blob_id
stringlengths 40
40
| directory_id
stringlengths 40
40
| path
stringlengths 4
214
| content_id
stringlengths 40
40
| detected_licenses
listlengths 0
50
| license_type
stringclasses 2
values | repo_name
stringlengths 6
115
| snapshot_id
stringlengths 40
40
| revision_id
stringlengths 40
40
| branch_name
stringclasses 21
values | visit_date
timestamp[us] | revision_date
timestamp[us] | committer_date
timestamp[us] | github_id
int64 141k
586M
⌀ | star_events_count
int64 0
30.4k
| fork_events_count
int64 0
9.67k
| gha_license_id
stringclasses 8
values | gha_event_created_at
timestamp[us] | gha_created_at
timestamp[us] | gha_language
stringclasses 50
values | src_encoding
stringclasses 23
values | language
stringclasses 1
value | is_vendor
bool 1
class | is_generated
bool 1
class | length_bytes
int64 5
10.4M
| extension
stringclasses 29
values | filename
stringlengths 2
96
| content
stringlengths 5
10.4M
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
266561ee321913397cfa1b833b6c13a395978a57
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/181/CH2/EX2.24/example2_24.sce
|
29048a0fa75a91198253e848f5615cdb13b5aa30
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 510 |
sce
|
example2_24.sce
|
// Find the diffusion length
// Basic Electronics
// By Debashis De
// First Edition, 2010
// Dorling Kindersley Pvt. Ltd. India
// Example 2-24 in page 101
clear; clc; close;
// Given data
C_D=1.5*10^-6; // Diffusion capacitance in F
D_p=13; // Constant
eta=2; // Constant
V_t=0.026; // Voltage at room temperature in V
I=1*10^-3; // Current in mA
// Calculation
L_p=sqrt((C_D*D_p*eta*V_t)/I);
printf("Diffusion length = %0.3e m",L_p);
// Result
// Diffusion length = 31.84*10^-3 m
|
fc765b1dd4be340e2c8f1df4f2ec631eca9b91e8
|
05b2bd67239938195f6ea021fd482c06f69c9145
|
/p3.sci
|
946f9f99f7ec0a9c9e326ff70e29ceeec74445c7
|
[] |
no_license
|
ZimmSebas/Metodos
|
213aa8af793726409cf0346c3315663aa59ae835
|
5fb6f28413064194ae8f625da48914b471bb50f7
|
refs/heads/master
| 2020-03-31T15:18:35.349807 | 2019-12-21T23:19:21 | 2019-12-21T23:19:21 | 152,331,779 | 5 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 3,946 |
sci
|
p3.sci
|
function y = dosc(x)
y = sin(x) - x^2/2
endfunction
//Método de la bisección, toma minimo, maximo, funcion, epsilon y epsilon funcion
function med = bisecc(mini,maxi,fun,eps,epsf)
if(fun(maxi).*fun(mini) > 0)
error('Intervalos del mismo signo');
end;
m = ((mini+maxi)/2);
while(maxi-m > eps | abs(fun(m)) > epsf )
m = ((mini+maxi)/2);
if((fun(maxi) < 0 & fun(m) > 0) | (fun(maxi) > 0 & fun(m) < 0))
mini = m;
else
maxi = m;
end;
end;
med = m;
endfunction;
//Método Secante, toma primer elemento, segundo, funcion, epsilon y epsilon funcion
function seca = secante(fst,snd,func,eps,epsf)
if(func(fst).*func(snd) > 0)
error('Intervalo incorrecto')
end
seca = snd - (func(snd) * (snd-fst )/(func(snd)-func(fst)))
fst = snd
snd = seca
while(abs(func(seca)) > epsf | abs(snd-fst) > eps)
seca = snd - (func(snd) * (snd-fst )/(func(snd)-func(fst)))
fst = snd
snd = seca
end
endfunction
//Método de la falsa posición, toma minimo, maximo, funcion, epsilon y epsilon funcion
function c = falsapp(a,b,fun,eps,epsf)
if(fun(b).*fun(a) > 0)
error('Intervalos del mismo signo');
end;
c = b - fun(b)*(b-a)/(fun(b)-fun(a))
while(b-c > eps | abs(fun(c)) > epsf )
if((fun(b) < 0 & fun(c) > 0) | (fun(b) > 0 & fun(c) < 0))
a = c;
else
b = c;
end;
c = b - fun(b)*(b-a)/(fun(b)-fun(a))
end;
endfunction;
function y = serie5(x, n)
if(n == 0) y = x; return;end;
y = serie5(2** (x-1), n-1);
return;
endfunction
function y = serie6(x, c, n) //cotas x = 2 y c = 1, que onda lo de sqrt(z)?
if(n == 0) y = x; return;end;
y = serie6((x+c*((x^2)-5)),c,n-1);
return;
endfunction
function y = ide(x)
y = x
endfunction
// Ejercicio 8
// ge(f,x,n) es la funcion generica para iterar sobre una funcion dada
// g1 a g4 son las funciones del ejercicio
function y = g1(x)
y = %e^x/3
endfunction
function y = g2(x)
y = (%e^x - x)/2
endfunction
function y = g3(x)
y = log(3*x)
endfunction
function y = g4(x)
y = %e^x - 2*x
endfunction
function y = comp(f, x)
y = f(x)
endfunction
function y = ge(x, n) // Funcion, Punto, Cantidad iteraciones
if(n == 0) y = x; return;end;
y = ge(g3(x), n-1);
return;
endfunction
// Ejercicio 9
function n = fnueve(X)
n = [1 + X(1)^2 - X(2)^2 + %e^X(1)*cos(X(2)); 2*X(1)*X(2) + %e^X(1)*sin(X(2))];
endfunction
//Método de Newton
function y = newt_mult(fn, X, N)
Xn = X;
mprintf("X0 = %f\n", Xn)
for i = 1:N
J = numderivative(fn, Xn);
J = 1/J;
y = Xn - J*fn(Xn);
Xn = y
//mprintf("X%d = %0.5f |-| %0.5f\n", i, Xn(1), Xn(2))
end
endfunction
// Ejercicio 10
function n = fdiez(X)
n = [X(1)^2 + X(1)*X(2)^3 - 9; 3*X(1)^2*X(2) - 4 - X(2)^3];
endfunction
Xa = [1.2; 2.5]
Xb = [-2; 2.5]
Xc = [-1.2; -2.5]
Xd = [2; -2.5]
// Ejercicio 11
function y = fonce(X)
y = 2*X(1) + 3*X(2)^2 + %e^(2*X(1)^2 + X(2)^2)
endfunction
function y = newt_mult_fin(fn, X, eps) //Función, punto inicial, error
y = X;
Xn = X;
i = 0;
mprintf("X0 = %f\n", Xn)
while(norm(y-Xn) > eps | i == 0) // Norma euclideana
Xn = y;
J = numderivative(fn, Xn);
J = 1/J;
y = Xn - J*fn(Xn);
i = i+1;
mprintf("X%d = %0.12f |-| %0.12f\n", i, y(1), y(2))
end
[Jac, Hes] = numderivative(fn, y, [] , 2, "blockmat");
mprintf("Una matriz es definida positiva si sus autovalores son positivos.\n")
mprintf("Autovalores del hessiano de fn: ")
disp(spec(Hes))
endfunction
function ploty(fn,l,in,r) // Funcion, Limite Izq, Intervalo, Limite Der
//xdel(winsid());
x = [l:in:r];
y = fn(x);
n = size(x);
yy = zeros(1,n(2));
plot(x,yy)
plot(x,y)
a = gca();
a.auto_scale = "off";
endfunction
|
494a59a73f426a3371e111b81d215fcf958f1320
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/728/CH5/EX5.1/Ex5_1.txt
|
fd11d407547e6c6d8fd52ab466ef49ebbb1473a0
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 253 |
txt
|
Ex5_1.txt
|
//Caption:Determine the minimum distance between two end plates
//Exa:5.1
clc;
clear;
close;
//Given:
a=3;//in cm
c=3*10^10;//in cm/s
f=10*10^9;//in Hz
P_01=2.405;
d=%pi/sqrt(f^2*4*%pi^2/c^2-(P_01/a)^2);
disp(d,'Minimum distance (in cm) =');
|
77829899ab67a42acda958c60aac99d0341d1b57
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/773/CH4/EX4.03/4_03.sci
|
cbfb4b25e5cee1f990bd6035c045d0a131694f17
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 800 |
sci
|
4_03.sci
|
//laplace//
printf("since S2 is the referance stator winding , Es2=KVcos0 \n where Es2 & Er are rms voltages \n')
k=1
Theta=60;
disp(Theta,"Theta=")
V=28;
disp(V,"V(applied)=")
printf("Es2=V*cos(Theta) \n")
Es2=k*V*cos(Theta*(%pi/180));
disp(Es2,"Es2=")
printf("Es1=k*V*cos(Theta-120)\n")
Es1=k*V*cos((Theta-120)*(%pi/180)); // Given Theta=60 in degrees
disp(Es1,"Es1=')
printf("Es3=k*V*cos(Theta+120) \n")
Es3=k*V*cos((Theta+120)*(%pi/180));
disp(Es3,"Es3=')
printf("Es31=sqrt(3)*k*Er*sin(Theta)")
Es31=sqrt(3)*k*V*sin(Theta*(%pi/180));
disp(Es31,"Es31=')
printf("Es12=sqrt(3)*k*Er*sin((Theta-120)")
Es12=sqrt(3)*k*V*sin((Theta-120)*(%pi/180));
disp(Es12,"Es12=')
printf("Es23=sqrt(3)*k*Er*sin((Theta+120)")
Es23=sqrt(3)*k*V*sin((Theta+120)*(%pi/180));
disp(Es23,"Es23=')
|
7c219d8ae47b3c1de1d60d73e2b9510418aef513
|
d1a2737ec744ffbba1165afa7b05f26a4076f513
|
/Lab 9/Q5.sce
|
1bd3d50582aaafeb5cf814ff0a4dd7aa73ee6d00
|
[
"MIT"
] |
permissive
|
ipsitmantri/EE-324-Control-Systems-Lab
|
4e37a3de51f4114ba0ea281cbb1da78a6c4815bb
|
b34c45efc3539005603b2e76c1665d6636f80f88
|
refs/heads/master
| 2023-04-03T10:42:34.548542 | 2021-04-13T14:11:21 | 2021-04-13T14:11:21 | 357,540,595 | 2 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 805 |
sce
|
Q5.sce
|
clc; clear;
s = poly(0, 's');
g = (10*s + 2000) / (s^3 + 202*s^2 + 490*s + 18001);
G = syslin('c', g);
scf();
show_margins(G, 'bode');
K = 9 * 18001 / 2000;
g1 = K*g;
G1 = syslin('c', g1);
disp(sprintf("The proportional added to get sse of 10%s = %.4f",'%', K));
[gm, fg] = g_margin(G1);
[phm, fp] = p_margin(G1);
disp(sprintf("The gain margin of G1(s) is %.8f", gm));
disp(sprintf("The phase margin of G1(s) is %.8f at crossover frequency %.8f Hz",...
phm, fp));
g2 = g1 * (s+1);
G2 = syslin('c', g2);
[gm2, fg2] = g_margin(G2);
[phm2, fp2] = p_margin(G2);
disp(sprintf("The gain margin of G2(s) is %.8f", gm2));
disp(sprintf("The phase margin of G2(s) is %.8f at crossover frequency %.8f Hz",...
phm2, fp2));
G2_cl = G2 /. syslin('c', 1, 1);
[z, p, k] = tf2zp(G2_cl);
disp(p);
scf();
show_margins(G2);
|
4456989c425de178092c43fe996529e29141e4f1
|
d2f78245a2b280448680f5f264ad5e73ebb04932
|
/AFISMC_Controller/AFISMC_obsv_beam_new.sce
|
d4b94dcb37a03bdf12ab4681fd6701f7c3fe0567
|
[
"BSD-2-Clause"
] |
permissive
|
hbx5233/AFISMC
|
2240dd3461ea96c71e7a9425a2ed21bb11a64c0a
|
bb7f501867a1fdf54d229a361e753e6f945269fc
|
refs/heads/master
| 2022-04-24T02:56:20.404213 | 2020-04-20T12:17:20 | 2020-04-20T12:17:20 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 7,304 |
sce
|
AFISMC_obsv_beam_new.sce
|
clc
clear
A=[-209.443458108676,450.728478793718,0,0,0,0;-450.728478793718,-209.443458108676,0,0,0,0;0,0,-2.25680753735172,467.128469627320,0,0;0,0,-467.128469627320,-2.25680753735172,0,0;0,0,0,0,-0.460680331454473,87.5968670596031;0,0,0,0,-87.5968670596031,-0.460680331454473];
B=[-9.64474367821996,2.65660382188316;-7.76311006325836,-5.61613187293423;-0.117927290005266,0.0527206875641465;0.215603654718808,-0.128623447556356;0.0737096142170821,0.0391127484963023;-0.0970049785583168,-0.0786358112919118];
C=[1.88477251668799,-1.14284793707382,5.77230310808448,47.9525873535994,-5.11774457916239,-49.0010462763406];
H=-B(:,1);
dum1=size(A);
dum2=size(B);
dum3=size(H);
dum4=size(C);
n=dum1(1,1);
m=dum2(1,2);
m_H=dum3(1,2);
q=dum4(1,1);
DeltaA=eye(n,n)*0.01;
DeltaB=zeros(n,m);
DeltaB(1,1)=0;
Bp=inv(B'*B)*B';
Gama=eye(n)-B*Bp;
DeltaAm=Bp*DeltaA;
DeltaAu=Gama*DeltaB;
DeltaBm=Bp*DeltaA;
DeltaBu=Gama*DeltaB;
bm=norm(DeltaBm,2);
bu=norm(DeltaBu,2);
a=norm(DeltaA,2);
au=norm(DeltaAu,2);
am=norm(DeltaAm,2);
gm=0;
cm=0;
function [LME, LMI, OBJ]=AFSMC(XLIST)
[X,Kh,eps1,eps2,eps3,eps4,eps5,eps6,eps7,eps8,eps9,gama]= XLIST(:)
LME=list(X-X')
LMI=list(-([X*A'+A*X+Kh'*B'+B*Kh+(eps1+eps2+eps3+eps4+eps5+eps6+eps7+eps8+eps9)*eye(n,n),zeros(n,m_H),(1+cm)*X'*C',au*X',gm*X'*Bp'*B',am*bu/(1-bm)*X',gm*bu/(1-bm)*X'*Bp',bu/(1-bm)*Kh',gm*X',zeros(n,n+m+n);zeros(m_H,n),-gama^2*eye(m_H,m_H),zeros(m_H,q+n+n+n+m+m+n),H'*Bp'*B',bu/(1-bm)*H'*Bp',H';(1+cm)*C*X,zeros(q,m_H),-eye(q,q),zeros(q,n+n+n+m+m+n+n+m+n);au*X,zeros(n,m_H+q),-eps1*eye(n,n),zeros(n,n+n+m+m+n+n+m+n);gm*B*Bp*X,zeros(n,m_H+q+n),-eps2*eye(n,n),zeros(n,n+m+m+n+n+m+n);am*bu/(1-bm)*X,zeros(n,m_H+q+n+n),-eps4*eye(n,n),zeros(n,m+m+n+n+m+n);gm*bu/(1-bm)*Bp*X,zeros(m,m_H+q+n+n+n),-eps5*eye(m,m),zeros(m,m+n+n+m+n);bu/(1-bm)*Kh,zeros(m,m_H+q+n+n+n+m),-eps7*eye(m,m),zeros(m,n+n+m+n);gm*X,zeros(n,m_H+q+n+n+n+m+m),-eps8*eye(n,n),zeros(n,n+m+n);zeros(n,n),B*Bp*H,zeros(n,q+n+n+n+m+m+n),-eps3*eye(n,n),zeros(n,m+n);zeros(m,n),bu/(1-bm)*Bp*H,zeros(m,q+n+n+n+m+m+n+n),-eps6*eye(m,m),zeros(m,n);zeros(n,n),H,zeros(n,q+n+n+n+m+m+n+n+m),-eps9*eye(n,n)]),X,eps1,eps2,eps3,eps4,eps5,eps6,eps7,eps8,eps9,gama,0.9-gama)
OBJ=gama
endfunction
X0=ones(n,n);
Kh0=zeros(m,n);
eps1_0=1;
eps2_0=1;
eps3_0=1;
eps4_0=1;
eps5_0=1;
eps6_0=1;
eps7_0=1;
eps8_0=1;
eps9_0=1;
gama_0=1;
Init_guess=list(X0,Kh0,eps1_0,eps2_0,eps3_0,eps4_0,eps5_0,eps6_0,eps7_0,eps8_0,eps9_0,gama_0);
Ans_LMI=lmisolver(Init_guess, AFSMC);
X0=Ans_LMI(1);
Kh0=Ans_LMI(2);
gama_0=Ans_LMI(12);
K0=Kh0*X0^-1;
R0=eye(n,n);
Lh0=zeros(n,q);
eps1_0=1;
eps2_0=1;
eps3_0=1;
eps4_0=1;
eps5_0=1;
eps6_0=1;
eps7_0=1;
eps8_0=1;
eps9_0=1;
eps10_0=1;
save('sys.dat',A,B,C,H,n,m,q,m_H,a,am,au,bm,bu,gm,cm,Bp);
save('init_vals1.dat',X0,Kh0,K0,R0,Lh0,eps1_0,eps2_0,eps3_0,eps4_0,eps5_0,eps6_0,eps7_0,eps8_0,eps9_0,eps10_0,gama_0);
for ii=1:1
clear
load('init_vals1.dat','X0','Kh0','K0','R0','Lh0','eps1_0','eps2_0','eps3_0','eps4_0','eps5_0','eps6_0','eps7_0','eps8_0','eps9_0','eps10_0','gama_0');
load('sys.dat','A','B','C','H','n','m','q','m_H','a','am','au','bm','bu','gm','cm','Bp');
gama=gama_0;
function [LME, LMI, OBJ]=AFSMCobsv(XLIST)
[X,Kh,R,Lh,eps1,eps2,eps3,eps4,eps5,eps6,eps7,eps8,eps9,eps10]= XLIST(:)
LME=list(X-X',R-R')
LMI=list(-([X'*A'+A*X+Kh'*B'+B*Kh+(eps1+eps2+eps3+eps4+eps5+eps6+eps7)*eye(n,n),-B*K0,H,au*X',gm*X',am*bu/(1-bm)*X',bu/(1-bm)*Kh',gm*X',zeros(n,n+n+m+m+n+n);-K0'*B',A'*R+R*A+C'*Lh'+Lh*C+(eps8*am^2+eps9*au^2)*eye(n,n),R*H,zeros(n,n+n+n+m+n),a*Bp'*B',am*bu/(1-bm)*eye(n,n),bu/(1-bm)*K0',R*B,R,R;H',H'*R,-gama*eye(m_H,m_H),zeros(m_H,n+n+n+m+n+n+n+m+m+n+n);au*X,zeros(n,n+m_H),-eps2*eye(n,n),zeros(n,n+n+m+n+n+n+m+m+n+n);gm*X,zeros(n,n+m_H+n),-eps3*eye(n,n),zeros(n,n+m+n+n+n+m+m+n+n);am*bu/(1-bm)*X,zeros(n,n+m_H+n+n),-eps4*eye(n,n),zeros(n,m+n+n+n+m+m+n+n);bu/(1-bm)*Kh,zeros(m,n+m_H+n+n+n),-eps6*eye(m,m),zeros(m,n+n+n+m+m+n+n);gm*X,zeros(n,n+m_H+n+n+n+m),-eps10*eye(n,n),zeros(n,n+n+m+m+n+n);zeros(n,n),a*B*Bp,zeros(n,m_H+n+n+n+m+n),-eps1*eye(n,n),zeros(n,n+m+m+n+n);zeros(n,n),am*bu/(1-bm)*eye(n,n),zeros(n,m_H+n+n+n+m+n+n),-eps5*eye(n,n),zeros(n,m+m+n+n);zeros(m,n),bu/(1-bm)*K0,zeros(m,m_H+n+n+n+m+n+n+n),-eps7*eye(m,m),zeros(m,m+n+n);zeros(m,n),B'*R',zeros(m,m_H+n+n+n+m+n+n+n+m),-eps8*eye(m,m),zeros(m,n+n);zeros(n,n),R',zeros(n,m_H+n+n+n+m+n+n+n+m+m),-eps9*eye(n,n),zeros(n,n);zeros(n,n),R',zeros(n,m_H+n+n+n+m+n+n+n+m+m+n),-eps10*eye(n,n)]),X,R,eps1,eps2,eps3,eps4,eps5,eps6,eps7,eps8,eps9,eps10)
OBJ=[]
endfunction
Init_guess=list(X0,Kh0,R0,Lh0,eps1_0,eps2_0,eps3_0,eps4_0,eps5_0,eps6_0,eps7_0,eps8_0,eps9_0,eps10_0);
Ans_LMI=lmisolver(Init_guess,AFSMCobsv);
X0=Ans_LMI(1);
Kh0=Ans_LMI(2);
R0=Ans_LMI(3);
Lh0=Ans_LMI(4);
eps1_0=Ans_LMI(5);
eps2_0=Ans_LMI(6);
eps3_0=Ans_LMI(7);
eps4_0=Ans_LMI(8);
eps5_0=Ans_LMI(9);
eps6_0=Ans_LMI(10);
eps7_0=Ans_LMI(11);
eps8_0=Ans_LMI(12);
eps9_0=Ans_LMI(13);
eps10_0=Ans_LMI(14);
Kind=K0-Kh0*X0^-1;
K0=Kh0*X0^-1;
L0=R0^-1*Lh0;
save('init_vals1.dat',X0,Kh0,K0,R0,Lh0,eps1_0,eps2_0,eps3_0,eps4_0,eps5_0,eps6_0,eps7_0,eps8_0,eps9_0,eps10_0,gama_0);
end
for ii=1:1
clear
load('init_vals1.dat','X0','Kh0','K0','R0','Lh0','eps1_0','eps2_0','eps3_0','eps4_0','eps5_0','eps6_0','eps7_0','eps8_0','eps9_0','eps10_0','gama0');
load('sys.dat','A','B','C','H','n','m','q','m_H','a','am','au','bm','bu','gm','cm','Bp');
function [LME, LMI, OBJ]=AFSMCobsv(XLIST)
[X,Kh,R,Lh,eps1,eps2,eps3,eps4,eps5,eps6,eps7,eps8,eps9,eps10,gama]= XLIST(:)
LME=list(X-X',R-R',K0*X-Kh)
LMI=list(-([X'*A'+A*X+Kh'*B'+B*Kh+(eps1+eps2+eps3+eps4+eps5+eps6+eps7)*eye(n,n),-B*K0,H,au*X',gm*X',am*bu/(1-bm)*X',bu/(1-bm)*Kh',gm*X',zeros(n,n+n+m+m+n+n);-K0'*B',A'*R+R*A+C'*Lh'+Lh*C+(eps8*am^2+eps9*au^2)*eye(n,n),R*H,zeros(n,n+n+n+m+n),a*Bp'*B',am*bu/(1-bm)*eye(n,n),bu/(1-bm)*K0',R*B,R,R;H',H'*R,-gama*eye(m_H,m_H),zeros(m_H,n+n+n+m+n+n+n+m+m+n+n);au*X,zeros(n,n+m_H),-eps2*eye(n,n),zeros(n,n+n+m+n+n+n+m+m+n+n);gm*X,zeros(n,n+m_H+n),-eps3*eye(n,n),zeros(n,n+m+n+n+n+m+m+n+n);am*bu/(1-bm)*X,zeros(n,n+m_H+n+n),-eps4*eye(n,n),zeros(n,m+n+n+n+m+m+n+n);bu/(1-bm)*Kh,zeros(m,n+m_H+n+n+n),-eps6*eye(m,m),zeros(m,n+n+n+m+m+n+n);gm*X,zeros(n,n+m_H+n+n+n+m),-eps10*eye(n,n),zeros(n,n+n+m+m+n+n);zeros(n,n),a*B*Bp,zeros(n,m_H+n+n+n+m+n),-eps1*eye(n,n),zeros(n,n+m+m+n+n);zeros(n,n),am*bu/(1-bm)*eye(n,n),zeros(n,m_H+n+n+n+m+n+n),-eps5*eye(n,n),zeros(n,m+m+n+n);zeros(m,n),bu/(1-bm)*K0,zeros(m,m_H+n+n+n+m+n+n+n),-eps7*eye(m,m),zeros(m,m+n+n);zeros(m,n),B'*R',zeros(m,m_H+n+n+n+m+n+n+n+m),-eps8*eye(m,m),zeros(m,n+n);zeros(n,n),R',zeros(n,m_H+n+n+n+m+n+n+n+m+m),-eps9*eye(n,n),zeros(n,n);zeros(n,n),R',zeros(n,m_H+n+n+n+m+n+n+n+m+m+n),-eps10*eye(n,n)]),X,R,eps1,eps2,eps3,eps4,eps5,eps6,eps7,eps8,eps9,eps10,gama)
OBJ=gama
endfunction
Init_guess=list(X0,Kh0,R0,Lh0,eps1_0,eps2_0,eps3_0,eps4_0,eps5_0,eps6_0,eps7_0,eps8_0,eps9_0,eps10_0,gama0);
Ans_LMI=lmisolver(Init_guess,AFSMCobsv);
X0=Ans_LMI(1);
Kh0=Ans_LMI(2);
R0=Ans_LMI(3);
Lh0=Ans_LMI(4);
eps1_0=Ans_LMI(5);
eps2_0=Ans_LMI(6);
eps3_0=Ans_LMI(7);
eps4_0=Ans_LMI(8);
eps5_0=Ans_LMI(9);
eps6_0=Ans_LMI(10);
eps7_0=Ans_LMI(11);
eps8_0=Ans_LMI(12);
eps9_0=Ans_LMI(13);
eps10_0=Ans_LMI(14);
gama0=Ans_LMI(15);
Kind=K0-Kh0*X0^-1;
K0=Kh0*X0^-1;
L0=R0^-1*Lh0;
save('init_vals1.dat',X0,Kh0,K0,R0,Lh0,eps1_0,eps2_0,eps3_0,eps4_0,eps5_0,eps6_0,eps7_0,eps8_0,eps9_0,eps10_0,gama0);
end
|
687965b3851d8e4c7b43f718002f1d429403ef56
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/23/CH14/EX14.8/Example_14_8.sce
|
53ce6a2fdf3cfa5b6280e136d6536164e27499aa
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 2,889 |
sce
|
Example_14_8.sce
|
clear;
clc;
//To find Approx Value
function[A]=approx(V,n)
A=round(V*10^n)/10^n;//V-Value n-To what place
funcprot(0)
endfunction
//Exampl_14.8
//Solution : Program to Determine the Phase equlibrium data for the System
A12=4.62424;
A21=3.35629;
alpha12=3.78608;
alpha21=1.81775;
B11=-996;
B22=-1245;
B12=-567;
P1_sat=103.264;//[kPa]
P2_sat=5.633;//[kPa]
T=308.15;//[K]
R=8314;
//G_E/RT = T1 = A21*x1 + A12*x2 - Q
//V1=exp[(x2^2)*[A12 + (2*(A21-A12)*x1) - Q - (x1*(dQ/dx1))]]
//V2=exp[(x1^2)*[A21 + (2*(A12-A21)*x2) - Q + (x2*(dQ/dx1))]]
//Q=(alpha12*x1*alpha21*x2)/((alpha12*x1) + (alpha21*x2))
//dQ/dx1=dQ_x1=(alpha12*alpha21*(alpha21*x2^2 - alpha12*x1^2))/((alpha12*x1 + alpha21*x2)^2)
//P=(x1*V1*P1_sat)/si1 + (x2*V2*P2_sat)/si2
//d12=2B12-B11-B22
//si1=exp[((B11*(P-P1_sat)) + (P*y2^2*d12)))/RT]
//si2=exp[((B22*(P-P2_sat)) + (P*y1^2*d12)))/RT]
//y1=(x1*V1*P1_sat)/(si1*P)
//y2=(x2*V2*P2_sat)/(si2*P)
//BUBL P
x1=[0.01:0.01:0.99];
x2=1-x1;
for(i=1:99)
si1=1;//Assumed
si2=1;//Assumed
dP=100;
while(dP>0.0001)
Q=approx(((alpha12*x1(i)*alpha21*x2(i))/((alpha12*x1(i)) + (alpha21*x2(i)))),4);
dQ_x1=approx((alpha12*alpha21*((alpha21*((x2(i))^2)) - (alpha12*((x1(i))^2))))/(((alpha12*x1(i)) + (alpha21*x2(i)))^2),4);
V1=approx(exp((x2(i)^2)*(A12 + (2*(A21-A12)*x1(i)) - Q - (x1(i)*dQ_x1))),4);
V2=approx(exp((x1(i)^2)*(A21 + (2*(A12-A21)*x2(i)) - Q + (x2(i)*dQ_x1))),4);
Pi=approx((((x1(i)*V1*P1_sat)/si1) + ((x2(i)*V2*P2_sat)/si2)),4);
y1=approx((x1(i)*V1*P1_sat)/(si1*Pi),4);
y2=approx((x2(i)*V2*P2_sat)/(si2*Pi),4);
d12=(2*B12)-B11-B22;
si1=approx(exp(((B11*(Pi-P1_sat))+(Pi*(y2^2)*d12))/(R*T)),4);
si2=approx(exp(((B22*(Pi-P2_sat))+(Pi*(y1^2)*d12))/(R*T)),4);
Pf=approx(((x1(i)*V1*P1_sat)/si1) + ((x2(i)*V2*P2_sat)/si2),4);
dP=abs(Pf-Pi);
end
P(i)=Pf;
y(i)=y1;
end
for(i=1:99)
if(P(i)>104.61)
P(i)=%nan;
end
end
x1(100)=1;
y(100)=1;
P(100)=P1_sat;
subplot(1,2,1)
P_=[5.633 104.6];
x=[0 0.0117];
plot2d(x,P_,rect=[0,0,0.02,104.6])
P_=[104.6 104.6];
x=[0 0.02];
plot(x,P_,'r')
P_=[5.633 5.633];
y1=[0 0.02];
plot(y1,P_,'b')
P_=[104.6 120];
xa=[0.0117 0.0117];
plot(xa,P_,'g--')
legend('P vs x1','P* = 104.6kPa','P vs y1','x1_a=0.0117')
xtitle('P-x-y','x1,y1','P/kPa')
P_=[100 120];
y1=[0.02 0.02];
plot(y1,P_,'w')
subplot(1,2,2)
P_=[104.6 104.6];
x=[0.943 0.96];
plot(x,P_,'r')
P_=[104.3 104.6];
y1=[0.946 0.946];
plot(y1,P_,'b--')
P_=[104.6 104.8];
xb=[0.95 0.95];
plot(xb,P_,'g--')
plot2d(x1,P,rect=[0.943,103,1,105])
plot2d(y,P,style=3,rect=[0.943,103,1,105])
legend('P*=104.6kPa','y1*=0.946','x1_b=0.95','P vs x1','P vs y1')
xtitle('P-x-y(Ether Rich Region)','x1,y1','P/kPa')
//End
|
7169c937fec209230134a7a35119da582d5b8a56
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3745/CH1/EX1.62/Ex1_62.sce
|
b3456a1e32a8fde6232ffb6e34429cd6c8442ae2
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 732 |
sce
|
Ex1_62.sce
|
// Ex 62 Page 403
clc;clear;close;
// Given
R=150;//ohm
Vrms=200;//V
Rd1=65;//ohm
Rd2=140;//ohm
Vm=Vrms/sqrt(2);//V
//v=Vm*sin(theta)
Rf=R+Rd1;//ohm
Rb=R+Rd2;//ohm
//i_f=v/Rf;//A
//i_b=v/Rb;//A
Irms=1/2/%pi*(integrate('(sqrt(2)*sin(theta))**2','theta',0,%pi)+integrate('(sqrt(2)/3*sin(theta))**2','theta',%pi,2*%pi))
Iav=1/2/%pi*(integrate('sqrt(2)*sin(theta)','theta',0,%pi)+integrate('sqrt(2)/3*sin(theta)','theta',%pi,2*%pi))
printf("reading of ammeter 1= %.2f A",Irms)
printf("\n reading of ammeter 2 = %.2f A",Iav)
P=1/2*(Vrms**2/Rf+Vrms**2/Rb);//W
printf("\n\n Power taken from the mains = %.1f W",P)
Pc=Irms**2*R;//W
Pd=P-Pc;//W
printf("\n Power dissipated in rectifying device = %d W",Pd)
//Answer wrong in the textbook.
|
6029c41012843eb798578625a53927626acd84a5
|
d465fcea94a1198464d7f8a912244e8a6dcf41f9
|
/system/kiks_draw_remoterobot.sci
|
1dadbccfcf40878342bae43c64af267047de4431
|
[] |
no_license
|
manasdas17/kiks-scilab
|
4f4064ed7619cad9e2117a6c0040a51056c938ee
|
37dc68914547c9d0f423008d44e973ba296de67b
|
refs/heads/master
| 2021-01-15T14:18:21.918789 | 2009-05-11T05:43:11 | 2009-05-11T05:43:11 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 3,720 |
sci
|
kiks_draw_remoterobot.sci
|
function [] = kiks_draw_remoterobot(id,kx,ky,ang,n,r)
// Display mode
mode(0);
// Display warning for floating point exception
ieee(1);
// -----------------------------------------------------
// (c) 2000-2004 Theodor Storm <theodor@tstorm.se>
// http://www.tstorm.se
// -----------------------------------------------------
global("KIKS_MMPERPIXEL","KIKS_ARENA_HDL","KIKS_REMOTEKHEPDIOD_HDL","KIKS_REMOTEKHEPWHL_HDL","KIKS_REMOTEKHEP_HDL","KIKS_MMPERPIXEL","KIKS_NR_HDL","KIKS_LINVIS_GR_HDL","KIKS_LINVIS_HDL","KIKS_ROBOT_MATRIX","KIKS_RBT_BODY","KIKS_RBT_LAMP","KIKS_RBT_DIOD","KIKS_RBT_HDL","KIKS_RBTSENS_HDL","KIKS_RBTWHL_HDL","KIKS_RBTLMP_HDL","KIKS_RBTDIOD_HDL","KIKS_WALL_WIDTH","KIKS_WALL_RENDER","KIKS_PROX_DIR","KIKS_PROX_ANG");
scale = mtlb_double(r)/29;
KIKS_WALL_WIDTH_SCALED = mtlb_double(KIKS_WALL_WIDTH)/mtlb_double(KIKS_MMPERPIXEL);
KIKS_WALL_RENDER_SCALED = mtlb_double(KIKS_WALL_RENDER)/mtlb_double(KIKS_MMPERPIXEL);
if ~isempty(n) then
// !! L.15: Unknown function kiks_remotekheppatch not converted, original calling sequence used
KIKS_REMOTEKHEP_HDL = mtlb_i(KIKS_REMOTEKHEP_HDL,id,kiks_remotekheppatch(id));
// !! L.16: Matlab function sprintf not yet converted, original calling sequence used
// !! L.16: Matlab function patch not yet converted, original calling sequence used
KIKS_REMOTEKHEPWHL_HDL = mtlb_i(KIKS_REMOTEKHEPWHL_HDL,id,patch("Facecolor",[0.5,0.5,0.6],"EdgeColor","none","Erase","xor","tag",sprintf("remoteKhep %d",id)));
// !! L.17: Matlab function sprintf not yet converted, original calling sequence used
// !! L.17: Matlab function patch not yet converted, original calling sequence used
KIKS_REMOTEKHEPDIOD_HDL(id,1) = patch("Facecolor",[0.5,0.5,0.6],"EdgeColor","none","Erase","xor","tag",sprintf("remoteKhep %d",id));
// !! L.18: Matlab function sprintf not yet converted, original calling sequence used
// !! L.18: Matlab function patch not yet converted, original calling sequence used
KIKS_REMOTEKHEPDIOD_HDL(id,2) = patch("Facecolor",[0.5,0.5,0.6],"EdgeColor","none","Erase","xor","tag",sprintf("remoteKhep %d",id));
end;
// ! L.21: mtlb($) can be replaced by $() or $ whether $ is an M-file or not
// ! L.21: mtlb($) can be replaced by $() or $ whether $ is an M-file or not
// !! L.21: Matlab function set not yet converted, original calling sequence used
// L.21: Name conflict: function name changed from set to %set
%set(mtlb_e(KIKS_REMOTEKHEP_HDL,id),"xdata",mtlb_a(mtlb_s(mtlb_a(mtlb_double(KIKS_RBT_BODY(1,mtlb_imp(1,3,mtlb_double(mtlb($)))))*(mtlb_double(r)/mtlb_double(KIKS_MMPERPIXEL)),floor(mtlb_double(kx)/mtlb_double(KIKS_MMPERPIXEL))),floor(KIKS_WALL_WIDTH_SCALED)),floor(KIKS_WALL_RENDER_SCALED)),"ydata",mtlb_a(mtlb_s(mtlb_a(mtlb_double(KIKS_RBT_BODY(2,mtlb_imp(1,3,mtlb_double(mtlb($)))))*(mtlb_double(r)/mtlb_double(KIKS_MMPERPIXEL)),floor(mtlb_double(ky)/mtlb_double(KIKS_MMPERPIXEL))),floor(KIKS_WALL_WIDTH_SCALED)),floor(KIKS_WALL_RENDER_SCALED)));
whl_xcoord = ([-15,-15,20]/mtlb_double(KIKS_MMPERPIXEL))*scale;
whl_ycoord = ([-10,10,0]/mtlb_double(KIKS_MMPERPIXEL))*scale;
// !! L.25: Matlab function set not yet converted, original calling sequence used
// L.25: Name conflict: function name changed from set to %set
%set(mtlb_e(KIKS_REMOTEKHEPWHL_HDL,id),"xdata",mtlb_a(mtlb_s(mtlb_a(mtlb_s(whl_xcoord*cos(-mtlb_double(ang)),whl_ycoord*sin(-mtlb_double(ang))),floor(mtlb_double(kx)/mtlb_double(KIKS_MMPERPIXEL))),floor(KIKS_WALL_WIDTH_SCALED)),floor(KIKS_WALL_RENDER_SCALED)),"ydata",mtlb_a(mtlb_s(mtlb_a(mtlb_a(whl_xcoord*sin(-mtlb_double(ang)),whl_ycoord*cos(-mtlb_double(ang))),floor(mtlb_double(ky)/mtlb_double(KIKS_MMPERPIXEL))),floor(KIKS_WALL_WIDTH_SCALED)),floor(KIKS_WALL_RENDER_SCALED)));
endfunction
|
2885778c233f6e2e96981ce13a034a38ab2474ce
|
a7df4100475b96e7670094f49788307220742c9d
|
/Nand To Tetris/Course Material/projects/00/Mux8Way16.tst
|
fc1b51c20088904f835135a9202e34418a4b7f8c
|
[] |
no_license
|
alecjcook/LabVIEW
|
39ccfedd57d1027ec8b1788a6cdb4898a6bf0c04
|
b235f2b6fceb3f74bfeea6e1c0651be7cab0e687
|
refs/heads/master
| 2021-01-16T18:29:51.436920 | 2014-05-18T15:06:18 | 2014-05-18T15:06:18 | 12,083,067 | 6 | 3 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 990 |
tst
|
Mux8Way16.tst
|
// This file is part of the materials accompanying the book
// "The Elements of Computing Systems" by Nisan and Schocken,
// MIT Press. Book site: www.nand2tetris.org
// File name: projects/00/Mux8Way16.tst
load Mux8Way16.hdl,
output-file Mux8Way16.out,
compare-to Mux8Way16.cmp,
output-list a%X1.4.1 b%X1.4.1 c%X1.4.1 d%X1.4.1 e%X1.4.1 f%X1.4.1 g%X1.4.1 h%X1.4.1 sel%D2.1.2 out%X1.4.1;
set a 0,
set b 0,
set c 0,
set d 0,
set e 0,
set f 0,
set g 0,
set h 0,
set sel 0,
eval,
output;
set sel 1,
eval,
output;
set sel 2,
eval,
output;
set sel 3,
eval,
output;
set sel 4,
eval,
output;
set sel 5,
eval,
output;
set sel 6,
eval,
output;
set sel 7,
eval,
output;
set a %X1234,
set b %X2345,
set c %X3456,
set d %X4567,
set e %X5678,
set f %X6789,
set g %X789a,
set h %X89ab,
set sel 0,
eval,
output;
set sel 1,
eval,
output;
set sel 2,
eval,
output;
set sel 3,
eval,
output;
set sel 4,
eval,
output;
set sel 5,
eval,
output;
set sel 6,
eval,
output;
set sel 7,
eval,
output;
|
72f13e22226c428f24407ec365d1ae9425388575
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/60/CH4/EX4.4/ex_4.sce
|
5d04187e4574de2651882d03d57b4c32de1b5fcf
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 382 |
sce
|
ex_4.sce
|
//Example (pg no.136)
// x1 + 2(x2) = 3
//2(x1) + 4(x2) = 6
A=[1 2;2 4]
//coefficient matrix of above equations
b=[3 6]'
x=A\b
//for corresponding homogenous system
// x1 + 2(x2) = 0
//2(x1) + 4(x2) = 0
A=[1 2;2 4]
//coefficient matrix of above equations
b=[0 0]'
x=A\b
|
a9038ba939fa5cbde18c09bb4920628be11e1eb2
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2048/DEPENDENCIES/armac1.sci
|
75b8ee7c3aeebe92805524bffa6afd6ba79071cb
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 441 |
sci
|
armac1.sci
|
// Scilab description of an ARMAX process
// Form:
// A(q) y(t) = [B(q)/F(q)] u(t-nk) + [C(q)/D(q)] e(t)
// [A(q)*F(q)*D(q)] y(t) = [B(q)*D(q)] u(t-nk) + [C(q)*F(q)]e(t)
// A1(q) = [A(q)*F(q)*D(q)]
// B1(q) = [B(q)*D(q)]
// D1(q) = [C(q)*F(q)]
function process_ar = armac1(a,b,c,d,f,sig)
ny = 1; nu =1;
a1 = convol(convol(a,f),d);
b1 = convol(b,d);
d1 = convol(c,f);
process_ar = armac(a1,b1,d1,ny,nu,sig);
endfunction;
|
df67cec89171eba07a64d02382fafea28e621cf0
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2384/CH8/EX8.9/ex8_9.sce
|
1626aa6cc878bf851675459773cedc5a0d6eae91
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 590 |
sce
|
ex8_9.sce
|
// Exa 8.9
clc;
clear;
close;
format('v',7)
// Given data
N = 500;
R = 4;// in ohm
d_mean = 0.25;// in m
a = 700;// in mm^2
a = a * 10^-6;// in m
V = 6;// in V
miu_r = 550;
miu_o = 4*%pi*10^-7;
l_i = %pi*d_mean;// in m
S = l_i/(miu_o*miu_r*a);// in AT/Wb
I = V/R;// in A
// Calculation of mmf
mmf = N*I;// in AT
// total flux
phi = mmf/S;// in Wb
phi = phi * 10^6;// in µWb
disp(phi,"The total flux in the ring in µWb is");
// Note: In the book the value of flux calculated correct in µWb but at last they print only in Wb, so the answer in the book is wrong.
|
b1194d099826482faa4dc3f765ebd1a5fffbf54f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/172/CH14/EX14.6/ex6.sce
|
ec041b50a82c89c8738668157035e3fe43b1b8a1
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 962 |
sce
|
ex6.sce
|
//ques6
//isothermal steady state processes
clear
clc
//from table A.2
P1=8;//pressure at state 1 in MPa
P2=0.5;//pressure at state 2 in MPa
T1=150;//Temperature at state 1 in K
Pr1=P1/3.39;//Reduced pressure at state 1
Pr2=P2/3.39;//Reduced pressure at state 2
Tr1=T1/126.2;//Reduced temperature
T2=125;//temperature at state 2
//from compressibility chart h1*-h1=2.1*R*Tc
//from zero pressure specific heat data h1*-h2*=Cp*(T1a-T2a)
//h2*-h2=0.5*R*Tc
//this gives dh=h1-h2=-2.1*R*Tc+Cp*(T1a-T2a)+0.15*R*Tc
R=0.2968;//gas constant for given substance
Tc=126.2;//K, Constant temperature
Cp=1.0416;//heat enthalpy at constant pressure in kJ/kg
dh=(2.35)*R*Tc+Cp*(T2-T1);//
printf('Enthalpy change = %.2f kJ/kg \n',dh);
//change in entropy
//ds= -(s2*-s2)+(s2*-s1*)+(s1*-s1)
//s1*-s1=1.6*R
//s2*-s2=0.1*R
//s2*-s1*=Cp*log(T2/T1)-R*log(P2/P1)
//so
ds=1.6*R-0.1*R+Cp*log(T2/T1)-R*log(P2/P1);
printf(' Entropy Change = %.4f kJ/kg.K ',ds);
|
65faa88bca5866bbaa2472f88d414ec3f41eb118
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2144/CH2/EX2.2/exa_2_2.sce
|
089ad76fa901f079a8e39f5b96a7960860b7d6b0
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 361 |
sce
|
exa_2_2.sce
|
// Example 2.2
clc;
clear;
close;
// Given data
guagePressure= 1500;// in kN/m^2
atmPressure= 100;// in kN/m^2
P1= guagePressure+atmPressure;// in kN/m^2
V1= 0.1;// in m^3
V2= 0.4;// in m^3
// Formula P1*V1 = P2*V2
P2= P1*V1/V2;// in kN/m^2
NewGuagePressure= P2-atmPressure;// in kN/m^2
disp(NewGuagePressure,"New guage pressure in kN/m^2 is : ")
|
a454ad364136853ec2584dc22bd04c0bba5d8028
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/671/CH7/EX7.14/7_14.sce
|
7f4d6cb49a8a70e0583cd20dd5121d4470d84749
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 132 |
sce
|
7_14.sce
|
uo=(4*%pi)*1E-7
ur=1600
lc=160/100
lg=0.8/1000
A=5/10000
N=1200
Rc=lc/(uo*ur*A)
Rg=lg/(uo*A)
R=Rc+Rg
L=N*N/R
disp(L)
|
b26a8bed92d37108247b9f37511ef4288d87a305
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/764/CH10/EX10.9.a/data10_9.sci
|
68bd80f734b42956d3114ee81d8b783f75115205
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 653 |
sci
|
data10_9.sci
|
//(Springs) Example 10.9
//Diameter of the safety valve dia (mm)
dia = 50
//Blow off pressure of the valve Pb (MPa)
Pb = 1.5
//Initial compression of the spring delta1 (mm)
delta1 = 25
//Maximum lift of the valve l (mm)
l = 10
//Spring index C
C = 6
//Ultimate tensile strength of the spring Sut (N/mm2)
Sut = 1500
//For plain ends, endtype = 1
//For plain ends(ground), endtype = 2
//For square ends, endtype = 3
//For square ends(ground), endtype = 4
endtype = 4
//Modulus of rigidity of the spring G (N/mm2)
G = 81370
//The permissible shear stress for the spring wire is r% of the Sut
r = 30
//Gap between adjacent turns of the spring g (mm)
g = 2
|
73c2adcbb16fef76eb5497c55bebfcaac08f955b
|
725517259e3eea555ad0f79d421792c632bc4655
|
/workspace/MissionC1.sce
|
81ef7b0ba8121afdcb5b5f2259c48c28c715c377
|
[] |
no_license
|
Exia-epickiwi/exolife
|
58b8a72aa397c5d3df8dc6f61730b3b2b217740e
|
b1bdb3ec2adb92c0fc8c546c9bd56a654523bd22
|
refs/heads/master
| 2020-05-25T14:05:45.795829 | 2017-03-20T09:26:15 | 2017-03-20T09:26:15 | 84,937,674 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 417 |
sce
|
MissionC1.sce
|
//Load scripts from folder
funcprot(0)
getd("../scripts");
//Global variables
imgPos = "../images/"; //The position of the source images
renderPos = "render/"; //The folder where the render images will be saved
//Load image
imgin = readpbm(imgPos+"Contours.pbm");
imgout = normalisation(contours(imgin))
//Show the coordinates of the brightest color of the image loaded
writepbm(imgout,renderPos+"MissionC1.pbm")
|
08396cc64ac407741f1c795adfe4085a74e0a131
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1106/CH4/EX4.13/ex4_13.sce
|
5810a057c46d31e6d79a415df95acba579e5a760
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 118 |
sce
|
ex4_13.sce
|
// Example 4.13, Page No-226
clear
clc
// TF is H(S)= 4/(s^2 + 3.3*s + 0.9)
// This is a theorotical problem
|
6f6f58944ae1b8416d360aa018313bbdf6773b98
|
39c5c468df5e2bde0147a30cf092fc8da3e7ed3e
|
/UFRGS/calcNumerico/area2/P2_numerico_oberdan/M9 - Riemann-Simpson-Trapezio-erros/riemmann.sci
|
aeea2fd58d6a2eef491e6536bca701723308b6b6
|
[] |
no_license
|
andredxc/Files
|
9dffc9fe5f7e923b83035d794dfa15c930cdb898
|
e32309b9ab548b829b04be66c2776cf9c9c6656e
|
refs/heads/master
| 2021-06-03T10:44:01.606242 | 2020-09-21T15:39:48 | 2020-09-21T15:39:48 | 107,410,076 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 1,111 |
sci
|
riemmann.sci
|
clear
/** Somas de riemmann a esquerda
* a: limite esquerdo
* b: limite direito
* n: numero de iteracoes
*
* S: area apos integrar a funcao
*/
function S=riemmann(a,b,n)
h=(b-a)/n;
x=linspace(a,b,n+1);
S=0;
for i=1:n
A=f(x(i))*h;
S=S+A;
end
endfunction
// Devolve a integral definida da funcao para comparacao com metodos iterativos
function v=integral(limiteEsquerda, limiteDireita, funcao)
v = intg(limiteEsquerda, limiteDireita, funcao);
endfunction
// valor da integral fica em riemmann(inicio, fim, numero_intervalos)
// valor da funcao fica em f(valor_x)
//q1 Funcao a ser integrada e' dada por y
function y=f(x)
y=cos(2*x);
endfunction
disp("Questão 1");
disp(riemmann(2,3,40));
disp("---------");
//q5 Funcao a ser integrada e' dada por y
function y=f(x)
y=cos(4*x+11);
endfunction
disp("Questão 5");
disp(riemmann(0,1,10000000)) //tentativa e erro.
disp("---------");
//q8 Funcao a ser integrada e' dada por y
function y=f(x)
y=cos(4*x+11);
endfunction
disp("Questão 8");
disp(riemmann(2,3,3799)) //tentativa e erro.
disp("---------");
|
17cf9809f91d267f27c0d31e6154bb3ba97a7e52
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1226/CH17/EX17.42/EX17_42.sce
|
5e16eb4c561eb6ed57f75f50a3fe345e5b14d05b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 3,061 |
sce
|
EX17_42.sce
|
clc;funcprot(0);//EXAMPLE 17.42
// Initialisation of Variables
Cpw=4.18;..............//Specific heat of water in kJ/kgK
n=1;................//No of cylinders
N=350;.......//Engine rpm
pmi=2.8;..........//Mean effective pressure in bar
bl=590;..........//Brake load in N
mf=4.3;............//Fuel consumption in kg
mw=500;..............//Mass of cooling water
tw1=25;...............//Water inlet temperature in C
tw2=50;................//Water outlet temperature in C
ma=33;..................//Mass of air used per kg of fuel in kg
tr=25;.................//Room temperature in C
tg=400;.................//Exhaust temperature in C
D=0.22;.................//Engine bore in m
L=0.28;.................//Engine stroke in m
Db=1;......................//Brake drum diameter in m
C=43900;...................//Calorirfic value of fuel in kJ/kg
Cps=2.09;..................//Specific heat of steamm in exhaust in kJ/kgK
Cpg=1.0;...................//Specific heat of dry exhaust gases in kJ/kgK
k=1;....................//Two stroke engiine
perh=15;...................//Percentage of hydrogen
//Calculations
IP=(n*pmi*N*D*D*L*k*10*(%pi/4))/6;...................//Indicated power in kW
disp(IP,"Indicated power in kW:")
BP=(bl*%pi*Db*N)/(60*1000);......................//Brake power in kW
disp(BP,"Brake power in kW:")
//Heat supplied
hf=(mf/60)*C;................//heat supplied by fuel
hip=IP*60;...........//Heat equivalent of BP in kJ/min
hcw=(mw/60)*Cpw*(tw2-tw1);..........//Heat carried away by cooling water
mg=(mf+(mf*ma))/60;....................//Mass of exhaust gases in kg/min
mst=9*(perh/100)*(mf/60);..................//Mass of steam formed
mdg=mg-mst;..............................//Mass of dry exhaust gases per min
hg=(mdg)*Cpg*(tg-tr);..........//Heat carried by exhaust gasses
hst=mst*(417.5+2257.9+(Cps*(400-99.6)));....................//Heat carried by exhaust steam, the obtained values are from steam tables at NTP
mg=mf+(ma*mf);....................//Mass of exhaust gases in kg/min
ha=round(hf)-round(hip+hg+hst+hcw);............//Unaccounted heat
pf=100;pip=(hip/hf)*100;pcw=(hcw/hf)*100;pg=(hg/hf)*100;pa=(ha/hf)*100;pst=(hst/hf)*100;
printf("\n\n")
printf("HEAT BALANCE TABLE\n")
printf("_______________________________________________________________________\n")
printf("Item kJ Percent\n")
printf("_______________________________________________________________________\n")
printf("Heat supplied by fuel %d %f\n",hf,pf)
printf("Heat absorbed in IP %d %f\n",hip,pip)
printf("Heat taken away by cooling water %d %f\n",hcw,pcw)
printf("Heat carried away by dry exhaust gases %d %f\n",hg,pg)
printf("Heat carried away by steam in exhaust gases %d %f\n",hst,pst)
printf("Unaccounted heat %d %f\n",ha,pa)
printf("_____________________________________________________________________")
|
bff462fcff727636757bb3cb0f2bf9aeec84b660
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2744/CH1/EX1.2/Ex1_2.sce
|
05689ac787964d18d8ca05bcb5fed3abe57557f0
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 355 |
sce
|
Ex1_2.sce
|
clear all;
clc;
s_p = 200;//steam pressure in lb/in^2
l = 4;//length in inches
b = 4;//breadth in inches
p = 14000;//permissible streaa in lb/in^2
P = s_p*l*b;//Pull on each bolt in lb-wt
A = P/p ;//necessary area of bolt-section
d = sqrt(4*A/%pi) ;//minimum diameter in inches
printf('The minimum diameter d of each stay bolt = %0.2f inch',d);
|
50fc61519ab7dd737c3e277624ff00f48270b6c3
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2084/CH3/EX3.17w/3_17w.sce
|
3e77faa4e5776b030bba75a493305638e623abbd
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 901 |
sce
|
3_17w.sce
|
//developed in windows XP operating system 32bit
//platform Scilab 5.4.1
clc;clear;
//example 3.17w
//calculation of time taken and position of the arrival on opposite bank
//given data
dyaxis=.5//displacement(in km) along Y axis
vrg=2//velocity(in km/h) of the river with respect to ground
vmr=3////velocity(in km/h) of the man with respect to river
theta1=30//angle(in degree) of vmr with Y axis
theta2=90//angle(in degree) of vrg with Y axis
//calculation
vyaxis=(vmr*cosd(theta1))+(vrg*cosd(theta2));//velocity along Y axis i.e taking y component in equation vmg=vmr+vrg
t=dyaxis/vyaxis;
vxaxis=(-vmr*sind(theta1))+(vrg*sind(theta2));//velocity along X axis i.e taking x component in equation vmg=vmr+vrg
dxaxis=vxaxis*t;
printf('time taken by the swimmer to cross the river is %3.2f hour',t);
printf('\ndisplacement of the swimmer along X axis is %3.4f km',dxaxis);
|
aa97606ec5100b1d417a88deb61a27b66883b47a
|
dbd504f73f233675d0c8c2c8c5730e866aabcd96
|
/codes/wireless sim.sce
|
4a10f560a01def3428f7d1b87e94dd7aa3659f04
|
[] |
no_license
|
surajdurgesht/Wireless-Communication-Lab
|
f5019be42d24fe6568e98d666efd901283a0c7a7
|
e8fac339daf91d24ee0dd9e22e9236fcbb68dac3
|
refs/heads/master
| 2020-06-04T19:07:54.824459 | 2019-06-16T06:30:21 | 2019-06-16T06:30:21 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 187 |
sce
|
wireless sim.sce
|
h=100;
t=10;
P=0:10:100;
N_o=grand(1,10000,"exp",2);
S=10^(P/10);
for i=1:1:length(S)
K=(S(i)*h^2/N_o);
X(i)=sum(K<t)/10000;
end
plot2d("ln",X,S,style=2);
plot(X,S);
|
dad38d76e0c2029c3330d2a8f75e65baad3bf41e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/34/CH8/EX8.1/Ch8Exa1.sci
|
10decdd7060782985927b5a5e41a08d2370cd8ee
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 812 |
sci
|
Ch8Exa1.sci
|
//Part (a)
r= 0.113; //bond length, nm
Mc= 1.99*(10^(-26)); //mass of C12, kg
Mo= 2.66*(10^(-26)); //mass of O16, kg
Mco= (Mc*Mo)/(Mc+Mo); //mass of CO, kg
I= Mco*((r*(10^(-9)))^2); //moment of inertia, kg.m^2
J=1; //lowest rotational state
h= 6.63*(10^(-34)); //Planck's constant, J.s
hbar= h/(2*(%pi)); //reduced Planck's constant, J.s
E1= (J*(J+1)*(hbar^2))/(2*I); //energy corresponding to state J=1, J
e= 1.6*(10^(-19)); //charge of an electron, C
E1= E1/e; //converting to eV
disp(E1,"The energy of CO molecule, in eV, is: ")
//Result
// The energy of CO molecule, in eV, is:
// 0.0004787
//Part(b)
w= sqrt((2*E1*e)/(I)); //angular velocity, rad/s
disp(w,"The angular velocity, in rad.sec, is: ")
//Result
// The angular velocity, in rad.sec, is:
// 1.027D+12
|
046f3fdb260ae74287937057cdce1c0434af2449
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3875/CH5/EX5.1/Ex5_1.sce
|
053fc67dbdc72c46f4d5e9a8a9ec68abaf9414ae
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 237 |
sce
|
Ex5_1.sce
|
clc;
clear;
k=2
lambda=5*10^-5 //wavlength in cm
theta=30 //angle in degrees
//calculations
e=(k*lambda)/sind(theta) //in cm
mprintf("No. of lines per centimeter = %.0e",(1/e)) //The answer provided in the textbook is wrong
|
c09b2df4efb41890171956d23e9a2b38b6b21b40
|
79b6b573a5fd59b14ecaa36d2b39e3872e98d0c3
|
/src/Assets/Donnees_scene.sce
|
b5dc33ba062e63bf251558692ee271339ab3ad68
|
[] |
no_license
|
ColinEspinas/Processing-3D-Viewer
|
ff27605c0aaf79e27cd002c82c7462192ba38c94
|
9515f1362aba55e696b63e385f5ac009cc2ec557
|
refs/heads/master
| 2020-08-21T16:42:37.488970 | 2019-12-16T23:01:47 | 2019-12-16T23:01:47 | 216,201,337 | 2 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 231 |
sce
|
Donnees_scene.sce
|
a 0.8 #intensite ambiante dans scene
d 250 #distance camera image
#sources lumineuses
#l 400 400 100 0.5
#l -100 -150 -200 0.7
#l 150 -100 500 1.2
l 250 -300 -150 0.7
#l 150 -100 -300 1.2
#l -150 200 -300 0.7
l -150 200 500 1.2
|
f2327408806b63ebb5cd9916f6e4851ff91f92a8
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1151/CH1/EX1.49/example49.sce
|
8f31d31492e9f653273d28aee72b1763ab6203b6
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 426 |
sce
|
example49.sce
|
//to find transfer function using mason gain formula
printf("syms R1 R2 C1 C2 \n //gains of forward path\n P1=1/(R1*R2*C1*C2*s^2);//forward path1 gain\n //gain of individual loops\n L1=-1/(R1*C1*s);\n L2=-1/(R2*C1*s);\n L3=-1/(R2*C2*s);\n //gain of two non touching loops\n g1=1/(s^2*R1*R2*C1*C2);\n //since all the loops touches the forward path1 so\n d1=1\n d=1-(L1+L2+L3)+g1;\n G=(P1*d1)/d;\n transfer function C/R=G")
|
036a1949ca6a111caddef58db9dfbd8160220cf9
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2409/CH12/EX12.7/Ex12_7.sce
|
8537f2f4ca5dfa44e95ba64e7d8fb9cc411b3f74
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 495 |
sce
|
Ex12_7.sce
|
//Variable Declaration
Tant=35 //Antenna noise temperature(kelvin)
Te1=150 //Receiver noise temperature(kelvin)
L=5 //Cable Loss (dB)
T0=290
G1=10**5 //LNA Gain
F=12 //Receiver Noise figure(dB)
//Calculation
L=10**(L/10) //Converting L into ratio
F=10**(F/10) //Converting F into ratio
Ts=Tant+Te1+(L-1)*T0/G1+L*(F-1)*T0/G1 //Noise Temperature referred to the input(Kelvin)
//Result
printf("The noise temperature referred to the input is %.0f Kelvini",Ts)
|
1cdce0af019b82a57f28560d16c19583e9526ca1
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/824/CH10/EX13.8/13_8.sci
|
4ac55841a73cbf2a4d3e4fc7e0f553ee84e004eb
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 40 |
sci
|
13_8.sci
|
//Moved to it's proper location in Ch 13
|
ba6f3737bac8c8c577a703e77fa5c9a925af2553
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/710/CH2/EX2.9/2_9.sci
|
b2b0047e6726538d8febc9ad37df05d764977cda
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 511 |
sci
|
2_9.sci
|
clc();
clear;
//To determine the density of free electrons
rho=9000; //density in kg/m^3
w=65; //atomic weight
v=1; //volume in m^3
n=(rho*v)/(w/(6.022*10^26)); //number of atoms
a=1.4; //average number of free electrons per atom
rhoe=n*a //density of free electrons per atom in electrons/m^3
printf("The density of free electrons is %e electrons/m^3",rhoe);
|
b26156d965ea78c72f72fd7e6a84fb1d1e03e7b3
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1535/CH11/EX11.3/Ch11Ex3.sci
|
5618fdadbf38a2d0471712eabbcf939984dcfc1d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 477 |
sci
|
Ch11Ex3.sci
|
// Scilab Code Ex11.3: Page-250 (2010)
h = 6.626e-034; // Planck's constant, Js
k = 1.38e-023; // Boltzmann constant, J/K
// Stimulated Emission = Spontaneous Emission <=> exp(h*f/(k*T))-1 = 1 i.e.
// f/T = log(2)*k/h = A
A = log(2)*k/h; // Frequency per unit temperature, Hz/K
printf("\nThe stimulated emission equals spontaneous emission iff f/T = %4.2e Hz/K", A);
// Result
// The stimulated emission equals spontaneous emission iff f/T = 1.44e+010 Hz/K
|
b9810c9c7256d6398124aaa435adec2954a8ede2
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/611/CH14/EX14.1/Chap14_Ex1_R1.sce
|
d2e04e283a9b53197c61629ad6fd9a46bd428a13
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 1,341 |
sce
|
Chap14_Ex1_R1.sce
|
// Y.V.C.Rao ,1997.Chemical Engineering Thermodynamics.Universities Press,Hyderabad,India.
//Chapter-14,Example 1,Page 489
//Title: Standard Gibbs free energy change and equilibrium constant
//================================================================================================================
clear
clc
//INPUT
//The water gas shift reaction is given by : CO2(g)+H2(g)--->CO(g)+H2O(g)
T=298.15;//temperature in K
del_Gf=[-137.327;-228.600;-394.815;0];//the standard Gibbs free energy of formation of CO(g),H2O(g),CO2(g) and H2(g) in kJ
n=[1;1;-1;-1];//stoichiometric coefficients of CO(g),H2O(g),CO2(g) and H2(g) respectively (no unit)
R=8.314;//universal gas constant in J/molK
//CALCULATION
//calculation of the standard Gibbs free energy of reaction at 298.15K using Eq.(14.1) in kJ
del_G=(n(1,:)*del_Gf(1,:))+(n(2,:)*del_Gf(2,:))+(n(3,:)*del_Gf(3,:))+(n(4,:)*del_Gf(4,:));
Ka=exp((-(del_G*10^3))/(R*T));//calculation of the equilibrium constant using Eq.(14.9) (no unit)
//OUTPUT
mprintf('The standard Gibbs free energy of the water gas shift reaction at 298.15K=%0.3f kJ \n',del_G);
mprintf('The equilibrium constant of the water gas shift reaction at 298.15K=%0.3e \n',Ka);
//===============================================END OF PROGRAM===================================================
|
781ee2d89b63a0477d9bdc63a12465bf4da138d2
|
70edbf624e390623eeb8c508529d6a1a1f984193
|
/ex2/Tarefa2.sci
|
963b16217e663681bb3b2bfc2414015ff6347b22
|
[] |
no_license
|
phpavelski/Lab_Medicoes_Controle
|
a78407efd0c55df05de6d15e7491e7f15af42d96
|
95995962d826363bf434268e4c5c5971c69f38eb
|
refs/heads/master
| 2022-12-11T16:48:11.769962 | 2020-09-07T00:20:06 | 2020-09-07T00:20:06 | 293,382,235 | 0 | 0 | null | 2020-09-07T00:02:53 | 2020-09-07T00:02:52 | null |
UTF-8
|
Scilab
| false | false | 457 |
sci
|
Tarefa2.sci
|
//PME3402 - Laboratório de Medição e Controle Discreto / Atividade Aula 2
//Tarefa 2
//Grupo 4 - Integrantes:
//Caique de Oliveira Kobayashi - 9793461
//Heitor Fontana de Godoy - 10335677
//Lucas Hattori Costa - 10335847
//Lucas Pinheiro Paiva Cavalcante - 10274270
//Pedro Henrique Pavelski - 10335621
clc
clear
xdel( winsid() )
pi = %pi
M = csvRead('C:\Users\Usuario\Documents\GitHub\Lab_Medicoes_2\ex2\Sons\Caique_o_fechado.wav')
scf(0)
disp(M)
|
7979d1ab5151fdceb11e139acc77a141423d8677
|
1b969fbb81566edd3ef2887c98b61d98b380afd4
|
/Rez/bivariate-lcmsr-post_mi/bfi_e_vrt_col_d/~BivLCM-SR-bfi_e_vrt_col_d-PLin-VLin.tst
|
b556203743daac7b4ff032b74d9c728f650beadd
|
[] |
no_license
|
psdlab/life-in-time-values-and-personality
|
35fbf5bbe4edd54b429a934caf289fbb0edfefee
|
7f6f8e9a6c24f29faa02ee9baffbe8ae556e227e
|
refs/heads/master
| 2020-03-24T22:08:27.964205 | 2019-03-04T17:03:26 | 2019-03-04T17:03:26 | 143,070,821 | 1 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 11,974 |
tst
|
~BivLCM-SR-bfi_e_vrt_col_d-PLin-VLin.tst
|
THE OPTIMIZATION ALGORITHM HAS CHANGED TO THE EM ALGORITHM.
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
1 2 3 4 5
________ ________ ________ ________ ________
1 0.529298D+00
2 -0.768207D-02 0.415135D-02
3 0.366046D-01 -0.304514D-02 0.392577D+00
4 -0.312172D-02 0.435699D-05 -0.210729D-02 0.325538D-02
5 0.144862D-02 0.149009D-03 -0.154729D-03 0.364884D-04 0.405951D-02
6 0.876992D-03 0.362265D-04 0.604377D-03 0.106137D-04 0.123335D-03
7 -0.243409D-04 0.125888D-03 0.198624D-02 0.989486D-05 0.453959D-03
8 -0.114703D-03 0.317640D-04 -0.120898D-02 0.995436D-04 0.265720D-03
9 -0.137879D+00 0.262662D-01 -0.431811D-01 -0.483974D-02 0.859430D-01
10 0.137409D+00 0.128867D-01 0.241869D-03 0.211800D-01 0.182522D+00
11 -0.195606D+00 0.321229D-01 -0.215995D+00 -0.145780D-01 -0.240237D-01
12 -0.667330D-02 -0.172287D-02 -0.120255D+01 0.541088D-01 -0.332322D-01
13 0.848360D-01 0.164504D-01 0.105074D+00 0.128407D-02 0.629735D-02
14 -0.645725D-02 0.104647D-02 -0.477924D+00 0.180438D-01 0.514726D-02
15 -0.744670D+00 -0.328461D-01 -0.189230D+01 0.128862D-01 -0.110705D+00
16 -0.409549D-01 -0.406011D-02 -0.279968D-01 -0.173911D-02 -0.253842D-02
17 -0.188004D-02 -0.102072D-02 0.850797D-02 -0.209734D-03 -0.101924D-02
18 -0.169078D+01 -0.130581D-01 0.447863D+00 -0.402089D-01 -0.214831D-01
19 -0.240336D+00 0.161514D-01 0.137087D+00 -0.292112D-02 -0.182245D-01
20 0.354640D+00 -0.257067D-01 -0.329882D+01 -0.570872D-01 0.336717D-01
21 0.196643D+00 -0.163247D-01 -0.723778D-01 0.160550D-02 0.154292D-01
22 0.600020D-02 -0.449255D-03 -0.151300D-02 0.101787D-02 0.132760D-03
23 0.466003D-01 0.345854D-03 -0.459398D-01 -0.121649D-01 -0.163454D-02
24 -0.235782D-02 0.103798D-02 0.597148D-02 -0.636993D-03 -0.228462D-03
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
6 7 8 9 10
________ ________ ________ ________ ________
6 0.878539D-03
7 0.106435D-02 0.378663D-02
8 -0.946239D-04 0.703794D-04 0.177566D-02
9 0.401522D-02 0.538152D-01 -0.521214D-03 0.568848D+02
10 -0.178257D-01 -0.134501D-01 0.394212D-02 0.245282D+01 0.257555D+02
11 -0.196162D-01 -0.664520D-02 0.166789D-01 0.351721D+01 -0.152265D+01
12 -0.262180D-01 0.212416D-01 0.143340D-01 0.606020D+01 0.152563D+01
13 0.639567D-01 0.149385D+00 -0.181401D-01 0.210371D+01 0.433088D+00
14 -0.143700D-01 -0.125584D-01 0.156291D+00 0.182679D+01 0.178938D+01
15 0.238549D-01 -0.387319D-01 -0.297734D-01 -0.198786D+02 -0.128590D+02
16 -0.781850D-03 -0.130439D-02 -0.745018D-03 0.164408D+01 -0.513956D+00
17 -0.197787D-03 -0.146072D-03 0.867791D-05 -0.190118D+00 -0.563960D-01
18 -0.298828D-01 -0.500451D-01 -0.141807D-02 -0.116309D+02 0.324863D+01
19 -0.125656D-01 0.379577D-02 0.134380D-01 -0.623094D+00 -0.187492D+01
20 0.526258D-01 0.394471D-01 -0.969277D-01 -0.362490D+00 0.434816D+00
21 0.954471D-02 -0.867733D-02 -0.139738D-01 0.102457D+01 0.169645D+01
22 -0.212235D-03 -0.584706D-03 0.121048D-03 0.653528D-01 -0.299006D-01
23 -0.565197D-03 -0.177919D-02 -0.446140D-04 0.355967D-01 -0.961392D-02
24 -0.132037D-03 0.419008D-04 -0.163465D-03 0.695239D-02 -0.416682D-01
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
11 12 13 14 15
________ ________ ________ ________ ________
11 0.425246D+02
12 0.569392D+01 0.123726D+03
13 -0.394670D+01 0.358369D+00 0.177481D+02
14 0.317067D+01 -0.111325D+01 -0.259392D+01 0.579877D+02
15 0.871122D+00 0.299160D+01 -0.355475D+00 0.426727D+00 0.633308D+03
16 0.446141D+00 0.728614D+00 -0.102112D+00 -0.231325D+00 0.172694D+01
17 -0.718168D-02 -0.271584D-01 -0.332380D-01 0.186206D-01 -0.276451D+01
18 -0.290868D+01 0.474002D+01 -0.432719D+01 -0.280990D+01 0.798564D+02
19 0.129923D+01 -0.210278D+01 -0.115290D+01 0.236712D+01 0.918438D+00
20 -0.230678D+01 -0.170487D+02 0.754425D+01 -0.173048D+02 0.117985D+03
21 -0.187421D+00 0.163709D+01 0.555569D+00 -0.240594D+01 -0.414738D+01
22 -0.839646D-01 -0.215208D-01 -0.145245D-01 0.341256D-01 -0.535394D+00
23 0.151959D+00 -0.386695D+00 -0.839136D-01 0.294295D+00 0.328419D+00
24 0.198220D-01 -0.128000D+00 -0.203569D-01 -0.911847D-01 -0.522204D+00
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
16 17 18 19 20
________ ________ ________ ________ ________
16 0.884003D+00
17 -0.600594D-01 0.291749D-01
18 -0.189335D+01 -0.462346D+00 0.410651D+03
19 -0.212423D-01 -0.389906D-02 0.590636D+01 0.617924D+01
20 0.306373D+00 -0.628166D+00 0.845062D+01 -0.752994D+00 0.489071D+03
21 0.304368D-01 0.123754D-01 -0.162248D+01 -0.572961D+01 -0.747387D+00
22 0.520968D-02 0.440568D-02 -0.187204D+01 -0.314697D-01 -0.463814D-01
23 0.141889D-01 0.934757D-02 -0.139352D+01 -0.341476D-01 0.429335D+01
24 0.108942D-01 0.376551D-02 0.347632D-02 0.104333D-01 -0.236905D+01
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
21 22 23 24
________ ________ ________ ________
21 0.730074D+01
22 -0.138957D-01 0.182919D-01
23 0.115832D+00 -0.812041D-02 0.630271D+00
24 -0.351714D-01 -0.217152D-03 -0.326087D-01 0.249239D-01
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
1 2 3 4 5
________ ________ ________ ________ ________
1 1.000
2 -0.164 1.000
3 0.080 -0.075 1.000
4 -0.075 0.001 -0.059 1.000
5 0.031 0.036 -0.004 0.010 1.000
6 0.041 0.019 0.033 0.006 0.065
7 -0.001 0.032 0.052 0.003 0.116
8 -0.004 0.012 -0.046 0.041 0.099
9 -0.025 0.054 -0.009 -0.011 0.179
10 0.037 0.039 0.000 0.073 0.564
11 -0.041 0.076 -0.053 -0.039 -0.058
12 -0.001 -0.002 -0.173 0.085 -0.047
13 0.028 0.061 0.040 0.005 0.023
14 -0.001 0.002 -0.100 0.042 0.011
15 -0.041 -0.020 -0.120 0.009 -0.069
16 -0.060 -0.067 -0.048 -0.032 -0.042
17 -0.015 -0.093 0.079 -0.022 -0.094
18 -0.115 -0.010 0.035 -0.035 -0.017
19 -0.133 0.101 0.088 -0.021 -0.115
20 0.022 -0.018 -0.238 -0.045 0.024
21 0.100 -0.094 -0.043 0.010 0.090
22 0.061 -0.052 -0.018 0.132 0.015
23 0.081 0.007 -0.092 -0.269 -0.032
24 -0.021 0.102 0.060 -0.071 -0.023
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
6 7 8 9 10
________ ________ ________ ________ ________
6 1.000
7 0.584 1.000
8 -0.076 0.027 1.000
9 0.018 0.116 -0.002 1.000
10 -0.119 -0.043 0.018 0.064 1.000
11 -0.101 -0.017 0.061 0.072 -0.046
12 -0.080 0.031 0.031 0.072 0.027
13 0.512 0.576 -0.102 0.066 0.020
14 -0.064 -0.027 0.487 0.032 0.046
15 0.032 -0.025 -0.028 -0.105 -0.101
16 -0.028 -0.023 -0.019 0.232 -0.108
17 -0.039 -0.014 0.001 -0.148 -0.065
18 -0.050 -0.040 -0.002 -0.076 0.032
19 -0.171 0.025 0.128 -0.033 -0.149
20 0.080 0.029 -0.104 -0.002 0.004
21 0.119 -0.052 -0.123 0.050 0.124
22 -0.053 -0.070 0.021 0.064 -0.044
23 -0.024 -0.036 -0.001 0.006 -0.002
24 -0.028 0.004 -0.025 0.006 -0.052
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
11 12 13 14 15
________ ________ ________ ________ ________
11 1.000
12 0.078 1.000
13 -0.144 0.008 1.000
14 0.064 -0.013 -0.081 1.000
15 0.005 0.011 -0.003 0.002 1.000
16 0.073 0.070 -0.026 -0.032 0.073
17 -0.006 -0.014 -0.046 0.014 -0.643
18 -0.022 0.021 -0.051 -0.018 0.157
19 0.080 -0.076 -0.110 0.125 0.015
20 -0.016 -0.069 0.081 -0.103 0.212
21 -0.011 0.054 0.049 -0.117 -0.061
22 -0.095 -0.014 -0.025 0.033 -0.157
23 0.029 -0.044 -0.025 0.049 0.016
24 0.019 -0.073 -0.031 -0.076 -0.131
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
16 17 18 19 20
________ ________ ________ ________ ________
16 1.000
17 -0.374 1.000
18 -0.099 -0.134 1.000
19 -0.009 -0.009 0.117 1.000
20 0.015 -0.166 0.019 -0.014 1.000
21 0.012 0.027 -0.030 -0.853 -0.013
22 0.041 0.191 -0.683 -0.094 -0.016
23 0.019 0.069 -0.087 -0.017 0.245
24 0.073 0.140 0.001 0.027 -0.679
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
21 22 23 24
________ ________ ________ ________
21 1.000
22 -0.038 1.000
23 0.054 -0.076 1.000
24 -0.082 -0.010 -0.260 1.000
|
6eab3b5b2745b11cb493400a5b07333a22c08643
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/995/CH6/EX6.2/Ex6_2.sce
|
655914baacfb349d33ffbbd63d31f1e0164b69cf
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 121 |
sce
|
Ex6_2.sce
|
//Ex:6.2
clc;
clear;
close;
X_c=3.18;
R=100;
V_rip=1*(X_c/sqrt(R^2+X_c^2));
printf("Ripple voltage = %f V",V_rip);
|
b60d5c748e7462c8dba1c30912446cae6f585444
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2267/CH6/EX6.3/ex6_3.sce
|
1b14d0f5e79522eb518ef03ecc49fb38b46a4c52
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 221 |
sce
|
ex6_3.sce
|
//Part A Chapter 6 Example 3
clc;
clear;
close;
R=8.314/32;//kJ/kgK
p1=125;//kPa
p2=375;//kPa
T1=27+273;//K
T2=T1;//K
delta_S=-R*log(p2/p1);//kJ/K;//kJ/kgK
disp("Change in entropy = "+string(delta_S)+" kJ/K");
|
b33b674af8bf5b13be32e49b5674c9157c30b6cc
|
f42e0a9f61003756d40b8c09ebfe5dd926081407
|
/TP4/newton.sci
|
84b2fc6fa4955ffd0525ca94d9429f1acc121ccd
|
[] |
no_license
|
BenFradet/MT09
|
04fe085afaef9f8c8d419a3824c633adae0c007a
|
d37451249f2df09932777e2fd64d43462e3d6931
|
refs/heads/master
| 2020-04-14T02:47:55.441807 | 2014-12-22T17:34:50 | 2014-12-22T17:34:50 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 481 |
sci
|
newton.sci
|
function[x, k] = newton(foncjac, tol, Kmax, x0)
if Kmax - floor(Kmax) ~= 0 | Kmax < 0
error('Kmax must be an int');
end
if tol < 0 | abs(tol) < %eps
error('wrong tol');
end
for k = 1:Kmax
[f, J] = foncjac(x0);
correction = J\-f;
x = x0 + correction;
if (norm(x - x0) / norm(x)) < tol
return x;
else
x0 = x;
end
end
error('didnt converge');
endfunction
|
4d1cc85318397b8ed0cede6af14af863bba64686
|
0480f6392643f10964ff6b301b2be49036bfe7d9
|
/fsk.sce
|
b7930d7cf7e901d19ac5cf051cf5523d61ecd2ec
|
[] |
no_license
|
vbv15/helloworld
|
02f13332442310e95126067564516a8500b072c3
|
7982e10b0195afc1adb582ec623d95bd8f9556cb
|
refs/heads/master
| 2021-06-28T01:18:01.725621 | 2016-11-11T02:49:46 | 2016-11-11T02:49:46 | 42,517,937 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 210 |
sce
|
fsk.sce
|
t=(0:0.01:5*%pi)';
tc=(2*%pi)/10;
fc=1/tc;
k=(squarewave(t)+1)*(1/2);
y=k.*cos(2*%pi*fc*t);
k1=((-1)*squarewave(t)+1)*(1/2);
ta=(2*%pi)/2;
fa=1/ta;
y1=k1.*cos(2*%pi*fa*t);
p=y+y1;
plot(t,p);
|
ad556d751ae09cdb2b0a42c7c4e698ad1f9c569d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3840/CH9/EX9.4/Ex9_4.sce
|
c7adbb5756c0c0218dca37934c1d967178f2342d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 318 |
sce
|
Ex9_4.sce
|
clear
//
//
//
//Variable declaration
Hc=200*10**3 //critical magnetic field(A/m)
Tc=12 //critical temperature(K)
H0=250*10**3 //critical magnetic field(A/m)
//Calculation
T=Tc*sqrt(1-(Hc/H0)**2) //maximum critical temperature(K)
//Result
printf("\n maximum critical temperature is %0.3f K",T)
|
af51fa51863bbe16c9ffe5c0a6397cb816f4db99
|
6e257f133dd8984b578f3c9fd3f269eabc0750be
|
/ScilabFromTheoryToPractice/Computing/testisinf.sce
|
4843b29d4705e52697f1e61247dc45960afb7d68
|
[] |
no_license
|
markusmorawitz77/Scilab
|
902ef1b9f356dd38ea2dbadc892fe50d32b44bd0
|
7c98963a7d80915f66a3231a2235010e879049aa
|
refs/heads/master
| 2021-01-19T23:53:52.068010 | 2017-04-22T12:39:21 | 2017-04-22T12:39:21 | 89,051,705 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 149 |
sce
|
testisinf.sce
|
// comparing real numbers to infinity
%inf==%inf
%inf<=%inf
1<=%inf
1>-%inf
// using isinf
A=[0 %nan 1 %inf 2 -%inf %nan ]
A==%inf
isinf(A)
|
7449ddf58c4c0e8ff78e23db2297993bfa28bb68
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1247/CH3/EX3.4/example3_4.sce
|
b38954a28aa4f2bda8a82b4264c50cca4f87150e
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 637 |
sce
|
example3_4.sce
|
clear;
clc;
// Stoichiometry
// Chapter 3
// Material Balances Without Chemical Reaction
// Example 3.4
// Page 62
printf("Example 3.4, Page 62 \n \n");
// solution
m = 1 //[kg] dry neem leaves (basis)
m1 = .01/100 //[kg] beta cartene content of leaves
Ex = (m1*100)/.41 //[kg] extract quantity
Tc1 = Ex*.155 //[kg] Alpha Tocopherol in the extract
Tc2 = .46/100 //[kg] Alpha Tocopherol in the neem leaves
R = (Tc1*100)/Tc2 // recovery of Alpha Tocopherol
printf("(a) \n \nmass of extract phase per kg of dry leaves is "+string(Ex)+" kg \n \n \n(b) \n \npercent recovery of Alpha Tocopherol is "+string(R)+".")
|
0dafe7cc0cdb43f680e9a7d4e78e64b592b79b1e
|
f934e15695c77d0a1015c230c5ed65c4f16a2425
|
/band pass butterworth.sce
|
8ea30ee9a91b210e75ef05a19ee689b23a5c9426
|
[] |
no_license
|
manasdas17/Scilab-for-Signal-Processing-
|
6efc5adb507243c7302f7b4f3f12d12060112038
|
5f6e6ce941c0a11212a83674b5d35d97a2cf4396
|
refs/heads/master
| 2021-01-10T07:49:58.006357 | 2016-04-07T07:45:26 | 2016-04-07T07:45:26 | 55,673,271 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 378 |
sce
|
band pass butterworth.sce
|
//By Manas,FOSSEE,IITB
//function which designs an iir digital filter using analog filter designs and bilinear transformation .
hz=iir(3,'bp','butt',[.15 .25],[0 0]);
[hzm,fr]=frmag(hz,256);
plot2d(fr',hzm')
xtitle('Discrete IIR filter band pass 0.15<fr<0.25 ',' ',' ');
q=poly(0,'q'); //to express the result in terms of the delay operator q=z^-1
hzd=horner(hz,1/q)
|
1b39f7de511b7b05262b3ae16f542223fa924dfe
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/965/CH13/EX13.11/11.sci
|
f6cc4549b43eb8712e8d341c7afa2d8cd3717ab6
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 603 |
sci
|
11.sci
|
clc;
clear all;
disp("evaporation rate calculation")
U=2.8;// m/s
L=300/1000;//m
rho=1.205;//kg/m^3
v=15.06*10^(-6);//m^2/s
D=4.166*10^(-5);//m^2/s
Re=U*L/v;// Reynolds No.
Re
if Re<5*10^5
disp("flow is laminar")
end
Sc=v/D;// Schmidt No.
Sc
Sh=0.664*((Re)^0.5)*(Sc)^(0.33);
Sh
L=320/1000;//m
hm=Sh*D/L;// m/s
disp("m/s",hm,"mass transfer coefficient = ")
disp("mass transfer based on pressure difference ")
T=15+273;//K
R=287;
hmp=hm/(R*T);// m/s
A=0.32*0.42;//m^2
pw1=0.017*10^(5);
pw2=0.0068*10^(5);
mw=hmp*A*(pw1-pw2)*3600;
disp("kg/h",mw,"mass diffusion of water =")
|
b63e6570664f9ff9cf488daa9df7410703279a3e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1850/CH1/EX1.10/exa_1_10.sce
|
fa9fbca56246c49185bf826b9fa40263bba93bbf
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 699 |
sce
|
exa_1_10.sce
|
// Exa 1.10
clc;
clear;
close;
// Given data
format('v',7)
V_CC= 9;// in volt
V_EE= 9;// in volt
V_BE= 0.7;// in volt (Assuming value)
R_C= 47;// in k ohm
R_C= R_C*10^3;// in ohm
R_E= 43;// in k ohm
R_E= R_E*10^3;// in ohm
Ri_1= 20;// in ohm
Ri_2= Ri_1;// in ohm
v_in1= 2.5;// in mv
v_in1=v_in1*10^-3;// in volt
Bita_1= 75;
Bita_2= Bita_1;
I_CQ = (V_EE-V_BE)/(2*R_E+Ri_1/Bita_1);// in amp
I_E= I_CQ;// in amp
V_CEQ= V_CC + V_BE - I_CQ*R_C;// in volt
re_desh= (26*10^-3)/I_E;// in ohm
// However, voltage gain of single-input, unbalanced-output differential amplifier is given by so
A_d = R_C/(2*re_desh);
v_out= A_d*v_in1;// in volt
disp(v_out,"Output voltage in volt")
|
97008bcc1eb590144c1dfdac0eeb4f3ba4161637
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/479/CH3/EX3.11/Example_3_11.sce
|
3192a9b75fe7ee2d7bd0fd44672428216cbbdb57
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 649 |
sce
|
Example_3_11.sce
|
//Chemical Engineering Thermodynamics
//Chapter 3
//First Law of Thermodynamics
//Example 3.11
clear;
clc;
//Given
H1 = 680.6;//Enthalpy of entering steam at 6Kgf/cm^2 &200 deg cel in Kcal/Kg
u1 = 60;//velocity at which steam entered the nozzle in m/sec
u2 = 600;//velocity at which steam left the nozzle in m/sec
g = 9.8;
Hg = 642.8; Hlq = 110.2;//Enthalpy of saturated vapour & saturated liquid at 1.46 Kgf/cm^2 respectively
//To calculate the quality of exit steam
H2 = H1+((u1^2)-(u2^2))/(2*g*427);//enthalpy of leaving steam in Kcal/Kg
x = (H2-Hlq)/(Hg-Hlq);
mprintf('The quality of exit steam is %f percent',x*100);
//end
|
704dee8131122eb7988ceeb901d0c9eb8a69c0fa
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3850/CH31/EX31.1/Ex31_1.sce
|
0500825ed43f3c416b22209abe8b5d455010a6c7
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 302 |
sce
|
Ex31_1.sce
|
//To Calculate the Capacitance of the capacitor
//Example 31_1
clear;
clc;
Q=60*10^-6;//Charge on the capacitor
V=12;//Potential difference between the plates
C=Q/V;//Formula for finding the capacitance of the capacitor
printf("Capacitance of the capacitor=%f *10^-6 F",C*10^6);
|
83855b55e67701ed4d924cca7ecb030789027155
|
6e257f133dd8984b578f3c9fd3f269eabc0750be
|
/ScilabFromTheoryToPractice/Computing/testpilefile.sce
|
ba85ce85fb4a39211f7c8cb373bdab533f08a373
|
[] |
no_license
|
markusmorawitz77/Scilab
|
902ef1b9f356dd38ea2dbadc892fe50d32b44bd0
|
7c98963a7d80915f66a3231a2235010e879049aa
|
refs/heads/master
| 2021-01-19T23:53:52.068010 | 2017-04-22T12:39:21 | 2017-04-22T12:39:21 | 89,051,705 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 382 |
sce
|
testpilefile.sce
|
// stack representation
L=[] // empty stack
L=[1,L] // add 1 to the stack
L=[2,L] // add 2 to the stack
L=[3,L] // add 3 to the stack
x=L(1),L(1)=[] // "unstacking"
// queue representation
F=[] // empty queue
F=[F,1] // add 1 to the queue
F=[F,2] // add 2 to the queue
F=[F,3] // add 3 to the queue
x=F(1),F(1)=[] // remove from the queue
|
db2dc32533d26a3367f3e5ebbe49c47e839b5a04
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/995/CH5/EX5.2/Ex5_2.sce
|
af4b968f45fb3498c1d177d1347d74655b21dc38
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 132 |
sce
|
Ex5_2.sce
|
//Ex:5.2
clc;
clear;
close;
i=15*10^-3;
R=(21-2.2)/i;
v=18.8;//in volts
P=i*v*1000;
printf("Resistor %d ohms of %d mW",R,P);
|
db525bed67b7a78d000eb5d7e95165c78e98ab86
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1067/CH20/EX20.14/20_14.sce
|
360be08a2f0e65d35347c62397316ec2bc37e958
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 451 |
sce
|
20_14.sce
|
clear;
clc;
rb=75000e3;
ro=50e6;
v1=11e3;
v2=66e3;
xa=.25*rb/ro;
xb=.75;
xt=.1;
v=1;
xeq=inv(inv(xa)+inv(xb))+xt;
i=v/xeq;
i=round(i*100)/100;
ia=i*xb/(xa+xb);
ib=i*xa/(xa+xb);
ia=round(ia*100)/100;
ilt=rb/(sqrt(3)*v1);
iht=rb/(sqrt(3)*v2);
i=i*iht;
i=fix(i)
ia=ia*ilt;
ilt=rb/(1.73*v1);
ib=ib*ilt;
ia=round(ia);
ib=round(ib/10)*10;
mprintf("sub transient current generator A=%dA \n generator B=%dA \n HT side=%dA",ia,ib,i);
|
94f43066da6c86cb6ca2b4556388c2fb48dfcec7
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3718/CH12/EX12.3/Ex12_3.sce
|
8612017e796987a796605f6c3d240cd5a4dcdfd2
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 389 |
sce
|
Ex12_3.sce
|
//Chapter 12: Polymers and Polymerization
//Problem: 3
clc;
//Declaration of Variables
d1 = 920 // density,in kg per m cube
d2 = 961.97 // density,in kg per m cube
dp = 44 // density %
// Solution
mprintf("dp = [d2 * (p - d1)] * [100/p * (d2 - d1)]\n")
p = 937.98
mprintf(" Density of sample is %.2f kg per m cube", p)
|
2ccf2e2cd1a4c822b50e55f1d032c369b3449e14
|
1b969fbb81566edd3ef2887c98b61d98b380afd4
|
/Rez/bivariate-lcmsr-post_mi/bfas_ap_hrz_col_d/~BivLCM-SR-bfas_ap_hrz_col_d-PLin-VLin.tst
|
c837823e45cf269e20f480a7bbfda61255da77fb
|
[] |
no_license
|
psdlab/life-in-time-values-and-personality
|
35fbf5bbe4edd54b429a934caf289fbb0edfefee
|
7f6f8e9a6c24f29faa02ee9baffbe8ae556e227e
|
refs/heads/master
| 2020-03-24T22:08:27.964205 | 2019-03-04T17:03:26 | 2019-03-04T17:03:26 | 143,070,821 | 1 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 11,974 |
tst
|
~BivLCM-SR-bfas_ap_hrz_col_d-PLin-VLin.tst
|
THE OPTIMIZATION ALGORITHM HAS CHANGED TO THE EM ALGORITHM.
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
1 2 3 4 5
________ ________ ________ ________ ________
1 0.254114D+00
2 -0.329455D-02 0.196425D-02
3 0.121788D+00 -0.262772D-02 0.281165D+00
4 -0.201290D-02 0.887240D-03 -0.528054D-02 0.229735D-02
5 -0.425259D-03 -0.207082D-04 0.123844D-02 0.380227D-04 0.262262D-02
6 -0.186682D-03 0.655832D-04 0.146532D-03 -0.121259D-03 -0.386094D-03
7 -0.665925D-03 0.107984D-03 -0.592615D-03 -0.670200D-04 0.528680D-03
8 0.960528D-03 -0.119453D-04 0.566942D-03 0.172302D-03 -0.540302D-05
9 -0.167603D+00 -0.134576D-02 -0.118886D+00 0.109523D-01 0.248955D-01
10 -0.246365D+00 -0.415916D-02 0.191995D-01 -0.201862D-02 0.124062D+00
11 0.623366D-01 0.809937D-02 0.118389D+00 0.863066D-02 0.298419D-01
12 -0.472021D+00 -0.369682D-02 -0.800358D+00 0.322672D-01 0.111100D+00
13 -0.689804D-01 0.787281D-02 0.191885D-01 -0.112781D-01 -0.107956D-01
14 -0.183244D+00 -0.140391D-02 -0.523412D+00 0.263070D-01 0.315289D-02
15 -0.137123D+01 0.992568D-02 -0.668055D+00 0.644651D-02 -0.108978D+00
16 -0.921077D-02 -0.829671D-02 0.721046D-02 -0.463072D-02 0.323115D-03
17 -0.167284D-02 -0.324577D-03 -0.181369D-02 -0.483887D-04 -0.153951D-03
18 -0.526684D+00 -0.501606D-02 -0.107685D+01 0.313948D-01 -0.616948D-02
19 -0.758680D-01 0.262296D-03 -0.255280D-01 0.458605D-02 0.212350D-02
20 -0.855305D+00 0.334640D-01 -0.252106D+01 0.511490D-01 0.293709D-02
21 0.934451D-01 -0.909549D-02 0.999443D-01 -0.176276D-01 -0.144329D-02
22 -0.241555D-02 -0.124378D-04 -0.259703D-02 0.269701D-03 -0.421765D-03
23 0.426627D-01 -0.629577D-02 0.493423D-01 -0.126216D-01 -0.935423D-03
24 -0.375048D-02 0.207436D-03 -0.136665D-02 0.559563D-04 -0.460613D-03
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
6 7 8 9 10
________ ________ ________ ________ ________
6 0.980643D-03
7 0.657208D-03 0.321399D-02
8 -0.309786D-04 -0.329590D-03 0.318493D-02
9 0.156599D-01 0.436734D-01 0.211864D-01 0.328404D+02
10 -0.257549D-01 0.131238D-01 0.712901D-02 0.389664D+00 0.139671D+02
11 0.274355D-01 0.434922D-01 0.206439D-01 0.838680D+01 0.582666D+00
12 -0.406606D-01 0.439148D-01 0.169019D-02 0.801116D+01 0.116209D+02
13 0.585354D-01 0.899392D-01 -0.577683D-03 0.173874D+01 0.221349D+00
14 -0.903721D-02 -0.389331D-01 0.230266D+00 0.191456D+01 0.300248D+01
15 0.226797D-01 -0.803617D-02 -0.829908D-01 -0.448734D+01 -0.845216D+01
16 0.295518D-03 0.769410D-03 -0.120869D-02 0.368531D+00 0.788204D-01
17 -0.123263D-03 -0.266286D-03 0.577168D-03 -0.536464D-01 0.504363D-02
18 -0.688696D-01 -0.147557D+00 -0.474499D-01 -0.846995D+01 -0.746594D-01
19 -0.878079D-02 0.110649D-01 -0.387112D-02 -0.117559D+01 0.285878D+00
20 -0.179157D-01 -0.430719D-01 -0.231491D+00 -0.715998D+01 -0.214530D+01
21 0.964579D-02 -0.146701D-01 0.121837D-02 0.103876D+01 0.123572D-01
22 0.395049D-04 -0.104567D-03 0.674379D-03 0.476435D-01 -0.214170D-01
23 0.138612D-02 -0.230792D-02 -0.555035D-02 -0.276305D+00 0.693180D-01
24 -0.648053D-04 -0.477397D-04 0.900972D-03 0.101206D+00 -0.821701D-02
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
11 12 13 14 15
________ ________ ________ ________ ________
11 0.316118D+02
12 0.655638D+00 0.119308D+03
13 0.980473D+00 0.265799D-01 0.102550D+02
14 0.846112D-02 0.351534D+01 0.295901D+00 0.514783D+02
15 -0.601322D+01 -0.169971D+01 0.255923D+01 -0.443509D+01 0.160931D+03
16 0.329298D-01 0.375981D+00 -0.478191D-02 -0.938865D-01 0.625546D-01
17 -0.246809D-01 -0.711525D-01 -0.209058D-01 0.470341D-01 -0.715176D+00
18 -0.414434D+01 -0.258544D+01 -0.729377D+01 -0.540073D+01 0.668654D+02
19 -0.735496D+00 0.264981D+01 -0.507408D+00 -0.112868D+01 0.209242D+01
20 0.208456D+01 -0.257475D+02 -0.570598D+01 -0.211410D+02 0.469761D+02
21 0.108858D+01 -0.197543D+01 0.373765D+00 0.873786D+00 -0.268481D+01
22 -0.630325D-01 -0.354030D-01 0.401251D-02 0.809843D-01 -0.251732D+00
23 -0.169773D-01 0.659033D+00 -0.654569D-01 -0.476432D+00 -0.231907D-01
24 -0.598973D-01 -0.740237D-01 0.292760D-01 0.100172D+00 -0.144203D+00
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
16 17 18 19 20
________ ________ ________ ________ ________
16 0.323294D+00
17 -0.122367D-01 0.100821D-01
18 -0.174443D+00 -0.266784D+00 0.137250D+03
19 0.155640D+00 -0.280495D-01 0.314225D+00 0.362127D+01
20 -0.218598D+00 -0.167697D+00 0.114701D+03 -0.403893D+00 0.301234D+03
21 0.188502D+00 0.106297D-01 0.576207D+00 -0.322753D+01 0.704364D+00
22 -0.843629D-02 0.453721D-02 -0.572077D+00 -0.245657D-01 -0.557150D+00
23 0.131623D+00 -0.892880D-02 0.291029D+00 0.554793D-01 0.187950D+01
24 -0.703131D-02 0.283850D-02 -0.463680D+00 -0.187403D-01 -0.136296D+01
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
21 22 23 24
________ ________ ________ ________
21 0.398011D+01
22 -0.177295D-01 0.785202D-02
23 0.494400D+00 -0.254901D-01 0.622899D+00
24 -0.263928D-01 0.725928D-02 -0.589932D-01 0.167163D-01
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
1 2 3 4 5
________ ________ ________ ________ ________
1 1.000
2 -0.147 1.000
3 0.456 -0.112 1.000
4 -0.083 0.418 -0.208 1.000
5 -0.016 -0.009 0.046 0.015 1.000
6 -0.012 0.047 0.009 -0.081 -0.241
7 -0.023 0.043 -0.020 -0.025 0.182
8 0.034 -0.005 0.019 0.064 -0.002
9 -0.058 -0.005 -0.039 0.040 0.085
10 -0.131 -0.025 0.010 -0.011 0.648
11 0.022 0.033 0.040 0.032 0.104
12 -0.086 -0.008 -0.138 0.062 0.199
13 -0.043 0.055 0.011 -0.073 -0.066
14 -0.051 -0.004 -0.138 0.076 0.009
15 -0.214 0.018 -0.099 0.011 -0.168
16 -0.032 -0.329 0.024 -0.170 0.011
17 -0.033 -0.073 -0.034 -0.010 -0.030
18 -0.089 -0.010 -0.173 0.056 -0.010
19 -0.079 0.003 -0.025 0.050 0.022
20 -0.098 0.044 -0.274 0.061 0.003
21 0.093 -0.103 0.094 -0.184 -0.014
22 -0.054 -0.003 -0.055 0.064 -0.093
23 0.107 -0.180 0.118 -0.334 -0.023
24 -0.058 0.036 -0.020 0.009 -0.070
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
6 7 8 9 10
________ ________ ________ ________ ________
6 1.000
7 0.370 1.000
8 -0.018 -0.103 1.000
9 0.087 0.134 0.066 1.000
10 -0.220 0.062 0.034 0.018 1.000
11 0.156 0.136 0.065 0.260 0.028
12 -0.119 0.071 0.003 0.128 0.285
13 0.584 0.495 -0.003 0.095 0.018
14 -0.040 -0.096 0.569 0.047 0.112
15 0.057 -0.011 -0.116 -0.062 -0.178
16 0.017 0.024 -0.038 0.113 0.037
17 -0.039 -0.047 0.102 -0.093 0.013
18 -0.188 -0.222 -0.072 -0.126 -0.002
19 -0.147 0.103 -0.036 -0.108 0.040
20 -0.033 -0.044 -0.236 -0.072 -0.033
21 0.154 -0.130 0.011 0.091 0.002
22 0.014 -0.021 0.135 0.094 -0.065
23 0.056 -0.052 -0.125 -0.061 0.024
24 -0.016 -0.007 0.123 0.137 -0.017
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
11 12 13 14 15
________ ________ ________ ________ ________
11 1.000
12 0.011 1.000
13 0.054 0.001 1.000
14 0.000 0.045 0.013 1.000
15 -0.084 -0.012 0.063 -0.049 1.000
16 0.010 0.061 -0.003 -0.023 0.009
17 -0.044 -0.065 -0.065 0.065 -0.561
18 -0.063 -0.020 -0.194 -0.064 0.450
19 -0.069 0.127 -0.083 -0.083 0.087
20 0.021 -0.136 -0.103 -0.170 0.213
21 0.097 -0.091 0.059 0.061 -0.106
22 -0.127 -0.037 0.014 0.127 -0.224
23 -0.004 0.076 -0.026 -0.084 -0.002
24 -0.082 -0.052 0.071 0.108 -0.088
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
16 17 18 19 20
________ ________ ________ ________ ________
16 1.000
17 -0.214 1.000
18 -0.026 -0.227 1.000
19 0.144 -0.147 0.014 1.000
20 -0.022 -0.096 0.564 -0.012 1.000
21 0.166 0.053 0.025 -0.850 0.020
22 -0.167 0.510 -0.551 -0.146 -0.362
23 0.293 -0.113 0.031 0.037 0.137
24 -0.096 0.219 -0.306 -0.076 -0.607
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
21 22 23 24
________ ________ ________ ________
21 1.000
22 -0.100 1.000
23 0.314 -0.364 1.000
24 -0.102 0.634 -0.578 1.000
|
8c80c4c16f5f8f5b0db6f7386ccf119d377bb21e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1073/CH3/EX3.38/3_38.sce
|
b660a3be6083ff0bec4334385bff06541d7eeead
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 660 |
sce
|
3_38.sce
|
clc;
clear;
//Example 3.38
v=23.13*10^-6 ; //[m^2/s]
k=0.0321 ; //[W/m.K]
Beta=2.68*10^-3; //[K^-1]
Tw=443 ;//[K]
T_inf=303 ; //[K]
dT=Tw-T_inf; //[K]
g=9.81 ; //[m/s^2]
Npr=0.688; //Prandtl number
D=100 ; //Diameter [mm]
D=D/1000 //Diameter [m]
Nra=(g*Beta*dT*(D^3)*Npr)/(v^2)
Nnu=0.53*(Nra^(1.0/4.0)) //Nusselt number
h=Nnu*k/D //[W/(m^2.K)]
h=7.93 //Approximation
e=0.90; //Emissivity
sigma=5.67*10^-8 ;
//Q=Q_conv+Q_rad //Total heat loss
//for total heat loss per meter length
Q_by_l=h*%pi*D*dT+sigma*e*%pi*D*(Tw^4-T_inf^4) //[W/m]
printf("Total heat loss per metre length of pipe is %f W/m",Q_by_l)
|
3c6ce1f0402280b92f1baa1c32902cdce08cb454
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1964/CH1/EX1.13/ex1_13.sce
|
925670fd73af33f5cb8224731e351a1af5bcfbdc
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 1,120 |
sce
|
ex1_13.sce
|
//Chapter-1, Example 1.13, Page 25
//=============================================================================
clc;
clear;
//INPUT DATA
m=80000;//mass of water lifted by pump in Kg/min
g=9.81;//gravity constant in m/sec^2
h=2;//pump is in operation for two hours a day
d=30;//pump is in operation for 30 days
T=h*d;//total time for which pump is in operation in hrs
n=70;//efficeincy in percentage
h=12;//the height in m to which pump lifts water
C=50;//cost of energy in paise/Kwh
//CALCULATIONS
P=m*g*h;//potential energy possessed by water per minute or workdone by motor pump/minute measured in joules
P=P/60;//potential energy possessed by water per minute or workdone by motor pump/minute measured in joules/sec or watts.
O=P/1000;//output power of motor in Kw
n=n/100;
E=O/n;//input power of motor in Kw
Et=E*T;//total energy supplied or energy consumption in Kwh
C=C/100;//cost of energy in Rs/Kwh
Ct=C*Et;//Total cost of energy
//OUTPUT
mprintf("Thus the total cost of energy is Rs %4.0f",Ct);
//=================================END OF PROGRAM==============================
|
a8c451d266f444d321a97bbb41b37f4121d19db5
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2471/CH6/EX6.1/Ex6_1.sce
|
d111dd953c48bc301fa31c8a7c5d1bfd43d4ae16
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 839 |
sce
|
Ex6_1.sce
|
clear ;
clc;
// Example 6.1
printf('Example 6.1\n\n');
printf('Page No. 142\n\n');
// given
L = 2.5;// Length of tubes in metre
Do = 10*10^-3;// Internal diameter of tubes in metre
m = 3.46;// mass flow rate in kg/s
Th = 120;// Temperature of condening steam in degree celcius
Tl_i = 20;// Inlet temperature of liquid in degree celcius
Tl_o = 80;// Outlet temperature of liquid in degree celcius
Cp = 2.35*10^3;// Specific heat capacity of liquid in J/kg-K
U = 950;// Overall heat transfer coefficent in W/m^2-K
T1 = Th- Tl_i;// in degree celcius
T2 = Th- Tl_o;// in degree celcius
Tm = ((T2-T1)/log(T2/T1));// logarithmic mean temperature of pipe in degree celcius
a = %pi*Do*L;//Surface area per tube in m^2
A = ((m*Cp*(Tl_o - Tl_i))/(U*Tm));// in m^2
N = A/a;
printf('The number of tubes required is %3.0f',N)
|
c96479c474bfe047ee1da608348f33242a0b9d3a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2465/CH3/EX3.16/Example_16.sce
|
cee4cbed1afb62d638c02d23dcc54d672580ac15
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 598 |
sce
|
Example_16.sce
|
//Chapter-3,Example 16,Page 61
clc;
close;
//Reaction.....U(235) + n(1) ---> Kr(95) + Ba(139) + 2*n(1) + Q
m_U= 235.124 // Isotopic mass of Uranium in a.m.u.
m_n= 1.0099 // mass of neutron in a.m.u.
m_Kr= 94.945 // Isotopic mass of Kripton in a.m.u.
m_Ba=138.954 // Isotopic mass of Ba in a.m.u.
Q_value= (m_U + m_n - (m_Kr + m_Ba + 2*m_n))*931 // in electron volt since 1 a.m.u. =931 MeV
//since mass is decreased after reaction
// Q value is positive
printf('the Q value for the reaction is %.3f MeV',Q_value)
//mistake in textbook
|
d98ac9bfa9c33df7f19adf3e671b031f3c436736
|
367fb86cc145c187bc8aa89afab0f15f7e8826e4
|
/functions/cv_threshold_mean.sci
|
37e701988e66aa075da6e8cdcc98883cf49c99f4
|
[] |
no_license
|
rishubhjain/funcforscilab
|
19180cefb15a88df5cd55d91c2e50ab1829e4860
|
3f9fb8b1f467e1e89da1297bee8bd14645da5605
|
refs/heads/master
| 2021-01-23T00:15:23.622940 | 2015-04-22T09:32:28 | 2015-04-22T09:32:28 | 31,612,595 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 163 |
sci
|
cv_threshold_mean.sci
|
function[img_ret]=cv_threshold_mean(image,maxValue)
pyImport adaptive_threshold
img_ret=adaptive_threshold.adaptive_thresh_mean(image,maxValue)
endfunction
|
8674bb7d2577853ad6895c88bb2b66bba1e1578c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1544/CH5/EX5.16/Ch05Ex16.sce
|
d7e79ed3b34d0e56aa8cd2241884cea7986a901d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 1,117 |
sce
|
Ch05Ex16.sce
|
// Scilab code Ex5.16: Pg 166 (2008)
clc; clear;
R_1 = 30; // Resistance, ohm
R_2 = 70; // Resistance, ohm
R_in = 200; // Internal resistance of meter, ohm
V = 12; // Supply voltage, V
// Using voltage divider rule, we have
V_2t = (R_2 /(R_1 + R_2))*V // True value of p.d across resistance R_2, V
// Since the rsistances R_2 and R-in are parallel, so their equivalent resistance is given their parallel combination
R_BC = (R_2 * R_in)/(R_2 + R_in); // Resistance, ohms
// Using the potential divider technique,
V_2i = (R_BC / ( R_BC + R_1 ))*V // Indicated value of p.d across by voltmetre, volts
err = (( V_2i-V_2t ) / V_2t)*100 // Percentage error in the reading
printf("\nThe p.d. indicated by the meter = %3.1f V", V_2i);
printf("\nThe percentage error in the reading = %4.2f percent", err);
// Result
// The p.d. indicated by the meter = 7.6 V
// The percentage error in the reading = -9.50 percent
|
1c23c7fa98bb0894637d905e944d261fe388686d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2252/CH7/EX7.3/Ex7_3.sce
|
bf97b140ee62d3ee73f213d6eaa56f8cb1a9edc5
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 941 |
sce
|
Ex7_3.sce
|
//calculating resistance, reactance and impedance of choke coil
I=7.5//current flowing through the circuit
V1=110//voltage across non-inductive resistor
R=V1/I
V2=180//voltage across choke coil
Z=V2/I
Zt=230/I//impedance of whole circuit
r=(Zt^2-R^2-Z^2)/(2*R)
Xl=sqrt(Z^2-r^2)
mprintf("Reactance of coil=%f ohm\nResistance of coil=%f ohm\nImpedance of coil=%f ohm\n",Xl,r,Z)
//calculating total resistance and impedance of the circuit
Rt=r+R
Zt=sqrt(Rt^2+Xl^2)
mprintf("Total resistance of circuit=%f ohm\nTotal impedance of circuit=%f ohm\n",Rt,Zt)
//calculating power absorbed by the coil
P1=I^2*r
mprintf("Power absorbed by the coil=%f W\n",P1)
//calculating power drawn by circuit
P2=I^2*(r+R)
mprintf("Power drawn by the circuit=%f W\n",P2)
//calculating power factor of whole circuit
pf=Rt/Zt
mprintf("Power factor of the whole circuit=%f lagging",pf)
//answers vary from the textbook due to round off error
|
dff28ec04d5fb106665f9f372f70ccb2e75f3143
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2240/CH4/EX3.13/EX3_13.sce
|
879dec6cd73f85ec0260280dee6191a46d692c58
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 303 |
sce
|
EX3_13.sce
|
// Grob's Basic Electronics 11e
// Chapter No. 03
// Example No. 3_13
clc; clear;
// How much current is needed for a 600-W, 120-V toaster?
// Given data
V = 120; // Applied Voltage=120 Volts
P = 600; // Power of toaster=600 Watts
I = P/V;
disp (I,'The Current I in Amps')
|
ca56397f7dbb5e4c736f83b84a09f3bb502d074d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2534/CH5/EX5.6/Ex5_6.sce
|
bc32feedfcd3f9fa475b66c9a9a91a986b628f51
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 702 |
sce
|
Ex5_6.sce
|
//Ex5_6
clc
Vdc = 15
disp("Vdc = "+string(Vdc)+"V")//applied D.C. voltage
//Half Wave Rectifier
Vm = %pi*Vdc
PIV = Vm
disp("Vm = Vdc*pi = "+string(Vm)+"V")//D.C. voltage for half wave rectifier
disp("PIV = Vm = "+string(PIV)+"V")//peak inverse voltage for half wave rectifier
//Full Wave Rectifier
Vm = %pi*Vdc/2
PIV = 2*Vm
disp("Vm = Vdc*pi/2 = "+string(Vm)+"V")//D.C. voltage for full wave rectifier
disp("PIV = 2*Vm = "+string(PIV)+"V")//peak inverse voltage for full wave rectifier
//Bridge Rectifier
Vm = %pi*Vdc/2
PIV = Vm
disp("Vm = Vdc*pi/2 = "+string(Vm)+"V")//D.C. voltage for bridge rectifier
disp("PIV = Vm = "+string(PIV)+"V")//peak inverse voltage for bridge rectifier
|
f1065b33c381501448aa0c344bcbe68699aa0040
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2420/CH10/EX10.7/10_7.sce
|
ec8cf7ff8e717b88431893a7dbb5c2cf2f322562
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 435 |
sce
|
10_7.sce
|
clc
clear
//Initialization of variables
p1=14.7 //psia
t1=60 //F
p2=60 //psia
t2=440 //F
m=10 //lb/sec
//calculations
disp("From mollier charts,")
h2=216.3 //Btu/lb
h1=124.3 //Btu/lb
W21=h2-h1
power=W21*m
hp=power*3600/2545
cp=0.237
W212=cp*(t2-t1)
power2=W212*m
hp2=power2*3600/2545
//results
printf("Power required = %d hp",hp)
printf("\n Power required = %d hp",hp2)
printf("\n Work done = %.1f Btu/lb",W212)
|
7d403e06f67baace918d1a899c46331449d7005e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3428/CH17/EX10.17.13/Ex10_17_13.sce
|
4e9634a564d109e832880180af4a4ae86f1ea9c3
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 235 |
sce
|
Ex10_17_13.sce
|
//Section-10,Example-3,Page no.-CT.42
//To calculate Entropy change(dl_S).
clc;
R=8.314
C_v=(3/2)*R
C_p=C_v+R
n=5
T_1=323
T_2=298
P_2=380
P_1=760
R=8.314
dl_S=n*((C_p*log(T_2/T_1))+(R*log(P_1/P_2)))
disp(dl_S,'Entropy change(JK^-1)')
|
5f22f91808ac873d42a44c6f91a2586a015d70e0
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1670/CH10/EX10.15/10_15.sce
|
47069316935294d57b19e0147a08739ca3ce1267
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 353 |
sce
|
10_15.sce
|
//Example 10.15
//Fourth Order Runge Kutta Method
//Page no. 324
clc;clear;close;
deff('y=f(x,y)','y=x^2+y^2')
y=1;h=0.1;
for i=1:2
x=(i-1)*h
K1=h*f(x,y);
K2=h*f(x+h/2,y+K1/2);
K3=h*f(x+h/2,y+K2/2);
K4=h*f(x+h,y+K3);
disp(K4,'K4 =',K3,'K3 =',K2,'K2 =',K1,'K1 =')
y=y+(K1+2*K2+2*K3+K4)/6
printf('\ny(%g) = %.13f\n\n\n\n',x+h,y)
end
|
35c811eec3e536bf8f1757c6ecea3142c9fe5a25
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1370/CH3/EX3.12/example3_12.sce
|
c49cf410d092dc2d0a9be80d1d644b2447cbaebe
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 737 |
sce
|
example3_12.sce
|
//example3.12
clc
disp("R1=0.9 ohm, R2=0.03 ohm, X1=5 ohm, X2=0.13 ohm")
disp("K=N2/N1=1/6 as N1:N2 is 6:1")
r=0.03+(0.9*(1/6)^2)
format(6)
disp(r,"Therefore, (R_2e)[in ohm]=R2+R1''=R2+(K^2)*R1=0.03+(1/6)^2*0.9=")
x=0.13+(5*(1/6)^2)
format(8)
disp(x,"(X_2e)[in ohm]=X2+X1''=X2+(K^2)*X1=0.13+(5*(1/6)^2)=")
disp("I_sc = 200 A")
disp("(Z_2e)=(V_sc)/(I_sc) i.e. sqrt((R_2e^2)+(X_2e^2))=(V_sc)/200")
v=200*0.27444
disp(v,"V_sc(in V)=200*0.27444=")
v=54.8895*6
disp(v,"i) V1(in V)=(V_sc)/K=54.8895/(1/6)=")
disp("(W_sc)=(V_sc)*(I_sc)*cos(phi_sc) and (W_sc)=(I_sc^2)*(R_2e)")
disp("Therefore, (200^2)*0.055 = 54.8895*200*cos(phi_sc)")
s=((0.055*200)/(54.8895))
format(4)
disp(s,"Therefore, cos(phi_sc)[lagging]=")
|
ee64423cb5cc42715071c71184255b8c6f9a6428
|
6e8df5b4cc6a12833566b3b67b0160d1937be025
|
/Multimorphic_testing_data_code/code/scilab/OpenCV/scripts/scilab/v2/script_generalisation.sci
|
715f230c1fcd3773ea0ddce7d6a5125c1457e1d2
|
[] |
no_license
|
templep/TSE_MM_test
|
2b2cc79b9e6d46a80bf692227f367438adeca3f3
|
4d3c08489c182b77418fc5d4e55377d5b68e8334
|
refs/heads/master
| 2020-03-22T22:01:12.897309 | 2019-06-13T07:50:42 | 2019-06-13T07:50:42 | 140,728,734 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 21,604 |
sci
|
script_generalisation.sci
|
//a function to choose randomly a number nb_config of observations
//to remove in the range [1,l] (l being the total number of observations ; i.e., the number of line)
//inputs :
// - nb_config : number of observations to be removed
// - l : total number of observations
//outputs :
// - idx_config : randomly chosen observations to be removed
function idx_config = choose_random_index(nb_config,l)
//random permutation
r = grand(1,"prm",1:l);
//choose nb_config first elem in the permutation
idx_config = r(1:nb_config);
endfunction
//remove idx_config from teh set of observations rows
//inputs :
// - rows : the initial set of observations
// - idx_config : indexes of observations to be removed
//outputs :
// - red_rows : reduced set of observations (initial set from which observations have been removed)
function red_rows = remove_idx(rows, idx_config)
red_rows = rows;
red_rows(idx_config,:) = [];
endfunction
//a function to save a matrix in a specified filename
//inputs :
// - m : matrix of data to be saved
// - path : the path to the directory in which data will be saved
// - filename : the name of the file containing data to be saved
function save_result(m,path,filename)
csvWrite(m,path+filename);
endfunction
//a function to normalize and take care of missing values
//the normalization is in [0;1],
//missing values are replaced with '0' (at worst will add a bin)
//each column are treated separately in turn and replace previous values
//inputs :
// - data : all data that will be processed (even columns which are not of interest)
// - idx_col : indexes of columns of interest
//outputs :
// - d : matrix with all columns but columns are interest are normalized and missing value are replaced
function d=normalize_and_fill(data,idx_col)
//copy before replacing needed columns
d = data;
//for each column of interest, check if no value miss and if normalize in [0;1]
for i = 1:prod(size(idx_col))
//consider specific column
c = data(:,idx_col(i));
//remove possible"-nan" replacing them by '0'
perf_red = c;
perf_red(find(c == "-nan"))='0';
////normalize
//find columns which are not between [0;1]
//normalize columns
temp=strtod(perf_red);
if(find(temp > 1 | temp < 0) ~= [])
ma = max(temp);
mi = min(temp);
temp = (temp-mi)/(ma-mi);
end
//replace column with possible changes
// d=d';
// d(idx_col(i),:) = temp';
// d=d';
d(:,idx_col(i)) = string(temp);
end
endfunction
function [red_set, test_set] = decouple(data,list_tc,idx_config)
test_set = [];
red_set = [];
for i=1:prod(size(list_tc))
tc_meas = data(find(data(:,1) == list_tc(i)),:);
test_set = [test_set;tc_meas(idx_config,:)];
tc_meas(idx_config,:)=[];
red_set= [red_set;tc_meas];
end
endfunction
//a function to load all csv files from a given directory
// inputs :
// - path : the path where files containing observations over executions
// - fileregex : a simple regex containing data to process
//files containing data to process must be in a csv format with columns separated by ';'
//decimal float values given by a '.' and every cell will be intepreted as a string
// outputs :
// - x : a matrix containing every read data contained in files
function x=load_csv_files(path,fileregex)
x=[];
//not sorted list specifically
csv_files=listfiles(path+fileregex+'.csv');
//nb file to retrieve
nb_iter = size(csv_files,1);
//for each file; read data and put them in a matrix to be returned
for i=1:nb_iter
////@DEBUG : display the name of the current file to be read
//disp(csv_files(i))
//read the file and remove first element (name of the different columns)
curr=read_csv(csv_files(i));
if(size(curr,2) == 1)
curr = csvTextScan(curr,';','.','string');
end
if(nb_iter ~= 1)
curr(1,:)=[];
//concatenate to previous data
x=[x;curr];
else
x = curr;
end
end
endfunction
//a function to create histograms needed to compute dispersion scores
//it also computates associate dispersion scores to videos
//scores and histograms are stored in the given file
//inputs :
// - data : data to build histograms and dispersion scores
// - path : the path to the folder where results will be saved
// - filename : the file name containing results (histograms + dispersion score)
// - idx_col : the column indexes containing property of interest
// - is_rand : a boolean representing whether we should use random test cases or a predefined set
function [best_i,best_j,best_k,best_l,best_m] = process_data(data,path,filename,idx_col,is_rand)
//scan csv data to have proper format (string and double are mixted) ->
//everything in string with decimal noted '.'
//formatted_data = csvTextScan(data,";",".",'string');
formatted_data = data;
formatted_data = normalize_and_fill(formatted_data,idx_col);
//unique first column (filename)
unique_text_file = unique(formatted_data(:,1));
//prepare output file (column header)
result=["filename","metric","hist"];
idx_config =[];
if(is_rand)
//compute the maximum number of observations (parameter to remove observations)
l_max = 0;
// //arbitrary high constant value
l_min = 100000;
for(i=1:size(unique_text_file,1))
rows = formatted_data(find(formatted_data(:,1) == unique_text_file(i)),:);
l = size(rows,1);
if(l > l_max)
l_max = l;
end
if(l < l_min)
l_min = l;
end
end
//find for each unique filename corresponding rows
//for j = 0 : 100
//number of config to put in test set
j = 30;
//take indexes at random to be removed
//cannot remove more than the max number of observations
if(j>l_max)
j = l_max-1;
end
//choose the index to put appart
idx_config = choose_random_index(j,l_max);
else
// test_filename = ["../../../../../results/video_synth/results_executions/motiv_metrics_product_1.csv"; "../../../../../results/video_synth/results_executions/motiv_metrics_product_2.csv"; "../../../../../results/video_synth/results_executions/motiv_metrics_product_10_2.csv"; "../../../../../results/video_synth/results_executions/motiv_metrics_product_10_7.csv"; "../../../../../results/video_synth/results_executions/motiv_metrics_product_16.csv"; "../../../../../results/video_synth/results_executions/motiv_metrics_product_24.csv"; "../../../../../results/video_synth/results_executions/motiv_metrics_product_32.csv"; "../../../../../results/video_synth/results_executions/motiv_metrics_product_70.csv"; "../../../../../results/video_synth/results_executions/motiv_metrics_product_89.csv"; "../../../../../results/video_synth/results_executions/motiv_metrics_product_34_208.csv"; "../../../../../results/video_synth/results_executions/motiv_metrics_product_10_105.csv"; "../../../../../results/video_synth/results_executions/motiv_metrics_product_44.csv"; "../../../../../results/video_synth/results_executions/motiv_metrics_product_34_213.csv"; "../../../../../results/video_synth/results_executions/motiv_metrics_product_34_212.csv"; "../../../../../results/video_synth/results_executions/motiv_metrics_product_34_206.csv"; "../../../../../results/video_synth/results_executions/motiv_metrics_product_19_121.csv"; "../../../../../results/video_synth/results_executions/motiv_metrics_product_19_125.csv"; "../../../../../results/video_synth/results_executions/motiv_metrics_product_19_115.csv"; "../../../../../results/video_synth/results_executions/motiv_metrics_product_19_107.csv"; "../../../../../results/video_synth/results_executions/motiv_metrics_product_34_124.csv"; "../../../../../results/video_synth/results_executions/motiv_metrics_product_59.csv"; "../../../../../results/video_synth/results_executions/motiv_metrics_product_19_122.csv"; "../../../../../results/video_synth/results_executions/motiv_metrics_product_19_128.csv"; "../../../../../results/video_synth/results_executions/motiv_metrics_product_19_110.csv"; "../../../../../results/video_synth/results_executions/motiv_metrics_product_19_111.csv"; "../../../../../results/video_synth/results_executions/motiv_metrics_product_34_216.csv"; "../../../../../results/video_synth/results_executions/motiv_metrics_product_19_116.csv"; "../../../../../results/video_synth/results_executions/motiv_metrics_product_19_132.csv"; "../../../../../results/video_synth/results_executions/motiv_metrics_product_34.csv"; "../../../../../results/video_synth/results_executions/motiv_metrics_product_34_106.csv"];
test_filename = ["../../../../../results/video_synth/results_executions/motiv_metrics_product_1.csv"; "../../../../../results/video_synth/results_executions/motiv_metrics_product_2.csv"; "../../../../../results/video_synth/results_executions/motiv_metrics_product_10_2.csv"; "../../../../../results/video_synth/results_executions/motiv_metrics_product_10_7.csv"; "../../../../../results/video_synth/results_executions/motiv_metrics_product_16.csv"; "../../../../../results/video_synth/results_executions/motiv_metrics_product_24.csv"; "../../../../../results/video_synth/results_executions/motiv_metrics_product_32.csv"; "../../../../../results/video_synth/results_executions/motiv_metrics_product_70.csv"; "../../../../../results/video_synth/results_executions/motiv_metrics_product_89.csv"; "../../../../../results/video_synth/results_executions/motiv_metrics_product_34_208.csv"; "../../../../../results/video_synth/results_executions/motiv_metrics_product_10_105.csv"; "../../../../../results/video_synth/results_executions/motiv_metrics_product_34_212.csv"; "../../../../../results/video_synth/results_executions/motiv_metrics_product_19_111.csv"; "../../../../../results/video_synth/results_executions/motiv_metrics_product_34_216.csv"; "../../../../../results/video_synth/results_executions/motiv_metrics_product_19_116.csv"; "../../../../../results/video_synth/results_executions/motiv_metrics_product_11_208.csv"; "../../../../../results/video_synth/results_executions/motiv_metrics_product_11_303.csv"; "../../../../../results/video_synth/results_executions/motiv_metrics_product_10.csv"; "../../../../../results/video_synth/results_executions/motiv_metrics_product_10_107.csv"; "../../../../../results/video_synth/results_executions/motiv_metrics_product_11_212.csv"; "../../../../../results/video_synth/results_executions/motiv_metrics_product_19.csv"; "../../../../../results/video_synth/results_executions/motiv_metrics_product_19_101.csv"; "../../../../../results/video_synth/results_executions/motiv_metrics_product_19_107.csv"; "../../../../../results/video_synth/results_executions/motiv_metrics_product_19_108.csv"; "../../../../../results/video_synth/results_executions/motiv_metrics_product_19_114.csv"; "../../../../../results/video_synth/results_executions/motiv_metrics_product_19_127.csv"; "../../../../../results/video_synth/results_executions/motiv_metrics_product_19_131.csv"; "../../../../../results/video_synth/results_executions/motiv_metrics_product_19_132.csv"; "../../../../../results/video_synth/results_executions/motiv_metrics_product_44.csv"; "../../../../../results/video_synth/results_executions/motiv_metrics_product_69.csv"];
csv_files=listfiles("../../../../../results/video_synth/results_executions/"+"motiv_metrics_*"+".csv");
for i =1:size(test_filename,1)
idx_config = [idx_config find(csv_files == test_filename(i))];
end
end
//extract property (properties) of interest
data_prop = formatted_data(:,[1 idx_col]);
//decouple data into two sets : the test set and the other set
//test set will be used to check that our score makes sense
[red_set, test_set] = decouple(data_prop,unique_text_file,idx_config);
fd=mopen("../../../../../data/video_synth/CV_programs/used_configurations.txt",'r');
used_config = mgetl(fd,-1);
mclose(fd);
//disp(size(used_config));
//save config used for test
used_config_test = used_config(idx_config,:);
save_result(used_config_test,"../../../../../data/video_synth/generalization/","used_configuration_test.txt");
//for each test case in reduced set, compute metric and histogram
for i=1:size(unique_text_file,1)
red_set2 = red_set(find(red_set(:,1) == unique_text_file(i)),:);
if(red_set2 ~= [])
[measure,hist] = compute_metric(red_set2);
hist = strcat(hist,' ');
result=[result;unique_text_file(i),measure, hist];
end
end
//save results of histograms and measures for a given set
save_result(result,"../../../../../data/video_synth/generalization/",filename+"_gener.csv");
save_result(test_set,"../../../../../data/video_synth/generalization/",filename+"_test_set.csv")
nb_cols = prod(size(idx_col));
// retrieve the best set of 5 histograms
[best_measure,best_i,best_j,best_k,best_l,best_m] = compose_5hist_best(result(2:$,3),nb_cols);
disp("afte composition : ");
disp(best_measure);
disp(best_i);
disp(best_j);
disp(best_k);
disp(best_l);
disp(best_m);
//retrieve lines corresponding to test cases in test set
meas_test1 = test_set(find(test_set(:,1) == unique_text_file(best_i)),:);
meas_test2 = test_set(find(test_set(:,1) == unique_text_file(best_j)),:);
meas_test3 = test_set(find(test_set(:,1) == unique_text_file(best_k)),:);
meas_test4 = test_set(find(test_set(:,1) == unique_text_file(best_l)),:);
meas_test5 = test_set(find(test_set(:,1) == unique_text_file(best_m)),:);
//save those information
save_result(meas_test1,"../../../../../results/video_synth/generalization/","tc1.csv");
save_result(meas_test2,"../../../../../results/video_synth/generalization/","tc2.csv");
save_result(meas_test3,"../../../../../results/video_synth/generalization/","tc3.csv");
save_result(meas_test4,"../../../../../results/video_synth/generalization/","tc4.csv");
save_result(meas_test5,"../../../../../results/video_synth/generalization/","tc5.csv");
endfunction
// computes the histogram of observations and associated dispersion score
// the dispersion score is computed as follows: disp(S) = (#bin of histogram ~= 0 / # of programs)
// which is the ratio of activated bins to the number of programs to execute
// inputs :
// - m : a matrix containing observations to build histogram and dispersion score
// - idx_col : index of columns of interest containing observations to take into account
// outputs :
// - measure : the computed dispersion score based on observations
// - hist : histogram associated to the dispersion score
function [measure, hist]=compute_metric(m,idx_col)
measure=[];
//retrieve right data -> data-first column
perf=m;
perf(:,1) = [];
//convert to double
d=strtod(perf);
////prepare histogram
//number of bins
nb_bins = size(perf,1);
cf =[];
ind=[];
//for each column to process
for i = 1:size(idx_col,2)
//compute histogram
[tmp_cf,tmp_ind] = histc([0:nb_bins]/nb_bins,d(:,i));
//add to final histogram and frequencies
cf = [cf,tmp_cf'];
ind=[ind,tmp_ind];
end
//finalize dispersion score and convert to string
measure = size(unique(ind,'r'),1);
measure = measure/nb_bins;
measure = string(measure);
//histogram also converted to string
hist = string(cf);
endfunction
//function to create the set of 5 videos which gives the highest dispersion score
//regarding a property of interest combining different observations :
// histograms are kept separated and are processed as one multi-dimensional histogram
//inputs :
// - histograms : the set of all histograms available
// - nb_cols : number of execution performed to compute histograms
//outputs :
// - measure : the dispersion scores of each possible set
// - i : the index of the first video of each possible set
// - j : the index of the second video of each possible set
// - k : the index of the third video of each possible set
// - l : the index of the fourth video of each possible set
// - m : the index of the fifth video of each possible set
function [best_measure,best_i,best_j,best_k,best_l,best_m] = compose_5hist_best(histograms,nb_cols)
best_measure = 0;
best_i = 1;
best_j = 2;
best_k = 3;
best_l = 4;
best_m = 5;
z=1
for i = 1 : size(histograms,1)
for j = i+1 : size(histograms,1)
for k = j+1 : size(histograms,1)
for l = k+1 :size(histograms,1)
for m = l+1 : size(histograms,1)
hist1 = csvTextScan(histograms(i),' ','.',"double");
hist2 = csvTextScan(histograms(j),' ','.',"double");
hist3 = csvTextScan(histograms(k),' ','.',"double");
hist4 = csvTextScan(histograms(l),' ','.',"double");
hist5 = csvTextScan(histograms(m),' ','.',"double");
// hist2 = histograms(j);
// hist3 = histograms(k);
// hist4 = histograms(l);
// hist5 = histograms(m);
//resize so that cols are kept (no mix of different dimensions)
hist1 = matrix(hist1,nb_cols,-1);
hist2 = matrix(hist2,nb_cols,-1);
hist3 = matrix(hist3,nb_cols,-1);
hist4 = matrix(hist2,nb_cols,-1);
hist5 = matrix(hist3,nb_cols,-1);
//hist1T and hist2T are transposed of hist1 and hist2 respectively
//hist1T and hist2T -> 1 line = 1 observation over all columns of interest
hist1T = hist1';
hist2T = hist2';
hist3T = hist3';
hist4T = hist4';
hist5T = hist5';
//with different dimensions, a bin is not activated if
// every bin of each dimension is not activated
v=[];
[v1,v2]=find(hist1T~=0);
v=[v;unique(v1)'];
[v1,v2]=find(hist2T~=0);
v=[v;unique(v1)'];
[v1,v2]=find(hist3T~=0);
v=[v;unique(v1)'];
[v1,v2]=find(hist4T~=0);
v=[v;unique(v1)'];
[v1,v2]=find(hist5T~=0);
v=[v;unique(v1)'];
///////dispersion score is still
///////the number of bins activated to the number of executions
//measure = # of activated bins
measure = size(unique(v),1);
//normalize
nb_bins = max([size(hist1,2),size(hist2,2),size(hist3,2),size(hist4,2),size(hist5,2)]);
measure = measure/nb_bins;
if(measure > best_measure) then
best_measure = measure;
best_i = i;
best_j = j;
best_k = k;
best_l = l;
best_m = m;
end
end
end
end
end
end
endfunction
function data = display_results(filename,best_i,best_j,best_k,best_l,best_m)
data = read_csv("../../../../../data/video_synth/generalization/"+filename+"_test_set.csv");
reshaped_d = matrix(data(:,2),[30,-1]);
col=[best_i best_j best_k best_l best_m];
//retrieve column of interest
d_interest = reshaped_d(:,col);
//convert from string to double
d_interest = strtod(d_interest);
//x= [1:size(col,2)];
//plot2d(x,d_interest,style=[-1 -1 -1 -1 -1], rect=[0 -0.2 30 1])
plot2d(d_interest,style=[-1 -1 -1 -1 -1], rect=[0 -0.2 30 1]);
endfunction
//load all csv files from the current directory
//and rewrite them into a single one without headers
//one after an other
all_data=load_csv_files("../../../../../data/video_synth/","all_data");
//cols = [9];
//cols = [10];
cols = [11,12,13];
[i,j,k,l,m] = process_data(all_data,"../../../../../results/video_synth/generalization/","metrics_hist_composite_reduced",cols,%f);
////@DEBUG
//i= 1;
//j= 15;
//k = 35;
//l = 36;
//m = 37;
d = display_results("metrics_hist_composite_reduced",i,j,k,l,m);
|
7408b81d9e6976c13245ba550398e48dbc73a293
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2681/CH6/EX6.20/Ex6_20.sce
|
70f9690d5348207fd8d3d0b4b3540620d2bbe24c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 310 |
sce
|
Ex6_20.sce
|
//radius of the outer conductor
//given
clc
C=70D-12//F/m
Zo=75//ohm
L=Zo^2*C//inductance
epsilon_r=2.3
a=0.292//mm//radius of inner conductor
b=a*10^(Zo*sqrt(epsilon_r)/138)//Zo=(138/sqrt(epsilon_r))*log(b/a)
b=round(b*1d+4)/1d+4///rounding off decimals
disp(b,'the radius of the outer conductor')
|
07618d268d95987ac9a0d8fbfddbb053e09a9af5
|
53bdf5ec3d505c23a6dbff1555c838c03e7ce670
|
/Assignment 4/Q1.sce
|
fe15251055ac7227e53d54e481b86b16c53d5522
|
[] |
no_license
|
dishvyas/AI
|
6e7fb662a04b99d5fca4380f97ac94eb5b18debe
|
a0903084fe210faee4b571b4cade5e5d410ad504
|
refs/heads/master
| 2020-05-22T00:50:06.362841 | 2019-05-12T20:29:20 | 2019-05-12T20:29:20 | 186,180,759 | 0 | 1 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 367 |
sce
|
Q1.sce
|
clc;
clear;
rand('seed',0);
N = [2,2,1];
x=[0.89, 0.79; 0.85, 0.74; 0.84, 0.72; 1, 1; 0.04, 0.07; 0.03, 0.02; 0.02, 0.01;0.01, 0.01;
0.0086, 0.0053; 0.0061, 0.0026; 0.0044, 0.009; 0.008, 0.0087]';
t=[1 1 1 1 0 0 0 0 0 0 0 0];
disp(size(x))
lp=[0.1, 0];
W=ann_FF_init(N);
T=400;
W=ann_FF_Std_online(x,t,N,W,lp,T);
a=ann_FF_run(x,N,W);
disp(x);
disp(W);
|
13f92b4f2dbb63dccf1a1ace4bea65fb40f4f01e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/147/CH2/EX2.8/Example2_8.sce
|
60121924ddf4f6837435371fc590abd652b2580d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 307 |
sce
|
Example2_8.sce
|
//Resistance R, Voltage V
close();
clear;
clc;
R1 = 6;//ohm
R2 = 1;
R3 = 2;
R4 = 3;
R5 = 10;
V1 = 10;//V
V2 = 20;
//Solving Nodal equations
A = [1/R1+1/R2+1/R3 -1/R3;-1/R3 1/R3+1/R4+1/R5];
C = [V1/R1;V2/R5];
B = inv(A)*C;
V3 = B(1,1);
V4 = B(2,1);
I = (V4-V2)/R5;
mprintf('I = %0.2f A',I);
|
0c0f5fac8b9befcee117f3d8f20eab68d8e4106c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3835/CH1/EX1.12/Ex1_12.sce
|
50ba22d123723f38c75e5b727a0b0357186f04ea
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 291 |
sce
|
Ex1_12.sce
|
clear
//
//this is a derivation by substitution problem
//al1=al0/(1+al0*t1)
//al2=al0/(1+al0*t2)
//where t1 and t2 are different temperatures al0,al1 and al2 are temperature coefficients
//substitute al0 in al2
//on deriving and solving for al2 we get,
printf("\n al2=al1/(1+al1*(t1-t2))")
|
58a6b7c6123d4cab3068e6dee7183a183498f603
|
8c9e7e9371ab3ab1b8d07c51188e55b24a7634c2
|
/EXP-1_60002190039_DURVANG_VIJAY_PARAB_plotting_elementary_signals.sce
|
7c642c35050930ed0cd9410a8b4f485968700c84
|
[] |
no_license
|
durvangparab967/SYSTEMS-AND-SIGNALS-EXPERIMENTS
|
0b82f8d1e90b5f4b36366e34ff703738ad4cd32b
|
ab23491f9aaeebb230832826a3b5e5d6788c5b1d
|
refs/heads/main
| 2023-01-22T11:25:20.906104 | 2020-11-25T10:13:44 | 2020-11-25T10:13:44 | 315,895,563 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 1,979 |
sce
|
EXP-1_60002190039_DURVANG_VIJAY_PARAB_plotting_elementary_signals.sce
|
//Plot various elementary signals in continuous and discrete domain
//Unit Step
clc;
clf;
clear all;
n=-10:10;
x=[ zeros(1,10), ones(1,11) ];
a= gca();
subplot(2,1,1)
plot2d3(n,x);
title( 'Plot of Discrete Time Unit Step ' );
xlabel( ' n ' );
ylabel( ' u[n] ' );
n1=0:10
x1 = [ones(1,11) ];
a = gca();
subplot(2,1,2)
plot(n1,x1);
title('Plot of Continuous Time unit step ');
xlabel(' t ');
ylabel(' u(t) ');
//Unit Impulse
clc ;
clf ;
clear all;
n1= -5:5
x1=[ zeros(1,5),ones(1,1),zeros(1,5)];
subplot(2,1,1)
plot2d3(n1,x1);
title( 'Plot of discrete unit impulse ' );
xlabel( ' number of samples ' );
ylabel( ' amplitude ' );
n= -5:5
x=[ zeros(1,5),ones(1,1),zeros(1,5)];
subplot(2,1,2)
plot(n,x);
title( 'Plot of continuous unit impulse ' );
xlabel( ' time ' );
ylabel( ' amplitude ' );
//Unit Ramp
clc ;
clf ;
clear all;
n=0:1:10;
x=n
subplot(2,1,1)
plot2d3(n,x);
xtitle( 'Plot of Discrete unit ramp signal ' );
xlabel( ' number of samples (n) ' );
ylabel( ' x [ n ] ' );
t=0:1:10;
x1=t
subplot(2,1,2)
plot(t,x1);
xtitle( 'Plot of Continuous unit ramp signal ' );
xlabel( ' time ' );
ylabel( ' x ( t ) ' );
//Sinusoidal Signal
t=0:0.01:10;
a=cos(2*3.14*t);
subplot(2,1,1)
plot(t,a)
xlabel('time')
ylabel('cosine x(t)')
title('Plot of Continuous cosine wave')
t1=0:0.01:10;
a1=cos(2*3.14*t);
subplot(2,1,2)
plot(t1,a1)
xlabel('n')
ylabel('cosine x[n]')
title('Plot of Discrete cosine wave')
//Exponential signal
clc ;
clf ;
clear all;
t = -2:0.1:2;
x= exp(t);
subplot(2,1,1)
plot(t,x);
title( 'Plot of Continuous exponential wave ' );
xlabel( ' t ' );
ylabel( ' x(t) ' );
t = -2:0.1:2;
x= exp(t);
subplot(2,1,2)
plot2d3(t,x);
title( 'Plot of Discrete exponential wave ' );
xlabel( ' n ' );
ylabel( ' x[n] ' );
//Signum Function
clc ;
clf ;
clear all;
t=-5:0.1:5
a=gca();
x=sign(t);
b=gca();
plot2d3(t,x);
title('Plot of signum function ' );
xlabel( ' t ' );
ylabel( ' x ' );
|
3f4efc3fdebd85b0964f6e159db59543aec20907
|
717ddeb7e700373742c617a95e25a2376565112c
|
/3428/CH23/EX14.23.18/Ex14_23_18.sce
|
a19fbf1101edc9defecdac740070411d5744e79a
|
[] |
no_license
|
appucrossroads/Scilab-TBC-Uploads
|
b7ce9a8665d6253926fa8cc0989cda3c0db8e63d
|
1d1c6f68fe7afb15ea12fd38492ec171491f8ce7
|
refs/heads/master
| 2021-01-22T04:15:15.512674 | 2017-09-19T11:51:56 | 2017-09-19T11:51:56 | 92,444,732 | 0 | 0 | null | 2017-05-25T21:09:20 | 2017-05-25T21:09:19 | null |
UTF-8
|
Scilab
| false | false | 664 |
sce
|
Ex14_23_18.sce
|
//Section-14,Example-2,Page no.-PC.112
//To calculate the pH in the following cases.
clc;
V_1=150 //volume of 0.1 NaOH solution
V_2=150 //volume of 0.2 HCl solution
N_1=0.1
N_2=0.2
V=V_1+V_2 //Total volume of the solution
m_eq=(V_2*N_2)-(V_1*N_1) //Total milliequivalents of excess HCl
N=m_eq/V
C_1=N //Since HCl is a strong acid so[HCl]=[H3O+]
pH_1=-log10(C_1)
disp(pH_1,'pH of the required solution')
pH1=5
C1=10^-5 //[H3O+]
pH2=3
C2=10^-3 //[H3O+]
C_3=(C1+C2)/2 //[H3O+]
pH_2=-log10(C_3)
disp(pH_2,'pH of the required solution')
|
c3f1fd37c9bc58a22f9b90f21d6914e7ced1563e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/389/CH10/EX10.1/Example10_1.sce
|
f77f06ea6914505c050b1596b67dc202c9740fa5
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 2,902 |
sce
|
Example10_1.sce
|
clear;
clc;
// Illustration 10.1
// Page: 494
printf('Illustration 10.1 - Page: 494\n\n');
// solution
//****Data****//
// a:water b:isopropyl ether c:acetic acid
xF = 0.30;// [mol fraction]
yS = 0;// [mol fraction]
S1 = 40;// [kg]
B1 = 40;// [kg]
//*******//
// Equilibrium data at 20 OC:
// Wa: Wt. percent of a
// Wb: Wt. percent of b
// Wc: Wt. percent of c
// Data1 = [Wc Wa Wb]
// Data1: water layer
Data1 = [0.69 98.1 1.2;1.41 97.1 1.5;2.89 95.5 1.6;6.42 91.7 1.9;13.30 84.4 2.3;25.50 71.1 3.4;36.70 58.9 4.4;44.30 45.1 10.6;46.40 37.1 16.5];
// Data2: isopropyl ether layer
Data2 = [0.18 0.5 99.3;0.37 0.7 98.9;0.79 0.8 98.4;1.93 1 97.1;4.82 1.9 93.3;11.40 3.9 84.7;21.60 6.9 71.5;31.10 10.8 58.1;36.20 15.1 48.7];
scf(20);
plot(Data1(:,3)/100,Data1(:,1)/100,Data2(:,3)/100,Data2(:,1)/100);
xgrid();
xlabel("Wt fraction of isopropyl ether");
ylabel("Wt fraction of acetic acid");
// x: Wt fraction of acetic acid in water layer.
// y: Wt fraction of acetic acid in isopropyl layer.
legend("x Vs fraction ether","y Vs fraction ether");
// The rectangular coordinates of Fig 10.9(a) will be used but only upto x = 0.30
a = gca();
a.data_bounds = [0 0;1 0.3];
// Stage 1:
F = 100;// [kg]
// From Eqn. 10.4:
M1 = F+S1;// [kg]
// From Eqn. 10.5:
xM1 = ((F*xF)+(S1*yS))/M1;
// From Fig. 10.15 (Pg 495):
// Point M1 is located on the line FB and with the help of tie line passing through M1:
x1 = 0.258;// [mol fraction]
y1 = 0.117;// [mol fraction]
// From Eqn. 10.8:
E1 = (M1*(xM1-x1)/(y1-x1));// [kg]
// From Eqn. 10.4:
R1 = M1-E1;// [kg]
// Stage 2:
S2 = 40;// [kg]
B2 = 40;// [kg]
// From Eqn. 10.15:
M2 = R1+B2;// [kg]
// From Eqn. 10.16:
xM2 = ((R1*x1)+(S2*yS))/M2;
// Point M2 is located on the line R1B and the tie line passing through R2E2 through M2:
x2 = 0.227;
y2 = 0.095;
// From Eqn. 10.8:
E2 = (M2*(xM2-x2)/(y2-x2));// [kg]
// From Eqn. 10.4:
R2 = M2-E2;// [kg]
// Stage 3:
S3 = 40;// [kg]
B3 = 40;// [kg]
// From Eqn. 10.15:
M3 = R2+B3;// [kg]
// From Eqn. 10.16:
xM3 = ((R2*x2)+(S3*yS))/M3;
// Point M3 is located on the line R2B and the tie line passing through R3E3 through M3:
x3 = 0.20;// [mol fraction]
y3 = 0.078;// [mol fraction]
// From Eqn. 10.8:
E3 = (M3*(xM3-x3)/(y3-x3));// [kg]
// From Eqn. 10.4:
R3 = M3-E3;// [kg]
Ac = x3*R3;
printf("The composited extract is %f kg\n",(E1+E2+E3));
printf("The acid content is %f kg\n",((E1*y1)+(E2*y2)+(E3*y3)));
printf("\n");
// If an extraction to give the same final raffinate concentration were to be done in single stage, the point M would be at the intersection of tie line R3E3 and the line BF.
x = 0.20;// [mol fraction]
xM = 0.12;// [mol fraction]
// From Eqn. 10.6:
S = F*(xF-xM)/(xM-yS);// [kg]
printf("%f kg of solvent would be recquired if the same final raffinate concentration were to be obtained with one stage.\n",S);
|
2043b564477e16cb1ff3adba0cefecbc726459e3
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3793/CH14/EX14.2/exp_14_2.sce
|
1e5287b65aa90c52bebebe9f6aa6555bc5f8adb0
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 684 |
sce
|
exp_14_2.sce
|
clear;
clc;
z12=complex(.05,.20);
z23=complex(.075,.25);
c1=.025;
c2=.005;
w1= (.1568*10^(-4));
w2= (.1679*10^(-4));
w3= (.0668*10^(-4));
w4= (.0702*10^(-4));
W=[w1 0 0 0; 0 w2 0 0; 0 0 w3 0; 0 0 0 w4];
v1=1.05;
v2=1.05;
v3=(1.05);
h1=(v1/z12);
h2=(v2/z12);
h3=(v2/z23);
h4=(v3/z23);
H=[h1 0 0 0; 0 h2 0 0; 0 0 h3 0; 0 0 0 h4];
H1=conj(H);
D=H1*W*H;
D1=real(D);
A=[1 -1 0; -1 1 0; 0 1 -1; 0 -1 1];
B=[-1 0; 1 0; 1 -1; -1 1];
b=[1;-1;0;0];
E=(B')*D;
f=E*B;
s1=complex(.50,-.12);
s2=complex(-.48,.10);
s3=complex(.80,-.40);
s4=complex(-.78,.38);
S=[s1;s2;s3;s4];
vm=(inv(H))*(conj(S));
vb=inv(f)*E*(vm-(b*v1));
V=[v1;vb];
printf("V = ")
disp(V);
|
40974ec0c9264f30202f1ad3980608e76ca0d726
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2417/CH7/EX7.8/Ex7_8.sce
|
63e85e0e24c08c5898d43e98bc323fc557f4e8f5
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 1,422 |
sce
|
Ex7_8.sce
|
//scilab 5.4.1
clear;
clc;
printf("\t\t\tProblem Number 7.8\n\n\n");
// Chapter 7 : Mixtures Of Ideal Gases
// Problem 7.8 (page no. 329)
// Solution
//We will take as a basis 100 lbm of mixture.
//Dividing colomn 2 by 3 gives us mass/molecular weight or moles of each constituents.The total number of moles in the mixture is the sum of coloumn 4,and the molecular weight of the mixture is the mass of the mixture(100 lbm) divided by the number of moles
//In coloumn 5,mole fraction is given by moles/total mole
printf("Basis:100 pounds of gas mixture\n\n")
printf("gas Mass Molecular Moles Mole Percent \n")
printf(" lbm weight MW fraction Volume \n")
printf("O2 23.18 32.00 0.724 %f %f \n",(0.724/3.45),(0.724/3.45)*100)
printf("N2 75.47 28.02 2.693 %f %f \n",(2.692/3.45),(2.692/3.45)*100)
printf("A 1.30 39.90 0.033 %f %f \n",(0.033/3.45),(0.033/3.45)*100)
printf("CO2 0.05 44.00 - - - \n")
printf(" =100.00 =3.45 =1.00 = 100 \n ")
printf(" MWm=100/3.45=28.99 ")
|
a048efd9d1ffa965f2e7ffa200adaec21cab1996
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2825/CH19/EX19.13/Ex19_13.sce
|
37182261d3644f5ec467ff1fa9c27b6a93c2ef78
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 137 |
sce
|
Ex19_13.sce
|
//Ex19_13 Pg-962
clc
dec=175; //binary input
oct=dec2oct(dec) //decimal output
disp("The octal equivslent of 175 is")
disp(oct)
|
01b41f4ad509e0b3274e05bae7a2cd36958161b3
|
a62e0da056102916ac0fe63d8475e3c4114f86b1
|
/set12/s_Industrial_Instrumentation_K._Krishnaswamy_And_S._Vijayachitra_1436.zip/Industrial_Instrumentation_K._Krishnaswamy_And_S._Vijayachitra_1436/CH5/EX5.19/ex5_19.sce
|
ddf0c6607adde7fdc7d4e7417fa694376d7674eb
|
[] |
no_license
|
hohiroki/Scilab_TBC
|
cb11e171e47a6cf15dad6594726c14443b23d512
|
98e421ab71b2e8be0c70d67cca3ecb53eeef1df6
|
refs/heads/master
| 2021-01-18T02:07:29.200029 | 2016-04-29T07:01:39 | 2016-04-29T07:01:39 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 164 |
sce
|
ex5_19.sce
|
errcatch(-1,"stop");mode(2);//Example 5.19, page no-317
e=0.2*10^-3
B=0.08
l=10*10^-2
v=e/(B*l)
printf("V = %.3f m/sec = %.2f cm/sec",v,v*100)
exit();
|
11a4e13ecbaf4d67c7e91a6d36352d51ae4d6b71
|
1d7cb1dbfad2558a4145c06cbe3f5fa3fc6d2c08
|
/Scilab/SSCTIE/SSCTIE2.sce
|
234ae0206b8e3bbdeda5201e8cc9f03fdffc58b6
|
[] |
no_license
|
lrayzman/SI-Scripts
|
5b5f6a8e4ae19ccff53b8dab7b5773e0acde710d
|
9ab161c6deff2a27c9da906e37aa68964fabb036
|
refs/heads/master
| 2020-09-25T16:23:23.389526 | 2020-02-09T02:13:46 | 2020-02-09T02:13:46 | 66,975,754 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 562 |
sce
|
SSCTIE2.sce
|
fssc=33e3;
f0=6e9;
a=0.005;
favg=f0*(1-0.5*a);
t=[0:1e-7:1/(2*fssc)];
foft=favg-2*f0*a*fssc*(t-0.25/fssc); //Triangular
thetadelta=f0*a*t/2-f0*a*fssc*(t^2); //Triangular
//foft=favg+f0*0.5*a*cos(2*%pi*fssc*t); //Sine
//thetadelta=(f0*0.5*a/(2*%pi*fssc))*sin(2*%pi*fssc*t); //Sine
tie=thetadelta/favg;
printf("Max tie is %0.2f ns\", max(tie)*1e9);
xinit("1");
plot2d(t*1e6,foft/1e9);
xtitle("f(t)", "Time (uS)", "Frequency (GHz)");
xinit("2");
plot2d(t*1e6,tie*1e9);
xtitle("TIE", "Time (uS)", "Interval Error (nS)");
|
41b0909dae7e23d01a60b169e024d9a9780849dd
|
b67defe3c1cae63dd1a79578f840d069568034e6
|
/scilab/mulapproxluck.sci
|
93f79f9bb504ca4f1e5faa1026bd375292f762c9
|
[] |
no_license
|
wmacevoy/luck
|
bf5d93ce00e8136634d715057a97706d3aa804b3
|
47e5c8eb1782a1b4f3f5b9e7583290d9a842532e
|
refs/heads/master
| 2023-05-03T14:46:51.353817 | 2023-04-25T03:13:44 | 2023-04-25T03:13:44 | 33,452,250 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 219 |
sci
|
mulapproxluck.sci
|
function L=mulapproxluck(x,p)
[nprobs,nsamps]=size(x);
ntrials=sum(x,'r');
mu=p*ntrials;
z=(x-mu) ./ sqrt(mu);
R2=sum(z.^2,'r');
one=ones(1,nsamps);
L=cdfgam("PQ",R2/2,((nprobs-1)/2)*one,one);
endfunction
|
3344ab0f08e15a3ba059962cdf71e9aeeab8ad73
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1217/CH1/EX1.25/Exa1_25.sce
|
e1441d2428024cc433361dba2dd0f4e0e892877e
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 523 |
sce
|
Exa1_25.sce
|
//Exa 1.25
clc;
clear;
close;
//given data
BETAmin=80;//unitless
BETAmax=120;//unitless
IE=400;//in uA
VT=25;//in mvolts
VEE=15;//in volts
VCC=15;//in volts
VBE=0.7;//in volts
VEB=-0.7;//in vol
IE1=IE/2;//in uA
IE2=IE1;//in uA
IBmax=IE1/(1+BETAmin);//in uA
IBmin=IE1/(1+BETAmax);//in uA
Iiomax=IBmax-IBmin;//in uA
disp(IBmax,"Largest possible input bias current in uA is :");
disp(IBmin,"smallest possible input bias current in uA is :");
disp(Iiomax,"Largest possible input offset current in uA is :");
|
2c317ab75ffecd7478274324aa23ff2a5a9f20c4
|
74084a1c6ef810ee05785941963c7dc1725783cf
|
/test/CT3.prev.tst
|
0dbc294a9f66c0728adf63b5268b399b17857d64
|
[
"Apache-2.0",
"LicenseRef-scancode-unknown-license-reference"
] |
permissive
|
gfis/common
|
338d245dc6a1ef093748fa577129ac30822ec70b
|
da1e36931decdbdfe201d88207d5a01c207f8c5a
|
refs/heads/master
| 2022-03-21T14:56:42.582874 | 2022-02-07T10:39:22 | 2022-02-07T10:39:22 | 59,970,966 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 109 |
tst
|
CT3.prev.tst
|
call
-in
2011-07-21 17:39:00
call
my.pr1
-in
2 double quoted
-in:int
29647
-in
3 single quoted
;
|
50cd168bb3dea0cfdb70ee8ba14ab8db367d8ae4
|
d47ef89d1d0330681dd97a1ca4cb131d64b6d609
|
/code/held_karp.sce
|
22d612fe9c5d52db645a0af6c4ff9b735c6e4003
|
[] |
no_license
|
jere1882/TSP_Heuristics
|
a035a28bc786a19d0d5fd17364f81d46d70d9c17
|
ca58cb77b986d03b4a92d86161ce812df8d85b17
|
refs/heads/master
| 2022-11-25T05:35:45.053166 | 2020-08-02T23:45:28 | 2020-08-02T23:45:28 | 284,557,182 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 36 |
sce
|
held_karp.sce
|
// *** ESCRIBA EL CODIGO AQUI! ***
|
48d338dd480215a1001ff940ff6285e0cdb303be
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3012/CH7/EX7.3/Ex7_3.sce
|
1055014ad9f94ad8bad4e57f66c10fee1a584c79
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 2,099 |
sce
|
Ex7_3.sce
|
// Given :-
T = 373.15 // initial temperature of saturated liquid in kelvin
T0 = 293.15 // in kelvin
P0 = 1.014 // in bar
// Part(a)
// From table A-2
ug = 2506.5 // in kj/kg
uf = 418.94 // in kj/kg
vg = 1.673 // in m^3/kg
vf = 1.0435*(10**(-3)) // in m^3/kg
sg = 7.3549 // in kj/kg.k
sf = 1.3069 // in kj/kg.k
// Calculations
// Energy transfer accompanying work
etaw = 0 // since p = p0
// Exergy transfer accompanying heat
Q = 2257 // in kj/kg,obtained from example 6.1
etah = (1-(T0/T))*Q
// Exergy destruction
ed = 0 // since the process is accomplished without any irreversibilities
deltae = ug-uf + P0*(10**5)*(vg-vf)/(10**3)-T0*(sg-sf)
// Results
printf( ' Part(a)the change in exergy is %.2f kJ/kg.',deltae)
printf( ' The exergy transfer accompanying work is %.2f kJ/kg.',etaw)
printf( ' The exergy transfer accompanying heat is %.2f kJ/kg',etah)
printf( ' The exergy destruction is %.2f kJ/kg.',ed)
// Part(b)
Deltae = deltae // since the end states are same
Etah = 0 // since process is adiabatic
// Exergy transfer along work
W = -2087.56 // in kj/kg from example 6.2
Etaw = W- P0*(10**5)*(vg-vf)/(10**3)
// Exergy destruction
Ed = -(Deltae+Etaw)
// Results
printf( ' Part(b)the change in exergy is %.2f kJ/kg.',Deltae)
printf( ' The exergy transfer accompanying work is %.2f kJ/kg.',Etaw)
printf( ' The exergy transfer accompanying heat is %.2f kJ/kg.',Etah)
printf( ' The exergy destruction is %.2f kJ/kg.',Ed)
|
2ec9a78a9a81ca452cbd9b0075af03611f5cf9ae
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2990/CH4/EX4.3/Ex4_3.sce
|
597d04004675cda795a5dc98f359ec71d81764a7
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 524 |
sce
|
Ex4_3.sce
|
clc; funcprot(0);
// Initialization of Variable
function[dms]=degtodms(deg)
d = int(deg)
md = abs(deg - d) * 60
m = int(md)
sd = (md - m) * 60
sd=round(sd*100)/100
dms=[d m sd]
endfunction
b=40.0;//distance in degrees
p=6.0;//disatnce in degrees
//calculation
a=%pi/2-asin(cos(b*%pi/180)*cos(p*%pi/180));
Bc=a*180/%pi-b;
BC=Bc*1.853*60;
B=asin(sin(b*%pi/180)/sin(a))
B=degtodms(B*180/%pi);
disp(round(BC*100)/100,"distance BC in km");
disp(B,"angle of B deg min sec");
clear()
|
864f1d20962a10466926ca25e59114a0f1ab878e
|
29ebda219499e5b5e13800b6e5083ff775eb8196
|
/Control_levi.sce
|
b5fe2eaae3ec95ef78e28b8a3897bea678f76efe
|
[] |
no_license
|
izlervaldivia/Maglevtrains
|
8b9a002694c5658f9561f93a17d7a555b8fd120f
|
7282faae4998e7a9a18a6107275379cc61c64a51
|
refs/heads/master
| 2022-12-01T05:54:23.048728 | 2020-08-17T03:59:03 | 2020-08-17T03:59:03 | 288,067,147 | 1 | 0 | null | 2020-08-17T07:36:19 | 2020-08-17T02:40:21 |
Scilab
|
UTF-8
|
Scilab
| false | false | 3,906 |
sce
|
Control_levi.sce
|
//Evaluacion LQG Train
// load the data
clc
clear
load("maglevtrainLTI.sod","X","U","sys")
Ap=sys.A;
Bp=sys.B;
Cp=sys.C;
Dp=sys.D;
Dp=0
Cp=[1 0 0]
tri = trzeros(sys)
w = logspace(-3,3);
svi = svplot(sys,w);
scf(1);
plot2d("ln", w, 20*log(svi')/log(10))
xgrid(12)
xtitle("Valores singulares de la planta inicial","Frequency (rad/s)", "Amplitude (dB)");
///////////////////////////////////---------------------------
//Planta aumentada con el integrador
[ns,nc]=size(Bp); //ns= number of inputs; nc=number of controls
Ai=[Ap Bp;
0*ones(nc,ns) 0*ones(nc,nc)];
Bi=[0*ones(ns,nc); eye(nc)];
Ci=[Cp 0*ones(1,1)];
Di=0*ones(nc,nc);
sysi=syslin('c',Ai,Bi,Ci,Di);
I=eye(nc);
/* Plot singular values */
tri = trzeros(sysi)
w = logspace(-3,3);
svi = svplot(sysi,w);
scf(2);
plot2d("ln", w, 20*log(svi')/log(10))
xgrid(12)
xtitle("Valores singulares de la planta con integrador","Frequency (rad/s)", "Amplitude (dB)");
//Obtenciion de los polos y zeros planta con integrador
scf(3);
plzr(sysi);
//----LQR------//
//we use ricatti equation for calculate de gain H
C=1*Ci'*Ci; //State Weighting Matrix
rho=1; //Cheap control recovery parameter
//The smaller the parameter, the better the recovery.
R = rho*eye(nc);//Control Weigthing Matrix
//now we calculate B
B=Bi*inv(R)*Bi';
A=Ai;
//Solv the ricatti equation
X=riccati(A,B,C,'c','eigen');
//the value of the gain G
G=inv(R)*Bi'*X; //Matriz G
//----KALMAN FILTER-------///
ll= inv(Cp*inv(-Ap)*Bp+Dp); //Choose ll and lh to match singular values at all frequencies
lh = -inv(Ap)*Bp*ll;
Lp=[lh,
ll]; //ll, lh - for low and high frequency loop shaping
pnint = eye(nc,nc) // Process Noise Intensity Matrix
mu = 0.1; // Measurement Noise Intesity; Used to adjust Kalman Filter Bandwidth
//Small mu - expensive sensor - large bandwidth
//Large mu - inexpensive sensor - small bandwidth
THETA = mu*eye(nc,nc) // Measurement Noise Intensity Matrix
//We use the ricatti equation for calculate de gain H
Ch=Lp*Lp';
Ah=Ai';
//calculating Bh
Bh=Ci'*inv(THETA)*Ci;
//Calculate de solution
Xh=riccati(Ah,Bh,Ch,'c','eigen');
//The gain H
H=(inv(THETA)*Ci*Xh)';
sysh = syslin('c',Ai,H,Ci,Di);
/* Plot singular values*/
trh = trzeros(sysh)
w = logspace(-3,3);
svh = svplot(sysh,w);
scf(4);
plot2d("ln", w, 20*log(svh')/log(10))
xgrid(12)
xtitle("Valores singulares Malla objetivo G_{KF}", "Amplitude (dB)");
//--------------------------------------
//Compensator LQG
Ak = [ Ai-Bi*G-H*Ci 0*ones(ns+nc,nc)
G 0*ones(nc,nc) ]
Bk = [ H
0*ones(nc,nc) ]
Ck = [0*ones(nc, ns+nc) eye(nc,nc) ]
Dk = 0*ones(nc,nc);
sysk=syslin('c',Ak,Bk,Ck,Dk);
/* Plot singular values */
trk = trzeros(sysk)
w = logspace(-3,3);
svk = svplot(sysk,w);
scf(5);
plot2d("ln", w, 20*log(svk')/log(10))
xgrid(12)
xtitle("Valores singulares compensador","Frequency (rad/s)", "Amplitude (dB)");
//----------------------------------------
//Analysis in open loop
Aol = [ Ap Bp*Ck
0*ones(ns+nc+nc,ns) Ak ]
Bol = [ 0*ones(ns,nc)
Bk ]
Col = [ Cp 0*ones(nc,ns+nc+nc) ]
Dol = 0*ones(nc,nc);
sysol = syslin('c',Aol,Bol,Col,Dol);
//Obtencion de los polos y zeros lazo abierto
scf(6);
plzr(sysol);
//----------------------------------------
//Response in closed loop
syscl = syslin('c',Aol-Bol*Col, Bol*0.0001, Col, 0*eye(nc,nc));
//Obtencion de los polos y zeros en lazo cerrado
scf(7);
plzr(syscl);
//--------------------------------
//Respuesta al step
t=[0:0.1:20];
//input defined by a time function
deff('u=timefun(t)','u=1')
scf(8);
plot2d(t',(csim(timefun,t,syscl))')
xtitle("Respuesta del sistema","t(s)","Amplitud(m)");
|
501b2b0169369c2279ad5a45648b8de8e3ba8509
|
848985a0f79ca7b51ae07d2a69da499a3093257a
|
/Assignment-4/Rayleigh.sce
|
b98d31fc1d8667d4c85caecd53cb1239f37de4e5
|
[] |
no_license
|
Gituser143/Linear-Alegebra-SciLab-Assignment
|
db69f6cf6a2431e553dbd1f067a329dcb7979f41
|
6eef13de5aa3b2f45b0faaff826648738985377a
|
refs/heads/master
| 2020-12-30T04:18:21.185190 | 2020-04-04T07:24:22 | 2020-04-04T07:24:22 | 238,857,772 | 2 | 1 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 603 |
sce
|
Rayleigh.sce
|
//Largest eigen value
clear; clc; close();
a = [0 0 0; 0 0 0; 0 0 0]
for i=1:3
for j=1:3
a(i,j) = input('Enter the values:')
end
end
disp(a,'A = ')
//initial vector
u0 = [1 1 1]';
disp(u0,'The initial vector is')
v = a*u0
a1 = max(u0)
disp(a,'First approximation to eigen value is ')
while abs(max(v)-a1)>0.002
disp(v,'Current eigen vector is ')
a1 = max(v)
disp(a1,'Current eigen value is ')
u0 = v/max(v)
v = a*u0
end
format('v',4)
disp(max(v),'The largest eigen value is: ')
format('v',5)
disp(u0,'The corresponding eigen vector is: ')
|
94632e96ef3987be76f3cecefb95a2a2672f73f2
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2207/CH2/EX2.7.12/ex_2_7_12.sce
|
aec4a85ee9424cdf8e6a117640b89d04e638c8e5
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 495 |
sce
|
ex_2_7_12.sce
|
//Example 2.7.12;//pulse width
clc;
clear;
close;
//given data :
format('v',5)
v=200;//in volts
il=100;//latch current in mA
l=0.2;//inductance in henry
dit=v/l;//in amp/sec
dt=(il*10^-3)/dit;//in seconds
disp("part (a)")
disp(dt*10^6,"minimum pulse width required to turn on the SCR is in micro seconds")
r=20;//in ohms
x=(il*10^-3*r)/v;//
t=(log(1-x))*(-l/r);//
disp("part (b)")
disp(round(t*10^6),"minimum pulse width in micro seconds is")
//part b answer is calculated wrong in the textbook
|
29dccab6a008264656548d17a53675f15f5e9e6d
|
cc6cc2c2fcdfa476aa883265aa05e06d82c1110a
|
/2018.1/MAT/lista-scilab/8.sce
|
7b876e1a315aa01fc66c1fc1df3a42b0324c92b0
|
[] |
no_license
|
devarthurribeiro/ads-ufrn
|
39038c2089d5d784fa121c4094e6d694dcb5a545
|
9a9881acf756be4f844e72e581543daf3a649641
|
refs/heads/master
| 2020-03-17T15:16:28.940709 | 2018-10-02T12:26:27 | 2018-10-02T12:26:27 | 133,704,315 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 86 |
sce
|
8.sce
|
x = [10:10:1000];
y = 1.2*x+6;
plot(x,y);
x = [10:10:1000];
y = -1.2*x+6;
plot(x,y);
|
3fd996d29ba3acb39ac9d7056e54849de0b9d16c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/761/CH13/EX13.2/13_2.sce
|
4e1171778318b4842708244d7e179b4f7793863b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 776 |
sce
|
13_2.sce
|
clc;
// page no 444
// prob no 13_2
//Voice transmisssion occupies 30 kHz.Spread spectrum is used to increase BW to 10MHz
B1=30*10^3;//BW is 30 kHz
B2=10*10^6;//BW is 10 MHz
T=300;//noise temp at i/p
PN=-110;//signal has total signal power of -110 dBm at receiver
k=1.38*10^-23;//Boltzmann's const in J/K
//Determination of noise power at B1=30kHz
PN1=10*(log10(k*B1*T/10^-3));
disp('dBm',PN1,'The noise power at BW=30 kHz is');
//Determination of noise power at B2=10MHz
PN2=10*(log10(k*B2*T/10^-3));
disp('dBm',PN2,'The noise power at BW=10 MHz is');
//Determination of SNR for 30kHz BW
SNR1=PN-PN1;
disp('dB',SNR1,'The value of SNR for BW=30 kHz is');
//Determination of SNR for 10MHz BW
SNR2=PN-PN2;
disp('dB',SNR2,'The value of SNR for BW=10 MHz is');
|
5a050ec3af77f7deefd0965a2eb75314052563e8
|
7b040f1a7bbc570e36aab9b2ccf77a9e59d3e5c2
|
/Scilab/virtual/2dof_controller/dc/minv/scilab/pm_10.sce
|
a0a3659e5a86722b334c9cb9de441f1cd5a17409
|
[] |
no_license
|
advait23/sbhs-manual
|
e2c380051117e3a36398bb5ad046781f7b379cb9
|
d65043acd98334c44a0f0dbf480473c4c4451834
|
refs/heads/master
| 2021-01-16T19:50:40.218314 | 2012-11-16T04:11:12 | 2012-11-16T04:11:12 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 162 |
sce
|
pm_10.sce
|
// Updated(18-7-07)
// 11.3
C = [1 0.5]; dC = 1; j=2;
A = [1 -0.6 -0.16]; dA = 2;
zj = zeros(1,j+1); zj(j+1) = 1;
[Fj,dFj,Ej,dEj] = xdync(zj,j,A,dA,C,dC)
|
60aaae30b4e3eb6b0d4bf0c3fc9d8f32506d8fde
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/source/2.2/macros/auto/obsv_mat.sci
|
4e531b43a7af04cf779214896114df83d23583aa
|
[
"MIT",
"LicenseRef-scancode-warranty-disclaimer",
"LicenseRef-scancode-public-domain"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111 | 2022-09-13T14:41:51 | 2022-09-13T14:41:51 | 258,270,193 | 0 | 1 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 549 |
sci
|
obsv_mat.sci
|
function o=obsv_mat(a,c)
[lhs,rhs]=argn(0)
select type(a)
case 1 then
if rhs=1 then error('2 arguments : a,c'),end
[m,n]=size(a)
if m<>n then error(20,1),end
[mb,nb]=size(c);if nb<>n then error(60),end
//-compat next case retained for list/tlist compatibility
case 15 then
if a(1)<>'lss' then error(91,1),end
[a,c]=a([2,4])
[n,n]=size(a)
case 16 then
if a(1)<>'lss' then error(91,1),end
[a,c]=a([2,4])
[n,n]=size(a)
else error('(a,c) pair or syslin list')
end;
o=c;for k=1:n-1, o=[c;o*a],end
|
4e0b49b951ec4ee31a60f7912629b0f82120394e
|
43772f2bf6438bafd09a75fa971439a099f9b50f
|
/MonaLisa.sce
|
bd99456cf2c4289a01e90657a2d1055e867caf06
|
[] |
no_license
|
oriolorra/MonaLisaCountPixels
|
3b0f3052210e25691e20e1559b4b44c9d4425c25
|
9c7789847d25648b811009fea9f21e0bfb756eb8
|
refs/heads/master
| 2021-01-10T05:56:35.238580 | 2015-11-03T16:14:03 | 2015-11-03T16:14:03 | 45,261,300 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 1,238 |
sce
|
MonaLisa.sce
|
// Distance Vector
dist = (0.75:0.25:15)
//Num. elements dist. vector
sz = length(dist)
//Width Mona Lisa Painting
width = 0.53
//Height Mona Lisa Painting
height = 0.77
//Focus lenght
f = 0.008
//Dimension of a pixel
sp = 0.00000408
//Total pixels width & height sensor
wp = 1288
hp = 728
//Loop for each distance
for i = 1:sz
//Calculate angles for each dist
alphaW = 2*atan((width/2)/dist(i))
alphaH = 2*atan((height/2)/dist(i))
//Calculate dimensions in camera's sensor
camW = (tan(alphaW/2))*2*f
camH = (tan(alphaH/2))*2*f
//Caculate number of pixels (must be int, it is discrete)
pixelsW = int(camW/sp)
//Compare pixelsW with total pixels width in sensor
if pixelsW > wp then
pixelsW = wp
end
pixelsH = int(camH/sp)
//Compare pixelsW with total pixels width in sensor,
//truncated if pixelsH is higher than hp
if pixelsH > hp then
pixelsH = hp
end
//Vector with all pixels values
vecPixels(i) = pixelsW*pixelsH
end
disp(vecPixels)
//Draw graph
plot(dist,vecPixels','r')
//Write axis-labels and title on the graph
xlabel('Distance (m)','fontsize',4)
ylabel ('Num. pixels','fontsize',4)
title('Mona Lisa graph','fontsize',8,'color','green')
|
224dc9317baf8a977d660e4f6b791d502f896be0
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/405/CH6/EX6.6/6_6.sce
|
449f4fe6f6bd54740326adff11dd7020d058940f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 1,625 |
sce
|
6_6.sce
|
clear;
clc;
printf("\t\t\tExample Number 6.6\n\n\n");
// turbulent heat transfer in a short tube
// illustration6.6
// solution
p = 101325;// [Pa] pressure of air
Ta = 300;// [K] temperature of air
d = 0.02;// [m] diameter of tube
u = 40;// [m/s] velocity of air
L = 0.1;// [m] length of tube
dT = 5;// [degree celsius] rise in temperature
// we first must evaluate the air properties at 300 K
v = 15.69*10^(-6);// [square meter/s] kinematic viscosity
k = 0.02624;// [W/m degree celsius]
Cp = 1006;// [J/kg K]
Pr = 0.70;// prandtl no.
rho = 1.18;// [kg/cubic meter]
Re_d = u*d/v;// reynolds number
disp(Re_d,"reynolds number is ");
disp("so the flow is turbulent");
// consulting figure (6-6) for this value of Re_d and L/d = 5 we find
Nu_x_by_Nu_inf = 1.15;
// or the heat transfer coefficient is about 15 percent higher that it would be for thermally developed flow.
// we calculate heat-transfer for developed flow using
Nu_d = 0.023*Re_d^(0.8)*Pr^(0.4);
// and
h = k*Nu_d/d;// [W/square meter degree celsius]
// increasing this value by 15 percent
h = 1.15*h;// [W/square meter degree celsius]
// the mass flow is
Ac = %pi*d^(2)/4;// [square meter]
m_dot = rho*u*Ac;// [kg/s]
// so the total heat transfer is
A = %pi*d*L;// [square meter]
q_by_A = m_dot*Cp*dT/A;// [W/square meter]
printf("\n\n the constant heat flux that must be applied at the tube surface to result in an air temperature rise of 5 degree celsius is %f W/square meter",q_by_A);
Tb_bar = (Ta+(Ta+dT))/2;// [K]
Tw_bar = Tb_bar+q_by_A/h;// [K]
printf("\n\n average wall temperature is %f K",Tw_bar);
|
364675e3d132d4329d47aa6beb6a38b7741a85f5
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/530/CH4/EX4.2.b/example_4_2b.sce
|
99e444ab3906c0b5ae5b6fbec7b46f4069ffdb85
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 914 |
sce
|
example_4_2b.sce
|
clear;
clc;
// A Textbook on HEAT TRANSFER by S P SUKHATME
// Chapter 4
// Principles of Fluid Flow
// Example 4.2(b)
// Page 180
printf("Example 4.2(b), Page 180 \n\n")
L = 3 ; //[m]
D = 0.01 ; //[m]
V = 0.2 ; //[m/s]
// (b)
V1=0.7;
v1 = 1.306 * 10^-6 ; // [m^2/s]
printf("(b) If the velocity is increased to 0.7 \n");
// if velocity of water is 0.7 m/s
V1=0.7; // [m/s]
Re_D1=V1*D/(1.306*10^-6);
printf("Reynolds no is %f \n",Re_D1);
// flow is again turbulent
f1 = 0.079*(Re_D1)^(-0.25);
delta_p1 = (4*f1*L*999.7*0.7^2)/(0.01*2); // [Pa]
printf("Pressure drop is %f Pa \n",delta_p1);
// x1 = (T_w/p)^0.5 = ((f1/2)^0.5)*V ;
x1 = ((f1/2)^0.5)*V1 ;
y1_plus = 0.005*x1/(v1);
printf("y+ at centre line = %f \n",y1_plus);
V_max1 = x1*(2.5* log(y1_plus) + 5.5) ; // [m/s]
printf("V_max is %f m/s \n",V_max1);
ratio1 = V_max1/V1;
printf("Vmax/Vbar = %f ",ratio1);
|
6b1d89b7dc03f6031bfc6654e819465e335b6fc7
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2969/CH13/EX13.5/Ex13_5.sce
|
e2aa8dad63c11c3c7f15d723f36c80266d0d1c39
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 1,388 |
sce
|
Ex13_5.sce
|
clc
clear
//DATA GIVEN
r1=750/2000; //radius of larger pulley in m
r2=300/2000; //radius of smaller pulley in m
d=1.5; //distance between the centres of pulley in m
Tms=14; //maximum safe tension in N/mm
b=150; //width of the belt in mm
v=540; //speed of the belt in m/min
mu=0.25; //coefficient of friction
T1=Tms*b; //maximum tension in the belt in N
v=v/60; //speed of the belt converted into m/s
//(i) for open belt
ALPHAo=asin ((r1-r2)/d)*180/(%pi); //alpha in degrees
THETAo=180-2*ALPHAo; //angle of lap or contact in deg
T2o=T1/(%e^(mu*(THETAo*%pi/180))); //tension on the slack side in N
Po=(T1-T2o)*v; //power transmitted by the belt in watts
//(ii) for cross belt
ALPHAc=asin ((r1+r2)/d)*180/(%pi); //alpha in degrees
THETAc=180+2*ALPHAc; //angle of lap or contact in deg
T2c=T1/(%e^(mu*(THETAc*%pi/180))); //tension on the slack side in N
Pc=(T1-T2c)*v; //power transmitted by the belt in watts
printf(' (i) The Maximum Power transmitted by the open belt is: %2.3f kW. \n',(Po/1000));
printf(' (ii) The Maximum Power transmitted by the cross belt is: %2.3f kW. \n',(Pc/1000));
|
1cd85db3580ebdc6545fd432b5ed2a6650f071dc
|
e5bea7afb93323d75e9314d0be7a05720badf57b
|
/projects/02/ALU-64cases.tst
|
28d38e91916fc048ad6688934228760a2eee7d09
|
[] |
no_license
|
afsalptl/ecs
|
afdd8884aabd11298e15fe6cee561ac665da6f98
|
8af565807df4c1b75edf676ec0e74b97e7e02358
|
refs/heads/master
| 2021-01-09T20:49:45.178751 | 2016-07-18T19:35:33 | 2016-07-18T19:35:33 | 44,654,884 | 0 | 1 | null | 2015-10-21T07:51:08 | 2015-10-21T05:36:19 |
Assembly
|
UTF-8
|
Scilab
| false | false | 5,061 |
tst
|
ALU-64cases.tst
|
load ALU.hdl,
output-file ALU-64cases.out,
compare-to ALU-64cases.cmp,
output-list x%B1.16.1 y%B1.16.1 zx%B1.1.1 nx%B1.1.1 zy%B1.1.1
ny%B1.1.1 f%B1.1.1 no%B1.1.1 out%B1.16.1 zr%B1.1.1 ng%B1.1.1 ;
set x %B1100110011001100,
set y %B1010101010101010;
set zx 0,
set nx 0,
set zy 0,
set ny 0,
set f 0,
set no 0,
eval,
output;
set zx 0,
set nx 0,
set zy 0,
set ny 0,
set f 0,
set no 1,
eval,
output;
set zx 0,
set nx 0,
set zy 0,
set ny 0,
set f 1,
set no 0,
eval,
output;
set zx 0,
set nx 0,
set zy 0,
set ny 0,
set f 1,
set no 1,
eval,
output;
set zx 0,
set nx 0,
set zy 0,
set ny 1,
set f 0,
set no 0,
eval,
output;
set zx 0,
set nx 0,
set zy 0,
set ny 1,
set f 0,
set no 1,
eval,
output;
set zx 0,
set nx 0,
set zy 0,
set ny 1,
set f 1,
set no 0,
eval,
output;
set zx 0,
set nx 0,
set zy 0,
set ny 1,
set f 1,
set no 1,
eval,
output;
set zx 0,
set nx 0,
set zy 1,
set ny 0,
set f 0,
set no 0,
eval,
output;
set zx 0,
set nx 0,
set zy 1,
set ny 0,
set f 0,
set no 1,
eval,
output;
set zx 0,
set nx 0,
set zy 1,
set ny 0,
set f 1,
set no 0,
eval,
output;
set zx 0,
set nx 0,
set zy 1,
set ny 0,
set f 1,
set no 1,
eval,
output;
set zx 0,
set nx 0,
set zy 1,
set ny 1,
set f 0,
set no 0,
eval,
output;
set zx 0,
set nx 0,
set zy 1,
set ny 1,
set f 0,
set no 1,
eval,
output;
set zx 0,
set nx 0,
set zy 1,
set ny 1,
set f 1,
set no 0,
eval,
output;
set zx 0,
set nx 0,
set zy 1,
set ny 1,
set f 1,
set no 1,
eval,
output;
set zx 0,
set nx 1,
set zy 0,
set ny 0,
set f 0,
set no 0,
eval,
output;
set zx 0,
set nx 1,
set zy 0,
set ny 0,
set f 0,
set no 1,
eval,
output;
set zx 0,
set nx 1,
set zy 0,
set ny 0,
set f 1,
set no 0,
eval,
output;
set zx 0,
set nx 1,
set zy 0,
set ny 0,
set f 1,
set no 1,
eval,
output;
set zx 0,
set nx 1,
set zy 0,
set ny 1,
set f 0,
set no 0,
eval,
output;
set zx 0,
set nx 1,
set zy 0,
set ny 1,
set f 0,
set no 1,
eval,
output;
set zx 0,
set nx 1,
set zy 0,
set ny 1,
set f 1,
set no 0,
eval,
output;
set zx 0,
set nx 1,
set zy 0,
set ny 1,
set f 1,
set no 1,
eval,
output;
set zx 0,
set nx 1,
set zy 1,
set ny 0,
set f 0,
set no 0,
eval,
output;
set zx 0,
set nx 1,
set zy 1,
set ny 0,
set f 0,
set no 1,
eval,
output;
set zx 0,
set nx 1,
set zy 1,
set ny 0,
set f 1,
set no 0,
eval,
output;
set zx 0,
set nx 1,
set zy 1,
set ny 0,
set f 1,
set no 1,
eval,
output;
set zx 0,
set nx 1,
set zy 1,
set ny 1,
set f 0,
set no 0,
eval,
output;
set zx 0,
set nx 1,
set zy 1,
set ny 1,
set f 0,
set no 1,
eval,
output;
set zx 0,
set nx 1,
set zy 1,
set ny 1,
set f 1,
set no 0,
eval,
output;
set zx 0,
set nx 1,
set zy 1,
set ny 1,
set f 1,
set no 1,
eval,
output;
set zx 1,
set nx 0,
set zy 0,
set ny 0,
set f 0,
set no 0,
eval,
output;
set zx 1,
set nx 0,
set zy 0,
set ny 0,
set f 0,
set no 1,
eval,
output;
set zx 1,
set nx 0,
set zy 0,
set ny 0,
set f 1,
set no 0,
eval,
output;
set zx 1,
set nx 0,
set zy 0,
set ny 0,
set f 1,
set no 1,
eval,
output;
set zx 1,
set nx 0,
set zy 0,
set ny 1,
set f 0,
set no 0,
eval,
output;
set zx 1,
set nx 0,
set zy 0,
set ny 1,
set f 0,
set no 1,
eval,
output;
set zx 1,
set nx 0,
set zy 0,
set ny 1,
set f 1,
set no 0,
eval,
output;
set zx 1,
set nx 0,
set zy 0,
set ny 1,
set f 1,
set no 1,
eval,
output;
set zx 1,
set nx 0,
set zy 1,
set ny 0,
set f 0,
set no 0,
eval,
output;
set zx 1,
set nx 0,
set zy 1,
set ny 0,
set f 0,
set no 1,
eval,
output;
set zx 1,
set nx 0,
set zy 1,
set ny 0,
set f 1,
set no 0,
eval,
output;
set zx 1,
set nx 0,
set zy 1,
set ny 0,
set f 1,
set no 1,
eval,
output;
set zx 1,
set nx 0,
set zy 1,
set ny 1,
set f 0,
set no 0,
eval,
output;
set zx 1,
set nx 0,
set zy 1,
set ny 1,
set f 0,
set no 1,
eval,
output;
set zx 1,
set nx 0,
set zy 1,
set ny 1,
set f 1,
set no 0,
eval,
output;
set zx 1,
set nx 0,
set zy 1,
set ny 1,
set f 1,
set no 1,
eval,
output;
set zx 1,
set nx 1,
set zy 0,
set ny 0,
set f 0,
set no 0,
eval,
output;
set zx 1,
set nx 1,
set zy 0,
set ny 0,
set f 0,
set no 1,
eval,
output;
set zx 1,
set nx 1,
set zy 0,
set ny 0,
set f 1,
set no 0,
eval,
output;
set zx 1,
set nx 1,
set zy 0,
set ny 0,
set f 1,
set no 1,
eval,
output;
set zx 1,
set nx 1,
set zy 0,
set ny 1,
set f 0,
set no 0,
eval,
output;
set zx 1,
set nx 1,
set zy 0,
set ny 1,
set f 0,
set no 1,
eval,
output;
set zx 1,
set nx 1,
set zy 0,
set ny 1,
set f 1,
set no 0,
eval,
output;
set zx 1,
set nx 1,
set zy 0,
set ny 1,
set f 1,
set no 1,
eval,
output;
set zx 1,
set nx 1,
set zy 1,
set ny 0,
set f 0,
set no 0,
eval,
output;
set zx 1,
set nx 1,
set zy 1,
set ny 0,
set f 0,
set no 1,
eval,
output;
set zx 1,
set nx 1,
set zy 1,
set ny 0,
set f 1,
set no 0,
eval,
output;
set zx 1,
set nx 1,
set zy 1,
set ny 0,
set f 1,
set no 1,
eval,
output;
set zx 1,
set nx 1,
set zy 1,
set ny 1,
set f 0,
set no 0,
eval,
output;
set zx 1,
set nx 1,
set zy 1,
set ny 1,
set f 0,
set no 1,
eval,
output;
set zx 1,
set nx 1,
set zy 1,
set ny 1,
set f 1,
set no 0,
eval,
output;
set zx 1,
set nx 1,
set zy 1,
set ny 1,
set f 1,
set no 1,
eval,
output;
|
1172600dd1ee8d9749fbc5195d60c049ec98a726
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2384/CH2/EX2.24/ex2_24.sce
|
f8c065bd253ce0b5ffb85ed99cf92db090e6ca60
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 310 |
sce
|
ex2_24.sce
|
// Exa 2.24
clc;
clear;
close;
format('v',5)
// Given data
R1 = 3;// in ohm
R2 = 2;// in ohm
R3 = 1;// in ohm
R4 = 8;// in ohm
R5 = 2;// in ohm
V = 10;// in V
R = ((R1+R2)*R5)/((R1+R2)+R5);// in ohm
Rth = R + R3;// in ohm
R_L = Rth;// in ohm
disp(R_L,"The value of load resistance in ohm is");
|
35840a913b3219b05ca137dc90966ab60ea75bb2
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2234/CH6/EX6.14/ex6_14.sce
|
fe0448f6cf699e944beab23e22670401e472fa6f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 346 |
sce
|
ex6_14.sce
|
clc;
disp("The filter must attenuate the signal by a factor of 10."); //displaying result
f=300*10^6; //frequency in Hz
disp(" If R = 100 Ohm ,then the reactance of the capacitor should be about 10 Ohm."); //displaying result
c=1/(2*(%pi)*f*10); //calculating capacitance
disp(c,"At 300 MHz, this is in Farad = "); //displaying result
|
7d0bffec44d4e7b7c0bde44efc061e24ba0dd29f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3411/CH5/EX5.14.u1/Ex5_14_u1.sce
|
5c247d9c76929092520aed63d473e8d01d31bde6
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 543 |
sce
|
Ex5_14_u1.sce
|
//Example 5_14_u1
clc();
clear;
//To calculate the effective temprature of neutrons
a=0.352 //units in nm
h=1
k=1
l=1
d=a/sqrt(h^2+k^2+l^2) //units in nm
theta=28.5 //units in degrees
lamda=2*d*sin(theta*(%pi/180)) //units in nm
h=6.63*10^-34 //units in m^2 kg s^-1
m=1.67*10^-27 //units in Kgs
KB=1.38*10^-23 //units in m^2 kg s^-2 K^-1
lamda=lamda*10^-9 //units in meters
T=h^2/(3*m*KB*lamda^2) //units in K
printf("The effective temprature of neutrons is T=%dK",T)
|
27ba9c81d089a07b80bdbba7debb97013929fa78
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1760/CH2/EX2.94/EX2_94.sce
|
7ea71a652dccd26381f09329421614f0bcf7cfff
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 283 |
sce
|
EX2_94.sce
|
//EXAMPLE 2.94 PG NO-139-140
L=0.6; //LENGTH
a=20*10^-4; //AREA
MU=(4*%pi*10^-7);
R=L/(MU*a);
N1=1500;
N2=500;
i=250;
M=(N1*N2)/R;
e=M*(i);
disp('R = '+string(R)+' ');
disp('mutual induction is = '+string(M)+' H');
disp('E.M.F INDUCE is = '+string(e)+' V');
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.