index - start_idx;
end
if start_idx < 1 | start_idx > MEM_MAX_DATA_SIZE then
ok = %f;
message("Incorrect memory start index - use index from 1 to "+string(MEM_MAX_DATA_SIZE));
end
if data_size < 1 | data_size > max_data_size then
ok = %f;
message("Incorrect data size (min 1 / max "+string(max_data_size)+")");
end
if overwrite > 1 | overwrite < 0 then
ok = %f;
message("Use values 0 or 1 to set increment option.");
end
if ok then
[model,graphics,ok] = check_io(model,graphics, vec_size, [], 1, []);
graphics.exprs = exprs;
model.rpar = [];
model.ipar = [(start_idx-1);(data_size);vec_size;overwrite];
model.dstate = [];
x.graphics = graphics;
x.model = model;
break
end
end
case 'define' then
vec_size = 1;
start_idx = 1;
vec_num = 100;
overwrite = 0;
model=scicos_model()
model.sim=list('mdaq_mem_write_sim',5)
model.in=-1
model.in2=-2
model.out=[]
model.evtin=1
model.rpar=[];
model.ipar = [(start_idx-1);vec_num;vec_size;overwrite];
model.dstate=[];
model.blocktype='d'
model.dep_ut=[%t %f]
exprs=[sci2exp(start_idx);sci2exp(vec_num);sci2exp(vec_size);sci2exp(overwrite)]
gr_i=['xstringb(orig(1),orig(2),['''' ; ],sz(1),sz(2),''fill'');']
x=standard_define([4 3],model,exprs,gr_i)
x.graphics.in_implicit=[];
x.graphics.exprs=exprs;
end
endfunction
|
934fc8ee5893b1523bd908cac880404873bbbffa
|
a5f0fbcba032f945a9ee629716f6487647cafd5f
|
/Experimentation/8 Automated_testing/tests/basic.sce
|
16b3c76e3a761957eea9f75a46232a9a43335f2e
|
[] |
no_license
|
SoumitraAgarwal/Scilab-gsoc
|
692c00e3fb7a5faf65082e6c23765620f4ecdf35
|
678e8f80c8a03ef0b9f4c1173bdda7f3e16d716f
|
refs/heads/master
| 2021-04-15T17:55:48.334164 | 2018-08-07T13:43:26 | 2018-08-07T13:43:26 | 126,500,126 | 1 | 1 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 263 |
sce
|
basic.sce
|
// Demo script
data = input('Name of processed dataset : ',"string")
algorithm = input('Algorithm to run : ',"string")
toolbox_basedir = input('Base directory for toolbox : ', "string")
getd('..')
machineLearn(algorithm, data, toolbox_basedir, '');
|
a1c8a52d7177046417031043c63ca32daedc70e5
|
bc4afd13b6991b1fc667832b7e1bf237ad99428a
|
/exercicio29-04/ex11.sce
|
b4f4445a4bc9de12319da5741fa8cec20be9d137
|
[] |
no_license
|
furiossam/Scilab
|
9cadd58c451431c44294d79d4d74f03e0601e56d
|
c4837aa23cfae7d791b3e8bc947b2df007355df2
|
refs/heads/master
| 2021-01-20T08:29:26.345689 | 2017-05-03T13:52:01 | 2017-05-03T13:52:01 | 90,151,705 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 217 |
sce
|
ex11.sce
|
matriz=zeros(4,5)
soma=0
disp("Digite a matriz:")
for i=1 :1:4
for j=1:1:5
matriz(i,j)=input("Digite o elemento ")
disp("Lido com sucesso")
soma=soma+matriz(i,j)
end
end
disp(soma)
|
072e5cf90505b173d07336185b99508f1a363bb1
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2333/CH1/EX1.7/7.sce
|
c4a589545b0c495a3ea5bc9d23c8a08db4b8edca
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 315 |
sce
|
7.sce
|
clc
// given that
del_D = 300 // Separation in distance in m
del_t = 4e-7 // separation in time in sec
c = 3e8 // speed of light in m/s
// Problem 7 on page 25
printf("\n # Problem 7 # \n")
v = del_t*c^2/del_D // velocity of one w.r.t other in m/s
printf("\n Velocity of one w.r.t other is %f*c m/s.",v/c)
|
5ccd888a0b80620ceaf94b674ee28a3e9502dd66
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2660/CH21/EX21.1/Ex21_1.sce
|
afb8705412c6c1305fb5f551fe3ab65d539ee425
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 996 |
sce
|
Ex21_1.sce
|
clc
clf()
n = 10 // number of samples
A2 = 0.577
D3 = 0
D4 = 2.115
// number of defectives
x1 = 11.274
x2 = 11.246
x3 = 11.204
x4 = 11.294
x5 = 11.252
x6 = 11.238
x7 = 11.230
x8 = 11.276
x9 = 11.208
x10 = 11.266
r1 = 0.15
r2 = 0.20
r3 = 0.33
r4 = 0.46
r5 = 0.10
r6 = 0.15
r7 = 0.20
r8 = 0.23
r9 = 0.50
r10 = 0.30
x = x1+x2+x3+x4+x5+x6+x7+x8+x9+x10
r = r1+r2+r3+r4+r5+r6+r7+r8+r9+r10
Xavg = x/n
Ravg = r/n
// for X chart
ucl1 = Xavg + A2*Ravg
lcl1 = Xavg - A2*Ravg
// for R chart
ucl2 = D4*Ravg
lcl2 = D3*Ravg
printf("\n control limits \n For X charts \n UCL = %0.2f cm \n LCL = %0.2f cm\n For R charts \n UCl = %0.3f \n LCL = %0.3f" , ucl1,lcl1,ucl2,lcl2)
// X chart
x=[1,2,3,4,5,6,7,8,9,10];
y=[11.274,11.246,11.204,11.294,11.252,11.238,11.230,11.276,11.208,11.266]
plot(x,y)
xtitle("X chart","Sample No.","X")
// R chart
xset("window",1)
z = [0.15,0.20,0.33,0.46,0.10,0.15,0.20,0.23,0.50,0.30]
plot(x,z)
xtitle("R chart" ,"Sample no.", "R")
|
232d9c6ec5967ccb01053ef9e1c543b3c8fbfb1a
|
0919e454d74183a2ee1a4b05a37bcf9154e64d87
|
/01/Nand2DMux8Way.tst
|
4d1a77a55a9638bcfd4f2759f14979381c69c2b8
|
[] |
no_license
|
youkidearitai/nand2tetris
|
311b2e8d2fdf9fccbda7c775b8d4cbb74254d07f
|
0e67824885724ec8fe7a8f2dcd74763a42fbb703
|
refs/heads/master
| 2021-11-28T06:17:33.980008 | 2021-11-08T15:55:44 | 2021-11-08T15:55:44 | 42,762,825 | 7 | 1 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 449 |
tst
|
Nand2DMux8Way.tst
|
load Nand2DMux8Way.hdl,
output-file Nand2DMux8Way.out,
compare-to Nand2DMux8Way.cmp,
output-list in sel%B1.3.1 a b c d e f g h;
set in 1, set sel %B000,
eval, output;
set in 1, set sel %B001,
eval, output;
set in 1, set sel %B010,
eval, output;
set in 1, set sel %B011,
eval, output;
set in 1, set sel %B100,
eval, output;
set in 1, set sel %B101,
eval, output;
set in 1, set sel %B110,
eval, output;
set in 1, set sel %B111,
eval, output;
|
70ee915d71f6485ad2aa408ff71c6a54b6782743
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2594/CH2/EX2.3/Ex2_3.sce
|
40ba92856de4c97762b8eafc134b7da5125f9fef
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 540 |
sce
|
Ex2_3.sce
|
clc
e=1.6*10^-19
disp(" Electron charge = "+string(e)+"columns") //initializing the value of electron charge.
no=2.5*10^13
disp("Number of free electrons/cm^3 in Ge ,n=2.5*10^13)= "+string(no)+"electrons/cm^3")//calculation
n=(1/e)
disp("Number of free electrons in 1 columns ,n=(1/e))= "+string(n))//calculation
i=(1/n)
disp("Current by movement of one electrons ,i=(1/n))= "+string(i)+" amphere ")//calculation
I=(no*i)
disp("Current by movement of (2.5*10^13) electrons in Ge,I=(no*i))= "+string(I)+" amphere ")//calculation
|
eecb157e5db523ce03c52fd5454298d03069967f
|
470592ddf90835e404da377f7a543a2e99ce3d78
|
/Questão2/questao02.sce
|
46e35da9b9922f5ea8d1e3ea434066074b5d0680
|
[
"MIT"
] |
permissive
|
andressagomes26/rede_RBF
|
5a1611f3a9f7b355699d8186e6110b9febcd274b
|
c6bf8d8abc7e06e79f7ab76cdebe758d0c6b4b9b
|
refs/heads/master
| 2023-01-01T12:38:16.292636 | 2020-10-18T21:53:03 | 2020-10-18T21:53:03 | 301,436,869 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 4,736 |
sce
|
questao02.sce
|
/* Andressa Gomes Moreira - 402305
Trabalho 02 - Questão 02
Inteligência Computacional
*/
clear;
clc;
// Carregando a base de dados
data = fscanfMat("aerogerador.dat");
x = data(:, 1)' // Variável de entrada x: Velocidade do vento - Todas as linhas da coluna 1
y = data(:, 2)' // Variável de saída y: Potência gerada - Todas as linhas da coluna 2
// Normalização dos dados entre 0 e 1:
x = x/max(x);
y = y/max(y);
// Iremos definir alguns parâmetros:
amostra = length(x) // Quantidade de elementos da amostra => amostra = length(x)
sigma = 1
function [Z, w]=pesos(n)
// n = quantidade de neurônios ocultos
// Definir o centroide
aleat_x = grand(1,'prm', x) // Realiza uma pertubação nos valores da entrada x
centroide = aleat_x(1:n) // Seleciona os n (número de neurônios ocultos) primeiros valores para compor o centroide.
for i = 1:amostra
//Definir a norma u = ||x - centroide||
vet = [x(i)*ones(1,n)] - centroide
norma = abs(vet)'
// Implementar a função ativação dos neurônios ocultos
beta = (1/(2*sigma))
z(:, i)= exp(-(norma.^2)*beta)
end
// Adicionar o bias = -1
Z = [-1*ones(1,amostra); z]
/*
Definir os pesos da camada de saída da rede neural de base radial:
Pelo método dos quadrados mínimos.: W = (Z'*Z)^(-1) * (Z'* y)
Adicionar a Regularização de Thikonov:
W = (Z'*Z + lambda * I)^(-1) * (Z'* y)
- Lambda: Valor pequeno entre 0 e 1
- I: Matriz identidade de dimensão(n+1,n+1)
*/
lambda = 0.000000001;
I = eye(n+1,n+1);
w = y*Z'*((Z*Z')+(lambda*I))^(-1); //w = y*Z'*(Z*Z')^(-1);
endfunction
/****************** COEFICIENTE DE DETERMINAÇÃO ******************/
function [R2, y_preditor]=coef_determ(Z, w)
//Definir o modelo de regressão ajustado (preditor) y^
y_preditor = w * Z;
//Definir o Coeficiente de determinação R2
media = mean(y);
somat1 = sum((y - y_preditor).^2);
somat2 = sum((y-media).^2);
R2 = 1-(somat1/somat2);
endfunction
/***************** PLOTAGEM DOS GRÁFICOS *************************/
function []= plotar(y_preditor, R2, n)
clf;
//Passo 09: Plotagem do gráfico
plot(x,y, '.');
plot(x,y_preditor, 'r-');
title('Rede RBF com ' + string(n) + ' neurônios ocultos. R2 = ' + string(R2))
xlabel('Velocidade do Vento x');
ylabel('Potência Gerada y');
endfunction
/********************** RESULTADOS ****************************/
disp('--------- REDE RBF COM 2 NEURÔNIOS OCULTOS -------------')
n = 2
[Z, w] = pesos(n)
[R2, y_preditor]=coef_determ(Z, w)
disp('Coeficiênte de determinação (R2) para ' + string(n) + ' neurônios ocultos: ')
disp('R2 = ' + string(R2) + ' | n = ' + string(n))
plotar(y_preditor, R2, n)
disp('--------- REDE RBF COM 5 NEURÔNIOS OCULTOS -------------')
n = 5
[Z, w] = pesos(n)
[R2, y_preditor]=coef_determ(Z, w)
disp('Coeficiênte de determinação (R2) para ' + string(n) + ' neurônios ocultos: ')
disp('R2 = ' + string(R2) + ' | n = ' + string(n))
//plotar(y_preditor, R2, n)
disp('--------- REDE RBF COM 10 NEURÔNIOS OCULTOS -------------')
n = 10
[Z, w] = pesos(n)
[R2, y_preditor]=coef_determ(Z, w)
disp('Coeficiênte de determinação (R2) para ' + string(n) + ' neurônios ocultos: ')
disp('R2 = ' + string(R2) + ' | n = ' + string(n))
//plotar(y_preditor, R2, n)
disp('--------- REDE RBF COM 20 NEURÔNIOS OCULTOS -------------')
n = 20
[Z, w] = pesos(n)
[R2, y_preditor]=coef_determ(Z, w)
disp('Coeficiênte de determinação (R2) para ' + string(n) + ' neurônios ocultos: ')
disp('R2 = ' + string(R2) + ' | n = ' + string(n))
//plotar(y_preditor, R2, n)
disp('--------- REDE RBF COM 30 NEURÔNIOS OCULTOS -------------')
n = 30
[Z, w] = pesos(n)
[R2, y_preditor]=coef_determ(Z, w)
disp('Coeficiênte de determinação (R2) para ' + string(n) + ' neurônios ocultos: ')
disp('R2 = ' + string(R2) + ' | n = ' + string(n))
//plotar(y_preditor, R2, n)
disp('--------- REDE RBF COM 50 NEURÔNIOS OCULTOS -------------')
n = 50
[Z, w] = pesos(n)
[R2, y_preditor]=coef_determ(Z, w)
disp('Coeficiênte de determinação (R2) para ' + string(n) + ' neurônios ocultos: ')
disp('R2 = ' + string(R2) + ' | n = ' + string(n))
//plotar(y_preditor, R2, n)
disp('--------- REDE RBF COM 1000 NEURÔNIOS OCULTOS -------------')
n = 1000
[Z, w] = pesos(n)
[R2, y_preditor]=coef_determ(Z, w)
disp('Coeficiênte de determinação (R2) para ' + string(n) + ' neurônios ocultos: ')
disp('R2 = ' + string(R2) + ' | n = ' + string(n))
//plotar(y_preditor, R2, n)
|
28e4ef66be7c6bed38ad78a56ec15e909f2c3440
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1076/CH6/EX6.3/6_3.sce
|
40c39b9d70550781c4c0a4cde58bd95aaa1d2df1
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 242 |
sce
|
6_3.sce
|
clear;
clc;
dia=1.04e-2;
r=dia/2;
m=.85;
d=2.44;
P=74;
temp=21;
del=round((3.86*P/(273+temp))*1000)/1000;
Vv=(3e6/sqrt(2))*r*del*m* log(d/r)* (1+(.03/sqrt(del*r))) *1e-3;
mprintf("\nVisual local voltage = %.2f KV/phase", Vv)
|
4c8f4b03310afb4f85687e5f44f8c70833a08531
|
b9602336613b26d0b9c22a09d219c0ed8e158b4e
|
/Examples/Examples_MatFunc/accumulate.sce
|
7c9e0d122f71f8d930e3979d1c06a75ab58db451
|
[
"BSD-2-Clause"
] |
permissive
|
CEG-MCA-Scilab-Hackathon/Scilab_Armadillo_Toolbox
|
d0a366f5f058ee45d3c4be7a41e08ed419d4b7cd
|
70c97cda4e0dd54df0a638e9b99f380c09ffa37e
|
refs/heads/master
| 2022-12-11T01:28:28.742041 | 2020-08-26T12:24:27 | 2020-08-26T12:24:27 | 290,481,428 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 208 |
sce
|
accumulate.sce
|
// Function Name: accumulate
// Returns the accumulated value of input matrix
// Calculating the accumulate.
inputMat = [1.2, 1, 1.9; 4, 2.6, 5; 2.3, 8, 7];
result = armaMatFunc("accumulate",inputMat)
|
96235cb779193d3d3e9efc6898cecec4faab27a7
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3717/CH18/EX18.6/Ex18_6.sce
|
c197dcf0251017c1432250c359856fc68dc0bb41
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 437 |
sce
|
Ex18_6.sce
|
// Ex18_6 Page:356 (2014)
clc;clear;
m_U232 = 232.037131; // Atomic mass of U-232, u
m_He4 = 4.002603; // Atomic mass of He-4, u
KE_alpha = 5.32; // Kinetic energy of alpha-particle, MeV
m_Th228 = m_U232 - m_He4 - KE_alpha/931.5; // Atomic mass of Th-228, u
printf("\nThe atomic mass of Th-228 = %10.6f u", m_Th228);
// Result
// The atomic mass of Th-228 = 228.028817 u
// The answers vary due to round off error
|
0197be00e193610d7ec298679534f44975629ff2
|
cb885e915b1817d0e57e8e2919ce696aeb263c6f
|
/ascii-20_views-olympus-turntable/src/synthdata_bifocal.sce
|
8f434277f770bd08c2d6afa0efabf47d550db76e
|
[
"CC-BY-4.0",
"CC-BY-2.0"
] |
permissive
|
rfabbri/synthcurves-multiview-3d-dataset
|
abd044f6d71e3370c7eb32bf1b9c1c8dfb023eda
|
cc1cce7f68301f2b30ecb103847b8b13a93efed2
|
refs/heads/master
| 2020-03-29T10:16:29.944334 | 2019-10-31T01:22:13 | 2019-10-31T01:22:13 | 149,797,021 | 2 | 4 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 5,590 |
sce
|
synthdata_bifocal.sce
|
cd /Users/rfabbri/lib/data/synthcurves-multiview-3d-dataset/ascii-20_views-olympus-turntable
clear;
format(20) // show 20 digits
disp '/////////////////////////'
disp 'You should only see zeros, if all works (result of lines without semicolon).'
disp '/////////////////////////'
// chose 3 arbitrary points (do multiple runs when evaluating a solver)
selected_point_ids=[689 2086 4968 1029 3050];
selected_npts = size(selected_point_ids,'*');
nviews = 3; // for semantics sake
ncoordinates = 3; // just defined this for semantic reasons
// read 3 arbitrary views. Everything is indexed as (view,coordinate,point) for
// ease of matrix multiplication the way I did it, but it makes more sense to do
// (view,point,coordinate)
x1_img = read('frame_0003-pts-2D.txt',-1,2)';
total_npts = size(x1_img,2);
x2_img = read('frame_0011-pts-2D.txt',-1,2)';
// cameras are read with rotation and camera center in one matrix
RC1 = read('frame_0003.extrinsic',-1,3);
RC2 = read('frame_0011.extrinsic',-1,3);
// Standard [R | t]
R1w = RC1(1:3,1:3); // can use 0 instead of w for world coordinates
R2w = RC2(1:3,1:3);
t1w = -R1w*RC1(4,:)';
t2w = -R2w*RC2(4,:)';
// R and t relative to first camera
R2 = R2w*R1w'; // R2 is shorthand for R21 in this notation
t2 = -R2*t1w + t2w;
// calibration matrix / intrinsic parameters
K = read('calib.intrinsic',-1,3);
// Compute ground-truth scalars epsilon and mu analytically
// Notice depths, depth derivatives and speeds are invariant to coordinate
// changes system
//
// Approach 3C: Transform everything relative to cam 1
// === Specific points =====================
//
// Read 3D points
X = read('crv-3D-pts.txt',-1,3)';
// Plug into equations that must be zero
//depth_ =
P_1w = K *[R1w t1w];
// sanity check 0: project 1st point matches supplied 2D point
proj=P_1w*[X(:,1); 1]; // we are selecting only 1st point
proj=proj/proj($);
proj=proj(1:2);
x1_img(:,1);
max(abs(proj-x1_img(:,1))) // zero
// sanity check 1: all projections to cam 1 give supplied 2D points
proj_1 = P_1w * [X; ones(1,total_npts)]; // all points
proj_1 = proj_1 ./ [proj_1(3,:); proj_1(3,:); proj_1(3,:)];
proj_1 = proj_1(1:2,:);
max(abs(proj_1 - x1_img))
// First index in symbol means view, second is point
// When there is only one index, it is view (eg, X1 is 3D point X in view 1)
// When there is no index, it is world (eg, X)
//
X1 = R1w*X + t1w*ones(1,total_npts);
X2 = R2*X1 + t2*ones(1,total_npts);
// ---------------------------------------------------------------------
// CORE POINT EQUATIONS
// must output zero:
// Starting here we treat the 2D points as 3D vectors
// Apply the inverse K matrix!
size(x2_img,2) - total_npts // sanity check, must be 0
x1_img = [x1_img; ones(1,total_npts)];
x2_img = [x2_img; ones(1,total_npts)];
// x1 = inv(K)*x1;
x1 = K\x1_img;
x2 = K\x2_img;
// ground truth depth 'alpha' abbreviated as 'a'
a = zeros(nviews, total_npts);
a(1,:) = X1(3,:);
a(2,:) = X2(3,:);
for p=selected_point_ids
a(2,p)*x2(:,p) - a(1,p)*R2*x1(:,p) - t2 // (*)
end
// beware a(3,:) is mostly zero except at the selected points
// TODO Output to Bertini etc
disp 'Point equations eliminating rotations'
det([cross(x2(:,selected_point_ids(1)), R2*x1(:,selected_point_ids(1))) cross(x2(:,selected_point_ids(2)), R2*x1(:,selected_point_ids(2))) cross(x2(:,selected_point_ids(3)), R2*x1(:,selected_point_ids(3)))])
psi = atan(R2(3,2),R2(3,3));
phi = atan(-R2(3,1), norm(R2(3,2:3)))
theta = atan(R2(2,1),R2(1,1))
c1 = cos(theta);
s1 = sin(theta);
c2 = cos(phi);
s2 = sin(phi);
c3 = cos(psi);
s3 = sin(psi);
R2_tst = [c1*c2 c1*s2*s3 - c3*s1 s1*s3 + c1*c3*s2
c2*s1 c1*c3 + s1*s2*s3 c3*s1*s2 - c1*s3
-s2 c2*s3 c2*c3];
t2hat = t2/norm(t2);
alpha = asin(t2hat(3));
bbeta = atan(t2hat(2),t2hat(1));
c4 = cos(alpha);
s4 = sin(alpha);
c5 = cos(bbeta);
s5 = sin(bbeta);
rho = norm(t2);
t2_tst = rho*[c4*c5; c4*s5; s4];
cs=[c1
s1
c2
s2
c3
s3
c4
s4
c5
s5];
for p=selected_point_ids
// a(2,p)*x2(:,p) - a(1,p)*R2*x1(:,p) - t2 // (* sincos version)
disp 'point'
// x1(2,p)*c1*c3*c4*c5+ x2(2,p)*c2*c3*c4*c5- x2(2,p)*x1(1,p)*c4*c5*s2- x2(2,p)*x1(1,p)*c1*c2*s4+ x1(2,p)*x2(1,p)*c1*c3*s4- x1(2,p)*x2(1,p)*c2*c4*s3*s5- x1(2,p)*c4*c5*s1*s3*s2+ x1(2,p)*c1*c4*s3*s5*s2- x2(2,p)*c1*c3*s4*s2- x1(2,p)*x2(2,p)*c1*s3*s4*s2- x1(2,p)*c3*c4*s1*s5+ x1(2,p)*x2(2,p)*c2*c4*c5*s3+ x1(2,p)*x2(2,p)*c3*s1*s4+ x2(1,p)*c3*s1*s4*s2+ x1(1,p)*x2(1,p)*c4*s5*s2- x1(1,p)*c2*c4*c5*s1+ x1(1,p)*c1*c2*c4*s5- x2(1,p)*c1*s3*s4- x2(1,p)*c2*c3*c4*s5+ x1(1,p)*x2(1,p)*c2*s1*s4-c3*c4*c5*s1*s2+c1*c3*c4*s5*s2+c1*c4*c5*s3+c4*s1*s3*s5+ x1(2,p)*x2(1,p)*s1*s3*s4*s2- x2(2,p)*s1*s3*s4
(c4*c5 - s4*x2(1,p))*(-s2*x1(1,p)*x2(2,p) + c2*s3*x1(2,p)*x2(2,p) + c2*c3*x2(2,p)-c2*s1*x1(1,p) - c1*c3*x1(2,p) - s1*s2*s3*x1(2,p) - c3*s1*s2 + c1*s3) + (s4*x2(2,p) - c4*s5) * (-s2*x1(1,p)*x2(1,p) + c2*s3*x1(2,p)*x2(1,p) + c2*c3*x2(1,p) - c1*c2*x1(1,p) - c1*s2*s3*x1(2,p) + c3*s1*x1(2,p) - s1*s3-c1*c3*s2)
disp 'distrib'
-x1(2,p)*c1*c3*c4*c5 +x2(2,p)*c2*c3*c4*c5 -x2(2,p)*x1(1,p)*c4*c5*s2 -x2(2,p)*x1(1,p)*c1*c2*s4 +x1(2,p)*x2(1,p)*c1*c3*s4 -x1(2,p)*x2(1,p)*c2*c4*s3*s5 -x1(2,p)*c4*c5*s1*s3*s2 +x1(2,p)*c1*c4*s3*s5*s2 -x2(2,p)*c1*c3*s4*s2 -x1(2,p)*x2(2,p)*c1*s3*s4*s2 -x1(2,p)*c3*c4*s1*s5 +x1(2,p)*x2(2,p)*c2*c4*c5*s3 +x1(2,p)*x2(2,p)*c3*s1*s4 +x2(1,p)*c3*s1*s4*s2 +x1(1,p)*x2(1,p)*c4*s5*s2 -x1(1,p)*c2*c4*c5*s1 +x1(1,p)*c1*c2*c4*s5 -x2(1,p)*c1*s3*s4 -x2(1,p)*c2*c3*c4*s5 +x1(1,p)*x2(1,p)*c2*s1*s4 -c3*c4*c5*s1*s2 +c1*c3*c4*s5*s2 +c1*c4*c5*s3 +c4*s1*s3*s5 +x1(2,p)*x2(1,p)*s1*s3*s4*s2 -x2(2,p)*s1*s3*s4
end
|
e543f7c3c071a2d678edf30977beaf67510c0faf
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2594/CH6/EX6.9/Ex6_9.sce
|
c691d1ae74e0fac61b81672963f6ed68eb2e82c4
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 1,172 |
sce
|
Ex6_9.sce
|
clc
Er=11.9
disp("Er = "+string(Er)) //initializing value of relative dielectric permittivity constant.
Eo=8.854*10^-14
disp("Eo = "+string(Eo)+" F/cm") //initializing value of permittivity of free space.
e=1.6*10^-19
disp("e = "+string(e)+" columns") //initializing value of charge of electrons.
no=1.5*10^10
disp("no = "+string(no)+"cm^-3") //initializing value of intrinsic concentration of electrons.
Nd=1*10^16
disp("Nd="+string(Nd)+" cm^-3")//initializing the value of donor concentration.
Emax=2*10^5
disp("Emax = "+string(Emax)+" V/cm") //initializing value of maximum critical electric field.
Na=1*10^16
disp("Na="+string(Na)+" cm^-3")//initializing the value of acceptor concentration.
Vt=0.0259
disp("Vt = "+string(Vt)+" eV") //initializing value of thermal voltage.
E=Eo*Er
disp("total permittivity,E=Eo*Er)="+string(E)+" F/cm")//calculation
VBI=(Vt*(log(Na*Nd/no^2)))
disp("VBI=(Vt*(log(Na*Nd/no^2))) = "+string(VBI)+" V") // calculation.
V=(E*Emax^2)/(e*Nd)
disp("breakdown voltage for symetrical abrupt junction,VBD+VBI=(E*Emax^2)/(e*Nd))="+string(V)+" V")//calculation
VBD=V-VBI
disp("VBD=V-VBI)="+string(VBD)+" V")//calculation
|
87c9bb24ab232cd23627d9f446cb8dfb8ebf95b0
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1652/CH17/EX17.3/17_3.sce
|
d14b96cb0b36ce789ee230bd67a536f24d54e2bb
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 313 |
sce
|
17_3.sce
|
clc
//Initialization of variables
R=1.987 //cal/deg/mol
k1=4.45*10^-5
k2=2.52*10^-6
T1=283+273.2 //K
T2=356+273.2 //K
//calculations
Ea=2.303*R*1.7530 /(1/T1 - 1/T2)
logZ= log10(k1) +Ea/(2.303*R*T1)
Z=10^logZ
//results
printf("Activation energy = %d cal/mol",Ea)
printf("\n Z = %.1e lt /mol sec",Z)
|
a4f0b3e24449ef97efe90f136ae88562cc5c3bc6
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2339/CH8/EX8.11.1/Ex8_11.sce
|
66628804c0bf841c9510c32bcef715bc649ac491
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 282 |
sce
|
Ex8_11.sce
|
clc
clear
P1=1;
P2=16;
n=1.3;
LN=100;
N=350;
IP=30;
Ev=0.95;
L=LN/N;
x=[((P2/P1)^((n-1)/n))-1];
V14=[IP*(n-1)*60]/[n*P1*100*x*N];
Vs=V14/Ev;
D2=Vs*4/[(22/7)*L];
D=D2^0.5;
printf('D= %2.0f mm',D*1000);
printf('\n');
printf('L= %2.0f mm',L*1000);
printf('\n');
|
c73b263d57ae0257e249b53a261802db9758dc6b
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2606/CH9/EX9.18/ex9_18.sce
|
6f5ea69bc49c7aaf56f5be7857ac87fdcba11b3f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 254 |
sce
|
ex9_18.sce
|
//Page Number: 9.24
//Example 9.18
clc;
//(b)Modulation index b
//Given
SNdB=30; //dB
SNRO=10^(SNdB/10);
//As SNRO=30*b^2*(b+1)
//Therefore
p2=poly(0,'x');
p3 =30*(p2^3)+30*(p2^2)-1000;
r=roots(p3);
t=r(3,1);
disp(t,'Modulation index:');
|
f2cec31d0b21dccea4895684cee94771500ceae2
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2123/CH5/EX5.32/Exa_5_32.sce
|
8dd67e5b11647da7cc4ed27ef49c21d92fcb98e8
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 525 |
sce
|
Exa_5_32.sce
|
//Example No. 5.32
clc;
clear;
close;
format('v',9);
//Given Data :
V=230;//V
N1=1000;//rpm
Ia1=100;//A
Ra=0.1;//ohm
Rf=0.1;//ohm
N2=800;//rpm
Ia2=sqrt(2)*Ia1;//A(As T2=2*T1 & T proportional to Ia^2)
Eb1=V-Ia1*(Ra+Rf);//V
Eb2=N2*Ia2/(N1*Ia1)*Eb1;//V
//Eb2=Ia2*(Ra+Rf+Rbraking)
Rbraking=Eb2/Ia2-Ra-Rf;//ohm
disp(Rbraking,'Braking resistance in ohm : ' );
Ibraking=Eb2/Rbraking;//A
disp(Ibraking,'Braking current in A : ' );
//Braking current is not calculated in the textbook but asked in the example.
|
9d9d10de6821e0c3a7b582e204aa8a1880e26735
|
e6d5f1d801a3fe887b5dc04b8cc0a9eabc1fd432
|
/Semana_8/potencia.sce
|
66a17269d0c43145235e0dca905dedd6e376e19d
|
[] |
no_license
|
lordjuacs/MateIII
|
70def332063e56eb10fb47678a7e6130dc0dca63
|
164c53b61c9e35e565121f77ba2c578680a3ab56
|
refs/heads/master
| 2021-05-24T15:56:01.078904 | 2020-07-27T19:57:34 | 2020-07-27T19:57:34 | 253,643,962 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 425 |
sce
|
potencia.sce
|
function [valor, vector] = potencia(A,x0, Tol)
vector = x0
A = inv(A)
error = 1
while error> Tol
x1 = A*x0
[maxi,pos] = max(abs(vector))
valor = 1/x1(pos)
x1 = x1 /valor
valor = 1/valor
error=norm(x1-x0)/norm(x1)
//disp(error, "error")
x0 = x1
vector = x1
end
disp(valor, "Valor")
disp(vector, "Vector")
endfunction
|
ae09cda434d002b7268a8543683492029518c759
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/20/CH16/EX16.9.617/example16_9_pg617.sce
|
c01667496172efa2d08294cfb6f2ef438bb3e65c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 787 |
sce
|
example16_9_pg617.sce
|
// Example16_9_pg617.sce
// Effect of phase control
// Theory of Alternating Current Machinery by Alexander Langsdorf
// First Edition 1999, Thirty Second reprint
// Tata McGraw Hill Publishing Company
// Example in Page 617
clear; clc; close;
// Given data
phi = 20;
alpha1 = 30;
alpha2 = 0;
// Calculations
ans1 = (cos(phi*%pi/(180*2))*cos(phi*%pi/(180*2) + alpha1*%pi/180)*100);
ans2 = round(cos(phi*%pi/(180*2))*cos(phi*%pi/(180*2) + alpha2*%pi/180)*100);
Effect = (ans1/ans2)*100;
printf("\n\nEffect of phase control here is to reduce the dc voltage to %0.2f %% of the value it would have in the absence of phase control\n", Effect);
// Result
// Effect of phase control here is to reduce the dc voltage to 77.77 % of the value it would have in the absence of phase control
|
4249ddeab0dd90e610149ea2b0a9fd4a8948bdf1
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/73/CH5/EX5.4/Example5_4.sci
|
bf26e86148d558762e6345d8fe9a66d9b6afb387
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 566 |
sci
|
Example5_4.sci
|
//Chapter 5_Monolithic Components
//Caption : Capacitance per unit area
//Example5.4: Determine the capacitance per unit area of the 400 armstrong gate oxide of a MOSFET device relative permittivity of silicon dioxide=3.9.
//Solution:
clear;
clc;
Eo=8.86*10^-14;//permittivity of free space in F/cm
Er=3.9;//relative permittivity of MOSFET device
t=0.4*10^-5;//thickness of the gate oxide in cm
Co=Eo*Er/t;// since capoacitance(C)=permittivity(E)*area(A)/thicknes(t); so C/A=e/t
disp('capacitance per unit area of gate oxide is:')
disp('F/cm^2',Co)
|
3f756e90ab1d0a18e9550a501e74791038fbcca0
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2243/CH8/EX8.9/Ex8_9.sce
|
dcc543ae3d6ea257e49353e5a90cbead42d095f3
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 778 |
sce
|
Ex8_9.sce
|
clc();
clear;
//Given :
Na = 6.023*10^23 ; // Avogadro constant in atoms/mole
LE = 200 ; // liberated energy in MeV
mm = 235; // molar mass of U 235 in gm/mole
// 1 eV = 1.6*10^-19 J , 1 MeV = 1.0*10^6 eV
RE = (Na*LE*1.6*10^-19*10^6)/mm ; //released energy in J
// 1 cal = 4.187 J
EC = RE/4.187 ; // energy in cal
//Burning 1 kg of coal releases 7000 K cal of energy
Q1 = EC/(7000*10^3); // Quantity of Coal in Kg
//Exploding 1 kg of TNT releases 1000 cal of energy
Q2 = EC/1000; // Quantity of TNT in kg
printf("Energy released : %.0f x 10^10 cal \n",EC*10^-10);
printf(" %.1f tonnes of Coal\n",Q1*10^-3);
printf(" %.0f tonnes of TNT\n",Q2*10^-3);
// Results obtained differ from those in textbook , because approximate values were considered in textbook.
|
5b4052a97eedc246f5af0acc821c56844d9b679c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/20/CH1/EX1.6.14/example1_6_pg14.sce
|
11687575461a7789920a06cff09f6c04983144b5
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 1,224 |
sce
|
example1_6_pg14.sce
|
// Example1_6_pg14.sce
// To find secondary resistance and reactance
// Theory of Alternating Current Machinery by Alexander Langsdorf
// First Edition 1999, Thirty Second reprint
// Tata McGraw Hill Publishing Company
// Example in Page 14
clear; clc; close;
// Given data
volt_amp = 10e+3; // Volt Ampere rating of transformer is 10kA
volt_ratio = 440/110; // Transformer voltage ratio
freq_tr = 60; // Frequency of transformer usage is 60cps or 60Hz
pri_res = 0.50; // Primary resistance is 0.50 Ohm
sec_res = 0.032; // Secondary resistance is 0.032 Ohm
pri_reac = 0.90; // Primary leakage reactance is 0.90 Ohm
sec_reac = 0.06; //Secondary leakage reactance is 0.06 Ohm
// Calculations
printf("The ratio of transformation is %d", volt_ratio);
sec_res_ref_pri = sec_res*(volt_ratio^2); // Ohms
sec_reac_ref_pri = sec_reac*(volt_ratio^2); // Ohms
disp('Hence,');
printf("Secondary resistance referred to the primary = %0.3f Ohm \n",sec_res_ref_pri); // Ohms
printf("Secondary reactance referred to the primary = %0.2f Ohm",sec_reac_ref_pri); // Ohms
// Result
// The ratio of transformation is 4
// Secondary resistance referred to the primary is 0.512 Ohm
// Secondary reactance referred to the primary is 0.96 Ohm
|
eb5af2d9f3f9cd10c3143292d976b16d506b8645
|
b6b875fb04ec6df2c0fb0d28f36962fa9aebb2bf
|
/TD4/Scripts/Service 3/serveur3_densite.sce
|
f8f403ca400a3330cc2fd01bccaaecffe24dbed0
|
[] |
no_license
|
MFrizzy/Modelisation
|
51794b2edf421f9d2206cb73972d8d8d7b1e9759
|
0ca819afbcbe00f58f3bbaa8fc97164ae2c1d3cb
|
refs/heads/master
| 2021-08-29T12:02:20.042037 | 2017-12-13T22:39:21 | 2017-12-13T22:39:21 | 106,943,303 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 981 |
sce
|
serveur3_densite.sce
|
clf;
clear;
clc;
load('C:\Users\tangu\OneDrive\Documents\GitHub\Modelisation\TD4\NetworkData.sod')
// Extraction des temps de service
index_bool = ( data(:, 3) == 3 )
tabS3 = data(index_bool, :)
t_s3 = tabS3(1:$,4);
deciles=perctl(t_s3,10:10:90);
for i=2:10
ClassesDeciles(i)=deciles(i-1)
end
ClassesDeciles(1)=min(t_s3)
ClassesDeciles(11)=max(t_s3)
histplot(ClassesDeciles,t_s3,style=2)
// Densité de la loi normale
a=min(t_s3):0.01:max(t_s3)
m=mean(t_s3)
v=stdev(t_s3)
b=(1/(v*sqrt(2*%pi))*exp((-1/2)*((a-m)/v)^2))
plot2d2(a,b,style=1)
// Densité de la loi exponentielle
lambda=1/mean(t_s3)
b=lambda*exp(-lambda*a)
plot2d2(a,b,style=3)
// Densité de la loi uniforme
h=1/(max(t_s3)-min(t_s3))
b=ones(a)*h
plot2d2(a,b,style=20)
legend("Histogramme d isofréquence du serveur 3","Densité de la loi normale","Densité de la loi exponentielle","Densité de la loi uniforme")
// Définition des paramètres d'affichages
a=gca();
a.x_location = "origin";
a.grid=[5,5];
|
81a53bd322e6da11437fe8113ff415f2273a7bd3
|
99b88a8b86c9ba133f1838fdb89798ab0121134a
|
/model/ref_update_2s.sci
|
6794bef82f3886da16e4675f02ce6de8db1a0d42
|
[] |
no_license
|
feng42/Interface_scilab_mbdyn
|
aae1dd4d7ad13c4440be8ac4e6cb9d5d42cea512
|
604c543f8033fd5e0eed175dc66e5d0e44f5197e
|
refs/heads/master
| 2020-04-26T21:35:30.077586 | 2019-04-27T05:32:31 | 2019-04-27T05:32:31 | 173,845,932 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 687 |
sci
|
ref_update_2s.sci
|
function refs=ref_update_2s(node_stat)
d2r = 3.1416 / 180
refs = zeros(2,12);
refs(1,5) = node_stat(2,6) * d2r;
//refs(1,11) = node_stat(2,12);
refs(2,1) = const_val(1,2);
refs(2,5) = [node_stat(3,6) - node_stat(2,6)] * d2r;
//refs(2,11) = node_stat(3,12) - node_stat(2,12);
//x1 = node_stat(2,2);
//z1 = node_stat(2,4);
//theta1 = -atan(z1,x1);
//x2 = node_stat(3,2) - x1 * 2;
//z2 = node_stat(3,4) - z1 * 2;
//theta2 = -atan(z2,x2);
//refs(1,5) = theta1;
//refs(1,11) = node_stat(2,12);
//refs(2,1) = 1.0000;
//refs(2,5) = theta2;
//refs(2,11) = node_stat(3,12) - node_stat(2,12);
endfunction
|
ed0fd2096cb14390e1af25e45271ac17353ce37f
|
676ffceabdfe022b6381807def2ea401302430ac
|
/solvers/ShallowWaterSolver/Tests/LinearSWE_StandingWave_WallBC_DG_P8.tst
|
d6c3cac38406792fe4a80f62b40d4e84bffad3bd
|
[
"MIT"
] |
permissive
|
mathLab/ITHACA-SEM
|
3adf7a49567040398d758f4ee258276fee80065e
|
065a269e3f18f2fc9d9f4abd9d47abba14d0933b
|
refs/heads/master
| 2022-07-06T23:42:51.869689 | 2022-06-21T13:27:18 | 2022-06-21T13:27:18 | 136,485,665 | 10 | 5 |
MIT
| 2019-05-15T08:31:40 | 2018-06-07T14:01:54 |
Makefile
|
UTF-8
|
Scilab
| false | false | 898 |
tst
|
LinearSWE_StandingWave_WallBC_DG_P8.tst
|
<?xml version="1.0" encoding="utf-8"?>
<test>
<description>Standing Wave, DG, P=8</description>
<executable>ShallowWaterSolver</executable>
<parameters>LinearSWE_StandingWave_WallBC_DG_P8.xml</parameters>
<files>
<file description="Session File">LinearSWE_StandingWave_WallBC_DG_P8.xml</file>
</files>
<metrics>
<metric type="L2" id="1">
<value variable="eta" tolerance="1e-12">1.66047e-11</value>
<value variable="u" tolerance="1e-12">1.59717e-09</value>
<value variable="v" tolerance="1e-12">1.59717e-09</value>
</metric>
<metric type="Linf" id="2">
<value variable="eta" tolerance="1e-12">5.0495e-11</value>
<value variable="u" tolerance="1e-12">2.27038e-09</value>
<value variable="v" tolerance="1e-12">2.27038e-09</value>
</metric>
</metrics>
</test>
|
9af8792ff32f1d0d6f4f33dca3755ca3c1047611
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/551/CH4/EX4.39/39.sce
|
e49581e801124d33a0377cb3e30cdc654848fa02
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 282 |
sce
|
39.sce
|
clc
g=9.8; //m/s^2
m=4500/3600; //kg/s
C1=2800/60; //m/s
Z1=5.5; //m
h1=2800; //kJ/g
C2=5600/60; //m/s
Z2=1.5; //m
h2=2300; //kJ/kg
Q=-16000/3600; //kJ/s
W=Q-m*[(h1-h2) + (C2^2 - C1^2)/2/1000 + (Z2-Z1)*g/1000];
disp("Power output of the turbine = ")
disp(-W)
disp("kW")
|
be3944c5a0f9e84ede827108376392d80028d75b
|
f23e565144f1b0f63c7b613c0f549944d425a073
|
/Cours/TP_INFO/TP_note/Sujet _ Carrette-Bregere TD Machine.sce
|
ac0df505dd3d9ae0e1d06bbdf9d1616072b7406e
|
[] |
no_license
|
Antoine-Gerard/Valar-Morghulis
|
c45766f03898241bd9c424256744b5ffa16dd82c
|
796363bfbc6f2e3249c90f1762e041ff5a4e705a
|
refs/heads/master
| 2021-08-31T06:06:55.296982 | 2017-12-20T13:54:33 | 2017-12-20T13:54:33 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 845 |
sce
|
Sujet _ Carrette-Bregere TD Machine.sce
|
//CARRETTE Kathlyn
//BREGERE Anastasia
v0=zeros(1, 50)
v1=10*ones(1, 50)
v2=[0:0.3:10]
v5=[-3:0.204:7]
function r=fnct(x)
r= (1+x).*sin(%pi.*x)
endfunction
x=linspace(-2,2,100)
y=fnct(x)
plot2d(y, style=[color("pink")]);
plot2d(x, style=[color("green")]);
plot2d(%pi.*x+%pi.*x^2, style=[color("red")]);
plot2d(%pi.*x, style=[color("blue")]);
function r=funk(t,y)
r=(y./t+t.*log(t))
endfunction
u=1
a=1
t=linspace(1,4,100)
ode("rk",u, a, t, funk)
plot2d(ode("rk",u, a, t, funk), style=[color("grey")]);
function r=truc(t,y)
r=(y./t+t.*log(t))
endfunction
u=-2
a=1
t=linspace(1,4,100)
ode("rk",u, a, t, truc)
plot2d(ode("rk",u, a, t, truc)), style=[color("black")]);
function r=la(t,y)
r=(y./t+t.*log(t))
endfunction
u=2
a=1
t=linspace(1,4,100)
ode("rk",u, a, t, la)
plot2d(ode("rk",u, a, t, la)), style=[color("brown")]);
|
bd0c848bfd08290e4609be3283d2ed24ed240a51
|
42fdf741bf64ea2e63d1546bb08356286f994505
|
/test_0802_figure4_step_responses/graph_stepresponse_experiment02.sce
|
655a77e2107c35f494fcdd85c1741847460ab944
|
[] |
no_license
|
skim819/RASP_Workspace_sihwan
|
7e3cd403dc3965b8306ec203007490e3ea911e3b
|
0799e146586595577c8efa05c647b8cb92b962f4
|
refs/heads/master
| 2020-12-24T05:22:25.775823 | 2017-04-01T22:15:18 | 2017-04-01T22:15:18 | 41,511,563 | 1 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 15,385 |
sce
|
graph_stepresponse_experiment02.sce
|
clear data_00;clear data_01;clear data_02;clear data_03;clear data_04;clear data_05;clear data_06;clear data_07;clear data_08;
data_00 = fscanfMat('./DATA_storage_experiment2/Figure4_experiment2_case00.txt'); // time Vout Vin
data_01 = fscanfMat('./DATA_storage_experiment2/Figure4_experiment2_case01.txt');
data_02 = fscanfMat('./DATA_storage_experiment2/Figure4_experiment2_case02.txt');
data_03 = fscanfMat('./DATA_storage_experiment2/Figure4_experiment2_case03.txt');
data_04 = fscanfMat('./DATA_storage_experiment2/Figure4_experiment2_case04.txt');
data_05 = fscanfMat('./DATA_storage_experiment2/Figure4_experiment2_case05.txt');
data_06 = fscanfMat('./DATA_storage_experiment2/Figure4_experiment2_case06.txt');
data_07 = fscanfMat('./DATA_storage_experiment2/Figure4_experiment2_case07.txt');
data_08 = fscanfMat('./DATA_storage_experiment2/Figure4_experiment2_case08.txt');
//temp_1=[mean(data_00(7000:8000,2)); mean(data_01(7000:8000,2)); mean(data_02(7000:8000,2)); mean(data_03(7000:8000,2)); mean(data_04(7000:8000,2)); mean(data_05(7000:8000,2)); mean(data_06(7000:8000,2)); mean(data_07(7000:8000,2)); mean(data_08(7000:8000,2))];
//mean(temp_1); // constant = 1.324
data_00(:,4) = 1.324 - data_00(:,2);
data_01(:,4) = 1.324 - data_01(:,2);
data_02(:,4) = 1.324 - data_02(:,2);
data_03(:,4) = 1.324 - data_03(:,2);
data_04(:,4) = 1.324 - data_04(:,2);
data_05(:,4) = 1.324 - data_05(:,2);
data_06(:,4) = 1.324 - data_06(:,2);
data_07(:,4) = 1.324 - data_07(:,2);
data_08(:,4) = 1.324 - data_08(:,2);
scf(1);clf(1);
//plot2d("nn", data_00(:,1), data_00(:,2));p = get("hdl"); p.children.mark_style = 9; p.children.mark_foreground = 1;p.children.mark_mode = 'on';p.children.line_mode = 'off';
//plot2d("nn", data_00(:,1), data_00(:,3));p = get("hdl"); p.children.mark_style = 9; p.children.mark_foreground = 2;p.children.mark_mode = 'on';p.children.line_mode = 'off';
plot2d("nn",data_00(:,1), data_00(:,3));p = get("hdl"); p.children.line_style = 1; p.children.foreground = 1;p.children.line_mode = 'on';p.children.mark_mode = 'off';
plot2d("nn",data_00(:,1), data_00(:,2));p = get("hdl"); p.children.line_style = 1; p.children.foreground = 2;p.children.line_mode = 'on';p.children.mark_mode = 'off';
plot2d("nn",data_00(:,1), data_01(:,2));p = get("hdl"); p.children.line_style = 1; p.children.foreground = 3;p.children.line_mode = 'on';p.children.mark_mode = 'off';
plot2d("nn",data_00(:,1), data_02(:,2));p = get("hdl"); p.children.line_style = 1; p.children.foreground = 4;p.children.line_mode = 'on';p.children.mark_mode = 'off';
plot2d("nn",data_00(:,1), data_03(:,2));p = get("hdl"); p.children.line_style = 1; p.children.foreground = 5;p.children.line_mode = 'on';p.children.mark_mode = 'off';
plot2d("nn",data_00(:,1), data_04(:,2));p = get("hdl"); p.children.line_style = 1; p.children.foreground = 6;p.children.line_mode = 'on';p.children.mark_mode = 'off';
plot2d("nn",data_00(:,1), data_05(:,2));p = get("hdl"); p.children.line_style = 1; p.children.foreground = 7;p.children.line_mode = 'on';p.children.mark_mode = 'off';
plot2d("nn",data_00(:,1), data_06(:,2));p = get("hdl"); p.children.line_style = 1; p.children.foreground = 9;p.children.line_mode = 'on';p.children.mark_mode = 'off';
plot2d("nn",data_00(:,1), data_07(:,2));p = get("hdl"); p.children.line_style = 1; p.children.foreground = 10;p.children.line_mode = 'on';p.children.mark_mode = 'off';
plot2d("nn",data_00(:,1), data_08(:,2));p = get("hdl"); p.children.line_style = 1; p.children.foreground = 11;p.children.line_mode = 'on';p.children.mark_mode = 'off';
//plot2d("nn",range_gm , fit_gm);p = get("hdl"); p.children.line_style = 1; p.children.foreground = 2;p.children.line_mode = 'on';p.children.mark_mode = 'off';
a=gca();a.data_bounds(1,1)=-0.5E-04;a.data_bounds(1,2)=1.15;a.data_bounds(2,1)=4.5E-04;a.data_bounds(2,2)=1.35;
//a=gca();a.data_bounds(1,1)=-0.1;a.data_bounds(1,2)=0;a.data_bounds(2,1)=0.2;a.data_bounds(2,2)=20;
//legend("Target program 100nA","Target program 50nA","Target program 10nA","in_upper_left"); // "in_upper_left" "in_lower_right"
xtitle("","time [s]","V [V]");
scf(2);clf(2);
//plot2d("nn", data_00(:,1), data_00(:,2));p = get("hdl"); p.children.mark_style = 9; p.children.mark_foreground = 1;p.children.mark_mode = 'on';p.children.line_mode = 'off';
//plot2d("nn", data_00(:,1), data_00(:,3));p = get("hdl"); p.children.mark_style = 9; p.children.mark_foreground = 2;p.children.mark_mode = 'on';p.children.line_mode = 'off';
//plot2d("nn",data_00(:,1), data_00(:,3));p = get("hdl"); p.children.line_style = 1; p.children.foreground = 1;p.children.line_mode = 'on';p.children.mark_mode = 'off';
plot2d("nn",data_00(:,1), data_00(:,4));p = get("hdl"); p.children.line_style = 1; p.children.foreground = 2;p.children.line_mode = 'on';p.children.mark_mode = 'off';
plot2d("nn",data_00(:,1), data_01(:,4));p = get("hdl"); p.children.line_style = 1; p.children.foreground = 3;p.children.line_mode = 'on';p.children.mark_mode = 'off';
plot2d("nn",data_00(:,1), data_02(:,4));p = get("hdl"); p.children.line_style = 1; p.children.foreground = 4;p.children.line_mode = 'on';p.children.mark_mode = 'off';
plot2d("nn",data_00(:,1), data_03(:,4));p = get("hdl"); p.children.line_style = 1; p.children.foreground = 5;p.children.line_mode = 'on';p.children.mark_mode = 'off';
plot2d("nn",data_00(:,1), data_04(:,4));p = get("hdl"); p.children.line_style = 1; p.children.foreground = 6;p.children.line_mode = 'on';p.children.mark_mode = 'off';
plot2d("nn",data_00(:,1), data_05(:,4));p = get("hdl"); p.children.line_style = 1; p.children.foreground = 7;p.children.line_mode = 'on';p.children.mark_mode = 'off';
plot2d("nn",data_00(:,1), data_06(:,4));p = get("hdl"); p.children.line_style = 1; p.children.foreground = 9;p.children.line_mode = 'on';p.children.mark_mode = 'off';
plot2d("nn",data_00(:,1), data_07(:,4));p = get("hdl"); p.children.line_style = 1; p.children.foreground = 10;p.children.line_mode = 'on';p.children.mark_mode = 'off';
plot2d("nn",data_00(:,1), data_08(:,4));p = get("hdl"); p.children.line_style = 1; p.children.foreground = 11;p.children.line_mode = 'on';p.children.mark_mode = 'off';
//plot2d("nn",range_gm , fit_gm);p = get("hdl"); p.children.line_style = 1; p.children.foreground = 2;p.children.line_mode = 'on';p.children.mark_mode = 'off';
//a=gca();a.data_bounds(1,1)=-0.5E-04;a.data_bounds(1,2)=1.15;a.data_bounds(2,1)=4.5E-04;a.data_bounds(2,2)=1.35;
//a=gca();a.data_bounds(1,1)=-0.1;a.data_bounds(1,2)=0;a.data_bounds(2,1)=0.2;a.data_bounds(2,2)=20;
//legend("Target program 100nA","Target program 50nA","Target program 10nA","in_upper_left"); // "in_upper_left" "in_lower_right"
xtitle("","time [s]","Vconstant - Vout [V]");
scf(3);clf(3);
//plot2d("nn", data_00(:,1), data_00(:,2));p = get("hdl"); p.children.mark_style = 9; p.children.mark_foreground = 1;p.children.mark_mode = 'on';p.children.line_mode = 'off';
//plot2d("nn", data_00(:,1), data_00(:,3));p = get("hdl"); p.children.mark_style = 9; p.children.mark_foreground = 2;p.children.mark_mode = 'on';p.children.line_mode = 'off';
//plot2d("nn",data_00(:,1), data_00(:,3));p = get("hdl"); p.children.line_style = 1; p.children.foreground = 1;p.children.line_mode = 'on';p.children.mark_mode = 'off';
plot2d("nl",data_00(:,1), data_00(:,4));p = get("hdl"); p.children.line_style = 1; p.children.foreground = 2;p.children.line_mode = 'on';p.children.mark_mode = 'off';
plot2d("nl",data_00(:,1), data_01(:,4));p = get("hdl"); p.children.line_style = 1; p.children.foreground = 3;p.children.line_mode = 'on';p.children.mark_mode = 'off';
plot2d("nl",data_00(:,1), data_02(:,4));p = get("hdl"); p.children.line_style = 1; p.children.foreground = 4;p.children.line_mode = 'on';p.children.mark_mode = 'off';
plot2d("nl",data_00(:,1), data_03(:,4));p = get("hdl"); p.children.line_style = 1; p.children.foreground = 5;p.children.line_mode = 'on';p.children.mark_mode = 'off';
plot2d("nl",data_00(:,1), data_04(:,4));p = get("hdl"); p.children.line_style = 1; p.children.foreground = 6;p.children.line_mode = 'on';p.children.mark_mode = 'off';
plot2d("nl",data_00(:,1), data_05(:,4));p = get("hdl"); p.children.line_style = 1; p.children.foreground = 7;p.children.line_mode = 'on';p.children.mark_mode = 'off';
plot2d("nl",data_00(:,1), data_06(:,4));p = get("hdl"); p.children.line_style = 1; p.children.foreground = 8;p.children.line_mode = 'on';p.children.mark_mode = 'off';
plot2d("nl",data_00(:,1), data_07(:,4));p = get("hdl"); p.children.line_style = 1; p.children.foreground = 10;p.children.line_mode = 'on';p.children.mark_mode = 'off';
plot2d("nl",data_00(:,1), data_08(:,4));p = get("hdl"); p.children.line_style = 1; p.children.foreground = 11;p.children.line_mode = 'on';p.children.mark_mode = 'off';
//plot2d("nn",range_gm , fit_gm);p = get("hdl"); p.children.line_style = 1; p.children.foreground = 2;p.children.line_mode = 'on';p.children.mark_mode = 'off';
a=gca();a.data_bounds(1,1)=-0.5E-04;a.data_bounds(1,2)=1E-03;a.data_bounds(2,1)=1.0E-04;a.data_bounds(2,2)=1E-01;
//a=gca();a.data_bounds(1,1)=-0.1;a.data_bounds(1,2)=0;a.data_bounds(2,1)=0.2;a.data_bounds(2,2)=20;
//legend("Target program 100nA","Target program 50nA","Target program 10nA","in_upper_left"); // "in_upper_left" "in_lower_right"
xtitle("","time [s]","Vconstant - Vout [V]");
//polyfit
[p_00,S_00]=polyfit(data_00(1300:1400,1), log(data_00(1300:1400,4)),1);
[p_01,S_01]=polyfit(data_01(1300:1450,1), log(data_01(1300:1450,4)),1);
[p_02,S_02]=polyfit(data_02(1300:1600,1), log(data_02(1300:1600,4)),1);
[p_03,S_03]=polyfit(data_03(1300:1600,1), log(data_03(1300:1600,4)),1);
[p_04,S_04]=polyfit(data_04(1300:1600,1), log(data_04(1300:1600,4)),1);
[p_05,S_05]=polyfit(data_05(1300:1700,1), log(data_05(1300:1700,4)),1);
[p_06,S_06]=polyfit(data_06(1300:1800,1), log(data_06(1300:1800,4)),1);
[p_07,S_07]=polyfit(data_07(1300:2300,1), log(data_07(1300:2300,4)),1);
[p_08,S_08]=polyfit(data_08(1300:2500,1), log(data_08(1300:2500,4)),1);
// Eval
range_00 = data_00(1300,1):70E-09:data_00(1350,1);
range_01 = data_01(1300,1):70E-09:data_01(1450,1);
range_02 = data_02(1300,1):70E-09:data_02(1600,1);
range_03 = data_03(1300,1):70E-09:data_03(1600,1);
range_04 = data_04(1300,1):70E-09:data_04(1600,1);
range_05 = data_05(1300,1):70E-09:data_05(1700,1);
range_06 = data_06(1300,1):70E-09:data_06(1800,1);
range_07 = data_07(1300,1):70E-09:data_07(2300,1);
range_08 = data_08(1300,1):70E-09:data_08(2500,1);
fit_00 = polyval(p_00,range_00,S_00);
fit_01 = polyval(p_01,range_01,S_01);
fit_02 = polyval(p_02,range_02,S_02);
fit_03 = polyval(p_03,range_03,S_03);
fit_04 = polyval(p_04,range_04,S_04);
fit_05 = polyval(p_05,range_05,S_05);
fit_06 = polyval(p_06,range_06,S_06);
fit_07 = polyval(p_07,range_07,S_07);
fit_08 = polyval(p_08,range_08,S_08);
scf(4);clf(4);
plot2d("nl",data_00(1300:1400,1), data_00(1300:1400,4));p = get("hdl"); p.children.mark_style = 9; p.children.mark_foreground = 1;p.children.mark_mode = 'on';p.children.line_mode = 'off';
plot2d("nl",data_01(1300:1450,1), data_01(1300:1450,4));p = get("hdl"); p.children.mark_style = 9; p.children.mark_foreground = 2;p.children.mark_mode = 'on';p.children.line_mode = 'off';
plot2d("nl",data_02(1300:1600,1), data_02(1300:1600,4));p = get("hdl"); p.children.mark_style = 9; p.children.mark_foreground = 3;p.children.mark_mode = 'on';p.children.line_mode = 'off';
plot2d("nl",data_03(1300:1600,1), data_03(1300:1600,4));p = get("hdl"); p.children.mark_style = 9; p.children.mark_foreground = 4;p.children.mark_mode = 'on';p.children.line_mode = 'off';
plot2d("nl",data_04(1300:1600,1), data_04(1300:1600,4));p = get("hdl"); p.children.mark_style = 9; p.children.mark_foreground = 5;p.children.mark_mode = 'on';p.children.line_mode = 'off';
plot2d("nl",data_04(1300:1700,1), data_05(1300:1700,4));p = get("hdl"); p.children.mark_style = 9; p.children.mark_foreground = 6;p.children.mark_mode = 'on';p.children.line_mode = 'off';
plot2d("nl",data_04(1300:1800,1), data_06(1300:1800,4));p = get("hdl"); p.children.mark_style = 9; p.children.mark_foreground = 7;p.children.mark_mode = 'on';p.children.line_mode = 'off';
plot2d("nl",data_04(1300:2300,1), data_07(1300:2300,4));p = get("hdl"); p.children.mark_style = 9; p.children.mark_foreground = 9;p.children.mark_mode = 'on';p.children.line_mode = 'off';
plot2d("nl",data_04(1300:2500,1), data_08(1300:2500,4));p = get("hdl"); p.children.mark_style = 9; p.children.mark_foreground = 10;p.children.mark_mode = 'on';p.children.line_mode = 'off';
plot2d("nl",range_00, exp(fit_00));p = get("hdl"); p.children.line_style = 1; p.children.thickness = 2; p.children.foreground = 1;p.children.line_mode = 'on';p.children.mark_mode = 'off';
plot2d("nl",range_01, exp(fit_01));p = get("hdl"); p.children.line_style = 1; p.children.thickness = 2; p.children.foreground = 2;p.children.line_mode = 'on';p.children.mark_mode = 'off';
plot2d("nl",range_02, exp(fit_02));p = get("hdl"); p.children.line_style = 1; p.children.thickness = 2; p.children.foreground = 3;p.children.line_mode = 'on';p.children.mark_mode = 'off';
plot2d("nl",range_03, exp(fit_03));p = get("hdl"); p.children.line_style = 1; p.children.thickness = 2; p.children.foreground = 4;p.children.line_mode = 'on';p.children.mark_mode = 'off';
plot2d("nl",range_04, exp(fit_04));p = get("hdl"); p.children.line_style = 1; p.children.thickness = 2; p.children.foreground = 5;p.children.line_mode = 'on';p.children.mark_mode = 'off';
plot2d("nl",range_05, exp(fit_05));p = get("hdl"); p.children.line_style = 1; p.children.thickness = 2; p.children.foreground = 6;p.children.line_mode = 'on';p.children.mark_mode = 'off';
plot2d("nl",range_06, exp(fit_06));p = get("hdl"); p.children.line_style = 1; p.children.thickness = 2; p.children.foreground = 7;p.children.line_mode = 'on';p.children.mark_mode = 'off';
plot2d("nl",range_07, exp(fit_07));p = get("hdl"); p.children.line_style = 1; p.children.thickness = 2; p.children.foreground = 9;p.children.line_mode = 'on';p.children.mark_mode = 'off';
plot2d("nl",range_08, exp(fit_08));p = get("hdl"); p.children.line_style = 1; p.children.thickness = 2; p.children.foreground = 10;p.children.line_mode = 'on';p.children.mark_mode = 'off';
a=gca();a.data_bounds(1,1)=0;a.data_bounds(1,2)=1E-03;a.data_bounds(2,1)=10.0E-05;a.data_bounds(2,2)=1E-01;
xtitle("","time [s]","Vconstant - Vout [V]");
disp(-1/p_00(1,1)*1E06); disp(-1/p_01(1,1)*1E06); disp(-1/p_02(1,1)*1E06); disp(-1/p_03(1,1)*1E06); disp(-1/p_04(1,1)*1E06); disp(-1/p_05(1,1)*1E06); disp(-1/p_06(1,1)*1E06); disp(-1/p_07(1,1)*1E06); disp(-1/p_08(1,1)*1E06);
disp(-1/p_00(1,1)*169*1E-09*1E12); disp(-1/p_01(1,1)*169*1E-09*1E12); disp(-1/p_02(1,1)*169*1E-09*1E12); disp(-1/p_03(1,1)*169*1E-09*1E12); disp(-1/p_04(1,1)*169*1E-09*1E12); disp(-1/p_05(1,1)*169*1E-09*1E12); disp(-1/p_06(1,1)*169*1E-09*1E12); disp(-1/p_07(1,1)*169*1E-09*1E12); disp(-1/p_08(1,1)*169*1E-09*1E12);
disp(-1/p_00(1,1)*1E06); disp(-1/p_01(1,1)*1E06); disp(-1/p_02(1,1)*1E06); disp(-1/p_03(1,1)*1E06); disp(-1/p_04(1,1)*1E06); disp(-1/p_05(1,1)*1E06); disp(-1/p_06(1,1)*1E06); disp(-1/p_07(1,1)*1E06); disp(-1/p_08(1,1)*1E06);
disp(-1/p_00(1,1)*145*1E-09*1E12); disp(-1/p_01(1,1)*145*1E-09*1E12); disp(-1/p_02(1,1)*145*1E-09*1E12); disp(-1/p_03(1,1)*145*1E-09*1E12); disp(-1/p_04(1,1)*145*1E-09*1E12); disp(-1/p_05(1,1)*145*1E-09*1E12); disp(-1/p_06(1,1)*145*1E-09*1E12); disp(-1/p_07(1,1)*145*1E-09*1E12); disp(-1/p_08(1,1)*145*1E-09*1E12);
|
1038acf337cc846e9160d79da85a51b270054371
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1301/CH5/EX5.17/ex5_17.sce
|
8a8a66bdb11e8afb3806b5d7e73c41c4d5bae72f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 216 |
sce
|
ex5_17.sce
|
clc;
w=3; //weight in lb
v=15; //velocity in ft/sec
g=32; //g in ft/sec square
s=(1/24); //s in ft
F=(w*v*v)/(2*g*s); //calculating force exerted in lb
disp(F,"Force exerted in lb = "); //displaying result
|
b691bca694dbc60cce797bd859510743cbfeb7ae
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/620/CH18/EX18.2/example18_2.sce
|
d3d033d963e305405cbb8f8d7404fd313b13ff20
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 245 |
sce
|
example18_2.sce
|
v1=120;
v2=12.6;
r=10;
disp("Part a");
n=v1/v2;
disp("the turns ratio is"); disp(n);
disp("Part b");
i2=v2/r;
disp("the secondary current (in A) is"); disp(i2);
disp("Part c");
i1=v1/r;
disp("the primary current (in A) is"); disp(i1);
|
f76c3474be1d2745537604fb96d293c4e4cf3a3d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2672/CH6/EX6.3/Ex6_3.sce
|
3dc90a731c354d0cc0b383d9cf585f6ece37e8f8
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 413 |
sce
|
Ex6_3.sce
|
//Example 6_3
clc;
clear;
close;
format('v',5);
//given data :
r1BYr2=10000;//multipying factor
//r=Eta*VT/I0*eps^(-V/Eta/VT)
//log(r1BYr2)=(-V1/Eta/VT)/(-V2/Eta/VT)=delV/Eta/VT
VT=26;//mV
Eta=2;//for silicon
delV=log(r1BYr2)*Eta*VT;
disp(delV,"Break region for Si(mV)");
Eta=1;//for Germenium
delV=log(r1BYr2)*Eta*VT;
disp(delV,"Break region for Ge(mV)");
//Answer in the book is not accurate.
|
8064c75af166f9bad1752e15c7b0e37d7ff21a12
|
1489f5f3f467ff75c3223c5c1defb60ccb55df3d
|
/tests/test_btree_1_g.tst
|
cddb105c9114ecdd6ffe924e29bf931172035353
|
[
"MIT"
] |
permissive
|
ciyam/ciyam
|
8e078673340b43f04e7b0d6ac81740b6cf3d78d0
|
935df95387fb140487d2e0053fabf612b0d3f9e2
|
refs/heads/master
| 2023-08-31T11:03:25.835641 | 2023-08-31T04:31:22 | 2023-08-31T04:31:22 | 3,124,021 | 18 | 16 | null | 2017-01-28T16:22:57 | 2012-01-07T10:55:14 |
C++
|
UTF-8
|
Scilab
| false | false | 6,178 |
tst
|
test_btree_1_g.tst
|
Total index levels = 3
Total number of nodes = 37
Total number of items = 78
Dumping level #0
[Node 31] flags = 0, dge_link = 30
lft_link = -1, rgt_link = -1
Item #0, data = bn, link = 9
Dumping level #1
[Node 9] flags = 0, dge_link = -1
lft_link = -1, rgt_link = 30
Item #0, data = am, link = 2
Item #1, data = av, link = 35
Item #2, data = be, link = 29
Item #3, data = bn, link = 25
[Node 30] flags = 0, dge_link = 8
lft_link = 9, rgt_link = -1
Item #0, data = bw, link = 21
Item #1, data = cf, link = 17
Item #2, data = co, link = 13
Dumping level #2
[Node 2] flags = 0, dge_link = -1
lft_link = -1, rgt_link = 35
Item #0, data = ad, link = 0
Item #1, data = ag, link = 36
Item #2, data = aj, link = 34
Item #3, data = am, link = 33
[Node 35] flags = 0, dge_link = -1
lft_link = 2, rgt_link = 29
Item #0, data = ap, link = 32
Item #1, data = as, link = 28
Item #2, data = av, link = 27
[Node 29] flags = 0, dge_link = -1
lft_link = 35, rgt_link = 25
Item #0, data = ay, link = 26
Item #1, data = bb, link = 24
Item #2, data = be, link = 23
[Node 25] flags = 0, dge_link = -1
lft_link = 29, rgt_link = 21
Item #0, data = bh, link = 22
Item #1, data = bk, link = 20
Item #2, data = bn, link = 19
[Node 21] flags = 0, dge_link = -1
lft_link = 25, rgt_link = 17
Item #0, data = bq, link = 18
Item #1, data = bt, link = 16
Item #2, data = bw, link = 15
[Node 17] flags = 0, dge_link = -1
lft_link = 21, rgt_link = 13
Item #0, data = bz, link = 14
Item #1, data = cc, link = 12
Item #2, data = cf, link = 11
[Node 13] flags = 0, dge_link = -1
lft_link = 17, rgt_link = 8
Item #0, data = ci, link = 10
Item #1, data = cl, link = 7
Item #2, data = co, link = 6
[Node 8] flags = 0, dge_link = 1
lft_link = 13, rgt_link = -1
Item #0, data = cr, link = 5
Item #1, data = cu, link = 4
Item #2, data = cx, link = 3
Dumping level #3
[Node 0] flags = 1, dge_link = -1
lft_link = -1, rgt_link = 36
Item #0, data = aa, link = -1
Item #1, data = ab, link = -1
Item #2, data = ac, link = -1
[Node 36] flags = 1, dge_link = -1
lft_link = 0, rgt_link = 34
Item #0, data = ad, link = -1
Item #1, data = ae, link = -1
Item #2, data = af, link = -1
[Node 34] flags = 1, dge_link = -1
lft_link = 36, rgt_link = 33
Item #0, data = ag, link = -1
Item #1, data = ah, link = -1
Item #2, data = ai, link = -1
[Node 33] flags = 1, dge_link = -1
lft_link = 34, rgt_link = 32
Item #0, data = aj, link = -1
Item #1, data = ak, link = -1
Item #2, data = al, link = -1
[Node 32] flags = 1, dge_link = -1
lft_link = 33, rgt_link = 28
Item #0, data = am, link = -1
Item #1, data = an, link = -1
Item #2, data = ao, link = -1
[Node 28] flags = 1, dge_link = -1
lft_link = 32, rgt_link = 27
Item #0, data = ap, link = -1
Item #1, data = aq, link = -1
Item #2, data = ar, link = -1
[Node 27] flags = 1, dge_link = -1
lft_link = 28, rgt_link = 26
Item #0, data = as, link = -1
Item #1, data = at, link = -1
Item #2, data = au, link = -1
[Node 26] flags = 1, dge_link = -1
lft_link = 27, rgt_link = 24
Item #0, data = av, link = -1
Item #1, data = aw, link = -1
Item #2, data = ax, link = -1
[Node 24] flags = 1, dge_link = -1
lft_link = 26, rgt_link = 23
Item #0, data = ay, link = -1
Item #1, data = az, link = -1
Item #2, data = ba, link = -1
[Node 23] flags = 1, dge_link = -1
lft_link = 24, rgt_link = 22
Item #0, data = bb, link = -1
Item #1, data = bc, link = -1
Item #2, data = bd, link = -1
[Node 22] flags = 1, dge_link = -1
lft_link = 23, rgt_link = 20
Item #0, data = be, link = -1
Item #1, data = bf, link = -1
Item #2, data = bg, link = -1
[Node 20] flags = 1, dge_link = -1
lft_link = 22, rgt_link = 19
Item #0, data = bh, link = -1
Item #1, data = bi, link = -1
Item #2, data = bj, link = -1
[Node 19] flags = 1, dge_link = -1
lft_link = 20, rgt_link = 18
Item #0, data = bk, link = -1
Item #1, data = bl, link = -1
Item #2, data = bm, link = -1
[Node 18] flags = 1, dge_link = -1
lft_link = 19, rgt_link = 16
Item #0, data = bn, link = -1
Item #1, data = bo, link = -1
Item #2, data = bp, link = -1
[Node 16] flags = 1, dge_link = -1
lft_link = 18, rgt_link = 15
Item #0, data = bq, link = -1
Item #1, data = br, link = -1
Item #2, data = bs, link = -1
[Node 15] flags = 1, dge_link = -1
lft_link = 16, rgt_link = 14
Item #0, data = bt, link = -1
Item #1, data = bu, link = -1
Item #2, data = bv, link = -1
[Node 14] flags = 1, dge_link = -1
lft_link = 15, rgt_link = 12
Item #0, data = bw, link = -1
Item #1, data = bx, link = -1
Item #2, data = by, link = -1
[Node 12] flags = 1, dge_link = -1
lft_link = 14, rgt_link = 11
Item #0, data = bz, link = -1
Item #1, data = ca, link = -1
Item #2, data = cb, link = -1
[Node 11] flags = 1, dge_link = -1
lft_link = 12, rgt_link = 10
Item #0, data = cc, link = -1
Item #1, data = cd, link = -1
Item #2, data = ce, link = -1
[Node 10] flags = 1, dge_link = -1
lft_link = 11, rgt_link = 7
Item #0, data = cf, link = -1
Item #1, data = cg, link = -1
Item #2, data = ch, link = -1
[Node 7] flags = 1, dge_link = -1
lft_link = 10, rgt_link = 6
Item #0, data = ci, link = -1
Item #1, data = cj, link = -1
Item #2, data = ck, link = -1
[Node 6] flags = 1, dge_link = -1
lft_link = 7, rgt_link = 5
Item #0, data = cl, link = -1
Item #1, data = cm, link = -1
Item #2, data = cn, link = -1
[Node 5] flags = 1, dge_link = -1
lft_link = 6, rgt_link = 4
Item #0, data = co, link = -1
Item #1, data = cp, link = -1
Item #2, data = cq, link = -1
[Node 4] flags = 1, dge_link = -1
lft_link = 5, rgt_link = 3
Item #0, data = cr, link = -1
Item #1, data = cs, link = -1
Item #2, data = ct, link = -1
[Node 3] flags = 1, dge_link = -1
lft_link = 4, rgt_link = 1
Item #0, data = cu, link = -1
Item #1, data = cv, link = -1
Item #2, data = cw, link = -1
[Node 1] flags = 3, dge_link = -1
lft_link = 3, rgt_link = -1
Item #0, data = cx, link = -1
Item #1, data = cy, link = -1
Item #2, data = cz, link = -1
|
27eb39bf41c6fcadfc4efb9ea8c737c52f0627fd
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1448/CH20/EX20.1.i/I20_1.sce
|
ba925bf94d650100b297d190c3dbccac1064cb67
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 200 |
sce
|
I20_1.sce
|
clc
//Initialization of variables
E=22*10^3 //kJ/mol
T=293 //K
//calculations
ratio=%e^(-E/(8.31451*T))
//results
printf("Relative populations of boat and chair conformations is %.1e",ratio)
|
5d2b1c52acb46b5002053bfc6fc50275797f0750
|
931df7de6dffa2b03ac9771d79e06d88c24ab4ff
|
/1v1 new .sce
|
1d6cf106ebdeb05f6d88510a828098655b42806a
|
[] |
no_license
|
MBHuman/Scenarios
|
be1a722825b3b960014b07cda2f12fa4f75c7fc8
|
1db6bfdec8cc42164ca9ff57dd9d3c82cfaf2137
|
refs/heads/master
| 2023-01-14T02:10:25.103083 | 2020-11-21T16:47:14 | 2020-11-21T16:47:14 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 23,410 |
sce
|
1v1 new .sce
|
Name=1v1 new
PlayerCharacters=air1
BotCharacters=QC Mix.rot
IsChallenge=false
Timelimit=60.0
PlayerProfile=
AddedBots=
PlayerMaxLives=0
BotMaxLives=
PlayerTeam=0
BotTeams=
MapName=
MapScale=3.8125
BlockProjectilePredictors=true
BlockCheats=true
InvinciblePlayer=false
InvincibleBots=false
Timescale=1.0
BlockHealthbars=false
TimeRefilledByKill=0.0
ScoreToWin=1000.0
ScorePerDamage=1.0
ScorePerKill=0.0
ScorePerMidairDirect=0.0
ScorePerAnyDirect=0.0
ScorePerTime=0.0
ScoreLossPerDamageTaken=0.0
ScoreLossPerDeath=0.0
ScoreLossPerMidairDirected=0.0
ScoreLossPerAnyDirected=0.0
ScoreMultAccuracy=false
ScoreMultDamageEfficiency=false
ScoreMultKillEfficiency=false
GameTag=
WeaponHeroTag=
DifficultyTag=3
AuthorsTag=
BlockHitMarkers=false
BlockHitSounds=false
BlockMissSounds=true
BlockFCT=false
Description=harder version of original
GameVersion=1.0.6
ScorePerDistance=0.0
[Aim Profile]
Name=At Feet
MinReactionTime=0.3
MaxReactionTime=0.4
MinSelfMovementCorrectionTime=0.001
MaxSelfMovementCorrectionTime=0.05
FlickFOV=30.0
FlickSpeed=1.5
FlickError=15.0
TrackSpeed=3.5
TrackError=3.5
MaxTurnAngleFromPadCenter=75.0
MinRecenterTime=0.3
MaxRecenterTime=0.5
OptimalAimFOV=30.0
OuterAimPenalty=1.0
MaxError=40.0
ShootFOV=15.0
VerticalAimOffset=-100.0
MaxTolerableSpread=5.0
MinTolerableSpread=1.0
TolerableSpreadDist=2000.0
MaxSpreadDistFactor=2.0
[Aim Profile]
Name=Low Skill At Feet
MinReactionTime=0.35
MaxReactionTime=0.45
MinSelfMovementCorrectionTime=0.001
MaxSelfMovementCorrectionTime=0.05
FlickFOV=30.0
FlickSpeed=1.5
FlickError=20.0
TrackSpeed=3.0
TrackError=5.0
MaxTurnAngleFromPadCenter=75.0
MinRecenterTime=0.3
MaxRecenterTime=0.5
OptimalAimFOV=30.0
OuterAimPenalty=1.0
MaxError=60.0
ShootFOV=25.0
VerticalAimOffset=-200.0
MaxTolerableSpread=5.0
MinTolerableSpread=1.0
TolerableSpreadDist=2000.0
MaxSpreadDistFactor=2.0
[Aim Profile]
Name=Low Skill
MinReactionTime=0.35
MaxReactionTime=0.45
MinSelfMovementCorrectionTime=0.001
MaxSelfMovementCorrectionTime=0.05
FlickFOV=30.0
FlickSpeed=1.5
FlickError=20.0
TrackSpeed=3.0
TrackError=5.0
MaxTurnAngleFromPadCenter=75.0
MinRecenterTime=0.3
MaxRecenterTime=0.5
OptimalAimFOV=30.0
OuterAimPenalty=1.0
MaxError=60.0
ShootFOV=25.0
VerticalAimOffset=0.0
MaxTolerableSpread=5.0
MinTolerableSpread=1.0
TolerableSpreadDist=2000.0
MaxSpreadDistFactor=2.0
[Aim Profile]
Name=Default
MinReactionTime=0.3
MaxReactionTime=0.4
MinSelfMovementCorrectionTime=0.001
MaxSelfMovementCorrectionTime=0.05
FlickFOV=30.0
FlickSpeed=1.5
FlickError=15.0
TrackSpeed=3.5
TrackError=3.5
MaxTurnAngleFromPadCenter=75.0
MinRecenterTime=0.3
MaxRecenterTime=0.5
OptimalAimFOV=30.0
OuterAimPenalty=1.0
MaxError=40.0
ShootFOV=15.0
VerticalAimOffset=0.0
MaxTolerableSpread=5.0
MinTolerableSpread=1.0
TolerableSpreadDist=2000.0
MaxSpreadDistFactor=2.0
[Bot Profile]
Name=Tank QC Fast Strafes
DodgeProfileNames=Short Strafes
DodgeProfileWeights=1.0
DodgeProfileMaxChangeTime=5.0
DodgeProfileMinChangeTime=1.0
WeaponProfileWeights=1.0;1.0;2.0;1.0;1.0;1.0;1.0;1.0
AimingProfileNames=At Feet;Low Skill At Feet;Low Skill;Default;Default;Default;Default;Default
WeaponSwitchTime=3.0
UseWeapons=false
CharacterProfile=Tank Quake Champion
SeeThroughWalls=false
[Bot Profile]
Name=Tank QC Long Strafes
DodgeProfileNames=Long Strafes
DodgeProfileWeights=1.0
DodgeProfileMaxChangeTime=5.0
DodgeProfileMinChangeTime=1.0
WeaponProfileWeights=1.0;1.0;2.0;1.0;1.0;1.0;1.0;1.0
AimingProfileNames=At Feet;Low Skill At Feet;Low Skill;Default;Default;Default;Default;Default
WeaponSwitchTime=3.0
UseWeapons=false
CharacterProfile=Tank Quake Champion
SeeThroughWalls=false
[Bot Profile]
Name=Tiny QC Fast Strafes
DodgeProfileNames=Short Strafes
DodgeProfileWeights=1.0
DodgeProfileMaxChangeTime=5.0
DodgeProfileMinChangeTime=1.0
WeaponProfileWeights=1.0;1.0;2.0;1.0;1.0;1.0;1.0;1.0
AimingProfileNames=At Feet;Low Skill At Feet;Low Skill;Default;Default;Default;Default;Default
WeaponSwitchTime=3.0
UseWeapons=false
CharacterProfile=Tiny Quake Champion
SeeThroughWalls=false
[Bot Profile]
Name=Tiny QC Long Strafes
DodgeProfileNames=Long Strafes
DodgeProfileWeights=1.0
DodgeProfileMaxChangeTime=5.0
DodgeProfileMinChangeTime=1.0
WeaponProfileWeights=1.0;1.0;2.0;1.0;1.0;1.0;1.0;1.0
AimingProfileNames=At Feet;Low Skill At Feet;Low Skill;Default;Default;Default;Default;Default
WeaponSwitchTime=3.0
UseWeapons=false
CharacterProfile=Tiny Quake Champion
SeeThroughWalls=false
[Bot Rotation Profile]
Name=QC Mix
ProfileNames=Tank QC Fast Strafes;Tank QC Long Strafes;Tiny QC Fast Strafes;Tiny QC Long Strafes
ProfileWeights=0.35;0.15;0.35;0.15
Randomized=true
[Character Profile]
Name=air1
MaxHealth=1000.0
WeaponProfileNames=;;;;;;;
MinRespawnDelay=1.0
MaxRespawnDelay=5.0
StepUpHeight=75.0
CrouchHeightModifier=0.5
CrouchAnimationSpeed=1.0
CameraOffset=X=0.000 Y=0.000 Z=0.000
HeadshotOnly=false
DamageKnockbackFactor=8.0
MovementType=Base
MaxSpeed=1000.0
MaxCrouchSpeed=500.0
Acceleration=16000.0
AirAcceleration=16000.0
Friction=8.0
BrakingFrictionFactor=2.0
JumpVelocity=800.0
Gravity=3.0
AirControl=0.25
CanCrouch=true
CanPogoJump=false
CanCrouchInAir=false
CanJumpFromCrouch=false
EnemyBodyColor=X=255.000 Y=0.000 Z=0.000
EnemyHeadColor=X=255.000 Y=255.000 Z=255.000
TeamBodyColor=X=0.000 Y=0.000 Z=255.000
TeamHeadColor=X=255.000 Y=255.000 Z=255.000
BlockSelfDamage=false
InvinciblePlayer=false
InvincibleBots=false
BlockTeamDamage=false
AirJumpCount=0
AirJumpVelocity=800.0
MainBBType=Cylindrical
MainBBHeight=230.0
MainBBRadius=100.0
MainBBHasHead=false
MainBBHeadRadius=45.0
MainBBHeadOffset=0.0
MainBBHide=false
ProjBBType=Cylindrical
ProjBBHeight=230.0
ProjBBRadius=55.0
ProjBBHasHead=true
ProjBBHeadRadius=45.0
ProjBBHeadOffset=0.0
ProjBBHide=true
HasJetpack=true
JetpackActivationDelay=0.2
JetpackFullFuelTime=100000.0
JetpackFuelIncPerSec=0.1
JetpackFuelRegensInAir=true
JetpackThrust=6000.0
JetpackMaxZVelocity=400.0
JetpackAirControlWithThrust=1.0
AbilityProfileNames=;;;
HideWeapon=false
AerialFriction=0.0
StrafeSpeedMult=1.0
BackSpeedMult=1.0
RespawnInvulnTime=0.0
BlockedSpawnRadius=0.0
BlockSpawnFOV=0.0
BlockSpawnDistance=0.0
RespawnAnimationDuration=0.5
AllowBufferedJumps=true
BounceOffWalls=false
LeanAngle=0.0
LeanDisplacement=0.0
AirJumpExtraControl=0.0
ForwardSpeedBias=1.0
HealthRegainedonkill=0.0
HealthRegenPerSec=0.0
HealthRegenDelay=0.0
JumpSpeedPenaltyDuration=0.0
JumpSpeedPenaltyPercent=0.0
ThirdPersonCamera=false
TPSArmLength=300.0
TPSOffset=X=0.000 Y=150.000 Z=150.000
BrakingDeceleration=2048.0
VerticalSpawnOffset=0.0
[Character Profile]
Name=Tank Quake Champion
MaxHealth=450.0
WeaponProfileNames=Railgun;Rocket Launcher;LG;;;;;
MinRespawnDelay=1.0
MaxRespawnDelay=5.0
StepUpHeight=75.0
CrouchHeightModifier=0.5
CrouchAnimationSpeed=2.0
CameraOffset=X=0.000 Y=0.000 Z=80.000
HeadshotOnly=false
DamageKnockbackFactor=4.0
MovementType=Base
MaxSpeed=1300.0
MaxCrouchSpeed=500.0
Acceleration=9000.0
AirAcceleration=16000.0
Friction=4.0
BrakingFrictionFactor=2.0
JumpVelocity=800.0
Gravity=3.0
AirControl=0.25
CanCrouch=true
CanPogoJump=false
CanCrouchInAir=true
CanJumpFromCrouch=false
EnemyBodyColor=X=0.771 Y=0.000 Z=0.000
EnemyHeadColor=X=1.000 Y=1.000 Z=1.000
TeamBodyColor=X=1.000 Y=0.888 Z=0.000
TeamHeadColor=X=1.000 Y=1.000 Z=1.000
BlockSelfDamage=false
InvinciblePlayer=false
InvincibleBots=false
BlockTeamDamage=false
AirJumpCount=0
AirJumpVelocity=0.0
MainBBType=Cylindrical
MainBBHeight=300.0
MainBBRadius=64.0
MainBBHasHead=false
MainBBHeadRadius=45.0
MainBBHeadOffset=0.0
MainBBHide=false
ProjBBType=Cylindrical
ProjBBHeight=230.0
ProjBBRadius=70.0
ProjBBHasHead=false
ProjBBHeadRadius=45.0
ProjBBHeadOffset=0.0
ProjBBHide=true
HasJetpack=false
JetpackActivationDelay=0.2
JetpackFullFuelTime=4.0
JetpackFuelIncPerSec=1.0
JetpackFuelRegensInAir=false
JetpackThrust=6000.0
JetpackMaxZVelocity=400.0
JetpackAirControlWithThrust=0.25
AbilityProfileNames=;;;
HideWeapon=false
AerialFriction=0.0
StrafeSpeedMult=1.0
BackSpeedMult=1.0
RespawnInvulnTime=0.0
BlockedSpawnRadius=0.0
BlockSpawnFOV=0.0
BlockSpawnDistance=0.0
RespawnAnimationDuration=0.5
AllowBufferedJumps=true
BounceOffWalls=false
LeanAngle=0.0
LeanDisplacement=0.0
AirJumpExtraControl=0.0
ForwardSpeedBias=1.0
HealthRegainedonkill=0.0
HealthRegenPerSec=0.0
HealthRegenDelay=0.0
JumpSpeedPenaltyDuration=0.0
JumpSpeedPenaltyPercent=0.0
ThirdPersonCamera=false
TPSArmLength=300.0
TPSOffset=X=0.000 Y=150.000 Z=150.000
BrakingDeceleration=2048.0
VerticalSpawnOffset=0.0
[Character Profile]
Name=Tiny Quake Champion
MaxHealth=250.0
WeaponProfileNames=Railgun;Rocket Launcher;LG;;;;;
MinRespawnDelay=1.0
MaxRespawnDelay=5.0
StepUpHeight=75.0
CrouchHeightModifier=0.5
CrouchAnimationSpeed=2.0
CameraOffset=X=0.000 Y=0.000 Z=80.000
HeadshotOnly=false
DamageKnockbackFactor=4.0
MovementType=Base
MaxSpeed=1300.0
MaxCrouchSpeed=500.0
Acceleration=9000.0
AirAcceleration=16000.0
Friction=4.0
BrakingFrictionFactor=2.0
JumpVelocity=800.0
Gravity=3.0
AirControl=0.25
CanCrouch=true
CanPogoJump=false
CanCrouchInAir=true
CanJumpFromCrouch=false
EnemyBodyColor=X=0.771 Y=0.000 Z=0.000
EnemyHeadColor=X=1.000 Y=1.000 Z=1.000
TeamBodyColor=X=1.000 Y=0.888 Z=0.000
TeamHeadColor=X=1.000 Y=1.000 Z=1.000
BlockSelfDamage=false
InvinciblePlayer=false
InvincibleBots=false
BlockTeamDamage=false
AirJumpCount=0
AirJumpVelocity=0.0
MainBBType=Cylindrical
MainBBHeight=300.0
MainBBRadius=44.0
MainBBHasHead=false
MainBBHeadRadius=45.0
MainBBHeadOffset=0.0
MainBBHide=false
ProjBBType=Cylindrical
ProjBBHeight=300.0
ProjBBRadius=48.0
ProjBBHasHead=false
ProjBBHeadRadius=45.0
ProjBBHeadOffset=0.0
ProjBBHide=true
HasJetpack=false
JetpackActivationDelay=0.2
JetpackFullFuelTime=4.0
JetpackFuelIncPerSec=1.0
JetpackFuelRegensInAir=false
JetpackThrust=6000.0
JetpackMaxZVelocity=400.0
JetpackAirControlWithThrust=0.25
AbilityProfileNames=;;;
HideWeapon=false
AerialFriction=0.0
StrafeSpeedMult=1.0
BackSpeedMult=1.0
RespawnInvulnTime=0.0
BlockedSpawnRadius=0.0
BlockSpawnFOV=0.0
BlockSpawnDistance=0.0
RespawnAnimationDuration=0.5
AllowBufferedJumps=true
BounceOffWalls=false
LeanAngle=0.0
LeanDisplacement=0.0
AirJumpExtraControl=0.0
ForwardSpeedBias=1.0
HealthRegainedonkill=0.0
HealthRegenPerSec=0.0
HealthRegenDelay=0.0
JumpSpeedPenaltyDuration=0.0
JumpSpeedPenaltyPercent=0.0
ThirdPersonCamera=false
TPSArmLength=300.0
TPSOffset=X=0.000 Y=150.000 Z=150.000
BrakingDeceleration=2048.0
VerticalSpawnOffset=0.0
[Dodge Profile]
Name=Short Strafes
MaxTargetDistance=2500.0
MinTargetDistance=750.0
ToggleLeftRight=true
ToggleForwardBack=false
MinLRTimeChange=0.2
MaxLRTimeChange=0.5
MinFBTimeChange=0.2
MaxFBTimeChange=0.5
DamageReactionChangesDirection=false
DamageReactionChanceToIgnore=0.5
DamageReactionMinimumDelay=0.125
DamageReactionMaximumDelay=0.25
DamageReactionCooldown=1.0
DamageReactionThreshold=50.0
DamageReactionResetTimer=0.5
JumpFrequency=0.1
CrouchInAirFrequency=0.0
CrouchOnGroundFrequency=0.0
TargetStrafeOverride=Ignore
TargetStrafeMinDelay=0.125
TargetStrafeMaxDelay=0.25
MinProfileChangeTime=0.0
MaxProfileChangeTime=0.0
MinCrouchTime=0.3
MaxCrouchTime=0.6
MinJumpTime=0.3
MaxJumpTime=0.6
LeftStrafeTimeMult=1.0
RightStrafeTimeMult=1.0
StrafeSwapMinPause=0.0
StrafeSwapMaxPause=0.0
BlockedMovementPercent=0.5
BlockedMovementReactionMin=0.125
BlockedMovementReactionMax=0.2
[Dodge Profile]
Name=Long Strafes
MaxTargetDistance=5000.0
MinTargetDistance=0.0
ToggleLeftRight=true
ToggleForwardBack=true
MinLRTimeChange=0.5
MaxLRTimeChange=1.5
MinFBTimeChange=0.2
MaxFBTimeChange=0.5
DamageReactionChangesDirection=true
DamageReactionChanceToIgnore=0.5
DamageReactionMinimumDelay=0.125
DamageReactionMaximumDelay=0.25
DamageReactionCooldown=1.0
DamageReactionThreshold=50.0
DamageReactionResetTimer=0.5
JumpFrequency=0.0
CrouchInAirFrequency=0.0
CrouchOnGroundFrequency=0.0
TargetStrafeOverride=Ignore
TargetStrafeMinDelay=0.125
TargetStrafeMaxDelay=0.25
MinProfileChangeTime=0.0
MaxProfileChangeTime=0.0
MinCrouchTime=0.3
MaxCrouchTime=0.6
MinJumpTime=0.3
MaxJumpTime=0.6
LeftStrafeTimeMult=1.0
RightStrafeTimeMult=1.0
StrafeSwapMinPause=0.0
StrafeSwapMaxPause=0.0
BlockedMovementPercent=0.5
BlockedMovementReactionMin=0.125
BlockedMovementReactionMax=0.2
[Weapon Profile]
Name=Railgun
Type=Hitscan
ShotsPerClick=1
DamagePerShot=80.0
KnockbackFactor=9.0
TimeBetweenShots=1.0
Pierces=true
Category=FullyAuto
BurstShotCount=1
TimeBetweenBursts=0.5
ChargeStartDamage=10.0
ChargeStartVelocity=X=500.000 Y=0.000 Z=0.000
ChargeTimeToAutoRelease=2.0
ChargeTimeToCap=1.0
ChargeMoveSpeedModifier=1.0
MuzzleVelocityMin=X=2000.000 Y=0.000 Z=0.000
MuzzleVelocityMax=X=2000.000 Y=0.000 Z=0.000
InheritOwnerVelocity=0.0
OriginOffset=X=0.000 Y=0.000 Z=0.000
MaxTravelTime=5.0
MaxHitscanRange=100000.0
GravityScale=1.0
HeadshotCapable=false
HeadshotMultiplier=2.0
MagazineMax=0
AmmoPerShot=1
ReloadTimeFromEmpty=0.5
ReloadTimeFromPartial=0.5
DamageFalloffStartDistance=100000.0
DamageFalloffStopDistance=100000.0
DamageAtMaxRange=25.0
DelayBeforeShot=0.0
HitscanVisualEffect=Tracer
ProjectileGraphic=Ball
VisualLifetime=0.5
WallParticleEffect=None
HitParticleEffect=Blood
BounceOffWorld=false
BounceFactor=0.0
BounceCount=0
HomingProjectileAcceleration=0.0
ProjectileEnemyHitRadius=1.0
CanAimDownSight=false
ADSZoomDelay=0.0
ADSZoomSensFactor=0.7
ADSMoveFactor=1.0
ADSStartDelay=0.0
ShootSoundCooldown=0.08
HitSoundCooldown=0.08
HitscanVisualOffset=X=0.000 Y=0.000 Z=-50.000
ADSBlocksShooting=false
ShootingBlocksADS=false
KnockbackFactorAir=9.0
RecoilNegatable=false
DecalType=1
DecalSize=30.0
DelayAfterShooting=0.0
BeamTracksCrosshair=false
AlsoShoot=
ADSShoot=
StunDuration=0.0
CircularSpread=true
SpreadStationaryVelocity=0.0
PassiveCharging=false
BurstFullyAuto=true
FlatKnockbackHorizontal=0.0
FlatKnockbackVertical=0.0
HitscanRadius=0.0
HitscanVisualRadius=6.0
TaggingDuration=0.0
TaggingMaxFactor=1.0
TaggingHitFactor=1.0
ProjectileTrail=None
RecoilCrouchScale=1.0
RecoilADSScale=1.0
PSRCrouchScale=1.0
PSRADSScale=1.0
ProjectileAcceleration=0.0
AccelIncludeVertical=true
AimPunchAmount=0.0
AimPunchResetTime=0.05
AimPunchCooldown=0.5
AimPunchHeadshotOnly=false
AimPunchCosmeticOnly=true
MinimumDecelVelocity=0.0
PSRManualNegation=false
PSRAutoReset=true
AimPunchUpTime=0.05
AmmoReloadedOnKill=0
CancelReloadOnKill=false
FlatKnockbackHorizontalMin=0.0
FlatKnockbackVerticalMin=0.0
ADSScope=No Scope
ADSFOVOverride=72.099998
ADSFOVScale=Horizontal (16:9)
ADSAllowUserOverrideFOV=true
ForceFirstPersonInADS=true
Explosive=false
Radius=500.0
DamageAtCenter=100.0
DamageAtEdge=0.0
SelfDamageMultiplier=0.5
ExplodesOnContactWithEnemy=false
DelayAfterEnemyContact=0.0
ExplodesOnContactWithWorld=false
DelayAfterWorldContact=0.0
ExplodesOnNextAttack=false
DelayAfterSpawn=0.0
BlockedByWorld=false
SpreadSSA=1.0,1.0,-1.0,5.0
SpreadSCA=1.0,1.0,-1.0,5.0
SpreadMSA=1.0,1.0,-1.0,5.0
SpreadMCA=1.0,1.0,-1.0,5.0
SpreadSSH=1.0,1.0,-1.0,5.0
SpreadSCH=1.0,1.0,-1.0,5.0
SpreadMSH=1.0,1.0,-1.0,5.0
SpreadMCH=1.0,1.0,-1.0,5.0
MaxRecoilUp=0.0
MinRecoilUp=0.0
MinRecoilHoriz=0.0
MaxRecoilHoriz=0.0
FirstShotRecoilMult=1.0
RecoilAutoReset=false
TimeToRecoilPeak=0.05
TimeToRecoilReset=0.35
AAMode=0
AAPreferClosestPlayer=false
AAAlpha=0.05
AAMaxSpeed=1.0
AADeadZone=0.0
AAFOV=30.0
AANeedsLOS=true
TrackHorizontal=true
TrackVertical=true
AABlocksMouse=false
AAOffTimer=0.0
AABackOnTimer=0.0
TriggerBotEnabled=true
TriggerBotDelay=0.01
TriggerBotFOV=1.0
StickyLock=false
HeadLock=false
VerticalOffset=0.0
DisableLockOnKill=false
UsePerShotRecoil=false
PSRLoopStartIndex=0
PSRViewRecoilTracking=0.45
PSRCapUp=9.0
PSRCapRight=4.0
PSRCapLeft=4.0
PSRTimeToPeak=0.095
PSRResetDegreesPerSec=40.0
UsePerBulletSpread=false
PBS0=0.0,0.0
[Weapon Profile]
Name=Rocket Launcher
Type=Projectile
ShotsPerClick=1
DamagePerShot=120.0
KnockbackFactor=5.0
TimeBetweenShots=0.8
Pierces=false
Category=FullyAuto
BurstShotCount=1
TimeBetweenBursts=0.5
ChargeStartDamage=10.0
ChargeStartVelocity=X=500.000 Y=0.000 Z=0.000
ChargeTimeToAutoRelease=2.0
ChargeTimeToCap=1.0
ChargeMoveSpeedModifier=1.0
MuzzleVelocityMin=X=5090.000 Y=0.000 Z=0.000
MuzzleVelocityMax=X=5090.000 Y=0.000 Z=0.000
InheritOwnerVelocity=0.0
OriginOffset=X=100.000 Y=0.000 Z=0.000
MaxTravelTime=5.0
MaxHitscanRange=100000.0
GravityScale=0.0
HeadshotCapable=false
HeadshotMultiplier=2.0
MagazineMax=1
AmmoPerShot=1
ReloadTimeFromEmpty=0.5
ReloadTimeFromPartial=0.5
DamageFalloffStartDistance=100000.0
DamageFalloffStopDistance=100000.0
DamageAtMaxRange=25.0
DelayBeforeShot=0.0
HitscanVisualEffect=Tracer
ProjectileGraphic=Rocket
VisualLifetime=0.1
WallParticleEffect=Flare
HitParticleEffect=Flare
BounceOffWorld=false
BounceFactor=0.0
BounceCount=0
HomingProjectileAcceleration=0.0
ProjectileEnemyHitRadius=2.0
CanAimDownSight=false
ADSZoomDelay=0.0
ADSZoomSensFactor=0.7
ADSMoveFactor=1.0
ADSStartDelay=0.0
ShootSoundCooldown=0.08
HitSoundCooldown=0.08
HitscanVisualOffset=X=0.000 Y=0.000 Z=0.000
ADSBlocksShooting=false
ShootingBlocksADS=false
KnockbackFactorAir=5.0
RecoilNegatable=false
DecalType=0
DecalSize=30.0
DelayAfterShooting=0.0
BeamTracksCrosshair=false
AlsoShoot=
ADSShoot=
StunDuration=0.0
CircularSpread=true
SpreadStationaryVelocity=0.0
PassiveCharging=false
BurstFullyAuto=true
FlatKnockbackHorizontal=0.0
FlatKnockbackVertical=0.0
HitscanRadius=0.0
HitscanVisualRadius=6.0
TaggingDuration=0.0
TaggingMaxFactor=1.0
TaggingHitFactor=1.0
ProjectileTrail=None
RecoilCrouchScale=1.0
RecoilADSScale=1.0
PSRCrouchScale=1.0
PSRADSScale=1.0
ProjectileAcceleration=0.0
AccelIncludeVertical=true
AimPunchAmount=0.0
AimPunchResetTime=0.1
AimPunchCooldown=0.5
AimPunchHeadshotOnly=false
AimPunchCosmeticOnly=true
MinimumDecelVelocity=0.0
PSRManualNegation=false
PSRAutoReset=true
AimPunchUpTime=0.05
AmmoReloadedOnKill=1
CancelReloadOnKill=true
FlatKnockbackHorizontalMin=0.0
FlatKnockbackVerticalMin=0.0
ADSScope=No Scope
ADSFOVOverride=72.099998
ADSFOVScale=Horizontal (16:9)
ADSAllowUserOverrideFOV=true
ForceFirstPersonInADS=true
Explosive=true
Radius=500.0
DamageAtCenter=120.0
DamageAtEdge=0.1
SelfDamageMultiplier=0.5
ExplodesOnContactWithEnemy=true
DelayAfterEnemyContact=0.0
ExplodesOnContactWithWorld=false
DelayAfterWorldContact=0.0
ExplodesOnNextAttack=false
DelayAfterSpawn=0.0
BlockedByWorld=false
SpreadSSA=1.0,1.0,-1.0,0.0
SpreadSCA=1.0,1.0,-1.0,0.0
SpreadMSA=1.0,1.0,-1.0,0.0
SpreadMCA=1.0,1.0,-1.0,0.0
SpreadSSH=1.0,1.0,-1.0,0.0
SpreadSCH=1.0,1.0,-1.0,0.0
SpreadMSH=1.0,1.0,-1.0,0.0
SpreadMCH=1.0,1.0,-1.0,0.0
MaxRecoilUp=0.0
MinRecoilUp=0.0
MinRecoilHoriz=0.0
MaxRecoilHoriz=0.0
FirstShotRecoilMult=1.0
RecoilAutoReset=false
TimeToRecoilPeak=0.05
TimeToRecoilReset=0.35
AAMode=2
AAPreferClosestPlayer=false
AAAlpha=0.5
AAMaxSpeed=0.5
AADeadZone=0.0
AAFOV=180.0
AANeedsLOS=true
TrackHorizontal=true
TrackVertical=true
AABlocksMouse=false
AAOffTimer=0.0
AABackOnTimer=0.0
TriggerBotEnabled=true
TriggerBotDelay=0.001
TriggerBotFOV=1.0
StickyLock=false
HeadLock=false
VerticalOffset=0.0
DisableLockOnKill=false
UsePerShotRecoil=false
PSRLoopStartIndex=0
PSRViewRecoilTracking=0.45
PSRCapUp=9.0
PSRCapRight=4.0
PSRCapLeft=4.0
PSRTimeToPeak=0.095
PSRResetDegreesPerSec=40.0
UsePerBulletSpread=false
PBS0=0.0,0.0
[Weapon Profile]
Name=LG
Type=Hitscan
ShotsPerClick=1
DamagePerShot=6.0
KnockbackFactor=2.0
TimeBetweenShots=0.046
Pierces=false
Category=FullyAuto
BurstShotCount=1
TimeBetweenBursts=0.5
ChargeStartDamage=10.0
ChargeStartVelocity=X=500.000 Y=0.000 Z=0.000
ChargeTimeToAutoRelease=2.0
ChargeTimeToCap=1.0
ChargeMoveSpeedModifier=1.0
MuzzleVelocityMin=X=2000.000 Y=0.000 Z=0.000
MuzzleVelocityMax=X=2000.000 Y=0.000 Z=0.000
InheritOwnerVelocity=0.0
OriginOffset=X=0.000 Y=0.000 Z=0.000
MaxTravelTime=5.0
MaxHitscanRange=100000.0
GravityScale=1.0
HeadshotCapable=false
HeadshotMultiplier=2.0
MagazineMax=0
AmmoPerShot=1
ReloadTimeFromEmpty=0.5
ReloadTimeFromPartial=0.5
DamageFalloffStartDistance=100000.0
DamageFalloffStopDistance=100000.0
DamageAtMaxRange=7.0
DelayBeforeShot=0.0
HitscanVisualEffect=Tracer
ProjectileGraphic=Ball
VisualLifetime=0.05
WallParticleEffect=None
HitParticleEffect=None
BounceOffWorld=false
BounceFactor=0.0
BounceCount=0
HomingProjectileAcceleration=0.0
ProjectileEnemyHitRadius=1.0
CanAimDownSight=false
ADSZoomDelay=0.0
ADSZoomSensFactor=0.7
ADSMoveFactor=1.0
ADSStartDelay=0.0
ShootSoundCooldown=0.08
HitSoundCooldown=0.08
HitscanVisualOffset=X=0.000 Y=0.000 Z=-80.000
ADSBlocksShooting=false
ShootingBlocksADS=false
KnockbackFactorAir=9.0
RecoilNegatable=false
DecalType=0
DecalSize=30.0
DelayAfterShooting=0.0
BeamTracksCrosshair=true
AlsoShoot=
ADSShoot=
StunDuration=0.0
CircularSpread=true
SpreadStationaryVelocity=0.0
PassiveCharging=false
BurstFullyAuto=true
FlatKnockbackHorizontal=0.0
FlatKnockbackVertical=0.0
HitscanRadius=0.0
HitscanVisualRadius=6.0
TaggingDuration=0.0
TaggingMaxFactor=1.0
TaggingHitFactor=1.0
ProjectileTrail=None
RecoilCrouchScale=1.0
RecoilADSScale=1.0
PSRCrouchScale=1.0
PSRADSScale=1.0
ProjectileAcceleration=0.0
AccelIncludeVertical=true
AimPunchAmount=0.0
AimPunchResetTime=0.1
AimPunchCooldown=0.5
AimPunchHeadshotOnly=false
AimPunchCosmeticOnly=true
MinimumDecelVelocity=0.0
PSRManualNegation=false
PSRAutoReset=true
AimPunchUpTime=0.05
AmmoReloadedOnKill=0
CancelReloadOnKill=false
FlatKnockbackHorizontalMin=0.0
FlatKnockbackVerticalMin=0.0
ADSScope=No Scope
ADSFOVOverride=72.099998
ADSFOVScale=Horizontal (16:9)
ADSAllowUserOverrideFOV=true
ForceFirstPersonInADS=true
Explosive=false
Radius=500.0
DamageAtCenter=100.0
DamageAtEdge=0.0
SelfDamageMultiplier=0.5
ExplodesOnContactWithEnemy=false
DelayAfterEnemyContact=0.0
ExplodesOnContactWithWorld=false
DelayAfterWorldContact=0.0
ExplodesOnNextAttack=false
DelayAfterSpawn=0.0
BlockedByWorld=false
SpreadSSA=1.0,1.0,-1.0,0.0
SpreadSCA=1.0,1.0,-1.0,0.0
SpreadMSA=1.0,1.0,-1.0,0.0
SpreadMCA=1.0,1.0,-1.0,0.0
SpreadSSH=1.0,1.0,-1.0,0.0
SpreadSCH=1.0,1.0,-1.0,0.0
SpreadMSH=1.0,1.0,-1.0,0.0
SpreadMCH=1.0,1.0,-1.0,0.0
MaxRecoilUp=0.0
MinRecoilUp=0.0
MinRecoilHoriz=0.0
MaxRecoilHoriz=0.0
FirstShotRecoilMult=1.0
RecoilAutoReset=false
TimeToRecoilPeak=0.05
TimeToRecoilReset=0.35
AAMode=0
AAPreferClosestPlayer=false
AAAlpha=0.05
AAMaxSpeed=1.0
AADeadZone=0.0
AAFOV=30.0
AANeedsLOS=true
TrackHorizontal=true
TrackVertical=true
AABlocksMouse=false
AAOffTimer=0.0
AABackOnTimer=0.0
TriggerBotEnabled=false
TriggerBotDelay=0.0
TriggerBotFOV=1.0
StickyLock=false
HeadLock=false
VerticalOffset=0.0
DisableLockOnKill=false
UsePerShotRecoil=false
PSRLoopStartIndex=0
PSRViewRecoilTracking=0.45
PSRCapUp=9.0
PSRCapRight=4.0
PSRCapLeft=4.0
PSRTimeToPeak=0.095
PSRResetDegreesPerSec=40.0
UsePerBulletSpread=false
[Map Data]
|
be867a3efcb0a79c16f1ec24c99bd90e059a70d3
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3825/CH7/EX7.1/Ex7_1.sce
|
4a4102aebae8a6fecb01547c5b941402d9dc414d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 163 |
sce
|
Ex7_1.sce
|
clc
T2=300 //temperature in Kelvin
T1=420 //temperature in Kelvin
Eta=1-(T2/T1)
mprintf("maximum possible efficiency=%f",Eta)//ans vary due to roundoff error
|
8f67136b048649d2b412e8b09695e8d3e23f2b7d
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/browsable_source/1.1/Unix/scilab-1.1/macros/xdess/fcontour.sci
|
01139cbda148a9d6fea07eb05cd6880b3bf0ab94
|
[
"LicenseRef-scancode-public-domain",
"LicenseRef-scancode-warranty-disclaimer",
"LicenseRef-scancode-unknown-license-reference"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111 | 2022-09-13T14:41:51 | 2022-09-13T14:41:51 | 258,270,193 | 0 | 1 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 2,042 |
sci
|
fcontour.sci
|
//[]=fcontour_(xr,yr,f,nz,teta,alpha,legend,flag,bbox,zlev)
//[]=fcontour_(xr,yr,f,nz,[teta,alpha,legend,flag,bbox,zlev])
// Trace des courbes de niveau de la surface
// d\'efinie par un external f ( ex macro [y]=f(x))
// on calcule d'abord f sur la grille definie par xr.yr
// xr et yr sont des vecteurs implicites donnant les
// abscisses et les ordonn\'ees des points de la grille
// - x est une matrice de taille (1,n1)
// - y est une matrice de taille (1,n2)
// nz : permet de specifier les niveaux cherches
// si nz est un nombre c'est le nombre de courbes de niveau demandees
// regulierement espacees entre zmin et zmax
// si est un vecteur, il specifie les valeurs de z pour lesquelles
// on veut les courbes de niveau
//
// Les arguments suivants sont optionnels et sont identiques a ceux de
// plot3d (sauf zlev), il permettent de dessiner des courbes de niveau
// sur un graphique 3d.
// Seule la signification de flag(1) est differente :
// flag(1)=0, les courbes de niveaux sont dessinees
// sur un graphique 3d, sur la surface definie par (x,y,z)
// flag(1)=1, les courbes de biveaux sont dessinees
// sur un graphique 3d, sur le plan defini par z=zlev
// flag(1)=2, les courbes de biveaux sont dessinees
// sur un graphique 2d.
// Exemple : taper fcontour() pour voir un exemple .
// deff('[z]=surf(x,y)','z=x**2+y**2');
// fcontour(surf,-1:0.1:1,-1:0.1:1,10);
//
//!
[lhs,rhs]=argn(0);
if rhs=0,s_mat=['deff(''[z]=surf(x,y)'',''z=x**2+y**2'');';
'fcontour(-1:0.1:1,-1:0.1:1,surf,10);'];
write(%io(2),s_mat);execstr(s_mat);
return;end;
if rhs<3,write(%io(2),[' I need at least 3 arguments';
'or zero to have a demo']);
return;end
if rhs<4,nz=10,end;
if rhs<5,teta=35,end;
if rhs<6,alpha=45,end;
if rhs<7,leg="X@Y@Z",end;
if rhs<8,flag=[2,2,3],end;
if rhs<9,bbox=0*ones(1,6),end;
if rhs<10,zlev=0;end
if type(f)=11 then comp(f),end;
Contour(xr,yr,feval(xr,yr,f),nz,teta,alpha,leg,flag,bbox,zlev);
//end
|
ecf6b9bc5a9146e53c176c61f0e446ab563f9554
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1118/CH9/EX9.8/eg9_8.sce
|
5023a781c63b084ff9f7b8f64a4655526eeb5a31
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 1,207 |
sce
|
eg9_8.sce
|
clear;
clc;
vl=132000;
s=50000000;
pf=.85;
l=80;
function [r,i]=d(mag,theta)
r=mag*cosd(theta);
i=mag*sind(theta);
endfunction
previousprot = funcprot(0)
funcprot(0)
mag=96;
theta=78;
[r,i]=d(mag,theta);
z=complex(r,i);
mag=.001;
theta=90;
[r,i]=d(mag,theta);
y=complex(r,i);
vrp=vl/sqrt(3);
Irp=s/(sqrt(3)*vl*pf);
mag=Irp;
theta=-acosd(pf);
[r,i]=d(mag,theta);
irp=complex(r,i);
//a).for the nominal T network parameters are
A=1+.5*z*y;
B=z*(1+.25*z*y);
C=y;
D=A;
disp(A);
disp(B);
disp(C);
disp(D);
//phase voltage at the sending end is
vsp=A*vrp+B*irp;
vsl=sqrt(3)*vsp;
disp(vsp);
//c).
is=C*vrp+D*irp;
disp(is);
//d).
qs=atand(imag(vsp)/real(vsp))-atand(imag(is)/real(is));
printf("\n The power factor at the sending end is:%.3f (lagging)",cosd(qs));
//e).
r=real(vsl);
i=imag(vsl);
function [mag,theta]=c(r,i)
mag=sqrt(r*r + i*i)
theta=atand(i/r)
endfunction
previousprot = funcprot(0)
funcprot(0)
[mag,theta]=c(r,i);
Vsl=mag;
r=real(is);
i=imag(is);
[mag,theta]=c(r,i);
Is=mag;
eff=s/(sqrt(3)*Vsl*Is*cosd(qs));
printf("\n The efficiency of transmission is:%.2f per cent",eff*100);
|
fba08441ec75e6d35d6a652be7d4846503fc75f2
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3754/CH16/EX16.4/16_4.sce
|
8dd2f8c792eeabaa21c14165f691826d7aa837da
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 674 |
sce
|
16_4.sce
|
clear//
//Variables
VGS1 = -3.1 //Gate-Source voltage (in volts)
VGS2 = -3.0 //Gate-Source voltage (in volts)
ID1 = 1.0 //Drain current (in milli-Ampere)
ID2 = 1.3 //Drain current (in milli-Ampere)
//Calculation
dVGS = VGS2 - VGS1 //Change in Gate-Source voltage (in volts)
dID = ID2 - ID1 //Change in Drain current (in milli-Ampere)
gm = dID / dVGS //Transconductance (in milli-Ampere per volt)
//Result
printf("\n The value of transconductance is %0.3f mA/V.",gm)
|
f535347cd9b35935d6da0228f7066f169fff5834
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1757/CH14/EX14.7/EX14_7.sce
|
f5210eec016ebfd615665f284962ff6070b1e040
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 390 |
sce
|
EX14_7.sce
|
//Example14.7 // determine the duty cycle of the switching regulator circuit
clc;
clear;
close;
ton = 12 ; //msec // on time of pulse
// ton = 2*toff ; given
// T = ton + toff ;
toff = ton/2 ;
T = ton+toff ; // total time
// The duty cycle of switching regulator circuit is given by
d = ton/T;
disp('The output voltage of switching regulator circuit is = '+string(d)+' ');
|
f6d34eed48e1a7a0851158eff332ee9302699d65
|
089894a36ef33cb3d0f697541716c9b6cd8dcc43
|
/NLP_Project/test/tweet/bow/bow.15_13.tst
|
f8808f9706d3fe39ce2bc3c8a9c09476307d30f3
|
[] |
no_license
|
mandar15/NLP_Project
|
3142cda82d49ba0ea30b580c46bdd0e0348fe3ec
|
1dcb70a199a0f7ab8c72825bfd5b8146e75b7ec2
|
refs/heads/master
| 2020-05-20T13:36:05.842840 | 2013-07-31T06:53:59 | 2013-07-31T06:53:59 | 6,534,406 | 0 | 1 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 25,679 |
tst
|
bow.15_13.tst
|
15 3:0.5 66:0.2 191:0.2 315:1.0 383:1.0 2575:1.0 3561:1.0 3629:1.0 3630:2.0 4768:1.0 5871:1.0
15 1:0.09090909090909091 11:0.14285714285714285 38:1.0 42:0.2857142857142857 61:1.0 66:0.2 107:0.3333333333333333 139:1.0 221:0.3333333333333333 293:0.3333333333333333 389:0.2 436:1.0 485:1.0 1290:1.0 1974:1.0 3516:1.0 3559:1.0 3815:1.0 3969:2.0 4686:1.0
15 11:0.14285714285714285 42:0.14285714285714285 172:0.3333333333333333 404:0.16666666666666666 725:1.0 1375:2.0 2140:1.0 2266:0.5 2267:1.0 2341:1.0 2821:1.0 3048:1.0 3295:1.0 3499:1.0 4104:0.5 4369:0.5
15 42:0.14285714285714285 104:0.5 107:0.6666666666666666 117:0.047619047619047616 135:0.18181818181818182 158:0.16666666666666666 221:0.3333333333333333 365:0.5 366:1.0 520:0.5 915:1.0 1637:1.0 2121:1.0 2715:1.0 2757:1.0 6517:1.0
15 107:0.6666666666666666 110:0.3333333333333333 139:1.0 191:0.2 221:0.3333333333333333 276:1.0 310:0.25 335:1.0 404:0.16666666666666666 551:0.3333333333333333 839:0.25 1107:0.16666666666666666 1314:0.5 1822:1.0 2166:1.0 2214:0.75 2235:1.0 2344:1.0 2365:1.0 2593:1.0 3146:1.0 3194:1.0 4251:1.0 4601:1.0
15 18:1.0 313:0.5 394:0.5 552:0.5 1953:0.5 3952:1.0 6239:1.0
15 6:0.5 11:0.14285714285714285 42:0.14285714285714285 107:0.3333333333333333 172:0.3333333333333333 191:0.2 238:1.0 313:0.5 478:1.0 1122:1.0 1314:0.5 1599:0.16666666666666666 1687:0.3333333333333333 2976:1.0 4647:1.0 5005:1.0
15 11:0.2857142857142857 24:1.0 46:0.2 54:0.09090909090909091 66:0.2 110:0.3333333333333333 117:0.047619047619047616 293:0.3333333333333333 405:0.25 577:0.3333333333333333 585:1.0 653:1.0 891:1.0 1000:0.5 1112:2.0 1204:1.0 1765:1.0 1780:2.0 1813:1.0 1912:1.0 2188:0.5 2214:0.25 2323:1.0 2945:1.0 3336:1.0 4486:1.0 4979:1.0 6624:1.0 6845:1.0
15 6:0.5 66:0.2 117:0.09523809523809523 130:1.0 168:1.0 199:1.0 286:1.0 293:0.3333333333333333 472:1.0 721:1.0 1112:1.0 2152:0.3333333333333333 2178:0.25 2902:1.0 3011:1.0 3556:2.0 3557:2.0 3559:1.0 3651:1.0 4674:1.0 5953:1.0 6491:1.0
15 11:0.14285714285714285 117:0.047619047619047616 721:1.0 1290:1.0 2175:1.0 2267:1.0 2902:1.0 3553:1.0 4124:1.0 5207:1.0 5209:1.0 7046:1.0
15 1:0.09090909090909091 8:0.5 11:0.2857142857142857 18:1.0 48:0.6666666666666666 66:0.2 223:0.5 253:0.3333333333333333 255:1.0 293:0.3333333333333333 310:0.25 373:1.0 389:0.2 404:0.16666666666666666 551:0.3333333333333333 849:0.5 985:0.16666666666666666 1780:1.0 2152:0.3333333333333333 2214:0.5 2258:1.0 2291:0.5 2368:1.0 2399:0.3333333333333333 2673:1.0 2778:1.0 2920:1.0 2974:1.0 2976:1.0 2977:1.0 3202:1.0 3415:1.0 3648:1.0 3686:0.5 3744:1.0 3750:1.0
15 24:1.0 46:0.2 48:0.3333333333333333 135:0.09090909090909091 148:0.5 191:0.2 221:0.3333333333333333 256:0.25 273:1.0 288:1.0 315:1.0 404:0.16666666666666666 1144:1.0 2361:1.0 2403:1.0 3413:1.0 3785:1.0 4038:1.0 4201:1.0 5334:1.0
15 8:0.5 11:0.14285714285714285 52:0.1 66:0.6 80:1.0 107:0.6666666666666666 117:0.09523809523809523 192:1.0 721:1.0 811:1.0 1291:1.0 1805:1.0 2294:0.5 2630:1.0 2904:1.0 2905:1.0 3158:1.0 3707:1.0 4038:1.0 4602:1.0 5740:1.0
15 11:0.2857142857142857 139:1.0 148:0.5 172:0.6666666666666666 313:0.5 577:0.3333333333333333 989:1.0 1509:1.0 1902:1.0 2118:0.5 2166:1.0 2179:1.0 2188:1.0 2256:1.0 2333:1.0 2371:1.0 2483:0.25 2580:1.0 3089:1.0 3241:1.0 4124:1.0 4424:0.5 4509:1.0 4635:1.0 4999:1.0 5349:1.0 5555:1.0 6769:1.0 7045:1.0
15 19:0.6666666666666666 42:0.2857142857142857 66:0.2 104:1.0 107:0.3333333333333333 117:0.09523809523809523 139:1.0 148:0.5 158:0.16666666666666666 199:1.0 310:0.25 392:2.0 521:0.5 721:1.0 1012:1.0 1194:0.3333333333333333 1640:1.0 1765:1.0 2237:0.25 2265:1.0 2295:1.0 2356:1.0 3504:1.0 5662:1.0
15 3:1.0 8:0.5 9:0.2 11:0.2857142857142857 17:1.0 42:0.2857142857142857 107:0.6666666666666666 117:0.09523809523809523 158:0.3333333333333333 373:1.0 472:1.0 669:1.0 705:0.3333333333333333 849:0.5 2034:1.0 2142:1.0 2143:1.0 2188:0.5 2256:1.0 2590:1.0 3108:1.0 4104:0.5 5985:1.0 6801:1.0
15 38:1.0 46:0.2 48:0.6666666666666666 104:1.0 142:0.3333333333333333 293:0.3333333333333333 367:0.5 552:0.5 1194:0.3333333333333333 1375:1.0 2152:0.3333333333333333 2178:0.25 2188:0.5 2248:1.0 2366:0.3333333333333333 2453:1.0 3146:1.0 3645:1.0 3851:1.0 4169:1.0 4333:1.0 4593:1.0 6420:1.0
15 107:0.3333333333333333 310:0.5 1194:0.3333333333333333 1571:1.0 1780:1.0 1887:0.5 2333:1.0 2463:1.0 2974:1.0 3743:0.5 3744:1.0 3751:0.5 5411:1.0
15 38:1.0 42:0.14285714285714285 985:0.3333333333333333 1599:0.16666666666666666 2294:0.5 3793:1.0 5447:1.0
15 8:0.5 985:0.3333333333333333 2188:0.5 2202:0.3333333333333333 2236:1.0 2366:0.6666666666666666 3346:1.0 3588:1.0 3675:0.5 4843:1.0 6762:1.0
15 46:0.2 1107:0.16666666666666666 1375:1.0 1632:1.0 2087:1.0 2185:0.25 2202:0.6666666666666666 2214:0.25 2439:1.0 2490:1.0 2590:0.5 2718:1.0 2860:0.5 3128:1.0 3241:1.0 3349:1.0 3396:1.0 3572:1.0 4085:1.0
15 11:0.14285714285714285 19:0.3333333333333333 42:0.14285714285714285 66:0.2 123:1.0 191:0.2 255:1.0 256:0.25 313:0.5 392:1.0 404:0.16666666666666666 436:1.0 472:1.0 561:0.3333333333333333 1312:1.0 1484:0.5 2237:0.25 2426:1.0 2892:1.0 2952:1.0 3104:1.0 3634:1.0 4104:0.5 4424:0.5 5199:1.0 5325:1.0 5709:1.0 6656:1.0
15 42:0.14285714285714285 171:1.0 223:0.5 256:0.25 259:1.0 551:0.6666666666666666 552:0.5 985:0.16666666666666666 1060:1.0 1062:0.2 1107:0.16666666666666666 2236:1.0 3511:0.5 3512:1.0 4408:1.0 5488:1.0
15 11:0.14285714285714285 42:0.14285714285714285 52:0.1 104:0.5 135:0.09090909090909091 148:0.5 191:0.2 293:0.3333333333333333 310:0.25 405:0.125 462:1.0 551:0.3333333333333333 629:1.0 1107:0.16666666666666666 1231:1.0 1239:0.5 1290:1.0 1314:0.5 1351:1.0 2152:0.3333333333333333 2183:1.0 2202:0.3333333333333333 2214:0.25 2229:1.0 2284:1.0 2439:2.0 2565:1.0 2580:1.0 2595:1.0 2673:1.0 3339:1.0 3397:1.0 3665:1.0 4411:1.0 4501:1.0 4606:1.0 4940:1.0 5709:1.0 6135:1.0 6757:1.0
15 17:1.0 107:0.3333333333333333 135:0.09090909090909091 178:1.0 199:1.0 310:0.5 330:1.0 338:1.0 375:1.0 566:0.5 686:0.3333333333333333 704:1.0 1216:1.0 1780:1.0 2273:0.5 3154:1.0 4730:1.0
15 6:0.5 42:0.14285714285714285 46:0.2 117:0.047619047619047616 135:0.09090909090909091 253:0.3333333333333333 551:0.3333333333333333 565:1.0 1375:2.0 1599:0.16666666666666666 1702:1.0 2229:1.0 2264:1.0 2294:0.5 2547:1.0 2787:1.0 2926:1.0 3031:1.0 3148:1.0 4201:1.0
15 38:1.0 42:0.2857142857142857 158:0.16666666666666666 223:0.5 293:0.3333333333333333 2087:1.0 2370:0.5 2446:1.0 3104:0.5 3109:1.0 3389:1.0 3516:1.0 4263:1.0 4686:1.0
15 11:0.2857142857142857 42:0.14285714285714285 107:0.3333333333333333 178:1.0 184:0.14285714285714285 191:0.2 248:0.14285714285714285 327:1.0 576:1.0 1162:1.0 1194:0.3333333333333333 1748:1.0 2167:1.0 2487:1.0 3415:1.0
15 11:0.14285714285714285 21:0.3333333333333333 42:0.14285714285714285 48:0.3333333333333333 50:1.0 107:0.3333333333333333 111:0.2 133:0.5 148:0.5 178:1.0 191:0.2 238:1.0 248:0.14285714285714285 293:1.3333333333333333 356:0.16666666666666666 404:0.3333333333333333 579:1.0 1239:0.5 1314:0.5 2188:0.5 2202:0.6666666666666666 2223:1.0 2363:1.0 2941:1.0 3067:1.0 3328:1.0 3503:1.0 3648:1.0 4141:1.0 4369:0.5 4506:1.0 4727:1.0 4964:1.0 5965:1.0 6697:1.0
15 8:0.5 11:0.5714285714285714 17:1.0 38:1.0 148:2.0 164:2.0 191:0.2 551:0.3333333333333333 847:1.0 849:0.5 1107:0.16666666666666666 1325:1.0 1809:1.0 2178:0.5 2229:1.0 2248:1.0 2267:1.0 2271:1.0 2344:0.3333333333333333 2354:1.0 2487:1.0 2656:1.0 2860:0.5 2956:1.0 3306:1.0 4148:1.0 6100:1.0
15 8:0.5 11:0.14285714285714285 42:0.2857142857142857 107:0.3333333333333333 172:0.3333333333333333 191:0.6 248:0.14285714285714285 293:1.0 313:0.5 327:1.0 551:0.3333333333333333 652:1.0 849:0.5 933:1.0 985:0.16666666666666666 1050:1.0 1107:0.3333333333333333 1354:1.0 1748:1.0 2166:3.0 2214:0.25 2235:1.0 2582:1.5 2590:0.5 2656:1.0 2941:1.0 2942:1.0 3828:1.0 3969:1.0 4141:2.0 6211:1.0 6228:1.0 6719:1.0
15 6:0.5 42:0.14285714285714285 104:0.5 117:0.047619047619047616 158:0.16666666666666666 248:0.14285714285714285 354:0.5 436:1.0 514:1.0 1057:1.0 1066:1.0 1194:0.3333333333333333 1599:0.16666666666666666 2178:0.25 2255:1.0 2521:0.5 2614:1.0 2814:1.0 3857:1.0 3896:1.0 4104:0.5 4369:0.5 6072:1.0
15 3:0.5 11:0.14285714285714285 27:1.0 66:0.2 310:0.25 405:0.125 420:1.0 520:0.5 551:0.3333333333333333 562:1.0 849:0.5 1107:0.16666666666666666 2175:1.0 2188:0.5 2202:0.3333333333333333 2237:0.25 2344:0.3333333333333333 2360:1.0 2368:1.0 2376:1.0 2448:1.0 2483:0.25 2673:1.0 2863:1.0 3066:1.0 3109:1.0 3111:1.0 3241:1.0 3372:1.0 4019:1.0 4153:1.0 4424:0.5 5490:1.0 6634:1.0
15 11:0.14285714285714285 48:0.3333333333333333 108:0.5 117:0.047619047619047616 158:0.16666666666666666 191:0.2 309:0.5 310:0.75 313:0.5 405:0.125 436:1.0 478:1.0 527:0.14285714285714285 1067:1.0 1484:0.5 1599:0.16666666666666666 1812:1.0 2255:1.0 2296:2.0 2297:1.0 2356:1.0 2976:1.0 4006:1.0 4155:1.0
15 27:1.0 310:0.25 405:0.125 520:0.5 562:1.0 707:2.0 849:0.5 2175:1.0 2376:1.0 2719:1.0 3553:1.0 3565:1.0 4153:1.0 4642:1.0
15 11:0.14285714285714285 172:0.3333333333333333 216:1.0 313:0.5 651:1.0 2156:1.0 2458:1.0 3349:1.0 3516:1.0 3567:1.0 5213:0.5 5390:1.0
15 107:0.3333333333333333 110:0.3333333333333333 139:1.0 221:0.3333333333333333 253:0.3333333333333333 288:1.0 2146:0.2 2166:1.0 2169:0.3333333333333333 2994:1.0
15 6:0.5 42:0.2857142857142857 54:0.09090909090909091 107:0.6666666666666666 158:0.16666666666666666 185:1.0 191:0.2 207:1.0 211:1.0 221:0.3333333333333333 238:1.0 304:1.0 305:0.3333333333333333 309:0.5 310:0.25 725:1.0 849:0.5 1067:1.0 1122:1.0 2117:1.0 2539:1.0 3082:1.0 3508:1.0
15 11:0.2857142857142857 21:0.3333333333333333 38:1.0 42:0.14285714285714285 173:0.5 223:0.5 248:0.14285714285714285 253:0.3333333333333333 310:0.25 315:1.0 521:0.5 562:1.0 702:0.3333333333333333 839:0.25 1426:1.0 2131:1.0 2354:1.0 2439:1.0 2593:1.0 2711:1.0 2712:1.0 3048:1.0 3054:1.0 3063:1.0 3172:1.0 3225:1.0 3336:1.0 3482:1.0 3553:1.0 3556:1.0 3561:1.0 3562:1.0 4774:1.0 5223:1.0 5438:1.0 6645:1.0 7046:1.0
15 46:0.2 48:0.3333333333333333 191:0.2 277:1.0 293:0.6666666666666666 309:0.5 472:1.0 551:0.3333333333333333 725:1.0 811:1.0 1067:1.0 1656:1.0 2166:1.0 2178:0.25 2188:0.5 2237:0.25 2294:0.5 2354:1.0 2361:1.0 2365:1.0 2599:1.0 3108:1.0 3111:1.0 3244:1.0 5178:1.0 5957:1.0 7051:1.0
15 11:0.14285714285714285 19:0.3333333333333333 66:0.2 107:0.3333333333333333 135:0.09090909090909091 192:1.0 209:1.0 221:0.3333333333333333 510:1.0 523:0.5 561:0.3333333333333333 562:1.0 1012:1.0 2141:1.0 2142:1.0 2236:1.0 2416:0.5 2708:0.3333333333333333 3054:1.0
15 129:1.0 293:0.3333333333333333 525:1.0 704:0.5 1599:0.16666666666666666 1809:1.0 2121:1.0 2220:1.0 2251:1.0 2342:1.0 3367:1.0 3423:1.0 3665:1.0 4653:1.0
15 11:0.2857142857142857 293:0.3333333333333333 2087:1.0 2147:0.5 2148:1.0 2149:1.0 2150:1.0 2151:1.0 2152:0.3333333333333333 2153:1.0 2154:1.0 2178:0.25 2188:0.5 2205:1.0 2326:1.0 2448:1.0 3516:1.0 3549:1.0 3550:1.0 3785:1.0 3958:0.3333333333333333 3960:1.0 4084:1.0 4397:1.0 5355:1.0 5981:1.0 6247:1.0 6630:1.0
15 54:0.09090909090909091 148:0.5 191:0.2 192:1.0 223:0.5 293:0.6666666666666666 1706:1.0 1885:1.0 2034:1.0 2152:0.3333333333333333 2175:1.0 2266:0.5 5185:1.0 5197:1.0 5501:1.0
15 19:0.3333333333333333 115:1.0 139:1.0 172:0.3333333333333333 248:0.14285714285714285 293:0.3333333333333333 330:1.0 367:0.5 462:1.0 836:1.0 985:0.3333333333333333 1162:1.0 1244:1.0 2166:1.0 2179:1.0 2203:0.25 2204:1.0 2237:0.25 2344:0.3333333333333333 2439:1.0 2565:1.0 2614:1.0 3026:1.0 3111:1.0 3244:1.0 3782:1.0 4205:1.0 5473:1.0 5474:1.0 5711:1.0 6508:1.0 6535:1.0
15 9:0.4 48:0.3333333333333333 54:0.09090909090909091 66:0.2 107:0.6666666666666666 139:3.0 148:0.5 255:1.0 365:0.5 707:2.0 1155:1.0 1216:1.0 1595:1.0 1754:1.0 1780:1.0 1793:1.0 2179:1.0 2214:0.25 2368:1.0 3525:1.0 3747:1.0 4537:1.0 5111:1.0 6801:1.0
15 8:0.5 11:0.14285714285714285 19:0.3333333333333333 23:0.5 42:0.14285714285714285 107:0.3333333333333333 115:1.0 191:0.2 310:0.25 342:1.0 404:0.16666666666666666 1107:0.16666666666666666 1122:1.0 1188:1.0 1312:1.0 1649:1.0 2121:1.0 2179:3.0 2202:0.3333333333333333 2205:1.0 2237:0.25 2258:1.0 2261:1.0 2448:1.0 2860:0.5 3168:1.0 4164:1.0 4418:1.0 4633:1.0 6508:1.0
15 11:0.14285714285714285 19:0.3333333333333333 42:0.2857142857142857 66:0.2 104:0.5 107:0.3333333333333333 293:0.6666666666666666 350:0.1 392:1.0 462:1.0 1705:1.0 1754:1.0 2022:1.0 2185:0.25 2188:0.5 2236:1.0 2237:0.25 2403:1.0 2540:1.0 2673:1.0 3054:1.0 3194:1.0 3996:1.0 4084:1.0 4205:1.0 4418:1.0 4449:1.0 5856:1.0 6634:1.0
15 19:0.3333333333333333 23:0.5 46:0.2 48:0.3333333333333333 135:0.09090909090909091 283:0.25 293:0.3333333333333333 311:1.0 338:1.0 392:1.0 462:1.0 551:0.3333333333333333 1107:0.16666666666666666 2152:0.3333333333333333 2188:0.5 2214:0.5 2483:0.25 2673:1.0 3108:1.0 3418:1.0 3996:1.0 4633:1.0 4995:1.0 6216:1.0
15 11:0.2857142857142857 23:0.5 66:0.2 107:0.3333333333333333 115:1.0 148:0.5 172:0.3333333333333333 221:0.3333333333333333 293:0.6666666666666666 350:0.1 392:1.0 551:0.3333333333333333 579:1.0 849:0.5 891:1.0 1155:1.0 2188:0.5 2256:1.0 2284:1.0 2445:1.0 2918:1.0 2952:1.0 3549:1.0 4843:1.0 5372:1.0
15 85:1.0 104:0.5 107:0.3333333333333333 148:0.5 404:0.16666666666666666 434:0.5 686:0.3333333333333333 758:1.0 901:1.0 1194:0.3333333333333333 1290:1.0 1939:1.0 2941:1.0 3415:1.0 4166:1.0 4168:1.0 5163:1.0 5435:1.0 5838:1.0 5839:1.0 5840:1.0 5841:1.0 5842:1.0 5983:1.0
15 11:0.14285714285714285 21:0.3333333333333333 27:1.0 48:0.3333333333333333 66:0.2 117:0.047619047619047616 148:1.0 277:1.0 312:1.0 389:0.6 404:0.16666666666666666 985:0.16666666666666666 1018:1.0 1194:0.3333333333333333 1809:1.0 2185:0.25 2188:0.5 2214:0.25 2361:1.0 2368:1.0 2426:1.0 2790:1.0 2926:1.0 2927:1.0 3031:1.0 3176:1.0 3857:0.3333333333333333 4030:1.0 6697:2.0 6707:1.0
15 19:0.3333333333333333 38:1.0 61:1.0 104:0.5 135:0.09090909090909091 148:0.5 158:0.16666666666666666 310:0.25 392:1.0 469:1.0 577:0.3333333333333333 1194:0.3333333333333333 1902:2.0 2205:1.0 2214:0.75 2220:1.0 2340:1.0 2341:1.0 2342:1.0 3459:1.0 3621:1.0 5345:1.0
15 8:0.5 38:1.0 42:0.2857142857142857 248:0.14285714285714285 252:1.0 436:1.0 472:1.0 839:0.25 849:0.5 1416:1.0 1809:1.0 2232:1.0 3956:3.0 4985:1.0 5052:1.0 6518:1.0
15 283:0.25 293:0.3333333333333333 551:0.3333333333333333 985:0.16666666666666666 1050:1.0 1062:0.2 1375:1.0 2087:1.0 2166:1.0 2178:0.25 2208:1.0 2214:0.5 2221:2.0 2229:1.0 2248:1.0 2368:1.0 2725:1.0 2774:2.0 3280:0.5 3349:1.0 4001:1.0 4002:1.0 4003:1.0 4004:1.0 4005:1.0 4621:1.0 5005:1.0 6153:1.0
15 6:0.5 11:0.14285714285714285 17:1.0 42:0.2857142857142857 66:0.6 353:1.0 551:0.3333333333333333 985:0.16666666666666666 1107:0.16666666666666666 2152:0.3333333333333333 2166:1.0 2176:0.3333333333333333 2202:0.3333333333333333 2205:1.0 2214:0.25 2239:1.0 2290:0.5 2366:0.3333333333333333 2408:0.5 2582:0.5 2590:0.5 2815:1.0 2920:1.0 3243:1.0 3396:1.0 3572:1.0 3901:1.0 4013:1.0 4014:2.0 4402:1.0 4860:1.0 6128:1.0 6358:1.0
15 11:0.14285714285714285 46:0.2 104:0.5 191:0.2 293:0.3333333333333333 404:0.16666666666666666 444:1.0 581:1.0 1443:1.0 2087:1.0 2588:1.0 3317:0.5 3527:1.0 3705:1.0 5604:1.0 5886:1.0
15 11:0.14285714285714285 293:0.3333333333333333 551:0.3333333333333333 2188:0.5 2203:0.25 2239:1.0 2266:0.5 2439:1.0 2488:1.0 2983:1.0 3404:1.0 4201:1.0 4680:1.0 5596:1.0 5747:1.0 6540:3.0
15 9:0.2 11:0.14285714285714285 18:1.0 23:0.5 38:2.0 42:0.2857142857142857 48:0.3333333333333333 51:0.14285714285714285 61:1.0 66:0.2 104:0.5 107:0.3333333333333333 117:0.047619047619047616 123:2.0 148:0.5 293:0.3333333333333333 327:1.0 392:1.0 403:1.0 585:1.0 1061:1.0 1088:1.0 1188:1.0 2146:0.2 2152:0.3333333333333333 2166:1.0 2178:0.25 2214:0.25 2266:0.5 2344:0.3333333333333333 2920:1.0 3054:1.0 3063:1.0 3146:1.0 3151:1.0 3530:1.0 3857:0.3333333333333333 4629:1.0 5555:1.0
15 11:0.14285714285714285 38:1.0 48:0.3333333333333333 136:1.0 293:0.6666666666666666 404:0.3333333333333333 444:1.0 551:0.3333333333333333 669:1.0 953:1.0 985:0.16666666666666666 1375:2.0 1705:1.0 1809:1.0 2087:1.0 2166:1.0 2183:1.0 2249:1.0 2448:1.0 2455:0.5 2483:0.25 2487:1.0 2722:1.0 2764:1.0 3031:1.0 3071:1.0 3108:1.0 3111:1.0 3178:1.0 3349:1.0 3970:1.0 4084:1.0 4442:1.0 5005:1.0 5185:1.0 5251:1.0 5506:1.0 5711:1.0 5886:1.0 5887:1.0 5924:1.0
15 11:0.14285714285714285 30:1.0 38:1.0 66:0.2 104:1.0 107:0.3333333333333333 118:2.0 139:1.0 148:1.0 193:2.0 293:0.3333333333333333 310:0.25 354:0.5 434:0.5 436:1.0 552:0.5 839:0.25 985:0.3333333333333333 1018:1.0 1969:2.0 2481:1.0 3516:1.0 3970:1.0 4289:1.0 4345:1.0 6763:1.0 6938:1.0
15 11:0.14285714285714285 293:1.0 404:0.16666666666666666 985:0.3333333333333333 1062:0.2 2166:1.0 2179:1.0 2205:1.0 2226:1.0 2366:0.6666666666666666 2673:1.0 3109:1.0 4205:1.0 4292:1.0 6763:1.0 7018:1.0
15 11:0.42857142857142855 19:0.3333333333333333 42:0.14285714285714285 311:1.0 350:0.1 520:0.5 551:0.3333333333333333 669:1.0 867:0.5 1061:1.0 2129:1.0 2176:0.3333333333333333 2195:1.0 2214:0.25 2258:1.0 3054:1.0 3082:1.0 3753:1.0 4408:1.0 4803:1.0 5187:1.0
15 54:0.09090909090909091 293:0.6666666666666666 1107:0.16666666666666666 1902:1.0 2087:1.0 2214:0.25 2333:1.0 2673:1.0 2691:0.5 2741:1.0 2814:1.0 2962:1.0 3785:1.0 4108:1.0 5356:1.0 6632:1.0 6985:1.0 6986:1.0
15 11:0.14285714285714285 104:0.5 293:0.6666666666666666 315:1.0 985:0.16666666666666666 2214:0.25 2237:0.25 2323:1.0 3098:1.0 3104:0.5 3111:1.0 3336:1.0 3559:1.0 3572:1.0 3851:1.0 4213:1.0 5199:1.0
15 8:0.5 66:0.2 107:0.3333333333333333 115:1.0 221:0.3333333333333333 253:0.3333333333333333 310:0.25 527:0.14285714285714285 566:0.5 839:0.25 899:0.5 1060:1.0 2053:1.0 2203:0.25 2204:1.0 2261:1.0 2445:1.0 2521:0.5 3186:1.0 4229:1.0 4230:1.0 5738:1.0 5759:1.0
15 11:0.14285714285714285 172:0.3333333333333333 313:0.5 404:0.16666666666666666 989:1.0 1062:0.2 2152:0.6666666666666666 2202:0.3333333333333333 2214:0.75 2249:1.0 2255:1.0 2344:0.6666666666666666 2363:1.0 2384:1.0 2580:1.0 3241:1.0 3966:1.0 4247:1.0 4248:1.0 4249:1.0 4250:1.0 4612:1.0 5506:1.0 5738:1.0 6216:1.0
15 6:0.5 11:0.14285714285714285 21:0.3333333333333333 66:0.2 130:1.0 209:1.0 436:1.0 811:1.0 1239:0.5 1351:1.0 1599:0.16666666666666666 2117:1.0 2202:0.6666666666666666 2266:0.5 2271:1.0 2354:1.0 2363:1.0 2370:0.5 2673:1.0 2870:1.0 3118:1.0 3129:1.0 3656:1.0 3981:1.0 4369:0.5 4413:1.0 5000:1.0 5159:1.0 5355:1.0 5979:1.0
15 18:1.0 48:0.3333333333333333 223:0.5 561:0.3333333333333333 566:0.5 2203:0.25 2217:1.0 2403:1.0 2439:1.0 2925:1.0 4608:1.0
15 11:0.14285714285714285 61:1.0 104:1.0 107:0.3333333333333333 148:0.5 223:0.5 415:1.0 478:1.0 561:0.3333333333333333 702:0.3333333333333333 1018:1.0 1216:1.0 2236:1.0 2376:1.0 2614:1.0 2668:1.0 3630:1.0 6288:1.0
15 11:0.14285714285714285 42:0.5714285714285714 104:0.5 310:0.25 404:0.5 436:2.0 465:0.2 523:0.5 551:1.0 727:0.3333333333333333 1107:0.16666666666666666 1829:1.0 2152:0.3333333333333333 2183:1.0 2202:0.6666666666666666 2214:0.25 2363:1.0 2448:1.0 2588:0.5 2718:1.0 2722:1.0 3104:0.5 3382:1.0 4147:1.0 5199:1.0 5314:1.0 6678:1.0
15 1:0.09090909090909091 9:0.2 11:0.14285714285714285 17:1.0 42:0.14285714285714285 52:0.1 61:1.0 66:0.2 107:0.6666666666666666 139:1.0 192:1.0 277:1.0 310:0.25 312:1.0 465:0.2 478:1.0 519:1.0 669:1.0 1018:1.0 1122:1.0 1327:1.0 1705:1.0 1809:1.0 1822:1.0 1852:1.0 2258:1.0 2315:1.0 2481:1.0 2976:1.0 3026:1.0 3710:1.0 4302:1.0 4636:1.0 4661:1.0 6269:1.0
15 11:0.14285714285714285 404:0.16666666666666666 2185:0.25 2214:0.25 2448:1.0 2490:1.0 2590:1.0 2671:1.0 3443:1.0 3530:1.0 3674:1.0 3960:1.0 4633:1.0 4997:1.0
15 11:0.14285714285714285 46:0.2 52:0.1 66:0.2 107:0.3333333333333333 117:0.047619047619047616 158:0.16666666666666666 404:0.16666666666666666 551:0.3333333333333333 577:0.3333333333333333 997:1.0 1107:0.16666666666666666 2175:1.0 2202:0.3333333333333333 2483:0.25 3053:1.0 4022:1.0 4158:1.0
15 6:0.5 8:1.5 52:0.1 107:0.3333333333333333 148:0.5 158:0.16666666666666666 254:1.0 310:0.25 414:0.5 5358:1.0
15 2146:0.2 2175:1.0 2214:0.5 2344:0.3333333333333333 2582:0.5 3943:1.0
15 11:0.14285714285714285 42:0.14285714285714285 221:0.3333333333333333 527:0.14285714285714285 1194:0.3333333333333333 1398:1.0 2231:1.0 2630:1.0 4345:1.0
15 11:0.2857142857142857 48:0.3333333333333333 293:0.3333333333333333 350:0.1 351:1.0 375:1.0 551:0.3333333333333333 1194:0.6666666666666666 1316:1.0 1751:1.0 2001:1.0 2090:1.0 2175:1.0 2317:1.0 2319:1.0 2421:1.0 2614:2.0 2997:2.0 3009:1.0 3198:1.0 3283:1.0 3751:0.5 3851:1.0 3896:1.0 5183:1.0
15 11:0.14285714285714285 48:0.6666666666666666 80:1.0 117:0.047619047619047616 118:1.0 191:0.2 223:0.5 276:1.0 293:0.3333333333333333 566:0.5 653:1.0 812:1.0 1023:1.0 1060:1.0 1107:0.16666666666666666 1375:1.0 1809:1.0 2203:0.25 2205:1.0 2236:1.0 2250:0.5 2276:1.0 2301:1.0 2344:0.3333333333333333 2453:1.0 2896:1.0 2950:1.0 2999:1.0 3009:1.0 3031:1.0 3683:1.0 3769:1.0 4205:1.0 4352:1.0
15 11:0.2857142857142857 38:1.0 46:0.2 85:1.0 115:2.0 135:0.09090909090909091 184:0.14285714285714285 253:0.3333333333333333 293:0.3333333333333333 310:0.25 392:1.0 404:0.16666666666666666 405:0.125 551:0.6666666666666666 1057:1.0 1270:1.0 1290:1.0 1312:1.0 1892:1.0 2203:0.25 2950:1.0 3274:1.0 3459:1.0 3593:1.0 3597:1.0 3836:1.0 4338:1.0 4861:1.0 5156:1.0 6443:1.0 6464:1.0
15 100:1.0 117:0.09523809523809523 118:1.0 404:0.16666666666666666 577:0.3333333333333333 1107:0.16666666666666666 2176:0.3333333333333333 2178:0.25 2186:1.0 2214:0.25 2291:0.5 2435:1.0 2455:0.5 2764:1.0 3331:1.0 5005:1.0
15 19:0.3333333333333333 38:1.0 42:0.14285714285714285 48:0.3333333333333333 80:1.0 191:0.2 248:0.14285714285714285 1012:1.0 1338:1.0 1809:1.0 2258:1.0 2291:0.5 2315:1.0 2392:1.0 2483:0.25 2487:1.0 2701:1.0 3090:1.0 6851:1.0 6994:1.0
15 11:0.14285714285714285 17:2.0 38:1.0 52:0.1 66:0.2 73:1.0 107:0.3333333333333333 110:0.6666666666666666 135:0.09090909090909091 139:1.0 172:0.3333333333333333 191:0.2 310:0.75 389:0.2 405:0.125 414:0.5 520:0.5 686:0.3333333333333333 985:0.16666666666666666 1060:1.0 1194:0.3333333333333333 1370:1.0 1780:1.0 2053:1.0 2238:1.0 2635:1.0 2778:1.0 2892:1.0 2974:1.0 3459:1.0 3665:1.0 3744:1.0 5328:1.0 5987:1.0 6516:1.0
15 18:1.0 46:0.4 293:1.0 551:0.3333333333333333 552:0.5 1000:0.5 2183:1.0 2202:0.6666666666666666 2214:0.25 2368:1.0 2399:0.3333333333333333 2590:0.5 2778:1.0 3332:1.0 3817:1.0 3952:1.0 4051:1.0 4158:1.0 4205:1.0
15 9:0.2 66:0.2 104:0.5 107:0.3333333333333333 478:1.0 1194:0.3333333333333333 2146:0.4 2178:0.25 2200:1.0 2202:0.3333333333333333 2266:0.5 2354:1.0 2426:1.0 2691:0.5 3067:1.0 3146:1.0 3150:1.0 6994:1.0
15 6:0.5 8:0.5 107:0.3333333333333333 139:1.0 161:0.5 209:1.0 375:1.0 652:1.0 839:0.25 1032:1.0 1088:1.0 1155:1.0 1812:1.0 1953:0.5 2614:1.0 4165:1.0 5272:1.0
15 2205:1.0 2214:0.25 2368:2.0 5581:1.0
15 139:1.0 148:0.5 304:1.0 985:0.16666666666666666 1062:0.4 1887:0.5 1902:1.0 2167:1.0 2203:0.25 2205:2.0 2214:0.25 2324:1.0 2668:1.0 2894:1.0 2983:1.0 3785:1.0 3966:1.0
15 11:0.14285714285714285 27:1.0 66:0.2 104:0.5 136:1.0 313:0.5 330:1.0 551:0.3333333333333333 1060:1.0 2119:1.0 2140:1.0 2200:1.0 2205:1.0 2214:0.25 2899:1.0 3572:1.0 6155:1.0
15 8:0.5 38:1.0 42:0.14285714285714285 52:0.1 103:1.0 104:0.5 107:0.6666666666666666 130:1.0 191:0.4 209:1.0 252:1.0 310:0.5 350:0.1 414:0.5 438:1.0 552:0.5 702:0.3333333333333333 860:1.0 899:0.5 1748:1.0 1953:0.5 2037:1.0 2061:1.0 2261:1.0 2445:1.0 3394:1.0 4445:1.0 4803:1.0 6117:1.0
15 107:0.3333333333333333 293:0.3333333333333333 566:0.5 1333:1.0 1599:0.16666666666666666 2152:0.6666666666666666 2178:0.25 2217:1.0 2266:0.5 3269:1.0 3785:1.0 4418:1.0 4555:1.0 4809:1.0 4810:1.0 5018:1.0 5349:1.0 5896:1.0 5898:1.0
15 3:0.5 11:0.14285714285714285 70:1.0 85:2.0 404:0.16666666666666666 551:0.3333333333333333 779:1.0 1632:1.0 2152:0.3333333333333333 2178:0.25 2205:1.0 2258:1.0 2259:1.0 2266:0.5 2411:1.0 3139:1.0 3243:1.0 3349:1.0 6022:1.0
15 11:0.14285714285714285 42:0.14285714285714285 66:0.2 115:1.0 135:0.09090909090909091 148:0.5 172:0.3333333333333333 178:1.0 404:0.16666666666666666 415:1.0 849:0.5 1764:1.0 1793:1.0 2063:1.0 2160:1.0 2203:0.25 2368:1.0 2543:1.0 2590:0.5 2741:1.0 2801:1.0 2925:1.0 3054:1.0 3553:1.0 3966:1.0 4562:1.0 6040:1.0
15 11:0.14285714285714285 42:0.14285714285714285 46:0.2 52:0.1 85:1.0 135:0.09090909090909091 178:1.0 404:0.16666666666666666 420:1.0 469:1.0 653:3.0 985:0.16666666666666666 1062:0.2 1107:0.16666666666666666 1764:1.0 2063:1.0 2166:1.0 2208:1.0 2214:0.25 2344:0.3333333333333333 2368:1.0 2543:1.0 2741:1.0 2764:1.0 3111:1.0 3405:1.0 3572:1.0 3966:1.0 4173:1.0 4562:1.0 6040:1.0
15 11:0.14285714285714285 172:0.3333333333333333 404:0.16666666666666666 551:0.3333333333333333 985:0.16666666666666666 2183:1.0 2214:0.25 2448:1.0 2452:1.0 2490:1.0 2614:1.0 2673:1.0 3308:1.0 5544:1.0 6845:1.0 6847:1.0
15 42:0.14285714285714285 66:0.2 135:0.09090909090909091 148:0.5 523:0.5 551:0.3333333333333333 667:1.0 1444:1.0 2166:1.0 2214:0.25 2435:1.0 2573:1.0 2614:1.0 3011:2.0 3572:1.0 3762:1.0 3896:1.0
15 11:0.14285714285714285 80:1.0 133:0.5 139:1.0 209:1.0 293:0.3333333333333333 310:0.5 404:0.16666666666666666 481:1.0 551:0.3333333333333333 707:1.0 987:1.0 1216:1.0 1238:1.0 2126:1.0 2525:0.3333333333333333 2652:0.3333333333333333 2676:1.0 3230:1.0 3248:1.0 3948:1.0 4147:1.0 4408:1.0 4843:1.0 4961:1.0 5653:1.0 6299:1.0
15 8:0.5 42:0.14285714285714285 104:0.5 293:0.3333333333333333 551:0.3333333333333333 2341:1.0 2399:0.3333333333333333 2879:2.0 4786:0.5 5156:1.0 5780:1.0
15 11:0.14285714285714285 18:1.0 46:0.2 117:0.09523809523809523 310:0.25 312:1.0 314:1.0 403:1.0 417:1.0 472:1.0 1216:1.0 1780:1.0 2188:0.5 2445:1.0 2856:1.0 3488:1.0 3987:1.0 4787:1.0 5021:1.0 6454:1.0 6915:1.0
15 11:0.2857142857142857 46:0.4 52:0.1 191:0.2 293:0.3333333333333333 404:0.16666666666666666 420:1.0 2178:0.25 2179:1.0 2202:0.3333333333333333 2250:0.5 2439:1.0 2476:1.0 2590:0.5 2718:1.0 2905:1.0 3109:1.0 3241:1.0 3754:1.0 4133:1.0 4173:1.0 4410:1.0 4437:1.0 5059:1.0 5186:1.0 6233:1.0
|
118a3b1b6786070f780b6f747c3d43f239193401
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3673/CH8/EX8.a.12/Example_a_8_12.sce
|
68f20a5d42a99ddae781598171d565e07f6f3a88
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 383 |
sce
|
Example_a_8_12.sce
|
//Example_a_8_12 page no:332
clc;
//variables cannot be used without initialization and hence the equation cannot be derived like in the text book, the capacitance value can be calculated using the derived values by substituting known values in the equation
C=15/(2*%pi*10^6*1256*80);
C=C*10^12;//converting to pico Farad
disp(C,"the value of C to give resonance is (in pF)");
|
3be0c192363a56bae16f86cc42665dbb2a2d61c7
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/browsable_source/2.1.1/Unix/scilab-2.1.1/macros/calpol/denom.sci
|
1092d75e7a75a70d8a524b9ab23c8f4675a83048
|
[
"MIT",
"LicenseRef-scancode-public-domain",
"LicenseRef-scancode-warranty-disclaimer"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111 | 2022-09-13T14:41:51 | 2022-09-13T14:41:51 | 258,270,193 | 0 | 1 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 352 |
sci
|
denom.sci
|
function [den]=denom(r)
//returns the denominator of a rational matrix
//%Syntax: den=denom(r)
//with
//r: rational function matrix (may be polynomial or scalar matrix)
//den: polynomial matrix
//!
select type(r)
case 1 then
den=ones(r);
case 2 then
den=ones(r);
case 15 then
if r(1)<>'r' then error(92,1),end
den=r(3)
else
error(92,1)
end
|
61cdb4c639c902d1420f810c3e6ad1994cc461f8
|
a62e0da056102916ac0fe63d8475e3c4114f86b1
|
/set8/s_Engineering_Chemistry_P._N._Dave_And_S._G._Pillai_3050.zip/Engineering_Chemistry_P._N._Dave_And_S._G._Pillai_3050/CH1/EX1.1/Ex1_1.sce
|
3b5b6076d3e667b6e195247169bd9971f760515c
|
[] |
no_license
|
hohiroki/Scilab_TBC
|
cb11e171e47a6cf15dad6594726c14443b23d512
|
98e421ab71b2e8be0c70d67cca3ecb53eeef1df6
|
refs/heads/master
| 2021-01-18T02:07:29.200029 | 2016-04-29T07:01:39 | 2016-04-29T07:01:39 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 266 |
sce
|
Ex1_1.sce
|
errcatch(-1,"stop");mode(2);//calculating hardness
//Example 1.1
//100gm of CaCO3 = 136gm of CaSO4
m=204//mass of the substance
wt=136//molecular mass
Eq=(m*100)/wt//Equivalents of CaCO3
printf('Thus Equivalents of CaCO3 = %3.2f mg/L or ppm',Eq)
exit();
|
945f36d2b96c53c21849d2d3822bf2ffe9a64960
|
4b1558e166b13f0e90c889b11ee516e4925626ed
|
/grafo.sce
|
d82acc77446fce69164ae162a1d2f4f1513e491c
|
[] |
no_license
|
dalpendre/EI_matematica_discreta
|
a4712b5c7ea085eb5238a0e45c89733ba25a64b6
|
93cf0c75c41a231aadf919293089ce240695bf10
|
refs/heads/master
| 2022-08-09T18:27:37.572002 | 2020-05-21T13:00:22 | 2020-05-21T13:00:22 | 254,603,532 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 1,655 |
sce
|
grafo.sce
|
function curva(x,y,dim,pos)
//x,y é a posição do nó
//dim é a dimensão da matriz de adjacências
//pos representa a posição no vetor angle
beta=0.5;
a=get("current_axes")//get the handle of the newly created axes
a.data_bounds=[-2,-2;15,15];
t=2*%pi*(0:19)/20;
xx=[x+beta*cos(t)+beta*cos(pos);y+beta*sin(t)+beta*sin(pos)];
xpoly(xx(1,:),xx(2,:),"lines",0)
p1=get("hdl"); //get handle on current entity (here the polyline entity)
//p.foreground=2;
//p.thickness=3;
p1.mark_mode='off'
t1=2*%pi*(19:20)/20;
xy2=[x+beta*cos(t1)+beta*cos(pos);y+beta*sin(t1)+beta*sin(pos)];
xpoly(xy2(1,:),xy2(2,:),"lines",0)
p2=get("hdl")
p2.polyline_style=4;
p2.arrow_size_factor=2;
endfunction
function grafo(M)
[L C]=size(M);
a=get("current_axes")//get the handle of the newly created axes
a.data_bounds=[-10,-10;15,15];
t=[0:C-1]*2*%pi/C;
x=5+5*cos(t);
y=5+5*sin(t);
///////////////////////////////
x1=x+0.7*cos(t);//para colocar a identificação dos vértices
y1=y+0.7*sin(t);//para colocar a identificação dos vértices
/////////////////fazer as curvas/////////////
for i=1:C
if M(i,i)==1
curva(x(i),y(i),C,t(i))
end
end
/////////////////////////////
k1=1;
k2=1;
for i=1:C
for j=1:C
if i~=j
if M(i,j)==1
XX(1,k1)=x(i);
XX(1,k1+1)=x(j);
YY(1,k1)=y(i);
YY(1,k1+1)=y(j);
k1=k1+2;
end
end
end
end
//xpoly(XXX,YYY,"marks")
//e=gce();
//set(e,"mark_style",9);
//set(e,"mark_size",10);
//set(e,"mark_mode","on");
e=gce();
xarrows(XX',YY',7)
xset("font",1,5);
xstring(x1,y1,string(1:C))
endfunction
|
a961690d27df4ae4a866d8bd332c6b7f8dc73faa
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/401/CH14/EX14.1/Example14_1.sce
|
b0a1e376f3b87cf9db0d2280cdcb01c9320f4999
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 697 |
sce
|
Example14_1.sce
|
//Example 14.1
//Program to determine the attenuation per kilometer for the fiber
//and estimate the accuracy of the result
clear;
clc ;
close ;
//Given data
L1=2*10^3; //metres - INITIAL LENGTH
L2=2; //metres - FINAL LENGTH
V1=2.1; //volts - INITIAL OUTPUT VOLTAGE
V2=10.7; //volts - FINAL OUTPUT VOLTAGE
//Attenuation per Kilometer
alpha_dB=10/(L1-L2)*log10(V2/V1);
//Uncertainity in measured attenuation
Uncertainity=0.2/(L1-L2);
//Displaying the Results in Command Window
printf("\n\n\t Attenuation is %0.1f dB/km.",alpha_dB*10^3);
printf("\n\n\t Uncertainity in measured attenuation is +-%0.1f dB.",Uncertainity*10^3);
|
c2136daafe2bbdb1b39614ce23e0c371caa5c563
|
99b4e2e61348ee847a78faf6eee6d345fde36028
|
/Toolbox Test/schurrc/schurrc6.sce
|
18973df3141f236093246a7b4734a927f091583c
|
[] |
no_license
|
deecube/fosseetesting
|
ce66f691121021fa2f3474497397cded9d57658c
|
e353f1c03b0c0ef43abf44873e5e477b6adb6c7e
|
refs/heads/master
| 2021-01-20T11:34:43.535019 | 2016-09-27T05:12:48 | 2016-09-27T05:12:48 | 59,456,386 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 151 |
sce
|
schurrc6.sce
|
//check o/p for a vector i/p
r=[1 2 3 4 5];
y=schurrc(r);
disp(y);
//output
//
// - 2.
// - 0.3333333
// - 0.25
// - 0.2
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.