text
stringlengths
0
1.05M
meta
dict
from __future__ import absolute_import, division, print_function from datetime import datetime from functools import partial from datashape import discover from datashape import float32, float64, string, Option, object_, datetime_ import datashape import pandas as pd import numpy as np from ..convert import convert possibly_missing = set((string, datetime_, float32, float64)) @discover.register(pd.DataFrame) def discover_dataframe(df): obj = object_ names = list(df.columns) dtypes = list(map(datashape.CType.from_numpy_dtype, df.dtypes)) dtypes = [string if dt == obj else dt for dt in dtypes] odtypes = [Option(dt) if dt in possibly_missing else dt for dt in dtypes] schema = datashape.Record(list(zip(names, odtypes))) return len(df) * schema @discover.register(pd.Series) def discover_series(s): return len(s) * datashape.CType.from_numpy_dtype(s.dtype) def coerce_datetimes(df): """ Make object columns into datetimes if possible Warning: this operates inplace. Example ------- >>> df = pd.DataFrame({'dt': ['2014-01-01'], 'name': ['Alice']}) >>> df.dtypes # note that these are strings/object dt object name object dtype: object >>> df2 = coerce_datetimes(df) >>> df2 dt name 0 2014-01-01 Alice >>> df2.dtypes # note that only the datetime-looking-one was transformed dt datetime64[ns] name object dtype: object """ objects = df.select_dtypes(include=['object']) # NOTE: In pandas < 0.17, pd.to_datetime(' ') == datetime(...), which is # not what we want. So we have to remove columns with empty or # whitespace-only strings to prevent erroneous datetime coercion. columns = [c for c in objects.columns if not np.any(objects[c].str.isspace() | objects[c].str.isalpha())] df2 = objects[columns].apply(partial(pd.to_datetime, errors='ignore')) for c in df2.columns: df[c] = df2[c] return df @convert.register(pd.Timestamp, datetime) def convert_datetime_to_timestamp(dt, **kwargs): return pd.Timestamp(dt) @convert.register(pd.Timestamp, float) def nan_to_nat(fl, **kwargs): try: if np.isnan(fl): # Only nan->nat edge return pd.NaT except TypeError: pass raise NotImplementedError() @convert.register(pd.Timestamp, (pd.tslib.NaTType, type(None))) def convert_null_or_nat_to_nat(n, **kwargs): return pd.NaT
{ "repo_name": "cowlicks/odo", "path": "odo/backends/pandas.py", "copies": "1", "size": "2498", "license": "bsd-3-clause", "hash": 141218348342755790, "line_mean": 26.4505494505, "line_max": 109, "alpha_frac": 0.6561248999, "autogenerated": false, "ratio": 3.5839311334289814, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9739556532829481, "avg_score": 0.0000999000999000999, "num_lines": 91 }
from __future__ import absolute_import, division, print_function from datetime import datetime from functools import partial from datashape import discover from datashape import string, object_, datetime_, Option import datashape import pandas as pd import numpy as np from ..convert import convert possibly_missing = frozenset({string, datetime_}) def dshape_from_pandas(dtype): dshape = datashape.CType.from_numpy_dtype(dtype) dshape = string if dshape == object_ else dshape return Option(dshape) if dshape in possibly_missing else dshape @discover.register(pd.DataFrame) def discover_dataframe(df): return len(df) * datashape.Record( zip(df.columns, map(dshape_from_pandas, df.dtypes)), ) @discover.register(pd.Series) def discover_series(s): return len(s) * dshape_from_pandas(s.dtype) def coerce_datetimes(df): """ Make object columns into datetimes if possible Warning: this operates inplace. Example ------- >>> df = pd.DataFrame({'dt': ['2014-01-01'], 'name': ['Alice']}) >>> df.dtypes # note that these are strings/object dt object name object dtype: object >>> df2 = coerce_datetimes(df) >>> df2 dt name 0 2014-01-01 Alice >>> df2.dtypes # note that only the datetime-looking-one was transformed dt datetime64[ns] name object dtype: object """ objects = df.select_dtypes(include=['object']) # NOTE: In pandas < 0.17, pd.to_datetime(' ') == datetime(...), which is # not what we want. So we have to remove columns with empty or # whitespace-only strings to prevent erroneous datetime coercion. columns = [ c for c in objects.columns if not np.any(objects[c].str.isspace() | objects[c].str.isalpha()) ] df2 = objects[columns].apply(partial(pd.to_datetime, errors='ignore')) for c in df2.columns: df[c] = df2[c] return df @convert.register(pd.Timestamp, datetime) def convert_datetime_to_timestamp(dt, **kwargs): return pd.Timestamp(dt) @convert.register(pd.Timestamp, float) def nan_to_nat(fl, **kwargs): try: if np.isnan(fl): # Only nan->nat edge return pd.NaT except TypeError: pass raise NotImplementedError() @convert.register(pd.Timestamp, (pd.tslib.NaTType, type(None))) def convert_null_or_nat_to_nat(n, **kwargs): return pd.NaT
{ "repo_name": "cpcloud/odo", "path": "odo/backends/pandas.py", "copies": "1", "size": "2435", "license": "bsd-3-clause", "hash": -2816490791385178000, "line_mean": 24.9042553191, "line_max": 77, "alpha_frac": 0.6554414784, "autogenerated": false, "ratio": 3.5967503692762186, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.47521918476762187, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from datetime import datetime from rfc822 import parsedate_tz, mktime_tz from urlparse import urlparse from time import time from typing import Any, Optional # NOQA from changes.utils.http import build_patch_uri from .base import Vcs, RevisionResult, BufferParser, CommandError, UnknownRevision import logging LOG_FORMAT = '{node}\x01{author}\x01{date|rfc822date}\x01{p1node} {p2node}\x01{branches}\x01{desc}\x02' BASH_CLONE_STEP = """ #!/bin/bash -eux REMOTE_URL=%(remote_url)s LOCAL_PATH=%(local_path)s REVISION=%(revision)s if [ ! -d $LOCAL_PATH/.hg ]; then hg clone $REMOTE_URL $LOCAL_PATH pushd $LOCAL_PATH else pushd $LOCAL_PATH hg recover || true hg pull $REMOTE_URL fi if ! hg up %(clean_arg)s $REVISION ; then echo "Failed to update to $REVISION" exit 1 fi # similar to hg purge, but without requiring the extension hg status -un0 | xargs -0 rm -rf """.strip() BASH_PATCH_STEP = """ #!/bin/bash -eux LOCAL_PATH=%(local_path)s PATCH_URL=%(patch_url)s pushd $LOCAL_PATH PATCH_PATH=/tmp/$(mktemp patch.XXXXXXXXXX) curl -o $PATCH_PATH $PATCH_URL hg import --no-commit $PATCH_PATH """.strip() class MercurialVcs(Vcs): binary_path = 'hg' def get_default_env(self): return { 'HGPLAIN': '1', } # This is static so that the repository serializer can easily use it @staticmethod def get_default_revision(): return 'default' @property def remote_url(self): if self.url.startswith(('ssh:', 'http:', 'https:')): parsed = urlparse(self.url) url = '%s://%s@%s/%s' % ( parsed.scheme, parsed.username or self.username or 'hg', parsed.hostname + (':%s' % (parsed.port,) if parsed.port else ''), parsed.path.lstrip('/'), ) else: url = self.url return url def run(self, cmd, **kwargs): cmd = [ self.binary_path, '--config', 'ui.ssh={0}'.format(self.ssh_connect_path) ] + cmd try: return super(MercurialVcs, self).run(cmd, **kwargs) except CommandError as e: if "abort: unknown revision '" in e.stderr: raise UnknownRevision( cmd=e.cmd, retcode=e.retcode, stdout=e.stdout, stderr=e.stderr, ) raise def clone(self): self.run(['clone', self.remote_url, self.path], cwd='/') def update(self): self.run(['pull']) def log(self, parent=None, branch=None, author=None, offset=0, limit=100, paths=None): """ Gets the commit log for the repository. Each revision returned has exactly one branch name associated with it. This is the branch name encoded into the revision changeset description. See documentation for the base for general information on this function. """ start_time = time() # TODO(dcramer): we should make this streaming cmd = ['log', '--template=%s' % (LOG_FORMAT,)] if parent and branch: raise ValueError('Both parent and branch cannot be set') # Build the -r parameter value into r_str with branch, parent and author r_str = None if branch: cmd.append('-b{0}'.format(branch)) if parent: r_str = ('ancestors(%s)' % parent) if author: r_str = ('({r}) and author("{0}")' if r_str else 'author("{0}")')\ .format(author, r=r_str) if r_str: cmd.append('-r reverse({0})'.format(r_str)) if limit: cmd.append('--limit=%d' % (offset + limit,)) if paths: cmd.extend(["glob:" + p.strip() for p in paths]) result = self.run(cmd) self.log_timing('log', start_time) for idx, chunk in enumerate(BufferParser(result, '\x02')): if idx < offset: continue (sha, author, author_date, parents, branches, message) = chunk.split('\x01') branches = filter(bool, branches.split(' ')) or ['default'] parents = filter(lambda x: x and x != '0' * 40, parents.split(' ')) author_date = datetime.utcfromtimestamp( mktime_tz(parsedate_tz(author_date))) yield RevisionResult( id=sha, author=author, author_date=author_date, message=message, parents=parents, branches=branches, ) def export(self, id): """Get the textual diff for a revision. Args: id (str): The id of the revision. Returns: A string with the text of the diff for the revision. Raises: UnknownRevision: If the revision wasn't found. """ cmd = ['diff', '-g', '-c %s' % (id,)] result = self.run(cmd) return result def get_changed_files(self, id): """Returns the list of files changed in a revision. Args: id (str): The id of the revision. Returns: A set of filenames Raises: UnknownRevision: If the revision wan't found. """ cmd = ['status', '--rev', '%s^..%s' % (id, id), '-n'] output = self.run(cmd) return set([x.strip() for x in output.splitlines()]) def is_child_parent(self, child_in_question, parent_in_question): cmd = ['debugancestor', parent_in_question, child_in_question] result = self.run(cmd) return parent_in_question in result def get_known_branches(self): """ Gets all the named branches. :return: A list of unique names for the branches. """ start_time = time() cmd = ['branches'] results = self.run(cmd) branch_names = set() for line in results.splitlines(): if line: name = line.split(None, 1) if name[0]: branch_names.add(name[0]) self.log_timing('get_known_branches', start_time) return list(branch_names) @staticmethod def get_clone_command(remote_url, path, revision, clean=True, cache_dir=None): # type: (str, str, str, bool, Optional[str]) -> str if cache_dir is not None: logging.warning("unexpected cache_dir provided for hg repository") return BASH_CLONE_STEP % dict( remote_url=remote_url, local_path=path, revision=revision, clean_arg='--clean' if clean else '', ) def get_buildstep_clone(self, source, workspace, clean=True, cache_dir=None): # type: (Any, str, bool, Optional[str]) -> str return MercurialVcs.get_clone_command(self.remote_url, workspace, source.revision_sha, clean, cache_dir) def get_buildstep_patch(self, source, workspace): # type: (Any, str) -> str return BASH_PATCH_STEP % dict( local_path=workspace, patch_url=build_patch_uri(source.patch_id), ) def read_file(self, sha, file_path, diff=None): """Read the content of a file at a given revision. Args: sha (str): the sha identifying the revision file_path (str): the path to the file from the root of the repo diff (str): the optional patch to apply before reading the config Returns: str - the content of the file Raises: CommandError - if the file or the revision cannot be found """ content = self.run(['cat', '-r', sha, file_path]) if diff is None: return content return self._selectively_apply_diff(file_path, content, diff) def get_patch_hash(self, rev_sha): """Not possible for mercurial repositories""" return None
{ "repo_name": "dropbox/changes", "path": "changes/vcs/hg.py", "copies": "1", "size": "8035", "license": "apache-2.0", "hash": -3294238981464419300, "line_mean": 30.0231660232, "line_max": 112, "alpha_frac": 0.5632856254, "autogenerated": false, "ratio": 3.932941752325012, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4996227377725012, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from datetime import datetime from rfc822 import parsedate_tz, mktime_tz from urlparse import urlparse from time import time from changes.utils.http import build_uri from .base import Vcs, RevisionResult, BufferParser, CommandError, UnknownRevision LOG_FORMAT = '{node}\x01{author}\x01{date|rfc822date}\x01{p1node} {p2node}\x01{branches}\x01{desc}\x02' BASH_CLONE_STEP = """ #!/bin/bash -eux REMOTE_URL=%(remote_url)s LOCAL_PATH=%(local_path)s REVISION=%(revision)s if [ ! -d $LOCAL_PATH/.hg ]; then hg clone --uncompressed $REMOTE_URL $LOCAL_PATH pushd $LOCAL_PATH else pushd $LOCAL_PATH hg recover || true hg pull $REMOTE_URL fi if ! hg up --clean $REVISION ; then echo "Failed to update to $REVISION" exit 1 fi # similar to hg purge, but without requiring the extension hg status -un0 | xargs -0 rm -rf """.strip() BASH_PATCH_STEP = """ #!/bin/bash -eux LOCAL_PATH=%(local_path)s PATCH_URL=%(patch_url)s pushd $LOCAL_PATH PATCH_PATH=/tmp/$(mktemp patch.XXXXXXXXXX) curl -o $PATCH_PATH $PATCH_URL hg import --no-commit $PATCH_PATH """.strip() class MercurialVcs(Vcs): binary_path = 'hg' def get_default_env(self): return { 'HGPLAIN': '1', } # This is static so that the repository serializer can easily use it @staticmethod def get_default_revision(): return 'default' @property def remote_url(self): if self.url.startswith(('ssh:', 'http:', 'https:')): parsed = urlparse(self.url) url = '%s://%s@%s/%s' % ( parsed.scheme, parsed.username or self.username or 'hg', parsed.hostname + (':%s' % (parsed.port,) if parsed.port else ''), parsed.path.lstrip('/'), ) else: url = self.url return url def run(self, cmd, **kwargs): cmd = [ self.binary_path, '--config', 'ui.ssh={0}'.format(self.ssh_connect_path) ] + cmd try: return super(MercurialVcs, self).run(cmd, **kwargs) except CommandError as e: if "abort: unknown revision '" in e.stderr: raise UnknownRevision( cmd=e.cmd, retcode=e.retcode, stdout=e.stdout, stderr=e.stderr, ) raise def clone(self): self.run(['clone', '--uncompressed', self.remote_url, self.path]) def update(self): self.run(['pull']) def log(self, parent=None, branch=None, author=None, offset=0, limit=100, paths=None): """ Gets the commit log for the repository. Each revision returned has exactly one branch name associated with it. This is the branch name encoded into the revision changeset description. See documentation for the base for general information on this function. """ start_time = time() # TODO(dcramer): we should make this streaming cmd = ['log', '--template=%s' % (LOG_FORMAT,)] if parent and branch: raise ValueError('Both parent and branch cannot be set') # Build the -r parameter value into r_str with branch, parent and author r_str = None if branch: cmd.append('-b{0}'.format(branch)) if parent: r_str = ('ancestors(%s)' % parent) if author: r_str = ('({r}) and author("{0}")' if r_str else 'author("{0}")')\ .format(author, r=r_str) if r_str: cmd.append('-r reverse({0})'.format(r_str)) if limit: cmd.append('--limit=%d' % (offset + limit,)) if paths: cmd.extend(["glob:" + p.strip() for p in paths]) result = self.run(cmd) self.log_timing('log', start_time) for idx, chunk in enumerate(BufferParser(result, '\x02')): if idx < offset: continue (sha, author, author_date, parents, branches, message) = chunk.split('\x01') branches = filter(bool, branches.split(' ')) or ['default'] parents = filter(lambda x: x and x != '0' * 40, parents.split(' ')) author_date = datetime.utcfromtimestamp( mktime_tz(parsedate_tz(author_date))) yield RevisionResult( id=sha, author=author, author_date=author_date, message=message, parents=parents, branches=branches, ) def export(self, id): """Get the textual diff for a revision. Args: id (str): The id of the revision. Returns: A string with the text of the diff for the revision. Raises: UnknownRevision: If the revision wasn't found. """ cmd = ['diff', '-g', '-c %s' % (id,)] result = self.run(cmd) return result def is_child_parent(self, child_in_question, parent_in_question): cmd = ['debugancestor', parent_in_question, child_in_question] result = self.run(cmd) return parent_in_question in result def get_known_branches(self): """ Gets all the named branches. :return: A list of unique names for the branches. """ start_time = time() cmd = ['branches'] results = self.run(cmd) branch_names = set() for line in results.splitlines(): if line: name = line.split(None, 1) if name[0]: branch_names.add(name[0]) self.log_timing('get_known_branches', start_time) return list(branch_names) def get_buildstep_clone(self, source, workspace): return BASH_CLONE_STEP % dict( remote_url=self.remote_url, local_path=workspace, revision=source.revision_sha, ) def get_buildstep_patch(self, source, workspace): return BASH_PATCH_STEP % dict( local_path=workspace, patch_url=build_uri('/api/0/patches/{0}/?raw=1'.format( source.patch_id.hex)), ) def read_file(self, sha, file_path, diff=None): """Read the content of a file at a given revision. Args: sha (str): the sha identifying the revision file_path (str): the path to the file from the root of the repo diff (str): the optional patch to apply before reading the config Returns: str - the content of the file Raises: CommandError - if the file or the revision cannot be found """ content = self.run(['cat', '-r', sha, file_path]) if diff is None: return content return self._selectively_apply_diff(file_path, content, diff)
{ "repo_name": "bowlofstew/changes", "path": "changes/vcs/hg.py", "copies": "2", "size": "6962", "license": "apache-2.0", "hash": 51399475761799250, "line_mean": 29.4017467249, "line_max": 103, "alpha_frac": 0.5583165757, "autogenerated": false, "ratio": 3.9579306424104606, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.00040599900978070347, "num_lines": 229 }
from __future__ import absolute_import, division, print_function from datetime import datetime from rfc822 import parsedate_tz, mktime_tz from urlparse import urlparse from .base import Vcs, RevisionResult, BufferParser LOG_FORMAT = '{node}\x01{author}\x01{date|rfc822date}\x01{p1node} {p2node}\x01{branches}\x01{desc}\x02' class MercurialVcs(Vcs): binary_path = 'hg' def get_default_env(self): return { 'HGPLAIN': '1', } def get_default_revision(self): return 'default' @property def remote_url(self): if self.url.startswith(('ssh:', 'http:', 'https:')): parsed = urlparse(self.url) url = '%s://%s@%s/%s' % ( parsed.scheme, parsed.username or self.username or 'hg', parsed.hostname + (':%s' % (parsed.port,) if parsed.port else ''), parsed.path.lstrip('/'), ) else: url = self.url return url def run(self, cmd, **kwargs): cmd = [ self.binary_path, '--config', 'ui.ssh={0}'.format(self.ssh_connect_path) ] + cmd return super(MercurialVcs, self).run(cmd, **kwargs) def clone(self): self.run(['clone', '--uncompressed', self.remote_url, self.path]) def update(self): self.run(['pull']) def log(self, parent=None, offset=0, limit=100): # TODO(dcramer): we should make this streaming cmd = ['log', '--template=%s' % (LOG_FORMAT,)] if parent: cmd.append('-r reverse(ancestors(%s))' % (parent,)) if limit: cmd.append('--limit=%d' % (offset + limit,)) result = self.run(cmd) for idx, chunk in enumerate(BufferParser(result, '\x02')): if idx < offset: continue (sha, author, author_date, parents, branches, message) = chunk.split('\x01') branches = filter(bool, branches.split(' ')) or ['default'] parents = filter(lambda x: x and x != '0' * 40, parents.split(' ')) author_date = datetime.utcfromtimestamp( mktime_tz(parsedate_tz(author_date))) yield RevisionResult( id=sha, author=author, author_date=author_date, message=message, parents=parents, branches=branches, ) def export(self, id): cmd = ['diff', '-g', '-c %s' % (id,)] result = self.run(cmd) return result def is_child_parent(self, child_in_question, parent_in_question): cmd = ['debugancestor', parent_in_question, child_in_question] result = self.run(cmd) return parent_in_question in result
{ "repo_name": "alex/changes", "path": "changes/vcs/hg.py", "copies": "1", "size": "2790", "license": "apache-2.0", "hash": -4492430468260170000, "line_mean": 30.3483146067, "line_max": 103, "alpha_frac": 0.5394265233, "autogenerated": false, "ratio": 3.84297520661157, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.488240172991157, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from datetime import datetime from urlparse import urlparse from typing import Any, Optional # NOQA from changes.utils.cache import memoize from changes.utils.http import build_patch_uri from .base import ( Vcs, RevisionResult, BufferParser, ConcurrentUpdateError, CommandError, ContentReadError, MissingFileError, UnknownChildRevision, UnknownParentRevision, UnknownRevision, ) import re from time import time LOG_FORMAT = '%H\x01%an <%ae>\x01%at\x01%cn <%ce>\x01%ct\x01%P\x01%B\x02' ORIGIN_PREFIX = 'remotes/origin/' BASH_CLONE_STEP = """ #!/bin/bash -eux REMOTE_URL=%(remote_url)s LOCAL_PATH=%(local_path)s REVISION=%(revision)s CACHE_PATH="%(cache_dir)s/%(cache_base_name)s" if [ -d "$CACHE_PATH" ]; then echo "Using local repository cache." REMOTE_URL="$CACHE_PATH" fi if [ ! -d $LOCAL_PATH/.git ]; then GIT_SSH_COMMAND="ssh -v" \ git clone $REMOTE_URL $LOCAL_PATH || \ git clone $REMOTE_URL $LOCAL_PATH pushd $LOCAL_PATH else pushd $LOCAL_PATH git remote set-url origin $REMOTE_URL GIT_SSH_COMMAND="ssh -v" \ git fetch --all -p || \ GIT_SSH_COMMAND="ssh -v" \ git fetch --all -p fi GIT_SSH_COMMAND="ssh -v" \ git fetch origin +refs/*:refs/remotes-all-refs/origin/* || \ GIT_SSH_COMMAND="ssh -v" \ git fetch origin +refs/*:refs/remotes-all-refs/origin/* %(pre_reset_command)s %(clean_command)s if ! git reset --hard $REVISION -- ; then echo "Failed to update to $REVISION" exit 1 fi """.strip() BASH_PATCH_STEP = """ #!/bin/bash -eux LOCAL_PATH=%(local_path)s PATCH_URL=%(patch_url)s pushd $LOCAL_PATH PATCH_PATH=/tmp/$(mktemp patch.XXXXXXXXXX) curl -o $PATCH_PATH $PATCH_URL git apply --index $PATCH_PATH export GIT_COMMITTER_NAME="Patch applier" GIT_COMMITTER_EMAIL="dev-tools+git-patch@dropbox.com" export GIT_AUTHOR_NAME=$GIT_COMMITTER_NAME GIT_AUTHOR_EMAIL=$GIT_COMMITTER_EMAIL git commit -m 'Diff build' """.strip() class LazyGitRevisionResult(RevisionResult): def __init__(self, vcs, *args, **kwargs): self.vcs = vcs super(LazyGitRevisionResult, self).__init__(*args, **kwargs) @memoize def branches(self): return self.vcs.branches_for_commit(self.id) class GitVcs(Vcs): binary_path = 'git' def get_default_env(self): return { 'GIT_SSH': self.ssh_connect_path, } # This is static so that the repository serializer can easily use it @staticmethod def get_default_revision(): return 'master' @property def remote_url(self): if self.url.startswith(('ssh:', 'http:', 'https:')): parsed = urlparse(self.url) url = '%s://%s@%s/%s' % ( parsed.scheme, parsed.username or self.username or 'git', parsed.hostname + (':%s' % (parsed.port,) if parsed.port else ''), parsed.path.lstrip('/'), ) else: url = self.url return url def branches_for_commit(self, _id): return self.get_known_branches(commit_id=_id) def get_known_branches(self, commit_id=None): """ List all branches or those related to the commit for this repo. Either gets all the branches (if the commit_id is not specified) or then the branches related to the given commit reference. :param commit_id: A commit ID for fetching all related branches. If not specified, returns all branch names for this repository. :return: List of branches for the commit, or all branches for the repo. """ start_time = time() results = [] command_parameters = ['branch', '-a'] if commit_id: command_parameters.extend(['--contains', commit_id]) output = self.run(command_parameters) for result in output.splitlines(): # HACK(dcramer): is there a better way around removing the prefix? result = result[2:].strip() if result.startswith(ORIGIN_PREFIX): result = result[len(ORIGIN_PREFIX):] if result == 'HEAD': continue results.append(result) self.log_timing('get_known_branches', start_time) return list(set(results)) def run(self, cmd, **kwargs): cmd = [self.binary_path] + cmd try: return super(GitVcs, self).run(cmd, **kwargs) except CommandError as e: if 'unknown revision or path' in e.stderr: raise UnknownRevision( cmd=e.cmd, retcode=e.retcode, stdout=e.stdout, stderr=e.stderr, ) raise def clone(self): self.run(['clone', '--mirror', self.remote_url, self.path], cwd='/') def update(self): self.run(['remote', 'set-url', 'origin', self.remote_url]) try: self.run(['fetch', '--all', '-p']) except CommandError as e: if 'error: cannot lock ref' in e.stderr.lower(): raise ConcurrentUpdateError( cmd=e.cmd, retcode=e.retcode, stdout=e.stdout, stderr=e.stderr ) raise e def log(self, parent=None, branch=None, author=None, offset=0, limit=100, paths=None, first_parent=True): """ Gets the commit log for the repository. Each revision returned includes all the branches with which this commit is associated. There will always be at least one associated branch. See documentation for the base for general information on this function. """ start_time = time() # TODO(dcramer): we should make this streaming cmd = ['log', '--pretty=format:%s' % (LOG_FORMAT,)] if not first_parent: # --date-order can be vastly slower. When --first-parent is # provided, the history returned is inherently linear, so # there's no freedom to reorder commits at all, meaning # --date-order would be effectively a no-op. cmd.append('--date-order') if first_parent: cmd.append('--first-parent') if author: cmd.append('--author=%s' % (author,)) if offset: cmd.append('--skip=%d' % (offset,)) if limit: cmd.append('--max-count=%d' % (limit,)) if parent and branch: raise ValueError('Both parent and branch cannot be set') if branch: cmd.append(branch) # TODO(dcramer): determine correct way to paginate results in git as # combining --all with --parent causes issues elif not parent: cmd.append('--all') if parent: cmd.append(parent) if paths: cmd.append("--") cmd.extend([p.strip() for p in paths]) try: result = self.run(cmd) except CommandError as cmd_error: err_msg = cmd_error.stderr if branch and branch in err_msg: import traceback import logging msg = traceback.format_exception(CommandError, cmd_error, None) logging.warning(msg) raise ValueError('Unable to fetch commit log for branch "{0}".' .format(branch)) raise self.log_timing('log', start_time) for chunk in BufferParser(result, '\x02'): (sha, author, author_date, committer, committer_date, parents, message) = chunk.split('\x01') # sha may have a trailing newline due to git log adding it sha = sha.lstrip('\n') parents = filter(bool, parents.split(' ')) author_date = datetime.utcfromtimestamp(float(author_date)) committer_date = datetime.utcfromtimestamp(float(committer_date)) yield LazyGitRevisionResult( vcs=self, id=sha, author=author, committer=committer, author_date=author_date, committer_date=committer_date, parents=parents, message=message, ) def export(self, id): """Get the textual diff for a revision. Args: id (str): The id of the revision. Returns: A string with the text of the diff for the revision. Raises: UnknownRevision: If the revision wasn't found. """ cmd = ['diff', '%s^..%s' % (id, id)] result = self.run(cmd) return result def get_changed_files(self, id): """Returns the list of files changed in a revision. Args: id (str): The id of the revision. Returns: A set of filenames Raises: UnknownRevision: If the revision wan't found. """ cmd = ['diff', '--name-only', '%s^..%s' % (id, id)] output = self.run(cmd) return set([x.strip() for x in output.splitlines()]) def is_child_parent(self, child_in_question, parent_in_question): cmd = ['merge-base', '--is-ancestor', parent_in_question, child_in_question] try: self.run(cmd) return True except CommandError as e: expected_err = "fatal: Not a valid commit name " m = re.match(r'^\s*fatal: Not a valid commit name (?P<sha>\S+)\s*$', e.stderr) if e.retcode == 1: return False elif e.retcode == 128 and m: sha = m.group('sha') if sha == parent_in_question: raise UnknownParentRevision( cmd=e.cmd, retcode=e.retcode, stdout=e.stdout, stderr=e.stderr) elif sha == child_in_question: raise UnknownChildRevision( cmd=e.cmd, retcode=e.retcode, stdout=e.stdout, stderr=e.stderr) else: raise @classmethod def get_repository_name(cls, repository_url): # type: (str) -> str name = super(GitVcs, cls).get_repository_name(repository_url) if not name.endswith('.git'): name += '.git' return name @staticmethod def get_clone_command(remote_url, path, revision, clean=True, cache_dir=None): # type: (str, str, str, bool, Optional[str]) -> str return BASH_CLONE_STEP % dict( remote_url=remote_url, local_path=path, revision=revision, cache_dir=cache_dir or "/dev/null", clean_command='git clean -fdx' if clean else '', pre_reset_command='git checkout -q master', cache_base_name=GitVcs.get_repository_name(remote_url), ) def get_buildstep_clone(self, source, workspace, clean=True, cache_dir=None): # type: (Any, str, bool, Optional[str]) -> str return GitVcs.get_clone_command(self.remote_url, workspace, source.revision_sha, clean, cache_dir) def get_buildstep_patch(self, source, workspace): # type: (Any, str) -> str return BASH_PATCH_STEP % dict( local_path=workspace, patch_url=build_patch_uri(source.patch_id), ) def get_buildstep_checkout_revision(self, revision_sha): # type: (str) -> str return "#!/bin/bash\n/usr/bin/git checkout {sha}".format(sha=revision_sha) def get_buildstep_checkout_parent_revision(self, revision_sha): # type: (str) -> str return "#!/bin/bash\n/usr/bin/git checkout {sha}^".format(sha=revision_sha) def get_buildstep_changed_files(self, revision_sha): # type: (str) -> str return "#!/bin/bash\n/usr/bin/git diff --name-only {sha}^..{sha}".format(sha=revision_sha) def read_file(self, sha, file_path, diff=None): """Read the content of a file at a given revision. Args: sha (str): the sha identifying the revision file_path (str): the path to the file from the root of the repo diff (str): the optional patch to apply before reading the config Returns: str - the content of the file Raises: CommandError - if the git invocation fails. ContentReadError - if the content can't be read because the named file is missing, links to something outside the tree, links to an absent file, or links to itself. UnknownRevision - if revision doesn't seem to exist """ cmd = ['cat-file', '--batch', '--follow-symlinks'] obj_key = '{revision}:{file_path}'.format(revision=sha, file_path=file_path) content = self.run(cmd, input=obj_key) info, content = content.split('\n', 1) if info.endswith('missing'): # either revision is missing or file is missing try: # will raise CommandError if revision is missing self.run(['cat-file', 'commit', sha]) except CommandError as e: raise UnknownRevision( cmd=e.cmd, retcode=e.retcode, stdout=e.stdout, stderr=e.stderr) # file could have been added in the patch if diff is not None: content = self._selectively_apply_diff(file_path, '', diff) if content: return content # TODO(adai): return empty string instead of raising MissingFileError when # empty file is added in the patch raise MissingFileError('No such file at revision: {}'.format(obj_key)) if any(info.startswith(s) for s in ('symlink', 'dangling', 'loop')): raise ContentReadError('Unable to read file contents: {}'.format(info.split()[0])) if not re.match(r'^[a-f0-9]+ blob \d+$', info): raise ContentReadError('Unrecognized metadata for {}: {!r}'.format(obj_key, info)) assert content.endswith('\n') content = content[:-1] if diff is None: return content return self._selectively_apply_diff(file_path, content, diff) def get_patch_hash(self, rev_sha): # type: (str) -> str """Get the patch id for the revision""" # This is a workaround to be able to pipe the output of diff to patch-id p_diff = self._construct_subprocess([self.binary_path, 'diff', '{rev_sha}^..{rev_sha}'.format(rev_sha=rev_sha)]) patch_cmd = [self.binary_path, 'patch-id', '--stable'] p_patch = self._construct_subprocess(patch_cmd, stdin=p_diff.stdout) p_diff.stdout.close() # There is also a commit id string that follows the patch id, which we want to throw away. return self._execute_subproccess(p_patch, patch_cmd).split(' ')[0]
{ "repo_name": "dropbox/changes", "path": "changes/vcs/git.py", "copies": "1", "size": "15157", "license": "apache-2.0", "hash": 5873495937274967000, "line_mean": 35.0023752969, "line_max": 120, "alpha_frac": 0.5679883882, "autogenerated": false, "ratio": 4.00449141347424, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.507247980167424, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from datetime import datetime from urlparse import urlparse from changes.utils.cache import memoize from changes.utils.http import build_uri from .base import Vcs, RevisionResult, BufferParser, CommandError, UnknownRevision from time import time LOG_FORMAT = '%H\x01%an <%ae>\x01%at\x01%cn <%ce>\x01%ct\x01%P\x01%B\x02' ORIGIN_PREFIX = 'remotes/origin/' BASH_CLONE_STEP = """ #!/bin/bash -eux REMOTE_URL=%(remote_url)s LOCAL_PATH=%(local_path)s REVISION=%(revision)s if [ ! -d $LOCAL_PATH/.git ]; then GIT_SSH_COMMAND="ssh -v" \ git clone $REMOTE_URL $LOCAL_PATH || \ git clone $REMOTE_URL $LOCAL_PATH pushd $LOCAL_PATH else pushd $LOCAL_PATH git remote set-url origin $REMOTE_URL GIT_SSH_COMMAND="ssh -v" \ git fetch --all -p || \ GIT_SSH_COMMAND="ssh -v" \ git fetch --all -p fi GIT_SSH_COMMAND="ssh -v" \ git fetch origin +refs/*:refs/remotes-all-refs/origin/* || \ GIT_SSH_COMMAND="ssh -v" \ git fetch origin +refs/*:refs/remotes-all-refs/origin/* git clean -fdx if ! git reset --hard $REVISION ; then echo "Failed to update to $REVISION" exit 1 fi """.strip() BASH_PATCH_STEP = """ #!/bin/bash -eux LOCAL_PATH=%(local_path)s PATCH_URL=%(patch_url)s pushd $LOCAL_PATH PATCH_PATH=/tmp/$(mktemp patch.XXXXXXXXXX) curl -o $PATCH_PATH $PATCH_URL git apply $PATCH_PATH """.strip() class LazyGitRevisionResult(RevisionResult): def __init__(self, vcs, *args, **kwargs): self.vcs = vcs super(LazyGitRevisionResult, self).__init__(*args, **kwargs) @memoize def branches(self): return self.vcs.branches_for_commit(self.id) class GitVcs(Vcs): binary_path = 'git' def get_default_env(self): return { 'GIT_SSH': self.ssh_connect_path, } # This is static so that the repository serializer can easily use it @staticmethod def get_default_revision(): return 'master' @property def remote_url(self): if self.url.startswith(('ssh:', 'http:', 'https:')): parsed = urlparse(self.url) url = '%s://%s@%s/%s' % ( parsed.scheme, parsed.username or self.username or 'git', parsed.hostname + (':%s' % (parsed.port,) if parsed.port else ''), parsed.path.lstrip('/'), ) else: url = self.url return url def branches_for_commit(self, _id): return self.get_known_branches(commit_id=_id) def get_known_branches(self, commit_id=None): """ List all branches or those related to the commit for this repo. Either gets all the branches (if the commit_id is not specified) or then the branches related to the given commit reference. :param commit_id: A commit ID for fetching all related branches. If not specified, returns all branch names for this repository. :return: List of branches for the commit, or all branches for the repo. """ start_time = time() results = [] command_parameters = ['branch', '-a'] if commit_id: command_parameters.extend(['--contains', commit_id]) output = self.run(command_parameters) for result in output.splitlines(): # HACK(dcramer): is there a better way around removing the prefix? result = result[2:].strip() if result.startswith(ORIGIN_PREFIX): result = result[len(ORIGIN_PREFIX):] if result == 'HEAD': continue results.append(result) self.log_timing('get_known_branches', start_time) return list(set(results)) def run(self, cmd, **kwargs): cmd = [self.binary_path] + cmd try: return super(GitVcs, self).run(cmd, **kwargs) except CommandError as e: if 'unknown revision or path' in e.stderr: raise UnknownRevision( cmd=e.cmd, retcode=e.retcode, stdout=e.stdout, stderr=e.stderr, ) raise def clone(self): self.run(['clone', '--mirror', self.remote_url, self.path]) def update(self): self.run(['remote', 'set-url', 'origin', self.remote_url]) self.run(['fetch', '--all', '-p']) def log(self, parent=None, branch=None, author=None, offset=0, limit=100, paths=None): """ Gets the commit log for the repository. Each revision returned includes all the branches with which this commit is associated. There will always be at least one associated branch. See documentation for the base for general information on this function. """ start_time = time() # TODO(dcramer): we should make this streaming cmd = ['log', '--date-order', '--pretty=format:%s' % (LOG_FORMAT,), '--first-parent'] if author: cmd.append('--author=%s' % (author,)) if offset: cmd.append('--skip=%d' % (offset,)) if limit: cmd.append('--max-count=%d' % (limit,)) if parent and branch: raise ValueError('Both parent and branch cannot be set') if branch: cmd.append(branch) # TODO(dcramer): determine correct way to paginate results in git as # combining --all with --parent causes issues elif not parent: cmd.append('--all') if parent: cmd.append(parent) if paths: cmd.append("--") cmd.extend([p.strip() for p in paths]) try: result = self.run(cmd) except CommandError as cmd_error: err_msg = cmd_error.stderr if branch and branch in err_msg: import traceback import logging msg = traceback.format_exception(CommandError, cmd_error, None) logging.warning(msg) raise ValueError('Unable to fetch commit log for branch "{0}".' .format(branch)) raise self.log_timing('log', start_time) for chunk in BufferParser(result, '\x02'): (sha, author, author_date, committer, committer_date, parents, message) = chunk.split('\x01') # sha may have a trailing newline due to git log adding it sha = sha.lstrip('\n') parents = filter(bool, parents.split(' ')) author_date = datetime.utcfromtimestamp(float(author_date)) committer_date = datetime.utcfromtimestamp(float(committer_date)) yield LazyGitRevisionResult( vcs=self, id=sha, author=author, committer=committer, author_date=author_date, committer_date=committer_date, parents=parents, message=message, ) def export(self, id): """Get the textual diff for a revision. Args: id (str): The id of the revision. Returns: A string with the text of the diff for the revision. Raises: UnknownRevision: If the revision wasn't found. """ cmd = ['diff', '%s^..%s' % (id, id)] result = self.run(cmd) return result def is_child_parent(self, child_in_question, parent_in_question): cmd = ['merge-base', '--is-ancestor', parent_in_question, child_in_question] try: self.run(cmd) return True except CommandError: return False def get_buildstep_clone(self, source, workspace): return BASH_CLONE_STEP % dict( remote_url=self.remote_url, local_path=workspace, revision=source.revision_sha, ) def get_buildstep_patch(self, source, workspace): return BASH_PATCH_STEP % dict( local_path=workspace, patch_url=build_uri('/api/0/patches/{0}/?raw=1'.format( source.patch_id.hex)), ) def read_file(self, sha, file_path, diff=None): """Read the content of a file at a given revision. Args: sha (str): the sha identifying the revision file_path (str): the path to the file from the root of the repo diff (str): the optional patch to apply before reading the config Returns: str - the content of the file Raises: CommandError - if the file or the revision cannot be found """ cmd = ['show', '{revision}:{file_path}'.format( revision=sha, file_path=file_path )] content = self.run(cmd) if diff is None: return content return self._selectively_apply_diff(file_path, content, diff)
{ "repo_name": "bowlofstew/changes", "path": "changes/vcs/git.py", "copies": "2", "size": "8959", "license": "apache-2.0", "hash": 468944811673513300, "line_mean": 30.7695035461, "line_max": 93, "alpha_frac": 0.5702645385, "autogenerated": false, "ratio": 4.015688032272523, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.00029141758266157587, "num_lines": 282 }
from __future__ import absolute_import, division, print_function from datetime import datetime from urlparse import urlparse from changes.utils.cache import memoize from .base import Vcs, RevisionResult, BufferParser, CommandError LOG_FORMAT = '%H\x01%an <%ae>\x01%at\x01%cn <%ce>\x01%ct\x01%P\x01%B\x02' ORIGIN_PREFIX = 'remotes/origin/' class LazyGitRevisionResult(RevisionResult): def __init__(self, vcs, *args, **kwargs): self.vcs = vcs super(LazyGitRevisionResult, self).__init__(*args, **kwargs) @memoize def branches(self): return self.vcs.branches_for_commit(self.id) class GitVcs(Vcs): binary_path = 'git' def get_default_env(self): return { 'GIT_SSH': self.ssh_connect_path, } def get_default_revision(self): return 'master' @property def remote_url(self): if self.url.startswith(('ssh:', 'http:', 'https:')): parsed = urlparse(self.url) url = '%s://%s@%s/%s' % ( parsed.scheme, parsed.username or self.username or 'git', parsed.hostname + (':%s' % (parsed.port,) if parsed.port else ''), parsed.path.lstrip('/'), ) else: url = self.url return url def branches_for_commit(self, id): results = [] output = self.run(['branch', '-a', '--contains', id]) for result in output.splitlines(): # HACK(dcramer): is there a better way around removing the prefix? result = result[2:].strip() if result.startswith(ORIGIN_PREFIX): result = result[len(ORIGIN_PREFIX):] if result == 'HEAD': continue results.append(result) return list(set(results)) def run(self, cmd, **kwargs): cmd = [self.binary_path] + cmd return super(GitVcs, self).run(cmd, **kwargs) def clone(self): self.run(['clone', '--mirror', self.remote_url, self.path]) def update(self): self.run(['fetch', '--all']) def log(self, parent=None, offset=0, limit=100): # TODO(dcramer): we should make this streaming cmd = ['log', '--all', '--pretty=format:%s' % (LOG_FORMAT,)] if parent: cmd.append(parent) if offset: cmd.append('--skip=%d' % (offset,)) if limit: cmd.append('--max-count=%d' % (limit,)) result = self.run(cmd) for chunk in BufferParser(result, '\x02'): (sha, author, author_date, committer, committer_date, parents, message) = chunk.split('\x01') # sha may have a trailing newline due to git log adding it sha = sha.lstrip('\n') parents = filter(bool, parents.split(' ')) author_date = datetime.utcfromtimestamp(float(author_date)) committer_date = datetime.utcfromtimestamp(float(committer_date)) yield LazyGitRevisionResult( vcs=self, id=sha, author=author, committer=committer, author_date=author_date, committer_date=committer_date, parents=parents, message=message, ) def export(self, id): cmd = ['log', '-n 1', '-p', '--pretty="%b"', id] result = self.run(cmd)[4:] return result def is_child_parent(self, child_in_question, parent_in_question): cmd = ['merge-base', '--is-ancestor', parent_in_question, child_in_question] try: self.run(cmd) return True except CommandError: return False
{ "repo_name": "alex/changes", "path": "changes/vcs/git.py", "copies": "1", "size": "3714", "license": "apache-2.0", "hash": -2885829676541598700, "line_mean": 30.4745762712, "line_max": 84, "alpha_frac": 0.5479267636, "autogenerated": false, "ratio": 3.9177215189873418, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9964639261457959, "avg_score": 0.0002018042258765871, "num_lines": 118 }
from __future__ import absolute_import, division, print_function from datetime import datetime from toolz import merge import bisect import numpy as np import pandas as pd from .core import new_dd_object, Series from . import methods from ..base import tokenize class _LocIndexer(object): """ Helper class for the .loc accessor """ def __init__(self, obj): self.obj = obj @property def _name(self): return self.obj._name def _make_meta(self, iindexer, cindexer): """ get metadata """ if cindexer is None: return self.obj else: return self.obj._meta.loc[:, cindexer] def __getitem__(self, key): if isinstance(key, tuple): # multi-dimensional selection if len(key) > self.obj.ndim: # raise from pandas msg = 'Too many indexers' raise pd.core.indexing.IndexingError(msg) iindexer = key[0] cindexer = key[1] else: # if self.obj is Series, cindexer is always None iindexer = key cindexer = None return self._loc(iindexer, cindexer) def _loc(self, iindexer, cindexer): """ Helper function for the .loc accessor """ if isinstance(iindexer, Series): return self._loc_series(iindexer, cindexer) if self.obj.known_divisions: iindexer = self._maybe_partial_time_string(iindexer) if isinstance(iindexer, slice): return self._loc_slice(iindexer, cindexer) else: # element should raise KeyError return self._loc_element(iindexer, cindexer) else: if not isinstance(iindexer, slice): iindexer = slice(iindexer, iindexer) meta = self._make_meta(iindexer, cindexer) return self.obj.map_partitions(methods.try_loc, iindexer, cindexer, meta=meta) def _maybe_partial_time_string(self, iindexer): """ Convert index-indexer for partial time string slicing if obj.index is DatetimeIndex / PeriodIndex """ iindexer = _maybe_partial_time_string(self.obj._meta_nonempty.index, iindexer, kind='loc') return iindexer def _loc_series(self, iindexer, cindexer): meta = self._make_meta(iindexer, cindexer) return self.obj.map_partitions(methods.loc, iindexer, cindexer, token='loc-series', meta=meta) def _loc_element(self, iindexer, cindexer): name = 'loc-%s' % tokenize(iindexer, self.obj) part = self._partition_of_index_value(iindexer) if iindexer < self.obj.divisions[0] or iindexer > self.obj.divisions[-1]: raise KeyError('the label [%s] is not in the index' % str(iindexer)) dsk = {(name, 0): (methods.loc, (self._name, part), slice(iindexer, iindexer), cindexer)} meta = self._make_meta(iindexer, cindexer) return new_dd_object(merge(self.obj.dask, dsk), name, meta=meta, divisions=[iindexer, iindexer]) def _partition_of_index_value(self, key): return _partition_of_index_value(self.obj.divisions, key) def _coerce_loc_index(self, key): return _coerce_loc_index(self.obj.divisions, key) def _loc_slice(self, iindexer, cindexer): name = 'loc-%s' % tokenize(iindexer, cindexer, self) assert isinstance(iindexer, slice) assert iindexer.step in (None, 1) if iindexer.start is not None: start = self._partition_of_index_value(iindexer.start) else: start = 0 if iindexer.stop is not None: stop = self._partition_of_index_value(iindexer.stop) else: stop = self.obj.npartitions - 1 istart = self._coerce_loc_index(iindexer.start) istop = self._coerce_loc_index(iindexer.stop) if stop == start: dsk = {(name, 0): (methods.loc, (self._name, start), slice(iindexer.start, iindexer.stop), cindexer)} divisions = [istart, istop] else: dsk = {(name, 0): (methods.loc, (self._name, start), slice(iindexer.start, None), cindexer)} for i in range(1, stop - start): if cindexer is None: dsk[name, i] = (self._name, start + i) else: dsk[name, i] = (methods.loc, (self._name, start + i), slice(None, None), cindexer) dsk[name, stop - start] = (methods.loc, (self._name, stop), slice(None, iindexer.stop), cindexer) if iindexer.start is None: div_start = self.obj.divisions[0] else: div_start = max(istart, self.obj.divisions[start]) if iindexer.stop is None: div_stop = self.obj.divisions[-1] else: div_stop = min(istop, self.obj.divisions[stop + 1]) divisions = ((div_start, ) + self.obj.divisions[start + 1:stop + 1] + (div_stop, )) assert len(divisions) == len(dsk) + 1 meta = self._make_meta(iindexer, cindexer) return new_dd_object(merge(self.obj.dask, dsk), name, meta=meta, divisions=divisions) def _partition_of_index_value(divisions, val): """ In which partition does this value lie? >>> _partition_of_index_value([0, 5, 10], 3) 0 >>> _partition_of_index_value([0, 5, 10], 8) 1 >>> _partition_of_index_value([0, 5, 10], 100) 1 >>> _partition_of_index_value([0, 5, 10], 5) # left-inclusive divisions 1 """ if divisions[0] is None: msg = "Can not use loc on DataFrame without known divisions" raise ValueError(msg) val = _coerce_loc_index(divisions, val) i = bisect.bisect_right(divisions, val) return min(len(divisions) - 2, max(0, i - 1)) def _coerce_loc_index(divisions, o): """ Transform values to be comparable against divisions This is particularly valuable to use with pandas datetimes """ if divisions and isinstance(divisions[0], datetime): return pd.Timestamp(o) if divisions and isinstance(divisions[0], np.datetime64): return np.datetime64(o).astype(divisions[0].dtype) return o def _maybe_partial_time_string(index, indexer, kind): """ Convert indexer for partial string selection if data has DatetimeIndex/PeriodIndex """ # do not pass dd.Index assert isinstance(index, pd.Index) if not isinstance(index, (pd.DatetimeIndex, pd.PeriodIndex)): return indexer if isinstance(indexer, slice): if isinstance(indexer.start, pd.compat.string_types): start = index._maybe_cast_slice_bound(indexer.start, 'left', kind) else: start = indexer.start if isinstance(indexer.stop, pd.compat.string_types): stop = index._maybe_cast_slice_bound(indexer.stop, 'right', kind) else: stop = indexer.stop return slice(start, stop) elif isinstance(indexer, pd.compat.string_types): start = index._maybe_cast_slice_bound(indexer, 'left', 'loc') stop = index._maybe_cast_slice_bound(indexer, 'right', 'loc') return slice(start, stop) return indexer
{ "repo_name": "jeffery-do/Vizdoombot", "path": "doom/lib/python3.5/site-packages/dask/dataframe/indexing.py", "copies": "1", "size": "7647", "license": "mit", "hash": -4306386220820054500, "line_mean": 33.2914798206, "line_max": 81, "alpha_frac": 0.5678043677, "autogenerated": false, "ratio": 3.8836973082783137, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.49515016759783137, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from datetime import datetime import bisect import numpy as np import pandas as pd def _partition_of_index_value(divisions, val): """ In which partition does this value lie? >>> _partition_of_index_value([0, 5, 10], 3) 0 >>> _partition_of_index_value([0, 5, 10], 8) 1 >>> _partition_of_index_value([0, 5, 10], 100) 1 >>> _partition_of_index_value([0, 5, 10], 5) # left-inclusive divisions 1 """ if divisions[0] is None: raise ValueError( "Can not use loc on DataFrame without known divisions") val = _coerce_loc_index(divisions, val) i = bisect.bisect_right(divisions, val) return min(len(divisions) - 2, max(0, i - 1)) def _loc(df, start, stop, include_right_boundary=True): """ >>> df = pd.DataFrame({'x': [10, 20, 30, 40, 50]}, index=[1, 2, 2, 3, 4]) >>> _loc(df, 2, None) x 2 20 2 30 3 40 4 50 >>> _loc(df, 1, 3) x 1 10 2 20 2 30 3 40 >>> _loc(df, 1, 3, include_right_boundary=False) x 1 10 2 20 2 30 """ result = df.loc[start:stop] if not include_right_boundary: right_index = result.index.get_slice_bound(stop, 'left', 'loc') result = result.iloc[:right_index] return result def _try_loc(df, ind): try: return df.loc[ind] except KeyError: return df.head(0) def _coerce_loc_index(divisions, o): """ Transform values to be comparable against divisions This is particularly valuable to use with pandas datetimes """ if divisions and isinstance(divisions[0], datetime): return pd.Timestamp(o) if divisions and isinstance(divisions[0], np.datetime64): return np.datetime64(o).astype(divisions[0].dtype) return o def _maybe_partial_time_string(index, indexer, kind): """ Convert indexer for partial string selection if data has DatetimeIndex/PeriodIndex """ # do not pass dd.Index assert isinstance(index, pd.Index) if not isinstance(index, (pd.DatetimeIndex, pd.PeriodIndex)): return indexer if isinstance(indexer, slice): if isinstance(indexer.start, pd.compat.string_types): start = index._maybe_cast_slice_bound(indexer.start, 'left', kind) else: start = indexer.start if isinstance(indexer.stop, pd.compat.string_types): stop = index._maybe_cast_slice_bound(indexer.stop, 'right', kind) else: stop = indexer.stop return slice(start, stop) elif isinstance(indexer, pd.compat.string_types): start = index._maybe_cast_slice_bound(indexer, 'left', 'loc') stop = index._maybe_cast_slice_bound(indexer, 'right', 'loc') return slice(start, stop) return indexer
{ "repo_name": "cowlicks/dask", "path": "dask/dataframe/indexing.py", "copies": "2", "size": "2876", "license": "bsd-3-clause", "hash": -4400707311823775000, "line_mean": 26.1320754717, "line_max": 78, "alpha_frac": 0.6077885953, "autogenerated": false, "ratio": 3.4776299879081014, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0, "num_lines": 106 }
from __future__ import absolute_import, division, print_function from datetime import datetime import numpy as np import numpy.ma as ma from scipy.spatial import cKDTree as KDTree import cf_units import iris from iris import Constraint from iris.cube import CubeList from iris.pandas import as_cube from iris.exceptions import CoordinateNotFoundError, CoordinateMultiDimError iris.FUTURE.netcdf_promote = True iris.FUTURE.cell_datetime_objects = True __all__ = ['is_model', 'z_coord', 'get_surface', 'time_coord', 'time_near', 'time_slice', 'bbox_extract_2Dcoords', 'bbox_extract_1Dcoords', 'subset', 'quick_load_cubes', 'proc_cube', 'add_mesh', 'ensure_timeseries', 'add_station', 'remove_ssh', 'save_timeseries', 'make_tree', 'is_water', 'get_nearest_series', 'get_nearest_water'] def is_model(cube): """ Heuristic way to find if a cube data is `modelResult` or not. WARNING: This function may return False positives and False negatives!!! Examples -------- >>> import iris >>> iris.FUTURE.netcdf_promote = True >>> url = ("http://crow.marine.usf.edu:8080/thredds/dodsC/" ... "FVCOM-Nowcast-Agg.nc") >>> cubes = iris.load_raw(url, 'sea_surface_height_above_geoid') >>> [is_model(cube) for cube in cubes] [True] >>> url = ("http://thredds.cdip.ucsd.edu/thredds/dodsC/cdip/archive/" ... "043p1/043p1_d17.nc") >>> cubes = iris.load_raw(url, 'sea_surface_temperature') >>> [is_model(cube) for cube in cubes] [False] """ # First criteria (Strong): "forecast" word in the time coord. try: coords = cube.coords(axis='T') for coord in coords: if 'forecast' in coord.name(): return True except CoordinateNotFoundError: pass # Second criteria (Strong): `UGRID` cubes are models. conventions = cube.attributes.get('Conventions', 'None') if 'UGRID' in conventions.upper(): return True # Third criteria (Strong): dimensionless coords are present. try: coords = cube.coords(axis='Z') for coord in coords: if 'ocean_' in coord.name(): return True except CoordinateNotFoundError: pass # Forth criteria (weak): Assumes that all "GRID" attribute are models. cdm_data_type = cube.attributes.get('cdm_data_type', 'None') feature_type = cube.attributes.get('featureType', 'None') source = cube.attributes.get('source', 'None') if cdm_data_type.upper() == 'GRID' or feature_type.upper() == 'GRID': if 'AVHRR' not in source: return True return False def z_coord(cube): """ Return the canonical vertical coordinate. Examples -------- >>> import iris >>> url = ("http://omgsrv1.meas.ncsu.edu:8080/thredds/dodsC/fmrc/sabgom/" ... "SABGOM_Forecast_Model_Run_Collection_best.ncd") >>> cube = iris.load_cube(url, 'sea_water_potential_temperature') >>> str(z_coord(cube).name()) 'ocean_s_coordinate_g1' """ non_dimensional = ['atmosphere_hybrid_height_coordinate', 'atmosphere_hybrid_sigma_pressure_coordinate', 'atmosphere_sigma_coordinate', 'atmosphere_sleve_coordinate', 'ocean_s_coordinate', 'ocean_s_coordinate_g1', 'ocean_s_coordinate_g2', 'ocean_sigma_coordinate', 'ocean_sigma_z_coordinate'] z = None # If only one exists get that. try: z = cube.coord(axis='Z') except CoordinateNotFoundError: # If a named `z_coord` exist. try: z = cube.coord(axis='altitude') except CoordinateNotFoundError: # OK, let's use the non-dimensional names. for coord in cube.coords(axis='Z'): if coord.name() in non_dimensional: z = coord break return z def _get_surface_idx(cube): """ Return the `cube` index for the surface layer of for any model grid (rgrid, ugrid, sgrid), and any non-dimensional coordinate. """ z = z_coord(cube) if not z: msg = "Cannot find the surface for cube {!r}".format raise ValueError(msg(cube)) else: if np.argmin(z.shape) == 0 and z.ndim == 2: points = z[:, 0].points elif np.argmin(z.shape) == 1 and z.ndim == 2: points = z[0, :].points else: points = z.points positive = z.attributes.get('positive', None) if positive == 'up': idx = np.unique(points.argmax(axis=0))[0] else: idx = np.unique(points.argmin(axis=0))[0] return idx def get_surface(cube): """ Work around `iris.cube.Cube.slices` error: The requested coordinates are not orthogonal. Examples -------- >>> import iris >>> url = ("http://omgsrv1.meas.ncsu.edu:8080/thredds/dodsC/fmrc/sabgom/" ... "SABGOM_Forecast_Model_Run_Collection_best.ncd") >>> cube = iris.load_cube(url, 'sea_water_potential_temperature') >>> cube.ndim == 4 True >>> get_surface(cube).ndim == 3 True """ conventions = cube.attributes.get('Conventions', 'None') idx = _get_surface_idx(cube) if cube.ndim == 4 or 'UGRID' in conventions.upper(): return cube[:, int(idx), ...] elif cube.ndim == 3 and 'UGRID' not in conventions.upper(): return cube[int(idx), ...] else: msg = "Cannot find the surface for cube {!r}".format raise ValueError(msg(cube)) def time_coord(cube): """ Return the variable attached to time axis and rename it to time. Examples -------- >>> import iris >>> url = ("http://omgsrv1.meas.ncsu.edu:8080/thredds/dodsC/fmrc/sabgom/" ... "SABGOM_Forecast_Model_Run_Collection_best.ncd") >>> cube = iris.load_cube(url, 'sea_water_potential_temperature') >>> str(time_coord(cube).name()) 'time' """ try: cube.coord(axis='T').rename('time') except CoordinateNotFoundError: pass timevar = cube.coord('time') return timevar def time_near(cube, datetime_obj): """ Return the nearest index to a `datetime_obj`. Examples -------- >>> import iris >>> from datetime import datetime >>> url = ("http://omgsrv1.meas.ncsu.edu:8080/thredds/dodsC/fmrc/sabgom/" ... "SABGOM_Forecast_Model_Run_Collection_best.ncd") >>> cube = iris.load_cube(url, 'sea_water_potential_temperature') >>> isinstance(time_near(cube, datetime.utcnow()), np.integer) True """ timevar = time_coord(cube) try: time = timevar.units.date2num(datetime_obj) idx = timevar.nearest_neighbour_index(time) except IndexError: idx = -1 return idx def time_slice(cube, start, stop=None): """ Slice time by indexes using a nearest criteria. NOTE: Assumes time is the first dimension! Examples -------- >>> import iris >>> from datetime import datetime, timedelta >>> url = ("http://omgsrv1.meas.ncsu.edu:8080/thredds/dodsC/fmrc/sabgom/" ... "SABGOM_Forecast_Model_Run_Collection_best.ncd") >>> cube = iris.load_cube(url, 'sea_water_potential_temperature') >>> stop = datetime.utcnow() >>> start = stop - timedelta(days=7) >>> time_slice(cube, start, stop).shape[0] < cube.shape[0] True """ istart = time_near(cube, start) if stop: istop = time_near(cube, stop) if istart == istop: raise ValueError('istart must be different from istop! ' 'Got istart {!r} and ' ' istop {!r}'.format(istart, istop)) return cube[istart:istop, ...] else: return cube[istart, ...] def _minmax(v): return np.min(v), np.max(v) def _get_indices(cube, bbox): """ Get the 4 corner indices of a `cube` given a `bbox`. Examples -------- >>> import iris >>> url = ("http://omgsrv1.meas.ncsu.edu:8080/thredds/dodsC/fmrc/sabgom/" ... "SABGOM_Forecast_Model_Run_Collection_best.ncd") >>> cube = iris.load_cube(url, 'sea_water_potential_temperature') >>> bbox = [-87.40, 24.25, -74.70, 36.70] >>> idxs = _get_indices(cube, bbox) >>> [isinstance(idx, np.integer) for idx in idxs] [True, True, True, True] >>> idxs (27, 320, 164, 429) """ from oceans import wrap_lon180 lons = cube.coord('longitude').points lats = cube.coord('latitude').points lons = wrap_lon180(lons) inregion = np.logical_and(np.logical_and(lons > bbox[0], lons < bbox[2]), np.logical_and(lats > bbox[1], lats < bbox[3])) region_inds = np.where(inregion) imin, imax = _minmax(region_inds[0]) jmin, jmax = _minmax(region_inds[1]) return imin, imax+1, jmin, jmax+1 def bbox_extract_2Dcoords(cube, bbox): """ Extract a sub-set of a cube inside a lon, lat bounding box bbox = [lon_min lon_max lat_min lat_max]. NOTE: This is a work around too subset an iris cube that has 2D lon, lat coords. Examples -------- >>> import iris >>> url = ("http://omgsrv1.meas.ncsu.edu:8080/thredds/dodsC/fmrc/sabgom/" ... "SABGOM_Forecast_Model_Run_Collection_best.ncd") >>> cube = iris.load_cube(url, 'sea_water_potential_temperature') >>> bbox = [-87.40, 24.25, -74.70, 36.70] >>> new_cube = bbox_extract_2Dcoords(cube, bbox) >>> cube.shape != new_cube.shape True """ imin, imax, jmin, jmax = _get_indices(cube, bbox) return cube[..., imin:imax, jmin:jmax] def bbox_extract_1Dcoords(cube, bbox): """ Same as bbox_extract_2Dcoords but for 1D coords. Examples -------- >>> import iris >>> url = "http://oos.soest.hawaii.edu/thredds/dodsC/pacioos/hycom/global" >>> cube = iris.load_cube(url, 'sea_water_potential_temperature') >>> bbox = [272.6, 24.25, 285.3, 36.70] >>> new_cube = bbox_extract_1Dcoords(cube, bbox) >>> cube.shape != new_cube.shape True """ lat = Constraint(latitude=lambda cell: bbox[1] <= cell <= bbox[3]) lon = Constraint(longitude=lambda cell: bbox[0] <= cell <= bbox[2]) cube = cube.extract(lon & lat) return cube def subset(cube, bbox): """ Subsets cube with 1D or 2D lon, lat coords. Using `intersection` instead of `extract` we deal with 0--360 longitudes automagically. Examples -------- >>> import iris >>> url = "http://oos.soest.hawaii.edu/thredds/dodsC/pacioos/hycom/global" >>> cube = iris.load_cube(url, 'sea_water_potential_temperature') >>> bbox = [272.6, 24.25, 285.3, 36.70] >>> new_cube = subset(cube, bbox) >>> cube.shape != new_cube.shape True """ if (cube.coord(axis='X').ndim == 1 and cube.coord(axis='Y').ndim == 1): # Workaround `cube.intersection` hanging up on FVCOM models. title = cube.attributes.get('title', 'untitled') featureType = cube.attributes.get('featureType', None) if (('FVCOM' in title) or ('ESTOFS' in title) or featureType == 'timeSeries'): cube = bbox_extract_1Dcoords(cube, bbox) else: cube = cube.intersection(longitude=(bbox[0], bbox[2]), latitude=(bbox[1], bbox[3])) elif (cube.coord(axis='X').ndim == 2 and cube.coord(axis='Y').ndim == 2): cube = bbox_extract_2Dcoords(cube, bbox) else: msg = "Cannot deal with X:{!r} and Y:{!r} dimensions." raise CoordinateMultiDimError(msg.format(cube.coord(axis='X').ndim), cube.coord(axis='y').ndim) return cube def _filter_none(lista): return [x for x in lista if x is not None] def _in_list(cube, name_list): return cube.standard_name in name_list def quick_load_cubes(url, name_list, callback=None, strict=False): """ Return all cubes found using a `name_list` of standard_names. The cubes found can be transformed via a `callback` function. If `strict` is set to True the function will return only one cube is possible, otherwise an exception will be raise. TODO: Create a criteria to choose a sensor. buoy = "http://129.252.139.124/thredds/dodsC/fldep.stlucieinlet..nc" buoy = "http://129.252.139.124/thredds/dodsC/lbhmc.cherrygrove.pier.nc" Examples -------- >>> import iris >>> url = ("http://omgsrv1.meas.ncsu.edu:8080/thredds/dodsC/fmrc/sabgom/" ... "SABGOM_Forecast_Model_Run_Collection_best.ncd") >>> name_list = ['sea_water_potential_temperature'] >>> cubes = quick_load_cubes(url, name_list) >>> cube = quick_load_cubes(url, name_list, strict=True) >>> isinstance(cubes, list) True >>> isinstance(cube, iris.cube.Cube) True """ cubes = iris.load_raw(url, callback=callback) cubes = CubeList([cube for cube in cubes if _in_list(cube, name_list)]) cubes = _filter_none(cubes) if not cubes: raise ValueError('Cannot find {!r} in {}.'.format(name_list, url)) if strict: if len(cubes) == 1: return cubes[0] else: msg = "> 1 cube found! Expected just one.\n {!r}".format raise ValueError(msg(cubes)) return cubes def proc_cube(cube, bbox=None, time=None, constraint=None, units=None): """ Constraining by `bbox`, `time`, and iris `constraint` object. and the `units` can be converted. Examples -------- >>> import pytz >>> import iris >>> from datetime import date, datetime, timedelta >>> url = ('http://omgsrv1.meas.ncsu.edu:8080/thredds/dodsC/fmrc/sabgom/' ... 'SABGOM_Forecast_Model_Run_Collection_best.ncd') >>> today = date.today().timetuple() >>> stop = datetime(today.tm_year, today.tm_mon, today.tm_mday, 12) >>> start = stop - timedelta(days=7) >>> bbox = [-87.40, 24.25, -74.70, 36.70] >>> name_list = ['sea_water_potential_temperature'] >>> cube = quick_load_cubes(url, name_list, strict=True) >>> new_cube = proc_cube(cube, bbox=bbox, time=(start, stop)) >>> cube.shape != new_cube.shape True """ if constraint: cube = cube.extract(constraint) if not cube: raise ValueError('No cube using {!r}'.format(constraint)) if bbox: cube = subset(cube, bbox) if not cube: raise ValueError('No cube using {!r}'.format(bbox)) if time: if isinstance(time, datetime): start, stop = time, None elif isinstance(time, tuple): start, stop = time[0], time[1] else: raise ValueError('Time must be start or (start, stop).' ' Got {!r}'.format(time)) cube = time_slice(cube, start, stop) if units: if cube.units != units: cube.convert_units(units) return cube def add_mesh(cube, url): """ Adds the unstructured mesh info the to cube. Soon in an iris near you! """ from pyugrid import UGrid ug = UGrid.from_ncfile(url) cube.mesh = ug cube.mesh_dimension = 1 return cube def _make_aux_coord(cube, axis='Y'): """Make any given coordinate an Auxiliary Coordinate.""" coord = cube.coord(axis=axis) cube.remove_coord(coord) if cube.ndim == 2: cube.add_aux_coord(coord, 1) else: cube.add_aux_coord(coord) return cube def ensure_timeseries(cube): """Ensure that the cube is CF-timeSeries compliant.""" if not cube.coord('time').shape == cube.shape[0]: cube.transpose() _make_aux_coord(cube, axis='Y') _make_aux_coord(cube, axis='X') cube.attributes.update({'featureType': 'timeSeries'}) cube.coord("station name").attributes = dict(cf_role='timeseries_id') return cube def add_station(cube, station): """Add a station Auxiliary Coordinate and its name.""" kw = dict(var_name="station", long_name="station name") coord = iris.coords.AuxCoord(station, **kw) cube.add_aux_coord(coord) return cube def remove_ssh(cube): """ Remove all `aux_coords` but time. Should that has the same shape as the data. NOTE: This also removes `aux_factories` to avoid update error when removing the coordinate. Examples -------- >>> import iris >>> url = ("http://omgsrv1.meas.ncsu.edu:8080/thredds/dodsC/fmrc/sabgom/" ... "SABGOM_Forecast_Model_Run_Collection_best.ncd") >>> cube = iris.load_cube(url, 'sea_water_potential_temperature') >>> cube = get_surface(cube) >>> len(cube.coords()) 10 >>> cube = remove_ssh(cube) >>> len(cube.coords()) 8 """ for factory in cube.aux_factories: cube.remove_aux_factory(factory) for coord in cube.aux_coords: if coord.shape == cube.shape: if 'time' not in coord.name(): cube.remove_coord(coord.name()) return cube def save_timeseries(df, outfile, standard_name, **kw): """http://cfconventions.org/Data/cf-convetions/cf-conventions-1.6/build /cf-conventions.html#idp5577536""" cube = as_cube(df, calendars={1: cf_units.CALENDAR_GREGORIAN}) cube.coord("index").rename("time") # Cast all station names to strings and renamed it. columns = cube.coord('columns').points.astype(str).tolist() cube.coord('columns').points = columns cube.coord("columns").rename("station name") cube.rename(standard_name) cube.coord("station name").var_name = 'station' longitude = kw.get("longitude") latitude = kw.get("latitude") if longitude is not None: longitude = iris.coords.AuxCoord(np.float_(longitude), var_name="lon", standard_name="longitude", long_name="station longitude", units=cf_units.Unit("degrees")) cube.add_aux_coord(longitude, data_dims=1) if latitude is not None: latitude = iris.coords.AuxCoord(np.float_(latitude), var_name="lat", standard_name="latitude", long_name="station latitude", units=cf_units.Unit("degrees")) cube.add_aux_coord(latitude, data_dims=1) cube.units = kw.get('units') station_attr = kw.get("station_attr") if station_attr is not None: cube.coord("station name").attributes.update(station_attr) cube_attr = kw.get("cube_attr") if cube_attr is not None: cube.attributes.update(cube_attr) iris.save(cube, outfile) def make_tree(cube): """ Return a scipy KDTree object to search a cube. NOTE: iris does have its own implementation for searching with KDTrees, but it does not work for 2D coords like this one. Examples -------- >>> import iris >>> from scipy.spatial import cKDTree as KDTree >>> url = ("http://omgsrv1.meas.ncsu.edu:8080/thredds/dodsC/fmrc/sabgom/" ... "SABGOM_Forecast_Model_Run_Collection_best.ncd") >>> cube = iris.load_cube(url, 'sea_water_potential_temperature') >>> cube = get_surface(cube) >>> tree, lon, lat = make_tree(cube) >>> isinstance(tree, KDTree) True """ lon = cube.coord(axis='X').points lat = cube.coord(axis='Y').points # Structured models with 1D lon, lat. if (lon.ndim == 1) and (lat.ndim == 1) and (cube.ndim == 3): lon, lat = np.meshgrid(lon, lat) # Unstructured are already paired! tree = KDTree(list(zip(lon.ravel(), lat.ravel()))) return tree, lon, lat def is_water(cube, min_var=0.01): """ Use only data where the standard deviation of the time cube exceeds 0.01 m (1 cm) this eliminates flat line model time cube that come from land points that should have had missing values. (Accounts for wet-and-dry models.) """ arr = ma.masked_invalid(cube.data).filled(fill_value=0) if arr.std() <= min_var: return False return True def get_nearest_series(cube, tree, xi, yi, k=10, max_dist=0.04): """ Find `k` nearest model data points from an iris `cube` at station lon: `xi`, lat: `yi` up to `max_dist` in degrees. Must provide a Scipy's KDTree `tree`. Examples -------- >>> import iris >>> from scipy.spatial import cKDTree as KDTree >>> url = ("http://omgsrv1.meas.ncsu.edu:8080/thredds/dodsC/fmrc/sabgom/" ... "SABGOM_Forecast_Model_Run_Collection_best.ncd") >>> cube = iris.load_cube(url, 'sea_water_potential_temperature') >>> cube = get_surface(cube) >>> tree, lon, lat = make_tree(cube) >>> series, dist, idx = get_nearest_series(cube, tree, ... lon[0, 10], lat[0, 10], ... k=10, max_dist=0.04) >>> idx == (0, 10) True >>> is_water(series, min_var=0.01) False >>> series, dist, idx = get_nearest_series(cube, tree, ... -75.7135500943, 36.1640944084, ... k=10, max_dist=0.04) >>> is_water(series, min_var=0.01) True """ distances, indices = tree.query(np.array([xi, yi]).T, k=k) if indices.size == 0: raise ValueError("No data found.") # Get data up to specified distance. mask = distances <= max_dist distances, indices = distances[mask], indices[mask] if distances.size == 0: msg = "No data near ({}, {}) max_dist={}.".format raise ValueError(msg(xi, yi, max_dist)) # Unstructured model. if (cube.coord(axis='X').ndim == 1) and (cube.ndim == 2): i = j = indices unstructured = True # Structured model. else: unstructured = False if cube.coord(axis='X').ndim == 2: # CoordinateMultiDim i, j = np.unravel_index(indices, cube.coord(axis='X').shape) else: shape = (cube.coord(axis='Y').shape[0], cube.coord(axis='X').shape[0]) i, j = np.unravel_index(indices, shape) series, dist, idx = None, None, None IJs = list(zip(i, j)) for dist, idx in zip(distances, IJs): idx = tuple([int(kk) for kk in idx]) if unstructured: # NOTE: This would be so elegant in py3k! idx = (idx[0],) # This weird syntax allow for idx to be len 1 or 2. series = cube[(slice(None),)+idx] return series, dist, idx def get_nearest_water(cube, tree, xi, yi, k=10, max_dist=0.04, min_var=0.01): """ Legacy function. Use `get_nearest_series`+`is_water` instead! """ distances, indices = tree.query(np.array([xi, yi]).T, k=k) if indices.size == 0: raise ValueError("No data found.") # Get data up to specified distance. mask = distances <= max_dist distances, indices = distances[mask], indices[mask] if distances.size == 0: msg = "No data near ({}, {}) max_dist={}.".format raise ValueError(msg(xi, yi, max_dist)) # Unstructured model. if (cube.coord(axis='X').ndim == 1) and (cube.ndim == 2): i = j = indices unstructured = True # Structured model. else: unstructured = False if cube.coord(axis='X').ndim == 2: # CoordinateMultiDim i, j = np.unravel_index(indices, cube.coord(axis='X').shape) else: shape = (cube.coord(axis='Y').shape[0], cube.coord(axis='X').shape[0]) i, j = np.unravel_index(indices, shape) IJs = list(zip(i, j)) for dist, idx in zip(distances, IJs): idx = tuple([int(kk) for kk in idx]) if unstructured: # NOTE: This would be so elegant in py3k! idx = (idx[0],) # This weird syntax allow for idx to be len 1 or 2. series = cube[(slice(None),)+idx] if is_water(series, min_var=0.01): break else: series = None continue return series, dist, idx if __name__ == '__main__': import doctest doctest.testmod()
{ "repo_name": "ocefpaf/utilities", "path": "utilities/tardis.py", "copies": "2", "size": "24614", "license": "mit", "hash": 7318299326451595000, "line_mean": 32.1278600269, "line_max": 79, "alpha_frac": 0.5768668238, "autogenerated": false, "ratio": 3.4579938184883394, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5034860642288339, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from datetime import datetime, timedelta from django.db.models import Q from django.utils import timezone from rest_framework import serializers from rest_framework.response import Response from sentry.app import search from sentry.api.base import DocSection from sentry.api.bases.project import ProjectEndpoint, ProjectEventPermission from sentry.api.serializers import serialize from sentry.api.serializers.models.group import StreamGroupSerializer from sentry.constants import ( DEFAULT_SORT_OPTION, STATUS_CHOICES ) from sentry.db.models.query import create_or_update from sentry.models import ( Activity, Group, GroupBookmark, GroupSeen, GroupStatus, TagKey ) from sentry.search.utils import parse_query from sentry.tasks.deletion import delete_group from sentry.tasks.merge import merge_group from sentry.utils.cursors import Cursor class GroupSerializer(serializers.Serializer): status = serializers.ChoiceField(choices=zip( STATUS_CHOICES.keys(), STATUS_CHOICES.keys() )) hasSeen = serializers.BooleanField() isBookmarked = serializers.BooleanField() isPublic = serializers.BooleanField() merge = serializers.BooleanField() class ProjectGroupIndexEndpoint(ProjectEndpoint): doc_section = DocSection.EVENTS permission_classes = (ProjectEventPermission,) def _parse_date(self, value): return datetime.utcfromtimestamp(float(value)).replace( tzinfo=timezone.utc, ) # bookmarks=0/1 # status=<x> # <tag>=<value> def get(self, request, project): """ List a project's aggregates Return a list of aggregates bound to a project. {method} {path} A default query of 'is:resolved' is applied. To return results with other statuses send an new query value (i.e. ?query= for all results). Any standard Sentry structured search query can be passed via the ``query`` parameter. """ query_kwargs = { 'project': project, } if request.GET.get('status'): try: query_kwargs['status'] = STATUS_CHOICES[request.GET['status']] except KeyError: return Response('{"detail": "invalid status"}', status=400) if request.user.is_authenticated() and request.GET.get('bookmarks'): query_kwargs['bookmarked_by'] = request.user if request.user.is_authenticated() and request.GET.get('assigned'): query_kwargs['assigned_to'] = request.user sort_by = request.GET.get('sort') if sort_by is None: sort_by = DEFAULT_SORT_OPTION query_kwargs['sort_by'] = sort_by tags = {} for tag_key in TagKey.objects.all_keys(project): if request.GET.get(tag_key): tags[tag_key] = request.GET[tag_key] if tags: query_kwargs['tags'] = tags # TODO: dates should include timestamps date_from = request.GET.get('since') date_to = request.GET.get('until') date_filter = request.GET.get('date_filter') limit = request.GET.get('limit') if limit: try: query_kwargs['limit'] = int(limit) except ValueError: return Response('{"detail": "invalid limit"}', status=400) today = timezone.now() if date_from: date_from = self._parse_date(date_from) else: date_from = today - timedelta(days=5) if date_to: date_to = self._parse_date(date_to) query_kwargs['date_from'] = date_from query_kwargs['date_to'] = date_to if date_filter: query_kwargs['date_filter'] = date_filter # TODO: proper pagination support cursor = request.GET.get('cursor') if cursor: query_kwargs['cursor'] = Cursor.from_string(cursor) query = request.GET.get('query', 'is:unresolved') if query is not None: query_kwargs.update(parse_query(query, request.user)) cursor_result = search.query(**query_kwargs) context = list(cursor_result) response = Response(serialize(context, request.user, StreamGroupSerializer())) response['Link'] = ', '.join([ self.build_cursor_link(request, 'previous', cursor_result.prev), self.build_cursor_link(request, 'next', cursor_result.next), ]) return response def put(self, request, project): """ Bulk mutate a list of aggregates Bulk mutate various attributes on aggregates. {method} {path}?id=1&id=2&id=3 {{ "status": "resolved", "isBookmarked": true }} - For non-status updates, the 'id' parameter is required. - For status updates, the 'id' parameter may be omitted for a batch "update all" query. - An optional 'status' parameter may be used to restrict mutations to only events with the given status. For example, to resolve all aggregates (project-wide): {method} {path} {{ "status": "resolved" }} Attributes: - status: resolved, unresolved, muted - hasSeen: true, false - isBookmarked: true, false - isPublic: true, false - merge: true, false If any ids are out of scope this operation will succeed without any data mutation. """ group_ids = request.GET.getlist('id') if group_ids: group_list = Group.objects.filter(project=project, id__in=group_ids) # filter down group ids to only valid matches group_ids = [g.id for g in group_list] if not group_ids: return Response(status=204) else: group_list = None serializer = GroupSerializer(data=request.DATA, partial=True) if not serializer.is_valid(): return Response(serializer.errors, status=400) result = serializer.object # validate that we've passed a selector for non-status bulk operations if not group_ids and result.keys() != ['status']: return Response('{"detail": "You must specify a list of IDs for this operation"}', status=400) if group_ids: filters = [Q(id__in=group_ids)] else: filters = [Q(project=project)] if request.GET.get('status'): try: status_filter = STATUS_CHOICES[request.GET['status']] except KeyError: return Response('{"detail": "Invalid status"}', status=400) filters.append(Q(status=status_filter)) if result.get('status') == 'resolved': now = timezone.now() happened = Group.objects.filter(*filters).exclude( status=GroupStatus.RESOLVED, ).update( status=GroupStatus.RESOLVED, resolved_at=now, ) if group_list and happened: for group in group_list: group.status = GroupStatus.RESOLVED group.resolved_at = now activity = Activity.objects.create( project=group.project, group=group, type=Activity.SET_RESOLVED, user=request.user, ) activity.send_notification() elif result.get('status'): new_status = STATUS_CHOICES[result['status']] happened = Group.objects.filter(*filters).exclude( status=new_status, ).update( status=new_status, ) if group_list and happened: if new_status == GroupStatus.UNRESOLVED: activity_type = Activity.SET_UNRESOLVED elif new_status == GroupStatus.MUTED: activity_type = Activity.SET_MUTED for group in group_list: group.status = new_status activity = Activity.objects.create( project=group.project, group=group, type=activity_type, user=request.user, ) activity.send_notification() if result.get('hasSeen'): for group in group_list: instance, created = create_or_update( GroupSeen, group=group, user=request.user, project=group.project, values={ 'last_seen': timezone.now(), } ) elif result.get('hasSeen') is False: GroupSeen.objects.filter( group__in=group_ids, user=request.user, ).delete() if result.get('isBookmarked'): for group in group_list: GroupBookmark.objects.get_or_create( project=group.project, group=group, user=request.user, ) elif result.get('isBookmarked') is False: GroupBookmark.objects.filter( group__in=group_ids, user=request.user, ).delete() if result.get('isPublic'): Group.objects.filter( id__in=group_ids, ).update(is_public=True) for group in group_list: if group.is_public: continue group.is_public = True Activity.objects.create( project=group.project, group=group, type=Activity.SET_PUBLIC, user=request.user, ) elif result.get('isPublic') is False: Group.objects.filter( id__in=group_ids, ).update(is_public=False) for group in group_list: if not group.is_public: continue group.is_public = False Activity.objects.create( project=group.project, group=group, type=Activity.SET_PRIVATE, user=request.user, ) # XXX(dcramer): this feels a bit shady like it should be its own # endpoint if result.get('merge') and len(group_list) > 1: primary_group = sorted(group_list, key=lambda x: -x.times_seen)[0] for group in group_list: if group == primary_group: continue merge_group.delay( from_object_id=group.id, to_object_id=primary_group.id, ) return Response(dict(result)) def delete(self, request, project): """ Bulk remove a list of aggregates Permanently remove the given aggregates. Only queries by 'id' are accepted. {method} {path}?id=1&id=2&id=3 If any ids are out of scope this operation will succeed without any data mutation """ group_ids = request.GET.getlist('id') if group_ids: group_list = Group.objects.filter(project=project, id__in=group_ids) # filter down group ids to only valid matches group_ids = [g.id for g in group_list] else: # missing any kind of filter return Response('{"detail": "You must specify a list of IDs for this operation"}', status=400) if not group_ids: return Response(status=204) # TODO(dcramer): set status to pending deletion for group in group_list: delete_group.delay(object_id=group.id) return Response(status=204)
{ "repo_name": "1tush/sentry", "path": "src/sentry/api/endpoints/project_group_index.py", "copies": "2", "size": "12113", "license": "bsd-3-clause", "hash": -5303712696215774000, "line_mean": 32.9299719888, "line_max": 106, "alpha_frac": 0.5516387352, "autogenerated": false, "ratio": 4.511359404096834, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.6062998139296834, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from datetime import datetime, timedelta from functools import partial from datashape import discover, Categorical, DateTime from datashape import string, object_, datetime_, Option import datashape import pandas as pd import numpy as np from ..convert import convert possibly_missing = frozenset({string, datetime_}) categorical = type(pd.Categorical.dtype) def dshape_from_pandas(col): if isinstance(col.dtype, categorical): return Categorical(col.cat.categories.tolist()) elif col.dtype.kind == 'M': tz = getattr(col.dtype, 'tz', None) if tz is not None: # Pandas stores this as a pytz.tzinfo, but DataShape wants a # string. tz = str(tz) return Option(DateTime(tz=tz)) dshape = datashape.CType.from_numpy_dtype(col.dtype) dshape = string if dshape == object_ else dshape return Option(dshape) if dshape in possibly_missing else dshape @discover.register(pd.DataFrame) def discover_dataframe(df): return len(df) * datashape.Record([(k, dshape_from_pandas(df[k])) for k in df.columns]) @discover.register((pd.Series, pd.Index)) def discover_1d(array_like): return len(array_like) * dshape_from_pandas(array_like) def coerce_datetimes(df): """ Make object columns into datetimes if possible Warning: this operates inplace. Example ------- >>> df = pd.DataFrame({'dt': ['2014-01-01'], 'name': ['Alice']}) >>> df.dtypes # note that these are strings/object dt object name object dtype: object >>> df2 = coerce_datetimes(df) >>> df2 dt name 0 2014-01-01 Alice >>> df2.dtypes # note that only the datetime-looking-one was transformed dt datetime64[ns] name object dtype: object """ objects = df.select_dtypes(include=['object']) # NOTE: In pandas < 0.17, pd.to_datetime(' ') == datetime(...), which is # not what we want. So we have to remove columns with empty or # whitespace-only strings to prevent erroneous datetime coercion. columns = [ c for c in objects.columns if not np.any(objects[c].str.isspace() | objects[c].str.isalpha()) ] df2 = objects[columns].apply(partial(pd.to_datetime, errors='ignore')) for c in df2.columns: df[c] = df2[c] return df @convert.register(pd.Timestamp, datetime) def convert_datetime_to_timestamp(dt, **kwargs): return pd.Timestamp(dt) @convert.register((pd.Timestamp, pd.Timedelta), float) def nan_to_nat(fl, **kwargs): try: if np.isnan(fl): # Only nan->nat edge return pd.NaT except TypeError: pass raise NotImplementedError() @convert.register((pd.Timestamp, pd.Timedelta), (type(pd.NaT), type(None))) def convert_null_or_nat_to_nat(n, **kwargs): return pd.NaT @convert.register(pd.Timedelta, timedelta) def convert_timedelta_to_pd_timedelta(dt, **kwargs): if dt is None: return pd.NaT return pd.Timedelta(dt)
{ "repo_name": "quantopian/odo", "path": "odo/backends/pandas.py", "copies": "1", "size": "3123", "license": "bsd-3-clause", "hash": 2349492924634632700, "line_mean": 27.1351351351, "line_max": 77, "alpha_frac": 0.6452129363, "autogenerated": false, "ratio": 3.6526315789473682, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9797844515247368, "avg_score": 0, "num_lines": 111 }
from __future__ import absolute_import, division, print_function from datetime import timedelta from datetime import datetime import astropy.units as u from sunpy.time import parse_time from sunpy import config from sunpy.extern.six.moves import range TIME_FORMAT = config.get('general', 'time_format') __all__ = ['TimeRange'] class TimeRange(object): """ An object to handle time ranges. .. note:: Regardless of how a TimeRange is constructed it will always provide a positive time range where the start time is before the end time. Parameters ---------- a : str, number, `datetime.datetime` A time (usually the start time) specified as a parse_time-compatible time string, number, or a datetime object. b : str, number, `datetime.datetime`, `datetime.timedelta`, `astropy.units.Quantity` (time) Another time (usually the end time) specified as a parse_time-compatible time string, number, or a datetime object. May also be the size of the time range specified as a timedelta object, or a `astropy.units.Quantity`. Examples -------- >>> from sunpy.time import TimeRange >>> time_range = TimeRange('2010/03/04 00:10', '2010/03/04 00:20') >>> time_range = TimeRange(('2010/03/04 00:10', '2010/03/04 00:20')) >>> import astropy.units as u >>> time_range = TimeRange('2010/03/04 00:10', 400 * u.s) >>> time_range = TimeRange('2010/03/04 00:10', 400 * u.day) """ def __init__(self, a, b=None): """Creates a new TimeRange instance""" # If a is a TimeRange object, copy attributes to new instance. self._t1 = None self._t2 = None if isinstance(a, TimeRange): self.__dict__ = a.__dict__.copy() return # Normalize different input types if b is None: x = parse_time(a[0]) if len(a) != 2: raise ValueError('If b is None a must have two elements') else: y = a[1] else: x = parse_time(a) y = b if isinstance(y, u.Quantity): y = timedelta(seconds=y.to('s').value) # Timedelta if isinstance(y, timedelta): if y.days >= 0: self._t1 = x self._t2 = x + y else: self._t1 = x + y self._t2 = x return # Otherwise, assume that the second argument is parse_time-compatible y = parse_time(y) if isinstance(y, datetime): if x < y: self._t1 = x self._t2 = y else: self._t1 = y self._t2 = x @property def start(self): """ Get the start time Returns ------- start : `datetime.datetime` """ return self._t1 @property def end(self): """ Get the end time Returns ------- end : `datetime.datetime` """ return self._t2 @property def dt(self): """ Get the length of the time range. Always a positive value. Returns ------- dt : `datetime.timedelta` """ return self._t2 - self._t1 @property def center(self): """ Gets the center of the TimeRange instance. Returns ------- value : `datetime.datetime` """ return self.start + self.dt // 2 @property def hours(self): """ Get the number of hours elapsed. Returns ------- value : `astropy.units.Quantity` """ return self._duration.to('hour') @property def days(self): """ Gets the number of days elapsed. Returns ------- value : `astropy.units.Quantity` """ return self._duration.to('d') @property def seconds(self): """ Gets the number of seconds elapsed. Returns ------- value : `astropy.units.Quantity` """ return self._duration.to('s') @property def minutes(self): """ Gets the number of minutes elapsed. Returns ------- value : `astropy.units.Quantity` """ return self._duration.to('min') @property def _duration(self): """ The duration of the time range. Returns ------- value : `astropy.units.Quantity` """ result = self.dt.microseconds * u.Unit('us') + self.dt.seconds * u.Unit('s') + self.dt.days * u.Unit('day') return result def __repr__(self): """ Returns a human-readable representation of the TimeRange instance.""" t1 = self.start.strftime(TIME_FORMAT) t2 = self.end.strftime(TIME_FORMAT) center = self.center.strftime(TIME_FORMAT) return (' Start:'.ljust(11) + t1 + '\n End:'.ljust(12) + t2 + '\n Center:'.ljust(12) + center + '\n Duration:'.ljust(12) + str(self.days.value) + ' days or' + '\n '.ljust(12) + str(self.hours.value) + ' hours or' + '\n '.ljust(12) + str(self.minutes.value) + ' minutes or' + '\n '.ljust(12) + str(self.seconds.value) + ' seconds' + '\n') def split(self, n=2): """ Splits the TimeRange into multiple equally sized parts. Parameters ---------- n : int The number of times to split the time range (must > 1) Returns ------- time ranges: list An list of equally sized TimeRange objects between the start and end times. Raises ------ ValueError If requested amount is less than 1 """ if n <= 0: raise ValueError('n must be greater than or equal to 1') subsections = [] previous_time = self.start next_time = None for _ in range(n): next_time = previous_time + self.dt // n next_range = TimeRange(previous_time, next_time) subsections.append(next_range) previous_time = next_time return subsections def window(self, cadence, window): """ Split the TimeRange up into a series of TimeRange windows, 'window' long, between the start and end with a cadence of 'cadence'. Parameters ---------- cadence : `astropy.units.Quantity`, `datetime.timedelta` Cadence in seconds or a timedelta instance window : `astropy.units.quantity`, `datetime.timedelta` The length of the Time's, assumed to be seconds if int. Returns ------- time ranges : list A list of TimeRange objects, that are window long and separated by cadence. Examples -------- >>> import astropy.units as u >>> from sunpy.time import TimeRange >>> time_range = TimeRange('2010/03/04 00:10', '2010/03/04 01:20') >>> time_range.window(60*60*u.s, window=12*u.s) # doctest: +NORMALIZE_WHITESPACE [ Start: 2010-03-04 00:10:00 End: 2010-03-04 00:10:12 Center:2010-03-04 00:10:06 Duration:0.000138888888889 days or 0.00333333333333 hours or 0.2 minutes or 12.0 seconds , Start: 2010-03-04 01:10:00 End: 2010-03-04 01:10:12 Center:2010-03-04 01:10:06 Duration:0.000138888888889 days or 0.00333333333333 hours or 0.2 minutes or 12.0 seconds , Start: 2010-03-04 02:10:00 End: 2010-03-04 02:10:12 Center:2010-03-04 02:10:06 Duration:0.000138888888889 days or 0.00333333333333 hours or 0.2 minutes or 12.0 seconds ] """ if not isinstance(window, timedelta): window = timedelta(seconds=window.to('s').value) if not isinstance(cadence, timedelta): cadence = timedelta(seconds=cadence.to('s').value) n = 1 times = [TimeRange(self.start, self.start + window)] while times[-1].end < self.end: times.append(TimeRange(self.start + cadence * n, self.start + cadence * n + window)) n += 1 return times def next(self): """Shift the time range forward by the amount of time elapsed""" dt = self.dt self._t1 = self._t1 + dt self._t2 = self._t2 + dt return self def previous(self): """Shift the time range backward by the amount of time elapsed""" dt = self.dt self._t1 = self._t1 - dt self._t2 = self._t2 - dt return self def extend(self, dt_start, dt_end): """Extend the time range forwards and backwards Parameters ---------- dt_start : `datetime.timedelta` The amount to shift the start time dt_end : `datetime.timedelta` The amount to shift the end time """ # Only a timedelta object is acceptable here self._t1 = self._t1 + dt_start self._t2 = self._t2 + dt_end def __contains__(self, time): """ Checks whether the given time lies within this range. Both limits are inclusive (i.e. __contains__(t1) and __contains__(t2) always return true) Parameters ---------- time : `datetime.datetime`, str A parse_time-compatible time to be checked. Returns ------- value : bool True if time lies between start and end, False otherwise. Examples -------- >>> from sunpy.time import TimeRange >>> time1 = '2014/5/5 12:11' >>> time2 = '2012/5/5 12:11' >>> time_range = TimeRange('2014/05/04 13:54', '2018/02/03 12:12') >>> time1 in time_range True >>> time2 in time_range False """ this_time = parse_time(time) return this_time >= self.start and this_time <= self.end
{ "repo_name": "Alex-Ian-Hamilton/sunpy", "path": "sunpy/time/timerange.py", "copies": "1", "size": "10431", "license": "bsd-2-clause", "hash": 4260113573274030000, "line_mean": 28.1368715084, "line_max": 115, "alpha_frac": 0.5175917937, "autogenerated": false, "ratio": 4.142573471008737, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5160165264708737, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from datetime import timedelta from django.db import IntegrityError, transaction from django.utils import timezone from rest_framework import serializers from rest_framework.response import Response from sentry.app import search from sentry.api.base import DocSection from sentry.api.bases.project import ProjectEndpoint, ProjectEventPermission from sentry.api.serializers import serialize from sentry.api.serializers.models.group import StreamGroupSerializer from sentry.constants import DEFAULT_SORT_OPTION from sentry.db.models.query import create_or_update from sentry.models import ( Activity, EventMapping, Group, GroupBookmark, GroupResolution, GroupSeen, GroupSnooze, GroupStatus, Release, TagKey ) from sentry.search.utils import parse_query from sentry.tasks.deletion import delete_group from sentry.tasks.merge import merge_group from sentry.utils.cursors import Cursor from sentry.utils.apidocs import scenario, attach_scenarios ERR_INVALID_STATS_PERIOD = "Invalid stats_period. Valid choices are '', '24h', and '14d'" @scenario('BulkUpdateAggregates') def bulk_update_aggregates_scenario(runner): project = runner.default_project group1, group2 = Group.objects.filter(project=project)[:2] runner.request( method='PUT', path='/projects/%s/%s/issues/?id=%s&id=%s' % ( runner.org.slug, project.slug, group1.id, group2.id), data={'status': 'unresolved', 'isPublic': False} ) @scenario('BulkRemoveAggregates') def bulk_remove_aggregates_scenario(runner): with runner.isolated_project('Amazing Plumbing') as project: group1, group2 = Group.objects.filter(project=project)[:2] runner.request( method='DELETE', path='/projects/%s/%s/issues/?id=%s&id=%s' % ( runner.org.slug, project.slug, group1.id, group2.id), ) @scenario('ListProjectAggregates') def list_project_aggregates_scenario(runner): project = runner.default_project runner.request( method='GET', path='/projects/%s/%s/issues/?statsPeriod=24h' % ( runner.org.slug, project.slug), ) STATUS_CHOICES = { 'resolved': GroupStatus.RESOLVED, 'unresolved': GroupStatus.UNRESOLVED, 'muted': GroupStatus.MUTED, 'resolvedInNextRelease': GroupStatus.UNRESOLVED, } class ValidationError(Exception): pass class GroupSerializer(serializers.Serializer): status = serializers.ChoiceField(choices=zip( STATUS_CHOICES.keys(), STATUS_CHOICES.keys() )) hasSeen = serializers.BooleanField() isBookmarked = serializers.BooleanField() isPublic = serializers.BooleanField() merge = serializers.BooleanField() snoozeDuration = serializers.IntegerField() class ProjectGroupIndexEndpoint(ProjectEndpoint): doc_section = DocSection.EVENTS permission_classes = (ProjectEventPermission,) def _build_query_params_from_request(self, request, project): query_kwargs = { 'project': project, } if request.GET.get('status'): try: query_kwargs['status'] = STATUS_CHOICES[request.GET['status']] except KeyError: raise ValidationError('invalid status') if request.user.is_authenticated() and request.GET.get('bookmarks'): query_kwargs['bookmarked_by'] = request.user if request.user.is_authenticated() and request.GET.get('assigned'): query_kwargs['assigned_to'] = request.user sort_by = request.GET.get('sort') if sort_by is None: sort_by = DEFAULT_SORT_OPTION query_kwargs['sort_by'] = sort_by tags = {} for tag_key in TagKey.objects.all_keys(project): if request.GET.get(tag_key): tags[tag_key] = request.GET[tag_key] if tags: query_kwargs['tags'] = tags limit = request.GET.get('limit') if limit: try: query_kwargs['limit'] = int(limit) except ValueError: raise ValidationError('invalid limit') # TODO: proper pagination support cursor = request.GET.get('cursor') if cursor: query_kwargs['cursor'] = Cursor.from_string(cursor) query = request.GET.get('query', 'is:unresolved').strip() if query: query_kwargs.update(parse_query(project, query, request.user)) return query_kwargs # bookmarks=0/1 # status=<x> # <tag>=<value> # statsPeriod=24h @attach_scenarios([list_project_aggregates_scenario]) def get(self, request, project): """ List a Project's Aggregates ``````````````````````````` Return a list of aggregates bound to a project. All parameters are supplied as query string parameters. A default query of ``is:resolved`` is applied. To return results with other statuses send an new query value (i.e. ``?query=`` for all results). The ``statsPeriod`` parameter can be used to select the timeline stats which should be present. Possible values are: '' (disable), '24h', '14d' :qparam string statsPeriod: an optional stat period (can be one of ``"24h"``, ``"14d"``, and ``""``). :qparam querystring query: an optional Sentry structured search query. If not provided an implied ``"is:resolved"`` is assumed.) :pparam string organization_slug: the slug of the organization the groups belong to. :pparam string project_slug: the slug of the project the groups belong to. :auth: required """ stats_period = request.GET.get('statsPeriod') if stats_period not in (None, '', '24h', '14d'): return Response({"detail": ERR_INVALID_STATS_PERIOD}, status=400) elif stats_period is None: # default stats_period = '24h' elif stats_period == '': # disable stats stats_period = None query = request.GET.get('query') if query and len(query) == 32: # check to see if we've got an event ID try: mapping = EventMapping.objects.get( project_id=project.id, event_id=query, ) except EventMapping.DoesNotExist: pass else: matching_group = Group.objects.get(id=mapping.group_id) return Response(serialize( [matching_group], request.user, StreamGroupSerializer( stats_period=stats_period ) )) try: query_kwargs = self._build_query_params_from_request(request, project) except ValidationError as exc: return Response({'detail': unicode(exc)}, status=400) cursor_result = search.query(**query_kwargs) results = list(cursor_result) context = serialize( results, request.user, StreamGroupSerializer( stats_period=stats_period ) ) # HACK: remove auto resolved entries if query_kwargs.get('status') == GroupStatus.UNRESOLVED: context = [ r for r in context if r['status'] == 'unresolved' ] response = Response(context) response['Link'] = ', '.join([ self.build_cursor_link(request, 'previous', cursor_result.prev), self.build_cursor_link(request, 'next', cursor_result.next), ]) return response @attach_scenarios([bulk_update_aggregates_scenario]) def put(self, request, project): """ Bulk Mutate a List of Aggregates ```````````````````````````````` Bulk mutate various attributes on aggregates. The list of groups to modify is given through the `id` query parameter. It is repeated for each group that should be modified. - For non-status updates, the `id` query parameter is required. - For status updates, the `id` query parameter may be omitted for a batch "update all" query. - An optional `status` query parameter may be used to restrict mutations to only events with the given status. The following attributes can be modified and are supplied as JSON object in the body: If any ids are out of scope this operation will succeed without any data mutation. :qparam int id: a list of IDs of the groups to be mutated. This parameter shall be repeated for each group. It is optional only if a status is mutated in which case an implicit `update all` is assumed. :qparam string status: optionally limits the query to groups of the specified status. Valid values are ``"resolved"``, ``"unresolved"`` and ``"muted"``. :pparam string organization_slug: the slug of the organization the groups belong to. :pparam string project_slug: the slug of the project the groups belong to. :param string status: the new status for the groups. Valid values are ``"resolved"``, ``"unresolved"`` and ``"muted"``. :param int snoozeDuration: the number of minutes to mute this issue. :param boolean isPublic: sets the group to public or private. :param boolean merge: allows to merge or unmerge different groups. :param boolean hasSeen: in case this API call is invoked with a user context this allows changing of the flag that indicates if the user has seen the event. :param boolean isBookmarked: in case this API call is invoked with a user context this allows changing of the bookmark flag. :auth: required """ group_ids = request.GET.getlist('id') if group_ids: group_list = Group.objects.filter(project=project, id__in=group_ids) # filter down group ids to only valid matches group_ids = [g.id for g in group_list] if not group_ids: return Response(status=204) else: group_list = None serializer = GroupSerializer(data=request.DATA, partial=True) if not serializer.is_valid(): return Response(serializer.errors, status=400) result = dict(serializer.object) acting_user = request.user if request.user.is_authenticated() else None if not group_ids: try: query_kwargs = self._build_query_params_from_request(request, project) except ValidationError as exc: return Response({'detail': unicode(exc)}, status=400) # bulk mutations are limited to 1000 items # TODO(dcramer): it'd be nice to support more than this, but its # a bit too complicated right now query_kwargs['limit'] = 1000 cursor_result = search.query(**query_kwargs) group_list = list(cursor_result) group_ids = [g.id for g in group_list] queryset = Group.objects.filter( id__in=group_ids, ) if result.get('status') == 'resolvedInNextRelease': try: release = Release.objects.filter( project=project, ).order_by('-date_added')[0] except IndexError: return Response('{"detail": "No release data present in the system to indicate form a basis for \'Next Release\'"}', status=400) now = timezone.now() for group in group_list: try: with transaction.atomic(): resolution, created = GroupResolution.objects.create( group=group, release=release, ), True except IntegrityError: resolution, created = GroupResolution.objects.get( group=group, ), False if created: activity = Activity.objects.create( project=group.project, group=group, type=Activity.SET_RESOLVED_IN_RELEASE, user=acting_user, ident=resolution.id, data={ # no version yet 'version': '', } ) activity.send_notification() queryset.update( status=GroupStatus.RESOLVED, resolved_at=now, ) result.update({ 'status': 'resolved', 'statusDetails': { 'inNextRelease': True, }, }) elif result.get('status') == 'resolved': now = timezone.now() happened = queryset.exclude( status=GroupStatus.RESOLVED, ).update( status=GroupStatus.RESOLVED, resolved_at=now, ) GroupResolution.objects.filter( group__in=group_ids, ).delete() if group_list and happened: for group in group_list: group.status = GroupStatus.RESOLVED group.resolved_at = now activity = Activity.objects.create( project=group.project, group=group, type=Activity.SET_RESOLVED, user=acting_user, ) activity.send_notification() result['statusDetails'] = {} elif result.get('status'): new_status = STATUS_CHOICES[result['status']] happened = queryset.exclude( status=new_status, ).update( status=new_status, ) GroupResolution.objects.filter( group__in=group_ids, ).delete() if new_status == GroupStatus.MUTED: snooze_duration = result.pop('snoozeDuration', None) if snooze_duration: snooze_until = timezone.now() + timedelta( minutes=snooze_duration, ) for group in group_list: GroupSnooze.objects.create_or_update( group=group, values={ 'until': snooze_until, } ) result['statusDetails'] = { 'snoozeUntil': snooze_until, } else: GroupSnooze.objects.filter( group__in=group_ids, ).delete() snooze_until = None result['statusDetails'] = {} else: result['statusDetails'] = {} if group_list and happened: if new_status == GroupStatus.UNRESOLVED: activity_type = Activity.SET_UNRESOLVED activity_data = {} elif new_status == GroupStatus.MUTED: activity_type = Activity.SET_MUTED activity_data = { 'snoozeUntil': snooze_until, 'snoozeDuration': snooze_duration, } for group in group_list: group.status = new_status activity = Activity.objects.create( project=group.project, group=group, type=activity_type, user=acting_user, data=activity_data, ) activity.send_notification() if result.get('hasSeen') and project.member_set.filter(user=request.user).exists(): for group in group_list: instance, created = create_or_update( GroupSeen, group=group, user=request.user, project=group.project, values={ 'last_seen': timezone.now(), } ) elif result.get('hasSeen') is False: GroupSeen.objects.filter( group__in=group_ids, user=request.user, ).delete() if result.get('isBookmarked'): for group in group_list: GroupBookmark.objects.get_or_create( project=project, group=group, user=request.user, ) elif result.get('isBookmarked') is False: GroupBookmark.objects.filter( group__in=group_ids, user=request.user, ).delete() if result.get('isPublic'): queryset.update(is_public=True) for group in group_list: if group.is_public: continue group.is_public = True Activity.objects.create( project=group.project, group=group, type=Activity.SET_PUBLIC, user=acting_user, ) elif result.get('isPublic') is False: queryset.update(is_public=False) for group in group_list: if not group.is_public: continue group.is_public = False Activity.objects.create( project=group.project, group=group, type=Activity.SET_PRIVATE, user=acting_user, ) # XXX(dcramer): this feels a bit shady like it should be its own # endpoint if result.get('merge') and len(group_list) > 1: primary_group = sorted(group_list, key=lambda x: -x.times_seen)[0] children = [] for group in group_list: if group == primary_group: continue children.append(group) group.update(status=GroupStatus.PENDING_MERGE) merge_group.delay( from_object_id=group.id, to_object_id=primary_group.id, ) Activity.objects.create( project=primary_group.project, group=primary_group, type=Activity.MERGE, user=acting_user, data={ 'issues': [{'id': c.id} for c in children], }, ) result['merge'] = { 'parent': str(primary_group.id), 'children': [str(g.id) for g in children], } return Response(result) @attach_scenarios([bulk_remove_aggregates_scenario]) def delete(self, request, project): """ Bulk Remove a List of Aggregates ```````````````````````````````` Permanently remove the given aggregates. The list of groups to modify is given through the `id` query parameter. It is repeated for each group that should be removed. Only queries by 'id' are accepted. If any ids are out of scope this operation will succeed without any data mutation. :qparam int id: a list of IDs of the groups to be removed. This parameter shall be repeated for each group. :pparam string organization_slug: the slug of the organization the groups belong to. :pparam string project_slug: the slug of the project the groups belong to. :auth: required """ group_ids = request.GET.getlist('id') if group_ids: group_list = Group.objects.filter(project=project, id__in=group_ids) # filter down group ids to only valid matches group_ids = [g.id for g in group_list] else: # missing any kind of filter return Response('{"detail": "You must specify a list of IDs for this operation"}', status=400) if not group_ids: return Response(status=204) # TODO(dcramer): set status to pending deletion for group in group_list: delete_group.delay(object_id=group.id, countdown=3600) return Response(status=204)
{ "repo_name": "nicholasserra/sentry", "path": "src/sentry/api/endpoints/project_group_index.py", "copies": "2", "size": "21496", "license": "bsd-3-clause", "hash": 6713285384856708000, "line_mean": 36.2547660312, "line_max": 144, "alpha_frac": 0.5289356159, "autogenerated": false, "ratio": 4.7747667703243, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.00014983852012912064, "num_lines": 577 }
from __future__ import absolute_import, division, print_function from datetime import timedelta from django.db.models import Q from django.utils import timezone from rest_framework import serializers from rest_framework.response import Response from sentry.app import search from sentry.api.base import DocSection, Endpoint from sentry.api.permissions import assert_perm from sentry.api.serializers import serialize from sentry.constants import ( DEFAULT_SORT_OPTION, STATUS_CHOICES ) from sentry.db.models.query import create_or_update from sentry.models import ( Activity, Group, GroupBookmark, GroupMeta, GroupStatus, Project, TagKey ) from sentry.search.utils import parse_query from sentry.tasks.deletion import delete_group from sentry.tasks.merge import merge_group from sentry.utils.cursors import Cursor from sentry.utils.dates import parse_date class GroupSerializer(serializers.Serializer): status = serializers.ChoiceField(choices=zip( STATUS_CHOICES.keys(), STATUS_CHOICES.keys() )) isBookmarked = serializers.BooleanField() merge = serializers.BooleanField() class ProjectGroupIndexEndpoint(Endpoint): doc_section = DocSection.EVENTS # bookmarks=0/1 # status=<x> # <tag>=<value> def get(self, request, project_id): """ List a project's aggregates Return a list of aggregates bound to a project. {method} {path}?id=1&id=2&id=3 A default query of 'is:resolved' is applied. To return results with other statuses send an new query value (i.e. ?query= for all results). Any standard Sentry structured search query can be passed via the ``query`` parameter. """ project = Project.objects.get_from_cache( id=project_id, ) assert_perm(project, request.user, request.auth) query_kwargs = { 'project': project, } if request.GET.get('status'): try: query_kwargs['status'] = STATUS_CHOICES[request.GET['status']] except KeyError: return Response('{"error": "invalid status"}', status=400) if request.user.is_authenticated() and request.GET.get('bookmarks'): query_kwargs['bookmarked_by'] = request.user if request.user.is_authenticated() and request.GET.get('assigned'): query_kwargs['assigned_to'] = request.user sort_by = request.GET.get('sort') if sort_by is None: sort_by = DEFAULT_SORT_OPTION query_kwargs['sort_by'] = sort_by tags = {} for tag_key in TagKey.objects.all_keys(project): if request.GET.get(tag_key): tags[tag_key] = request.GET[tag_key] if tags: query_kwargs['tags'] = tags # TODO: dates should include timestamps date_from = request.GET.get('since') time_from = request.GET.get('until') date_filter = request.GET.get('date_filter') date_to = request.GET.get('dt') time_to = request.GET.get('tt') limit = request.GET.get('limit') if limit: try: query_kwargs['limit'] = int(limit) except ValueError: return Response('{"error": "invalid limit"}', status=400) today = timezone.now() # date format is Y-m-d if any(x is not None for x in [date_from, time_from, date_to, time_to]): date_from, date_to = parse_date(date_from, time_from), parse_date(date_to, time_to) else: date_from = today - timedelta(days=5) date_to = None query_kwargs['date_from'] = date_from query_kwargs['date_to'] = date_to if date_filter: query_kwargs['date_filter'] = date_filter # TODO: proper pagination support cursor = request.GET.get('cursor') if cursor: query_kwargs['cursor'] = Cursor.from_string(cursor) query = request.GET.get('query', 'is:unresolved') if query is not None: query_kwargs.update(parse_query(query, request.user)) cursor_result = search.query(**query_kwargs) context = list(cursor_result) GroupMeta.objects.populate_cache(context) response = Response(serialize(context, request.user)) response['Link'] = ', '.join([ self.build_cursor_link(request, 'previous', cursor_result.prev), self.build_cursor_link(request, 'next', cursor_result.next), ]) return response def put(self, request, project_id): """ Bulk mutate a list of aggregates Bulk mutate various attributes on aggregates. {method} {path}?id=1&id=2&id=3 {{ "status": "resolved", "isBookmarked": true }} - For non-status updates, only queries by 'id' are accepted. - For status updates, the 'id' parameter may be omitted for a batch "update all" query. Attributes: - status: resolved, unresolved, muted - isBookmarked: true, false - merge: true, false If any ids are out of scope this operation will succeed without any data mutation. """ project = Project.objects.get_from_cache( id=project_id, ) assert_perm(project, request.user, request.auth) group_ids = request.GET.getlist('id') if group_ids: group_list = Group.objects.filter(project=project, id__in=group_ids) # filter down group ids to only valid matches group_ids = [g.id for g in group_list] if not group_ids: return Response(status=204) else: group_list = None serializer = GroupSerializer(data=request.DATA, partial=True) if not serializer.is_valid(): return Response(status=400) result = serializer.object # validate that we've passed a selector for non-status bulk operations if not group_ids and result.get('isBookmarked') is not None: return Response(status=400) if group_ids: filters = Q(id__in=group_ids) else: filters = Q(project=project) if result.get('status') == 'resolved': now = timezone.now() happened = Group.objects.filter(filters).exclude( status=GroupStatus.RESOLVED, ).update( status=GroupStatus.RESOLVED, resolved_at=now, ) if group_list and happened: for group in group_list: group.status = GroupStatus.RESOLVED group.resolved_at = now create_or_update( Activity, project=group.project, group=group, type=Activity.SET_RESOLVED, user=request.user, ) elif result.get('status'): new_status = STATUS_CHOICES[result['status']] happened = Group.objects.filter(filters).exclude( status=new_status, ).update( status=new_status, ) if group_list and happened: for group in group_list: group.status = new_status if result.get('isBookmarked'): for group in group_list: GroupBookmark.objects.get_or_create( project=group.project, group=group, user=request.user, ) elif result.get('isBookmarked') is False: GroupBookmark.objects.filter( group__in=group_ids, user=request.user, ).delete() # XXX(dcramer): this feels a bit shady like it should be its own # endpoint if result.get('merge') and len(group_list) > 1: primary_group = sorted(group_list, key=lambda x: -x.times_seen)[0] for group in group_list: if group == primary_group: continue merge_group.delay( from_object_id=group.id, to_object_id=primary_group.id, ) if group_list: GroupMeta.objects.populate_cache(group_list) # TODO(dcramer): we need create a public API for 'sort_value' context = serialize(list(group_list), request.user) return Response(context) return Response(status=204) def delete(self, request, project_id): """ Bulk remove a list of aggregates Permanently remove the given aggregates. Only queries by 'id' are accepted. {method} {path}?id=1&id=2&id=3 If any ids are out of scope this operation will succeed without any data mutation """ project = Project.objects.get_from_cache( id=project_id, ) assert_perm(project, request.user, request.auth) group_ids = request.GET.getlist('id') if group_ids: group_list = Group.objects.filter(project=project, id__in=group_ids) # filter down group ids to only valid matches group_ids = [g.id for g in group_list] else: # missing any kind of filter return Response(status=400) if not group_ids: return Response(status=204) # TODO(dcramer): set status to pending deletion for group in group_list: delete_group.delay(object_id=group.id) return Response(status=204)
{ "repo_name": "camilonova/sentry", "path": "src/sentry/api/endpoints/project_group_index.py", "copies": "1", "size": "9766", "license": "bsd-3-clause", "hash": 1807118110907661300, "line_mean": 31.7718120805, "line_max": 95, "alpha_frac": 0.5751587139, "autogenerated": false, "ratio": 4.249782419495213, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5324941133395213, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from datetime import timedelta from flask import make_response, request, current_app from functools import update_wrapper from ... import py2help def crossdomain(origin=None, methods=None, headers=None, automatic_headers=True, max_age=21600, attach_to_all=True, automatic_options=True): if methods is not None: methods = ', '.join(sorted(x.upper() for x in methods)) if headers is not None and not isinstance(headers, py2help.basestring): headers = ', '.join(x.upper() for x in headers) if not isinstance(origin, py2help.basestring): origin = ', '.join(origin) if isinstance(max_age, timedelta): max_age = max_age.total_seconds() def get_methods(): return methods options_resp = current_app.make_default_options_response() return options_resp.headers['allow'] def decorator(f): def wrapped_function(*args, **kwargs): if automatic_options and request.method == 'OPTIONS': resp = current_app.make_default_options_response() else: resp = make_response(f(*args, **kwargs)) if not attach_to_all and request.method != 'OPTIONS': return resp h = resp.headers h['Access-Control-Allow-Origin'] = origin h['Access-Control-Allow-Methods'] = get_methods() h['Access-Control-Max-Age'] = str(max_age) if automatic_headers and h.get('Access-Control-Request-Headers'): h['Access-Control-Allow-Headers'] = h['Access-Control-Request-Headers'] return resp f.provide_automatic_options = False return update_wrapper(wrapped_function, f) return decorator
{ "repo_name": "FrancescAlted/blaze", "path": "blaze/io/server/crossdomain.py", "copies": "6", "size": "1834", "license": "bsd-3-clause", "hash": -2363745160118387700, "line_mean": 38.0212765957, "line_max": 87, "alpha_frac": 0.6199563795, "autogenerated": false, "ratio": 4.1776765375854215, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.7797632917085421, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from datetime import timedelta from uuid import uuid4 import six from django.db import IntegrityError, transaction from django.utils import timezone from rest_framework import serializers from rest_framework.response import Response from sentry.api.base import DocSection from sentry.api.bases.project import ProjectEndpoint, ProjectEventPermission from sentry.api.fields import UserField from sentry.api.serializers import serialize from sentry.api.serializers.models.group import ( SUBSCRIPTION_REASON_MAP, StreamGroupSerializer ) from sentry.app import search from sentry.constants import DEFAULT_SORT_OPTION from sentry.db.models.query import create_or_update from sentry.models import ( Activity, EventMapping, Group, GroupAssignee, GroupBookmark, GroupHash, GroupResolution, GroupSeen, GroupSnooze, GroupStatus, GroupSubscription, GroupSubscriptionReason, Release, TagKey ) from sentry.models.group import looks_like_short_id from sentry.search.utils import InvalidQuery, parse_query from sentry.tasks.deletion import delete_group from sentry.tasks.merge import merge_group from sentry.utils.apidocs import attach_scenarios, scenario from sentry.utils.cursors import Cursor ERR_INVALID_STATS_PERIOD = "Invalid stats_period. Valid choices are '', '24h', and '14d'" @scenario('BulkUpdateIssues') def bulk_update_issues_scenario(runner): project = runner.default_project group1, group2 = Group.objects.filter(project=project)[:2] runner.request( method='PUT', path='/projects/%s/%s/issues/?id=%s&id=%s' % ( runner.org.slug, project.slug, group1.id, group2.id), data={'status': 'unresolved', 'isPublic': False} ) @scenario('BulkRemoveIssuess') def bulk_remove_issues_scenario(runner): with runner.isolated_project('Amazing Plumbing') as project: group1, group2 = Group.objects.filter(project=project)[:2] runner.request( method='DELETE', path='/projects/%s/%s/issues/?id=%s&id=%s' % ( runner.org.slug, project.slug, group1.id, group2.id), ) @scenario('ListProjectIssuess') def list_project_issues_scenario(runner): project = runner.default_project runner.request( method='GET', path='/projects/%s/%s/issues/?statsPeriod=24h' % ( runner.org.slug, project.slug), ) STATUS_CHOICES = { 'resolved': GroupStatus.RESOLVED, 'unresolved': GroupStatus.UNRESOLVED, 'ignored': GroupStatus.IGNORED, 'resolvedInNextRelease': GroupStatus.UNRESOLVED, # TODO(dcramer): remove in 9.0 'muted': GroupStatus.IGNORED, } class ValidationError(Exception): pass class GroupValidator(serializers.Serializer): status = serializers.ChoiceField(choices=zip( STATUS_CHOICES.keys(), STATUS_CHOICES.keys() )) hasSeen = serializers.BooleanField() isBookmarked = serializers.BooleanField() isPublic = serializers.BooleanField() isSubscribed = serializers.BooleanField() merge = serializers.BooleanField() ignoreDuration = serializers.IntegerField() assignedTo = UserField() # TODO(dcramer): remove in 9.0 snoozeDuration = serializers.IntegerField() def validate_assignedTo(self, attrs, source): value = attrs[source] if value and not self.context['project'].member_set.filter(user=value).exists(): raise serializers.ValidationError('Cannot assign to non-team member') return attrs class ProjectGroupIndexEndpoint(ProjectEndpoint): doc_section = DocSection.EVENTS permission_classes = (ProjectEventPermission,) def _build_query_params_from_request(self, request, project): query_kwargs = { 'project': project, } if request.GET.get('status'): try: query_kwargs['status'] = STATUS_CHOICES[request.GET['status']] except KeyError: raise ValidationError('invalid status') if request.user.is_authenticated() and request.GET.get('bookmarks'): query_kwargs['bookmarked_by'] = request.user if request.user.is_authenticated() and request.GET.get('assigned'): query_kwargs['assigned_to'] = request.user sort_by = request.GET.get('sort') if sort_by is None: sort_by = DEFAULT_SORT_OPTION query_kwargs['sort_by'] = sort_by tags = {} for tag_key in TagKey.objects.all_keys(project): if request.GET.get(tag_key): tags[tag_key] = request.GET[tag_key] if tags: query_kwargs['tags'] = tags limit = request.GET.get('limit') if limit: try: query_kwargs['limit'] = int(limit) except ValueError: raise ValidationError('invalid limit') # TODO: proper pagination support cursor = request.GET.get('cursor') if cursor: query_kwargs['cursor'] = Cursor.from_string(cursor) query = request.GET.get('query', 'is:unresolved').strip() if query: try: query_kwargs.update(parse_query(project, query, request.user)) except InvalidQuery as e: raise ValidationError(u'Your search query could not be parsed: {}'.format(e.message)) return query_kwargs # bookmarks=0/1 # status=<x> # <tag>=<value> # statsPeriod=24h @attach_scenarios([list_project_issues_scenario]) def get(self, request, project): """ List a Project's Issues ``````````````````````` Return a list of issues (groups) bound to a project. All parameters are supplied as query string parameters. A default query of ``is:unresolved`` is applied. To return results with other statuses send an new query value (i.e. ``?query=`` for all results). The ``statsPeriod`` parameter can be used to select the timeline stats which should be present. Possible values are: '' (disable), '24h', '14d' :qparam string statsPeriod: an optional stat period (can be one of ``"24h"``, ``"14d"``, and ``""``). :qparam bool shortIdLookup: if this is set to true then short IDs are looked up by this function as well. This can cause the return value of the function to return an event issue of a different project which is why this is an opt-in. Set to `1` to enable. :qparam querystring query: an optional Sentry structured search query. If not provided an implied ``"is:unresolved"`` is assumed.) :pparam string organization_slug: the slug of the organization the issues belong to. :pparam string project_slug: the slug of the project the issues belong to. :auth: required """ stats_period = request.GET.get('statsPeriod') if stats_period not in (None, '', '24h', '14d'): return Response({"detail": ERR_INVALID_STATS_PERIOD}, status=400) elif stats_period is None: # default stats_period = '24h' elif stats_period == '': # disable stats stats_period = None query = request.GET.get('query', '').strip() if query: matching_group = None if len(query) == 32: # check to see if we've got an event ID try: mapping = EventMapping.objects.get( project_id=project.id, event_id=query, ) except EventMapping.DoesNotExist: pass else: matching_group = Group.objects.get(id=mapping.group_id) # If the query looks like a short id, we want to provide some # information about where that is. Note that this can return # results for another project. The UI deals with this. elif request.GET.get('shortIdLookup') == '1' and \ looks_like_short_id(query): try: matching_group = Group.objects.by_qualified_short_id( project.organization_id, query) except Group.DoesNotExist: matching_group = None if matching_group is not None: response = Response(serialize( [matching_group], request.user, StreamGroupSerializer( stats_period=stats_period ) )) response['X-Sentry-Direct-Hit'] = '1' return response try: query_kwargs = self._build_query_params_from_request(request, project) except ValidationError as exc: return Response({'detail': six.text_type(exc)}, status=400) cursor_result = search.query(**query_kwargs) results = list(cursor_result) context = serialize( results, request.user, StreamGroupSerializer( stats_period=stats_period ) ) # HACK: remove auto resolved entries if query_kwargs.get('status') == GroupStatus.UNRESOLVED: context = [ r for r in context if r['status'] == 'unresolved' ] response = Response(context) response['Link'] = ', '.join([ self.build_cursor_link(request, 'previous', cursor_result.prev), self.build_cursor_link(request, 'next', cursor_result.next), ]) return response @attach_scenarios([bulk_update_issues_scenario]) def put(self, request, project): """ Bulk Mutate a List of Issues ```````````````````````````` Bulk mutate various attributes on issues. The list of issues to modify is given through the `id` query parameter. It is repeated for each issue that should be modified. - For non-status updates, the `id` query parameter is required. - For status updates, the `id` query parameter may be omitted for a batch "update all" query. - An optional `status` query parameter may be used to restrict mutations to only events with the given status. The following attributes can be modified and are supplied as JSON object in the body: If any ids are out of scope this operation will succeed without any data mutation. :qparam int id: a list of IDs of the issues to be mutated. This parameter shall be repeated for each issue. It is optional only if a status is mutated in which case an implicit `update all` is assumed. :qparam string status: optionally limits the query to issues of the specified status. Valid values are ``"resolved"``, ``"unresolved"`` and ``"ignored"``. :pparam string organization_slug: the slug of the organization the issues belong to. :pparam string project_slug: the slug of the project the issues belong to. :param string status: the new status for the issues. Valid values are ``"resolved"``, ``resolvedInNextRelease``, ``"unresolved"``, and ``"ignored"``. :param int ignoreDuration: the number of minutes to ignore this issue. :param boolean isPublic: sets the issue to public or private. :param boolean merge: allows to merge or unmerge different issues. :param string assignedTo: the username of the user that should be assigned to this issue. :param boolean hasSeen: in case this API call is invoked with a user context this allows changing of the flag that indicates if the user has seen the event. :param boolean isBookmarked: in case this API call is invoked with a user context this allows changing of the bookmark flag. :auth: required """ group_ids = request.GET.getlist('id') if group_ids: group_list = Group.objects.filter(project=project, id__in=group_ids) # filter down group ids to only valid matches group_ids = [g.id for g in group_list] if not group_ids: return Response(status=204) else: group_list = None serializer = GroupValidator( data=request.DATA, partial=True, context={'project': project}, ) if not serializer.is_valid(): return Response(serializer.errors, status=400) result = dict(serializer.object) acting_user = request.user if request.user.is_authenticated() else None if not group_ids: try: query_kwargs = self._build_query_params_from_request(request, project) except ValidationError as exc: return Response({'detail': six.text_type(exc)}, status=400) # bulk mutations are limited to 1000 items # TODO(dcramer): it'd be nice to support more than this, but its # a bit too complicated right now query_kwargs['limit'] = 1000 cursor_result = search.query(**query_kwargs) group_list = list(cursor_result) group_ids = [g.id for g in group_list] is_bulk = len(group_ids) > 1 queryset = Group.objects.filter( id__in=group_ids, ) if result.get('status') == 'resolvedInNextRelease': try: release = Release.objects.filter( projects=project, organization_id=project.organization_id ).order_by('-date_added')[0] except IndexError: return Response('{"detail": "No release data present in the system to form a basis for \'Next Release\'"}', status=400) now = timezone.now() for group in group_list: try: with transaction.atomic(): resolution, created = GroupResolution.objects.create( group=group, release=release, ), True except IntegrityError: resolution, created = GroupResolution.objects.get( group=group, ), False if acting_user: GroupSubscription.objects.subscribe( user=acting_user, group=group, reason=GroupSubscriptionReason.status_change, ) if created: activity = Activity.objects.create( project=group.project, group=group, type=Activity.SET_RESOLVED_IN_RELEASE, user=acting_user, ident=resolution.id, data={ # no version yet 'version': '', } ) # TODO(dcramer): we need a solution for activity rollups # before sending notifications on bulk changes if not is_bulk: activity.send_notification() queryset.update( status=GroupStatus.RESOLVED, resolved_at=now, ) result.update({ 'status': 'resolved', 'statusDetails': { 'inNextRelease': True, }, }) elif result.get('status') == 'resolved': now = timezone.now() happened = queryset.exclude( status=GroupStatus.RESOLVED, ).update( status=GroupStatus.RESOLVED, resolved_at=now, ) GroupResolution.objects.filter( group__in=group_ids, ).delete() if group_list and happened: for group in group_list: group.status = GroupStatus.RESOLVED group.resolved_at = now if acting_user: GroupSubscription.objects.subscribe( user=acting_user, group=group, reason=GroupSubscriptionReason.status_change, ) activity = Activity.objects.create( project=group.project, group=group, type=Activity.SET_RESOLVED, user=acting_user, ) # TODO(dcramer): we need a solution for activity rollups # before sending notifications on bulk changes if not is_bulk: activity.send_notification() result['statusDetails'] = {} elif result.get('status'): new_status = STATUS_CHOICES[result['status']] happened = queryset.exclude( status=new_status, ).update( status=new_status, ) GroupResolution.objects.filter( group__in=group_ids, ).delete() if new_status == GroupStatus.IGNORED: ignore_duration = ( result.pop('ignoreDuration', None) or result.pop('snoozeDuration', None) ) if ignore_duration: ignore_until = timezone.now() + timedelta( minutes=ignore_duration, ) for group in group_list: GroupSnooze.objects.create_or_update( group=group, values={ 'until': ignore_until, } ) result['statusDetails'] = { 'ignoreUntil': ignore_until, } else: GroupSnooze.objects.filter( group__in=group_ids, ).delete() ignore_until = None result['statusDetails'] = {} else: result['statusDetails'] = {} if group_list and happened: if new_status == GroupStatus.UNRESOLVED: activity_type = Activity.SET_UNRESOLVED activity_data = {} elif new_status == GroupStatus.IGNORED: activity_type = Activity.SET_IGNORED activity_data = { 'ignoreUntil': ignore_until, 'ignoreDuration': ignore_duration, } for group in group_list: group.status = new_status activity = Activity.objects.create( project=group.project, group=group, type=activity_type, user=acting_user, data=activity_data, ) # TODO(dcramer): we need a solution for activity rollups # before sending notifications on bulk changes if not is_bulk: if acting_user: GroupSubscription.objects.subscribe( user=acting_user, group=group, reason=GroupSubscriptionReason.status_change, ) activity.send_notification() if 'assignedTo' in result: if result['assignedTo']: for group in group_list: GroupAssignee.objects.assign(group, result['assignedTo'], acting_user) if 'isSubscribed' not in result or result['assignedTo'] != request.user: GroupSubscription.objects.subscribe( group=group, user=result['assignedTo'], reason=GroupSubscriptionReason.assigned, ) result['assignedTo'] = serialize(result['assignedTo']) else: for group in group_list: GroupAssignee.objects.deassign(group, acting_user) if result.get('hasSeen') and project.member_set.filter(user=acting_user).exists(): for group in group_list: instance, created = create_or_update( GroupSeen, group=group, user=acting_user, project=group.project, values={ 'last_seen': timezone.now(), } ) elif result.get('hasSeen') is False: GroupSeen.objects.filter( group__in=group_ids, user=acting_user, ).delete() if result.get('isBookmarked'): for group in group_list: GroupBookmark.objects.get_or_create( project=project, group=group, user=acting_user, ) GroupSubscription.objects.subscribe( user=acting_user, group=group, reason=GroupSubscriptionReason.bookmark, ) elif result.get('isBookmarked') is False: GroupBookmark.objects.filter( group__in=group_ids, user=acting_user, ).delete() # TODO(dcramer): we could make these more efficient by first # querying for rich rows are present (if N > 2), flipping the flag # on those rows, and then creating the missing rows if result.get('isSubscribed') in (True, False): is_subscribed = result['isSubscribed'] for group in group_list: # NOTE: Subscribing without an initiating event (assignment, # commenting, etc.) clears out the previous subscription reason # to avoid showing confusing messaging as a result of this # action. It'd be jarring to go directly from "you are not # subscribed" to "you were subscribed due since you were # assigned" just by clicking the "subscribe" button (and you # may no longer be assigned to the issue anyway.) GroupSubscription.objects.create_or_update( user=acting_user, group=group, project=project, values={ 'is_active': is_subscribed, 'reason': GroupSubscriptionReason.unknown, }, ) result['subscriptionDetails'] = { 'reason': SUBSCRIPTION_REASON_MAP.get( GroupSubscriptionReason.unknown, 'unknown', ), } if result.get('isPublic'): queryset.update(is_public=True) for group in group_list: if group.is_public: continue group.is_public = True Activity.objects.create( project=group.project, group=group, type=Activity.SET_PUBLIC, user=acting_user, ) elif result.get('isPublic') is False: queryset.update(is_public=False) for group in group_list: if not group.is_public: continue group.is_public = False Activity.objects.create( project=group.project, group=group, type=Activity.SET_PRIVATE, user=acting_user, ) # XXX(dcramer): this feels a bit shady like it should be its own # endpoint if result.get('merge') and len(group_list) > 1: primary_group = sorted(group_list, key=lambda x: -x.times_seen)[0] children = [] transaction_id = uuid4().hex for group in group_list: if group == primary_group: continue children.append(group) group.update(status=GroupStatus.PENDING_MERGE) merge_group.delay( from_object_id=group.id, to_object_id=primary_group.id, transaction_id=transaction_id, ) Activity.objects.create( project=primary_group.project, group=primary_group, type=Activity.MERGE, user=acting_user, data={ 'issues': [{'id': c.id} for c in children], }, ) result['merge'] = { 'parent': six.text_type(primary_group.id), 'children': [six.text_type(g.id) for g in children], } return Response(result) @attach_scenarios([bulk_remove_issues_scenario]) def delete(self, request, project): """ Bulk Remove a List of Issues ```````````````````````````` Permanently remove the given issues. The list of issues to modify is given through the `id` query parameter. It is repeated for each issue that should be removed. Only queries by 'id' are accepted. If any ids are out of scope this operation will succeed without any data mutation. :qparam int id: a list of IDs of the issues to be removed. This parameter shall be repeated for each issue. :pparam string organization_slug: the slug of the organization the issues belong to. :pparam string project_slug: the slug of the project the issues belong to. :auth: required """ group_ids = request.GET.getlist('id') if group_ids: group_list = list(Group.objects.filter( project=project, id__in=set(group_ids), ).exclude( status__in=[ GroupStatus.PENDING_DELETION, GroupStatus.DELETION_IN_PROGRESS, ] )) # filter down group ids to only valid matches group_ids = [g.id for g in group_list] else: # missing any kind of filter return Response('{"detail": "You must specify a list of IDs for this operation"}', status=400) if not group_ids: return Response(status=204) Group.objects.filter( id__in=group_ids, ).exclude( status__in=[ GroupStatus.PENDING_DELETION, GroupStatus.DELETION_IN_PROGRESS, ] ).update(status=GroupStatus.PENDING_DELETION) GroupHash.objects.filter(group__id__in=group_ids).delete() for group in group_list: delete_group.apply_async( kwargs={'object_id': group.id}, countdown=3600, ) return Response(status=204)
{ "repo_name": "BuildingLink/sentry", "path": "src/sentry/api/endpoints/project_group_index.py", "copies": "1", "size": "28583", "license": "bsd-3-clause", "hash": 4345379878744416000, "line_mean": 37.6779431664, "line_max": 135, "alpha_frac": 0.5207990764, "autogenerated": false, "ratio": 4.923858742463394, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5944657818863395, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from datetime import timedelta import functools import logging from uuid import uuid4 import six from django.db import IntegrityError, transaction from django.utils import timezone from rest_framework import serializers from rest_framework.response import Response from sentry import analytics, features, search from sentry.api.base import DocSection, EnvironmentMixin from sentry.api.bases.project import ProjectEndpoint, ProjectEventPermission from sentry.api.fields import ActorField, Actor from sentry.api.serializers import serialize from sentry.api.serializers.models.actor import ActorSerializer from sentry.api.serializers.models.group import ( SUBSCRIPTION_REASON_MAP, StreamGroupSerializer) from sentry.constants import DEFAULT_SORT_OPTION from sentry.db.models.query import create_or_update from sentry.models import ( Activity, Environment, Group, GroupAssignee, GroupBookmark, GroupHash, GroupResolution, GroupSeen, GroupShare, GroupSnooze, GroupStatus, GroupSubscription, GroupSubscriptionReason, GroupHashTombstone, GroupTombstone, Release, TOMBSTONE_FIELDS_FROM_GROUP, UserOption, User, Team ) from sentry.models.event import Event from sentry.models.group import looks_like_short_id from sentry.receivers import DEFAULT_SAVED_SEARCHES from sentry.search.utils import InvalidQuery, parse_query from sentry.signals import advanced_search, issue_ignored, issue_resolved_in_release from sentry.tasks.deletion import delete_group from sentry.tasks.integrations import kick_off_status_syncs from sentry.tasks.merge import merge_group from sentry.utils.apidocs import attach_scenarios, scenario from sentry.utils.cursors import Cursor, CursorResult from sentry.utils.functional import extract_lazy_object delete_logger = logging.getLogger('sentry.deletions.api') ERR_INVALID_STATS_PERIOD = "Invalid stats_period. Valid choices are '', '24h', and '14d'" SAVED_SEARCH_QUERIES = set([s['query'] for s in DEFAULT_SAVED_SEARCHES]) @scenario('BulkUpdateIssues') def bulk_update_issues_scenario(runner): project = runner.default_project group1, group2 = Group.objects.filter(project=project)[:2] runner.request( method='PUT', path='/projects/%s/%s/issues/?id=%s&id=%s' % (runner.org.slug, project.slug, group1.id, group2.id), data={'status': 'unresolved', 'isPublic': False} ) @scenario('BulkRemoveIssuess') def bulk_remove_issues_scenario(runner): with runner.isolated_project('Amazing Plumbing') as project: group1, group2 = Group.objects.filter(project=project)[:2] runner.request( method='DELETE', path='/projects/%s/%s/issues/?id=%s&id=%s' % (runner.org.slug, project.slug, group1.id, group2.id), ) @scenario('ListProjectIssuess') def list_project_issues_scenario(runner): project = runner.default_project runner.request( method='GET', path='/projects/%s/%s/issues/?statsPeriod=24h' % ( runner.org.slug, project.slug), ) STATUS_CHOICES = { 'resolved': GroupStatus.RESOLVED, 'unresolved': GroupStatus.UNRESOLVED, 'ignored': GroupStatus.IGNORED, 'resolvedInNextRelease': GroupStatus.UNRESOLVED, # TODO(dcramer): remove in 9.0 'muted': GroupStatus.IGNORED, } class ValidationError(Exception): pass class StatusDetailsValidator(serializers.Serializer): inNextRelease = serializers.BooleanField() inRelease = serializers.CharField() ignoreDuration = serializers.IntegerField() ignoreCount = serializers.IntegerField() # in minutes, max of one week ignoreWindow = serializers.IntegerField(max_value=7 * 24 * 60) ignoreUserCount = serializers.IntegerField() # in minutes, max of one week ignoreUserWindow = serializers.IntegerField(max_value=7 * 24 * 60) def validate_inRelease(self, attrs, source): value = attrs[source] project = self.context['project'] if value == 'latest': try: attrs[source] = Release.objects.filter( projects=project, organization_id=project.organization_id, ).extra(select={ 'sort': 'COALESCE(date_released, date_added)', }).order_by('-sort')[0] except IndexError: raise serializers.ValidationError( 'No release data present in the system to form a basis for \'Next Release\'' ) else: try: attrs[source] = Release.objects.get( projects=project, organization_id=project.organization_id, version=value, ) except Release.DoesNotExist: raise serializers.ValidationError( 'Unable to find a release with the given version.' ) return attrs def validate_inNextRelease(self, attrs, source): project = self.context['project'] if not Release.objects.filter( projects=project, organization_id=project.organization_id, ).exists(): raise serializers.ValidationError( 'No release data present in the system to form a basis for \'Next Release\'' ) return attrs class GroupValidator(serializers.Serializer): status = serializers.ChoiceField(choices=zip( STATUS_CHOICES.keys(), STATUS_CHOICES.keys())) statusDetails = StatusDetailsValidator() hasSeen = serializers.BooleanField() isBookmarked = serializers.BooleanField() isPublic = serializers.BooleanField() isSubscribed = serializers.BooleanField() merge = serializers.BooleanField() discard = serializers.BooleanField() ignoreDuration = serializers.IntegerField() ignoreCount = serializers.IntegerField() # in minutes, max of one week ignoreWindow = serializers.IntegerField(max_value=7 * 24 * 60) ignoreUserCount = serializers.IntegerField() # in minutes, max of one week ignoreUserWindow = serializers.IntegerField(max_value=7 * 24 * 60) assignedTo = ActorField() # TODO(dcramer): remove in 9.0 snoozeDuration = serializers.IntegerField() def validate_assignedTo(self, attrs, source): value = attrs[source] if value and value.type is User and not self.context['project'].member_set.filter( user_id=value.id).exists(): raise serializers.ValidationError( 'Cannot assign to non-team member') if value and value.type is Team and not self.context['project'].teams.filter( id=value.id).exists(): raise serializers.ValidationError( 'Cannot assign to a team without access to the project') return attrs def validate(self, attrs): attrs = super(GroupValidator, self).validate(attrs) if len(attrs) > 1 and 'discard' in attrs: raise serializers.ValidationError( 'Other attributes cannot be updated when discarding') return attrs class ProjectGroupIndexEndpoint(ProjectEndpoint, EnvironmentMixin): doc_section = DocSection.EVENTS permission_classes = (ProjectEventPermission, ) def _build_query_params_from_request(self, request, project): query_kwargs = { 'project': project, 'sort_by': request.GET.get('sort', DEFAULT_SORT_OPTION), } limit = request.GET.get('limit') if limit: try: query_kwargs['limit'] = int(limit) except ValueError: raise ValidationError('invalid limit') # TODO: proper pagination support cursor = request.GET.get('cursor') if cursor: query_kwargs['cursor'] = Cursor.from_string(cursor) query = request.GET.get('query', 'is:unresolved').strip() if query: try: query_kwargs.update(parse_query(project, query, request.user)) except InvalidQuery as e: raise ValidationError( u'Your search query could not be parsed: {}'.format( e.message) ) return query_kwargs def _search(self, request, project, extra_query_kwargs=None): query_kwargs = self._build_query_params_from_request(request, project) if extra_query_kwargs is not None: assert 'environment' not in extra_query_kwargs query_kwargs.update(extra_query_kwargs) try: if features.has('organizations:environments', project.organization, actor=request.user): query_kwargs['environment'] = self._get_environment_from_request( request, project.organization_id, ) except Environment.DoesNotExist: # XXX: The 1000 magic number for `max_hits` is an abstraction leak # from `sentry.api.paginator.BasePaginator.get_result`. result = CursorResult([], None, None, hits=0, max_hits=1000) else: result = search.query(**query_kwargs) return result, query_kwargs def _subscribe_and_assign_issue(self, acting_user, group, result): if acting_user: GroupSubscription.objects.subscribe( user=acting_user, group=group, reason=GroupSubscriptionReason.status_change, ) self_assign_issue = UserOption.objects.get_value( user=acting_user, key='self_assign_issue', default='0' ) if self_assign_issue == '1' and not group.assignee_set.exists(): result['assignedTo'] = Actor(type=User, id=extract_lazy_object(acting_user).id) # statsPeriod=24h @attach_scenarios([list_project_issues_scenario]) def get(self, request, project): """ List a Project's Issues ``````````````````````` Return a list of issues (groups) bound to a project. All parameters are supplied as query string parameters. A default query of ``is:unresolved`` is applied. To return results with other statuses send an new query value (i.e. ``?query=`` for all results). The ``statsPeriod`` parameter can be used to select the timeline stats which should be present. Possible values are: '' (disable), '24h', '14d' :qparam string statsPeriod: an optional stat period (can be one of ``"24h"``, ``"14d"``, and ``""``). :qparam bool shortIdLookup: if this is set to true then short IDs are looked up by this function as well. This can cause the return value of the function to return an event issue of a different project which is why this is an opt-in. Set to `1` to enable. :qparam querystring query: an optional Sentry structured search query. If not provided an implied ``"is:unresolved"`` is assumed.) :pparam string organization_slug: the slug of the organization the issues belong to. :pparam string project_slug: the slug of the project the issues belong to. :auth: required """ stats_period = request.GET.get('statsPeriod') if stats_period not in (None, '', '24h', '14d'): return Response({"detail": ERR_INVALID_STATS_PERIOD}, status=400) elif stats_period is None: # default stats_period = '24h' elif stats_period == '': # disable stats stats_period = None serializer = functools.partial( StreamGroupSerializer, environment_func=self._get_environment_func(request, project.organization_id), stats_period=stats_period, ) query = request.GET.get('query', '').strip() if query: matching_group = None matching_event = None if len(query) == 32: # check to see if we've got an event ID try: matching_group = Group.objects.from_event_id(project, query) except Group.DoesNotExist: pass else: try: matching_event = Event.objects.get( event_id=query, project_id=project.id) except Event.DoesNotExist: pass else: Event.objects.bind_nodes([matching_event], 'data') # If the query looks like a short id, we want to provide some # information about where that is. Note that this can return # results for another project. The UI deals with this. elif request.GET.get('shortIdLookup') == '1' and \ looks_like_short_id(query): try: matching_group = Group.objects.by_qualified_short_id( project.organization_id, query ) except Group.DoesNotExist: matching_group = None if matching_group is not None: matching_event_environment = None try: matching_event_environment = matching_event.get_environment().name if matching_event else None except Environment.DoesNotExist: pass response = Response( serialize( [matching_group], request.user, serializer( matching_event_id=getattr(matching_event, 'id', None), matching_event_environment=matching_event_environment, ) ) ) response['X-Sentry-Direct-Hit'] = '1' return response try: cursor_result, query_kwargs = self._search(request, project, {'count_hits': True}) except ValidationError as exc: return Response({'detail': six.text_type(exc)}, status=400) results = list(cursor_result) context = serialize(results, request.user, serializer()) # HACK: remove auto resolved entries if query_kwargs.get('status') == GroupStatus.UNRESOLVED: context = [r for r in context if r['status'] == 'unresolved'] response = Response(context) self.add_cursor_headers(request, response, cursor_result) if results and query not in SAVED_SEARCH_QUERIES: advanced_search.send(project=project, sender=request.user) analytics.record('project_issue.searched', user_id=request.user.id, organization_id=project.organization_id, project_id=project.id, query=query) return response @attach_scenarios([bulk_update_issues_scenario]) def put(self, request, project): """ Bulk Mutate a List of Issues ```````````````````````````` Bulk mutate various attributes on issues. The list of issues to modify is given through the `id` query parameter. It is repeated for each issue that should be modified. - For non-status updates, the `id` query parameter is required. - For status updates, the `id` query parameter may be omitted for a batch "update all" query. - An optional `status` query parameter may be used to restrict mutations to only events with the given status. The following attributes can be modified and are supplied as JSON object in the body: If any ids are out of scope this operation will succeed without any data mutation. :qparam int id: a list of IDs of the issues to be mutated. This parameter shall be repeated for each issue. It is optional only if a status is mutated in which case an implicit `update all` is assumed. :qparam string status: optionally limits the query to issues of the specified status. Valid values are ``"resolved"``, ``"unresolved"`` and ``"ignored"``. :pparam string organization_slug: the slug of the organization the issues belong to. :pparam string project_slug: the slug of the project the issues belong to. :param string status: the new status for the issues. Valid values are ``"resolved"``, ``"resolvedInNextRelease"``, ``"unresolved"``, and ``"ignored"``. :param int ignoreDuration: the number of minutes to ignore this issue. :param boolean isPublic: sets the issue to public or private. :param boolean merge: allows to merge or unmerge different issues. :param string assignedTo: the actor id (or username) of the user or team that should be assigned to this issue. :param boolean hasSeen: in case this API call is invoked with a user context this allows changing of the flag that indicates if the user has seen the event. :param boolean isBookmarked: in case this API call is invoked with a user context this allows changing of the bookmark flag. :auth: required """ group_ids = request.GET.getlist('id') if group_ids: group_list = Group.objects.filter( project=project, id__in=group_ids) # filter down group ids to only valid matches group_ids = [g.id for g in group_list] if not group_ids: return Response(status=204) else: group_list = None serializer = GroupValidator( data=request.DATA, partial=True, context={'project': project}, ) if not serializer.is_valid(): return Response(serializer.errors, status=400) result = dict(serializer.object) acting_user = request.user if request.user.is_authenticated() else None if not group_ids: try: # bulk mutations are limited to 1000 items # TODO(dcramer): it'd be nice to support more than this, but its # a bit too complicated right now cursor_result, _ = self._search(request, project, { 'limit': 1000, 'paginator_options': {'max_limit': 1000}, }) except ValidationError as exc: return Response({'detail': six.text_type(exc)}, status=400) group_list = list(cursor_result) group_ids = [g.id for g in group_list] is_bulk = len(group_ids) > 1 queryset = Group.objects.filter( id__in=group_ids, ) discard = result.get('discard') if discard: if not features.has('projects:discard-groups', project, actor=request.user): return Response({'detail': ['You do not have that feature enabled']}, status=400) group_list = list(queryset) groups_to_delete = [] for group in group_list: with transaction.atomic(): try: tombstone = GroupTombstone.objects.create( previous_group_id=group.id, actor_id=acting_user.id if acting_user else None, **{name: getattr(group, name) for name in TOMBSTONE_FIELDS_FROM_GROUP} ) except IntegrityError: # in this case, a tombstone has already been created # for a group, so no hash updates are necessary pass else: groups_to_delete.append(group) GroupHash.objects.filter( group=group, ).update( group=None, group_tombstone_id=tombstone.id, ) self._delete_groups(request, project, groups_to_delete) return Response(status=204) statusDetails = result.pop('statusDetails', result) status = result.get('status') if status in ('resolved', 'resolvedInNextRelease'): if status == 'resolvedInNextRelease' or statusDetails.get('inNextRelease'): release = Release.objects.filter( projects=project, organization_id=project.organization_id, ).extra(select={ 'sort': 'COALESCE(date_released, date_added)', }).order_by('-sort')[0] activity_type = Activity.SET_RESOLVED_IN_RELEASE activity_data = { # no version yet 'version': '', } status_details = { 'inNextRelease': True, 'actor': serialize(extract_lazy_object(request.user), request.user), } res_type = GroupResolution.Type.in_next_release res_status = GroupResolution.Status.pending elif statusDetails.get('inRelease'): release = statusDetails['inRelease'] activity_type = Activity.SET_RESOLVED_IN_RELEASE activity_data = { # no version yet 'version': release.version, } status_details = { 'inRelease': release.version, 'actor': serialize(extract_lazy_object(request.user), request.user), } res_type = GroupResolution.Type.in_release res_status = GroupResolution.Status.resolved else: release = None activity_type = Activity.SET_RESOLVED activity_data = {} status_details = {} now = timezone.now() for group in group_list: with transaction.atomic(): if release: resolution_params = { 'release': release, 'type': res_type, 'status': res_status, 'actor_id': request.user.id if request.user.is_authenticated() else None, } resolution, created = GroupResolution.objects.get_or_create( group=group, defaults=resolution_params, ) if not created: resolution.update( datetime=timezone.now(), **resolution_params) else: resolution = None affected = Group.objects.filter( id=group.id, ).update( status=GroupStatus.RESOLVED, resolved_at=now, ) if not resolution: created = affected group.status = GroupStatus.RESOLVED group.resolved_at = now self._subscribe_and_assign_issue( acting_user, group, result) if created: activity = Activity.objects.create( project=group.project, group=group, type=activity_type, user=acting_user, ident=resolution.id if resolution else None, data=activity_data, ) # TODO(dcramer): we need a solution for activity rollups # before sending notifications on bulk changes if not is_bulk: activity.send_notification() issue_resolved_in_release.send( group=group, project=project, sender=acting_user, ) kick_off_status_syncs.apply_async(kwargs={ 'project_id': group.project_id, 'group_id': group.id, }) result.update({ 'status': 'resolved', 'statusDetails': status_details, }) elif status: new_status = STATUS_CHOICES[result['status']] with transaction.atomic(): happened = queryset.exclude( status=new_status, ).update( status=new_status, ) GroupResolution.objects.filter( group__in=group_ids, ).delete() if new_status == GroupStatus.IGNORED: ignore_duration = ( statusDetails.pop('ignoreDuration', None) or statusDetails.pop('snoozeDuration', None) ) or None ignore_count = statusDetails.pop( 'ignoreCount', None) or None ignore_window = statusDetails.pop( 'ignoreWindow', None) or None ignore_user_count = statusDetails.pop( 'ignoreUserCount', None) or None ignore_user_window = statusDetails.pop( 'ignoreUserWindow', None) or None if ignore_duration or ignore_count or ignore_user_count: if ignore_duration: ignore_until = timezone.now() + timedelta( minutes=ignore_duration, ) else: ignore_until = None for group in group_list: state = {} if ignore_count and not ignore_window: state['times_seen'] = group.times_seen if ignore_user_count and not ignore_user_window: state['users_seen'] = group.count_users_seen() GroupSnooze.objects.create_or_update( group=group, values={ 'until': ignore_until, 'count': ignore_count, 'window': ignore_window, 'user_count': ignore_user_count, 'user_window': ignore_user_window, 'state': state, 'actor_id': request.user.id if request.user.is_authenticated() else None, } ) result['statusDetails'] = { 'ignoreCount': ignore_count, 'ignoreUntil': ignore_until, 'ignoreUserCount': ignore_user_count, 'ignoreUserWindow': ignore_user_window, 'ignoreWindow': ignore_window, 'actor': serialize(extract_lazy_object(request.user), request.user), } issue_ignored.send_robust(project=project, sender=self.__class__) else: GroupSnooze.objects.filter( group__in=group_ids, ).delete() ignore_until = None result['statusDetails'] = {} else: result['statusDetails'] = {} if group_list and happened: if new_status == GroupStatus.UNRESOLVED: activity_type = Activity.SET_UNRESOLVED activity_data = {} elif new_status == GroupStatus.IGNORED: activity_type = Activity.SET_IGNORED activity_data = { 'ignoreCount': ignore_count, 'ignoreDuration': ignore_duration, 'ignoreUntil': ignore_until, 'ignoreUserCount': ignore_user_count, 'ignoreUserWindow': ignore_user_window, 'ignoreWindow': ignore_window, } for group in group_list: group.status = new_status activity = Activity.objects.create( project=group.project, group=group, type=activity_type, user=acting_user, data=activity_data, ) # TODO(dcramer): we need a solution for activity rollups # before sending notifications on bulk changes if not is_bulk: if acting_user: GroupSubscription.objects.subscribe( user=acting_user, group=group, reason=GroupSubscriptionReason.status_change, ) activity.send_notification() if new_status == GroupStatus.UNRESOLVED: kick_off_status_syncs.apply_async(kwargs={ 'project_id': group.project_id, 'group_id': group.id, }) if 'assignedTo' in result: assigned_actor = result['assignedTo'] if assigned_actor: for group in group_list: resolved_actor = assigned_actor.resolve() GroupAssignee.objects.assign(group, resolved_actor, acting_user) result['assignedTo'] = serialize( assigned_actor.resolve(), acting_user, ActorSerializer()) else: for group in group_list: GroupAssignee.objects.deassign(group, acting_user) if result.get('hasSeen') and project.member_set.filter(user=acting_user).exists(): for group in group_list: instance, created = create_or_update( GroupSeen, group=group, user=acting_user, project=group.project, values={ 'last_seen': timezone.now(), } ) elif result.get('hasSeen') is False: GroupSeen.objects.filter( group__in=group_ids, user=acting_user, ).delete() if result.get('isBookmarked'): for group in group_list: GroupBookmark.objects.get_or_create( project=project, group=group, user=acting_user, ) GroupSubscription.objects.subscribe( user=acting_user, group=group, reason=GroupSubscriptionReason.bookmark, ) elif result.get('isBookmarked') is False: GroupBookmark.objects.filter( group__in=group_ids, user=acting_user, ).delete() # TODO(dcramer): we could make these more efficient by first # querying for rich rows are present (if N > 2), flipping the flag # on those rows, and then creating the missing rows if result.get('isSubscribed') in (True, False): is_subscribed = result['isSubscribed'] for group in group_list: # NOTE: Subscribing without an initiating event (assignment, # commenting, etc.) clears out the previous subscription reason # to avoid showing confusing messaging as a result of this # action. It'd be jarring to go directly from "you are not # subscribed" to "you were subscribed due since you were # assigned" just by clicking the "subscribe" button (and you # may no longer be assigned to the issue anyway.) GroupSubscription.objects.create_or_update( user=acting_user, group=group, project=project, values={ 'is_active': is_subscribed, 'reason': GroupSubscriptionReason.unknown, }, ) result['subscriptionDetails'] = { 'reason': SUBSCRIPTION_REASON_MAP.get( GroupSubscriptionReason.unknown, 'unknown', ), } if 'isPublic' in result: # We always want to delete an existing share, because triggering # an isPublic=True even when it's already public, should trigger # regenerating. for group in group_list: if GroupShare.objects.filter(group=group).delete(): result['shareId'] = None Activity.objects.create( project=group.project, group=group, type=Activity.SET_PRIVATE, user=acting_user, ) if result.get('isPublic'): for group in group_list: share, created = GroupShare.objects.get_or_create( project=group.project, group=group, user=acting_user, ) if created: result['shareId'] = share.uuid Activity.objects.create( project=group.project, group=group, type=Activity.SET_PUBLIC, user=acting_user, ) # XXX(dcramer): this feels a bit shady like it should be its own # endpoint if result.get('merge') and len(group_list) > 1: primary_group = sorted(group_list, key=lambda x: -x.times_seen)[0] children = [] transaction_id = uuid4().hex for group in group_list: if group == primary_group: continue children.append(group) group.update(status=GroupStatus.PENDING_MERGE) merge_group.delay( from_object_id=group.id, to_object_id=primary_group.id, transaction_id=transaction_id, ) Activity.objects.create( project=primary_group.project, group=primary_group, type=Activity.MERGE, user=acting_user, data={ 'issues': [{ 'id': c.id } for c in children], }, ) result['merge'] = { 'parent': six.text_type(primary_group.id), 'children': [six.text_type(g.id) for g in children], } return Response(result) @attach_scenarios([bulk_remove_issues_scenario]) def delete(self, request, project): """ Bulk Remove a List of Issues ```````````````````````````` Permanently remove the given issues. The list of issues to modify is given through the `id` query parameter. It is repeated for each issue that should be removed. Only queries by 'id' are accepted. If any ids are out of scope this operation will succeed without any data mutation. :qparam int id: a list of IDs of the issues to be removed. This parameter shall be repeated for each issue. :pparam string organization_slug: the slug of the organization the issues belong to. :pparam string project_slug: the slug of the project the issues belong to. :auth: required """ group_ids = request.GET.getlist('id') if group_ids: group_list = list( Group.objects.filter( project=project, id__in=set(group_ids), ).exclude( status__in=[ GroupStatus.PENDING_DELETION, GroupStatus.DELETION_IN_PROGRESS, ] ) ) else: try: # bulk mutations are limited to 1000 items # TODO(dcramer): it'd be nice to support more than this, but its # a bit too complicated right now cursor_result, _ = self._search(request, project, { 'limit': 1000, 'paginator_options': {'max_limit': 1000}, }) except ValidationError as exc: return Response({'detail': six.text_type(exc)}, status=400) group_list = list(cursor_result) if not group_list: return Response(status=204) self._delete_groups(request, project, group_list) return Response(status=204) def _delete_groups(self, request, project, group_list): group_ids = [g.id for g in group_list] Group.objects.filter( id__in=group_ids, ).exclude(status__in=[ GroupStatus.PENDING_DELETION, GroupStatus.DELETION_IN_PROGRESS, ]).update(status=GroupStatus.PENDING_DELETION) GroupHashTombstone.tombstone_groups( project_id=project.id, group_ids=group_ids, ) transaction_id = uuid4().hex for group in group_list: delete_group.apply_async( kwargs={ 'object_id': group.id, 'transaction_id': transaction_id, }, countdown=3600, ) self.create_audit_entry( request=request, organization_id=project.organization_id, target_object=group.id, transaction_id=transaction_id, ) delete_logger.info( 'object.delete.queued', extra={ 'object_id': group.id, 'transaction_id': transaction_id, 'model': type(group).__name__, } )
{ "repo_name": "ifduyue/sentry", "path": "src/sentry/api/endpoints/project_group_index.py", "copies": "1", "size": "40265", "license": "bsd-3-clause", "hash": 907701814312215800, "line_mean": 40.0448521916, "line_max": 114, "alpha_frac": 0.5156090898, "autogenerated": false, "ratio": 5.014321295143213, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.000406181067403593, "num_lines": 981 }
from __future__ import absolute_import, division, print_function from datetime import timedelta import logging from uuid import uuid4 import six from django.db import IntegrityError, transaction from django.utils import timezone from rest_framework import serializers from rest_framework.response import Response from sentry import features, search from sentry.api.base import DocSection from sentry.api.bases.project import ProjectEndpoint, ProjectEventPermission from sentry.api.fields import UserField from sentry.api.serializers import serialize from sentry.api.serializers.models.group import (SUBSCRIPTION_REASON_MAP, StreamGroupSerializer) from sentry.constants import DEFAULT_SORT_OPTION from sentry.db.models.query import create_or_update from sentry.models import ( Activity, EventMapping, Group, GroupAssignee, GroupBookmark, GroupHash, GroupResolution, GroupSeen, GroupSnooze, GroupStatus, GroupSubscription, GroupSubscriptionReason, GroupTombstone, Release, TagKey, UserOption ) from sentry.models.event import Event from sentry.models.group import looks_like_short_id from sentry.receivers import DEFAULT_SAVED_SEARCHES from sentry.search.utils import InvalidQuery, parse_query from sentry.signals import advanced_search, issue_resolved_in_release from sentry.tasks.deletion import delete_group from sentry.tasks.merge import merge_group from sentry.utils.apidocs import attach_scenarios, scenario from sentry.utils.cursors import Cursor from sentry.utils.functional import extract_lazy_object delete_logger = logging.getLogger('sentry.deletions.api') ERR_INVALID_STATS_PERIOD = "Invalid stats_period. Valid choices are '', '24h', and '14d'" SAVED_SEARCH_QUERIES = set([s['query'] for s in DEFAULT_SAVED_SEARCHES]) TOMBSTONE_FIELDS_FROM_GROUP = ('project_id', 'level', 'message', 'culprit', 'data') @scenario('BulkUpdateIssues') def bulk_update_issues_scenario(runner): project = runner.default_project group1, group2 = Group.objects.filter(project=project)[:2] runner.request( method='PUT', path='/projects/%s/%s/issues/?id=%s&id=%s' % (runner.org.slug, project.slug, group1.id, group2.id), data={'status': 'unresolved', 'isPublic': False} ) @scenario('BulkRemoveIssuess') def bulk_remove_issues_scenario(runner): with runner.isolated_project('Amazing Plumbing') as project: group1, group2 = Group.objects.filter(project=project)[:2] runner.request( method='DELETE', path='/projects/%s/%s/issues/?id=%s&id=%s' % (runner.org.slug, project.slug, group1.id, group2.id), ) @scenario('ListProjectIssuess') def list_project_issues_scenario(runner): project = runner.default_project runner.request( method='GET', path='/projects/%s/%s/issues/?statsPeriod=24h' % (runner.org.slug, project.slug), ) STATUS_CHOICES = { 'resolved': GroupStatus.RESOLVED, 'unresolved': GroupStatus.UNRESOLVED, 'ignored': GroupStatus.IGNORED, 'resolvedInNextRelease': GroupStatus.UNRESOLVED, # TODO(dcramer): remove in 9.0 'muted': GroupStatus.IGNORED, } class ValidationError(Exception): pass class StatusDetailsValidator(serializers.Serializer): inNextRelease = serializers.BooleanField() inRelease = serializers.CharField() ignoreDuration = serializers.IntegerField() ignoreCount = serializers.IntegerField() # in hours, max of one week ignoreWindow = serializers.IntegerField(max_value=7 * 24) ignoreUserCount = serializers.IntegerField() # in hours, max of one week ignoreUserWindow = serializers.IntegerField(max_value=7 * 24) def validate_inRelease(self, attrs, source): value = attrs[source] project = self.context['project'] if value == 'latest': try: attrs[source] = Release.objects.filter( projects=project, organization_id=project.organization_id, ).order_by('-date_added')[0] except IndexError: raise serializers.ValidationError( 'No release data present in the system to form a basis for \'Next Release\'' ) else: try: attrs[source] = Release.objects.get( projects=project, organization_id=project.organization_id, version=value, ) except Release.DoesNotExist: raise serializers.ValidationError( 'Unable to find a release with the given version.' ) return attrs def validate_inNextRelease(self, attrs, source): project = self.context['project'] if not Release.objects.filter( projects=project, organization_id=project.organization_id, ).exists(): raise serializers.ValidationError( 'No release data present in the system to form a basis for \'Next Release\'' ) return attrs class GroupValidator(serializers.Serializer): status = serializers.ChoiceField(choices=zip(STATUS_CHOICES.keys(), STATUS_CHOICES.keys())) statusDetails = StatusDetailsValidator() hasSeen = serializers.BooleanField() isBookmarked = serializers.BooleanField() isPublic = serializers.BooleanField() isSubscribed = serializers.BooleanField() merge = serializers.BooleanField() discard = serializers.BooleanField() ignoreDuration = serializers.IntegerField() ignoreCount = serializers.IntegerField() # in hours, max of one week ignoreWindow = serializers.IntegerField(max_value=7 * 24) ignoreUserCount = serializers.IntegerField() # in hours, max of one week ignoreUserWindow = serializers.IntegerField(max_value=7 * 24) assignedTo = UserField() # TODO(dcramer): remove in 9.0 snoozeDuration = serializers.IntegerField() def validate_assignedTo(self, attrs, source): value = attrs[source] if value and not self.context['project'].member_set.filter(user=value).exists(): raise serializers.ValidationError('Cannot assign to non-team member') return attrs def validate(self, attrs): attrs = super(GroupValidator, self).validate(attrs) if len(attrs) > 1 and 'discard' in attrs: raise serializers.ValidationError('Other attributes cannot be updated when discarding') return attrs class ProjectGroupIndexEndpoint(ProjectEndpoint): doc_section = DocSection.EVENTS permission_classes = (ProjectEventPermission, ) def _build_query_params_from_request(self, request, project): query_kwargs = { 'project': project, } if request.GET.get('status'): try: query_kwargs['status'] = STATUS_CHOICES[request.GET['status']] except KeyError: raise ValidationError('invalid status') if request.user.is_authenticated() and request.GET.get('bookmarks'): query_kwargs['bookmarked_by'] = request.user if request.user.is_authenticated() and request.GET.get('assigned'): query_kwargs['assigned_to'] = request.user sort_by = request.GET.get('sort') if sort_by is None: sort_by = DEFAULT_SORT_OPTION query_kwargs['sort_by'] = sort_by tags = {} for tag_key in TagKey.objects.all_keys(project): if request.GET.get(tag_key): tags[tag_key] = request.GET[tag_key] if tags: query_kwargs['tags'] = tags limit = request.GET.get('limit') if limit: try: query_kwargs['limit'] = int(limit) except ValueError: raise ValidationError('invalid limit') # TODO: proper pagination support cursor = request.GET.get('cursor') if cursor: query_kwargs['cursor'] = Cursor.from_string(cursor) query = request.GET.get('query', 'is:unresolved').strip() if query: try: query_kwargs.update(parse_query(project, query, request.user)) except InvalidQuery as e: raise ValidationError( u'Your search query could not be parsed: {}'.format(e.message) ) return query_kwargs def _subscribe_and_assign_issue(self, acting_user, group, result): if acting_user: GroupSubscription.objects.subscribe( user=acting_user, group=group, reason=GroupSubscriptionReason.status_change, ) self_assign_issue = UserOption.objects.get_value( user=acting_user, key='self_assign_issue', default='0' ) if self_assign_issue == '1' and not group.assignee_set.exists(): result['assignedTo'] = extract_lazy_object(acting_user) # bookmarks=0/1 # status=<x> # <tag>=<value> # statsPeriod=24h @attach_scenarios([list_project_issues_scenario]) def get(self, request, project): """ List a Project's Issues ``````````````````````` Return a list of issues (groups) bound to a project. All parameters are supplied as query string parameters. A default query of ``is:unresolved`` is applied. To return results with other statuses send an new query value (i.e. ``?query=`` for all results). The ``statsPeriod`` parameter can be used to select the timeline stats which should be present. Possible values are: '' (disable), '24h', '14d' :qparam string statsPeriod: an optional stat period (can be one of ``"24h"``, ``"14d"``, and ``""``). :qparam bool shortIdLookup: if this is set to true then short IDs are looked up by this function as well. This can cause the return value of the function to return an event issue of a different project which is why this is an opt-in. Set to `1` to enable. :qparam querystring query: an optional Sentry structured search query. If not provided an implied ``"is:unresolved"`` is assumed.) :pparam string organization_slug: the slug of the organization the issues belong to. :pparam string project_slug: the slug of the project the issues belong to. :auth: required """ stats_period = request.GET.get('statsPeriod') if stats_period not in (None, '', '24h', '14d'): return Response({"detail": ERR_INVALID_STATS_PERIOD}, status=400) elif stats_period is None: # default stats_period = '24h' elif stats_period == '': # disable stats stats_period = None query = request.GET.get('query', '').strip() if query: matching_group = None matching_event = None if len(query) == 32: # check to see if we've got an event ID try: mapping = EventMapping.objects.get( project_id=project.id, event_id=query, ) except EventMapping.DoesNotExist: pass else: matching_group = Group.objects.get(id=mapping.group_id) try: matching_event = Event.objects.get(event_id=query, project_id=project.id) except Event.DoesNotExist: pass # If the query looks like a short id, we want to provide some # information about where that is. Note that this can return # results for another project. The UI deals with this. elif request.GET.get('shortIdLookup') == '1' and \ looks_like_short_id(query): try: matching_group = Group.objects.by_qualified_short_id( project.organization_id, query ) except Group.DoesNotExist: matching_group = None if matching_group is not None: response = Response( serialize( [matching_group], request.user, StreamGroupSerializer( stats_period=stats_period, matching_event_id=getattr(matching_event, 'id', None) ) ) ) response['X-Sentry-Direct-Hit'] = '1' return response try: query_kwargs = self._build_query_params_from_request(request, project) except ValidationError as exc: return Response({'detail': six.text_type(exc)}, status=400) count_hits = features.has('projects:stream-hit-counts', project=project, actor=request.user) cursor_result = search.query(count_hits=count_hits, **query_kwargs) results = list(cursor_result) context = serialize(results, request.user, StreamGroupSerializer(stats_period=stats_period)) # HACK: remove auto resolved entries if query_kwargs.get('status') == GroupStatus.UNRESOLVED: context = [r for r in context if r['status'] == 'unresolved'] response = Response(context) self.add_cursor_headers(request, response, cursor_result) if results and query not in SAVED_SEARCH_QUERIES: advanced_search.send(project=project, sender=request.user) return response @attach_scenarios([bulk_update_issues_scenario]) def put(self, request, project): """ Bulk Mutate a List of Issues ```````````````````````````` Bulk mutate various attributes on issues. The list of issues to modify is given through the `id` query parameter. It is repeated for each issue that should be modified. - For non-status updates, the `id` query parameter is required. - For status updates, the `id` query parameter may be omitted for a batch "update all" query. - An optional `status` query parameter may be used to restrict mutations to only events with the given status. The following attributes can be modified and are supplied as JSON object in the body: If any ids are out of scope this operation will succeed without any data mutation. :qparam int id: a list of IDs of the issues to be mutated. This parameter shall be repeated for each issue. It is optional only if a status is mutated in which case an implicit `update all` is assumed. :qparam string status: optionally limits the query to issues of the specified status. Valid values are ``"resolved"``, ``"unresolved"`` and ``"ignored"``. :pparam string organization_slug: the slug of the organization the issues belong to. :pparam string project_slug: the slug of the project the issues belong to. :param string status: the new status for the issues. Valid values are ``"resolved"``, ``resolvedInNextRelease``, ``"unresolved"``, and ``"ignored"``. :param int ignoreDuration: the number of minutes to ignore this issue. :param boolean isPublic: sets the issue to public or private. :param boolean merge: allows to merge or unmerge different issues. :param string assignedTo: the username of the user that should be assigned to this issue. :param boolean hasSeen: in case this API call is invoked with a user context this allows changing of the flag that indicates if the user has seen the event. :param boolean isBookmarked: in case this API call is invoked with a user context this allows changing of the bookmark flag. :auth: required """ group_ids = request.GET.getlist('id') if group_ids: group_list = Group.objects.filter(project=project, id__in=group_ids) # filter down group ids to only valid matches group_ids = [g.id for g in group_list] if not group_ids: return Response(status=204) else: group_list = None serializer = GroupValidator( data=request.DATA, partial=True, context={'project': project}, ) if not serializer.is_valid(): return Response(serializer.errors, status=400) result = dict(serializer.object) acting_user = request.user if request.user.is_authenticated() else None if not group_ids: try: query_kwargs = self._build_query_params_from_request(request, project) except ValidationError as exc: return Response({'detail': six.text_type(exc)}, status=400) # bulk mutations are limited to 1000 items # TODO(dcramer): it'd be nice to support more than this, but its # a bit too complicated right now query_kwargs['limit'] = 1000 cursor_result = search.query(**query_kwargs) group_list = list(cursor_result) group_ids = [g.id for g in group_list] is_bulk = len(group_ids) > 1 queryset = Group.objects.filter( id__in=group_ids, ) discard = result.get('discard') if discard: if not features.has('projects:custom-filters', project, actor=request.user): return Response({'detail': ['You do not have that feature enabled']}, status=400) group_list = list(queryset) groups_to_delete = [] for group in group_list: with transaction.atomic(): try: tombstone = GroupTombstone.objects.create( previous_group_id=group.id, actor_id=acting_user.id if acting_user else None, **{name: getattr(group, name) for name in TOMBSTONE_FIELDS_FROM_GROUP} ) except IntegrityError: # in this case, a tombstone has already been created # for a group, so no hash updates are necessary pass else: groups_to_delete.append(group) GroupHash.objects.filter( group=group, ).update( group=None, group_tombstone_id=tombstone.id, ) self._delete_groups(request, project, groups_to_delete) return Response(status=204) statusDetails = result.pop('statusDetails', result) status = result.get('status') if status in ('resolved', 'resolvedInNextRelease'): if status == 'resolvedInNextRelease' or statusDetails.get('inNextRelease'): release = Release.objects.filter( projects=project, organization_id=project.organization_id, ).order_by('-date_added')[0] activity_type = Activity.SET_RESOLVED_IN_RELEASE activity_data = { # no version yet 'version': '', } status_details = { 'inNextRelease': True, 'actor': serialize(extract_lazy_object(request.user), request.user), } res_type = GroupResolution.Type.in_next_release res_status = GroupResolution.Status.pending elif statusDetails.get('inRelease'): release = statusDetails['inRelease'] activity_type = Activity.SET_RESOLVED_IN_RELEASE activity_data = { # no version yet 'version': release.version, } status_details = { 'inRelease': release.version, 'actor': serialize(extract_lazy_object(request.user), request.user), } res_type = GroupResolution.Type.in_release res_status = GroupResolution.Status.resolved else: release = None activity_type = Activity.SET_RESOLVED activity_data = {} status_details = {} now = timezone.now() for group in group_list: with transaction.atomic(): if release: resolution_params = { 'release': release, 'type': res_type, 'status': res_status, 'actor_id': request.user.id if request.user.is_authenticated() else None, } resolution, created = GroupResolution.objects.get_or_create( group=group, defaults=resolution_params, ) if not created: resolution.update(datetime=timezone.now(), **resolution_params) else: resolution = None affected = Group.objects.filter( id=group.id, ).update( status=GroupStatus.RESOLVED, resolved_at=now, ) if not resolution: created = affected group.status = GroupStatus.RESOLVED group.resolved_at = now self._subscribe_and_assign_issue(acting_user, group, result) if created: activity = Activity.objects.create( project=group.project, group=group, type=activity_type, user=acting_user, ident=resolution.id if resolution else None, data=activity_data, ) # TODO(dcramer): we need a solution for activity rollups # before sending notifications on bulk changes if not is_bulk: activity.send_notification() issue_resolved_in_release.send( group=group, project=project, sender=acting_user, ) result.update({ 'status': 'resolved', 'statusDetails': status_details, }) elif status: new_status = STATUS_CHOICES[result['status']] with transaction.atomic(): happened = queryset.exclude( status=new_status, ).update( status=new_status, ) GroupResolution.objects.filter( group__in=group_ids, ).delete() if new_status == GroupStatus.IGNORED: ignore_duration = ( statusDetails.pop('ignoreDuration', None) or statusDetails.pop('snoozeDuration', None) ) or None ignore_count = statusDetails.pop('ignoreCount', None) or None ignore_window = statusDetails.pop('ignoreWindow', None) or None ignore_user_count = statusDetails.pop('ignoreUserCount', None) or None ignore_user_window = statusDetails.pop('ignoreUserWindow', None) or None if ignore_duration or ignore_count or ignore_user_count: if ignore_duration: ignore_until = timezone.now() + timedelta( minutes=ignore_duration, ) else: ignore_until = None for group in group_list: state = {} if ignore_count and not ignore_window: state['times_seen'] = group.times_seen if ignore_user_count and not ignore_user_window: state['users_seen'] = group.count_users_seen() GroupSnooze.objects.create_or_update( group=group, values={ 'until': ignore_until, 'count': ignore_count, 'window': ignore_window, 'user_count': ignore_user_count, 'user_window': ignore_user_window, 'state': state, 'actor_id': request.user.id if request.user.is_authenticated() else None, } ) result['statusDetails'] = { 'ignoreCount': ignore_count, 'ignoreUntil': ignore_until, 'ignoreUserCount': ignore_user_count, 'ignoreUserWindow': ignore_user_window, 'ignoreWindow': ignore_window, 'actor': serialize(extract_lazy_object(request.user), request.user), } else: GroupSnooze.objects.filter( group__in=group_ids, ).delete() ignore_until = None result['statusDetails'] = {} else: result['statusDetails'] = {} if group_list and happened: if new_status == GroupStatus.UNRESOLVED: activity_type = Activity.SET_UNRESOLVED activity_data = {} elif new_status == GroupStatus.IGNORED: activity_type = Activity.SET_IGNORED activity_data = { 'ignoreCount': ignore_count, 'ignoreDuration': ignore_duration, 'ignoreUntil': ignore_until, 'ignoreUserCount': ignore_user_count, 'ignoreUserWindow': ignore_user_window, 'ignoreWindow': ignore_window, } for group in group_list: group.status = new_status activity = Activity.objects.create( project=group.project, group=group, type=activity_type, user=acting_user, data=activity_data, ) # TODO(dcramer): we need a solution for activity rollups # before sending notifications on bulk changes if not is_bulk: if acting_user: GroupSubscription.objects.subscribe( user=acting_user, group=group, reason=GroupSubscriptionReason.status_change, ) activity.send_notification() if 'assignedTo' in result: if result['assignedTo']: for group in group_list: GroupAssignee.objects.assign(group, result['assignedTo'], acting_user) if 'isSubscribed' not in result or result['assignedTo'] != request.user: GroupSubscription.objects.subscribe( group=group, user=result['assignedTo'], reason=GroupSubscriptionReason.assigned, ) result['assignedTo'] = serialize(result['assignedTo']) else: for group in group_list: GroupAssignee.objects.deassign(group, acting_user) if result.get('hasSeen') and project.member_set.filter(user=acting_user).exists(): for group in group_list: instance, created = create_or_update( GroupSeen, group=group, user=acting_user, project=group.project, values={ 'last_seen': timezone.now(), } ) elif result.get('hasSeen') is False: GroupSeen.objects.filter( group__in=group_ids, user=acting_user, ).delete() if result.get('isBookmarked'): for group in group_list: GroupBookmark.objects.get_or_create( project=project, group=group, user=acting_user, ) GroupSubscription.objects.subscribe( user=acting_user, group=group, reason=GroupSubscriptionReason.bookmark, ) elif result.get('isBookmarked') is False: GroupBookmark.objects.filter( group__in=group_ids, user=acting_user, ).delete() # TODO(dcramer): we could make these more efficient by first # querying for rich rows are present (if N > 2), flipping the flag # on those rows, and then creating the missing rows if result.get('isSubscribed') in (True, False): is_subscribed = result['isSubscribed'] for group in group_list: # NOTE: Subscribing without an initiating event (assignment, # commenting, etc.) clears out the previous subscription reason # to avoid showing confusing messaging as a result of this # action. It'd be jarring to go directly from "you are not # subscribed" to "you were subscribed due since you were # assigned" just by clicking the "subscribe" button (and you # may no longer be assigned to the issue anyway.) GroupSubscription.objects.create_or_update( user=acting_user, group=group, project=project, values={ 'is_active': is_subscribed, 'reason': GroupSubscriptionReason.unknown, }, ) result['subscriptionDetails'] = { 'reason': SUBSCRIPTION_REASON_MAP.get( GroupSubscriptionReason.unknown, 'unknown', ), } if result.get('isPublic'): queryset.update(is_public=True) for group in group_list: if group.is_public: continue group.is_public = True Activity.objects.create( project=group.project, group=group, type=Activity.SET_PUBLIC, user=acting_user, ) elif result.get('isPublic') is False: queryset.update(is_public=False) for group in group_list: if not group.is_public: continue group.is_public = False Activity.objects.create( project=group.project, group=group, type=Activity.SET_PRIVATE, user=acting_user, ) # XXX(dcramer): this feels a bit shady like it should be its own # endpoint if result.get('merge') and len(group_list) > 1: primary_group = sorted(group_list, key=lambda x: -x.times_seen)[0] children = [] transaction_id = uuid4().hex for group in group_list: if group == primary_group: continue children.append(group) group.update(status=GroupStatus.PENDING_MERGE) merge_group.delay( from_object_id=group.id, to_object_id=primary_group.id, transaction_id=transaction_id, ) Activity.objects.create( project=primary_group.project, group=primary_group, type=Activity.MERGE, user=acting_user, data={ 'issues': [{ 'id': c.id } for c in children], }, ) result['merge'] = { 'parent': six.text_type(primary_group.id), 'children': [six.text_type(g.id) for g in children], } return Response(result) @attach_scenarios([bulk_remove_issues_scenario]) def delete(self, request, project): """ Bulk Remove a List of Issues ```````````````````````````` Permanently remove the given issues. The list of issues to modify is given through the `id` query parameter. It is repeated for each issue that should be removed. Only queries by 'id' are accepted. If any ids are out of scope this operation will succeed without any data mutation. :qparam int id: a list of IDs of the issues to be removed. This parameter shall be repeated for each issue. :pparam string organization_slug: the slug of the organization the issues belong to. :pparam string project_slug: the slug of the project the issues belong to. :auth: required """ group_ids = request.GET.getlist('id') if group_ids: group_list = list( Group.objects.filter( project=project, id__in=set(group_ids), ).exclude( status__in=[ GroupStatus.PENDING_DELETION, GroupStatus.DELETION_IN_PROGRESS, ] ) ) else: # missing any kind of filter return Response( '{"detail": "You must specify a list of IDs for this operation"}', status=400 ) if not group_list: return Response(status=204) self._delete_groups(request, project, group_list) return Response(status=204) def _delete_groups(self, request, project, group_list): group_ids = [g.id for g in group_list] Group.objects.filter( id__in=group_ids, ).exclude(status__in=[ GroupStatus.PENDING_DELETION, GroupStatus.DELETION_IN_PROGRESS, ]).update(status=GroupStatus.PENDING_DELETION) GroupHash.objects.filter(group__id__in=group_ids).delete() transaction_id = uuid4().hex for group in group_list: delete_group.apply_async( kwargs={ 'object_id': group.id, 'transaction_id': transaction_id, }, countdown=3600, ) self.create_audit_entry( request=request, organization_id=project.organization_id, target_object=group.id, transaction_id=transaction_id, ) delete_logger.info( 'object.delete.queued', extra={ 'object_id': group.id, 'transaction_id': transaction_id, 'model': type(group).__name__, } )
{ "repo_name": "jean/sentry", "path": "src/sentry/api/endpoints/project_group_index.py", "copies": "1", "size": "37609", "license": "bsd-3-clause", "hash": 4815199713830203000, "line_mean": 39.5269396552, "line_max": 100, "alpha_frac": 0.517588875, "autogenerated": false, "ratio": 4.988592651545297, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.6006181526545298, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from .disinfect import ( Field, MappedValueError, Mapping, MultiValueError, Test, test_and_return, validate, sanitize, ) from .tests import ( Boolean, Date, DateTime, Email, Enum, Float, InstanceOf, Int, List, ListOf, Regex, Set, String, Upload, IsNone, ) __version__ = '0.2.1' __package__ = 'disinfect' __title__ = 'Disinfect' __description__ = 'Disinfect: Destroy bad input.' __uri__ = 'https://github.com/corverdevelopment/Disinfect/' __author__ = 'Nils Corver' __email__ = 'nils@corverdevelopment.nl' __license__ = 'MIT' __copyright__ = 'Copyright (c) 2016 Corver Development B.V.' __all__ = [ 'Field', 'MappedValueError', 'Mapping', 'MultiValueError', 'Test', 'test_and_return', 'validate', 'sanitize', 'Boolean', 'Date', 'DateTime', 'Email', 'Enum', 'Float', 'InstanceOf', 'Int', 'List', 'ListOf', 'Regex', 'Set', 'String', 'Upload', ]
{ "repo_name": "CorverDevelopment/Disinfect", "path": "src/disinfect/__init__.py", "copies": "1", "size": "1094", "license": "mit", "hash": -4702460455042760000, "line_mean": 15.0882352941, "line_max": 64, "alpha_frac": 0.5594149909, "autogenerated": false, "ratio": 3.2176470588235295, "config_test": false, "has_no_keywords": true, "few_assignments": false, "quality_score": 0.927706204972353, "avg_score": 0, "num_lines": 68 }
from __future__ import absolute_import, division, print_function from distutils.version import LooseVersion import difflib import math import os import numpy as np from toolz import frequencies, concat from .core import Array from ..async import get_sync from ..sharedict import ShareDict if LooseVersion(np.__version__) >= '1.10.0': allclose = np.allclose else: def allclose(a, b, **kwargs): if kwargs.pop('equal_nan', False): a_nans = np.isnan(a) b_nans = np.isnan(b) if not (a_nans == b_nans).all(): return False a = a[~a_nans] b = b[~b_nans] return np.allclose(a, b, **kwargs) def _not_empty(x): return x.shape and 0 not in x.shape def _check_dsk(dsk): """ Check that graph is well named and non-overlapping """ if not isinstance(dsk, ShareDict): return assert all(isinstance(k, str) for k in dsk.dicts) freqs = frequencies(concat(dsk.dicts.values())) non_one = {k: v for k, v in freqs.items() if v != 1} assert not non_one, non_one def assert_eq_shape(a, b, check_nan=True): for aa, bb in zip(a, b): if math.isnan(aa) or math.isnan(bb): if check_nan: assert math.isnan(aa) == math.isnan(bb) else: assert aa == bb def assert_eq(a, b, check_shape=True, **kwargs): a_original = a b_original = b if isinstance(a, Array): assert a.dtype is not None adt = a.dtype _check_dsk(a.dask) a = a.compute(get=get_sync) if _not_empty(a): assert a.dtype == a_original.dtype if check_shape: assert_eq_shape(a_original.shape, a.shape, check_nan=False) else: adt = getattr(a, 'dtype', None) if isinstance(b, Array): assert b.dtype is not None bdt = b.dtype _check_dsk(b.dask) b = b.compute(get=get_sync) if _not_empty(b): assert b.dtype == b_original.dtype if check_shape: assert_eq_shape(b_original.shape, b.shape, check_nan=False) else: bdt = getattr(b, 'dtype', None) if str(adt) != str(bdt): diff = difflib.ndiff(str(adt).splitlines(), str(bdt).splitlines()) raise AssertionError('string repr are different' + os.linesep + os.linesep.join(diff)) try: if _not_empty(a) and _not_empty(b): # Treat all empty arrays as equivalent assert a.shape == b.shape assert allclose(a, b, **kwargs) return except TypeError: pass c = a == b if isinstance(c, np.ndarray): assert c.all() else: assert c return True
{ "repo_name": "cpcloud/dask", "path": "dask/array/utils.py", "copies": "1", "size": "2735", "license": "bsd-3-clause", "hash": -2554400838261626400, "line_mean": 26.0792079208, "line_max": 74, "alpha_frac": 0.5674588665, "autogenerated": false, "ratio": 3.427318295739348, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9493070094980898, "avg_score": 0.0003414134516899966, "num_lines": 101 }
from __future__ import absolute_import, division, print_function from distutils.version import LooseVersion import pandas as pd import numpy as np from ..core import DataFrame, Series from ...base import tokenize def getnanos(rule): try: return getattr(rule, 'nanos', None) except ValueError: return None if LooseVersion(pd.__version__) >= '0.18.0': def _resample_apply(s, rule, how, resample_kwargs): return getattr(s.resample(rule, **resample_kwargs), how)() def _resample(obj, rule, how, **kwargs): resampler = Resampler(obj, rule, **kwargs) if how is not None: raise FutureWarning(("how in .resample() is deprecated " "the new syntax is .resample(...)" ".{0}()").format(how)) return getattr(resampler, how)() return resampler else: def _resample_apply(s, rule, how, resample_kwargs): return s.resample(rule, how=how, **resample_kwargs) def _resample(obj, rule, how, **kwargs): how = how or 'mean' return getattr(Resampler(obj, rule, **kwargs), how)() def _resample_series(series, start, end, reindex_closed, rule, resample_kwargs, how, fill_value): out = _resample_apply(series, rule, how, resample_kwargs) return out.reindex(pd.date_range(start, end, freq=rule, closed=reindex_closed), fill_value=fill_value) def _resample_bin_and_out_divs(divisions, rule, closed='left', label='left'): rule = pd.datetools.to_offset(rule) g = pd.TimeGrouper(rule, how='count', closed=closed, label=label) # Determine bins to apply `how` to. Disregard labeling scheme. divs = pd.Series(range(len(divisions)), index=divisions) temp = divs.resample(rule, how='count', closed=closed, label='left') tempdivs = temp.loc[temp > 0].index # Cleanup closed == 'right' and label == 'right' res = pd.offsets.Nano() if hasattr(rule, 'delta') else pd.offsets.Day() if g.closed == 'right': newdivs = tempdivs + res else: newdivs = tempdivs if g.label == 'right': outdivs = tempdivs + rule else: outdivs = tempdivs newdivs = newdivs.tolist() outdivs = outdivs.tolist() # Adjust ends if newdivs[0] < divisions[0]: newdivs[0] = divisions[0] if newdivs[-1] < divisions[-1]: if len(newdivs) < len(divs): setter = lambda a, val: a.append(val) else: setter = lambda a, val: a.__setitem__(-1, val) setter(newdivs, divisions[-1]) if outdivs[-1] > divisions[-1]: setter(outdivs, outdivs[-1]) elif outdivs[-1] < divisions[-1]: setter(outdivs, temp.index[-1]) return tuple(map(pd.Timestamp, newdivs)), tuple(map(pd.Timestamp, outdivs)) class Resampler(object): def __init__(self, obj, rule, **kwargs): self.obj = obj rule = pd.datetools.to_offset(rule) day_nanos = pd.datetools.Day().nanos if getnanos(rule) and day_nanos % rule.nanos: raise NotImplementedError('Resampling frequency %s that does' ' not evenly divide a day is not ' 'implemented' % rule) self._rule = rule self._kwargs = kwargs def _agg(self, how, columns=None, fill_value=np.nan): rule = self._rule kwargs = self._kwargs name = 'resample-' + tokenize(self.obj, rule, kwargs, how) # Create a grouper to determine closed and label conventions newdivs, outdivs = _resample_bin_and_out_divs(self.obj.divisions, rule, **kwargs) # Repartition divs into bins. These won't match labels after mapping partitioned = self.obj.repartition(newdivs, force=True) keys = partitioned._keys() dsk = partitioned.dask args = zip(keys, outdivs, outdivs[1:], ['left']*(len(keys)-1) + [None]) for i, (k, s, e, c) in enumerate(args): dsk[(name, i)] = (_resample_series, k, s, e, c, rule, kwargs, how, fill_value) if columns: return DataFrame(dsk, name, columns, outdivs) return Series(dsk, name, self.obj.name, outdivs) def count(self): return self._agg('count', fill_value=0) def first(self): return self._agg('first') def last(self): return self._agg('last') def mean(self): return self._agg('mean') def min(self): return self._agg('min') def median(self): return self._agg('median') def max(self): return self._agg('max') def ohlc(self): return self._agg('ohlc', columns=['open', 'high', 'low', 'close']) def prod(self): return self._agg('prod') def sem(self): return self._agg('sem') def std(self): return self._agg('std') def sum(self): return self._agg('sum') def var(self): return self._agg('var')
{ "repo_name": "mikegraham/dask", "path": "dask/dataframe/tseries/resample.py", "copies": "1", "size": "5137", "license": "bsd-3-clause", "hash": -421743431968018750, "line_mean": 30.9068322981, "line_max": 79, "alpha_frac": 0.5693984816, "autogenerated": false, "ratio": 3.6381019830028327, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9706352975393442, "avg_score": 0.00022949784187809244, "num_lines": 161 }
from __future__ import absolute_import, division, print_function from django.conf.urls import include, url from django.contrib import admin from rest_framework.routers import SimpleRouter from rest_framework_docs.views import DRFDocsView from tests import views accounts_urls = [ url(r'^login/$', views.LoginView.as_view(), name="login"), url(r'^login2/$', views.LoginWithSerilaizerClassView.as_view(), name="login2"), url(r'^register/$', views.UserRegistrationView.as_view(), name="register"), url(r'^reset-password/$', view=views.PasswordResetView.as_view(), name="reset-password"), url(r'^reset-password/confirm/$', views.PasswordResetConfirmView.as_view(), name="reset-password-confirm"), url(r'^user/profile/$', views.UserProfileView.as_view(), name="profile"), url(r'^test/$', views.TestView.as_view(), name="test-view"), ] organisations_urls = [ url(r'^create/$', view=views.CreateOrganisationView.as_view(), name="create"), url(r'^(?P<slug>[\w-]+)/members/$', view=views.OrganisationMembersView.as_view(), name="members"), url(r'^(?P<slug>[\w-]+)/leave/$', view=views.LeaveOrganisationView.as_view(), name="leave"), url(r'^(?P<slug>[\w-]+)/errored/$', view=views.OrganisationErroredView.as_view(), name="errored"), url(r'^(?P<slug>[\w-]+)/$', view=views.RetrieveOrganisationView.as_view(), name="organisation"), ] router = SimpleRouter() router.register('organisation-model-viewsets', views.TestModelViewSet, base_name='organisation') urlpatterns = [ url(r'^admin/', include(admin.site.urls)), url(r'^docs/', DRFDocsView.as_view(drf_router=router), name='drfdocs'), # API url(r'^accounts/', view=include(accounts_urls, namespace='accounts')), url(r'^organisations/', view=include(organisations_urls, namespace='organisations')), url(r'^', include(router.urls)), # Endpoints without parents/namespaces url(r'^another-login/$', views.LoginView.as_view(), name="login"), ]
{ "repo_name": "manosim/django-rest-framework-docs", "path": "tests/urls.py", "copies": "2", "size": "1967", "license": "bsd-2-clause", "hash": 1385682343277960000, "line_mean": 44.7441860465, "line_max": 111, "alpha_frac": 0.6929334011, "autogenerated": false, "ratio": 3.4388111888111887, "config_test": false, "has_no_keywords": true, "few_assignments": false, "quality_score": 0.5131744589911189, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from dynd import nd from glob import glob from itertools import chain from datashape import dshape, var from datashape.predicates import isdimension from .core import DataDescriptor from .. import compatibility from ..utils import get, ndget __all__ = 'Concat', 'Stack' class Concat(DataDescriptor): def __init__(self, descriptors): assert all(isdimension(ddesc.dshape[0]) for ddesc in descriptors) self.descriptors = descriptors @property def dshape(self): return var * self.descriptors[0].dshape.subarray(1) def _iter(self): return chain.from_iterable(self.descriptors) def _chunks(self, **kwargs): return (chunk for dd in self.descriptors for chunk in dd.chunks(**kwargs)) def _get_py(self, key): if not isinstance(key, tuple): return get(key, iter(self)) result = get(key[0], iter(self)) if isinstance(key[0], (list, slice)): return (ndget(key[1:], row) for row in result) else: return ndget(key[1:], result) class Stack(DataDescriptor): def __init__(self, descriptors): self.descriptors = descriptors @property def dshape(self): return len(self.descriptors) * self.descriptors[0].dshape def _iter(self): return (dd.as_py() for dd in self.descriptors) def chunks(self, **kwargs): return (dd.as_dynd() for dd in self.descriptors) def _get_py(self, key): if isinstance(key, tuple): result = get(key[0], self.descriptors) if isinstance(key[0], (list, slice)): return (s._get_py(key[1:]) for s in result) else: return result._get_py(key[1:]) else: result = get(key, self.descriptors) if isinstance(key, (list, slice)): return (s.as_py() for s in result) else: return result.as_py()
{ "repo_name": "aterrel/blaze", "path": "blaze/data/meta.py", "copies": "2", "size": "2025", "license": "bsd-3-clause", "hash": 3433165095077093400, "line_mean": 28.347826087, "line_max": 73, "alpha_frac": 0.6004938272, "autogenerated": false, "ratio": 3.87189292543021, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5472386752630211, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from dynd import nd from glob import glob from itertools import chain from datashape import dshape, Var from .core import DataDescriptor from .. import py2help __all__ = 'Files', class Files(DataDescriptor): immutable = True deferred = False appendable = False remote = False persistent = True def __init__(self, files, descriptor, subdshape=None, schema=None, open=open): if isinstance(files, py2help._strtypes): files = glob(files) self.filenames = files self.open = open self.descriptor = descriptor if schema and not subdshape: subdshape = Var() * schema self.subdshape = dshape(subdshape) @property def dshape(self): if isinstance(self.subdshape[0], Var): return self.subdshape else: return Var() * self.subdshape def _iter(self): return chain.from_iterable(self.descriptor(fn, dshape=self.subdshape, open=self.open) for fn in self.filenames)
{ "repo_name": "sethkontny/blaze", "path": "blaze/data/filesystem.py", "copies": "1", "size": "1228", "license": "bsd-3-clause", "hash": -4884883343233145000, "line_mean": 26.9090909091, "line_max": 73, "alpha_frac": 0.5716612378, "autogenerated": false, "ratio": 4.370106761565836, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5441767999365836, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from dynd import nd import datashape from datashape import DataShape, dshape, Record from datashape.user import validate, issubschema from numbers import Number from collections import Iterable import numpy as np from ..dispatch import dispatch __all__ = ['into', 'discover'] @dispatch(type, object) def into(a, b): f = into.resolve((a, type(b))) try: a = a() except: pass return f(a, b) @dispatch((list, tuple, set), (list, tuple, set)) def into(a, b): return type(a)(b) @dispatch(dict, (list, tuple, set)) def into(a, b): return dict(b) @dispatch((list, tuple, set), dict) def into(a, b): return type(a)(map(type(a), sorted(b.items(), key=lambda x: x[0]))) @dispatch(nd.array, (Iterable, Number, str)) def into(a, b): return nd.array(b) @dispatch(list, nd.array) def into(a, b): return nd.as_py(b) @dispatch(np.ndarray, nd.array) def into(a, b): return nd.as_numpy(b, allow_copy=True) @dispatch(np.ndarray, Iterable) def into(a, b): return np.asarray(b) @dispatch(list, np.ndarray) def into(a, b): return b.tolist() from blaze.data import DataDescriptor from pandas import DataFrame @dispatch(DataFrame, DataDescriptor) def into(a, b): return DataFrame(list(b), columns=b.columns) @dispatch(DataFrame, nd.array) def into(a, b): ds = dshape(nd.dshape_of(b)) if list(a.columns): names = a.columns elif isinstance(ds[-1], Record): names = ds[-1].names else: names = None if names: return DataFrame(nd.as_py(b), columns=names) else: return DataFrame(nd.as_py(b)) @dispatch(DataFrame, (list, tuple)) def into(df, seq): if list(df.columns): return DataFrame(list(seq), columns=df.columns) else: return DataFrame(list(seq)) @dispatch(nd.array, DataFrame) def into(a, df): schema = discover(df) arr = nd.empty(str(schema)) for i in range(len(df.columns)): arr[:, i] = np.asarray(df[df.columns[i]]) return arr @dispatch(DataFrame) def discover(df): obj = datashape.coretypes.object_ names = list(df.columns) dtypes = list(map(datashape.CType.from_numpy_dtype, df.dtypes)) dtypes = [datashape.string if dt == obj else dt for dt in dtypes] schema = Record(list(zip(names, dtypes))) return len(df) * schema
{ "repo_name": "aterrel/blaze", "path": "blaze/api/into.py", "copies": "1", "size": "2388", "license": "bsd-3-clause", "hash": -6126362583294449000, "line_mean": 22.1844660194, "line_max": 71, "alpha_frac": 0.6507537688, "autogenerated": false, "ratio": 3.081290322580645, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.42320440913806445, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from dynd import nd from blaze.compute.core import compute from blaze.expr import * from blaze.compute.dynd import * def eq(a, b): return nd.as_py(a) == nd.as_py(b) n = Symbol('n', '3 * 5 * int') nx = nd.array([[ 1, 2, 3, 4, 5], [11, 22, 33, 44, 55], [21, 22, 23, 24, 25]], type=str(n.dshape)) rec = Symbol('s', '3 * var * {name: string, amount: int}') recx = nd.array([[('Alice', 1), ('Bob', 2)], [('Charlie', 3)], [('Dennis', 4), ('Edith', 5), ('Frank', 6)]], type = str(rec.dshape)) def test_symbol(): assert eq(compute(n, nx), nx) def test_slice(): assert eq(compute(n[0], nx), nx[0]) assert eq(compute(n[0, :3], nx), nx[0, :3]) def test_field(): assert eq(compute(rec.amount, recx), recx.amount) def test_arithmetic(): # assert eq(compute(n + 1, nx), nx + 1) assert eq(compute(rec.amount + 1, recx), recx.amount + 1) assert eq(compute(-rec.amount, recx), 0-recx.amount)
{ "repo_name": "vitan/blaze", "path": "blaze/compute/tests/test_dynd_compute.py", "copies": "1", "size": "1070", "license": "bsd-3-clause", "hash": -606230794249742800, "line_mean": 25.0975609756, "line_max": 64, "alpha_frac": 0.5504672897, "autogenerated": false, "ratio": 2.772020725388601, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.3822488015088601, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from dynd import nd from blaze.serve.server import Server from blaze.data.python import Python from blaze.serve.index import parse_index, emit_index from blaze.serve.client import Client accounts = Python([['Alice', 100], ['Bob', 200]], schema='{name: string, amount: int32}') cities = Python([['Alice', 'NYC'], ['Bob', 'LA'], ['Charlie', 'Beijing']], schema='{name: string, city: string}') server = Server(datasets={'accounts': accounts, 'cities': cities}) test = server.app.test_client() import blaze.serve.client as client client.requests = test # OMG monkey patching dd = Client('http://localhost:5000', 'accounts') def test_dshape(): assert dd.dshape == accounts.dshape def test_get_py(): assert list(dd.py[0:, 'name']) == list(accounts.py[:, 'name']) def test_get_dynd(): result = dd.dynd[0:, 'name'] expected = accounts.dynd[:, 'name'] assert nd.as_py(result) == nd.as_py(expected) def test_iter(): assert list(dd) == list(accounts) def test_chunks(): assert [nd.as_py(chunk) for chunk in dd.chunks()] == \ [nd.as_py(chunk) for chunk in accounts.chunks()]
{ "repo_name": "aterrel/blaze", "path": "blaze/serve/tests/test_client.py", "copies": "1", "size": "1222", "license": "bsd-3-clause", "hash": 718005206594917500, "line_mean": 25.5652173913, "line_max": 74, "alpha_frac": 0.6464811784, "autogenerated": false, "ratio": 3.2586666666666666, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9392085297393135, "avg_score": 0.002612509534706331, "num_lines": 46 }
from __future__ import absolute_import, division, print_function from dynd.ndt.type import make_var_dim, make_fixed_dim, make_fixed_dim_kind, type as w_type __all__ = ['var', 'fixed'] class _Dim(object): __slots__ = [] def __mul__(self, rhs): if isinstance(rhs, w_type): # Apply all the dimensions to get # produce a type for dim in reversed(self.dims): rhs = dim.create(rhs) return rhs elif isinstance(rhs, (str, type)): # Allow: # ndt.fixed * 'int32' # ndt.fixed * int rhs = w_type(rhs) for dim in reversed(self.dims): rhs = dim.create(rhs) return rhs elif isinstance(rhs, _Dim): # Combine the dimension fragments return _DimFragment(self.dims + rhs.dims) else: raise TypeError('Expected a dynd dimension or type, not %r' % rhs) def __pow__(self, count): return _DimFragment(self.dims * count) class _DimFragment(_Dim): __slots__ = ['dims'] def __init__(self, dims): self.dims = dims def __repr__(self): return ' * '.join(repr(dim) for dim in self.dims) class _Var(_Dim): """ Creates a var dimension when combined with other types. Examples -------- >>> ndt.var * ndt.int32 ndt.type('var * int32') >>> ndt.fixed[5] * ndt.var * ndt.float64 ndt.type('5 * var * float64') """ __slots__ = [] @property def dims(self): return (self,) def create(self, eltype): return make_var_dim(eltype) def __repr__(self): return 'ndt.var' class _Fixed(_Dim): """ Creates a fixed dimension when combined with other types. Examples -------- >>> ndt.fixed[3] * ndt.int32 ndt.type('3 * int32') >>> ndt.fixed[5] * ndt.var * ndt.float64 ndt.type('5 * var * float64') """ __slots__ = ['dim_size'] def __init__(self, dim_size = None): self.dim_size = dim_size @property def dims(self): return (self,) def create(self, eltype): if self.dim_size is None: return make_fixed_dim_kind(eltype) else: return make_fixed_dim(self.dim_size, eltype) def __getitem__(self, dim_size): return _Fixed(dim_size) def __repr__(self): if self.dim_size is not None: return 'ndt.fixed[%d]' % self.dim_size else: return 'ndt.fixed' var = _Var() fixed = _Fixed()
{ "repo_name": "libdynd/dynd-python", "path": "dynd/ndt/dim_helpers.py", "copies": "8", "size": "2558", "license": "bsd-2-clause", "hash": -2271444841386698000, "line_mean": 22.9158878505, "line_max": 91, "alpha_frac": 0.5293197811, "autogenerated": false, "ratio": 3.5185694635488307, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.8047889244648831, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from dynd._pydynd import w_type as type, \ make_byteswap, make_fixedbytes, make_convert, \ make_view, \ make_unaligned, make_fixedstring, make_string, \ make_pointer, make_struct, make_cstruct, \ make_strided_dim, make_fixed_dim, make_cfixed_dim, make_var_dim, \ make_categorical, replace_dtype, extract_dtype, \ factor_categorical, make_bytes, make_property, \ make_reversed_property, cuda_support void = type('void') bool = type('bool') int8 = type('int8') int16 = type('int16') int32 = type('int32') int64 = type('int64') int128 = type('int128') intptr = type('intptr') uint8 = type('uint8') uint16 = type('uint16') uint32 = type('uint32') uint64 = type('uint64') uint128 = type('uint128') uintptr = type('uintptr') float16 = type('float16') float32 = type('float32') float64 = type('float64') complex_float32 = type('complex[float32]') complex_float64 = type('complex[float64]') # Aliases for people comfortable with the NumPy complex namings complex64 = complex_float32 complex128 = complex_float64 string = type('string') date = type('date') time = type('time') datetime = type('datetime') datetimeutc = type('datetime[tz="UTC"]') json = type('json') bytes = type('bytes') # Includes ctypes definitions from . import dynd_ctypes as ctypes # Some classes making dimension construction easier from .dim_helpers import *
{ "repo_name": "aterrel/dynd-python", "path": "dynd/ndt/__init__.py", "copies": "1", "size": "1457", "license": "bsd-2-clause", "hash": -6558407968968507000, "line_mean": 30, "line_max": 74, "alpha_frac": 0.693891558, "autogenerated": false, "ratio": 3.252232142857143, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.44461237008571425, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from dynd._pydynd import w_type, \ make_var_dim, make_strided_dim, make_fixed_dim, make_cfixed_dim __all__ = ['var', 'strided', 'fixed', 'cfixed'] class _Dim(object): __slots__ = [] def __mul__(self, rhs): if isinstance(rhs, w_type): # Apply all the dimensions to get # produce a type for dim in reversed(self.dims): rhs = dim.create(rhs) return rhs elif isinstance(rhs, (str, type)): # Allow: # ndt.strided * 'int32' # ndt.strided * int rhs = w_type(rhs) for dim in reversed(self.dims): rhs = dim.create(rhs) return rhs elif isinstance(rhs, _Dim): # Combine the dimension fragments return _DimFragment(self.dims + rhs.dims) else: raise TypeError('Expected a dynd dimension or type, not %r' % rhs) def __pow__(self, count): return _DimFragment(self.dims * count) class _DimFragment(_Dim): __slots__ = ['dims'] def __init__(self, dims): self.dims = dims def __repr__(self): return ' * '.join(repr(dim) for dim in self.dims) class _Var(_Dim): """ Creates a var dimension when combined with other types. Examples -------- >>> ndt.var * ndt.int32 ndt.type('var * int32') >>> ndt.fixed[5] * ndt.var * ndt.float64 ndt.type('5 * var * float64') """ __slots__ = [] @property def dims(self): return (self,) def create(self, eltype): return make_var_dim(eltype) def __repr__(self): return 'ndt.var' class _Strided(_Dim): """ Creates a strided dimension when combined with other types. Examples -------- >>> ndt.strided * ndt.int32 ndt.type('strided * int32') >>> ndt.fixed[5] * ndt.strided * ndt.float64 ndt.type('5 * strided * float64') """ __slots__ = [] @property def dims(self): return (self,) def create(self, eltype): return make_strided_dim(eltype) def __repr__(self): return 'ndt.strided' class _Fixed(_Dim): """ Creates a fixed dimension when combined with other types. Examples -------- >>> ndt.fixed[3] * ndt.int32 ndt.type('3 * int32') >>> ndt.fixed[5] * ndt.var * ndt.float64 ndt.type('5 * var * float64') """ __slots__ = ['dim_size'] def __init__(self, dim_size = None): self.dim_size = dim_size @property def dims(self): if self.dim_size is not None: return (self,) else: raise TypeError('Need to specify ndt.fixed[dim_size],' + ' not just ndt.fixed') def create(self, eltype): return make_fixed_dim(self.dim_size, eltype) def __getitem__(self, dim_size): return _Fixed(dim_size) def __repr__(self): if self.dim_size is not None: return 'ndt.fixed[%d]' % self.dim_size else: return 'ndt.fixed' class _CFixed(_Dim): """ Creates a cfixed dimension when combined with other types. Examples -------- >>> ndt.cfixed[3] * ndt.int32 ndt.type('cfixed[3] * int32') >>> ndt.fixed[5] * ndt.cfixed[2] * ndt.float64 ndt.type('5 * cfixed[2] * float64') """ __slots__ = ['dim_size'] def __init__(self, dim_size = None): self.dim_size = dim_size @property def dims(self): if self.dim_size is not None: return (self,) else: raise TypeError('Need to specify ndt.cfixed[dim_size],' + ' not just ndt.cfixed') def create(self, eltype): return make_cfixed_dim(self.dim_size, eltype) def __getitem__(self, dim_size): return _CFixed(dim_size) def __repr__(self): if self.dim_size is not None: return 'ndt.cfixed[%d]' % self.dim_size else: return 'ndt.cfixed' var = _Var() strided = _Strided() fixed = _Fixed() cfixed = _CFixed()
{ "repo_name": "aterrel/dynd-python", "path": "dynd/ndt/dim_helpers.py", "copies": "1", "size": "4145", "license": "bsd-2-clause", "hash": -3439929169362638300, "line_mean": 23.0988372093, "line_max": 78, "alpha_frac": 0.5305186972, "autogenerated": false, "ratio": 3.4426910299003324, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9470373652227956, "avg_score": 0.0005672149744753262, "num_lines": 172 }
from __future__ import absolute_import, division, print_function from enum import Enum class CipherSuites(Enum): TLS_NULL_WITH_NULL_NULL = 0x0000 TLS_RSA_WITH_NULL_MD5 = 0x0001 TLS_RSA_WITH_NULL_SHA = 0x0002 TLS_RSA_EXPORT_WITH_RC4_40_MD5 = 0x0003 TLS_RSA_WITH_RC4_128_MD5 = 0x0004 TLS_RSA_WITH_RC4_128_SHA = 0x0005 TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5 = 0x0006 TLS_RSA_WITH_IDEA_CBC_SHA = 0x0007 TLS_RSA_EXPORT_WITH_DES40_CBC_SHA = 0x0008 TLS_RSA_WITH_DES_CBC_SHA = 0x0009 TLS_RSA_WITH_3DES_EDE_CBC_SHA = 0x000A TLS_DH_DSS_EXPORT_WITH_DES40_CBC_SHA = 0x000B TLS_DH_DSS_WITH_DES_CBC_SHA = 0x000C TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA = 0x000D TLS_DH_RSA_EXPORT_WITH_DES40_CBC_SHA = 0x000E TLS_DH_RSA_WITH_DES_CBC_SHA = 0x000F TLS_DH_RSA_WITH_3DES_EDE_CBC_SHA = 0x0010 TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA = 0x0011 TLS_DHE_DSS_WITH_DES_CBC_SHA = 0x0012 TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA = 0x0013 TLS_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA = 0x0014 TLS_DHE_RSA_WITH_DES_CBC_SHA = 0x0015 TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA = 0x0016 TLS_DH_anon_EXPORT_WITH_RC4_40_MD5 = 0x0017 TLS_DH_anon_WITH_RC4_128_MD5 = 0x0018 TLS_DH_anon_EXPORT_WITH_DES40_CBC_SHA = 0x0019 TLS_DH_anon_WITH_DES_CBC_SHA = 0x001A TLS_DH_anon_WITH_3DES_EDE_CBC_SHA = 0x001B TLS_KRB5_WITH_DES_CBC_SHA = 0x001E TLS_KRB5_WITH_3DES_EDE_CBC_SHA = 0x001F TLS_KRB5_WITH_RC4_128_SHA = 0x0020 TLS_KRB5_WITH_IDEA_CBC_SHA = 0x0021 TLS_KRB5_WITH_DES_CBC_MD5 = 0x0022 TLS_KRB5_WITH_3DES_EDE_CBC_MD5 = 0x0023 TLS_KRB5_WITH_RC4_128_MD5 = 0x0024 TLS_KRB5_WITH_IDEA_CBC_MD5 = 0x0025 TLS_KRB5_EXPORT_WITH_DES_CBC_40_SHA = 0x0026 TLS_KRB5_EXPORT_WITH_RC2_CBC_40_SHA = 0x0027 TLS_KRB5_EXPORT_WITH_RC4_40_SHA = 0x0028 TLS_KRB5_EXPORT_WITH_DES_CBC_40_MD5 = 0x0029 TLS_KRB5_EXPORT_WITH_RC2_CBC_40_MD5 = 0x002A TLS_KRB5_EXPORT_WITH_RC4_40_MD5 = 0x002B TLS_PSK_WITH_NULL_SHA = 0x002C TLS_DHE_PSK_WITH_NULL_SHA = 0x002D TLS_RSA_PSK_WITH_NULL_SHA = 0x002E TLS_RSA_WITH_AES_128_CBC_SHA = 0x002F TLS_DH_DSS_WITH_AES_128_CBC_SHA = 0x0030 TLS_DH_RSA_WITH_AES_128_CBC_SHA = 0x0031 TLS_DHE_DSS_WITH_AES_128_CBC_SHA = 0x0032 TLS_DHE_RSA_WITH_AES_128_CBC_SHA = 0x0033 TLS_DH_anon_WITH_AES_128_CBC_SHA = 0x0034 TLS_RSA_WITH_AES_256_CBC_SHA = 0x0035 TLS_DH_DSS_WITH_AES_256_CBC_SHA = 0x0036 TLS_DH_RSA_WITH_AES_256_CBC_SHA = 0x0037 TLS_DHE_DSS_WITH_AES_256_CBC_SHA = 0x0038 TLS_DHE_RSA_WITH_AES_256_CBC_SHA = 0x0039 TLS_DH_anon_WITH_AES_256_CBC_SHA = 0x003A TLS_RSA_WITH_NULL_SHA256 = 0x003B TLS_RSA_WITH_AES_128_CBC_SHA256 = 0x003C TLS_RSA_WITH_AES_256_CBC_SHA256 = 0x003D TLS_DH_DSS_WITH_AES_128_CBC_SHA256 = 0x003E TLS_DH_RSA_WITH_AES_128_CBC_SHA256 = 0x003F TLS_DHE_DSS_WITH_AES_128_CBC_SHA256 = 0x0040 TLS_RSA_WITH_CAMELLIA_128_CBC_SHA = 0x0041 TLS_DH_DSS_WITH_CAMELLIA_128_CBC_SHA = 0x0042 TLS_DH_RSA_WITH_CAMELLIA_128_CBC_SHA = 0x0043 TLS_DHE_DSS_WITH_CAMELLIA_128_CBC_SHA = 0x0044 TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA = 0x0045 TLS_DH_anon_WITH_CAMELLIA_128_CBC_SHA = 0x0046 TLS_DHE_RSA_WITH_AES_128_CBC_SHA256 = 0x0067 TLS_DH_DSS_WITH_AES_256_CBC_SHA256 = 0x0068 TLS_DH_RSA_WITH_AES_256_CBC_SHA256 = 0x0069 TLS_DHE_DSS_WITH_AES_256_CBC_SHA256 = 0x006A TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 = 0x006B TLS_DH_anon_WITH_AES_128_CBC_SHA256 = 0x006C TLS_DH_anon_WITH_AES_256_CBC_SHA256 = 0x006D TLS_RSA_WITH_CAMELLIA_256_CBC_SHA = 0x0084 TLS_DH_DSS_WITH_CAMELLIA_256_CBC_SHA = 0x0085 TLS_DH_RSA_WITH_CAMELLIA_256_CBC_SHA = 0x0086 TLS_DHE_DSS_WITH_CAMELLIA_256_CBC_SHA = 0x0087 TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA = 0x0088 TLS_DH_anon_WITH_CAMELLIA_256_CBC_SHA = 0x0089 TLS_PSK_WITH_RC4_128_SHA = 0x008A TLS_PSK_WITH_3DES_EDE_CBC_SHA = 0x008B TLS_PSK_WITH_AES_128_CBC_SHA = 0x008C TLS_PSK_WITH_AES_256_CBC_SHA = 0x008D TLS_DHE_PSK_WITH_RC4_128_SHA = 0x008E TLS_DHE_PSK_WITH_3DES_EDE_CBC_SHA = 0x008F TLS_DHE_PSK_WITH_AES_128_CBC_SHA = 0x0090 TLS_DHE_PSK_WITH_AES_256_CBC_SHA = 0x0091 TLS_RSA_PSK_WITH_RC4_128_SHA = 0x0092 TLS_RSA_PSK_WITH_3DES_EDE_CBC_SHA = 0x0093 TLS_RSA_PSK_WITH_AES_128_CBC_SHA = 0x0094 TLS_RSA_PSK_WITH_AES_256_CBC_SHA = 0x0095 TLS_RSA_WITH_SEED_CBC_SHA = 0x0096 TLS_DH_DSS_WITH_SEED_CBC_SHA = 0x0097 TLS_DH_RSA_WITH_SEED_CBC_SHA = 0x0098 TLS_DHE_DSS_WITH_SEED_CBC_SHA = 0x0099 TLS_DHE_RSA_WITH_SEED_CBC_SHA = 0x009A TLS_DH_anon_WITH_SEED_CBC_SHA = 0x009B TLS_RSA_WITH_AES_128_GCM_SHA256 = 0x009C TLS_RSA_WITH_AES_256_GCM_SHA384 = 0x009D TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 = 0x009E TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 = 0x009F TLS_DH_RSA_WITH_AES_128_GCM_SHA256 = 0x00A0 TLS_DH_RSA_WITH_AES_256_GCM_SHA384 = 0x00A1 TLS_DHE_DSS_WITH_AES_128_GCM_SHA256 = 0x00A2 TLS_DHE_DSS_WITH_AES_256_GCM_SHA384 = 0x00A3 TLS_DH_DSS_WITH_AES_128_GCM_SHA256 = 0x00A4 TLS_DH_DSS_WITH_AES_256_GCM_SHA384 = 0x00A5 TLS_DH_anon_WITH_AES_128_GCM_SHA256 = 0x00A6 TLS_DH_anon_WITH_AES_256_GCM_SHA384 = 0x00A7 TLS_PSK_WITH_AES_128_GCM_SHA256 = 0x00A8 TLS_PSK_WITH_AES_256_GCM_SHA384 = 0x00A9 TLS_DHE_PSK_WITH_AES_128_GCM_SHA256 = 0x00AA TLS_DHE_PSK_WITH_AES_256_GCM_SHA384 = 0x00AB TLS_RSA_PSK_WITH_AES_128_GCM_SHA256 = 0x00AC TLS_RSA_PSK_WITH_AES_256_GCM_SHA384 = 0x00AD TLS_PSK_WITH_AES_128_CBC_SHA256 = 0x00AE TLS_PSK_WITH_AES_256_CBC_SHA384 = 0x00AF TLS_PSK_WITH_NULL_SHA256 = 0x00B0 TLS_PSK_WITH_NULL_SHA384 = 0x00B1 TLS_DHE_PSK_WITH_AES_128_CBC_SHA256 = 0x00B2 TLS_DHE_PSK_WITH_AES_256_CBC_SHA384 = 0x00B3 TLS_DHE_PSK_WITH_NULL_SHA256 = 0x00B4 TLS_DHE_PSK_WITH_NULL_SHA384 = 0x00B5 TLS_RSA_PSK_WITH_AES_128_CBC_SHA256 = 0x00B6 TLS_RSA_PSK_WITH_AES_256_CBC_SHA384 = 0x00B7 TLS_RSA_PSK_WITH_NULL_SHA256 = 0x00B8 TLS_RSA_PSK_WITH_NULL_SHA384 = 0x00B9 TLS_RSA_WITH_CAMELLIA_128_CBC_SHA256 = 0x00BA TLS_DH_DSS_WITH_CAMELLIA_128_CBC_SHA256 = 0x00BB TLS_DH_RSA_WITH_CAMELLIA_128_CBC_SHA256 = 0x00BC TLS_DHE_DSS_WITH_CAMELLIA_128_CBC_SHA256 = 0x00BD TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA256 = 0x00BE TLS_DH_anon_WITH_CAMELLIA_128_CBC_SHA256 = 0x00BF TLS_RSA_WITH_CAMELLIA_256_CBC_SHA256 = 0x00C0 TLS_DH_DSS_WITH_CAMELLIA_256_CBC_SHA256 = 0x00C1 TLS_DH_RSA_WITH_CAMELLIA_256_CBC_SHA256 = 0x00C2 TLS_DHE_DSS_WITH_CAMELLIA_256_CBC_SHA256 = 0x00C3 TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA256 = 0x00C4 TLS_DH_anon_WITH_CAMELLIA_256_CBC_SHA256 = 0x00C5 TLS_EMPTY_RENEGOTIATION_INFO_SCSV = 0x00FF TLS_ECDH_ECDSA_WITH_NULL_SHA = 0xC001 TLS_ECDH_ECDSA_WITH_RC4_128_SHA = 0xC002 TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA = 0xC003 TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA = 0xC004 TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA = 0xC005 TLS_ECDHE_ECDSA_WITH_NULL_SHA = 0xC006 TLS_ECDHE_ECDSA_WITH_RC4_128_SHA = 0xC007 TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA = 0xC008 TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA = 0xC009 TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA = 0xC00A TLS_ECDH_RSA_WITH_NULL_SHA = 0xC00B TLS_ECDH_RSA_WITH_RC4_128_SHA = 0xC00C TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA = 0xC00D TLS_ECDH_RSA_WITH_AES_128_CBC_SHA = 0xC00E TLS_ECDH_RSA_WITH_AES_256_CBC_SHA = 0xC00F TLS_ECDHE_RSA_WITH_NULL_SHA = 0xC010 TLS_ECDHE_RSA_WITH_RC4_128_SHA = 0xC011 TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA = 0xC012 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA = 0xC013 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA = 0xC014 TLS_ECDH_anon_WITH_NULL_SHA = 0xC015 TLS_ECDH_anon_WITH_RC4_128_SHA = 0xC016 TLS_ECDH_anon_WITH_3DES_EDE_CBC_SHA = 0xC017 TLS_ECDH_anon_WITH_AES_128_CBC_SHA = 0xC018 TLS_ECDH_anon_WITH_AES_256_CBC_SHA = 0xC019 TLS_SRP_SHA_WITH_3DES_EDE_CBC_SHA = 0xC01A TLS_SRP_SHA_RSA_WITH_3DES_EDE_CBC_SHA = 0xC01B TLS_SRP_SHA_DSS_WITH_3DES_EDE_CBC_SHA = 0xC01C TLS_SRP_SHA_WITH_AES_128_CBC_SHA = 0xC01D TLS_SRP_SHA_RSA_WITH_AES_128_CBC_SHA = 0xC01E TLS_SRP_SHA_DSS_WITH_AES_128_CBC_SHA = 0xC01F TLS_SRP_SHA_WITH_AES_256_CBC_SHA = 0xC020 TLS_SRP_SHA_RSA_WITH_AES_256_CBC_SHA = 0xC021 TLS_SRP_SHA_DSS_WITH_AES_256_CBC_SHA = 0xC022 TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 = 0xC023 TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 = 0xC024 TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256 = 0xC025 TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384 = 0xC026 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 = 0xC027 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 = 0xC028 TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256 = 0xC029 TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384 = 0xC02A TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 = 0xC02B TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 = 0xC02C TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256 = 0xC02D TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384 = 0xC02E TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 = 0xC02F TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 = 0xC030 TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256 = 0xC031 TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384 = 0xC032 TLS_ECDHE_PSK_WITH_RC4_128_SHA = 0xC033 TLS_ECDHE_PSK_WITH_3DES_EDE_CBC_SHA = 0xC034 TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA = 0xC035 TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA = 0xC036 TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA256 = 0xC037 TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA384 = 0xC038 TLS_ECDHE_PSK_WITH_NULL_SHA = 0xC039 TLS_ECDHE_PSK_WITH_NULL_SHA256 = 0xC03A TLS_ECDHE_PSK_WITH_NULL_SHA384 = 0xC03B TLS_RSA_WITH_ARIA_128_CBC_SHA256 = 0xC03C TLS_RSA_WITH_ARIA_256_CBC_SHA384 = 0xC03D TLS_DH_DSS_WITH_ARIA_128_CBC_SHA256 = 0xC03E TLS_DH_DSS_WITH_ARIA_256_CBC_SHA384 = 0xC03F TLS_DH_RSA_WITH_ARIA_128_CBC_SHA256 = 0xC040 TLS_DH_RSA_WITH_ARIA_256_CBC_SHA384 = 0xC041 TLS_DHE_DSS_WITH_ARIA_128_CBC_SHA256 = 0xC042 TLS_DHE_DSS_WITH_ARIA_256_CBC_SHA384 = 0xC043 TLS_DHE_RSA_WITH_ARIA_128_CBC_SHA256 = 0xC044 TLS_DHE_RSA_WITH_ARIA_256_CBC_SHA384 = 0xC045 TLS_DH_anon_WITH_ARIA_128_CBC_SHA256 = 0xC046 TLS_DH_anon_WITH_ARIA_256_CBC_SHA384 = 0xC047 TLS_ECDHE_ECDSA_WITH_ARIA_128_CBC_SHA256 = 0xC048 TLS_ECDHE_ECDSA_WITH_ARIA_256_CBC_SHA384 = 0xC049 TLS_ECDH_ECDSA_WITH_ARIA_128_CBC_SHA256 = 0xC04A TLS_ECDH_ECDSA_WITH_ARIA_256_CBC_SHA384 = 0xC04B TLS_ECDHE_RSA_WITH_ARIA_128_CBC_SHA256 = 0xC04C TLS_ECDHE_RSA_WITH_ARIA_256_CBC_SHA384 = 0xC04D TLS_ECDH_RSA_WITH_ARIA_128_CBC_SHA256 = 0xC04E TLS_ECDH_RSA_WITH_ARIA_256_CBC_SHA384 = 0xC04F TLS_RSA_WITH_ARIA_128_GCM_SHA256 = 0xC050 TLS_RSA_WITH_ARIA_256_GCM_SHA384 = 0xC051 TLS_DHE_RSA_WITH_ARIA_128_GCM_SHA256 = 0xC052 TLS_DHE_RSA_WITH_ARIA_256_GCM_SHA384 = 0xC053 TLS_DH_RSA_WITH_ARIA_128_GCM_SHA256 = 0xC054 TLS_DH_RSA_WITH_ARIA_256_GCM_SHA384 = 0xC055 TLS_DHE_DSS_WITH_ARIA_128_GCM_SHA256 = 0xC056 TLS_DHE_DSS_WITH_ARIA_256_GCM_SHA384 = 0xC057 TLS_DH_DSS_WITH_ARIA_128_GCM_SHA256 = 0xC058 TLS_DH_DSS_WITH_ARIA_256_GCM_SHA384 = 0xC059 TLS_DH_anon_WITH_ARIA_128_GCM_SHA256 = 0xC05A TLS_DH_anon_WITH_ARIA_256_GCM_SHA384 = 0xC05B TLS_ECDHE_ECDSA_WITH_ARIA_128_GCM_SHA256 = 0xC05C TLS_ECDHE_ECDSA_WITH_ARIA_256_GCM_SHA384 = 0xC05D TLS_ECDH_ECDSA_WITH_ARIA_128_GCM_SHA256 = 0xC05E TLS_ECDH_ECDSA_WITH_ARIA_256_GCM_SHA384 = 0xC05F TLS_ECDHE_RSA_WITH_ARIA_128_GCM_SHA256 = 0xC060 TLS_ECDHE_RSA_WITH_ARIA_256_GCM_SHA384 = 0xC061 TLS_ECDH_RSA_WITH_ARIA_128_GCM_SHA256 = 0xC062 TLS_ECDH_RSA_WITH_ARIA_256_GCM_SHA384 = 0xC063 TLS_PSK_WITH_ARIA_128_CBC_SHA256 = 0xC064 TLS_PSK_WITH_ARIA_256_CBC_SHA384 = 0xC065 TLS_DHE_PSK_WITH_ARIA_128_CBC_SHA256 = 0xC066 TLS_DHE_PSK_WITH_ARIA_256_CBC_SHA384 = 0xC067 TLS_RSA_PSK_WITH_ARIA_128_CBC_SHA256 = 0xC068 TLS_RSA_PSK_WITH_ARIA_256_CBC_SHA384 = 0xC069 TLS_PSK_WITH_ARIA_128_GCM_SHA256 = 0xC06A TLS_PSK_WITH_ARIA_256_GCM_SHA384 = 0xC06B TLS_DHE_PSK_WITH_ARIA_128_GCM_SHA256 = 0xC06C TLS_DHE_PSK_WITH_ARIA_256_GCM_SHA384 = 0xC06D TLS_RSA_PSK_WITH_ARIA_128_GCM_SHA256 = 0xC06E TLS_RSA_PSK_WITH_ARIA_256_GCM_SHA384 = 0xC06F TLS_ECDHE_PSK_WITH_ARIA_128_CBC_SHA256 = 0xC070 TLS_ECDHE_PSK_WITH_ARIA_256_CBC_SHA384 = 0xC071 TLS_ECDHE_ECDSA_WITH_CAMELLIA_128_CBC_SHA256 = 0xC072 TLS_ECDHE_ECDSA_WITH_CAMELLIA_256_CBC_SHA384 = 0xC073 TLS_ECDH_ECDSA_WITH_CAMELLIA_128_CBC_SHA256 = 0xC074 TLS_ECDH_ECDSA_WITH_CAMELLIA_256_CBC_SHA384 = 0xC075 TLS_ECDHE_RSA_WITH_CAMELLIA_128_CBC_SHA256 = 0xC076 TLS_ECDHE_RSA_WITH_CAMELLIA_256_CBC_SHA384 = 0xC077 TLS_ECDH_RSA_WITH_CAMELLIA_128_CBC_SHA256 = 0xC078 TLS_ECDH_RSA_WITH_CAMELLIA_256_CBC_SHA384 = 0xC079 TLS_RSA_WITH_CAMELLIA_128_GCM_SHA256 = 0xC07A TLS_RSA_WITH_CAMELLIA_256_GCM_SHA384 = 0xC07B TLS_DHE_RSA_WITH_CAMELLIA_128_GCM_SHA256 = 0xC07C TLS_DHE_RSA_WITH_CAMELLIA_256_GCM_SHA384 = 0xC07D TLS_DH_RSA_WITH_CAMELLIA_128_GCM_SHA256 = 0xC07E TLS_DH_RSA_WITH_CAMELLIA_256_GCM_SHA384 = 0xC07F TLS_DHE_DSS_WITH_CAMELLIA_128_GCM_SHA256 = 0xC080 TLS_DHE_DSS_WITH_CAMELLIA_256_GCM_SHA384 = 0xC081 TLS_DH_DSS_WITH_CAMELLIA_128_GCM_SHA256 = 0xC082 TLS_DH_DSS_WITH_CAMELLIA_256_GCM_SHA384 = 0xC083 TLS_DH_anon_WITH_CAMELLIA_128_GCM_SHA256 = 0xC084 TLS_DH_anon_WITH_CAMELLIA_256_GCM_SHA384 = 0xC085 TLS_ECDHE_ECDSA_WITH_CAMELLIA_128_GCM_SHA256 = 0xC086 TLS_ECDHE_ECDSA_WITH_CAMELLIA_256_GCM_SHA384 = 0xC087 TLS_ECDH_ECDSA_WITH_CAMELLIA_128_GCM_SHA256 = 0xC088 TLS_ECDH_ECDSA_WITH_CAMELLIA_256_GCM_SHA384 = 0xC089 TLS_ECDHE_RSA_WITH_CAMELLIA_128_GCM_SHA256 = 0xC08A TLS_ECDHE_RSA_WITH_CAMELLIA_256_GCM_SHA384 = 0xC08B TLS_ECDH_RSA_WITH_CAMELLIA_128_GCM_SHA256 = 0xC08C TLS_ECDH_RSA_WITH_CAMELLIA_256_GCM_SHA384 = 0xC08D TLS_PSK_WITH_CAMELLIA_128_GCM_SHA256 = 0xC08E TLS_PSK_WITH_CAMELLIA_256_GCM_SHA384 = 0xC08F TLS_DHE_PSK_WITH_CAMELLIA_128_GCM_SHA256 = 0xC090 TLS_DHE_PSK_WITH_CAMELLIA_256_GCM_SHA384 = 0xC091 TLS_RSA_PSK_WITH_CAMELLIA_128_GCM_SHA256 = 0xC092 TLS_RSA_PSK_WITH_CAMELLIA_256_GCM_SHA384 = 0xC093 TLS_PSK_WITH_CAMELLIA_128_CBC_SHA256 = 0xC094 TLS_PSK_WITH_CAMELLIA_256_CBC_SHA384 = 0xC095 TLS_DHE_PSK_WITH_CAMELLIA_128_CBC_SHA256 = 0xC096 TLS_DHE_PSK_WITH_CAMELLIA_256_CBC_SHA384 = 0xC097 TLS_RSA_PSK_WITH_CAMELLIA_128_CBC_SHA256 = 0xC098 TLS_RSA_PSK_WITH_CAMELLIA_256_CBC_SHA384 = 0xC099 TLS_ECDHE_PSK_WITH_CAMELLIA_128_CBC_SHA256 = 0xC09A TLS_ECDHE_PSK_WITH_CAMELLIA_256_CBC_SHA384 = 0xC09B TLS_RSA_WITH_AES_128_CCM = 0xC09C TLS_RSA_WITH_AES_256_CCM = 0xC09D TLS_DHE_RSA_WITH_AES_128_CCM = 0xC09E TLS_DHE_RSA_WITH_AES_256_CCM = 0xC09F TLS_RSA_WITH_AES_128_CCM_8 = 0xC0A0 TLS_RSA_WITH_AES_256_CCM_8 = 0xC0A1 TLS_DHE_RSA_WITH_AES_128_CCM_8 = 0xC0A2 TLS_DHE_RSA_WITH_AES_256_CCM_8 = 0xC0A3 TLS_PSK_WITH_AES_128_CCM = 0xC0A4 TLS_PSK_WITH_AES_256_CCM = 0xC0A5 TLS_DHE_PSK_WITH_AES_128_CCM = 0xC0A6 TLS_DHE_PSK_WITH_AES_256_CCM = 0xC0A7 TLS_PSK_WITH_AES_128_CCM_8 = 0xC0A8 TLS_PSK_WITH_AES_256_CCM_8 = 0xC0A9 TLS_PSK_DHE_WITH_AES_128_CCM_8 = 0xC0AA TLS_PSK_DHE_WITH_AES_256_CCM_8 = 0xC0AB TLS_ECDHE_ECDSA_WITH_AES_128_CCM = 0xC0AC TLS_ECDHE_ECDSA_WITH_AES_256_CCM = 0xC0AD TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 = 0xC0AE TLS_ECDHE_ECDSA_WITH_AES_256_CCM_8 = 0xC0AF TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256 = 0xCC14 TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256 = 0xCC13 class ECPointFormat(Enum): uncompressed = 0 ansiX962_compressed_prime = 1 ansiX962_compressed_char2 = 2 class ECCurves(Enum): sect163k1 = 1 sect163r1 = 2 sect163r2 = 3 sect193r1 = 4 sect193r2 = 5 sect233k1 = 6 sect233r1 = 7 sect239k1 = 8 sect283k1 = 9 sect283r1 = 10 sect409k1 = 11 sect409r1 = 12 sect571k1 = 13 sect571r1 = 14 secp160k1 = 15 secp160r1 = 16 secp160r2 = 17 secp192k1 = 18 secp192r1 = 19 secp224k1 = 20 secp224r1 = 21 secp256k1 = 22 secp256r1 = 23 secp384r1 = 24 secp521r1 = 25 brainpoolP256r1 = 26 brainpoolP384r1 = 27 brainpoolP512r1 = 28 TLSProtocolVersion = ("3.0", "1.0", "1.1", "1.2")
{ "repo_name": "Ayrx/tlsenum", "path": "tlsenum/mappings.py", "copies": "1", "size": "16201", "license": "mit", "hash": 5690872095771614000, "line_mean": 43.2650273224, "line_max": 64, "alpha_frac": 0.6931670885, "autogenerated": false, "ratio": 2.1541018481584895, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.33472689366584896, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from enum import Flag, auto from numbers import Number import numpy as np import tensorflow as tf from tensorflow_probability import distributions as tfd from odin.bay import distributions as obd # =========================================================================== # enum # =========================================================================== class Statistic(Flag): SAMPLE = auto() MEAN = auto() VAR = auto() STDDEV = auto() DIST = auto() # =========================================================================== # Logging # =========================================================================== def _dist2text(dist): return '[%s]%s batch:%s event:%s' % (dist.__class__.__name__, dist.dtype.name, dist.batch_shape, dist.event_shape) def _extract_desc(dist, name, pad): text = pad + (name + ':' if len(name) > 0 else '') + _dist2text(dist) + '\n' obj_type = type(dist) for key in dir(dist): val = getattr(dist, key) if isinstance(val, tfd.Distribution) and \ not isinstance(getattr(obj_type, key, None), property): text += _extract_desc(val, key, pad + ' ') return text def print_dist(dist, return_text=False): assert isinstance(dist, tfd.Distribution) text = _extract_desc(dist, '', '') if return_text: return text[:-1] print(text) # =========================================================================== # Objectives # =========================================================================== def kl_divergence(q, p, use_analytic_kl=False, q_sample=lambda q: q.sample(), reduce_axis=(), auto_remove_independent=True, name=None): """ Calculating KL(q(x)||p(x)) Parameters ---------- q : tensorflow_probability.Distribution the posterior distribution p : tensorflow_probability.Distribution the prior distribution use_analytic_kl : bool (default: False) if True, use the close-form solution  for q_sample : {callable, Tensor, Number} callable for extracting sample from `q(x)` (takes q distribution as input argument) reudce_axis : {None, int, tuple} reduce axis when use MCMC to estimate KL divergence, default `()` mean keep all original dimensions auto_remove_independent : bool (default: True) if `q` or `p` is `tfd.Independent` wrapper, get the original distribution for calculating the analytic KL name : {None, str} Returns ------- """ if auto_remove_independent: # only remove Independent if one is Indepedent and another is not. if isinstance(q, tfd.Independent) and not isinstance(p, tfd.Independent): q = q.distribution if not isinstance(q, tfd.Independent) and isinstance(p, tfd.Independent): p = p.distribution q_name = [i for i in q.name.split('/') if len(i) > 0][-1] p_name = [i for i in p.name.split('/') if len(i) > 0][-1] with tf.compat.v1.name_scope(name, "KL_q%s_p%s" % (q_name, p_name)): if bool(use_analytic_kl): return tfd.kl_divergence(q, p) # using MCMC sampling for estimating the KL if callable(q_sample): z = q_sample(q) elif isinstance(q_sample, Number): z = q.sample(int(q_sample)) else: z = q_sample # calculate the output, then perform reduction kl = q.log_prob(z) - p.log_prob(z) kl = tf.reduce_mean(input_tensor=kl, axis=reduce_axis) return kl
{ "repo_name": "imito/odin", "path": "odin/bay/helpers.py", "copies": "1", "size": "3549", "license": "mit", "hash": -2688553872197972500, "line_mean": 30.6785714286, "line_max": 80, "alpha_frac": 0.547632469, "autogenerated": false, "ratio": 3.8691384950926935, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4916770964092693, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from examples.helpers import authenticate from trakt import Trakt from trakt.objects import Movie, Show import logging import os logging.basicConfig(level=logging.DEBUG) if __name__ == '__main__': # Configure Trakt.configuration.defaults.client( id=os.environ.get('CLIENT_ID'), secret=os.environ.get('CLIENT_SECRET') ) Trakt.configuration.defaults.http( retry=True ) # Authenticate Trakt.configuration.defaults.oauth.from_response( authenticate() ) # Fetch playback for movies playback = Trakt['sync/playback'].movies(exceptions=True) for item in playback.values(): print(item) if type(item) is Movie: print('\tprogress: %r' % item.progress) print('\tpaused_at: %r' % item.paused_at) # Fetch movie library (watched, collection, ratings) movies = {} Trakt['sync/watched'].movies(movies, exceptions=True) Trakt['sync/collection'].movies(movies, exceptions=True) Trakt['sync/ratings'].movies(movies, exceptions=True) for movie in movies.values(): print(movie) print('\tkeys%s%r' % ('\t' * 3, movie.keys)) print('\trating%s%r' % ('\t' * 3, movie.rating)) print('\tis_watched%s%r' % ('\t' * 2, movie.is_watched)) print('\tlast_watched_at%s%r' % ('\t', movie.last_watched_at)) print('\tis_collected%s%r' % ('\t', movie.is_collected)) print('\tcollected_at%s%r' % ('\t', movie.collected_at)) print('\tplays%s%r' % ('\t' * 3, movie.plays)) print('') # Fetch playback for shows playback = Trakt['sync/playback'].episodes(exceptions=True) for item in playback.values(): print(item) if type(item) is Show: for _, episode in item.episodes(): print('\t%r' % (episode,)) print('\t\tprogress: %r' % episode.progress) print('\t\tpaused_at: %r' % episode.paused_at) # Fetch show/episode library (watched, collection, ratings) shows = {} Trakt['sync/watched'].shows(shows, exceptions=True) Trakt['sync/collection'].shows(shows, exceptions=True) Trakt['sync/ratings'].shows(shows, exceptions=True) Trakt['sync/ratings'].episodes(shows, exceptions=True) for show in shows.values(): print(show) print('\tkeys%s%r' % ('\t' * 3, show.keys)) print('\trating%s%r' % ('\t' * 3, show.rating)) print('')
{ "repo_name": "fuzeman/trakt.py", "path": "examples/collection.py", "copies": "1", "size": "2527", "license": "mit", "hash": -4542371561525351400, "line_mean": 27.7159090909, "line_max": 70, "alpha_frac": 0.6026909379, "autogenerated": false, "ratio": 3.495159059474412, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4597849997374412, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from examples.helpers import authenticate from trakt import Trakt from datetime import datetime import logging import os logging.basicConfig(level=logging.DEBUG) if __name__ == '__main__': # Configure Trakt.configuration.defaults.client( id=os.environ.get('CLIENT_ID'), secret=os.environ.get('CLIENT_SECRET') ) # Authenticate Trakt.configuration.defaults.oauth.from_response( authenticate() ) now = datetime.utcnow() # Retrieve 10 history records (most recent) for item in Trakt['sync/history'].get(per_page=10): print(' - %-120s (watched_at: %r)' % ( repr(item), item.watched_at.strftime('%Y-%m-%d %H:%M:%S') )) print('=' * 160) # Retrieve history records for "Family Guy" for item in Trakt['sync/history'].shows('1425', pagination=True, per_page=25): print(' - %-120s (watched_at: %r)' % ( repr(item), item.watched_at.strftime('%Y-%m-%d %H:%M:%S') )) print('=' * 160) # Retrieve history records for this year for item in Trakt['sync/history'].get(pagination=True, per_page=25, start_at=datetime(now.year, 1, 1)): print(' - %-120s (watched_at: %r)' % ( repr(item), item.watched_at.strftime('%Y-%m-%d %H:%M:%S') )) print('=' * 160) # Retrieve all history records for item in Trakt['sync/history'].get(pagination=True, per_page=25): print(' - %-120s (watched_at: %r)' % ( repr(item), item.watched_at.strftime('%Y-%m-%d %H:%M:%S') ))
{ "repo_name": "fuzeman/trakt.py", "path": "examples/history.py", "copies": "1", "size": "1667", "license": "mit", "hash": 8130554255942685000, "line_mean": 27.2542372881, "line_max": 107, "alpha_frac": 0.5776844631, "autogenerated": false, "ratio": 3.451345755693582, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.45290302187935816, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from examples.helpers import authenticate import logging import os if __name__ == '__main__': logging.basicConfig(level=logging.DEBUG) from trakt import Trakt # Configure Trakt.configuration.defaults.client( id=os.environ.get('CLIENT_ID'), secret=os.environ.get('CLIENT_SECRET') ) # Authenticate Trakt.configuration.defaults.oauth.from_response( authenticate() ) # Retrieve lists lists = Trakt['users'].likes('lists', pagination=True) print('Found %d list(s) [%d page(s)]' % ( lists.total_items, lists.total_pages )) for x, liked_list in enumerate(lists): items = liked_list.items(pagination=True, per_page=10) print('[%d/%d] %r [%d item(s), %d page(s)]' % ( x + 1, lists.total_items, liked_list, items.total_items, items.total_pages )) for y, item in enumerate(items): print('\t[%s/%s] %r' % ( y + 1, items.total_items, item )) # Only print 20 items in the list if y + 1 >= 20: break
{ "repo_name": "fuzeman/trakt.py", "path": "examples/lists.py", "copies": "1", "size": "1259", "license": "mit", "hash": -7525251905356537000, "line_mean": 22.7547169811, "line_max": 64, "alpha_frac": 0.5361397935, "autogenerated": false, "ratio": 3.873846153846154, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4909985947346154, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from .expressions import ElemWise, schema_method_list, method_properties import datashape from datashape import dshape, isdatelike, isnumeric from datashape.coretypes import timedelta_ from ..compatibility import basestring __all__ = ['DateTime', 'Date', 'date', 'Year', 'year', 'Month', 'month', 'Day', 'day', 'days', 'Hour', 'hour', 'Minute', 'minute', 'Second', 'second', 'Millisecond', 'millisecond', 'Microsecond', 'microsecond', 'nanosecond', 'Date', 'date', 'Time', 'time', 'week', 'nanoseconds', 'seconds', 'total_seconds', 'UTCFromTimestamp', 'DateTimeTruncate', 'Ceil', 'Floor', 'Round', 'strftime'] def _validate(var, name, type, typename): if not isinstance(var, type): raise TypeError('"%s" argument must be a %s'%(name, typename)) class DateTime(ElemWise): """ Superclass for datetime accessors """ _arguments = '_child', def __str__(self): return '%s.%s' % (str(self._child), type(self).__name__.lower()) def _schema(self): ds = dshape(self._dtype) return ds if not isinstance(self._child.schema.measure, datashape.Option) else datashape.Option(ds) @property def _name(self): return '%s_%s' % (self._child._name, self.attr) @property def attr(self): return type(self).__name__.lower() class Date(DateTime): _dtype = datashape.date_ def date(expr): return Date(expr) class Year(DateTime): _dtype = datashape.int32 def year(expr): return Year(expr) class Month(DateTime): _dtype = datashape.int64 def month(expr): return Month(expr) class Day(DateTime): _dtype = datashape.int64 def day(expr): return Day(expr) class Time(DateTime): _dtype = datashape.time_ def time(expr): return Time(expr) class Hour(DateTime): _dtype = datashape.int64 def hour(expr): return Hour(expr) class Minute(DateTime): _dtype = datashape.int64 def minute(expr): return Minute(expr) class Second(DateTime): _dtype = datashape.float64 def second(expr): return Second(expr) class Millisecond(DateTime): _dtype = datashape.int64 def millisecond(expr): return Millisecond(expr) class Microsecond(DateTime): _dtype = datashape.int64 def microsecond(expr): return Microsecond(expr) class UTCFromTimestamp(DateTime): _dtype = datashape.datetime_ def utcfromtimestamp(expr): return UTCFromTimestamp(expr) class nanosecond(DateTime): _dtype = datashape.int64 class week(DateTime): _dtype = datashape.int16 class weekday_name(DateTime): _dtype = datashape.string class daysinmonth(DateTime): _dtype = datashape.int16 class weekofyear(DateTime): _dtype = datashape.int16 class dayofyear(DateTime): _dtype = datashape.int16 class dayofweek(DateTime): _dtype = datashape.int16 weekday = dayofweek # alias class quarter(DateTime): _dtype = datashape.int16 class is_month_start(DateTime): _dtype = datashape.bool_ class is_month_end(DateTime): _dtype = datashape.bool_ class is_quarter_start(DateTime): _dtype = datashape.bool_ class is_quarter_end(DateTime): _dtype = datashape.bool_ class is_year_start(DateTime): _dtype = datashape.bool_ class is_year_end(DateTime): _dtype = datashape.bool_ class days_in_month(DateTime): _dtype = datashape.int64 class strftime(ElemWise): _arguments = '_child', 'format' schema = datashape.string units = ( 'year', 'month', 'week', 'day', 'hour', 'minute', 'second', 'millisecond', 'microsecond', 'nanosecond', ) unit_aliases = { 'y': 'year', 'w': 'week', 'd': 'day', 'date': 'day', 'h': 'hour', 's': 'second', 'ms': 'millisecond', 'us': 'microsecond', 'ns': 'nanosecond' } def normalize_time_unit(s): """ Normalize time input to one of 'year', 'second', 'millisecond', etc.. Examples -------- >>> normalize_time_unit('milliseconds') 'millisecond' >>> normalize_time_unit('ms') 'millisecond' """ s = s.lower().strip() if s in units: return s if s in unit_aliases: return unit_aliases[s] if s[-1] == 's': return normalize_time_unit(s.rstrip('s')) raise ValueError("Do not understand time unit %s" % s) class DateTimeTruncate(DateTime): _arguments = '_child', 'measure', 'unit' @property def _dtype(self): if units.index('day') >= units.index(self.unit): return datashape.date_ else: return datashape.datetime_ @property def _name(self): return self._child._name def __str__(self): return '%s.truncate(%ss=%g)' % (self._child, self.unit, self.measure) def truncate(expr, *args, **kwargs): """ Truncate datetime expression Examples -------- >>> from blaze import symbol, compute >>> from datetime import datetime >>> s = symbol('s', 'datetime') >>> expr = s.truncate(10, 'minutes') >>> compute(expr, datetime(2000, 6, 25, 12, 35, 10)) datetime.datetime(2000, 6, 25, 12, 30) >>> expr = s.truncate(1, 'week') >>> compute(expr, datetime(2000, 6, 25, 12, 35, 10)) datetime.date(2000, 6, 25) Alternatively use keyword arguments to specify unit and measure >>> expr = s.truncate(weeks=2) """ if not args and not kwargs: raise TypeError('truncate takes exactly 2 positional arguments, ' 'e.g., truncate(2, "days") or 1 keyword argument, ' 'e.g., truncate(days=2)') if args: if kwargs: raise TypeError('Cannot pass both positional and keyword ' 'arguments; given %s and %s.' % (args, kwargs)) measure, unit = args else: [(unit, measure)] = kwargs.items() return DateTimeTruncate(expr, measure, normalize_time_unit(unit)) class UnaryDateTimeFunction(ElemWise): """DateTime function that only takes a single argument.""" _arguments = '_child' class Round(ElemWise): _arguments = '_child', 'freq' @property def schema(self): return self._child.schema class Floor(ElemWise): _arguments = '_child', 'freq' @property def schema(self): return self._child.schema class Ceil(ElemWise): _arguments = '_child', 'freq' @property def schema(self): return self._child.schema class dt_ns(object): def __init__(self, field): self.field = field def year(self): return year(self.field) def month(self): return month(self.field) def day(self): return day(self.field) def hour(self): return hour(self.field) def minute(self): return minute(self.field) def date(self): return date(self.field) def time(self): return time(self.field) def second(self): return second(self.field) def millisecond(self): return millisecond(self.field) def microsecond(self): return microsecond(self.field) def nanosecond(self): return nanosecond(self.field) def weekday(self): """Alias for dayofweek """ return dayofweek(self.field) def weekday_name(self): return weekday_name(self.field) def daysinmonth(self): return daysinmonth(self.field) def weekofyear(self): return weekofyear(self.field) def dayofyear(self): return dayofyear(self.field) def dayofweek(self): return dayofweek(self.field) def quarter(self): return quarter(self.field) def is_month_start(self): return is_month_start(self.field) def is_month_end(self): return is_month_end(self.field) def is_quarter_start(self): return is_quarter_start(self.field) def is_quarter_end(self): return is_quarter_end(self.field) def is_year_start(self): return is_year_start(self.field) def is_year_end(self): return is_year_end(self.field) def days_in_month(self): return days_in_month(self.field) def strftime(self, format): _validate(format, 'format', basestring, 'string') return strftime(self.field, format) def truncate(self, *args, **kwargs): return truncate(self.field, *args, **kwargs) def round(self, freq): _validate(freq, 'freq', basestring, 'string') return Round(self.field, freq) def floor(self, freq): _validate(freq, 'freq', basestring, 'string') return Floor(self.field, freq) def ceil(self, freq): _validate(freq, 'freq', basestring, 'string') return Ceil(self.field, freq) def week(self): return week(self.field) class dt(object): __name__ = 'dt' def __get__(self, obj, type=None): return dt_ns(obj) if obj is not None else self class days(DateTime): _dtype = datashape.int64 class nanoseconds(DateTime): _dtype = datashape.int64 class seconds(DateTime): _dtype = datashape.int64 class total_seconds(DateTime): _dtype = datashape.int64 class timedelta_ns(object): def __init__(self, field): self.field = field def days(self): return days(self.field) def nanoseconds(self): return nanoseconds(self.field) def seconds(self): return seconds(self.field) def total_seconds(self): return total_seconds(self.field) class timedelta(object): # pandas uses the same 'dt' name for # DateTimeProperties and TimedeltaProperties. __name__ = 'dt' def __get__(self, obj, type=None): return timedelta_ns(obj) if obj is not None else self def isdeltalike(ds): return ds == timedelta_ schema_method_list.extend([ (isdatelike, set([year, month, day, hour, minute, date, time, second, millisecond, microsecond, truncate, dt()])), (isnumeric, set([utcfromtimestamp])), (isdeltalike, set([timedelta()])) ]) method_properties |= set([year, month, day, hour, minute, second, millisecond, microsecond, date, time, utcfromtimestamp])
{ "repo_name": "ContinuumIO/blaze", "path": "blaze/expr/datetime.py", "copies": "3", "size": "10146", "license": "bsd-3-clause", "hash": -2604416622286587000, "line_mean": 23.8676470588, "line_max": 107, "alpha_frac": 0.6242854327, "autogenerated": false, "ratio": 3.5315001740341105, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5655785606734111, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from .expressions import Expr, ElemWise from datashape import dshape import datashape __all__ = ['DateTime', 'Date', 'date', 'Year', 'year', 'Month', 'month', 'Day', 'day', 'Hour', 'hour', 'Second', 'second', 'Millisecond', 'millisecond', 'Microsecond', 'microsecond', 'Date', 'date', 'Time', 'time', 'UTCFromTimestamp', 'DateTimeTruncate'] class DateTime(ElemWise): """ Superclass for datetime accessors """ __slots__ = '_hash', '_child', def __str__(self): return '%s.%s' % (str(self._child), type(self).__name__.lower()) @property def schema(self): return dshape(self._dtype) @property def _name(self): return '%s_%s' % (self._child._name, self.attr) @property def attr(self): return type(self).__name__.lower() class Date(DateTime): _dtype = datashape.date_ def date(expr): return Date(expr) class Year(DateTime): _dtype = datashape.int32 def year(expr): return Year(expr) class Month(DateTime): _dtype = datashape.int64 def month(expr): return Month(expr) class Day(DateTime): _dtype = datashape.int64 def day(expr): return Day(expr) class Time(DateTime): _dtype = datashape.time_ def time(expr): return Time(Expr) class Hour(DateTime): _dtype = datashape.int64 def hour(expr): return Hour(expr) class Minute(DateTime): _dtype = datashape.int64 def minute(expr): return Minute(expr) class Second(DateTime): _dtype = datashape.int64 def second(expr): return Second(expr) class Millisecond(DateTime): _dtype = datashape.int64 def millisecond(expr): return Millisecond(expr) class Microsecond(DateTime): _dtype = datashape.int64 def microsecond(expr): return Microsecond(expr) class UTCFromTimestamp(DateTime): _dtype = datashape.datetime_ def utcfromtimestamp(expr): return UTCFromTimestamp(expr) units = [ 'year', 'month', 'week', 'day', 'hour', 'minute', 'second', 'millisecond', 'microsecond', 'nanosecond' ] _unit_aliases = { 'y': 'year', 'w': 'week', 'd': 'day', 'date': 'day', 'h': 'hour', 's': 'second', 'ms': 'millisecond', 'us': 'microsecond', 'ns': 'nanosecond' } def normalize_time_unit(s): """ Normalize time input to one of 'year', 'second', 'millisecond', etc.. Examples -------- >>> normalize_time_unit('milliseconds') 'millisecond' >>> normalize_time_unit('ms') 'millisecond' """ s = s.lower().strip() if s in units: return s if s in _unit_aliases: return _unit_aliases[s] if s[-1] == 's': return normalize_time_unit(s.rstrip('s')) raise ValueError("Do not understand time unit %s" % s) class DateTimeTruncate(DateTime): __slots__ = '_hash', '_child', 'measure', 'unit' @property def _dtype(self): if units.index('day') >= units.index(self.unit): return datashape.date_ else: return datashape.datetime_ @property def _name(self): return self._child._name def __str__(self): return '%s.truncate(%ss=%g)' % (self._child, self.unit, self.measure) def truncate(expr, *args, **kwargs): """ Truncate datetime expression Examples -------- >>> from blaze import symbol, compute >>> from datetime import datetime >>> s = symbol('s', 'datetime') >>> expr = s.truncate(10, 'minutes') >>> compute(expr, datetime(2000, 6, 25, 12, 35, 10)) datetime.datetime(2000, 6, 25, 12, 30) >>> expr = s.truncate(1, 'week') >>> compute(expr, datetime(2000, 6, 25, 12, 35, 10)) datetime.date(2000, 6, 25) Alternatively use keyword arguments to specify unit and measure >>> # expr = s.truncate(2, 'weeks') >>> expr = s.truncate(weeks=2) """ if not args and not kwargs: raise TypeError('truncate takes exactly 2 positional arguments, ' 'e.g., truncate(2, "days") or 1 keyword argument, ' 'e.g., truncate(days=2)') if args: assert not kwargs, ('only positional arguments allowed if any are ' 'passed in') measure, unit = args if kwargs: assert not args, 'only keyword arguments allowed if any are passed in' [(unit, measure)] = kwargs.items() return DateTimeTruncate(expr, measure, normalize_time_unit(unit)) from .expressions import schema_method_list, method_properties from datashape.predicates import isdatelike, isnumeric schema_method_list.extend([ (isdatelike, set([year, month, day, hour, minute, date, time, second, millisecond, microsecond, truncate])), (isnumeric, set([utcfromtimestamp])) ]) method_properties |= set([year, month, day, hour, minute, second, millisecond, microsecond, date, time, utcfromtimestamp])
{ "repo_name": "LiaoPan/blaze", "path": "blaze/expr/datetime.py", "copies": "3", "size": "5037", "license": "bsd-3-clause", "hash": 4041801985907352600, "line_mean": 20.343220339, "line_max": 79, "alpha_frac": 0.5975779234, "autogenerated": false, "ratio": 3.5698086463501064, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5667386569750107, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from .expressions import Expr, ElemWise from datashape import dshape, Record, DataShape, Unit, Option, date_, datetime_ import datashape __all__ = ['DateTime', 'Date', 'date', 'Year', 'year', 'Month', 'month', 'Day', 'day', 'Hour', 'hour', 'Second', 'second', 'Millisecond', 'millisecond', 'Microsecond', 'microsecond', 'Date', 'date', 'Time', 'time'] class DateTime(ElemWise): """ Superclass for datetime accessors """ __slots__ = '_child', def __str__(self): return '%s.%s' % (str(self._child), type(self).__name__.lower()) @property def schema(self): return dshape(self._dtype) @property def _name(self): return '%s_%s' % (self._child._name, self.attr) @property def attr(self): return type(self).__name__.lower() class Date(DateTime): _dtype = datashape.date_ def date(expr): return Date(expr) class Year(DateTime): _dtype = datashape.int32 def year(expr): return Year(expr) class Month(DateTime): _dtype = datashape.int32 def month(expr): return Month(expr) class Day(DateTime): _dtype = datashape.int32 def day(expr): return Day(expr) class Time(DateTime): _dtype = datashape.time_ def time(expr): return Time(Expr) class Hour(DateTime): _dtype = datashape.int32 def hour(expr): return Hour(expr) class Minute(DateTime): _dtype = datashape.int32 def minute(expr): return Minute(expr) class Second(DateTime): _dtype = datashape.int32 def second(expr): return Second(expr) class Millisecond(DateTime): _dtype = datashape.int64 def millisecond(expr): return Millisecond(expr) class Microsecond(DateTime): _dtype = datashape.int64 def microsecond(expr): return Microsecond(expr) from .expressions import schema_method_list, method_properties from datashape.predicates import isdatelike schema_method_list.extend([ (isdatelike, set([year, month, day, hour, minute, date, time, second, millisecond, microsecond])) ]) method_properties |= set([year, month, day, hour, minute, second, millisecond, microsecond, date, time])
{ "repo_name": "vitan/blaze", "path": "blaze/expr/datetime.py", "copies": "1", "size": "2247", "license": "bsd-3-clause", "hash": -1624166945605099000, "line_mean": 21.0294117647, "line_max": 79, "alpha_frac": 0.6444147753, "autogenerated": false, "ratio": 3.4045454545454548, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.45489602298454546, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from .expressions import Expr, ndim, symbol from datashape import DataShape from collections import Iterable __all__ = 'Transpose', 'TensorDot', 'dot', 'transpose', 'tensordot' class Transpose(Expr): """ Transpose dimensions in an N-Dimensional array Examples -------- >>> x = symbol('x', '10 * 20 * int32') >>> x.T transpose(x) >>> x.T.shape (20, 10) Specify axis ordering with axes keyword argument >>> x = symbol('x', '10 * 20 * 30 * int32') >>> x.transpose([2, 0, 1]) transpose(x, axes=[2, 0, 1]) >>> x.transpose([2, 0, 1]).shape (30, 10, 20) """ __slots__ = '_hash', '_child', 'axes' @property def dshape(self): s = self._child.shape return DataShape(*(tuple([s[i] for i in self.axes]) + (self._child.dshape.measure,))) def __str__(self): if self.axes == tuple(range(ndim(self)))[::-1]: return 'transpose(%s)' % self._child else: return 'transpose(%s, axes=%s)' % (self._child, list(self.axes)) def transpose(expr, axes=None): if axes is None: axes = tuple(range(ndim(expr)))[::-1] if isinstance(axes, list): axes = tuple(axes) return Transpose(expr, axes) transpose.__doc__ = Transpose.__doc__ def T(expr): return transpose(expr) class TensorDot(Expr): """ Dot Product: Contract and sum dimensions of two arrays >>> x = symbol('x', '20 * 20 * int32') >>> y = symbol('y', '20 * 30 * int32') >>> x.dot(y) tensordot(x, y) >>> tensordot(x, y, axes=[0, 0]) tensordot(x, y, axes=[0, 0]) """ __slots__ = '_hash', 'lhs', 'rhs', '_left_axes', '_right_axes' __inputs__ = 'lhs', 'rhs' @property def dshape(self): # Compute shape shape = tuple([d for i, d in enumerate(self.lhs.shape) if i not in self._left_axes] + [d for i, d in enumerate(self.rhs.shape) if i not in self._right_axes]) # Compute measure by mimicking a mul and add l = symbol('l', self.lhs.dshape.measure) r = symbol('r', self.rhs.dshape.measure) measure = ((l * r) + (l * r)).dshape.measure return DataShape(*(shape + (measure,))) def __str__(self): if self.isidentical(tensordot(self.lhs, self.rhs)): return 'tensordot(%s, %s)' % (self.lhs, self.rhs) else: la = self._left_axes if len(la) == 1: la = la[0] ra = self._right_axes if len(ra) == 1: ra = ra[0] return 'tensordot(%s, %s, axes=[%s, %s])' % ( self.lhs, self.rhs, str(la), str(ra)) def tensordot(lhs, rhs, axes=None): if axes is None: left = ndim(lhs) - 1 right = 0 elif isinstance(axes, Iterable): left, right = axes else: left, right = axes, axes if isinstance(left, int): left = (left,) if isinstance(right, int): right = (right,) if isinstance(left, list): left = tuple(left) if isinstance(right, list): right = tuple(right) return TensorDot(lhs, rhs, left, right) tensordot.__doc__ = TensorDot.__doc__ def dot(lhs, rhs): return tensordot(lhs, rhs) from datashape.predicates import isnumeric, isboolean from .expressions import dshape_method_list, method_properties dshape_method_list.extend([ (lambda ds: ndim(ds) > 1, set([transpose])), (lambda ds: ndim(ds) == 2, set([T])), (lambda ds: ndim(ds) >= 1 and (isnumeric(ds) or isboolean(ds)), set([dot])) ]) method_properties.add(T)
{ "repo_name": "mrocklin/blaze", "path": "blaze/expr/arrays.py", "copies": "2", "size": "3752", "license": "bsd-3-clause", "hash": 7205476646865406000, "line_mean": 26.1884057971, "line_max": 79, "alpha_frac": 0.5386460554, "autogenerated": false, "ratio": 3.4327538883806037, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4971399943780604, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from ..expr import (Expr, Symbol, Field, Arithmetic, Math, Date, Time, DateTime, Millisecond, Microsecond, broadcast, sin, cos, Map, UTCFromTimestamp, DateTimeTruncate, symbol, USub, Not) from ..expr import math as expr_math from ..expr.expressions import valid_identifier from ..dispatch import dispatch from . import pydatetime import datetime import math import toolz import itertools funcnames = ('func_%d' % i for i in itertools.count()) def parenthesize(s): if ' ' in s: return '(%s)' % s else: return s def print_python(leaves, expr): """ Print expression to be evaluated in Python >>> from blaze.expr import ceil, sin >>> t = symbol('t', '{x: int, y: int, z: int, when: datetime}') >>> print_python([t], t.x + t.y) ('t[0] + t[1]', {}) Supports mathematical and datetime access >>> print_python([t], sin(t.x) > ceil(t.y)) # doctest: +SKIP ('math.sin(t[0]) > math.ceil(t[1])', {'math':<module 'math'>}) >>> print_python([t], t.when.day + 1) ('t[3].day + 1', {}) Specify leaves of the expression to control level of printing >>> print_python([t.x, t.y], t.x + t.y) ('x + y', {}) Returns ------- s: string A evalable string scope: dict A namespace to add to be given to eval """ if isinstance(expr, Expr) and any(expr.isidentical(lf) for lf in leaves): return valid_identifier(expr._name), {} return _print_python(expr, leaves=leaves) @dispatch(object) def _print_python(expr, leaves=None): return repr(expr), {} @dispatch((datetime.datetime, datetime.date)) def _print_python(expr, leaves=None): return repr(expr), {'datetime': datetime} @dispatch(Symbol) def _print_python(expr, leaves=None): return valid_identifier(expr._name), {} @dispatch(Field) def _print_python(expr, leaves=None): child, scope = print_python(leaves, expr._child) index = expr._child.fields.index(expr._name) return '%s[%d]' % (parenthesize(child), index), scope @dispatch(Arithmetic) def _print_python(expr, leaves=None): lhs, left_scope = print_python(leaves, expr.lhs) rhs, right_scope = print_python(leaves, expr.rhs) return ('%s %s %s' % (parenthesize(lhs), expr.symbol, parenthesize(rhs)), toolz.merge(left_scope, right_scope)) @dispatch(USub) def _print_python(expr, leaves=None): child, scope = print_python(leaves, expr._child) return '%s%s' % (expr.symbol, parenthesize(child)), scope @dispatch(Not) def _print_python(expr, leaves=None): child, scope = print_python(leaves, expr._child) return 'not %s' % parenthesize(child), scope @dispatch(Math) def _print_python(expr, leaves=None): child, scope = print_python(leaves, expr._child) return ('math.%s(%s)' % (type(expr).__name__, child), toolz.merge(scope, {'math': math})) @dispatch(expr_math.abs) def _print_python(expr, leaves=None): child, scope = print_python(leaves, expr._child) return ('abs(%s)' % child, scope) @dispatch(Date) def _print_python(expr, leaves=None): child, scope = print_python(leaves, expr._child) return ('%s.date()' % parenthesize(child), scope) @dispatch(Time) def _print_python(expr, leaves=None): child, scope = print_python(leaves, expr._child) return ('%s.time()' % parenthesize(child), scope) @dispatch(Millisecond) def _print_python(expr, leaves=None): child, scope = print_python(leaves, expr._child) return ('%s.microsecond // 1000' % parenthesize(child), scope) @dispatch(UTCFromTimestamp) def _print_python(expr, leaves=None): child, scope = print_python(leaves, expr._child) return ('datetime.datetime.utcfromtimestamp(%s)' % parenthesize(child), toolz.merge({'datetime': datetime}, scope)) @dispatch(DateTime) def _print_python(expr, leaves=None): child, scope = print_python(leaves, expr._child) attr = type(expr).__name__.lower() return ('%s.%s' % (parenthesize(child), attr), scope) @dispatch(DateTimeTruncate) def _print_python(expr, leaves=None): child, scope = print_python(leaves, expr._child) scope['truncate'] = pydatetime.truncate return ('truncate(%s, %s, "%s")' % (child, expr.measure, expr.unit), scope) @dispatch(Map) def _print_python(expr, leaves=None): child, scope = print_python(leaves, expr._child) funcname = next(funcnames) return ('%s(%s)' % (funcname, child), toolz.assoc(scope, funcname, expr.func)) @dispatch(Expr) def _print_python(expr, leaves=None): raise NotImplementedError("Do not know how to write expressions of type %s" " to Python code" % type(expr).__name__) def funcstr(leaves, expr): """ Lambda string for an expresion >>> t = symbol('t', '{x: int, y: int, z: int, when: datetime}') >>> funcstr([t], t.x + t.y) ('lambda t: t[0] + t[1]', {}) >>> funcstr([t.x, t.y], t.x + t.y) ('lambda x, y: x + y', {}) Also returns scope for libraries like math or datetime >>> funcstr([t.x, t.y], sin(t.x) + t.y) # doctest: +SKIP ('lambda x, y: math.sin(x) + y', {'math': <module 'math'>}) >>> from datetime import date >>> funcstr([t.x, t.y, t.when], t.when.date > date(2001, 12, 25)) #doctest: +SKIP ('lambda x, y, when: when.day > datetime.date(2001, 12, 25)', {'datetime': <module 'datetime'>}) """ result, scope = print_python(leaves, expr) leaf_names = [print_python([leaf], leaf)[0] for leaf in leaves] return 'lambda %s: %s' % (', '.join(leaf_names), result), scope def lambdify(leaves, expr): """ Lambda for an expresion >>> t = symbol('t', '{x: int, y: int, z: int, when: datetime}') >>> f = lambdify([t], t.x + t.y) >>> f((1, 10, 100, '')) 11 >>> f = lambdify([t.x, t.y, t.z, t.when], t.x + cos(t.y)) >>> f(1, 0, 100, '') 2.0 """ s, scope = funcstr(leaves, expr) return eval(s, scope)
{ "repo_name": "mrocklin/blaze", "path": "blaze/compute/pyfunc.py", "copies": "1", "size": "6101", "license": "bsd-3-clause", "hash": 9211441601999977000, "line_mean": 29.8131313131, "line_max": 100, "alpha_frac": 0.6095722013, "autogenerated": false, "ratio": 3.2573411639081686, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4366913365208168, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from ..expr import (Expr, Symbol, Field, Arithmetic, RealMath, Map, Not, USub, Date, Time, DateTime, Millisecond, Microsecond, broadcast, sin, cos, isnan, UnaryOp, symbol) import datetime from datashape import iscollection import math from toolz import curry import itertools from ..expr.broadcast import broadcast_collect funcnames = ('func_%d' % i for i in itertools.count()) def parenthesize(s): if ' ' in s: return '(%s)' % s else: return s def print_numexpr(leaves, expr): """ Print expression to be evaluated in Python >>> from blaze.expr import ceil, sin >>> t = symbol('t', 'var * {x: int, y: int, z: int, when: datetime}') >>> print_numexpr([t], t.x + t.y) 'x + y' Supports mathematical functions >>> print_numexpr([t], sin(t.x) > cos(t.y)) 'sin(x) > cos(y)' Returns ------- s: string A evalable string """ if not isinstance(expr, Expr): return repr(expr) if any(expr.isidentical(leaf) for leaf in leaves): return expr._name if isinstance(expr, Symbol): return expr._name if isinstance(expr, Field): return expr._name if isinstance(expr, Arithmetic): lhs = print_numexpr(leaves, expr.lhs) rhs = print_numexpr(leaves, expr.rhs) return '%s %s %s' % (parenthesize(lhs), expr.symbol, parenthesize(rhs)) if isinstance(expr, RealMath): child = print_numexpr(leaves, expr._child) return '%s(%s)' % (type(expr).__name__, child) if isinstance(expr, UnaryOp) and hasattr(expr, 'symbol'): child = print_numexpr(leaves, expr._child) return '%s%s' % (expr.symbol, parenthesize(child)) if isinstance(expr, isnan): child = print_numexpr(leaves, expr._child) return '%s != %s' % (parenthsize(child), parenthesize(child)) raise NotImplementedError("Operation %s not supported by numexpr" % type(expr).__name__) WantToBroadcast = (Arithmetic, RealMath, Not, USub) Broadcastable = (Arithmetic, RealMath, Not, USub) broadcast_numexpr_collect = curry(broadcast_collect, Broadcastable=Broadcastable, WantToBroadcast=WantToBroadcast)
{ "repo_name": "mrocklin/blaze", "path": "blaze/compute/numexpr.py", "copies": "1", "size": "2321", "license": "bsd-3-clause", "hash": 907984567619242100, "line_mean": 29.9466666667, "line_max": 77, "alpha_frac": 0.6182679879, "autogenerated": false, "ratio": 3.5928792569659445, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.47111472448659447, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from ..expr import (Expr, Symbol, Field, Arithmetic, RealMath, Not, USub, Date, Time, DateTime, Millisecond, Microsecond, broadcast, sin, cos, isnan, UnaryOp, symbol) from toolz import curry import itertools from ..expr.broadcast import broadcast_collect funcnames = ('func_%d' % i for i in itertools.count()) def parenthesize(s): if ' ' in s: return '(%s)' % s else: return s def print_numexpr(leaves, expr): """ Print expression to be evaluated in Python >>> from blaze.expr import ceil, sin >>> t = symbol('t', 'var * {x: int, y: int, z: int, when: datetime}') >>> print_numexpr([t], t.x + t.y) 'x + y' Supports mathematical functions >>> print_numexpr([t], sin(t.x) > cos(t.y)) 'sin(x) > cos(y)' Returns ------- s: string A evalable string """ if not isinstance(expr, Expr): return repr(expr) if any(expr.isidentical(leaf) for leaf in leaves): return expr._name if isinstance(expr, Symbol): return expr._name if isinstance(expr, Field): return expr._name if isinstance(expr, Arithmetic): lhs = print_numexpr(leaves, expr.lhs) rhs = print_numexpr(leaves, expr.rhs) return '%s %s %s' % (parenthesize(lhs), expr.symbol, parenthesize(rhs)) if isinstance(expr, RealMath): child = print_numexpr(leaves, expr._child) return '%s(%s)' % (type(expr).__name__, child) if isinstance(expr, UnaryOp) and hasattr(expr, 'symbol'): child = print_numexpr(leaves, expr._child) return '%s%s' % (expr.symbol, parenthesize(child)) if isinstance(expr, isnan): child = print_numexpr(leaves, expr._child) return '%s != %s' % (parenthsize(child), parenthesize(child)) raise NotImplementedError("Operation %s not supported by numexpr" % type(expr).__name__) WantToBroadcast = (Arithmetic, RealMath, Not, USub) Broadcastable = (Arithmetic, RealMath, Not, USub) broadcast_numexpr_collect = curry(broadcast_collect, Broadcastable=Broadcastable, WantToBroadcast=WantToBroadcast)
{ "repo_name": "caseyclements/blaze", "path": "blaze/compute/numexpr.py", "copies": "10", "size": "2278", "license": "bsd-3-clause", "hash": -1143501348464861800, "line_mean": 30.2054794521, "line_max": 73, "alpha_frac": 0.6044776119, "autogenerated": false, "ratio": 3.615873015873016, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.0011194561812670732, "num_lines": 73 }
from __future__ import absolute_import, division, print_function from ..expr import (Expr, Symbol, Field, Arithmetic, UnaryMath, Not, USub, isnan, UnaryOp, BinOp) from toolz import curry import itertools from ..expr.broadcast import broadcast_collect funcnames = ('func_%d' % i for i in itertools.count()) def parenthesize(s): if ' ' in s: return '(%s)' % s else: return s def print_numexpr(leaves, expr): """ Print expression to be evaluated in Python >>> from blaze import symbol, ceil, sin, cos >>> t = symbol('t', 'var * {x: int, y: int, z: int, when: datetime}') >>> print_numexpr([t], t.x + t.y) 'x + y' Supports mathematical functions >>> print_numexpr([t], sin(t.x) > cos(t.y)) 'sin(x) > cos(y)' Returns ------- s: string A evalable string """ if not isinstance(expr, Expr): return repr(expr) if any(expr.isidentical(leaf) for leaf in leaves): return expr._name if isinstance(expr, Symbol): return expr._name if isinstance(expr, Field): return expr._name if isinstance(expr, Arithmetic): lhs = print_numexpr(leaves, expr.lhs) rhs = print_numexpr(leaves, expr.rhs) return '%s %s %s' % (parenthesize(lhs), expr.symbol, parenthesize(rhs)) if isinstance(expr, UnaryMath): child = print_numexpr(leaves, expr._child) return '%s(%s)' % (type(expr).__name__, child) if isinstance(expr, UnaryOp) and hasattr(expr, 'symbol'): child = print_numexpr(leaves, expr._child) return '%s%s' % (expr.symbol, parenthesize(child)) if isinstance(expr, isnan): child = print_numexpr(leaves, expr._child) return '%s != %s' % (parenthesize(child), parenthesize(child)) raise NotImplementedError("Operation %s not supported by numexpr" % type(expr).__name__) Broadcastable = WantToBroadcast = BinOp, UnaryOp broadcast_numexpr_collect = curry( broadcast_collect, broadcastable=Broadcastable, want_to_broadcast=WantToBroadcast )
{ "repo_name": "ChinaQuants/blaze", "path": "blaze/compute/numexpr.py", "copies": "6", "size": "2164", "license": "bsd-3-clause", "hash": 729832068026365300, "line_mean": 28.6438356164, "line_max": 74, "alpha_frac": 0.5975046211, "autogenerated": false, "ratio": 3.6187290969899664, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0, "num_lines": 73 }
from __future__ import absolute_import, division, print_function from ...external.qt import QtGui from ...external.qt.QtCore import Qt from ... import core from ...clients.scatter_client import ScatterClient from ..glue_toolbar import GlueToolbar from ..mouse_mode import (RectangleMode, CircleMode, PolyMode, HRangeMode, VRangeMode) from .data_viewer import DataViewer from .mpl_widget import MplWidget, defer_draw from ..widget_properties import (ButtonProperty, FloatLineProperty, CurrentComboProperty, connect_bool_button, connect_float_edit) from ..qtutil import load_ui, cache_axes, nonpartial __all__ = ['ScatterWidget'] WARN_SLOW = 1000000 # max number of points which render quickly class ScatterWidget(DataViewer): """ An interactive scatter plot. """ LABEL = "Scatter Plot" _property_set = DataViewer._property_set + \ 'xlog ylog xflip yflip hidden xatt yatt xmin xmax ymin ymax'.split() xlog = ButtonProperty('ui.xLogCheckBox', 'log scaling on x axis?') ylog = ButtonProperty('ui.yLogCheckBox', 'log scaling on y axis?') xflip = ButtonProperty('ui.xFlipCheckBox', 'invert the x axis?') yflip = ButtonProperty('ui.yFlipCheckBox', 'invert the y axis?') xmin = FloatLineProperty('ui.xmin', 'Lower x limit of plot') xmax = FloatLineProperty('ui.xmax', 'Upper x limit of plot') ymin = FloatLineProperty('ui.ymin', 'Lower y limit of plot') ymax = FloatLineProperty('ui.ymax', 'Upper y limit of plot') hidden = ButtonProperty('ui.hidden_attributes', 'Show hidden attributes') xatt = CurrentComboProperty('ui.xAxisComboBox', 'Attribute to plot on x axis') yatt = CurrentComboProperty('ui.yAxisComboBox', 'Attribute to plot on y axis') def __init__(self, session, parent=None): super(ScatterWidget, self).__init__(session, parent) self.central_widget = MplWidget() self.option_widget = QtGui.QWidget() self.setCentralWidget(self.central_widget) self.ui = load_ui('scatterwidget', self.option_widget) self._tweak_geometry() self.client = ScatterClient(self._data, self.central_widget.canvas.fig, artist_container=self._container) self._connect() self.unique_fields = set() tb = self.make_toolbar() cache_axes(self.client.axes, tb) self.statusBar().setSizeGripEnabled(False) self.setFocusPolicy(Qt.StrongFocus) @staticmethod def _get_default_tools(): return [] def _tweak_geometry(self): self.central_widget.resize(600, 400) self.resize(self.central_widget.size()) def _connect(self): ui = self.ui cl = self.client connect_bool_button(cl, 'xlog', ui.xLogCheckBox) connect_bool_button(cl, 'ylog', ui.yLogCheckBox) connect_bool_button(cl, 'xflip', ui.xFlipCheckBox) connect_bool_button(cl, 'yflip', ui.yFlipCheckBox) ui.xAxisComboBox.currentIndexChanged.connect(self.update_xatt) ui.yAxisComboBox.currentIndexChanged.connect(self.update_yatt) ui.hidden_attributes.toggled.connect(lambda x: self._update_combos()) ui.swapAxes.clicked.connect(nonpartial(self.swap_axes)) ui.snapLimits.clicked.connect(cl.snap) connect_float_edit(cl, 'xmin', ui.xmin) connect_float_edit(cl, 'xmax', ui.xmax) connect_float_edit(cl, 'ymin', ui.ymin) connect_float_edit(cl, 'ymax', ui.ymax) def make_toolbar(self): result = GlueToolbar(self.central_widget.canvas, self, name='Scatter Plot') for mode in self._mouse_modes(): result.add_mode(mode) self.addToolBar(result) return result def _mouse_modes(self): axes = self.client.axes def apply_mode(mode): return self.apply_roi(mode.roi()) rect = RectangleMode(axes, roi_callback=apply_mode) xra = HRangeMode(axes, roi_callback=apply_mode) yra = VRangeMode(axes, roi_callback=apply_mode) circ = CircleMode(axes, roi_callback=apply_mode) poly = PolyMode(axes, roi_callback=apply_mode) return [rect, xra, yra, circ, poly] @defer_draw def _update_combos(self): """ Update contents of combo boxes """ # have to be careful here, since client and/or widget # are potentially out of sync layer_ids = [] # show hidden attributes if needed if ((self.client.xatt and self.client.xatt.hidden) or (self.client.yatt and self.client.yatt.hidden)): self.hidden = True # determine which components to put in combos for l in self.client.data: if not self.client.is_layer_present(l): continue for lid in self.client.plottable_attributes( l, show_hidden=self.hidden): if lid not in layer_ids: layer_ids.append(lid) oldx = self.xatt oldy = self.yatt newx = self.client.xatt or oldx newy = self.client.yatt or oldy for combo, target in zip([self.ui.xAxisComboBox, self.ui.yAxisComboBox], [newx, newy]): combo.blockSignals(True) combo.clear() if not layer_ids: # empty component list continue # populate for lid in layer_ids: combo.addItem(lid.label, userData=lid) idx = layer_ids.index(target) if target in layer_ids else 0 combo.setCurrentIndex(idx) combo.blockSignals(False) # ensure client and widget synced self.client.xatt = self.xatt self.client.lyatt = self.yatt @defer_draw def add_data(self, data): """Add a new data set to the widget :returns: True if the addition was expected, False otherwise """ if self.client.is_layer_present(data): return if data.size > WARN_SLOW and not self._confirm_large_data(data): return False first_layer = self.client.layer_count == 0 self.client.add_data(data) self._update_combos() if first_layer: # forces both x and y axes to be rescaled self.update_xatt(None) self.update_yatt(None) self.ui.xAxisComboBox.setCurrentIndex(0) if len(data.visible_components) > 1: self.ui.yAxisComboBox.setCurrentIndex(1) else: self.ui.yAxisComboBox.setCurrentIndex(0) self.update_window_title() return True @defer_draw def add_subset(self, subset): """Add a subset to the widget :returns: True if the addition was accepted, False otherwise """ if self.client.is_layer_present(subset): return data = subset.data if data.size > WARN_SLOW and not self._confirm_large_data(data): return False first_layer = self.client.layer_count == 0 self.client.add_layer(subset) self._update_combos() if first_layer: # forces both x and y axes to be rescaled self.update_xatt(None) self.update_yatt(None) self.ui.xAxisComboBox.setCurrentIndex(0) if len(data.visible_components) > 1: self.ui.yAxisComboBox.setCurrentIndex(1) else: self.ui.yAxisComboBox.setCurrentIndex(0) self.update_window_title() return True def register_to_hub(self, hub): super(ScatterWidget, self).register_to_hub(hub) self.client.register_to_hub(hub) hub.subscribe(self, core.message.DataUpdateMessage, nonpartial(self._sync_labels)) hub.subscribe(self, core.message.ComponentsChangedMessage, nonpartial(self._update_combos)) hub.subscribe(self, core.message.ComponentReplacedMessage, self._on_component_replace) def _on_component_replace(self, msg): # let client update its state first self.client._on_component_replace(msg) self._update_combos() def unregister(self, hub): super(ScatterWidget, self).unregister(hub) hub.unsubscribe_all(self.client) hub.unsubscribe_all(self) @defer_draw def swap_axes(self): xid = self.ui.xAxisComboBox.currentIndex() yid = self.ui.yAxisComboBox.currentIndex() xlog = self.ui.xLogCheckBox.isChecked() ylog = self.ui.yLogCheckBox.isChecked() xflip = self.ui.xFlipCheckBox.isChecked() yflip = self.ui.yFlipCheckBox.isChecked() self.ui.xAxisComboBox.setCurrentIndex(yid) self.ui.yAxisComboBox.setCurrentIndex(xid) self.ui.xLogCheckBox.setChecked(ylog) self.ui.yLogCheckBox.setChecked(xlog) self.ui.xFlipCheckBox.setChecked(yflip) self.ui.yFlipCheckBox.setChecked(xflip) @defer_draw def update_xatt(self, index): component_id = self.xatt self.client.xatt = component_id @defer_draw def update_yatt(self, index): component_id = self.yatt self.client.yatt = component_id @property def window_title(self): data = self.client.data label = ', '.join([d.label for d in data if self.client.is_visible(d)]) return label def _sync_labels(self): self.update_window_title() def options_widget(self): return self.option_widget @defer_draw def restore_layers(self, rec, context): self.client.restore_layers(rec, context) self._update_combos() # manually force client attributes to sync self.update_xatt(None) self.update_yatt(None)
{ "repo_name": "JudoWill/glue", "path": "glue/qt/widgets/scatter_widget.py", "copies": "1", "size": "10031", "license": "bsd-3-clause", "hash": 7163589458533899000, "line_mean": 33.119047619, "line_max": 80, "alpha_frac": 0.6091117536, "autogenerated": false, "ratio": 3.8849728892331528, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.49940846428331526, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from ...external.qt import QtGui from ...external.qt.QtCore import Qt, Signal from ... import core from ..mime import LAYER_MIME_TYPE, LAYERS_MIME_TYPE class GlueMdiArea(QtGui.QMdiArea): """Glue's MdiArea implementation. Drop events with :class:`~glue.core.data.Data` objects in :class:`~glue.qt.mime.PyMimeData` load these objects into new data viewers """ def __init__(self, application, parent=None): """ :param application: The Glue application to which this is attached :type application: :class:`~glue.qt.glue_application.GlueApplication` """ super(GlueMdiArea, self).__init__(parent) self._application = application self.setAcceptDrops(True) self.setAttribute(Qt.WA_DeleteOnClose) self.setBackground(QtGui.QBrush(QtGui.QColor(250, 250, 250))) self.setHorizontalScrollBarPolicy(Qt.ScrollBarAsNeeded) self.setVerticalScrollBarPolicy(Qt.ScrollBarAsNeeded) def addSubWindow(self, sub): super(GlueMdiArea, self).addSubWindow(sub) self.repaint() def dragEnterEvent(self, event): """ Accept the event if it has an application/py_instance format """ if event.mimeData().hasFormat(LAYERS_MIME_TYPE): event.accept() elif event.mimeData().hasFormat(LAYER_MIME_TYPE): event.accept() else: event.ignore() def dropEvent(self, event): """ Load a new data viewer if the event has a glue Data object """ md = event.mimeData() def new_layer(layer): if isinstance(layer, core.data.Data): self._application.choose_new_data_viewer(layer) else: assert isinstance(layer, core.subset.Subset) self._application.choose_new_data_viewer(layer.data) if md.hasFormat(LAYER_MIME_TYPE): new_layer(md.data(LAYER_MIME_TYPE)) assert md.hasFormat(LAYERS_MIME_TYPE) for layer in md.data(LAYERS_MIME_TYPE): new_layer(layer) event.accept() def mousePressEvent(self, event): """Right mouse press in the MDI area opens a new data viewer""" if event.button() != Qt.RightButton: return self._application.choose_new_data_viewer() def close(self): self.closeAllSubWindows() super(GlueMdiArea, self).close() def paintEvent(self, event): super(GlueMdiArea, self).paintEvent(event) painter = QtGui.QPainter(self.viewport()) painter.setPen(QtGui.QColor(210, 210, 210)) font = painter.font() font.setPointSize(48) font.setWeight(font.Black) painter.setFont(font) rect = self.contentsRect() painter.drawText(rect, Qt.AlignHCenter | Qt.AlignVCenter, "Drag Data To Plot") class GlueMdiSubWindow(QtGui.QMdiSubWindow): closed = Signal() def closeEvent(self, event): super(GlueMdiSubWindow, self).closeEvent(event) self.closed.emit()
{ "repo_name": "JudoWill/glue", "path": "glue/qt/widgets/glue_mdi_area.py", "copies": "1", "size": "3117", "license": "bsd-3-clause", "hash": -4857368453920461000, "line_mean": 31.8105263158, "line_max": 77, "alpha_frac": 0.6326596086, "autogenerated": false, "ratio": 3.801219512195122, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9933879120795122, "avg_score": 0, "num_lines": 95 }
from __future__ import absolute_import, division, print_function from ...external.qt import QtGui from ...core.edit_subset_mode import (EditSubsetMode, OrMode, AndNotMode, AndMode, XorMode, ReplaceMode) from ..actions import act from ..qtutil import nonpartial def set_mode(mode): edit_mode = EditSubsetMode() edit_mode.mode = mode class EditSubsetModeToolBar(QtGui.QToolBar): def __init__(self, title="Subset Update Mode", parent=None): super(EditSubsetModeToolBar, self).__init__(title, parent) self._group = QtGui.QActionGroup(self) self._modes = {} self._add_actions() self._modes[EditSubsetMode().mode].trigger() self._backup_mode = None def _make_mode(self, name, tip, icon, mode): a = act(name, self, tip, icon) a.setCheckable(True) a.triggered.connect(nonpartial(set_mode, mode)) self._group.addAction(a) self.addAction(a) self._modes[mode] = a label = name.split()[0].lower().replace('&', '') self._modes[label] = mode def _add_actions(self): self._make_mode("&Replace Mode", "Replace selection", 'glue_replace', ReplaceMode) self._make_mode("&Or Mode", "Add to selection", 'glue_or', OrMode) self._make_mode("&And Mode", "Set selection as intersection", 'glue_and', AndMode) self._make_mode("&Xor Mode", "Set selection as exclusive intersection", 'glue_xor', XorMode) self._make_mode("&Not Mode", "Remove from selection", 'glue_andnot', AndNotMode) def set_mode(self, mode): """Temporarily set the edit mode to mode :param mode: Name of the mode (Or, Not, And, Xor, Replace) :type mode: str """ try: mode = self._modes[mode] # label to mode class except KeyError: raise KeyError("Unrecognized mode: %s" % mode) self._backup_mode = self._backup_mode or EditSubsetMode().mode self._modes[mode].trigger() # mode class to action def unset_mode(self): """Restore the mode to the state before set_mode was called""" mode = self._backup_mode self._backup_mode = None if mode: self._modes[mode].trigger()
{ "repo_name": "JudoWill/glue", "path": "glue/qt/widgets/edit_subset_mode_toolbar.py", "copies": "1", "size": "2391", "license": "bsd-3-clause", "hash": -2621465117561346000, "line_mean": 35.2272727273, "line_max": 79, "alpha_frac": 0.5788373066, "autogenerated": false, "ratio": 3.9261083743842367, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0, "num_lines": 66 }
from __future__ import absolute_import, division, print_function from ..external.qt.QtCore import QMimeData, QByteArray class PyMimeData(QMimeData): """ A custom MimeData object that stores live python objects Associate specific objects with a mime type by passing mime type / object kev/value pairs to the __init__ method If a single object is passed to the init method, that object is associated with the PyMimeData.MIME_TYPE mime type """ MIME_TYPE = 'application/py_instance' def __init__(self, instance=None, **kwargs): """ :param instance: The python object to store kwargs: Optional mime type / objects pairs to store as objects """ super(PyMimeData, self).__init__() self._instances = {} self.setData(self.MIME_TYPE, instance) for k, v in kwargs.items(): self.setData(k, v) def formats(self): return list(set(super(PyMimeData, self).formats() + list(self._instances.keys()))) def hasFormat(self, fmt): return fmt in self._instances or super(PyMimeData, self).hasFormat(fmt) def setData(self, mime, data): super(PyMimeData, self).setData(mime, QByteArray('1')) self._instances[mime] = data def data(self, mime_type): """ Retrieve the data stored at the specified mime_type If mime_type is application/py_instance, a python object is returned. Otherwise, a QByteArray is returned """ if str(mime_type) in self._instances: return self._instances[mime_type] return super(PyMimeData, self).data(mime_type) #some standard glue mime types LAYER_MIME_TYPE = 'glue/layer' LAYERS_MIME_TYPE = 'glue/layers' INSTANCE_MIME_TYPE = PyMimeData.MIME_TYPE
{ "repo_name": "JudoWill/glue", "path": "glue/qt/mime.py", "copies": "1", "size": "1799", "license": "bsd-3-clause", "hash": -1622374647008352000, "line_mean": 30.5614035088, "line_max": 79, "alpha_frac": 0.6498054475, "autogenerated": false, "ratio": 3.8605150214592276, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5010320468959227, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from ..external.qt.QtGui import QAction from .qtutil import get_icon def act(name, parent, tip='', icon=None, shortcut=None): """ Factory for making a new action """ a = QAction(name, parent) a.setToolTip(tip) if icon: a.setIcon(get_icon(icon)) if shortcut: a.setShortcut(shortcut) return a """ tab_new = act('New Tab', shortcut=QKeySequence.AddTab, tip='Add a new tab') tab_tile = act("Tile", tip="Tile windows in the current tab") tab_cascade = act("Cascade", tip = "Cascade windows in the current tab") window_new = act('New Window', shortcut=QKeySequence.New, tip='Add a new visualization window to the current tab') subset_or = act("Union Combine", icon='glue_or', tip = 'Define a new subset as a union of selection') subste_and = act("Intersection Combine", icon="glue_and", tip = 'Define a new subset as intersection of selection') subset_xor = act("XOR Combine", icon='glue_xor', tip= 'Define a new subset as non-intersection of selection') subset_not = act("Invert", icon="glue_not", tip="Invert current subset") subset_copy = act("Copy subset", tip="Copy the definition for the selected subset", shortcut=QKeySequence.Copy) subset_paste = act("Paste subset", tip = "Replace the selected subset with clipboard", shortcut=QKeySequence.Paste) subset_new = act("New subset", tip="Create a new subset for the selected data", shortcut=QKeySequence.New) subset_clear = act("Clear subset", tip="Clear current selection") subset_duplicate = act("Duplicate subset", tip="Duplicate the current subset", shortcut="Ctrl+D") layer_delete = act("Delete layer", shortcut=QKeySequence.Delete, tip="Remove the highlighted layer") """
{ "repo_name": "JudoWill/glue", "path": "glue/qt/actions.py", "copies": "1", "size": "2189", "license": "bsd-3-clause", "hash": 307613344573699140, "line_mean": 29.8309859155, "line_max": 77, "alpha_frac": 0.5710370032, "autogenerated": false, "ratio": 4.217726396917149, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5288763400117148, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from ...external.qt.QtGui import (QAction, QLabel, QCursor, QMainWindow, QToolButton, QIcon, QMessageBox ) from ...external.qt.QtCore import Qt, QRect, Signal from .data_viewer import DataViewer from ... import core from ...clients.image_client import MplImageClient from ...clients.ds9norm import DS9Normalize from ...external.modest_image import imshow from ...clients.layer_artist import Pointer from ...core.callback_property import add_callback, delay_callback from .data_slice_widget import DataSlice from ..mouse_mode import (RectangleMode, CircleMode, PolyMode, ContrastMode) from ..glue_toolbar import GlueToolbar from .mpl_widget import MplWidget, defer_draw from ..qtutil import cmap2pixmap, load_ui, get_icon, nonpartial, update_combobox from ..widget_properties import CurrentComboProperty, ButtonProperty, connect_current_combo from .glue_mdi_area import GlueMdiSubWindow WARN_THRESH = 10000000 # warn when contouring large images __all__ = ['ImageWidget'] class ImageWidgetBase(DataViewer): """ Widget for ImageClient This base class avoids any matplotlib-specific logic """ LABEL = "Image Viewer" _property_set = DataViewer._property_set + \ 'data attribute rgb_mode rgb_viz ratt gatt batt slice'.split() attribute = CurrentComboProperty('ui.attributeComboBox', 'Current attribute') data = CurrentComboProperty('ui.displayDataCombo', 'Current data') rgb_mode = ButtonProperty('ui.rgb', 'RGB Mode?') rgb_viz = Pointer('ui.rgb_options.rgb_visible') def __init__(self, session, parent=None): super(ImageWidgetBase, self).__init__(session, parent) self._setup_widgets() self.client = self.make_client() self._setup_tools() tb = self.make_toolbar() self.addToolBar(tb) self._connect() def _setup_widgets(self): self.central_widget = self.make_central_widget() self.label_widget = QLabel("", self.central_widget) self.setCentralWidget(self.central_widget) self.ui = load_ui('imagewidget', None) self.option_widget = self.ui self.ui.slice = DataSlice() self.ui.slice_layout.addWidget(self.ui.slice) self._tweak_geometry() def make_client(self): """ Instantiate and return an ImageClient subclass """ raise NotImplementedError() def make_central_widget(self): """ Create and return the central widget to display the image """ raise NotImplementedError() def make_toolbar(self): """ Create and return the toolbar for this widget """ raise NotImplementedError() @staticmethod def _get_default_tools(): return [] def _setup_tools(self): """ Set up additional tools for this widget """ from ... import config self._tools = [] for tool in config.tool_registry.members[self.__class__]: self._tools.append(tool(self)) def _tweak_geometry(self): self.central_widget.resize(600, 400) self.resize(self.central_widget.size()) self.ui.rgb_options.hide() self.statusBar().setSizeGripEnabled(False) self.setFocusPolicy(Qt.StrongFocus) @defer_draw def add_data(self, data): """ Add a new dataset to the viewer """ # overloaded from DataViewer # need to delay callbacks, otherwise might # try to set combo boxes to nonexisting items with delay_callback(self.client, 'display_data', 'display_attribute'): # If there is not already any image data set, we can't add 1-D # datasets (tables/catalogs) to the image widget yet. if data.data.ndim == 1 and self.client.display_data is None: QMessageBox.information(self.window(), "Note", "Cannot create image viewer from a 1-D " "dataset. You will need to first " "create an image viewer using data " "with 2 or more dimensions, after " "which you will be able to overlay 1-D " "data as a scatter plot.", buttons=QMessageBox.Ok) return r = self.client.add_layer(data) if r is not None and self.client.display_data is not None: self.add_data_to_combo(data) self.set_attribute_combo(self.client.display_data) return r is not None @defer_draw def add_subset(self, subset): self.client.add_scatter_layer(subset) assert subset in self.client.artists def add_data_to_combo(self, data): """ Add a data object to the combo box, if not already present """ if not self.client.can_image_data(data): return combo = self.ui.displayDataCombo label = data.label pos = combo.findText(label) if pos == -1: combo.addItem(label, userData=data) assert combo.findText(label) >= 0 @property def ratt(self): """ComponentID assigned to R channel in RGB Mode""" return self.ui.rgb_options.attributes[0] @ratt.setter def ratt(self, value): att = list(self.ui.rgb_options.attributes) att[0] = value self.ui.rgb_options.attributes = att @property def gatt(self): """ComponentID assigned to G channel in RGB Mode""" return self.ui.rgb_options.attributes[1] @gatt.setter def gatt(self, value): att = list(self.ui.rgb_options.attributes) att[1] = value self.ui.rgb_options.attributes = att @property def batt(self): """ComponentID assigned to B channel in RGB Mode""" return self.ui.rgb_options.attributes[2] @batt.setter def batt(self, value): att = list(self.ui.rgb_options.attributes) att[2] = value self.ui.rgb_options.attributes = att @property def slice(self): return self.client.slice @slice.setter def slice(self, value): self.client.slice = value def set_attribute_combo(self, data): """ Update attribute combo box to reflect components in data""" labeldata = ((f.label, f) for f in data.visible_components) update_combobox(self.ui.attributeComboBox, labeldata) def _connect(self): ui = self.ui ui.monochrome.toggled.connect(self._update_rgb_console) ui.rgb_options.colors_changed.connect(self.update_window_title) # sync client and widget slices ui.slice.slice_changed.connect(lambda: setattr(self, 'slice', self.ui.slice.slice)) update_ui_slice = lambda val: setattr(ui.slice, 'slice', val) add_callback(self.client, 'slice', update_ui_slice) add_callback(self.client, 'display_data', self.ui.slice.set_data) # sync window title to data/attribute add_callback(self.client, 'display_data', nonpartial(self.update_window_title)) add_callback(self.client, 'display_attribute', nonpartial(self.update_window_title)) # sync data/attribute combos with client properties connect_current_combo(self.client, 'display_data', self.ui.displayDataCombo) connect_current_combo(self.client, 'display_attribute', self.ui.attributeComboBox) @defer_draw def _update_rgb_console(self, is_monochrome): if is_monochrome: self.ui.rgb_options.hide() self.ui.mono_att_label.show() self.ui.attributeComboBox.show() self.client.rgb_mode(False) else: self.ui.mono_att_label.hide() self.ui.attributeComboBox.hide() self.ui.rgb_options.show() rgb = self.client.rgb_mode(True) if rgb is not None: self.ui.rgb_options.artist = rgb def register_to_hub(self, hub): super(ImageWidgetBase, self).register_to_hub(hub) self.client.register_to_hub(hub) dc_filt = lambda x: x.sender is self.client._data layer_present_filter = lambda x: x.data in self.client.artists hub.subscribe(self, core.message.DataCollectionAddMessage, handler=lambda x: self.add_data_to_combo(x.data), filter=dc_filt) hub.subscribe(self, core.message.DataCollectionDeleteMessage, handler=lambda x: self.remove_data_from_combo(x.data), filter=dc_filt) hub.subscribe(self, core.message.DataUpdateMessage, handler=lambda x: self._sync_data_labels() ) hub.subscribe(self, core.message.ComponentsChangedMessage, handler=lambda x: self.set_attribute_combo(x.data), filter=layer_present_filter) def unregister(self, hub): super(ImageWidgetBase, self).unregister(hub) for obj in [self, self.client]: hub.unsubscribe_all(obj) def remove_data_from_combo(self, data): """ Remove a data object from the combo box, if present """ combo = self.ui.displayDataCombo pos = combo.findText(data.label) if pos >= 0: combo.removeItem(pos) def _set_norm(self, mode): """ Use the `ContrastMouseMode` to adjust the transfer function """ # at least one of the clip/vmin pairs will be None clip_lo, clip_hi = mode.get_clip_percentile() vmin, vmax = mode.get_vmin_vmax() stretch = mode.stretch return self.client.set_norm(clip_lo=clip_lo, clip_hi=clip_hi, stretch=stretch, vmin=vmin, vmax=vmax, bias=mode.bias, contrast=mode.contrast) @property def window_title(self): if self.client.display_data is None or self.client.display_attribute is None: title = '' else: data = self.client.display_data.label a = self.client.rgb_mode() if a is None: # monochrome mode title = "%s - %s" % (self.client.display_data.label, self.client.display_attribute.label) else: r = a.r.label if a.r is not None else '' g = a.g.label if a.g is not None else '' b = a.b.label if a.b is not None else '' title = "%s Red = %s Green = %s Blue = %s" % (data, r, g, b) return title def _sync_data_combo_labels(self): combo = self.ui.displayDataCombo for i in range(combo.count()): combo.setItemText(i, combo.itemData(i).label) def _sync_data_labels(self): self.update_window_title() self._sync_data_combo_labels() def __str__(self): return "Image Widget" def _confirm_large_image(self, data): """Ask user to confirm expensive operations :rtype: bool. Whether the user wishes to continue """ warn_msg = ("WARNING: Image has %i pixels, and may render slowly." " Continue?" % data.size) title = "Contour large image?" ok = QMessageBox.Ok cancel = QMessageBox.Cancel buttons = ok | cancel result = QMessageBox.question(self, title, warn_msg, buttons=buttons, defaultButton=cancel) return result == ok def options_widget(self): return self.option_widget @defer_draw def restore_layers(self, rec, context): with delay_callback(self.client, 'display_data', 'display_attribute'): self.client.restore_layers(rec, context) for artist in self.layers: self.add_data_to_combo(artist.layer.data) self.set_attribute_combo(self.client.display_data) self._sync_data_combo_labels() def closeEvent(self, event): # close window and all plugins super(ImageWidgetBase, self).closeEvent(event) if event.isAccepted(): for t in self._tools: t.close() class ImageWidget(ImageWidgetBase): """ A matplotlib-based image widget """ def make_client(self): return MplImageClient(self._data, self.central_widget.canvas.fig, artist_container=self._container) def make_central_widget(self): return MplWidget() def make_toolbar(self): result = GlueToolbar(self.central_widget.canvas, self, name='Image') for mode in self._mouse_modes(): result.add_mode(mode) cmap = _colormap_mode(self, self.client.set_cmap) result.addWidget(cmap) # connect viewport update buttons to client commands to # allow resampling cl = self.client result.buttons['HOME'].triggered.connect(nonpartial(cl.check_update)) result.buttons['FORWARD'].triggered.connect(nonpartial( cl.check_update)) result.buttons['BACK'].triggered.connect(nonpartial(cl.check_update)) return result def _mouse_modes(self): axes = self.client.axes def apply_mode(mode): for roi_mode in roi_modes: if roi_mode != mode: roi_mode._roi_tool.reset() self.apply_roi(mode.roi()) rect = RectangleMode(axes, roi_callback=apply_mode) circ = CircleMode(axes, roi_callback=apply_mode) poly = PolyMode(axes, roi_callback=apply_mode) roi_modes = [rect, circ, poly] contrast = ContrastMode(axes, move_callback=self._set_norm) self._contrast = contrast # Get modes from tools tool_modes = [] for tool in self._tools: tool_modes += tool._get_modes(axes) add_callback(self.client, 'display_data', tool._display_data_hook) return [rect, circ, poly, contrast] + tool_modes def paintEvent(self, event): super(ImageWidget, self).paintEvent(event) pos = self.central_widget.canvas.mapFromGlobal(QCursor.pos()) x, y = pos.x(), self.central_widget.canvas.height() - pos.y() self._update_intensity_label(x, y) def _intensity_label(self, x, y): x, y = self.client.axes.transData.inverted().transform([(x, y)])[0] value = self.client.point_details(x, y)['value'] lbl = '' if value is None else "data: %s" % value return lbl def _update_intensity_label(self, x, y): lbl = self._intensity_label(x, y) self.label_widget.setText(lbl) fm = self.label_widget.fontMetrics() w, h = fm.width(lbl), fm.height() g = QRect(20, self.central_widget.geometry().height() - h, w, h) self.label_widget.setGeometry(g) def _connect(self): super(ImageWidget, self)._connect() self.ui.rgb_options.current_changed.connect(lambda: self._toolbars[0].set_mode(self._contrast)) class ColormapAction(QAction): def __init__(self, label, cmap, parent): super(ColormapAction, self).__init__(label, parent) self.cmap = cmap pm = cmap2pixmap(cmap) self.setIcon(QIcon(pm)) def _colormap_mode(parent, on_trigger): from ... import config # actions for each colormap acts = [] for label, cmap in config.colormaps: a = ColormapAction(label, cmap, parent) a.triggered.connect(nonpartial(on_trigger, cmap)) acts.append(a) # Toolbar button tb = QToolButton() tb.setWhatsThis("Set color scale") tb.setToolTip("Set color scale") icon = get_icon('glue_rainbow') tb.setIcon(icon) tb.setPopupMode(QToolButton.InstantPopup) tb.addActions(acts) return tb class StandaloneImageWidget(QMainWindow): """ A simplified image viewer, without any brushing or linking, but with the ability to adjust contrast and resample. """ window_closed = Signal() def __init__(self, image=None, wcs=None, parent=None, **kwargs): """ :param image: Image to display (2D numpy array) :param parent: Parent widget (optional) :param kwargs: Extra keywords to pass to imshow """ super(StandaloneImageWidget, self).__init__(parent) self.central_widget = MplWidget() self.setCentralWidget(self.central_widget) self._setup_axes() self._im = None self._norm = DS9Normalize() self.make_toolbar() if image is not None: self.set_image(image=image, wcs=wcs, **kwargs) def _setup_axes(self): from ...clients.viz_client import init_mpl _, self._axes = init_mpl(self.central_widget.canvas.fig, axes=None, wcs=True) self._axes.set_aspect('equal', adjustable='datalim') def set_image(self, image=None, wcs=None, **kwargs): """ Update the image shown in the widget """ if self._im is not None: self._im.remove() self._im = None kwargs.setdefault('origin', 'upper') if wcs is not None: self._axes.reset_wcs(wcs) self._im = imshow(self._axes, image, norm=self._norm, cmap='gray', **kwargs) self._im_array = image self._wcs = wcs self._redraw() @property def axes(self): """ The Matplolib axes object for this figure """ return self._axes def show(self): super(StandaloneImageWidget, self).show() self._redraw() def _redraw(self): self.central_widget.canvas.draw() def _set_cmap(self, cmap): self._im.set_cmap(cmap) self._redraw() def mdi_wrap(self): """ Embed this widget in a GlueMdiSubWindow """ sub = GlueMdiSubWindow() sub.setWidget(self) self.destroyed.connect(sub.close) self.window_closed.connect(sub.close) sub.resize(self.size()) self._mdi_wrapper = sub return sub def closeEvent(self, event): self.window_closed.emit() return super(StandaloneImageWidget, self).closeEvent(event) def _set_norm(self, mode): """ Use the `ContrastMouseMode` to adjust the transfer function """ clip_lo, clip_hi = mode.get_clip_percentile() vmin, vmax = mode.get_vmin_vmax() stretch = mode.stretch self._norm.clip_lo = clip_lo self._norm.clip_hi = clip_hi self._norm.stretch = stretch self._norm.bias = mode.bias self._norm.contrast = mode.contrast self._norm.vmin = vmin self._norm.vmax = vmax self._im.set_norm(self._norm) self._redraw() def make_toolbar(self): """ Setup the toolbar """ result = GlueToolbar(self.central_widget.canvas, self, name='Image') result.add_mode(ContrastMode(self._axes, move_callback=self._set_norm)) cm = _colormap_mode(self, self._set_cmap) result.addWidget(cm) self._cmap_actions = cm.actions() self.addToolBar(result) return result
{ "repo_name": "JudoWill/glue", "path": "glue/qt/widgets/image_widget.py", "copies": "1", "size": "19700", "license": "bsd-3-clause", "hash": 4673547099472136000, "line_mean": 32.7328767123, "line_max": 103, "alpha_frac": 0.5879695431, "autogenerated": false, "ratio": 3.965378421900161, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.00033200978419246837, "num_lines": 584 }
from __future__ import absolute_import, division, print_function from ...external.qt.QtGui import (QDialog, QDoubleValidator, QIcon) import numpy as np from matplotlib import cm from ..qtutil import pretty_number, cmap2pixmap, load_ui from ...core.util import colorize_subsets, facet_subsets, Pointer from ..widget_properties import (ButtonProperty, FloatLineProperty, ValueProperty) class SubsetFacet(object): log = ButtonProperty('ui.log') vmin = FloatLineProperty('ui.min') vmax = FloatLineProperty('ui.max') steps = ValueProperty('ui.num') data = Pointer('ui.component_selector.data') component = Pointer('ui.component_selector.component') def __init__(self, collect, default=None, parent=None): """Create a new dialog for subset faceting :param collect: The :class:`~glue.core.data_collection.DataCollection` to use :param default: The default dataset in the collection (optional) """ self.ui = load_ui('subset_facet', None) self.ui.setWindowTitle("Subset Facet") self._collect = collect self.ui.component_selector.setup(self._collect) if default is not None: self.ui.component_selector.data = default val = QDoubleValidator(-1e100, 1e100, 4, None) self.ui.component_selector.component_changed.connect(self._set_limits) combo = self.ui.color_scale for cmap in [cm.cool, cm.RdYlBu, cm.RdYlGn, cm.RdBu, cm.Purples]: combo.addItem(QIcon(cmap2pixmap(cmap)), cmap.name, cmap) def _set_limits(self): data = self.ui.component_selector.data cid = self.ui.component_selector.component vals = data[cid] wmin = self.ui.min wmax = self.ui.max wmin.setText(pretty_number(np.nanmin(vals))) wmax.setText(pretty_number(np.nanmax(vals))) @property def cmap(self): combo = self.ui.color_scale index = combo.currentIndex() return combo.itemData(index) def _apply(self): try: lo, hi = self.vmin, self.vmax except ValueError: return # limits not set. Abort if not np.isfinite(lo) or not np.isfinite(hi): return subsets = facet_subsets(self._collect, self.component, lo=lo, hi=hi, steps=self.steps, log=self.log) colorize_subsets(subsets, self.cmap) def exec_(self): return self.ui.exec_() @classmethod def facet(cls, collect, default=None, parent=None): """Class method to create facted subsets The arguments are the same as __init__ """ self = cls(collect, parent=parent, default=default) value = self.exec_() if value == QDialog.Accepted: self._apply()
{ "repo_name": "JudoWill/glue", "path": "glue/qt/widgets/subset_facet.py", "copies": "1", "size": "2833", "license": "bsd-3-clause", "hash": -2600776059852832300, "line_mean": 32.3294117647, "line_max": 85, "alpha_frac": 0.626897282, "autogenerated": false, "ratio": 3.8335588633288227, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.49604561453288226, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from ..external.qt.QtGui import QDialog, QListWidgetItem, QWidget from .. import core from .qtutil import load_ui class LinkEditor(object): def __init__(self, collection, functions=None, parent=None): self._collection = collection self._ui = load_ui('link_editor', parent) self._init_widgets() self._connect() if len(collection) > 1: self._ui.right_components.set_data_row(1) self._size = None def _init_widgets(self): self._ui.left_components.setup(self._collection) self._ui.right_components.setup(self._collection) self._ui.signature_editor.hide() for link in self._collection.links: self._add_link(link) def _connect(self): self._ui.add_link.clicked.connect(self._add_new_link) self._ui.remove_link.clicked.connect(self._remove_link) self._ui.toggle_editor.clicked.connect(self._toggle_advanced) self._ui.signature_editor._ui.addButton.clicked.connect( self._add_new_link) @property def advanced(self): return self._ui.signature_editor.isVisible() @advanced.setter def advanced(self, state): """Set whether the widget is in advanced state""" self._ui.signature_editor.setVisible(state) self._ui.toggle_editor.setText("Basic" if state else "Advanced") def _toggle_advanced(self): """Show or hide the signature editor widget""" self.advanced = not self.advanced def _selected_components(self): result = [] id1 = self._ui.left_components.component id2 = self._ui.right_components.component if id1: result.append(id1) if id2: result.append(id2) return result def _simple_links(self): """Return identity links which connect the highlighted items in each component selector. Returns: A list of :class:`~glue.core.ComponentLink` objects If items are not selected in the component selectors, an empty list is returned """ comps = self._selected_components() if len(comps) != 2: return [] assert isinstance(comps[0], core.data.ComponentID), comps[0] assert isinstance(comps[1], core.data.ComponentID), comps[1] link1 = core.component_link.ComponentLink([comps[0]], comps[1]) return [link1] def _add_link(self, link): current = self._ui.current_links item = QListWidgetItem(str(link)) current.addItem(item) item.setHidden(link.hidden) current.set_data(item, link) def _add_new_link(self): if not self.advanced: links = self._simple_links() else: links = self._ui.signature_editor.links() self._ui.signature_editor.clear_inputs() for link in links: self._add_link(link) def links(self): current = self._ui.current_links return current.data.values() def _remove_link(self): current = self._ui.current_links item = current.currentItem() row = current.currentRow() if item is None: return current.drop_data(item) deleted = current.takeItem(row) assert deleted == item # sanity check @classmethod def update_links(cls, collection): widget = cls(collection) isok = widget._ui.exec_() if isok: links = widget.links() collection.set_links(links) def main(): import numpy as np from glue.core import Data, DataCollection x = np.array([1, 2, 3]) d = Data(label='data', x=x, y=x * 2) dc = DataCollection(d) LinkEditor.update_links(dc) if __name__ == "__main__": main()
{ "repo_name": "JudoWill/glue", "path": "glue/qt/link_editor.py", "copies": "1", "size": "3870", "license": "bsd-3-clause", "hash": 5575908791014250000, "line_mean": 29.234375, "line_max": 72, "alpha_frac": 0.603875969, "autogenerated": false, "ratio": 3.917004048582996, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5020880017582996, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from ...external.qt.QtGui import QWidget, QDrag from ...external.qt.QtCore import QMimeData, Qt from ...external.qt.QtTest import QTest from .. import mime import pytest class TestWidget(QWidget): def __init__(self, out_mime, parent=None): super(TestWidget, self).__init__(parent) self.setAcceptDrops(True) self.last_mime = None self.out_mime = out_mime def dragEnterEvent(self, event): print('drag enter') event.accept() def dropEvent(self, event): print('drop') self.last_mime = event.mimeData() def mousePressEvent(self, event): print('mouse event') drag = QDrag(self) drag.setMimeData(self.out_mime) drop_action = drag.exec_() print(drop_action) event.accept() class TestMime(object): def test_formats(self): d = mime.PyMimeData() assert set(d.formats()) == set([mime.INSTANCE_MIME_TYPE]) d = mime.PyMimeData(**{'text/plain': 'hello'}) assert set(d.formats()) == set([mime.INSTANCE_MIME_TYPE, 'text/plain']) def test_empty_has_format(self): d = mime.PyMimeData() assert d.hasFormat(mime.INSTANCE_MIME_TYPE) assert not d.hasFormat(mime.LAYER_MIME_TYPE) assert not d.hasFormat(mime.LAYERS_MIME_TYPE) def test_instance_format(self): d = mime.PyMimeData(5) assert d.hasFormat(mime.INSTANCE_MIME_TYPE) assert not d.hasFormat(mime.LAYER_MIME_TYPE) assert not d.hasFormat(mime.LAYERS_MIME_TYPE) def test_layer_format(self): d = mime.PyMimeData(5, **{mime.LAYER_MIME_TYPE: 10}) assert d.hasFormat(mime.INSTANCE_MIME_TYPE) assert d.hasFormat(mime.LAYER_MIME_TYPE) assert not d.hasFormat(mime.LAYERS_MIME_TYPE) def test_layers_format(self): d = mime.PyMimeData(5, **{mime.LAYERS_MIME_TYPE: 10}) assert d.hasFormat(mime.INSTANCE_MIME_TYPE) assert d.hasFormat(mime.LAYERS_MIME_TYPE) assert not d.hasFormat(mime.LAYER_MIME_TYPE) def test_retrieve_instance(self): d = mime.PyMimeData(10) assert d.retrieveData(mime.INSTANCE_MIME_TYPE) == 10 def test_retrieve_layer(self): d = mime.PyMimeData(**{mime.LAYERS_MIME_TYPE: 12}) assert d.retrieveData(mime.LAYERS_MIME_TYPE) == 12 d = mime.PyMimeData(**{mime.LAYER_MIME_TYPE: 12}) assert d.retrieveData(mime.LAYER_MIME_TYPE) == 12 def test_retrieve_not_present_returns_null(self): d = mime.PyMimeData() assert d.retrieveData('not-a-format') is None @pytest.skip class TestMimeDragAndDrop(object): def setup_method(self, method): m1 = mime.PyMimeData(1, **{'text/plain': 'hi', 'test': 4}) m2 = mime.PyMimeData(1, **{'test': 5}) w1 = TestWidget(m1) w2 = TestWidget(m2) self.w1 = w1 self.w2 = w2 self.m1 = m1 self.m2 = m2 def test_drag_drop(self): QTest.mousePress(self.w1, Qt.LeftButton) QTest.mouseMove(self.w2) QTest.mouseRelease(self.w2, Qt.LeftButton) assert self.w2.last_mime == self.m1
{ "repo_name": "JudoWill/glue", "path": "glue/qt/tests/test_mime.py", "copies": "1", "size": "3203", "license": "bsd-3-clause", "hash": 1388360724479105500, "line_mean": 29.5047619048, "line_max": 79, "alpha_frac": 0.6250390259, "autogenerated": false, "ratio": 3.251776649746193, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4376815675646193, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from ..external.qt.QtGui import QWidget, QListWidgetItem from ..external.qt.QtCore import Signal from .qtutil import load_ui class ComponentSelector(QWidget): """ An interface to view the components and data of a DataCollection Components can be draged and dropped. The currently-selected componentID is stored in the Component property. The currently-selected Data is stored in the Data property. Usage: >>> widget = ComponentSelector() >>> widget.setup(data_collection) """ component_changed = Signal() def __init__(self, parent=None): super(ComponentSelector, self).__init__(parent) self._data = None self._ui = load_ui('component_selector', self) self._init_widgets() self._connect() def _init_widgets(self): self._ui.component_selector.setDragEnabled(True) self._ui.setMinimumWidth(300) def _connect(self): #attach Qt signals ds = self._ui.data_selector ds.currentIndexChanged.connect(self._set_components) self._ui.component_selector.currentItemChanged.connect( lambda *args: self.component_changed.emit()) def set_current_row(self, row): """Select which component is selected :param row: Row number """ self._ui.component_selector.setCurrentRow(row) def set_data_row(self, row): """Select which data object is selected :param row: Row number """ self._ui.data_selector.setCurrentIndex(row) def setup(self, data_collection): """ Set up the widgets. :param data_collection: Object to browse :type data_colleciton: :class:`~glue.core.data_collection.DataCollection` """ self._data = data_collection self._set_data() self._set_components() def _set_components(self): """ Set list of component widgets to match current data set """ index = self._ui.data_selector.currentIndex() if index < 0: return data = self._data[index] cids = data.components c_list = self._ui.component_selector c_list.clear() for c in cids: item = QListWidgetItem(c.label) c_list.addItem(item) c_list.set_data(item, c) def _set_data(self): """ Populate the data list with data sets in the collection """ d_list = self._ui.data_selector for d in self._data: d_list.addItem(d.label) @property def component(self): """Returns the currently-selected ComponentID :rtype: :class:`~glue.core.data.ComponentID` """ item = self._ui.component_selector.currentItem() return self._ui.component_selector.get_data(item) @component.setter def component(self, component): w = self._ui.component_selector for i in range(w.count()): item = w.item(i) if w.get_data(item) is component: w.setCurrentRow(i) return else: raise ValueError("Component not found: %s" % component) @property def data(self): index = self._ui.data_selector.currentIndex() if index < 0: return return self._data[index] @data.setter def data(self, value): for i, d in enumerate(self._data): if d is value: self._ui.data_selector.setCurrentIndex(i) return else: raise ValueError("Data is not part of the DataCollection") def main(): # pragma: no cover import glue import numpy as np from . import get_qapp from ..external.qt.QtGui import QApplication d = glue.core.Data(label="hi") d2 = glue.core.Data(label="there") c1 = glue.core.Component(np.array([1, 2, 3])) c2 = glue.core.Component(np.array([1, 2, 3])) c3 = glue.core.Component(np.array([1, 2, 3])) dc = glue.core.DataCollection() dc.append(d) dc.append(d2) d.add_component(c1, "a") d.add_component(c2, "b") d2.add_component(c3, "c") app = get_qapp() w = ComponentSelector() w.setup(dc) w.show() app.exec_() if __name__ == "__main__": # pragma: no cover main()
{ "repo_name": "JudoWill/glue", "path": "glue/qt/component_selector.py", "copies": "1", "size": "4354", "license": "bsd-3-clause", "hash": -965535995508611200, "line_mean": 27.6447368421, "line_max": 72, "alpha_frac": 0.5962333486, "autogenerated": false, "ratio": 3.8840321141837646, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.49802654627837645, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from ..extern.vispy import scene from ..extern.vispy.geometry import create_cube from ..extern.vispy.visuals.transforms import STTransform, ChainTransform class AxesVisual3D(object): def __init__(self, view=None, transform=None, **kwargs): self.view = view # Add a 3D cube to show us the unit cube. The 1.001 factor is to make # sure that the grid lines are not 'hidden' by volume renderings on the # front side due to numerical precision. vertices, filled_indices, outline_indices = create_cube() self.axis = scene.visuals.Mesh(vertices['position'], outline_indices, parent=self.view.scene, color=kwargs['axis_color'], mode='lines') self.axis.transform = transform self.xax = scene.visuals.Axis(pos=[[-1.0, 0], [1.0, 0]], tick_direction=(0, -1), parent=self.view.scene, axis_label='X', anchors=['center', 'middle'], **kwargs) self.yax = scene.visuals.Axis(pos=[[0, -1.0], [0, 1.0]], tick_direction=(-1, 0), parent=self.view.scene, axis_label='Y', anchors=['center', 'middle'], **kwargs) self.zax = scene.visuals.Axis(pos=[[0, -1.0], [0, 1.0]], tick_direction=(-1, 0), parent=self.view.scene, axis_label='Z', anchors=['center', 'middle'], **kwargs) self.xtr = STTransform() self.xtr = self.xtr.as_matrix() self.xtr.rotate(45, (1, 0, 0)) self.xtr.translate((0, -1., -1.)) self.ytr = STTransform() self.ytr = self.ytr.as_matrix() self.ytr.rotate(-45, (0, 1, 0)) self.ytr.translate((-1, 0, -1.)) self.ztr = STTransform() self.ztr = self.ztr.as_matrix() self.ztr.rotate(45, (0, 1, 0)) self.ztr.rotate(90, (1, 0, 0)) self.ztr.translate((-1, -1, 0.)) self.xax.transform = ChainTransform(transform, self.xtr) self.yax.transform = ChainTransform(transform, self.ytr) self.zax.transform = ChainTransform(transform, self.ztr) @property def tick_color(self): return self.xax.tick_color @tick_color.setter def tick_color(self, value): self.xax.tick_color = value self.yax.tick_color = value self.zax.tick_color = value @property def label_color(self): return self._label_color @label_color.setter def label_color(self, value): self.xax.label_color = value self.yax.label_color = value self.zax.label_color = value @property def axis_color(self): return self._axis_color @axis_color.setter def axis_color(self, value): self.axis.color = value @property def tick_font_size(self): return self.xax.tick_font_size @tick_font_size.setter def tick_font_size(self, value): self.xax.tick_font_size = value self.yax.tick_font_size = value self.zax.tick_font_size = value @property def axis_font_size(self): return self.xax.axis_font_size @axis_font_size.setter def axis_font_size(self, value): self.xax.axis_font_size = value self.yax.axis_font_size = value self.zax.axis_font_size = value @property def xlabel(self): return self.xax.axis_label @xlabel.setter def xlabel(self, value): self.xax.axis_label = value @property def ylabel(self): return self.yax.axis_label @ylabel.setter def ylabel(self, value): self.yax.axis_label = value @property def zlabel(self): return self.zax.axis_label @zlabel.setter def zlabel(self, value): self.zax.axis_label = value @property def xlim(self): return self.xax.domain @xlim.setter def xlim(self, value): self.xax.domain = value @property def ylim(self): return self.yax.domain @ylim.setter def ylim(self, value): self.yax.domain = value @property def zlim(self): return self.zax.domain @zlim.setter def zlim(self, value): self.zax.domain = value @property def parent(self): return self.axis.parent @parent.setter def parent(self, value): self.axis.parent = value self.xax.parent = value self.yax.parent = value self.zax.parent = value
{ "repo_name": "astrofrog/glue-vispy-viewers", "path": "glue_vispy_viewers/common/axes.py", "copies": "3", "size": "4760", "license": "bsd-2-clause", "hash": -6677401766666398000, "line_mean": 28.0243902439, "line_max": 80, "alpha_frac": 0.556092437, "autogenerated": false, "ratio": 3.600605143721634, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.00007527853056308341, "num_lines": 164 }
from __future__ import absolute_import, division, print_function from flask import Blueprint, current_app, jsonify, request, url_for import appr info_app = Blueprint( 'info', __name__, ) @info_app.before_request def pre_request_logging(): jsonbody = request.get_json(force=True, silent=True) values = request.values.to_dict() if jsonbody: values.update(jsonbody) current_app.logger.info("request", extra={ "remote_addr": request.remote_addr, "http_method": request.method, "original_url": request.url, "path": request.path, "data": values, "headers": dict(request.headers.to_list())}) @info_app.route("/") def index_discovery(): host = request.url_root domain = request.headers['Host'] return """<html lang="en"> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="appr-package" content="{domain}/{{name}} {host}/appr/api/v1/packages/{{name}}/pull"> </head> <body> </body> </html>""".format(domain=domain, host=host) @info_app.route("/version") def version(): return jsonify({"appr-api": appr.__version__}) @info_app.route("/routes") def routes(): import urllib output = [] for rule in current_app.url_map.iter_rules(): options = {} for arg in rule.arguments: options[arg] = "[{0}]".format(arg) methods = ','.join(rule.methods) url = url_for(rule.endpoint, **options) line = urllib.unquote("{:50s} {:20s} {}".format(rule.endpoint, methods, url)) output.append(line) lines = [] for line in sorted(output): lines.append(line) return jsonify({"routes": lines})
{ "repo_name": "app-registry/appr", "path": "appr/api/info.py", "copies": "2", "size": "1751", "license": "apache-2.0", "hash": -4554707177456860700, "line_mean": 26.7936507937, "line_max": 100, "alpha_frac": 0.610508281, "autogenerated": false, "ratio": 3.4400785854616895, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5050586866461689, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from fnmatch import fnmatch from functools import wraps from glob import glob from math import ceil from operator import getitem import os from threading import Lock import uuid from warnings import warn import pandas as pd import numpy as np from toolz import merge from ..base import tokenize from ..compatibility import unicode, apply from .. import array as da from ..async import get_sync from .core import _Frame, DataFrame, Series from .shuffle import set_partition lock = Lock() def _dummy_from_array(x, columns=None): """ Create empty pd.DataFrame or pd.Series which has correct dtype """ if x.ndim > 2: raise ValueError('from_array does not input more than 2D array, got' ' array with shape %r' % (x.shape,)) if getattr(x.dtype, 'names', None) is not None: # record array has named columns cols = tuple(x.dtype.names) dtypes = [x.dtype.fields[n][0] for n in x.dtype.names] elif x.ndim == 1 and (np.isscalar(columns) or columns is None): # Series return pd.Series([], name=columns, dtype=x.dtype) else: cols = list(range(x.shape[1])) if x.ndim == 2 else [0] dtypes = [x.dtype] * len(cols) data = {} for c, dt in zip(cols, dtypes): data[c] = np.array([], dtype=dt) data = pd.DataFrame(data, columns=cols) if columns is not None: # if invalid, raise error from pandas data.columns = columns return data def from_array(x, chunksize=50000, columns=None): """ Read dask Dataframe from any slicable array Uses getitem syntax to pull slices out of the array. The array need not be a NumPy array but must support slicing syntax x[50000:100000] and have 2 dimensions: x.ndim == 2 or have a record dtype: x.dtype == [('name', 'O'), ('balance', 'i8')] """ if isinstance(x, da.Array): return from_dask_array(x, columns=columns) dummy = _dummy_from_array(x, columns) divisions = tuple(range(0, len(x), chunksize)) divisions = divisions + (len(x) - 1,) token = tokenize(x, chunksize, columns) name = 'from_array-' + token dsk = {} for i in range(0, int(ceil(len(x) / chunksize))): data = (getitem, x, slice(i * chunksize, (i + 1) * chunksize)) if isinstance(dummy, pd.Series): dsk[name, i] = (pd.Series, data, None, dummy.dtype, dummy.name) else: dsk[name, i] = (pd.DataFrame, data, None, dummy.columns) return _Frame(dsk, name, dummy, divisions) def from_pandas(data, npartitions=None, chunksize=None, sort=True, name=None): """Construct a dask object from a pandas object. If given a ``pandas.Series`` a ``dask.Series`` will be returned. If given a ``pandas.DataFrame`` a ``dask.DataFrame`` will be returned. All other pandas objects will raise a ``TypeError``. Parameters ---------- df : pandas.DataFrame or pandas.Series The DataFrame/Series with which to construct a dask DataFrame/Series npartitions : int, optional The number of partitions of the index to create. chunksize : int, optional The size of the partitions of the index. Returns ------- dask.DataFrame or dask.Series A dask DataFrame/Series partitioned along the index Examples -------- >>> df = pd.DataFrame(dict(a=list('aabbcc'), b=list(range(6))), ... index=pd.date_range(start='20100101', periods=6)) >>> ddf = from_pandas(df, npartitions=3) >>> ddf.divisions # doctest: +NORMALIZE_WHITESPACE (Timestamp('2010-01-01 00:00:00', offset='D'), Timestamp('2010-01-03 00:00:00', offset='D'), Timestamp('2010-01-05 00:00:00', offset='D'), Timestamp('2010-01-06 00:00:00', offset='D')) >>> ddf = from_pandas(df.a, npartitions=3) # Works with Series too! >>> ddf.divisions # doctest: +NORMALIZE_WHITESPACE (Timestamp('2010-01-01 00:00:00', offset='D'), Timestamp('2010-01-03 00:00:00', offset='D'), Timestamp('2010-01-05 00:00:00', offset='D'), Timestamp('2010-01-06 00:00:00', offset='D')) Raises ------ TypeError If something other than a ``pandas.DataFrame`` or ``pandas.Series`` is passed in. See Also -------- from_array : Construct a dask.DataFrame from an array that has record dtype from_bcolz : Construct a dask.DataFrame from a bcolz ctable read_csv : Construct a dask.DataFrame from a CSV file """ if isinstance(getattr(data, 'index', None), pd.MultiIndex): raise NotImplementedError("Dask does not support MultiIndex Dataframes.") if not isinstance(data, (pd.Series, pd.DataFrame)): raise TypeError("Input must be a pandas DataFrame or Series") if ((npartitions is None) == (chunksize is None)): raise ValueError('Exactly one of npartitions and chunksize must be specified.') nrows = len(data) if chunksize is None: chunksize = int(ceil(nrows / npartitions)) else: npartitions = int(ceil(nrows / chunksize)) if sort and not data.index.is_monotonic_increasing: data = data.sort_index(ascending=True) if sort: divisions, locations = sorted_division_locations(data.index, chunksize=chunksize) else: divisions = [None] * (npartitions + 1) locations = list(range(0, nrows, chunksize)) + [len(data)] name = name or ('from_pandas-' + tokenize(data, chunksize)) dsk = dict(((name, i), data.iloc[start: stop]) for i, (start, stop) in enumerate(zip(locations[:-1], locations[1:]))) return _Frame(dsk, name, data, divisions) def from_bcolz(x, chunksize=None, categorize=True, index=None, lock=lock, **kwargs): """ Read dask Dataframe from bcolz.ctable Parameters ---------- x : bcolz.ctable Input data chunksize : int, optional The size of blocks to pull out from ctable. Ideally as large as can comfortably fit in memory categorize : bool, defaults to True Automatically categorize all string dtypes index : string, optional Column to make the index lock: bool or Lock Lock to use when reading or False for no lock (not-thread-safe) See Also -------- from_array: more generic function not optimized for bcolz """ if lock is True: lock = Lock() import dask.array as da import bcolz if isinstance(x, (str, unicode)): x = bcolz.ctable(rootdir=x) bc_chunklen = max(x[name].chunklen for name in x.names) if chunksize is None and bc_chunklen > 10000: chunksize = bc_chunklen categories = dict() if categorize: for name in x.names: if (np.issubdtype(x.dtype[name], np.string_) or np.issubdtype(x.dtype[name], np.unicode_) or np.issubdtype(x.dtype[name], np.object_)): a = da.from_array(x[name], chunks=(chunksize * len(x.names),)) categories[name] = da.unique(a) columns = tuple(x.dtype.names) divisions = tuple(range(0, len(x), chunksize)) divisions = divisions + (len(x) - 1,) if x.rootdir: token = tokenize((x.rootdir, os.path.getmtime(x.rootdir)), chunksize, categorize, index, kwargs) else: token = tokenize((id(x), x.shape, x.dtype), chunksize, categorize, index, kwargs) new_name = 'from_bcolz-' + token dsk = dict(((new_name, i), (dataframe_from_ctable, x, (slice(i * chunksize, (i + 1) * chunksize),), columns, categories, lock)) for i in range(0, int(ceil(len(x) / chunksize)))) meta = dataframe_from_ctable(x, slice(0, 0), columns, categories, lock) result = DataFrame(dsk, new_name, meta, divisions) if index: assert index in x.names a = da.from_array(x[index], chunks=(chunksize * len(x.names),)) q = np.linspace(0, 100, len(x) // chunksize + 2) divisions = da.percentile(a, q).compute() return set_partition(result, index, divisions, **kwargs) else: return result def dataframe_from_ctable(x, slc, columns=None, categories=None, lock=lock): """ Get DataFrame from bcolz.ctable Parameters ---------- x: bcolz.ctable slc: slice columns: list of column names or None >>> import bcolz >>> x = bcolz.ctable([[1, 2, 3, 4], [10, 20, 30, 40]], names=['a', 'b']) >>> dataframe_from_ctable(x, slice(1, 3)) a b 1 2 20 2 3 30 >>> dataframe_from_ctable(x, slice(1, 3), columns=['b']) b 1 20 2 30 >>> dataframe_from_ctable(x, slice(1, 3), columns='b') 1 20 2 30 Name: b, dtype: int... """ import bcolz if columns is None: columns = x.dtype.names if isinstance(columns, tuple): columns = list(columns) x = x[columns] if type(slc) is slice: start = slc.start stop = slc.stop if slc.stop < len(x) else len(x) else: start = slc[0].start stop = slc[0].stop if slc[0].stop < len(x) else len(x) idx = pd.Index(range(start, stop)) if lock: lock.acquire() try: if isinstance(x, bcolz.ctable): chunks = [x[name][slc] for name in columns] if categories is not None: chunks = [pd.Categorical.from_codes( np.searchsorted(categories[name], chunk), categories[name], True) if name in categories else chunk for name, chunk in zip(columns, chunks)] result = pd.DataFrame(dict(zip(columns, chunks)), columns=columns, index=idx) elif isinstance(x, bcolz.carray): chunk = x[slc] if categories is not None and columns and columns in categories: chunk = pd.Categorical.from_codes( np.searchsorted(categories[columns], chunk), categories[columns], True) result = pd.Series(chunk, name=columns, index=idx) finally: if lock: lock.release() return result def from_dask_array(x, columns=None): """ Convert dask Array to dask DataFrame Converts a 2d array into a DataFrame and a 1d array into a Series. Parameters ---------- x: da.Array columns: list or string list of column names if DataFrame, single string if Series Examples -------- >>> import dask.array as da >>> import dask.dataframe as dd >>> x = da.ones((4, 2), chunks=(2, 2)) >>> df = dd.io.from_dask_array(x, columns=['a', 'b']) >>> df.compute() a b 0 1.0 1.0 1 1.0 1.0 2 1.0 1.0 3 1.0 1.0 """ dummy = _dummy_from_array(x, columns) name = 'from-dask-array' + tokenize(x, columns) divisions = [0] for c in x.chunks[0]: divisions.append(divisions[-1] + c) index = [(np.arange, a, b, 1, 'i8') for a, b in zip(divisions[:-1], divisions[1:])] divisions[-1] -= 1 if x.ndim == 2: if len(x.chunks[1]) > 1: x = x.rechunk({1: x.shape[1]}) dsk = {} for i, (chunk, ind) in enumerate(zip(x._keys(), index)): if x.ndim == 2: chunk = chunk[0] if isinstance(dummy, pd.Series): dsk[name, i] = (pd.Series, chunk, ind, x.dtype, dummy.name) else: dsk[name, i] = (pd.DataFrame, chunk, ind, dummy.columns) return _Frame(merge(x.dask, dsk), name, dummy, divisions) def from_castra(x, columns=None): """Load a dask DataFrame from a Castra. Parameters ---------- x : filename or Castra columns: list or string, optional The columns to load. Default is all columns. """ from castra import Castra if not isinstance(x, Castra): x = Castra(x, readonly=True) return x.to_dask(columns) def _link(token, result): """ A dummy function to link results together in a graph We use this to enforce an artificial sequential ordering on tasks that don't explicitly pass around a shared resource """ return None @wraps(pd.DataFrame.to_hdf) def to_hdf(df, path_or_buf, key, mode='a', append=False, complevel=0, complib=None, fletcher32=False, get=get_sync, dask_kwargs=None, name_function=str, **kwargs): name = 'to-hdf-' + uuid.uuid1().hex pd_to_hdf = getattr(df._partition_type, 'to_hdf') # if path_or_buf is string, format using i and name if isinstance(path_or_buf, str): if path_or_buf.count('*') + key.count('*') > 1: raise ValueError("A maximum of one asterisk is accepted in file path and dataset key") fmt_obj = lambda path_or_buf, i_name: path_or_buf.replace('*', i_name) else: if key.count('*') > 1: raise ValueError("A maximum of one asterisk is accepted in dataset key") fmt_obj = lambda path_or_buf, _: path_or_buf dsk = dict() i_name = name_function(0) dsk[(name, 0)] = (_link, None, (apply, pd_to_hdf, (tuple, [(df._name, 0), fmt_obj(path_or_buf, i_name), key.replace('*', i_name)]), merge(kwargs, {'mode': mode, 'format': 'table', 'append': append, 'complevel': complevel, 'complib': complib, 'fletcher32': fletcher32}))) for i in range(1, df.npartitions): i_name = name_function(i) dsk[(name, i)] = (_link, (name, i - 1), (apply, pd_to_hdf, (tuple, [(df._name, i), fmt_obj(path_or_buf, i_name), key.replace('*', i_name)]), merge(kwargs, {'mode': 'a', 'format': 'table', 'append': True, 'complevel': complevel, 'complib': complib, 'fletcher32': fletcher32}))) dask_kwargs = dask_kwargs or {} DataFrame._get(merge(df.dask, dsk), (name, df.npartitions - 1), get=get, **dask_kwargs) dont_use_fixed_error_message = """ This HDFStore is not partitionable and can only be use monolithically with pandas. In the future when creating HDFStores use the ``format='table'`` option to ensure that your dataset can be parallelized""" read_hdf_error_msg = """ The start and stop keywords are not supported when reading from more than one file/dataset. The combination is ambiguous because it could be interpreted as the starting and stopping index per file, or starting and stopping index of the global dataset.""" def _read_single_hdf(path, key, start=0, stop=None, columns=None, chunksize=int(1e6), lock=None): """ Read a single hdf file into a dask.dataframe. Used for each file in read_hdf. """ def get_keys_and_stops(path, key, stop): """ Get the "keys" or group identifiers which match the given key, which can contain wildcards. This uses the hdf file identified by the given path. Also get the index of the last row of data for each matched key. """ with pd.HDFStore(path) as hdf: keys = [k for k in hdf.keys() if fnmatch(k, key)] stops = [] for k in keys: storer = hdf.get_storer(k) if storer.format_type != 'table': raise TypeError(dont_use_fixed_error_message) if stop is None: stops.append(storer.nrows) else: stops.append(stop) return keys, stops def one_path_one_key(path, key, start, stop, columns, chunksize, lock): """ Get the data frame corresponding to one path and one key (which should not contain any wildcards). """ empty = pd.read_hdf(path, key, stop=0) if columns is not None: empty = empty[columns] token = tokenize((path, os.path.getmtime(path), key, start, stop, empty, chunksize)) name = 'read-hdf-' + token dsk = dict(((name, i), (_pd_read_hdf, path, key, lock, {'start': s, 'stop': s + chunksize, 'columns': empty.columns})) for i, s in enumerate(range(start, stop, chunksize))) divisions = [None] * (len(dsk) + 1) return DataFrame(dsk, name, empty, divisions) keys, stops = get_keys_and_stops(path, key, stop) if (start != 0 or stop is not None) and len(keys) > 1: raise NotImplementedError(read_hdf_error_msg) from .multi import concat return concat([one_path_one_key(path, k, start, s, columns, chunksize, lock) for k, s in zip(keys, stops)]) def _pd_read_hdf(path, key, lock, kwargs): """ Read from hdf5 file with a lock """ if lock: lock.acquire() try: result = pd.read_hdf(path, key, **kwargs) finally: if lock: lock.release() return result @wraps(pd.read_hdf) def read_hdf(pattern, key, start=0, stop=None, columns=None, chunksize=1000000, lock=True): """ Read hdf files into a dask dataframe. Like pandas.read_hdf, except it we can read multiple files, and read multiple keys from the same file by using pattern matching. Parameters ---------- pattern : pattern (string), or buffer to read from. Can contain wildcards key : group identifier in the store. Can contain wildcards start : optional, integer (defaults to 0), row number to start at stop : optional, integer (defaults to None, the last row), row number to stop at columns : optional, a list of columns that if not None, will limit the return columns chunksize : optional, nrows to include in iteration, return an iterator Returns ------- dask.DataFrame Examples -------- Load single file >>> dd.read_hdf('myfile.1.hdf5', '/x') # doctest: +SKIP Load multiple files >>> dd.read_hdf('myfile.*.hdf5', '/x') # doctest: +SKIP Load multiple datasets >>> dd.read_hdf('myfile.1.hdf5', '/*') # doctest: +SKIP """ if lock is True: lock = Lock() key = key if key.startswith('/') else '/' + key paths = sorted(glob(pattern)) if (start != 0 or stop is not None) and len(paths) > 1: raise NotImplementedError(read_hdf_error_msg) from .multi import concat return concat([_read_single_hdf(path, key, start=start, stop=stop, columns=columns, chunksize=chunksize, lock=lock) for path in paths]) def to_castra(df, fn=None, categories=None, sorted_index_column=None, compute=True, get=get_sync): """ Write DataFrame to Castra on-disk store See https://github.com/blosc/castra for details See Also -------- Castra.to_dask """ from castra import Castra if isinstance(categories, list): categories = (list, categories) name = 'to-castra-' + uuid.uuid1().hex if sorted_index_column: set_index = lambda x: x.set_index(sorted_index_column) func = lambda part: (set_index, part) else: func = lambda part: part dsk = dict() dsk[(name, -1)] = (Castra, fn, func((df._name, 0)), categories) for i in range(0, df.npartitions): dsk[(name, i)] = (_link, (name, i - 1), (Castra.extend, (name, -1), func((df._name, i)))) dsk = merge(dsk, df.dask) keys = [(name, -1), (name, df.npartitions - 1)] if compute: c, _ = DataFrame._get(dsk, keys, get=get) return c else: return dsk, keys def to_csv(df, filename, compression=None, get=None, **kwargs): if compression: raise NotImplementedError("Writing compressed csv files not supported") name = 'to-csv-' + uuid.uuid1().hex dsk = dict() dsk[(name, 0)] = (lambda df, fn, kwargs: df.to_csv(fn, **kwargs), (df._name, 0), filename, kwargs) kwargs2 = kwargs.copy() kwargs2['mode'] = 'a' kwargs2['header'] = False for i in range(1, df.npartitions): dsk[(name, i)] = (_link, (name, i - 1), (lambda df, fn, kwargs: df.to_csv(fn, **kwargs), (df._name, i), filename, kwargs2)) DataFrame._get(merge(dsk, df.dask), (name, df.npartitions - 1), get=get) def to_bag(df, index=False): from ..bag.core import Bag if isinstance(df, DataFrame): func = lambda df: list(df.itertuples(index)) elif isinstance(df, Series): func = (lambda df: list(df.iteritems())) if index else list else: raise TypeError("df must be either DataFrame or Series") name = 'to_bag-' + tokenize(df, index) dsk = dict(((name, i), (func, block)) for (i, block) in enumerate(df._keys())) dsk.update(df._optimize(df.dask, df._keys())) return Bag(dsk, name, df.npartitions) def from_imperative(*args, **kwargs): warn("Deprecation warning: moved to from_delayed") return from_delayed(*args, **kwargs) def from_delayed(dfs, metadata=None, divisions=None, columns=None, prefix='from-delayed'): """ Create DataFrame from many dask.delayed objects Parameters ---------- dfs: list of Values An iterable of ``dask.delayed.Delayed`` objects, such as come from ``dask.delayed`` These comprise the individual partitions of the resulting dataframe. metadata: str, list of column names, or empty dataframe, optional Metadata for the underlying pandas object. Can be either column name (if Series), list of column names, or pandas object with the same columns/dtypes. If not provided, will be computed from the first partition. divisions: list, optional Partition boundaries along the index. prefix, str, optional Prefix to prepend to the keys. """ if columns is not None: warn("Deprecation warning: Use metadata argument, not columns") metadata = columns from dask.delayed import Delayed if isinstance(dfs, Delayed): dfs = [dfs] dsk = merge(df.dask for df in dfs) name = prefix + '-' + tokenize(*dfs) names = [(name, i) for i in range(len(dfs))] values = [df.key for df in dfs] dsk2 = dict(zip(names, values)) if divisions is None: divisions = [None] * (len(dfs) + 1) if metadata is None: metadata = dfs[0].compute() if isinstance(metadata, (str, pd.Series)): return Series(merge(dsk, dsk2), name, metadata, divisions) else: return DataFrame(merge(dsk, dsk2), name, metadata, divisions) def sorted_division_locations(seq, npartitions=None, chunksize=None): """ Find division locations and values in sorted list Examples -------- >>> L = ['A', 'B', 'C', 'D', 'E', 'F'] >>> sorted_division_locations(L, chunksize=2) (['A', 'C', 'E', 'F'], [0, 2, 4, 6]) >>> sorted_division_locations(L, chunksize=3) (['A', 'D', 'F'], [0, 3, 6]) >>> L = ['A', 'A', 'A', 'A', 'B', 'B', 'B', 'C'] >>> sorted_division_locations(L, chunksize=3) (['A', 'B', 'C'], [0, 4, 8]) >>> sorted_division_locations(L, chunksize=2) (['A', 'B', 'C'], [0, 4, 8]) >>> sorted_division_locations(['A'], chunksize=2) (['A', 'A'], [0, 1]) """ if ((npartitions is None) == (chunksize is None)): raise ValueError('Exactly one of npartitions and chunksize must be specified.') if npartitions: chunksize = ceil(len(seq) / npartitions) positions = [0] values = [seq[0]] for pos in list(range(0, len(seq), chunksize)): if pos <= positions[-1]: continue while pos + 1 < len(seq) and seq[pos - 1] == seq[pos]: pos += 1 values.append(seq[pos]) if pos == len(seq) - 1: pos += 1 positions.append(pos) if positions[-1] != len(seq): positions.append(len(seq)) values.append(seq[-1]) return values, positions
{ "repo_name": "mikegraham/dask", "path": "dask/dataframe/io.py", "copies": "1", "size": "24678", "license": "bsd-3-clause", "hash": 5854856073040914000, "line_mean": 32.0361445783, "line_max": 98, "alpha_frac": 0.5757354729, "autogenerated": false, "ratio": 3.681085918854415, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.47568213917544155, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from fnmatch import fnmatch from functools import wraps from glob import glob import io from math import ceil from operator import getitem import os from threading import Lock import multiprocessing import uuid from warnings import warn import sys import pandas as pd import numpy as np import dask from toolz import merge from ..base import tokenize from ..compatibility import unicode, PY2 from .. import array as da from ..async import get_sync from ..context import _globals from ..delayed import Delayed, delayed import dask.multiprocessing from .core import DataFrame, Series, new_dd_object from .shuffle import set_partition from .utils import insert_meta_param_description from ..utils import build_name_function, M from ..bytes.core import write_bytes lock = Lock() def _meta_from_array(x, columns=None): """ Create empty pd.DataFrame or pd.Series which has correct dtype """ if x.ndim > 2: raise ValueError('from_array does not input more than 2D array, got' ' array with shape %r' % (x.shape,)) if getattr(x.dtype, 'names', None) is not None: # record array has named columns if columns is None: columns = list(x.dtype.names) elif np.isscalar(columns): raise ValueError("For a struct dtype, columns must be a list.") elif not all(i in x.dtype.names for i in columns): extra = sorted(set(columns).difference(x.dtype.names)) raise ValueError("dtype {0} doesn't have fields " "{1}".format(x.dtype, extra)) fields = x.dtype.fields dtypes = [fields[n][0] if n in fields else 'f8' for n in columns] elif x.ndim == 1: if np.isscalar(columns) or columns is None: return pd.Series([], name=columns, dtype=x.dtype) elif len(columns) == 1: return pd.DataFrame(np.array([], dtype=x.dtype), columns=columns) raise ValueError("For a 1d array, columns must be a scalar or single " "element list") else: if columns is None: columns = list(range(x.shape[1])) if x.ndim == 2 else [0] elif len(columns) != x.shape[1]: raise ValueError("Number of column names must match width of the " "array. Got {0} names for {1} " "columns".format(len(columns), x.shape[1])) dtypes = [x.dtype] * len(columns) data = {c: np.array([], dtype=dt) for (c, dt) in zip(columns, dtypes)} return pd.DataFrame(data, columns=columns) def from_array(x, chunksize=50000, columns=None): """ Read dask Dataframe from any slicable array Uses getitem syntax to pull slices out of the array. The array need not be a NumPy array but must support slicing syntax x[50000:100000] and have 2 dimensions: x.ndim == 2 or have a record dtype: x.dtype == [('name', 'O'), ('balance', 'i8')] """ if isinstance(x, da.Array): return from_dask_array(x, columns=columns) meta = _meta_from_array(x, columns) divisions = tuple(range(0, len(x), chunksize)) divisions = divisions + (len(x) - 1,) token = tokenize(x, chunksize, columns) name = 'from_array-' + token dsk = {} for i in range(0, int(ceil(len(x) / chunksize))): data = (getitem, x, slice(i * chunksize, (i + 1) * chunksize)) if isinstance(meta, pd.Series): dsk[name, i] = (pd.Series, data, None, meta.dtype, meta.name) else: dsk[name, i] = (pd.DataFrame, data, None, meta.columns) return new_dd_object(dsk, name, meta, divisions) def from_pandas(data, npartitions=None, chunksize=None, sort=True, name=None): """Construct a dask object from a pandas object. If given a ``pandas.Series`` a ``dask.Series`` will be returned. If given a ``pandas.DataFrame`` a ``dask.DataFrame`` will be returned. All other pandas objects will raise a ``TypeError``. Parameters ---------- df : pandas.DataFrame or pandas.Series The DataFrame/Series with which to construct a dask DataFrame/Series npartitions : int, optional The number of partitions of the index to create. chunksize : int, optional The size of the partitions of the index. Returns ------- dask.DataFrame or dask.Series A dask DataFrame/Series partitioned along the index Examples -------- >>> df = pd.DataFrame(dict(a=list('aabbcc'), b=list(range(6))), ... index=pd.date_range(start='20100101', periods=6)) >>> ddf = from_pandas(df, npartitions=3) >>> ddf.divisions # doctest: +NORMALIZE_WHITESPACE (Timestamp('2010-01-01 00:00:00', offset='D'), Timestamp('2010-01-03 00:00:00', offset='D'), Timestamp('2010-01-05 00:00:00', offset='D'), Timestamp('2010-01-06 00:00:00', offset='D')) >>> ddf = from_pandas(df.a, npartitions=3) # Works with Series too! >>> ddf.divisions # doctest: +NORMALIZE_WHITESPACE (Timestamp('2010-01-01 00:00:00', offset='D'), Timestamp('2010-01-03 00:00:00', offset='D'), Timestamp('2010-01-05 00:00:00', offset='D'), Timestamp('2010-01-06 00:00:00', offset='D')) Raises ------ TypeError If something other than a ``pandas.DataFrame`` or ``pandas.Series`` is passed in. See Also -------- from_array : Construct a dask.DataFrame from an array that has record dtype from_bcolz : Construct a dask.DataFrame from a bcolz ctable read_csv : Construct a dask.DataFrame from a CSV file """ if isinstance(getattr(data, 'index', None), pd.MultiIndex): raise NotImplementedError("Dask does not support MultiIndex Dataframes.") if not isinstance(data, (pd.Series, pd.DataFrame)): raise TypeError("Input must be a pandas DataFrame or Series") if ((npartitions is None) == (chunksize is None)): raise ValueError('Exactly one of npartitions and chunksize must be specified.') nrows = len(data) if chunksize is None: chunksize = int(ceil(nrows / npartitions)) else: npartitions = int(ceil(nrows / chunksize)) name = name or ('from_pandas-' + tokenize(data, chunksize)) if not nrows: return new_dd_object({(name, 0): data}, name, data, [None, None]) if sort and not data.index.is_monotonic_increasing: data = data.sort_index(ascending=True) if sort: divisions, locations = sorted_division_locations(data.index, chunksize=chunksize) else: locations = list(range(0, nrows, chunksize)) + [len(data)] divisions = [None] * len(locations) dsk = dict(((name, i), data.iloc[start: stop]) for i, (start, stop) in enumerate(zip(locations[:-1], locations[1:]))) return new_dd_object(dsk, name, data, divisions) def from_bcolz(x, chunksize=None, categorize=True, index=None, lock=lock, **kwargs): """ Read dask Dataframe from bcolz.ctable Parameters ---------- x : bcolz.ctable Input data chunksize : int, optional The size of blocks to pull out from ctable. Ideally as large as can comfortably fit in memory categorize : bool, defaults to True Automatically categorize all string dtypes index : string, optional Column to make the index lock: bool or Lock Lock to use when reading or False for no lock (not-thread-safe) See Also -------- from_array: more generic function not optimized for bcolz """ if lock is True: lock = Lock() import dask.array as da import bcolz if isinstance(x, (str, unicode)): x = bcolz.ctable(rootdir=x) bc_chunklen = max(x[name].chunklen for name in x.names) if chunksize is None and bc_chunklen > 10000: chunksize = bc_chunklen categories = dict() if categorize: for name in x.names: if (np.issubdtype(x.dtype[name], np.string_) or np.issubdtype(x.dtype[name], np.unicode_) or np.issubdtype(x.dtype[name], np.object_)): a = da.from_array(x[name], chunks=(chunksize * len(x.names),)) categories[name] = da.unique(a) columns = tuple(x.dtype.names) divisions = tuple(range(0, len(x), chunksize)) divisions = divisions + (len(x) - 1,) if x.rootdir: token = tokenize((x.rootdir, os.path.getmtime(x.rootdir)), chunksize, categorize, index, kwargs) else: token = tokenize((id(x), x.shape, x.dtype), chunksize, categorize, index, kwargs) new_name = 'from_bcolz-' + token dsk = dict(((new_name, i), (dataframe_from_ctable, x, (slice(i * chunksize, (i + 1) * chunksize),), columns, categories, lock)) for i in range(0, int(ceil(len(x) / chunksize)))) meta = dataframe_from_ctable(x, slice(0, 0), columns, categories, lock) result = DataFrame(dsk, new_name, meta, divisions) if index: assert index in x.names a = da.from_array(x[index], chunks=(chunksize * len(x.names),)) q = np.linspace(0, 100, len(x) // chunksize + 2) divisions = tuple(da.percentile(a, q).compute()) return set_partition(result, index, divisions, **kwargs) else: return result def dataframe_from_ctable(x, slc, columns=None, categories=None, lock=lock): """ Get DataFrame from bcolz.ctable Parameters ---------- x: bcolz.ctable slc: slice columns: list of column names or None >>> import bcolz >>> x = bcolz.ctable([[1, 2, 3, 4], [10, 20, 30, 40]], names=['a', 'b']) >>> dataframe_from_ctable(x, slice(1, 3)) a b 1 2 20 2 3 30 >>> dataframe_from_ctable(x, slice(1, 3), columns=['b']) b 1 20 2 30 >>> dataframe_from_ctable(x, slice(1, 3), columns='b') 1 20 2 30 Name: b, dtype: int... """ import bcolz if columns is None: columns = x.dtype.names if isinstance(columns, tuple): columns = list(columns) x = x[columns] if type(slc) is slice: start = slc.start stop = slc.stop if slc.stop < len(x) else len(x) else: start = slc[0].start stop = slc[0].stop if slc[0].stop < len(x) else len(x) idx = pd.Index(range(start, stop)) if lock: lock.acquire() try: if isinstance(x, bcolz.ctable): chunks = [x[name][slc] for name in columns] if categories is not None: chunks = [pd.Categorical.from_codes( np.searchsorted(categories[name], chunk), categories[name], True) if name in categories else chunk for name, chunk in zip(columns, chunks)] result = pd.DataFrame(dict(zip(columns, chunks)), columns=columns, index=idx) elif isinstance(x, bcolz.carray): chunk = x[slc] if categories is not None and columns and columns in categories: chunk = pd.Categorical.from_codes( np.searchsorted(categories[columns], chunk), categories[columns], True) result = pd.Series(chunk, name=columns, index=idx) finally: if lock: lock.release() return result def from_dask_array(x, columns=None): """ Convert dask Array to dask DataFrame Converts a 2d array into a DataFrame and a 1d array into a Series. Parameters ---------- x: da.Array columns: list or string list of column names if DataFrame, single string if Series Examples -------- >>> import dask.array as da >>> import dask.dataframe as dd >>> x = da.ones((4, 2), chunks=(2, 2)) >>> df = dd.io.from_dask_array(x, columns=['a', 'b']) >>> df.compute() a b 0 1.0 1.0 1 1.0 1.0 2 1.0 1.0 3 1.0 1.0 """ meta = _meta_from_array(x, columns) name = 'from-dask-array' + tokenize(x, columns) divisions = [0] for c in x.chunks[0]: divisions.append(divisions[-1] + c) index = [(np.arange, a, b, 1, 'i8') for a, b in zip(divisions[:-1], divisions[1:])] divisions[-1] -= 1 if x.ndim == 2: if len(x.chunks[1]) > 1: x = x.rechunk({1: x.shape[1]}) dsk = {} for i, (chunk, ind) in enumerate(zip(x._keys(), index)): if x.ndim == 2: chunk = chunk[0] if isinstance(meta, pd.Series): dsk[name, i] = (pd.Series, chunk, ind, x.dtype, meta.name) else: dsk[name, i] = (pd.DataFrame, chunk, ind, meta.columns) return new_dd_object(merge(x.dask, dsk), name, meta, divisions) def from_castra(x, columns=None): """Load a dask DataFrame from a Castra. Parameters ---------- x : filename or Castra columns: list or string, optional The columns to load. Default is all columns. """ from castra import Castra if not isinstance(x, Castra): x = Castra(x, readonly=True) return x.to_dask(columns) def _link(token, result): """ A dummy function to link results together in a graph We use this to enforce an artificial sequential ordering on tasks that don't explicitly pass around a shared resource """ return None def _pd_to_hdf(pd_to_hdf, lock, args, kwargs=None): """ A wrapper function around pd_to_hdf that enables locking""" if lock: lock.acquire() try: pd_to_hdf(*args, **kwargs) finally: if lock: lock.release() return None @wraps(pd.DataFrame.to_hdf) def to_hdf(df, path_or_buf, key, mode='a', append=False, get=None, name_function=None, compute=True, lock=None, dask_kwargs={}, **kwargs): name = 'to-hdf-' + uuid.uuid1().hex pd_to_hdf = getattr(df._partition_type, 'to_hdf') single_file = True single_node = True # if path_or_buf is string, format using i_name if isinstance(path_or_buf, str): if path_or_buf.count('*') + key.count('*') > 1: raise ValueError("A maximum of one asterisk is accepted in file path and dataset key") fmt_obj = lambda path_or_buf, i_name: path_or_buf.replace('*', i_name) if '*' in path_or_buf: single_file = False else: if key.count('*') > 1: raise ValueError("A maximum of one asterisk is accepted in dataset key") fmt_obj = lambda path_or_buf, _: path_or_buf if '*' in key: single_node = False if 'format' in kwargs and kwargs['format'] != 'table': raise ValueError("Dask only support 'table' format in hdf files.") if mode not in ('a', 'w', 'r+'): raise ValueError("Mode must be one of 'a', 'w' or 'r+'") if name_function is None: name_function = build_name_function(df.npartitions - 1) # we guarantee partition order is preserved when its saved and read # so we enforce name_function to maintain the order of its input. if not (single_file and single_node): formatted_names = [name_function(i) for i in range(df.npartitions)] if formatted_names != sorted(formatted_names): warn("To preserve order between partitions name_function " "must preserve the order of its input") # If user did not specify scheduler and write is sequential default to the # sequential scheduler. otherwise let the _get method choose the scheduler if get is None and 'get' not in _globals and single_node and single_file: get = get_sync # handle lock default based on whether we're writing to a single entity _actual_get = get or _globals.get('get') or df._default_get if lock is None: if not single_node: lock = True elif not single_file and _actual_get is not dask.multiprocessing.get: # if we're writing to multiple files with the multiprocessing # scheduler we don't need to lock lock = True else: lock = False if lock is True: if _actual_get == dask.multiprocessing.get: lock = multiprocessing.Manager().Lock() else: lock = Lock() kwargs.update({'format': 'table', 'mode': mode, 'append': append}) dsk = dict() i_name = name_function(0) dsk[(name, 0)] = (_pd_to_hdf, pd_to_hdf, lock, [(df._name, 0), fmt_obj(path_or_buf, i_name), key.replace('*', i_name)], kwargs) kwargs2 = kwargs.copy() if single_file: kwargs2['mode'] = 'a' if single_node: kwargs2['append'] = True for i in range(1, df.npartitions): i_name = name_function(i) task = (_pd_to_hdf, pd_to_hdf, lock, [(df._name, i), fmt_obj(path_or_buf, i_name), key.replace('*', i_name)], kwargs2) if single_file: link_dep = i - 1 if single_node else 0 task = (_link, (name, link_dep), task) dsk[(name, i)] = task dsk = merge(df.dask, dsk) if single_file and single_node: keys = [(name, df.npartitions - 1)] else: keys = [(name, i) for i in range(df.npartitions)] if compute: return DataFrame._get(dsk, keys, get=get, **dask_kwargs) else: return delayed([Delayed(key, [dsk]) for key in keys]) dont_use_fixed_error_message = """ This HDFStore is not partitionable and can only be use monolithically with pandas. In the future when creating HDFStores use the ``format='table'`` option to ensure that your dataset can be parallelized""" read_hdf_error_msg = """ The start and stop keywords are not supported when reading from more than one file/dataset. The combination is ambiguous because it could be interpreted as the starting and stopping index per file, or starting and stopping index of the global dataset.""" def _read_single_hdf(path, key, start=0, stop=None, columns=None, chunksize=int(1e6), sorted_index=False, lock=None, mode=None): """ Read a single hdf file into a dask.dataframe. Used for each file in read_hdf. """ def get_keys_stops_divisions(path, key, stop, sorted_index): """ Get the "keys" or group identifiers which match the given key, which can contain wildcards. This uses the hdf file identified by the given path. Also get the index of the last row of data for each matched key. """ with pd.HDFStore(path, mode=mode) as hdf: keys = [k for k in hdf.keys() if fnmatch(k, key)] stops = [] divisions = [] for k in keys: storer = hdf.get_storer(k) if storer.format_type != 'table': raise TypeError(dont_use_fixed_error_message) if stop is None: stops.append(storer.nrows) elif stop > storer.nrows: raise ValueError("Stop keyword exceeds dataset number " "of rows ({})".format(storer.nrows)) else: stops.append(stop) if sorted_index: division_start = storer.read_column('index', start=0, stop=1)[0] division_end = storer.read_column('index', start=storer.nrows-1, stop=storer.nrows)[0] divisions.append([division_start, division_end]) else: divisions.append(None) return keys, stops, divisions def one_path_one_key(path, key, start, stop, columns, chunksize, division, lock): """ Get the data frame corresponding to one path and one key (which should not contain any wildcards). """ empty = pd.read_hdf(path, key, mode=mode, stop=0) if columns is not None: empty = empty[columns] token = tokenize((path, os.path.getmtime(path), key, start, stop, empty, chunksize, division)) name = 'read-hdf-' + token if start >= stop: raise ValueError("Start row number ({}) is above or equal to stop " "row number ({})".format(start, stop)) if division: dsk = {(name, 0): (_pd_read_hdf, path, key, lock, {'mode': mode, 'columns': empty.columns})} divisions = division else: dsk = dict(((name, i), (_pd_read_hdf, path, key, lock, {'mode': mode, 'start': s, 'stop': s + chunksize, 'columns': empty.columns})) for i, s in enumerate(range(start, stop, chunksize))) divisions = [None] * (len(dsk) + 1) return DataFrame(dsk, name, empty, divisions) keys, stops, divisions = get_keys_stops_divisions(path, key, stop, sorted_index) if (start != 0 or stop is not None) and len(keys) > 1: raise NotImplementedError(read_hdf_error_msg) from .multi import concat return concat([one_path_one_key(path, k, start, s, columns, chunksize, d, lock) for k, s, d in zip(keys, stops, divisions)]) def _pd_read_hdf(path, key, lock, kwargs): """ Read from hdf5 file with a lock """ if lock: lock.acquire() try: result = pd.read_hdf(path, key, **kwargs) finally: if lock: lock.release() return result @wraps(pd.read_hdf) def read_hdf(pattern, key, start=0, stop=None, columns=None, chunksize=1000000, sorted_index=False, lock=True, mode=None): """ Read hdf files into a dask dataframe. Like pandas.read_hdf, except it we can read multiple files, and read multiple keys from the same file by using pattern matching. Parameters ---------- pattern : pattern (string), or buffer to read from. Can contain wildcards key : group identifier in the store. Can contain wildcards start : optional, integer (defaults to 0), row number to start at stop : optional, integer (defaults to None, the last row), row number to stop at columns : optional, a list of columns that if not None, will limit the return columns chunksize : optional, positive integer maximal number of rows per partition Returns ------- dask.DataFrame Examples -------- Load single file >>> dd.read_hdf('myfile.1.hdf5', '/x') # doctest: +SKIP Load multiple files >>> dd.read_hdf('myfile.*.hdf5', '/x') # doctest: +SKIP Load multiple datasets >>> dd.read_hdf('myfile.1.hdf5', '/*') # doctest: +SKIP """ if lock is True: lock = Lock() key = key if key.startswith('/') else '/' + key paths = sorted(glob(pattern)) if (start != 0 or stop is not None) and len(paths) > 1: raise NotImplementedError(read_hdf_error_msg) if chunksize <= 0: raise ValueError("Chunksize must be a positive integer") if (start != 0 or stop is not None) and sorted_index: raise ValueError("When assuming pre-partitioned data, data must be " "read in its entirety using the same chunksizes") from .multi import concat return concat([_read_single_hdf(path, key, start=start, stop=stop, columns=columns, chunksize=chunksize, sorted_index=sorted_index, lock=lock, mode=mode) for path in paths]) def to_castra(df, fn=None, categories=None, sorted_index_column=None, compute=True, get=get_sync): """ Write DataFrame to Castra on-disk store See https://github.com/blosc/castra for details See Also -------- Castra.to_dask """ from castra import Castra if isinstance(categories, list): categories = (list, categories) name = 'to-castra-' + uuid.uuid1().hex if sorted_index_column: func = lambda part: (M.set_index, part, sorted_index_column) else: func = lambda part: part dsk = dict() dsk[(name, -1)] = (Castra, fn, func((df._name, 0)), categories) for i in range(0, df.npartitions): dsk[(name, i)] = (_link, (name, i - 1), (Castra.extend, (name, -1), func((df._name, i)))) dsk = merge(dsk, df.dask) keys = [(name, -1), (name, df.npartitions - 1)] if compute: return DataFrame._get(dsk, keys, get=get)[0] else: return delayed([Delayed(key, [dsk]) for key in keys])[0] @delayed def _to_csv_chunk(df, **kwargs): if PY2: out = io.BytesIO() else: out = io.StringIO() df.to_csv(out, **kwargs) out.seek(0) if PY2: return out.getvalue() encoding = kwargs.get('encoding', sys.getdefaultencoding()) return out.getvalue().encode(encoding) def to_csv(df, filename, name_function=None, compression=None, compute=True, **kwargs): values = [_to_csv_chunk(d, **kwargs) for d in df.to_delayed()] values = write_bytes(values, filename, name_function, compression, encoding=None) if compute: from dask import compute compute(*values) else: return values def _df_to_bag(df, index=False): if isinstance(df, pd.DataFrame): return list(map(tuple, df.itertuples(index))) elif isinstance(df, pd.Series): return list(df.iteritems()) if index else list(df) def to_bag(df, index=False): from ..bag.core import Bag if not isinstance(df, (DataFrame, Series)): raise TypeError("df must be either DataFrame or Series") name = 'to_bag-' + tokenize(df, index) dsk = dict(((name, i), (_df_to_bag, block, index)) for (i, block) in enumerate(df._keys())) dsk.update(df._optimize(df.dask, df._keys())) return Bag(dsk, name, df.npartitions) @insert_meta_param_description def from_delayed(dfs, meta=None, divisions=None, prefix='from-delayed', metadata=None): """ Create DataFrame from many dask.delayed objects Parameters ---------- dfs : list of Delayed An iterable of ``dask.delayed.Delayed`` objects, such as come from ``dask.delayed`` These comprise the individual partitions of the resulting dataframe. $META divisions : tuple, str, optional Partition boundaries along the index. For tuple, see http://dask.pydata.io/en/latest/dataframe-partitions.html For string 'sorted' will compute the delayed values to find index values. Assumes that the indexes are mutually sorted. If None, then won't use index information prefix : str, optional Prefix to prepend to the keys. """ if metadata is not None and meta is None: warn("Deprecation warning: Use meta keyword, not metadata") meta = metadata from dask.delayed import Delayed if isinstance(dfs, Delayed): dfs = [dfs] dsk = merge(df.dask for df in dfs) name = prefix + '-' + tokenize(*dfs) names = [(name, i) for i in range(len(dfs))] values = [df.key for df in dfs] dsk2 = dict(zip(names, values)) dsk3 = merge(dsk, dsk2) if meta is None: meta = dfs[0].compute() if isinstance(meta, (str, pd.Series)): Frame = Series else: Frame = DataFrame if divisions == 'sorted': from .core import compute_divisions divisions = [None] * (len(dfs) + 1) df = Frame(dsk3, name, meta, divisions) return compute_divisions(df) elif divisions is None: divisions = [None] * (len(dfs) + 1) return Frame(dsk3, name, meta, divisions) def sorted_division_locations(seq, npartitions=None, chunksize=None): """ Find division locations and values in sorted list Examples -------- >>> L = ['A', 'B', 'C', 'D', 'E', 'F'] >>> sorted_division_locations(L, chunksize=2) (['A', 'C', 'E', 'F'], [0, 2, 4, 6]) >>> sorted_division_locations(L, chunksize=3) (['A', 'D', 'F'], [0, 3, 6]) >>> L = ['A', 'A', 'A', 'A', 'B', 'B', 'B', 'C'] >>> sorted_division_locations(L, chunksize=3) (['A', 'B', 'C'], [0, 4, 8]) >>> sorted_division_locations(L, chunksize=2) (['A', 'B', 'C'], [0, 4, 8]) >>> sorted_division_locations(['A'], chunksize=2) (['A', 'A'], [0, 1]) """ if ((npartitions is None) == (chunksize is None)): raise ValueError('Exactly one of npartitions and chunksize must be specified.') if npartitions: chunksize = ceil(len(seq) / npartitions) positions = [0] values = [seq[0]] for pos in list(range(0, len(seq), chunksize)): if pos <= positions[-1]: continue while pos + 1 < len(seq) and seq[pos - 1] == seq[pos]: pos += 1 values.append(seq[pos]) if pos == len(seq) - 1: pos += 1 positions.append(pos) if positions[-1] != len(seq): positions.append(len(seq)) values.append(seq[-1]) return values, positions
{ "repo_name": "cowlicks/dask", "path": "dask/dataframe/io.py", "copies": "1", "size": "29652", "license": "bsd-3-clause", "hash": 7687687358721241000, "line_mean": 32.5809739524, "line_max": 106, "alpha_frac": 0.5806353703, "autogenerated": false, "ratio": 3.7420494699646643, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.48226848402646644, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from fnmatch import fnmatch from functools import wraps from glob import glob import os from threading import Lock import multiprocessing import uuid from warnings import warn import pandas as pd import dask from toolz import merge from ...async import get_sync from ...base import tokenize from ...context import _globals from ...delayed import Delayed, delayed import dask.multiprocessing from ..core import DataFrame, new_dd_object from ...utils import build_name_function from .io import _link lock = Lock() def _pd_to_hdf(pd_to_hdf, lock, args, kwargs=None): """ A wrapper function around pd_to_hdf that enables locking""" if lock: lock.acquire() try: pd_to_hdf(*args, **kwargs) finally: if lock: lock.release() return None @wraps(pd.DataFrame.to_hdf) def to_hdf(df, path_or_buf, key, mode='a', append=False, get=None, name_function=None, compute=True, lock=None, dask_kwargs={}, **kwargs): name = 'to-hdf-' + uuid.uuid1().hex pd_to_hdf = getattr(df._partition_type, 'to_hdf') single_file = True single_node = True # if path_or_buf is string, format using i_name if isinstance(path_or_buf, str): if path_or_buf.count('*') + key.count('*') > 1: raise ValueError("A maximum of one asterisk is accepted in file path and dataset key") fmt_obj = lambda path_or_buf, i_name: path_or_buf.replace('*', i_name) if '*' in path_or_buf: single_file = False else: if key.count('*') > 1: raise ValueError("A maximum of one asterisk is accepted in dataset key") fmt_obj = lambda path_or_buf, _: path_or_buf if '*' in key: single_node = False if 'format' in kwargs and kwargs['format'] != 'table': raise ValueError("Dask only support 'table' format in hdf files.") if mode not in ('a', 'w', 'r+'): raise ValueError("Mode must be one of 'a', 'w' or 'r+'") if name_function is None: name_function = build_name_function(df.npartitions - 1) # we guarantee partition order is preserved when its saved and read # so we enforce name_function to maintain the order of its input. if not (single_file and single_node): formatted_names = [name_function(i) for i in range(df.npartitions)] if formatted_names != sorted(formatted_names): warn("To preserve order between partitions name_function " "must preserve the order of its input") # If user did not specify scheduler and write is sequential default to the # sequential scheduler. otherwise let the _get method choose the scheduler if get is None and 'get' not in _globals and single_node and single_file: get = get_sync # handle lock default based on whether we're writing to a single entity _actual_get = get or _globals.get('get') or df._default_get if lock is None: if not single_node: lock = True elif not single_file and _actual_get is not dask.multiprocessing.get: # if we're writing to multiple files with the multiprocessing # scheduler we don't need to lock lock = True else: lock = False if lock is True: if _actual_get == dask.multiprocessing.get: lock = multiprocessing.Manager().Lock() else: lock = Lock() kwargs.update({'format': 'table', 'mode': mode, 'append': append}) dsk = dict() i_name = name_function(0) dsk[(name, 0)] = (_pd_to_hdf, pd_to_hdf, lock, [(df._name, 0), fmt_obj(path_or_buf, i_name), key.replace('*', i_name)], kwargs) kwargs2 = kwargs.copy() if single_file: kwargs2['mode'] = 'a' if single_node: kwargs2['append'] = True for i in range(1, df.npartitions): i_name = name_function(i) task = (_pd_to_hdf, pd_to_hdf, lock, [(df._name, i), fmt_obj(path_or_buf, i_name), key.replace('*', i_name)], kwargs2) if single_file: link_dep = i - 1 if single_node else 0 task = (_link, (name, link_dep), task) dsk[(name, i)] = task dsk = merge(df.dask, dsk) if single_file and single_node: keys = [(name, df.npartitions - 1)] else: keys = [(name, i) for i in range(df.npartitions)] if compute: return DataFrame._get(dsk, keys, get=get, **dask_kwargs) else: return delayed([Delayed(k, [dsk]) for k in keys]) dont_use_fixed_error_message = """ This HDFStore is not partitionable and can only be use monolithically with pandas. In the future when creating HDFStores use the ``format='table'`` option to ensure that your dataset can be parallelized""" read_hdf_error_msg = """ The start and stop keywords are not supported when reading from more than one file/dataset. The combination is ambiguous because it could be interpreted as the starting and stopping index per file, or starting and stopping index of the global dataset.""" def _read_single_hdf(path, key, start=0, stop=None, columns=None, chunksize=int(1e6), sorted_index=False, lock=None, mode='a'): """ Read a single hdf file into a dask.dataframe. Used for each file in read_hdf. """ def get_keys_stops_divisions(path, key, stop, sorted_index): """ Get the "keys" or group identifiers which match the given key, which can contain wildcards. This uses the hdf file identified by the given path. Also get the index of the last row of data for each matched key. """ with pd.HDFStore(path, mode=mode) as hdf: keys = [k for k in hdf.keys() if fnmatch(k, key)] stops = [] divisions = [] for k in keys: storer = hdf.get_storer(k) if storer.format_type != 'table': raise TypeError(dont_use_fixed_error_message) if stop is None: stops.append(storer.nrows) elif stop > storer.nrows: raise ValueError("Stop keyword exceeds dataset number " "of rows ({})".format(storer.nrows)) else: stops.append(stop) if sorted_index: division_start = storer.read_column('index', start=0, stop=1)[0] division_end = storer.read_column('index', start=storer.nrows - 1, stop=storer.nrows)[0] divisions.append([division_start, division_end]) else: divisions.append(None) return keys, stops, divisions def one_path_one_key(path, key, start, stop, columns, chunksize, division, lock): """ Get the data frame corresponding to one path and one key (which should not contain any wildcards). """ empty = pd.read_hdf(path, key, mode=mode, stop=0) if columns is not None: empty = empty[columns] token = tokenize((path, os.path.getmtime(path), key, start, stop, empty, chunksize, division)) name = 'read-hdf-' + token if empty.ndim == 1: base = {'name': empty.name, 'mode': mode} else: base = {'columns': empty.columns, 'mode': mode} if start >= stop: raise ValueError("Start row number ({}) is above or equal to stop " "row number ({})".format(start, stop)) if division: dsk = {(name, 0): (_pd_read_hdf, path, key, lock, base)} divisions = division else: def update(s): new = base.copy() new.update({'start': s, 'stop': s + chunksize}) return new dsk = dict(((name, i), (_pd_read_hdf, path, key, lock, update(s))) for i, s in enumerate(range(start, stop, chunksize))) divisions = [None] * (len(dsk) + 1) return new_dd_object(dsk, name, empty, divisions) keys, stops, divisions = get_keys_stops_divisions(path, key, stop, sorted_index) if (start != 0 or stop is not None) and len(keys) > 1: raise NotImplementedError(read_hdf_error_msg) from ..multi import concat return concat([one_path_one_key(path, k, start, s, columns, chunksize, d, lock) for k, s, d in zip(keys, stops, divisions)]) def _pd_read_hdf(path, key, lock, kwargs): """ Read from hdf5 file with a lock """ if lock: lock.acquire() try: result = pd.read_hdf(path, key, **kwargs) finally: if lock: lock.release() return result @wraps(pd.read_hdf) def read_hdf(pattern, key, start=0, stop=None, columns=None, chunksize=1000000, sorted_index=False, lock=True, mode='a'): """ Read hdf files into a dask dataframe. Like pandas.read_hdf, except it we can read multiple files, and read multiple keys from the same file by using pattern matching. Parameters ---------- pattern : pattern (string), or buffer to read from. Can contain wildcards key : group identifier in the store. Can contain wildcards start : optional, integer (defaults to 0), row number to start at stop : optional, integer (defaults to None, the last row), row number to stop at columns : optional, a list of columns that if not None, will limit the return columns chunksize : optional, positive integer maximal number of rows per partition Returns ------- dask.DataFrame Examples -------- Load single file >>> dd.read_hdf('myfile.1.hdf5', '/x') # doctest: +SKIP Load multiple files >>> dd.read_hdf('myfile.*.hdf5', '/x') # doctest: +SKIP Load multiple datasets >>> dd.read_hdf('myfile.1.hdf5', '/*') # doctest: +SKIP """ if lock is True: lock = Lock() key = key if key.startswith('/') else '/' + key paths = sorted(glob(pattern)) if (start != 0 or stop is not None) and len(paths) > 1: raise NotImplementedError(read_hdf_error_msg) if chunksize <= 0: raise ValueError("Chunksize must be a positive integer") if (start != 0 or stop is not None) and sorted_index: raise ValueError("When assuming pre-partitioned data, data must be " "read in its entirety using the same chunksizes") from ..multi import concat return concat([_read_single_hdf(path, key, start=start, stop=stop, columns=columns, chunksize=chunksize, sorted_index=sorted_index, lock=lock, mode=mode) for path in paths])
{ "repo_name": "jeffery-do/Vizdoombot", "path": "doom/lib/python3.5/site-packages/dask/dataframe/io/hdf.py", "copies": "1", "size": "11095", "license": "mit", "hash": -608692107418220800, "line_mean": 33.8899371069, "line_max": 98, "alpha_frac": 0.580261379, "autogenerated": false, "ratio": 3.9695885509838997, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.50498499299839, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from fnmatch import fnmatch from functools import wraps, partial from glob import glob from math import ceil from operator import getitem import os import re from threading import Lock import uuid import pandas as pd import numpy as np from toolz import merge, assoc, dissoc from ..compatibility import BytesIO, unicode, range, apply from ..utils import textblock, file_size, get_bom from ..base import tokenize from .. import array as da from ..async import get_sync from . import core from .core import DataFrame, Series from .shuffle import set_partition lock = Lock() csv_defaults = {'compression': None} def _read_csv(fn, i, chunkbytes, compression, kwargs, bom): block = textblock(fn, i*chunkbytes, (i+1) * chunkbytes, compression, encoding=kwargs.get('encoding')) block = BytesIO(bom + block) try: return pd.read_csv(block, **kwargs) except ValueError as e: msg = """ Dask dataframe inspected the first 1,000 rows of your csv file to guess the data types of your columns. These first 1,000 rows led us to an incorrect guess. For example a column may have had integers in the first 1000 rows followed by a float or missing value in the 1,001-st row. You will need to specify some dtype information explicitly using the ``dtype=`` keyword argument for the right column names and dtypes. df = dd.read_csv(..., dtype={'my-column': float}) Pandas has given us the following error when trying to parse the file: "%s" """ % e.args[0] match = re.match('cannot safely convert passed user dtype of (?P<old_dtype>\S+) for (?P<new_dtype>\S+) dtyped data in column (?P<column_number>\d+)', e.args[0]) if match: d = match.groupdict() d['column'] = kwargs['names'][int(d['column_number'])] msg += """ From this we think that you should probably add the following column/dtype pair to your dtype= dictionary '%(column)s': '%(new_dtype)s' """ % d # TODO: add more regexes and msg logic here for other pandas errors # as apporpriate raise ValueError(msg) def clean_kwargs(kwargs): """ Do some sanity checks on kwargs >>> clean_kwargs({'parse_dates': ['a', 'b'], 'usecols': ['b', 'c']}) {'parse_dates': ['b'], 'usecols': ['b', 'c']} >>> clean_kwargs({'names': ['a', 'b'], 'usecols': [1]}) {'parse_dates': [], 'names': ['a', 'b'], 'usecols': ['b']} """ kwargs = kwargs.copy() if 'usecols' in kwargs and 'names' in kwargs: kwargs['usecols'] = [kwargs['names'][c] if isinstance(c, int) and c not in kwargs['names'] else c for c in kwargs['usecols']] kwargs['parse_dates'] = [col for col in kwargs.get('parse_dates', ()) if kwargs.get('usecols') is None or isinstance(col, (tuple, list)) and all(c in kwargs['usecols'] for c in col) or col in kwargs['usecols']] return kwargs def fill_kwargs(fn, **kwargs): """ Read a csv file and fill up kwargs This normalizes kwargs against a sample file. It does the following: 1. If given a globstring, just use one file 2. Get names from csv file if not given 3. Identify the presence of a header 4. Identify dtypes 5. Establish column names 6. Switch around dtypes and column names if parse_dates is active Normally ``pd.read_csv`` does this for us. However for ``dd.read_csv`` we need to be consistent across multiple files and don't want to do these heuristics each time so we use the pandas solution once, record the results, and then send back a fully explicit kwargs dict to send to future calls to ``pd.read_csv``. Returns ------- kwargs: dict keyword arguments to give to pd.read_csv """ if 'index_col' in kwargs: msg = """ The index column cannot be set at dataframe creation time. Instead use the `set_index` method on the dataframe after it is created. """ raise ValueError(msg) kwargs = merge(csv_defaults, kwargs) sample_nrows = kwargs.pop('sample_nrows', 1000) essentials = ['columns', 'names', 'header', 'parse_dates', 'dtype'] if set(essentials).issubset(kwargs): return kwargs # Let pandas infer on the first 100 rows if '*' in fn: filenames = sorted(glob(fn)) if not filenames: raise ValueError("No files found matching name %s" % fn) fn = filenames[0] if 'names' not in kwargs: kwargs['names'] = csv_names(fn, **kwargs) if 'header' not in kwargs: kwargs['header'] = 0 if infer_header(fn, **kwargs) else None kwargs = clean_kwargs(kwargs) try: head = pd.read_csv(fn, **assoc(kwargs, 'nrows', sample_nrows)) except StopIteration: head = pd.read_csv(fn, **kwargs) if 'parse_dates' not in kwargs: kwargs['parse_dates'] = [col for col in head.dtypes.index if np.issubdtype(head.dtypes[col], np.datetime64)] new_dtype = dict(head.dtypes) dtype = kwargs.get('dtype', dict()) for k, v in dict(head.dtypes).items(): if k not in dtype: dtype[k] = v if kwargs.get('parse_dates'): for col in kwargs['parse_dates']: del dtype[col] kwargs['dtype'] = dtype return head.columns, kwargs @wraps(pd.read_csv) def read_csv(fn, **kwargs): if 'nrows' in kwargs: # Just create single partition df = read_csv(fn, **dissoc(kwargs, 'nrows')) return df.head(kwargs['nrows'], compute=False) chunkbytes = kwargs.pop('chunkbytes', 2**25) # 50 MB index = kwargs.pop('index', None) kwargs = kwargs.copy() columns, kwargs = fill_kwargs(fn, **kwargs) # Handle glob strings if '*' in fn: from .multi import concat return concat([read_csv(f, **kwargs) for f in sorted(glob(fn))]) token = tokenize(os.path.getmtime(fn), kwargs) name = 'read-csv-%s-%s' % (fn, token) bom = get_bom(fn) # Chunk sizes and numbers total_bytes = file_size(fn, kwargs['compression']) nchunks = int(ceil(total_bytes / chunkbytes)) divisions = [None] * (nchunks + 1) first_kwargs = merge(kwargs, dict(compression=None)) rest_kwargs = merge(kwargs, dict(header=None, compression=None)) # Create dask graph dsk = dict(((name, i), (_read_csv, fn, i, chunkbytes, kwargs['compression'], rest_kwargs, bom)) for i in range(1, nchunks)) dsk[(name, 0)] = (_read_csv, fn, 0, chunkbytes, kwargs['compression'], first_kwargs, b'') result = DataFrame(dsk, name, columns, divisions) if index: result = result.set_index(index) return result def infer_header(fn, **kwargs): """ Guess if csv file has a header or not This uses Pandas to read a sample of the file, then looks at the column names to see if they are all phrase-like (words, potentially with spaces in between.) Returns True or False """ # See read_csv docs for header for reasoning kwargs.update(dict(nrows=5, names=None, parse_dates=None)) try: df = pd.read_csv(fn, **kwargs) except StopIteration: kwargs['nrows'] = None df = pd.read_csv(fn, **kwargs) return (len(df) > 0 and all(re.match('^\s*\D[\w ]*\s*$', n) for n in df.columns) and not all(dt == 'O' for dt in df.dtypes)) def csv_names(fn, encoding='utf-8', compression=None, names=None, parse_dates=None, usecols=None, dtype=None, **kwargs): try: kwargs['nrows'] = 5 df = pd.read_csv(fn, encoding=encoding, compression=compression, names=names, parse_dates=parse_dates, **kwargs) except StopIteration: kwargs['nrows'] = None df = pd.read_csv(fn, encoding=encoding, compression=compression, names=names, parse_dates=parse_dates, **kwargs) return list(df.columns) def from_array(x, chunksize=50000, columns=None): """ Read dask Dataframe from any slicable array Uses getitem syntax to pull slices out of the array. The array need not be a NumPy array but must support slicing syntax x[50000:100000] and have 2 dimensions: x.ndim == 2 or have a record dtype: x.dtype == [('name', 'O'), ('balance', 'i8')] """ has_record_dtype = getattr(x.dtype, 'names', None) is not None if x.ndim > 2: raise ValueError('from_array does not input more than 2D array, got' ' array with shape %r' % (x.shape,)) if columns is None: if has_record_dtype: columns = tuple(x.dtype.names) # record array has named columns elif x.ndim == 2: columns = [str(i) for i in range(x.shape[1])] if isinstance(x, da.Array): return from_dask_array(x, columns=columns) divisions = tuple(range(0, len(x), chunksize)) if divisions[-1] != len(x) - 1: divisions = divisions + (len(x) - 1,) token = tokenize(x, chunksize, columns) name = 'from_array-' + token dsk = dict(((name, i), (pd.DataFrame, (getitem, x, slice(i * chunksize, (i + 1) * chunksize)))) for i in range(0, int(ceil(len(x) / chunksize)))) return DataFrame(dsk, name, columns, divisions) def from_pandas(data, npartitions, sort=True): """Construct a dask object from a pandas object. If given a ``pandas.Series`` a ``dask.Series`` will be returned. If given a ``pandas.DataFrame`` a ``dask.DataFrame`` will be returned. All other pandas objects will raise a ``TypeError``. Parameters ---------- df : pandas.DataFrame or pandas.Series The DataFrame/Series with which to construct a dask DataFrame/Series npartitions : int The number of partitions of the index to create Returns ------- dask.DataFrame or dask.Series A dask DataFrame/Series partitioned along the index Examples -------- >>> df = pd.DataFrame(dict(a=list('aabbcc'), b=list(range(6))), ... index=pd.date_range(start='20100101', periods=6)) >>> ddf = from_pandas(df, npartitions=3) >>> ddf.divisions # doctest: +NORMALIZE_WHITESPACE (Timestamp('2010-01-01 00:00:00', offset='D'), Timestamp('2010-01-03 00:00:00', offset='D'), Timestamp('2010-01-05 00:00:00', offset='D'), Timestamp('2010-01-06 00:00:00', offset='D')) >>> ddf = from_pandas(df.a, npartitions=3) # Works with Series too! >>> ddf.divisions # doctest: +NORMALIZE_WHITESPACE (Timestamp('2010-01-01 00:00:00', offset='D'), Timestamp('2010-01-03 00:00:00', offset='D'), Timestamp('2010-01-05 00:00:00', offset='D'), Timestamp('2010-01-06 00:00:00', offset='D')) Raises ------ TypeError If something other than a ``pandas.DataFrame`` or ``pandas.Series`` is passed in. See Also -------- from_array : Construct a dask.DataFrame from an array that has record dtype from_bcolz : Construct a dask.DataFrame from a bcolz ctable read_csv : Construct a dask.DataFrame from a CSV file """ columns = getattr(data, 'columns', getattr(data, 'name', None)) if columns is None and not isinstance(data, pd.Series): raise TypeError("Input must be a pandas DataFrame or Series") nrows = len(data) chunksize = int(ceil(nrows / npartitions)) if sort and not data.index.is_monotonic_increasing: data = data.sort_index(ascending=True) if sort: divisions = tuple(data.index[i] for i in range(0, nrows, chunksize)) divisions = divisions + (data.index[-1],) else: divisions = [None] * (npartitions + 1) name = 'from_pandas-' + tokenize(data, chunksize) dsk = dict(((name, i), data.iloc[i * chunksize:(i + 1) * chunksize]) for i in range(npartitions - 1)) dsk[(name, npartitions - 1)] = data.iloc[chunksize*(npartitions - 1):] return getattr(core, type(data).__name__)(dsk, name, columns, divisions) def from_bcolz(x, chunksize=None, categorize=True, index=None, **kwargs): """ Read dask Dataframe from bcolz.ctable Parameters ---------- x : bcolz.ctable Input data chunksize : int (optional) The size of blocks to pull out from ctable. Ideally as large as can comfortably fit in memory categorize : bool (defaults to True) Automatically categorize all string dtypes index : string (optional) Column to make the index See Also -------- from_array: more generic function not optimized for bcolz """ import dask.array as da import bcolz if isinstance(x, (str, unicode)): x = bcolz.ctable(rootdir=x) bc_chunklen = max(x[name].chunklen for name in x.names) if chunksize is None and bc_chunklen > 10000: chunksize = bc_chunklen categories = dict() if categorize: for name in x.names: if (np.issubdtype(x.dtype[name], np.string_) or np.issubdtype(x.dtype[name], np.unicode_) or np.issubdtype(x.dtype[name], np.object_)): a = da.from_array(x[name], chunks=(chunksize * len(x.names),)) categories[name] = da.unique(a) columns = tuple(x.dtype.names) divisions = (0,) + tuple(range(-1, len(x), chunksize))[1:] if divisions[-1] != len(x) - 1: divisions = divisions + (len(x) - 1,) if x.rootdir: token = tokenize((x.rootdir, os.path.getmtime(x.rootdir)), chunksize, categorize, index, kwargs) else: token = tokenize((id(x), x.shape, x.dtype), chunksize, categorize, index, kwargs) new_name = 'from_bcolz-' + token dsk = dict(((new_name, i), (locked_df_from_ctable, x, (slice(i * chunksize, (i + 1) * chunksize),), columns, categories)) for i in range(0, int(ceil(len(x) / chunksize)))) result = DataFrame(dsk, new_name, columns, divisions) if index: assert index in x.names a = da.from_array(x[index], chunks=(chunksize * len(x.names),)) q = np.linspace(0, 100, len(x) // chunksize + 2) divisions = da.percentile(a, q).compute() return set_partition(result, index, divisions, **kwargs) else: return result def dataframe_from_ctable(x, slc, columns=None, categories=None): """ Get DataFrame from bcolz.ctable Parameters ---------- x: bcolz.ctable slc: slice columns: list of column names or None >>> import bcolz >>> x = bcolz.ctable([[1, 2, 3, 4], [10, 20, 30, 40]], names=['a', 'b']) >>> dataframe_from_ctable(x, slice(1, 3)) a b 0 2 20 1 3 30 >>> dataframe_from_ctable(x, slice(1, 3), columns=['b']) b 0 20 1 30 >>> dataframe_from_ctable(x, slice(1, 3), columns='b') 0 20 1 30 Name: b, dtype: int... """ import bcolz if columns is None: columns = x.dtype.names if isinstance(columns, tuple): columns = list(columns) x = x[columns] if isinstance(x, bcolz.ctable): chunks = [x[name][slc] for name in columns] if categories is not None: chunks = [pd.Categorical.from_codes(np.searchsorted(categories[name], chunk), categories[name], True) if name in categories else chunk for name, chunk in zip(columns, chunks)] return pd.DataFrame(dict(zip(columns, chunks)), columns=columns) elif isinstance(x, bcolz.carray): chunk = x[slc] if categories is not None and columns and columns in categories: chunk = pd.Categorical.from_codes( np.searchsorted(categories[columns], chunk), categories[columns], True) return pd.Series(chunk, name=columns) def locked_df_from_ctable(*args, **kwargs): with lock: result = dataframe_from_ctable(*args, **kwargs) return result def from_dask_array(x, columns=None): """ Convert dask Array to dask DataFrame Converts a 2d array into a DataFrame and a 1d array into a Series. Parameters ---------- x: da.Array columns: list or string list of column names if DataFrame, single string if Series Examples -------- >>> import dask.array as da >>> import dask.dataframe as dd >>> x = da.ones((4, 2), chunks=(2, 2)) >>> df = dd.io.from_dask_array(x, columns=['a', 'b']) >>> df.compute() a b 0 1 1 1 1 1 2 1 1 3 1 1 """ name = 'from-dask-array' + tokenize(x, columns) divisions = [0] for c in x.chunks[0]: divisions.append(divisions[-1] + c) index = [(range, a, b) for a, b in zip(divisions[:-1], divisions[1:])] divisions[-1] -= 1 if x.ndim == 1: if x.dtype.names is None: dsk = dict(((name, i), (pd.Series, chunk, ind, x.dtype, columns)) for i, (chunk, ind) in enumerate(zip(x._keys(), index))) return Series(merge(x.dask, dsk), name, columns, divisions) else: if columns is None: columns = x.dtype.names dsk = dict(((name, i), (pd.DataFrame, chunk, ind, columns)) for i, (chunk, ind) in enumerate(zip(x._keys(), index))) return DataFrame(merge(x.dask, dsk), name, columns, divisions) elif x.ndim == 2: if columns is None: raise ValueError("Must provide columns for DataFrame") if len(columns) != x.shape[1]: raise ValueError("Columns must be the same length as array width\n" " columns: %s\n width: %d" % (str(columns), x.shape[1])) if len(x.chunks[1]) > 1: x = x.rechunk({1: x.shape[1]}) dsk = dict(((name, i), (pd.DataFrame, chunk[0], ind, columns)) for i, (chunk, ind) in enumerate(zip(x._keys(), index))) return DataFrame(merge(x.dask, dsk), name, columns, divisions) else: raise ValueError("Array must have one or two dimensions. Had %d" % x.ndim) def from_castra(x, columns=None): """Load a dask DataFrame from a Castra. Parameters ---------- x : filename or Castra columns: list or string, optional The columns to load. Default is all columns. """ from castra import Castra if not isinstance(x, Castra): x = Castra(x, readonly=True) return x.to_dask(columns) def _link(token, result): """ A dummy function to link results together in a graph We use this to enforce an artificial sequential ordering on tasks that don't explicitly pass around a shared resource """ return None @wraps(pd.DataFrame.to_hdf) def to_hdf(df, path_or_buf, key, mode='a', append=False, complevel=0, complib=None, fletcher32=False, get=get_sync, **kwargs): name = 'to-hdf-' + uuid.uuid1().hex pd_to_hdf = getattr(df._partition_type, 'to_hdf') dsk = dict() dsk[(name, 0)] = (_link, None, (apply, pd_to_hdf, (tuple, [(df._name, 0), path_or_buf, key]), {'mode': mode, 'format': 'table', 'append': append, 'complevel': complevel, 'complib': complib, 'fletcher32': fletcher32})) for i in range(1, df.npartitions): dsk[(name, i)] = (_link, (name, i - 1), (apply, pd_to_hdf, (tuple, [(df._name, i), path_or_buf, key]), {'mode': 'a', 'format': 'table', 'append': True, 'complevel': complevel, 'complib': complib, 'fletcher32': fletcher32})) DataFrame._get(merge(df.dask, dsk), (name, df.npartitions - 1), get=get_sync, **kwargs) dont_use_fixed_error_message = """ This HDFStore is not partitionable and can only be use monolithically with pandas. In the future when creating HDFStores use the ``format='table'`` option to ensure that your dataset can be parallelized""" read_hdf_error_msg = """ The start and stop keywords are not supported when reading from more than one file/dataset. The combination is ambiguous because it could be interpreted as the starting and stopping index per file, or starting and stopping index of the global dataset.""" def _read_single_hdf(path, key, start=0, stop=None, columns=None, chunksize=int(1e6), lock=None): """ Read a single hdf file into a dask.dataframe. Used for each file in read_hdf. """ def get_keys_and_stops(path, key, stop): """ Get the "keys" or group identifiers which match the given key, which can contain wildcards. This uses the hdf file identified by the given path. Also get the index of the last row of data for each matched key. """ with pd.HDFStore(path) as hdf: keys = [k for k in hdf.keys() if fnmatch(k, key)] stops = [] for k in keys: storer = hdf.get_storer(k) if storer.format_type != 'table': raise TypeError(dont_use_fixed_error_message) if stop is None: stops.append(storer.nrows) else: stops.append(stop) return keys, stops def one_path_one_key(path, key, start, stop, columns, chunksize, lock): """ Get the data frame corresponding to one path and one key (which should not contain any wildcards). """ if columns is None: columns = list(pd.read_hdf(path, key, stop=0).columns) token = tokenize((path, os.path.getmtime(path), key, start, stop, columns, chunksize)) name = 'read-hdf-' + token dsk = dict(((name, i), (_pd_read_hdf, path, key, lock, {'start': s, 'stop': s + chunksize, 'columns': columns})) for i, s in enumerate(range(start, stop, chunksize))) divisions = [None] * (len(dsk) + 1) return DataFrame(dsk, name, columns, divisions) if lock is True: lock = Lock() keys, stops = get_keys_and_stops(path, key, stop) if (start != 0 or stop is not None) and len(keys) > 1: raise NotImplementedError(read_hdf_error_msg) from .multi import concat return concat([one_path_one_key(path, k, start, s, columns, chunksize, lock) for k, s in zip(keys, stops)]) def _pd_read_hdf(path, key, lock, kwargs): """ Read from hdf5 file with a lock """ if lock: lock.acquire() try: result = pd.read_hdf(path, key, **kwargs) finally: if lock: lock.release() return result @wraps(pd.read_hdf) def read_hdf(pattern, key, start=0, stop=None, columns=None, chunksize=1000000, lock=True): """ Read hdf files into a dask dataframe. Like pandas.read_hdf, except it we can read multiple files, and read multiple keys from the same file by using pattern matching. Parameters ---------- pattern : pattern (string), or buffer to read from. Can contain wildcards key : group identifier in the store. Can contain wildcards start : optional, integer (defaults to 0), row number to start at stop : optional, integer (defaults to None, the last row), row number to stop at columns : optional, a list of columns that if not None, will limit the return columns chunksize : optional, nrows to include in iteration, return an iterator Returns ------- dask.DataFrame Examples -------- Load single file >>> dd.read_hdf('myfile.1.hdf5', '/x') # doctest: +SKIP Load multiple files >>> dd.read_hdf('myfile.*.hdf5', '/x') # doctest: +SKIP Load multiple datasets >>> dd.read_hdf('myfile.1.hdf5', '/*') # doctest: +SKIP """ paths = sorted(glob(pattern)) if (start != 0 or stop is not None) and len(paths) > 1: raise NotImplementedError(read_hdf_error_msg) from .multi import concat return concat([_read_single_hdf(path, key, start=start, stop=stop, columns=columns, chunksize=chunksize, lock=lock) for path in paths]) def to_castra(df, fn=None, categories=None, sorted_index_column=None, compute=True): """ Write DataFrame to Castra on-disk store See https://github.com/blosc/castra for details See Also -------- Castra.to_dask """ from castra import Castra if isinstance(categories, list): categories = (list, categories) name = 'to-castra-' + uuid.uuid1().hex if sorted_index_column: set_index = lambda x: x.set_index(sorted_index_column) func = lambda part: (set_index, part) else: func = lambda part: part dsk = dict() dsk[(name, -1)] = (Castra, fn, func((df._name, 0)), categories) for i in range(0, df.npartitions): dsk[(name, i)] = (_link, (name, i - 1), (Castra.extend, (name, -1), func((df._name, i)))) dsk = merge(dsk, df.dask) keys = [(name, -1), (name, df.npartitions - 1)] if compute: c, _ = DataFrame._get(dsk, keys, get=get_sync) return c else: return dsk, keys def to_csv(df, filename, compression=None, **kwargs): if compression: raise NotImplementedError("Writing compressed csv files not supported") myget = kwargs.pop('get', None) name = 'to-csv-' + uuid.uuid1().hex dsk = dict() dsk[(name, 0)] = (lambda df, fn, kwargs: df.to_csv(fn, **kwargs), (df._name, 0), filename, kwargs) kwargs2 = kwargs.copy() kwargs2['mode'] = 'a' kwargs2['header'] = False for i in range(1, df.npartitions): dsk[(name, i)] = (_link, (name, i - 1), (lambda df, fn, kwargs: df.to_csv(fn, **kwargs), (df._name, i), filename, kwargs2)) DataFrame._get(merge(dsk, df.dask), (name, df.npartitions - 1), get=myget) def to_bag(df, index=False): from ..bag.core import Bag if isinstance(df, DataFrame): func = lambda df: list(df.itertuples(index)) elif isinstance(df, Series): func = (lambda df: list(df.iteritems())) if index else list else: raise TypeError("df must be either DataFrame or Series") name = 'to_bag-' + tokenize(df, index) dsk = dict(((name, i), (func, block)) for (i, block) in enumerate(df._keys())) dsk.update(df._optimize(df.dask, df._keys())) return Bag(dsk, name, df.npartitions)
{ "repo_name": "pombredanne/dask", "path": "dask/dataframe/io.py", "copies": "1", "size": "27492", "license": "bsd-3-clause", "hash": 7474663693914020000, "line_mean": 32.9826946848, "line_max": 168, "alpha_frac": 0.5793321694, "autogenerated": false, "ratio": 3.7246985503319334, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4804030719731933, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from fnmatch import fnmatch from glob import glob import os import uuid from warnings import warn import pandas as pd from toolz import merge from ...async import get_sync from ...base import tokenize from ...compatibility import PY3 from ...context import _globals from ...delayed import Delayed, delayed from ... import multiprocessing from ..core import DataFrame, new_dd_object from ...utils import build_name_function, effective_get, get_scheduler_lock from .io import _link def _pd_to_hdf(pd_to_hdf, lock, args, kwargs=None): """ A wrapper function around pd_to_hdf that enables locking""" if lock: lock.acquire() try: pd_to_hdf(*args, **kwargs) finally: if lock: lock.release() return None def to_hdf(df, path, key, mode='a', append=False, get=None, name_function=None, compute=True, lock=None, dask_kwargs={}, **kwargs): """ Store Dask Dataframe to Hierarchical Data Format (HDF) files This is a parallel version of the Pandas function of the same name. Please see the Pandas docstring for more detailed information about shared keyword arguments. This function differs from the Pandas version by saving the many partitions of a Dask DataFrame in parallel, either to many files, or to many datasets within the same file. You may specify this parallelism with an asterix ``*`` within the filename or datapath, and an optional ``name_function``. The asterix will be replaced with an increasing sequence of integers starting from ``0`` or with the result of calling ``name_function`` on each of those integers. This function only supports the Pandas ``'table'`` format, not the more specialized ``'fixed'`` format. Parameters ---------- path: string Path to a target filename. May contain a ``*`` to denote many filenames key: string Datapath within the files. May contain a ``*`` to denote many locations name_function: function A function to convert the ``*`` in the above options to a string. Should take in a number from 0 to the number of partitions and return a string. (see examples below) compute: bool Whether or not to execute immediately. If False then this returns a ``dask.Delayed`` value. lock: Lock, optional Lock to use to prevent concurrency issues. By default a ``threading.Lock``, ``multiprocessing.Lock`` or ``SerializableLock`` will be used depending on your scheduler if a lock is required. See dask.utils.get_scheduler_lock for more information about lock selection. **other: See pandas.to_hdf for more information Examples -------- Save Data to a single file >>> df.to_hdf('output.hdf', '/data') # doctest: +SKIP Save data to multiple datapaths within the same file: >>> df.to_hdf('output.hdf', '/data-*') # doctest: +SKIP Save data to multiple files: >>> df.to_hdf('output-*.hdf', '/data') # doctest: +SKIP Save data to multiple files, using the multiprocessing scheduler: >>> df.to_hdf('output-*.hdf', '/data', get=dask.multiprocessing.get) # doctest: +SKIP Specify custom naming scheme. This writes files as '2000-01-01.hdf', '2000-01-02.hdf', '2000-01-03.hdf', etc.. >>> from datetime import date, timedelta >>> base = date(year=2000, month=1, day=1) >>> def name_function(i): ... ''' Convert integer 0 to n to a string ''' ... return base + timedelta(days=i) >>> df.to_hdf('*.hdf', '/data', name_function=name_function) # doctest: +SKIP Returns ------- None: if compute == True delayed value: if compute == False See Also -------- read_hdf: to_parquet: """ name = 'to-hdf-' + uuid.uuid1().hex pd_to_hdf = getattr(df._partition_type, 'to_hdf') single_file = True single_node = True # if path is string, format using i_name if isinstance(path, str): if path.count('*') + key.count('*') > 1: raise ValueError("A maximum of one asterisk is accepted in file " "path and dataset key") fmt_obj = lambda path, i_name: path.replace('*', i_name) if '*' in path: single_file = False else: if key.count('*') > 1: raise ValueError("A maximum of one asterisk is accepted in " "dataset key") fmt_obj = lambda path, _: path if '*' in key: single_node = False if 'format' in kwargs and kwargs['format'] != 'table': raise ValueError("Dask only support 'table' format in hdf files.") if mode not in ('a', 'w', 'r+'): raise ValueError("Mode must be one of 'a', 'w' or 'r+'") if name_function is None: name_function = build_name_function(df.npartitions - 1) # we guarantee partition order is preserved when its saved and read # so we enforce name_function to maintain the order of its input. if not (single_file and single_node): formatted_names = [name_function(i) for i in range(df.npartitions)] if formatted_names != sorted(formatted_names): warn("To preserve order between partitions name_function " "must preserve the order of its input") # If user did not specify scheduler and write is sequential default to the # sequential scheduler. otherwise let the _get method choose the scheduler if get is None and 'get' not in _globals and single_node and single_file: get = get_sync # handle lock default based on whether we're writing to a single entity _actual_get = effective_get(get, df) if lock is None: if not single_node: lock = True elif not single_file and _actual_get is not multiprocessing.get: # if we're writing to multiple files with the multiprocessing # scheduler we don't need to lock lock = True else: lock = False if lock: lock = get_scheduler_lock(get, df) kwargs.update({'format': 'table', 'mode': mode, 'append': append}) dsk = dict() i_name = name_function(0) dsk[(name, 0)] = (_pd_to_hdf, pd_to_hdf, lock, [(df._name, 0), fmt_obj(path, i_name), key.replace('*', i_name)], kwargs) kwargs2 = kwargs.copy() if single_file: kwargs2['mode'] = 'a' if single_node: kwargs2['append'] = True for i in range(1, df.npartitions): i_name = name_function(i) task = (_pd_to_hdf, pd_to_hdf, lock, [(df._name, i), fmt_obj(path, i_name), key.replace('*', i_name)], kwargs2) if single_file: link_dep = i - 1 if single_node else 0 task = (_link, (name, link_dep), task) dsk[(name, i)] = task dsk = merge(df.dask, dsk) if single_file and single_node: keys = [(name, df.npartitions - 1)] else: keys = [(name, i) for i in range(df.npartitions)] if compute: return DataFrame._get(dsk, keys, get=get, **dask_kwargs) else: return delayed([Delayed(k, [dsk]) for k in keys]) dont_use_fixed_error_message = """ This HDFStore is not partitionable and can only be use monolithically with pandas. In the future when creating HDFStores use the ``format='table'`` option to ensure that your dataset can be parallelized""" read_hdf_error_msg = """ The start and stop keywords are not supported when reading from more than one file/dataset. The combination is ambiguous because it could be interpreted as the starting and stopping index per file, or starting and stopping index of the global dataset.""" def _read_single_hdf(path, key, start=0, stop=None, columns=None, chunksize=int(1e6), sorted_index=False, lock=None, mode='a'): """ Read a single hdf file into a dask.dataframe. Used for each file in read_hdf. """ def get_keys_stops_divisions(path, key, stop, sorted_index): """ Get the "keys" or group identifiers which match the given key, which can contain wildcards. This uses the hdf file identified by the given path. Also get the index of the last row of data for each matched key. """ with pd.HDFStore(path, mode=mode) as hdf: keys = [k for k in hdf.keys() if fnmatch(k, key)] stops = [] divisions = [] for k in keys: storer = hdf.get_storer(k) if storer.format_type != 'table': raise TypeError(dont_use_fixed_error_message) if stop is None: stops.append(storer.nrows) elif stop > storer.nrows: raise ValueError("Stop keyword exceeds dataset number " "of rows ({})".format(storer.nrows)) else: stops.append(stop) if sorted_index: division_start = storer.read_column('index', start=0, stop=1)[0] division_end = storer.read_column('index', start=storer.nrows - 1, stop=storer.nrows)[0] divisions.append([division_start, division_end]) else: divisions.append(None) return keys, stops, divisions def one_path_one_key(path, key, start, stop, columns, chunksize, division, lock): """ Get the data frame corresponding to one path and one key (which should not contain any wildcards). """ empty = pd.read_hdf(path, key, mode=mode, stop=0) if columns is not None: empty = empty[columns] token = tokenize((path, os.path.getmtime(path), key, start, stop, empty, chunksize, division)) name = 'read-hdf-' + token if empty.ndim == 1: base = {'name': empty.name, 'mode': mode} else: base = {'columns': empty.columns, 'mode': mode} if start >= stop: raise ValueError("Start row number ({}) is above or equal to stop " "row number ({})".format(start, stop)) if division: dsk = {(name, 0): (_pd_read_hdf, path, key, lock, base)} divisions = division else: def update(s): new = base.copy() new.update({'start': s, 'stop': s + chunksize}) return new dsk = dict(((name, i), (_pd_read_hdf, path, key, lock, update(s))) for i, s in enumerate(range(start, stop, chunksize))) divisions = [None] * (len(dsk) + 1) return new_dd_object(dsk, name, empty, divisions) keys, stops, divisions = get_keys_stops_divisions(path, key, stop, sorted_index) if (start != 0 or stop is not None) and len(keys) > 1: raise NotImplementedError(read_hdf_error_msg) from ..multi import concat return concat([one_path_one_key(path, k, start, s, columns, chunksize, d, lock) for k, s, d in zip(keys, stops, divisions)]) def _pd_read_hdf(path, key, lock, kwargs): """ Read from hdf5 file with a lock """ if lock: lock.acquire() try: result = pd.read_hdf(path, key, **kwargs) finally: if lock: lock.release() return result def read_hdf(pattern, key, start=0, stop=None, columns=None, chunksize=1000000, sorted_index=False, lock=True, mode='a'): """ Read HDF files into a Dask DataFrame Read hdf files into a dask dataframe. This function is like ``pandas.read_hdf``, except it can read from a single large file, or from multiple files, or from multiple keys from the same file. Parameters ---------- pattern : pattern (string), or buffer to read from. Can contain wildcards key : group identifier in the store. Can contain wildcards start : optional, integer (defaults to 0), row number to start at stop : optional, integer (defaults to None, the last row), row number to stop at columns : optional, a list of columns that if not None, will limit the return columns chunksize : optional, positive integer maximal number of rows per partition Returns ------- dask.DataFrame Examples -------- Load single file >>> dd.read_hdf('myfile.1.hdf5', '/x') # doctest: +SKIP Load multiple files >>> dd.read_hdf('myfile.*.hdf5', '/x') # doctest: +SKIP Load multiple datasets >>> dd.read_hdf('myfile.1.hdf5', '/*') # doctest: +SKIP """ if lock is True: lock = get_scheduler_lock() key = key if key.startswith('/') else '/' + key paths = sorted(glob(pattern)) if (start != 0 or stop is not None) and len(paths) > 1: raise NotImplementedError(read_hdf_error_msg) if chunksize <= 0: raise ValueError("Chunksize must be a positive integer") if (start != 0 or stop is not None) and sorted_index: raise ValueError("When assuming pre-partitioned data, data must be " "read in its entirety using the same chunksizes") from ..multi import concat return concat([_read_single_hdf(path, key, start=start, stop=stop, columns=columns, chunksize=chunksize, sorted_index=sorted_index, lock=lock, mode=mode) for path in paths]) if PY3: from ..core import _Frame _Frame.to_hdf.__doc__ = to_hdf.__doc__
{ "repo_name": "gameduell/dask", "path": "dask/dataframe/io/hdf.py", "copies": "2", "size": "13946", "license": "bsd-3-clause", "hash": 7106480953043793000, "line_mean": 34.3959390863, "line_max": 89, "alpha_frac": 0.5890577943, "autogenerated": false, "ratio": 4.05406976744186, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.00045916979432936936, "num_lines": 394 }
from __future__ import absolute_import, division, print_function from fnmatch import fnmatch def filenames(hdfs, path): """ Filenames in Hadoop File System under specific path Parameters ---------- hdfs: pywebhdfs.webhdfs.PyWebHdfsClient instance path: string Directory on HDFS Path can be either 1. A directory -- 'user/data/myfiles/' 2. A globstring -- 'user/data/myfiles/*/*.json' Returns all filenames within this directory and all subdirectories """ if '*' in path: directory = path[:path.find('*')].rsplit('/', 1)[0] return [fn for fn in filenames(hdfs, directory) if fnmatch(fn, path + '*')] path = path.strip('/') listdir = hdfs.list_dir(path)['FileStatuses']['FileStatus'] files = ['%s/%s' % (path, d['pathSuffix']) for d in listdir if d['type'] == 'FILE'] directories = ['%s/%s' % (path, d['pathSuffix']) for d in listdir if d['type'] == 'DIRECTORY'] return files + sum([filenames(hdfs, d) for d in directories], [])
{ "repo_name": "vikhyat/dask", "path": "dask/hdfs_utils.py", "copies": "2", "size": "1079", "license": "bsd-3-clause", "hash": 3005724060357743600, "line_mean": 28.9722222222, "line_max": 70, "alpha_frac": 0.594068582, "autogenerated": false, "ratio": 3.9094202898550723, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5503488871855072, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from fractions import Fraction import sys import subprocess sys.path.insert(0, '../') from compiler import * from constructs import * def test_tree_graph(): R = Parameter(Int, "R") C = Parameter(Int, "C") x = Variable(Int, "x") y = Variable(Int, "y") row = Interval(Int, 0, R-1) col = Interval(Int, 0, C-1) img = Image(Float, "img", [R, C]) alpha = 0.6 F = {} L = 3 for l in range(0, (2**L)-1): F[l] = Function(([x, y], [row, col]), Float, "F"+str(l)) for l in range(0, (2**(L-1))-1): F[l].defn = [ (alpha) * F[2*l+1](x, y) + (1-alpha) * F[2*l+2](x, y) ] for l in range((2**(L-1))-1, (2**L)-1): F[l].defn = [ l * img(x, y) ] p_est = [ (R, 1024), (C, 1024) ] # build the pipeline pipeline = buildPipeline([F[0]], param_estimates = p_est, group_size = 100, pipe_name = "tree") filename = "tree_graph" dot_file = filename+".dot" png_file = filename+".png" g = pipeline.pipeline_graph g.write(filename+".dot") dotty_str = "dot -Tpng "+dot_file+" -o "+png_file subprocess.check_output(dotty_str, shell=True) filename = 'tree.cpp' c_file = open(filename, 'w') c_file.write(pipeline.generate_code().__str__()) c_file.close() return
{ "repo_name": "bollu/polymage", "path": "sandbox/tests/test_grouping.py", "copies": "1", "size": "1428", "license": "apache-2.0", "hash": -8775009632833237000, "line_mean": 24.0526315789, "line_max": 77, "alpha_frac": 0.5196078431, "autogenerated": false, "ratio": 2.9812108559498958, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.40008186990498956, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from fractions import Fraction import sys import subprocess sys.path.insert(0, '../') from compiler import * from constructs import * def test_blur(): R = Parameter(Int, "R") C = Parameter(Int, "C") x = Variable(Int, "x") y = Variable(Int, "y") c = Variable(Int, "c") cr = Interval(Int, 0, 2) xrow = Interval(Int, 1, R) xcol = Interval(Int, 1, C) yrow = Interval(Int, 2, R-1) ycol = Interval(Int, 2, C-1) xcond = Condition(x, '>=', 1) & Condition(x, '<=', R) & \ Condition(y, '>=', 1) & Condition(y, '<=', C) ycond = Condition(x, '>=', 2) & Condition(x, '<=', R-1) & \ Condition(y, '>=', 2) & Condition(y, '<=', C-1) img = Image(Float, "input", [3, R+2, C+2]) blurx = Function(([c, x, y], [cr, xrow, xcol]), Float, "blurx") blurx.defn = [ Case(xcond, (img(c, x-1, y) + \ img(c, x , y) + \ img(c, x+1, y) / 3.0)) ] blury = Function(([c, x, y], [cr, yrow, ycol]), Float, "blury") blury.defn = [ Case(ycond, (blurx(c, x, y-1) + \ blurx(c, x, y ) + \ blurx(c, x, y+1) / 3.0)) ] groups = [[blurx, blury]] p_est = [ (R, 1024), (C, 1024) ] # build the pipeline pipeline = buildPipeline([blury], grouping = groups, param_estimates = p_est, pipe_name = "blur") filename = "blur_graph" dot_file = filename+".dot" png_file = filename+".png" g = pipeline.pipeline_graph g.write(filename+".dot") dotty_str = "dot -Tpng "+dot_file+" -o "+png_file subprocess.check_output(dotty_str, shell=True) filename = 'blur_naive.cpp' c_file = open(filename, 'w') c_file.write(pipeline.generate_code().__str__()) c_file.close()
{ "repo_name": "bollu/polymage", "path": "sandbox/tests/test_blur.py", "copies": "1", "size": "1954", "license": "apache-2.0", "hash": 7811141571456449000, "line_mean": 27.7352941176, "line_max": 67, "alpha_frac": 0.4892528147, "autogenerated": false, "ratio": 3.043613707165109, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.8919765051026841, "avg_score": 0.022620294167653446, "num_lines": 68 }
from __future__ import absolute_import, division, print_function from fractions import Fraction import sys sys.path.insert(0, '../') from compiler import * from constructs import * from expression import * R = Parameter(Int, "R") C = Parameter(Int, "C") P = Parameter(Int, "P") B = Parameter(Int, "B") x = Variable(Int, "x") y = Variable(Int, "y") z = Variable(Int, "z") w = Variable(Int, "w") c = Variable(Int, "c") row = Interval(Int, 0, R+1) col = Interval(Int, 0, C+1) plane = Interval(Int, 0, P+1) box = Interval(Int, 0, B+1) cr = Interval(Int, 0, 2) cond = Condition(x, '>=', 1) & Condition(x, '<=', R) & \ Condition(y, '>=', 1) & Condition(y, '<=', C) cond3D = Condition(x, '>=', 1) & Condition(x, '<=', R) & \ Condition(y, '>=', 1) & Condition(y, '<=', C) & \ Condition(z, '>=', 1) & Condition(z, '<=', P) cond4D = Condition(x, '>=', 1) & Condition(x, '<=', R) & \ Condition(y, '>=', 1) & Condition(y, '<=', C) & \ Condition(z, '>=', 1) & Condition(z, '<=', P) & \ Condition(w, '>=', 1) & Condition(w, '<=', B) def test_gray(): img = Image(Float, "img", [R+2, C+2, 3]) gray = Function(([x, y], [row, col]), Float, "gray") gray.defn = [ Case(cond, img(x, y, 0) * 0.299 \ + img(x, y, 1) * 0.587 \ + img(x, y, 2) * 0.114) ] vector = Function(([x], [row]), Float, "vector") vector.defn = [ Case(cond, gray(x, 0)) ] pipeline = buildPipeline([vector], grouping = [[gray, vector]]) return def test_flip(): img = Image(Int, "img", [R+2, C+2]) flip1 = Function(([y, x], [col, row]), Int, "flip1") flip1.defn = [ Case(cond, img(x+1, y) + img(x, y+1)) ] flip2 = Function(([x, y], [row, col]), Int, "flip2") flip2.defn = [ Case(cond, flip1(y-1, x) + flip1(y, x-1)) ] pipeline = buildPipeline([flip2], grouping = [[flip1, flip2]]) return def test_robin(): img = Image(Short, "img", [R+2, C+2, 3]) robin1 = Function(([c, x, y], [cr, row, col]), Short, "robin1") robin1.defn = [ Case(cond, img(x, y, c) + 1) ] robin2 = Function(([y, c, x], [col, cr, row]), Short, "robin2") robin2.defn = [ Case(cond, robin1(c, x, y) - 1) ] robin3 = Function(([x, y, c], [row, col, cr]), Short, "robin3") robin3.defn = [ Case(cond, robin2(y, c, x) + 1) ] pipeline = buildPipeline([robin3], \ grouping = [[robin1, robin2, robin3]]) return # *** Extreme Case *** not so practical, can be used as a stress test #def test_high_dim(): def high_dim(): img = Image(Short, "img", [B+2, P+2, R+2, C+2]) random0 = Function(([w, z, y, x], [box, plane, row, col]), \ Double, "random0") random0.defn = [ Case(cond4D, img(w, z, y, x) - 1) ] random1 = Function(([w, y, z, x], [box, row, plane, col]), \ Double, "random1") random1.defn = [ Case(cond4D, random0(w, z, y, x) + 1) ] random2 = Function(([z, x, y, w], [plane, col, row, box]), \ Double, "random2") random2.defn = [ Case(cond4D, random1(w, y, z, x) - 1) ] random3 = Function(([x, w, y, z], [col, box, row, plane]), \ Double, "random3") random3.defn = [ Case(cond4D, random2(z, x, y, w) + 1) ] random4 = Function(([y, z, w, x], [row, plane, box, col]), \ Double, "random4") random4.defn = [ Case(cond4D, random3(x, w, y, z) - 1) ] random5 = Function(([z, w, x, y], [plane, box, col, row]), \ Double, "random5") random5.defn = [ Case(cond4D, random4(y, z, w, x) + 1) ] random6 = Function(([z, y, x], [plane, row, col]), \ Double, "random6") random6.defn = [ Case(cond3D, ( \ random5(z, 0, x, y) + \ random5(z, 1, x, y) + \ random5(z, 2, x, y) - 3) / 3.0 ) ] random7 = Function(([y, x, w, z], [row, col, box, plane]), \ Double, "random7") random7.defn = [ Case(cond4D, random6(z, y, x) * 2) ] groups = [[random0, random1, random2, random3, \ random4, random5, random6, random7]] #groups = [[random1, random2, random3], \ # [random4, random5, random6, random7]] pipeline = buildPipeline([random7], grouping = groups) return
{ "repo_name": "bollu/polymage", "path": "sandbox/tests/test_alignment.py", "copies": "1", "size": "4404", "license": "apache-2.0", "hash": 1805524718191090400, "line_mean": 32.1127819549, "line_max": 69, "alpha_frac": 0.4943233424, "autogenerated": false, "ratio": 2.8541801685029164, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.38485035109029164, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from fractions import Fraction import sys sys.path.insert(0, '../') from compiler import * from constructs import * def test_histogram(): R = Parameter(Int, "R") C = Parameter(Int, "C") x = Variable(Int, "x") y = Variable(Int, "y") c = Variable(Int, "c") row = Interval(Int, 0, R+1) col = Interval(Int, 0, C+1) cr = Interval(Int, 0, 2) cond = Condition(x, '>=', 0) & Condition(x, '<=', R-1) & \ Condition(y, '<=', C-1) & Condition(y, '>=', 0) img = Image(Float, "img", [R+2, C+2]) cond0 = Condition(c, '==', 0) cond1 = Condition(c, '==', 1) cond2 = Condition(c, '==', 2) # Iterates over [c, x, y] and reduces img(x, y) to hist(c, x). # Over each row of img(x, y), op(c) is applied and the result is stored # at hist(c, x). Here we use op(0) = Min, op(1) = Max, op(2) = Sum. hist = Reduction(([c, x], [cr, row]), \ ([c, x, y], [cr, row, col]), \ Float, "hist") hist.defn = [ Case(cond0, Reduce(hist(c, x), img(x, y), Op.Min)), Case(cond1, Reduce(hist(c, x), img(x, y), Op.Max)), Case(cond2, Reduce(hist(c, x), img(x, y), Op.Sum)) ] pipeline = buildPipeline([hist], \ pipe_name="hist") ''' filename = 'hist_graph.dot' pipeline.originalGraph.write(filename) filename = 'hist_graph_grouped.dot' g = pipeline.drawPipelineGraph() g.write(filename) ''' filename = 'hist_naive.cpp' c_file = open(filename, 'w') c_file.write(pipeline.generate_code().__str__()) c_file.close()
{ "repo_name": "bollu/polymage", "path": "sandbox/tests/test_hist.py", "copies": "1", "size": "1912", "license": "apache-2.0", "hash": -4185547047279912000, "line_mean": 28.4153846154, "line_max": 75, "alpha_frac": 0.4665271967, "autogenerated": false, "ratio": 3.408199643493761, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4374726840193761, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from fractions import Fraction import sys sys.path.insert(0, '../') from constructs import * from expression import * def test_affine(): N = Parameter(UInt, "N") x = Variable(UInt, "x") y = Variable(UInt, "y") assert(isAffine(x + y) == True) assert(isAffine(3) == True) assert(isAffine(x*y) == False) assert(isAffine(-x + N + 3*y) == True) assert(isAffine(2*x + N/2 + 3*y) == True) c1 = Condition(x, '<', 2*y) c2 = Condition(x, '>', 2-y) c3 = Condition(x, '>=', x*y) c4 = Condition(x + 2*N, '<=', y + N) c5 = Condition(x*N, '!=', y) assert(isAffine(c1) == True) assert(isAffine(c2) == True) assert(isAffine(c3) == False) assert(isAffine(c4) == True) assert(isAffine(c5) == False) def test_coeff(): N = Parameter(UInt, "N") x = Variable(UInt, "x") y = Variable(UInt, "y") coeff = get_affine_var_and_param_coeff(1+x) assert(coeff[x] == 1) coeff = get_affine_var_and_param_coeff(1+x +y) assert(coeff[x] == 1 and coeff[y] == 1) coeff = get_affine_var_and_param_coeff(3) assert(coeff == {}) coeff = get_affine_var_and_param_coeff(N*x + y) assert(coeff == {}) coeff = get_affine_var_and_param_coeff(x*y) assert(coeff == {}) coeff = get_affine_var_and_param_coeff(2*(x*3+y +N +x + y -5) + 3*(-x) + 4*(-y) + N) assert(coeff[x] == 5 and coeff[y] == 0 and coeff[N] == 3)
{ "repo_name": "bollu/polymage", "path": "sandbox/tests/test_expression.py", "copies": "1", "size": "1502", "license": "apache-2.0", "hash": 7544326229378586000, "line_mean": 30.9574468085, "line_max": 66, "alpha_frac": 0.5579227696, "autogenerated": false, "ratio": 2.7014388489208634, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.37593616185208634, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from ._funcs import ( asdict, assoc, astuple, evolve, has, ) from ._make import ( Attribute, Factory, NOTHING, attr, attributes, fields, make_class, validate, ) from ._config import ( get_run_validators, set_run_validators, ) from . import exceptions from . import filters from . import converters from . import validators __version__ = "17.2.0" __title__ = "attrs" __description__ = "Classes Without Boilerplate" __uri__ = "http://www.attrs.org/" __doc__ = __description__ + " <" + __uri__ + ">" __author__ = "Hynek Schlawack" __email__ = "hs@ox.cx" __license__ = "MIT" __copyright__ = "Copyright (c) 2015 Hynek Schlawack" s = attrs = attributes ib = attrib = attr __all__ = [ "Attribute", "Factory", "NOTHING", "asdict", "assoc", "astuple", "attr", "attrib", "attributes", "attrs", "converters", "evolve", "exceptions", "fields", "filters", "get_run_validators", "has", "ib", "make_class", "s", "set_run_validators", "validate", "validators", ]
{ "repo_name": "Alecto3-D/testable-greeter", "path": "bb-master/sandbox/lib/python3.5/site-packages/attr/__init__.py", "copies": "2", "size": "1173", "license": "mit", "hash": 4878455908172199000, "line_mean": 15.5211267606, "line_max": 64, "alpha_frac": 0.5652173913, "autogenerated": false, "ratio": 3.196185286103542, "config_test": false, "has_no_keywords": true, "few_assignments": false, "quality_score": 0.47614026774035423, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from functools import partial from .csv import * from .json import * from .hdf5 import * from .filesystem import * from .sql import * from glob import glob import gzip from ..compatibility import urlopen from ..py2help import _strtypes __all__ = ['resource', 'copy'] filetypes = {'csv': CSV, 'tsv': CSV, 'json': JSON, 'h5': HDF5, 'hdf5': HDF5} opens = {'http': urlopen, 'https': urlopen, #'ssh': paramiko.open? } def resource(uri, **kwargs): """ Get data resource from universal resource indicator Supports the following logic: * Infer data format based on the file extension (.csv, .json. .hdf5) * Use ``gzip.open`` if files end in ``.gz`` extension (csv, json only) * Use ``urlopen`` if web protocols detected (http, https) * Use SQL if text ``sql`` found in protocol string URI may be in any of the following forms >>> uri = '/path/to/data.csv' # csv, json, etc... >>> uri = '/path/to/data.json.gz' # handles gzip >>> uri = '/path/to/*/many*/data.*.json' # glob string - many files >>> uri = '/path/to/data.hdf5::/path/within/hdf5' # HDF5 path :: datapath >>> uri = 'postgresql://sqlalchemy.uri::tablename'# SQLAlchemy :: tablename >>> uri = 'http://api.domain.com/data.json' # Web requests Note that this follows standard ``protocol://path`` syntax. In cases where more information is needed, such as an HDF5 datapath or a SQL table name the additional information follows two colons `::` as in the following /path/to/data.hdf5::/datapath """ descriptor = None args = [] if '::' in uri: uri, datapath = uri.rsplit('::') args.insert(0, datapath) extensions = uri.split('.') if extensions[-1] == 'gz': kwargs['open'] = kwargs.get('open', gzip.open) extensions.pop() descriptor = filetypes.get(extensions[-1], None) if '://' in uri: protocol, _ = uri.split('://') if protocol in opens: kwargs['open'] = kwargs.get('open', opens[protocol]) if 'sql' in protocol: descriptor = SQL try: filenames = glob(uri) except: filenames = [] if len(filenames) > 1: args = [partial(descriptor, *args)] # pack sub descriptor into args descriptor = Files if descriptor: return descriptor(uri, *args, **kwargs) raise ValueError('Unknown resource type\n\t%s' % uri) def copy(src, dest, **kwargs): """ Copy content from one data descriptor to another """ dest.extend_chunks(src.chunks(**kwargs))
{ "repo_name": "sethkontny/blaze", "path": "blaze/data/usability.py", "copies": "1", "size": "2752", "license": "bsd-3-clause", "hash": 5925662245249328000, "line_mean": 30.2727272727, "line_max": 80, "alpha_frac": 0.5904796512, "autogenerated": false, "ratio": 3.8870056497175143, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4977485300917514, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from functools import partial from hashlib import md5 from operator import attrgetter import os import sys import uuid import warnings from toolz import merge, groupby, curry, identity from toolz.functoolz import Compose from .compatibility import bind_method, unicode from .context import _globals from .utils import Dispatch, ignoring __all__ = ("Base", "compute", "normalize_token", "tokenize", "visualize") class Base(object): """Base class for dask collections""" def visualize(self, filename='mydask', format=None, optimize_graph=False, **kwargs): return visualize(self, filename=filename, format=format, optimize_graph=optimize_graph, **kwargs) def _visualize(self, filename='mydask', format=None, optimize_graph=False): warn = DeprecationWarning("``_visualize`` is deprecated, use " "``visualize`` instead.") warnings.warn(warn) return self.visualize(filename=filename, format=format, optimize_graph=optimize_graph) def compute(self, **kwargs): return compute(self, **kwargs)[0] @classmethod def _get(cls, dsk, keys, get=None, **kwargs): get = get or _globals['get'] or cls._default_get dsk2 = cls._optimize(dsk, keys, **kwargs) return get(dsk2, keys, **kwargs) @classmethod def _bind_operator(cls, op): """ bind operator to this class """ name = op.__name__ if name.endswith('_'): # for and_ and or_ name = name[:-1] elif name == 'inv': name = 'invert' meth = '__{0}__'.format(name) if name in ('abs', 'invert', 'neg'): bind_method(cls, meth, cls._get_unary_operator(op)) else: bind_method(cls, meth, cls._get_binary_operator(op)) if name in ('eq', 'gt', 'ge', 'lt', 'le', 'ne'): return rmeth = '__r{0}__'.format(name) bind_method(cls, rmeth, cls._get_binary_operator(op, inv=True)) @classmethod def _get_unary_operator(cls, op): """ Must return a method used by unary operator """ raise NotImplementedError @classmethod def _get_binary_operator(cls, op, inv=False): """ Must return a method used by binary operator """ raise NotImplementedError def compute(*args, **kwargs): """Compute several dask collections at once. Examples -------- >>> import dask.array as da >>> a = da.arange(10, chunks=2).sum() >>> b = da.arange(10, chunks=2).mean() >>> compute(a, b) (45, 4.5) """ variables = [a for a in args if isinstance(a, Base)] if not variables: return args groups = groupby(attrgetter('_optimize'), variables) get = kwargs.pop('get', None) or _globals['get'] if not get: get = variables[0]._default_get if not all(a._default_get == get for a in variables): raise ValueError("Compute called on multiple collections with " "differing default schedulers. Please specify a " "scheduler `get` function using either " "the `get` kwarg or globally with `set_options`.") dsk = merge([opt(merge([v.dask for v in val]), [v._keys() for v in val], **kwargs) for opt, val in groups.items()]) keys = [var._keys() for var in variables] results = get(dsk, keys, **kwargs) results_iter = iter(results) return tuple(a if not isinstance(a, Base) else a._finalize(a, next(results_iter)) for a in args) def visualize(*args, **kwargs): dsks = [arg for arg in args if isinstance(arg, dict)] args = [arg for arg in args if isinstance(arg, Base)] filename = kwargs.pop('filename', 'mydask') optimize_graph = kwargs.pop('optimize_graph', False) from dask.dot import dot_graph if optimize_graph: dsks.extend([arg._optimize(arg.dask, arg._keys()) for arg in args]) else: dsks.extend([arg.dask for arg in args]) dsk = merge(dsks) return dot_graph(dsk, filename=filename, **kwargs) def normalize_function(func): if isinstance(func, curry): func = func._partial if isinstance(func, Compose): first = getattr(func, 'first', None) funcs = reversed((first,) + func.funcs) if first else func.funcs return tuple(normalize_function(f) for f in funcs) elif isinstance(func, partial): kws = tuple(sorted(func.keywords.items())) if func.keywords else () return (normalize_function(func.func), func.args, kws) else: return str(func) normalize_token = Dispatch() normalize_token.register((int, float, str, unicode, bytes, type(None), type, slice), identity) @partial(normalize_token.register, dict) def normalize_dict(d): return normalize_token(sorted(d.items())) @partial(normalize_token.register, (tuple, list, set)) def normalize_seq(seq): return type(seq).__name__, list(map(normalize_token, seq)) @partial(normalize_token.register, object) def normalize_object(o): if callable(o): return normalize_function(o) else: return uuid.uuid4().hex @partial(normalize_token.register, Base) def normalize_base(b): return type(b).__name__, b.key with ignoring(ImportError): import pandas as pd @partial(normalize_token.register, pd.Index) def normalize_index(ind): return [ind.name, normalize_token(ind.values)] @partial(normalize_token.register, pd.Categorical) def normalize_categorical(cat): return [normalize_token(cat.codes), normalize_token(cat.categories), cat.ordered] @partial(normalize_token.register, pd.Series) def normalize_series(s): return [s.name, s.dtype, normalize_token(s._data.blocks[0].values), normalize_token(s.index)] @partial(normalize_token.register, pd.DataFrame) def normalize_dataframe(df): data = [block.values for block in df._data.blocks] data += [df.columns, df.index] return list(map(normalize_token, data)) with ignoring(ImportError): import numpy as np @partial(normalize_token.register, np.ndarray) def normalize_array(x): if not x.shape: return (str(x), x.dtype) if hasattr(x, 'mode') and hasattr(x, 'filename'): return x.filename, os.path.getmtime(x.filename), x.dtype, x.shape if x.dtype.hasobject: try: data = md5('-'.join(x.flat)).hexdigest() except TypeError: data = md5(b'-'.join([str(item).encode() for item in x.flat])).hexdigest() else: try: data = md5(x.ravel().view('i1').data).hexdigest() except (BufferError, AttributeError, ValueError): data = md5(x.copy().ravel().view('i1').data).hexdigest() return (data, x.dtype, x.shape, x.strides) normalize_token.register(np.dtype, repr) normalize_token.register(np.generic, repr) with ignoring(ImportError): from collections import OrderedDict @partial(normalize_token.register, OrderedDict) def normalize_ordered_dict(d): return type(d).__name__, normalize_token(list(d.items())) def tokenize(*args, **kwargs): """ Deterministic token >>> tokenize([1, 2, '3']) '7d6a880cd9ec03506eee6973ff551339' >>> tokenize('Hello') == tokenize('Hello') True """ if kwargs: args = args + (kwargs,) return md5(str(tuple(map(normalize_token, args))).encode()).hexdigest()
{ "repo_name": "vikhyat/dask", "path": "dask/base.py", "copies": "1", "size": "7836", "license": "bsd-3-clause", "hash": 5843821734337380000, "line_mean": 31.65, "line_max": 90, "alpha_frac": 0.6010719755, "autogenerated": false, "ratio": 3.8506142506142504, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.495168622611425, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from functools import partial from hashlib import md5 from operator import attrgetter import pickle import os import uuid import warnings from toolz import merge, groupby, curry, identity from toolz.functoolz import Compose from .compatibility import bind_method, unicode from .context import _globals from .utils import Dispatch, ignoring __all__ = ("Base", "compute", "normalize_token", "tokenize", "visualize") class Base(object): """Base class for dask collections""" def visualize(self, filename='mydask', format=None, optimize_graph=False, **kwargs): """ Render the computation of this object's task graph using graphviz. Requires ``graphviz`` to be installed. Parameters ---------- filename : str or None, optional The name (without an extension) of the file to write to disk. If `filename` is None, no file will be written, and we communicate with dot using only pipes. format : {'png', 'pdf', 'dot', 'svg', 'jpeg', 'jpg'}, optional Format in which to write output file. Default is 'png'. optimize_graph : bool, optional If True, the graph is optimized before rendering. Otherwise, the graph is displayed as is. Default is False. **kwargs Additional keyword arguments to forward to ``to_graphviz``. Returns ------- result : IPython.diplay.Image, IPython.display.SVG, or None See dask.dot.dot_graph for more information. See also -------- dask.base.visualize dask.dot.dot_graph Notes ----- For more information on optimization see here: http://dask.pydata.org/en/latest/optimize.html """ return visualize(self, filename=filename, format=format, optimize_graph=optimize_graph, **kwargs) def _visualize(self, filename='mydask', format=None, optimize_graph=False): warn = DeprecationWarning("``_visualize`` is deprecated, use " "``visualize`` instead.") warnings.warn(warn) return self.visualize(filename=filename, format=format, optimize_graph=optimize_graph) def compute(self, **kwargs): """Compute several dask collections at once. Parameters ---------- get : callable, optional A scheduler ``get`` function to use. If not provided, the default is to check the global settings first, and then fall back to the collection defaults. optimize_graph : bool, optional If True [default], the graph is optimized before computation. Otherwise the graph is run as is. This can be useful for debugging. kwargs Extra keywords to forward to the scheduler ``get`` function. """ return compute(self, **kwargs)[0] @classmethod def _get(cls, dsk, keys, get=None, **kwargs): get = get or _globals['get'] or cls._default_get dsk2 = cls._optimize(dsk, keys, **kwargs) return get(dsk2, keys, **kwargs) @classmethod def _bind_operator(cls, op): """ bind operator to this class """ name = op.__name__ if name.endswith('_'): # for and_ and or_ name = name[:-1] elif name == 'inv': name = 'invert' meth = '__{0}__'.format(name) if name in ('abs', 'invert', 'neg', 'pos'): bind_method(cls, meth, cls._get_unary_operator(op)) else: bind_method(cls, meth, cls._get_binary_operator(op)) if name in ('eq', 'gt', 'ge', 'lt', 'le', 'ne', 'getitem'): return rmeth = '__r{0}__'.format(name) bind_method(cls, rmeth, cls._get_binary_operator(op, inv=True)) @classmethod def _get_unary_operator(cls, op): """ Must return a method used by unary operator """ raise NotImplementedError @classmethod def _get_binary_operator(cls, op, inv=False): """ Must return a method used by binary operator """ raise NotImplementedError def compute(*args, **kwargs): """Compute several dask collections at once. Parameters ---------- args : object Any number of objects. If the object is a dask collection, it's computed and the result is returned. Otherwise it's passed through unchanged. get : callable, optional A scheduler ``get`` function to use. If not provided, the default is to check the global settings first, and then fall back to defaults for the collections. optimize_graph : bool, optional If True [default], the optimizations for each collection are applied before computation. Otherwise the graph is run as is. This can be useful for debugging. kwargs Extra keywords to forward to the scheduler ``get`` function. Examples -------- >>> import dask.array as da >>> a = da.arange(10, chunks=2).sum() >>> b = da.arange(10, chunks=2).mean() >>> compute(a, b) (45, 4.5) """ variables = [a for a in args if isinstance(a, Base)] if not variables: return args get = kwargs.pop('get', None) or _globals['get'] if not get: get = variables[0]._default_get if not all(a._default_get == get for a in variables): raise ValueError("Compute called on multiple collections with " "differing default schedulers. Please specify a " "scheduler `get` function using either " "the `get` kwarg or globally with `set_options`.") if kwargs.get('optimize_graph', True): groups = groupby(attrgetter('_optimize'), variables) dsk = merge([opt(merge([v.dask for v in val]), [v._keys() for v in val], **kwargs) for opt, val in groups.items()]) else: dsk = merge(var.dask for var in variables) keys = [var._keys() for var in variables] results = get(dsk, keys, **kwargs) results_iter = iter(results) return tuple(a if not isinstance(a, Base) else a._finalize(next(results_iter)) for a in args) def visualize(*args, **kwargs): """ Visualize several dask graphs at once. Requires ``graphviz`` to be installed. All options that are not the dask graph(s) should be passed as keyword arguments. Parameters ---------- dsk : dict(s) or collection(s) The dask graph(s) to visualize. filename : str or None, optional The name (without an extension) of the file to write to disk. If `filename` is None, no file will be written, and we communicate with dot using only pipes. format : {'png', 'pdf', 'dot', 'svg', 'jpeg', 'jpg'}, optional Format in which to write output file. Default is 'png'. optimize_graph : bool, optional If True, the graph is optimized before rendering. Otherwise, the graph is displayed as is. Default is False. **kwargs Additional keyword arguments to forward to ``to_graphviz``. Returns ------- result : IPython.diplay.Image, IPython.display.SVG, or None See dask.dot.dot_graph for more information. See also -------- dask.dot.dot_graph Notes ----- For more information on optimization see here: http://dask.pydata.org/en/latest/optimize.html """ dsks = [arg for arg in args if isinstance(arg, dict)] args = [arg for arg in args if isinstance(arg, Base)] filename = kwargs.pop('filename', 'mydask') optimize_graph = kwargs.pop('optimize_graph', False) from dask.dot import dot_graph if optimize_graph: dsks.extend([arg._optimize(arg.dask, arg._keys()) for arg in args]) else: dsks.extend([arg.dask for arg in args]) dsk = merge(dsks) return dot_graph(dsk, filename=filename, **kwargs) def normalize_function(func): if isinstance(func, curry): func = func._partial if isinstance(func, Compose): first = getattr(func, 'first', None) funcs = reversed((first,) + func.funcs) if first else func.funcs return tuple(normalize_function(f) for f in funcs) elif isinstance(func, partial): kws = tuple(sorted(func.keywords.items())) if func.keywords else () return (normalize_function(func.func), func.args, kws) else: try: return pickle.dumps(func, protocol=0) except: try: import cloudpickle return cloudpickle.dumps(func, protocol=0) except: return str(func) normalize_token = Dispatch() normalize_token.register((int, float, str, unicode, bytes, type(None), type, slice), identity) @partial(normalize_token.register, dict) def normalize_dict(d): return normalize_token(sorted(d.items(), key=str)) @partial(normalize_token.register, (tuple, list, set)) def normalize_seq(seq): return type(seq).__name__, list(map(normalize_token, seq)) @partial(normalize_token.register, object) def normalize_object(o): if callable(o): return normalize_function(o) else: return uuid.uuid4().hex @partial(normalize_token.register, Base) def normalize_base(b): return type(b).__name__, b.key with ignoring(ImportError): import pandas as pd @partial(normalize_token.register, pd.Index) def normalize_index(ind): return [ind.name, normalize_token(ind.values)] @partial(normalize_token.register, pd.Categorical) def normalize_categorical(cat): return [normalize_token(cat.codes), normalize_token(cat.categories), cat.ordered] @partial(normalize_token.register, pd.Series) def normalize_series(s): return [s.name, s.dtype, normalize_token(s._data.blocks[0].values), normalize_token(s.index)] @partial(normalize_token.register, pd.DataFrame) def normalize_dataframe(df): data = [block.values for block in df._data.blocks] data += [df.columns, df.index] return list(map(normalize_token, data)) with ignoring(ImportError): import numpy as np @partial(normalize_token.register, np.ndarray) def normalize_array(x): if not x.shape: return (str(x), x.dtype) if hasattr(x, 'mode') and hasattr(x, 'filename'): return x.filename, os.path.getmtime(x.filename), x.dtype, x.shape if x.dtype.hasobject: try: data = md5('-'.join(x.flat).encode('utf-8')).hexdigest() except TypeError: data = md5(b'-'.join([str(item).encode() for item in x.flat])).hexdigest() else: try: data = md5(x.ravel().view('i1').data).hexdigest() except (BufferError, AttributeError, ValueError): data = md5(x.copy().ravel().view('i1').data).hexdigest() return (data, x.dtype, x.shape, x.strides) normalize_token.register(np.dtype, repr) normalize_token.register(np.generic, repr) with ignoring(ImportError): from collections import OrderedDict @partial(normalize_token.register, OrderedDict) def normalize_ordered_dict(d): return type(d).__name__, normalize_token(list(d.items())) def tokenize(*args, **kwargs): """ Deterministic token >>> tokenize([1, 2, '3']) '7d6a880cd9ec03506eee6973ff551339' >>> tokenize('Hello') == tokenize('Hello') True """ if kwargs: args = args + (kwargs,) return md5(str(tuple(map(normalize_token, args))).encode()).hexdigest()
{ "repo_name": "mikegraham/dask", "path": "dask/base.py", "copies": "2", "size": "11960", "license": "bsd-3-clause", "hash": -5314435182935780000, "line_mean": 32.7853107345, "line_max": 90, "alpha_frac": 0.6008361204, "autogenerated": false, "ratio": 4.1015089163237315, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5702345036723732, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from functools import partial from hashlib import md5 from operator import attrgetter import pickle import os import uuid from toolz import merge, groupby, curry, identity from toolz.functoolz import Compose from .compatibility import bind_method, unicode from .context import _globals from .utils import Dispatch, ignoring __all__ = ("Base", "compute", "normalize_token", "tokenize", "visualize") class Base(object): """Base class for dask collections""" def visualize(self, filename='mydask', format=None, optimize_graph=False, **kwargs): """ Render the computation of this object's task graph using graphviz. Requires ``graphviz`` to be installed. Parameters ---------- filename : str or None, optional The name (without an extension) of the file to write to disk. If `filename` is None, no file will be written, and we communicate with dot using only pipes. format : {'png', 'pdf', 'dot', 'svg', 'jpeg', 'jpg'}, optional Format in which to write output file. Default is 'png'. optimize_graph : bool, optional If True, the graph is optimized before rendering. Otherwise, the graph is displayed as is. Default is False. **kwargs Additional keyword arguments to forward to ``to_graphviz``. Returns ------- result : IPython.diplay.Image, IPython.display.SVG, or None See dask.dot.dot_graph for more information. See also -------- dask.base.visualize dask.dot.dot_graph Notes ----- For more information on optimization see here: http://dask.pydata.org/en/latest/optimize.html """ return visualize(self, filename=filename, format=format, optimize_graph=optimize_graph, **kwargs) def compute(self, **kwargs): """Compute several dask collections at once. Parameters ---------- get : callable, optional A scheduler ``get`` function to use. If not provided, the default is to check the global settings first, and then fall back to the collection defaults. optimize_graph : bool, optional If True [default], the graph is optimized before computation. Otherwise the graph is run as is. This can be useful for debugging. kwargs Extra keywords to forward to the scheduler ``get`` function. """ return compute(self, **kwargs)[0] @classmethod def _get(cls, dsk, keys, get=None, **kwargs): get = get or _globals['get'] or cls._default_get dsk2 = cls._optimize(dsk, keys, **kwargs) return get(dsk2, keys, **kwargs) @classmethod def _bind_operator(cls, op): """ bind operator to this class """ name = op.__name__ if name.endswith('_'): # for and_ and or_ name = name[:-1] elif name == 'inv': name = 'invert' meth = '__{0}__'.format(name) if name in ('abs', 'invert', 'neg', 'pos'): bind_method(cls, meth, cls._get_unary_operator(op)) else: bind_method(cls, meth, cls._get_binary_operator(op)) if name in ('eq', 'gt', 'ge', 'lt', 'le', 'ne', 'getitem'): return rmeth = '__r{0}__'.format(name) bind_method(cls, rmeth, cls._get_binary_operator(op, inv=True)) @classmethod def _get_unary_operator(cls, op): """ Must return a method used by unary operator """ raise NotImplementedError @classmethod def _get_binary_operator(cls, op, inv=False): """ Must return a method used by binary operator """ raise NotImplementedError def compute(*args, **kwargs): """Compute several dask collections at once. Parameters ---------- args : object Any number of objects. If the object is a dask collection, it's computed and the result is returned. Otherwise it's passed through unchanged. get : callable, optional A scheduler ``get`` function to use. If not provided, the default is to check the global settings first, and then fall back to defaults for the collections. optimize_graph : bool, optional If True [default], the optimizations for each collection are applied before computation. Otherwise the graph is run as is. This can be useful for debugging. kwargs Extra keywords to forward to the scheduler ``get`` function. Examples -------- >>> import dask.array as da >>> a = da.arange(10, chunks=2).sum() >>> b = da.arange(10, chunks=2).mean() >>> compute(a, b) (45, 4.5) """ variables = [a for a in args if isinstance(a, Base)] if not variables: return args get = kwargs.pop('get', None) or _globals['get'] optimizations = (kwargs.pop('optimizations', None) or _globals.get('optimizations', [])) if not get: get = variables[0]._default_get if not all(a._default_get == get for a in variables): raise ValueError("Compute called on multiple collections with " "differing default schedulers. Please specify a " "scheduler `get` function using either " "the `get` kwarg or globally with `set_options`.") if kwargs.get('optimize_graph', True): groups = groupby(attrgetter('_optimize'), variables) groups = {opt: [merge([v.dask for v in val]), [v._keys() for v in val]] for opt, val in groups.items()} for opt in optimizations: groups = {k: [opt(dsk, keys), keys] for k, (dsk, keys) in groups.items()} dsk = merge([opt(dsk, keys, **kwargs) for opt, (dsk, keys) in groups.items()]) else: dsk = merge(var.dask for var in variables) keys = [var._keys() for var in variables] results = get(dsk, keys, **kwargs) results_iter = iter(results) return tuple(a if not isinstance(a, Base) else a._finalize(next(results_iter)) for a in args) def visualize(*args, **kwargs): """ Visualize several dask graphs at once. Requires ``graphviz`` to be installed. All options that are not the dask graph(s) should be passed as keyword arguments. Parameters ---------- dsk : dict(s) or collection(s) The dask graph(s) to visualize. filename : str or None, optional The name (without an extension) of the file to write to disk. If `filename` is None, no file will be written, and we communicate with dot using only pipes. format : {'png', 'pdf', 'dot', 'svg', 'jpeg', 'jpg'}, optional Format in which to write output file. Default is 'png'. optimize_graph : bool, optional If True, the graph is optimized before rendering. Otherwise, the graph is displayed as is. Default is False. **kwargs Additional keyword arguments to forward to ``to_graphviz``. Returns ------- result : IPython.diplay.Image, IPython.display.SVG, or None See dask.dot.dot_graph for more information. See also -------- dask.dot.dot_graph Notes ----- For more information on optimization see here: http://dask.pydata.org/en/latest/optimize.html """ dsks = [arg for arg in args if isinstance(arg, dict)] args = [arg for arg in args if isinstance(arg, Base)] filename = kwargs.pop('filename', 'mydask') optimize_graph = kwargs.pop('optimize_graph', False) from dask.dot import dot_graph if optimize_graph: dsks.extend([arg._optimize(arg.dask, arg._keys()) for arg in args]) else: dsks.extend([arg.dask for arg in args]) dsk = merge(dsks) return dot_graph(dsk, filename=filename, **kwargs) def normalize_function(func): if isinstance(func, curry): func = func._partial if isinstance(func, Compose): first = getattr(func, 'first', None) funcs = reversed((first,) + func.funcs) if first else func.funcs return tuple(normalize_function(f) for f in funcs) elif isinstance(func, partial): kws = tuple(sorted(func.keywords.items())) if func.keywords else () return (normalize_function(func.func), func.args, kws) else: try: result = pickle.dumps(func, protocol=0) if b'__main__' not in result: # abort on dynamic functions return result except: pass try: import cloudpickle return cloudpickle.dumps(func, protocol=0) except: return str(func) normalize_token = Dispatch() normalize_token.register((int, float, str, unicode, bytes, type(None), type, slice), identity) @partial(normalize_token.register, dict) def normalize_dict(d): return normalize_token(sorted(d.items(), key=str)) @partial(normalize_token.register, (tuple, list, set)) def normalize_seq(seq): return type(seq).__name__, list(map(normalize_token, seq)) @partial(normalize_token.register, object) def normalize_object(o): if callable(o): return normalize_function(o) else: return uuid.uuid4().hex @partial(normalize_token.register, Base) def normalize_base(b): return type(b).__name__, b.key with ignoring(ImportError): import pandas as pd @partial(normalize_token.register, pd.Index) def normalize_index(ind): return [ind.name, normalize_token(ind.values)] @partial(normalize_token.register, pd.Categorical) def normalize_categorical(cat): return [normalize_token(cat.codes), normalize_token(cat.categories), cat.ordered] @partial(normalize_token.register, pd.Series) def normalize_series(s): return [s.name, s.dtype, normalize_token(s._data.blocks[0].values), normalize_token(s.index)] @partial(normalize_token.register, pd.DataFrame) def normalize_dataframe(df): data = [block.values for block in df._data.blocks] data += [df.columns, df.index] return list(map(normalize_token, data)) with ignoring(ImportError): import numpy as np @partial(normalize_token.register, np.ndarray) def normalize_array(x): if not x.shape: return (str(x), x.dtype) if hasattr(x, 'mode') and getattr(x, 'filename', None): if hasattr(x.base, 'ctypes'): offset = (x.ctypes.get_as_parameter().value - x.base.ctypes.get_as_parameter().value) else: offset = 0 # root memmap's have mmap object as base return (x.filename, os.path.getmtime(x.filename), x.dtype, x.shape, x.strides, offset) if x.dtype.hasobject: try: data = md5('-'.join(x.flat).encode('utf-8')).hexdigest() except TypeError: data = md5(b'-'.join([str(item).encode() for item in x.flat])).hexdigest() else: try: data = md5(x.ravel().view('i1').data).hexdigest() except (BufferError, AttributeError, ValueError): data = md5(x.copy().ravel().view('i1').data).hexdigest() return (data, x.dtype, x.shape, x.strides) normalize_token.register(np.dtype, repr) normalize_token.register(np.generic, repr) with ignoring(ImportError): from collections import OrderedDict @partial(normalize_token.register, OrderedDict) def normalize_ordered_dict(d): return type(d).__name__, normalize_token(list(d.items())) def tokenize(*args, **kwargs): """ Deterministic token >>> tokenize([1, 2, '3']) '7d6a880cd9ec03506eee6973ff551339' >>> tokenize('Hello') == tokenize('Hello') True """ if kwargs: args = args + (kwargs,) return md5(str(tuple(map(normalize_token, args))).encode()).hexdigest()
{ "repo_name": "jeffery-do/Vizdoombot", "path": "doom/lib/python3.5/site-packages/dask/base.py", "copies": "1", "size": "12334", "license": "mit", "hash": -2786354958232452000, "line_mean": 32.5163043478, "line_max": 90, "alpha_frac": 0.5946165072, "autogenerated": false, "ratio": 4.086812458581842, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5181428965781842, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from functools import partial from itertools import chain import datashape from datashape import ( DataShape, Option, Record, Unit, dshape, var, Fixed, Var, promote, object_, ) from datashape.predicates import isscalar, iscollection, isrecord from toolz import ( isdistinct, frequencies, concat as tconcat, unique, get, first, compose, keymap, ) import toolz.curried.operator as op from odo.utils import copydoc from .core import common_subexpression from .expressions import Expr, ElemWise, label, Field from .expressions import dshape_method_list from ..compatibility import zip_longest, _strtypes from ..utils import listpack __all__ = ['Sort', 'Distinct', 'Head', 'Merge', 'IsIn', 'isin', 'distinct', 'merge', 'head', 'sort', 'Join', 'join', 'transform', 'Concat', 'concat', 'Tail', 'tail'] class Sort(Expr): """ Table in sorted order Examples -------- >>> from blaze import symbol >>> accounts = symbol('accounts', 'var * {name: string, amount: int}') >>> accounts.sort('amount', ascending=False).schema dshape("{name: string, amount: int32}") Some backends support sorting by arbitrary rowwise tables, e.g. >>> accounts.sort(-accounts.amount) # doctest: +SKIP """ __slots__ = '_hash', '_child', '_key', 'ascending' @property def dshape(self): return self._child.dshape @property def key(self): if self._key is () or self._key is None: return self._child.fields[0] if isinstance(self._key, tuple): return list(self._key) else: return self._key def _len(self): return self._child._len() @property def _name(self): return self._child._name def __str__(self): return "%s.sort(%s, ascending=%s)" % (self._child, repr(self._key), self.ascending) def sort(child, key=None, ascending=True): """ Sort a collection Parameters ---------- key : str, list of str, or Expr Defines by what you want to sort. * A single column string: ``t.sort('amount')`` * A list of column strings: ``t.sort(['name', 'amount'])`` * An expression: ``t.sort(-t.amount)`` ascending : bool, optional Determines order of the sort """ if not isrecord(child.dshape.measure): key = None if isinstance(key, list): key = tuple(key) return Sort(child, key, ascending) class Distinct(Expr): """ Remove duplicate elements from an expression Parameters ---------- on : tuple of :class:`~blaze.expr.expressions.Field` The subset of fields or names of fields to be distinct on. Examples -------- >>> from blaze import symbol >>> t = symbol('t', 'var * {name: string, amount: int, id: int}') >>> e = distinct(t) >>> data = [('Alice', 100, 1), ... ('Bob', 200, 2), ... ('Alice', 100, 1)] >>> from blaze.compute.python import compute >>> sorted(compute(e, data)) [('Alice', 100, 1), ('Bob', 200, 2)] Use a subset by passing `on`: >>> import pandas as pd >>> e = distinct(t, 'name') >>> data = pd.DataFrame([['Alice', 100, 1], ... ['Alice', 200, 2], ... ['Bob', 100, 1], ... ['Bob', 200, 2]], ... columns=['name', 'amount', 'id']) >>> compute(e, data) name amount id 0 Alice 100 1 1 Bob 100 1 """ __slots__ = '_hash', '_child', 'on' @property def dshape(self): return datashape.var * self._child.dshape.measure @property def fields(self): return self._child.fields @property def _name(self): return self._child._name def __str__(self): return 'distinct({child}{on})'.format( child=self._child, on=(', ' if self.on else '') + ', '.join(map(str, self.on)) ) @copydoc(Distinct) def distinct(expr, *on): fields = frozenset(expr.fields) _on = [] append = _on.append for n in on: if isinstance(n, Field): if n._child.isidentical(expr): n = n._name else: raise ValueError('{0} is not a field of {1}'.format(n, expr)) if not isinstance(n, _strtypes): raise TypeError('on must be a name or field, not: {0}'.format(n)) elif n not in fields: raise ValueError('{0} is not a field of {1}'.format(n, expr)) append(n) return Distinct(expr, tuple(_on)) class _HeadOrTail(Expr): __slots__ = '_hash', '_child', 'n' @property def dshape(self): return self.n * self._child.dshape.subshape[0] def _len(self): return min(self._child._len(), self.n) @property def _name(self): return self._child._name def __str__(self): return '%s.%s(%d)' % (self._child, type(self).__name__.lower(), self.n) class Head(_HeadOrTail): """ First `n` elements of collection Examples -------- >>> from blaze import symbol >>> accounts = symbol('accounts', 'var * {name: string, amount: int}') >>> accounts.head(5).dshape dshape("5 * {name: string, amount: int32}") See Also -------- blaze.expr.collections.Tail """ pass @copydoc(Head) def head(child, n=10): return Head(child, n) class Tail(_HeadOrTail): """ Last `n` elements of collection Examples -------- >>> from blaze import symbol >>> accounts = symbol('accounts', 'var * {name: string, amount: int}') >>> accounts.tail(5).dshape dshape("5 * {name: string, amount: int32}") See Also -------- blaze.expr.collections.Head """ pass @copydoc(Tail) def tail(child, n=10): return Tail(child, n) def transform(t, replace=True, **kwargs): """ Add named columns to table >>> from blaze import symbol >>> t = symbol('t', 'var * {x: int, y: int}') >>> transform(t, z=t.x + t.y).fields ['x', 'y', 'z'] """ if replace and set(t.fields).intersection(set(kwargs)): t = t[[c for c in t.fields if c not in kwargs]] args = [t] + [v.label(k) for k, v in sorted(kwargs.items(), key=first)] return merge(*args) def schema_concat(exprs): """ Concatenate schemas together. Supporting both Records and Units In the case of Units, the name is taken from expr.name """ names, values = [], [] for c in exprs: schema = c.schema[0] if isinstance(schema, Option): schema = schema.ty if isinstance(schema, Record): names.extend(schema.names) values.extend(schema.types) elif isinstance(schema, Unit): names.append(c._name) values.append(schema) else: raise TypeError("All schemas must have Record or Unit shape." "\nGot %s" % c.schema[0]) return dshape(Record(list(zip(names, values)))) class Merge(ElemWise): """ Merge many fields together Examples -------- >>> from blaze import symbol >>> accounts = symbol('accounts', 'var * {name: string, x: int, y: real}') >>> merge(accounts.name, z=accounts.x + accounts.y).fields ['name', 'z'] """ __slots__ = '_hash', '_child', 'children' @property def schema(self): return schema_concat(self.children) @property def fields(self): return list(tconcat(child.fields for child in self.children)) def _subterms(self): yield self for i in self.children: for node in i._subterms(): yield node def _get_field(self, key): for child in self.children: if key in child.fields: if isscalar(child.dshape.measure): return child else: return child[key] def _project(self, key): if not isinstance(key, (tuple, list)): raise TypeError("Expected tuple or list, got %s" % key) return merge(*[self[c] for c in key]) def _leaves(self): return list(unique(tconcat(i._leaves() for i in self.children))) @copydoc(Merge) def merge(*exprs, **kwargs): if len(exprs) + len(kwargs) == 1: if exprs: return exprs[0] if kwargs: [(k, v)] = kwargs.items() return v.label(k) # Get common sub expression exprs += tuple(label(v, k) for k, v in sorted(kwargs.items(), key=first)) try: child = common_subexpression(*exprs) except Exception: raise ValueError("No common subexpression found for input expressions") result = Merge(child, exprs) if not isdistinct(result.fields): raise ValueError( "Repeated columns found: " + ', '.join( k for k, v in frequencies(result.fields).items() if v > 1 ), ) return result def unpack(l): """ Unpack items from collections of nelements 1 >>> unpack('hello') 'hello' >>> unpack(['hello']) 'hello' """ if isinstance(l, (tuple, list, set)) and len(l) == 1: return next(iter(l)) else: return l class Join(Expr): """ Join two tables on common columns Parameters ---------- lhs, rhs : Expr Expressions to join on_left : str, optional The fields from the left side to join on. If no ``on_right`` is passed, then these are the fields for both sides. on_right : str, optional The fields from the right side to join on. how : {'inner', 'outer', 'left', 'right'} What type of join to perform. suffixes: pair of str The suffixes to be applied to the left and right sides in order to resolve duplicate field names. Examples -------- >>> from blaze import symbol >>> names = symbol('names', 'var * {name: string, id: int}') >>> amounts = symbol('amounts', 'var * {amount: int, id: int}') Join tables based on shared column name >>> joined = join(names, amounts, 'id') Join based on different column names >>> amounts = symbol('amounts', 'var * {amount: int, acctNumber: int}') >>> joined = join(names, amounts, 'id', 'acctNumber') See Also -------- blaze.expr.collections.Merge """ __slots__ = ( '_hash', 'lhs', 'rhs', '_on_left', '_on_right', 'how', 'suffixes', ) __inputs__ = 'lhs', 'rhs' @property def on_left(self): on_left = self._on_left if isinstance(on_left, tuple): return list(on_left) return on_left @property def on_right(self): on_right = self._on_right if isinstance(on_right, tuple): return list(on_right) return on_right @property def schema(self): """ Examples -------- >>> from blaze import symbol >>> t = symbol('t', 'var * {name: string, amount: int}') >>> s = symbol('t', 'var * {name: string, id: int}') >>> join(t, s).schema dshape("{name: string, amount: int32, id: int32}") >>> join(t, s, how='left').schema dshape("{name: string, amount: int32, id: ?int32}") Overlapping but non-joined fields append _left, _right >>> a = symbol('a', 'var * {x: int, y: int}') >>> b = symbol('b', 'var * {x: int, y: int}') >>> join(a, b, 'x').fields ['x', 'y_left', 'y_right'] """ option = lambda dt: dt if isinstance(dt, Option) else Option(dt) on_left = self.on_left if not isinstance(on_left, list): on_left = on_left, on_right = self.on_right if not isinstance(on_right, list): on_right = on_right, right_types = keymap( dict(zip(on_right, on_left)).get, self.rhs.dshape.measure.dict, ) joined = ( (name, promote(dt, right_types[name], promote_option=False)) for n, (name, dt) in enumerate(filter( compose(op.contains(on_left), first), self.lhs.dshape.measure.fields, )) ) left = [ (name, dt) for name, dt in zip( self.lhs.fields, types_of_fields(self.lhs.fields, self.lhs) ) if name not in on_left ] right = [ (name, dt) for name, dt in zip( self.rhs.fields, types_of_fields(self.rhs.fields, self.rhs) ) if name not in on_right ] # Handle overlapping but non-joined case, e.g. left_other = set(name for name, dt in left if name not in on_left) right_other = set(name for name, dt in right if name not in on_right) overlap = left_other & right_other left_suffix, right_suffix = self.suffixes left = ((name + left_suffix if name in overlap else name, dt) for name, dt in left) right = ((name + right_suffix if name in overlap else name, dt) for name, dt in right) if self.how in ('right', 'outer'): left = ((name, option(dt)) for name, dt in left) if self.how in ('left', 'outer'): right = ((name, option(dt)) for name, dt in right) return dshape(Record(chain(joined, left, right))) @property def dshape(self): # TODO: think if this can be generalized return var * self.schema def types_of_fields(fields, expr): """ Get the types of fields in an expression Examples -------- >>> from blaze import symbol >>> expr = symbol('e', 'var * {x: int64, y: float32}') >>> types_of_fields('y', expr) ctype("float32") >>> types_of_fields(['y', 'x'], expr) (ctype("float32"), ctype("int64")) >>> types_of_fields('x', expr.x) ctype("int64") """ if isinstance(expr.dshape.measure, Record): return get(fields, expr.dshape.measure) else: if isinstance(fields, (tuple, list, set)): assert len(fields) == 1 fields, = fields assert fields == expr._name return expr.dshape.measure @copydoc(Join) def join(lhs, rhs, on_left=None, on_right=None, how='inner', suffixes=('_left', '_right')): if not on_left and not on_right: on_left = on_right = unpack(list(sorted( set(lhs.fields) & set(rhs.fields), key=lhs.fields.index))) if not on_right: on_right = on_left if isinstance(on_left, tuple): on_left = list(on_left) if isinstance(on_right, tuple): on_right = list(on_right) if not on_left or not on_right: raise ValueError( "Can not Join. No shared columns between %s and %s" % (lhs, rhs), ) left_types = listpack(types_of_fields(on_left, lhs)) right_types = listpack(types_of_fields(on_right, rhs)) if len(left_types) != len(right_types): raise ValueError( 'Length of on_left=%d not equal to length of on_right=%d' % ( len(left_types), len(right_types), ), ) for n, promotion in enumerate(map(partial(promote, promote_option=False), left_types, right_types)): if promotion == object_: raise TypeError( "Schema's of joining columns do not match," ' no promotion found for %s=%s and %s=%s' % ( on_left[n], left_types[n], on_right[n], right_types[n], ), ) _on_left = tuple(on_left) if isinstance(on_left, list) else on_left _on_right = (tuple(on_right) if isinstance(on_right, list) else on_right) how = how.lower() if how not in ('inner', 'outer', 'left', 'right'): raise ValueError("How parameter should be one of " "\n\tinner, outer, left, right." "\nGot: %s" % how) return Join(lhs, rhs, _on_left, _on_right, how, suffixes) class Concat(Expr): """ Stack tables on common columns Parameters ---------- lhs, rhs : Expr Collections to concatenate axis : int, optional The axis to concatenate on. Examples -------- >>> from blaze import symbol Vertically stack tables: >>> names = symbol('names', '5 * {name: string, id: int32}') >>> more_names = symbol('more_names', '7 * {name: string, id: int32}') >>> stacked = concat(names, more_names) >>> stacked.dshape dshape("12 * {name: string, id: int32}") Vertically stack matrices: >>> mat_a = symbol('a', '3 * 5 * int32') >>> mat_b = symbol('b', '3 * 5 * int32') >>> vstacked = concat(mat_a, mat_b, axis=0) >>> vstacked.dshape dshape("6 * 5 * int32") Horizontally stack matrices: >>> hstacked = concat(mat_a, mat_b, axis=1) >>> hstacked.dshape dshape("3 * 10 * int32") See Also -------- blaze.expr.collections.Merge """ __slots__ = '_hash', 'lhs', 'rhs', 'axis' __inputs__ = 'lhs', 'rhs' @property def dshape(self): axis = self.axis ldshape = self.lhs.dshape lshape = ldshape.shape return DataShape( *(lshape[:axis] + ( _shape_add(lshape[axis], self.rhs.dshape.shape[axis]), ) + lshape[axis + 1:] + (ldshape.measure,)) ) def _shape_add(a, b): if isinstance(a, Var) or isinstance(b, Var): return var return Fixed(a.val + b.val) @copydoc(Concat) def concat(lhs, rhs, axis=0): ldshape = lhs.dshape rdshape = rhs.dshape if ldshape.measure != rdshape.measure: raise TypeError( 'Mismatched measures: {l} != {r}'.format( l=ldshape.measure, r=rdshape.measure ), ) lshape = ldshape.shape rshape = rdshape.shape for n, (a, b) in enumerate(zip_longest(lshape, rshape, fillvalue=None)): if n != axis and a != b: raise TypeError( 'Shapes are not equal along axis {n}: {a} != {b}'.format( n=n, a=a, b=b, ), ) if axis < 0 or 0 < len(lshape) <= axis: raise ValueError( "Invalid axis '{a}', must be in range: [0, {n})".format( a=axis, n=len(lshape) ), ) return Concat(lhs, rhs, axis) class IsIn(ElemWise): """Check if an expression contains values from a set. Return a boolean expression indicating whether another expression contains values that are members of a collection. Parameters ---------- expr : Expr Expression whose elements to check for membership in `keys` keys : Sequence Elements to test against. Blaze stores this as a ``frozenset``. Examples -------- Check if a vector contains any of 1, 2 or 3: >>> from blaze import symbol >>> t = symbol('t', '10 * int64') >>> expr = t.isin([1, 2, 3]) >>> expr.dshape dshape("10 * bool") """ __slots__ = '_hash', '_child', '_keys' @property def schema(self): return datashape.bool_ def __str__(self): return '%s.%s(%s)' % (self._child, type(self).__name__.lower(), self._keys) @copydoc(IsIn) def isin(expr, keys): if isinstance(keys, Expr): raise TypeError('keys argument cannot be an expression, ' 'it must be an iterable object such as a list, ' 'tuple or set') return IsIn(expr, frozenset(keys)) dshape_method_list.extend([ (iscollection, set([sort, head, tail])), (lambda ds: len(ds.shape) == 1, set([distinct])), (lambda ds: len(ds.shape) == 1 and isscalar(ds.measure), set([isin])), ])
{ "repo_name": "alexmojaki/blaze", "path": "blaze/expr/collections.py", "copies": "1", "size": "20040", "license": "bsd-3-clause", "hash": 9182114499936217000, "line_mean": 26.8720445063, "line_max": 79, "alpha_frac": 0.5426147705, "autogenerated": false, "ratio": 3.7193763919821827, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9761432293936956, "avg_score": 0.00011177370904541441, "num_lines": 719 }
from __future__ import absolute_import, division, print_function from functools import partial from itertools import product import numpy as np from toolz import curry from ..base import tokenize from .core import Array, normalize_chunks from .numpy_compat import full def dims_from_size(size, blocksize): """ >>> list(dims_from_size(30, 8)) [8, 8, 8, 6] """ result = (blocksize,) * (size // blocksize) if size % blocksize: result = result + (size % blocksize,) return result def wrap_func_shape_as_first_arg(func, *args, **kwargs): """ Transform np creation function into blocked version """ if 'shape' not in kwargs: shape, args = args[0], args[1:] else: shape = kwargs.pop('shape') if not isinstance(shape, (tuple, list)): shape = (shape,) chunks = kwargs.pop('chunks', None) chunks = normalize_chunks(chunks, shape) name = kwargs.pop('name', None) dtype = kwargs.pop('dtype', None) if dtype is None: dtype = func(shape, *args, **kwargs).dtype name = name or 'wrapped-' + tokenize(func, shape, chunks, dtype, args, kwargs) keys = product([name], *[range(len(bd)) for bd in chunks]) shapes = product(*chunks) func = partial(func, dtype=dtype, **kwargs) vals = ((func,) + (s,) + args for s in shapes) dsk = dict(zip(keys, vals)) return Array(dsk, name, chunks, dtype=dtype) @curry def wrap(wrap_func, func, **kwargs): f = partial(wrap_func, func, **kwargs) template = """ Blocked variant of %(name)s Follows the signature of %(name)s exactly except that it also requires a keyword argument chunks=(...) Original signature follows below. """ if func.__doc__ is not None: f.__doc__ = template % {'name': func.__name__} + func.__doc__ f.__name__ = 'blocked_' + func.__name__ return f w = wrap(wrap_func_shape_as_first_arg) ones = w(np.ones, dtype='f8') zeros = w(np.zeros, dtype='f8') empty = w(np.empty, dtype='f8') full = w(full)
{ "repo_name": "jeffery-do/Vizdoombot", "path": "doom/lib/python3.5/site-packages/dask/array/wrap.py", "copies": "3", "size": "2043", "license": "mit", "hash": -478737828738086340, "line_mean": 24.8607594937, "line_max": 82, "alpha_frac": 0.6172295644, "autogenerated": false, "ratio": 3.4804088586030666, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.00015250876925423213, "num_lines": 79 }
from __future__ import absolute_import, division, print_function from functools import partial from itertools import product import numpy as np try: from cytoolz import curry except ImportError: from toolz import curry from ..base import tokenize from .core import Array, normalize_chunks from .numpy_compat import full def dims_from_size(size, blocksize): """ >>> list(dims_from_size(30, 8)) [8, 8, 8, 6] """ result = (blocksize,) * (size // blocksize) if size % blocksize: result = result + (size % blocksize,) return result def wrap_func_shape_as_first_arg(func, *args, **kwargs): """ Transform np creation function into blocked version """ if 'shape' not in kwargs: shape, args = args[0], args[1:] else: shape = kwargs.pop('shape') if not isinstance(shape, (tuple, list)): shape = (shape,) chunks = kwargs.pop('chunks', None) chunks = normalize_chunks(chunks, shape) name = kwargs.pop('name', None) dtype = kwargs.pop('dtype', None) if dtype is None: dtype = func(shape, *args, **kwargs).dtype name = name or 'wrapped-' + tokenize(func, shape, chunks, dtype, args, kwargs) keys = product([name], *[range(len(bd)) for bd in chunks]) shapes = product(*chunks) func = partial(func, dtype=dtype, **kwargs) vals = ((func,) + (s,) + args for s in shapes) dsk = dict(zip(keys, vals)) return Array(dsk, name, chunks, dtype=dtype) @curry def wrap(wrap_func, func, **kwargs): f = partial(wrap_func, func, **kwargs) template = """ Blocked variant of %(name)s Follows the signature of %(name)s exactly except that it also requires a keyword argument chunks=(...) Original signature follows below. """ if func.__doc__ is not None: f.__doc__ = template % {'name': func.__name__} + func.__doc__ f.__name__ = 'blocked_' + func.__name__ return f w = wrap(wrap_func_shape_as_first_arg) ones = w(np.ones, dtype='f8') zeros = w(np.zeros, dtype='f8') empty = w(np.empty, dtype='f8') full = w(full)
{ "repo_name": "cpcloud/dask", "path": "dask/array/wrap.py", "copies": "1", "size": "2103", "license": "bsd-3-clause", "hash": 4928302954157824000, "line_mean": 24.3373493976, "line_max": 82, "alpha_frac": 0.6195910604, "autogenerated": false, "ratio": 3.487562189054726, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.46071532494547257, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from functools import partial from multipledispatch import Dispatcher __all__ = 'select_functions', def match(condition, data): """ Does the condition match the data >>> match(1, 1) True >>> match(int, 1) True >>> match(lambda x: x > 0, 1) True Use tuples for many possibilities >>> match((1, 2, 3), 1) True >>> match((int, float), 1) True """ return ((condition == data) or (isinstance(condition, type) and isinstance(data, condition)) or (not isinstance(condition, type) and callable(condition) and condition(data)) or (isinstance(condition, tuple) and any(match(c, data) for c in condition))) def name(func): """ Name of a function, robust to partials """ if isinstance(func, partial): return name(func.func) elif isinstance(func, Dispatcher): return func.name else: return func.__name__ def select_functions(methods, data): """ Select appropriate functions given types and predicates """ s = set() for condition, funcs in methods: if match(condition, data): s |= funcs return dict((name(func), func) for func in s)
{ "repo_name": "ContinuumIO/blaze", "path": "blaze/expr/method_dispatch.py", "copies": "18", "size": "1334", "license": "bsd-3-clause", "hash": -164464064857052640, "line_mean": 24.1698113208, "line_max": 64, "alpha_frac": 0.5869565217, "autogenerated": false, "ratio": 4.19496855345912, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from functools import partial import itertools import numpy as np from .core import Array, normalize_chunks, stack from .wrap import empty from . import chunk from ..base import tokenize def linspace(start, stop, num=50, chunks=None, dtype=None): """ Return `num` evenly spaced values over the closed interval [`start`, `stop`]. TODO: implement the `endpoint`, `restep`, and `dtype` keyword args Parameters ---------- start : scalar The starting value of the sequence. stop : scalar The last value of the sequence. num : int, optional Number of samples to include in the returned dask array, including the endpoints. chunks : int The number of samples on each block. Note that the last block will have fewer samples if `num % blocksize != 0` Returns ------- samples : dask array See Also -------- dask.array.arange """ num = int(num) if chunks is None: raise ValueError("Must supply a chunks= keyword argument") chunks = normalize_chunks(chunks, (num,)) range_ = stop - start space = float(range_) / (num - 1) if dtype is None: dtype = np.linspace(0, 1, 1).dtype name = 'linspace-' + tokenize((start, stop, num, chunks, dtype)) dsk = {} blockstart = start for i, bs in enumerate(chunks[0]): blockstop = blockstart + ((bs - 1) * space) task = (partial(np.linspace, dtype=dtype), blockstart, blockstop, bs) blockstart = blockstart + (space * bs) dsk[(name, i)] = task return Array(dsk, name, chunks, dtype=dtype) def arange(*args, **kwargs): """ Return evenly spaced values from `start` to `stop` with step size `step`. The values are half-open [start, stop), so including start and excluding stop. This is basically the same as python's range function but for dask arrays. When using a non-integer step, such as 0.1, the results will often not be consistent. It is better to use linspace for these cases. Parameters ---------- start : int, optional The starting value of the sequence. The default is 0. stop : int The end of the interval, this value is excluded from the interval. step : int, optional The spacing between the values. The default is 1 when not specified. The last value of the sequence. chunks : int The number of samples on each block. Note that the last block will have fewer samples if ``len(array) % chunks != 0``. Returns ------- samples : dask array See Also -------- dask.array.linspace """ if len(args) == 1: start = 0 stop = args[0] step = 1 elif len(args) == 2: start = args[0] stop = args[1] step = 1 elif len(args) == 3: start, stop, step = args else: raise TypeError(''' arange takes 3 positional arguments: arange([start], stop, [step]) ''') if 'chunks' not in kwargs: raise ValueError("Must supply a chunks= keyword argument") chunks = kwargs['chunks'] dtype = kwargs.get('dtype', None) if dtype is None: dtype = np.arange(0, 1, step).dtype num = max(np.ceil((stop - start) / step), 0) chunks = normalize_chunks(chunks, (num,)) name = 'arange-' + tokenize((start, stop, step, chunks, num)) dsk = {} elem_count = 0 for i, bs in enumerate(chunks[0]): blockstart = start + (elem_count * step) blockstop = start + ((elem_count + bs) * step) task = (chunk.arange, blockstart, blockstop, step, bs, dtype) dsk[(name, i)] = task elem_count += bs return Array(dsk, name, chunks, dtype=dtype) def indices(dimensions, dtype=int, chunks=None): """ Implements NumPy's ``indices`` for Dask Arrays. Generates a grid of indices covering the dimensions provided. The final array has the shape ``(len(dimensions), *dimensions)``. The chunks are used to specify the chunking for axis 1 up to ``len(dimensions)``. The 0th axis always has chunks of length 1. Parameters ---------- dimensions : sequence of ints The shape of the index grid. dtype : dtype, optional Type to use for the array. Default is ``int``. chunks : sequence of ints The number of samples on each block. Note that the last block will have fewer samples if ``len(array) % chunks != 0``. Returns ------- grid : dask array """ if chunks is None: raise ValueError("Must supply a chunks= keyword argument") dimensions = tuple(dimensions) dtype = np.dtype(dtype) chunks = tuple(chunks) if len(dimensions) != len(chunks): raise ValueError("Need one more chunk than dimensions.") grid = [] if np.prod(dimensions): for i in range(len(dimensions)): s = len(dimensions) * [None] s[i] = slice(None) s = tuple(s) r = arange(dimensions[i], dtype=dtype, chunks=chunks[i]) r = r[s] for j in itertools.chain(range(i), range(i + 1, len(dimensions))): r = r.repeat(dimensions[j], axis=j) grid.append(r) if grid: grid = stack(grid) else: grid = empty( (len(dimensions),) + dimensions, dtype=dtype, chunks=(1,) + chunks ) return grid
{ "repo_name": "mraspaud/dask", "path": "dask/array/creation.py", "copies": "1", "size": "5528", "license": "bsd-3-clause", "hash": -4266472822170771000, "line_mean": 26.9191919192, "line_max": 79, "alpha_frac": 0.5982272069, "autogenerated": false, "ratio": 4.052785923753666, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5151013130653666, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from functools import partial import json import math import os import traceback import PySide2 from pymel.core import Callback, colorEditor, colorIndex, columnLayout, objectType, NurbsCurveCV from pymel.core import palettePort, PyNode, rotate, select, selected, selectedNodes, setParent, warning from ....vendor import Qt from .... import core from .. import controllerShape from .. import rig from .. import cardlister from .. import util if 'SHAPE_DEBUG' not in globals(): SHAPE_DEBUG = False class ShapeEditor(object): ''' def __init__(self): with columnLayout() as self.main: button( l='Select CVs', c=core.alt.Callback(self.selectCVs) ) button( l='Select Pin Head', c=Callback(self.selectPinHead) ) ''' NUM_COLS = 4 CURVE_NAME = 'Fossil_Curve_Colorer' SURFACE_NAME = 'Fossil_Surface_Colorer' def __init__(self, source): self.window = source self.source = source.ui # Not sure this is actually needed yet so keep it hidden. self.controlCardList.hide() if not SHAPE_DEBUG: self.shapeDebug.hide() self.hookupSignals() self.buildShapeMenu(source.scaleFactor) #self.surfaceColorLayout.setObjectName(self.SURFACE_NAME) #setParent( self.SURFACE_NAME ) self.surfaceColorer = SurfaceColorEditor(self.source.surfaceColorGrid) self.curveColorer = CurveColorEditor(self.source.curveColorGrid) self.refresh() """ self.curveColorLayout.setObjectName( self.CURVE_NAME ) setParent( self.CURVE_NAME ) self.refreshCardList() """ def __getattr__(self, name): return getattr( self.source, name) def hookupSignals(self): # Scaling self.minus_one.clicked.connect( Callback(self.scaleCvs, 0.99) ) self.minus_ten.clicked.connect( Callback(self.scaleCvs, 0.90) ) self.plus_ten.clicked.connect( Callback(self.scaleCvs, 1.10) ) self.plus_one.clicked.connect( Callback(self.scaleCvs, 1.01) ) # Rotating self.rot_local_x.clicked.connect( Callback(self.rotate, 'x', 45, 'local') ) self.rot_local_y.clicked.connect( Callback(self.rotate, 'y', 45, 'local') ) self.rot_local_z.clicked.connect( Callback(self.rotate, 'z', 45, 'local') ) self.rot_world_x.clicked.connect( Callback(self.rotate, 'x', 45, 'world') ) self.rot_world_y.clicked.connect( Callback(self.rotate, 'y', 45, 'world') ) self.rot_world_z.clicked.connect( Callback(self.rotate, 'z', 45, 'world') ) # Selecting self.select_cvs.clicked.connect( Callback(self.selectCVs) ) self.select_pin_head.clicked.connect( Callback(self.selectPinHead) ) self.select_band_edge_1.clicked.connect( Callback(self.bandEdge, 1)) self.select_band_edge_2.clicked.connect( Callback(self.bandEdge, 2)) # Shapes self.copyShapes.clicked.connect( Callback(self.transferShape) ) self.mirrorShapes.clicked.connect( Callback(self.transferShape, mirror=True) ) self.mirrorSide.clicked.connect( Callback(lambda: mirrorAllKinematicShapes(selected())) ) #self.mirrorSide.setContextMenuPolicy(Qt.QtCore.Qt.CustomContextMenu) #self.mirrorSide.customContextMenuRequested.connect(self.XXXcontextMenuEvent) self.copyToCBBtn.clicked.connect( Callback(self.copyToClipboad) ) self.pasteLocalBtn.clicked.connect( Callback(self.pasteFromCliboard, 'os') ) self.pasteWorldBtn.clicked.connect( Callback(self.pasteFromCliboard, 'ws') ) def copyToClipboad(self): try: info = controllerShape.getShapeInfo(selected()[0]) s = json.dumps(info) core.text.clipboard.set( s ) except Exception: warning('Unable to copy shapes') def pasteFromCliboard(self, space): ''' Deserialize shape info from the clipboard and apply it, either in space='os', object space, or 'ws', world space. ''' try: info = json.loads( core.text.clipboard.get() ) for obj in selected(): controllerShape.applyShapeInfo(obj, info, space) except Exception: warning('Unable to paste shapes') def XXXcontextMenuEvent(self, point): menu = Qt.QtWidgets.QMenu(self.mirrorSide) menu.addAction('demo') menu.addAction('test') #menu.addAction(self.pasteAct) menu.exec_( self.mirrorSide.mapToGlobal(point) ) @staticmethod def scaleCvs(val): #scaleFactor = [val] * 3 # Scale factor needs to be a 3 vector for all axes. for obj in selected(): controllerShape.scaleAllCVs(obj, val) #for shape in core.shape.getShapes(obj): # scale(shape.cv, scaleFactor, r=True, os=True) @staticmethod def selectPinHead(): sel = selected() if not sel: return # No the best method, assuming it's made of a tube and another shape but # it works for now. tube, outline, head = None, None, None shapes = core.shape.getShapes(sel[0]) # This culls out switchers/vis shapes for shape in shapes[:]: if shape.name().count('tube'): tube = shape shapes.remove(tube) elif shape.name().count('outline'): outline = shape shapes.remove(outline) elif shape.name().count('sharedShape'): shapes.remove(shape) if len(shapes) == 1: head = shapes[0] if tube and outline and head: select(head.cv[0:6][0:5], outline.cv[1:14], tube.cv[3][0:3]) @staticmethod def bandEdge(side): sel = selected() if not sel: return obj = sel[0] # If the selection is a cv, it probably means we're selecting the other side so assume the parent is the obj. if isinstance(obj, NurbsCurveCV): obj = obj.node().getParent() if not obj.hasAttr('shapeType') or obj.shapeType.get() != 'band': return shapes = core.shape.getShapes(obj) if shapes[0].type() == 'nurbsSurface': surface = shapes[0] outline = shapes[1] else: surface = shapes[1] outline = shapes[0] if side == 1: select( outline.cv[0:14], surface.cv[3][0:7] ) else: select( outline.cv[16:32], surface.cv[0][0:7] ) @staticmethod def selectCVs(): sel = selected() select(cl=True) for obj in sel: for shape in core.shape.getShapes(obj): select( shape.cv, add=True ) @staticmethod def rotate(dir, angle, space): rot = [0, 0, 0] rot[ ord(dir) - ord('x') ] = angle trans = [ PyNode(obj) for obj in selectedNodes() if objectType(obj) == 'transform' ] trans += [ PyNode(obj).getParent() for obj in selectedNodes() if objectType(obj).startswith('nurbs') ] for obj in set(trans): for shape in core.shape.getShapes(obj): if space == 'world': rotate( shape.cv, rot, r=True, ws=True ) else: rotate( shape.cv, rot, r=True, os=True ) @staticmethod def transferShape(mirror=False): sel = selected() if len(sel) > 1: for dest in sel[1:]: controllerShape.copyShape(sel[0], dest, mirror=mirror) select(sel) @staticmethod def changeShape(shapeName): sel = selected() if sel: for obj in sel: #if obj.hasAttr( 'fossilCtrlType' ): controllerShape.setShape(obj, shapeName) select(sel) def buildShapeMenu(self, scale): shapeFolder = os.path.dirname( __file__ ).replace('\\', '/') + '/shapes' shapeNames = controllerShape.listShapes() """ Old way had transparent background, but didn't scale the icons if the monitor had a scale set. New version does at the sacrifice of transparent background temp_style = [] template = "QPushButton#%s { background-image: url('%s'); border: none; width: 90; height: 90;}" # padding: 0; margin: 0; for name in shapeNames: temp_style.append( template % (name, shapeFolder + '/' + name + '.png') ) self.window.setStyleSheet( '\n'.join(temp_style) ) """ row = 0 col = 0 for f in os.listdir(shapeFolder): if f.lower().endswith('.png'): shapeName = f[:-4] if shapeName in shapeNames: button = Qt.QtWidgets.QPushButton() button.setFixedSize(64 * scale, 64 * scale) #button.setObjectName(f[:-4]) img = PySide2.QtGui.QPixmap(shapeFolder + '/' + f) img = img.scaled( PySide2.QtCore.QSize( 64 * scale, 64 * scale ), PySide2.QtCore.Qt.AspectRatioMode.IgnoreAspectRatio, PySide2.QtCore.Qt.TransformationMode.SmoothTransformation ) button.setFlat(True) button.setAutoFillBackground(True) button.setIcon( img ) button.setIconSize( img.size() ) button.clicked.connect( Callback(self.changeShape, shapeName) ) self.shape_chooser.addWidget(button, row, col) col += 1 if col >= self.NUM_COLS: col = 0 row += 1 def refreshCardList(self): ''' Form cardLister, use .cardHierarchy() just like it does to refresh it's own list # cardOrder = cardHierarchy() ''' return cards = cardlister.cardHierarchy() cardToItem = {None: self.controlCardList.invisibleRootItem()} for parent, children in cards: for child in children: item = Qt.QtWidgets.QTreeWidgetItem([child.name()]) cardToItem[parent].addChild(item) cardToItem[child] = item item.setExpanded(True) def refresh(self): self.curveColorer.update() if SHAPE_DEBUG: try: # &&& Don't have time for this now.. temp = selected(type='transform') if temp: card = temp[0] else: return if not card.c.__class__.__name__ == 'Card': # &&& Not a great verification this is a card node. main = rig.getMainController(card) if main: card = main.card text = '' try: for attr in ['outputShape' + side + kin for side in ['Left', 'Right', 'Center'] for kin in ['ik', 'fk']]: if card.hasAttr(attr): text += '---- ' + attr + '\n\n' text += core.text.asciiDecompress( card.attr(attr).get() ) + '\n\n' except Exception: print( traceback.format_exc() ) self.shapeDebug.setPlainText(text) except: pass class SurfaceColorEditor(object): WIDTH = 8.0 def __init__(self, grid): self.customColor = [1.0, 1.0, 1.0] """ columnLayout(w=100, h=100) self.surfacePalette = palettePort( dim=(7, 4), w=(7 * 20), h=(4 * 20), td=True, colorEditable=False) """ #self.surfacePalette.changeCommand( core.alt.Callback(self.changeSurfaceColor) ) #self.surfacePalette.setRgbValue( [0] + self.customColor ) #for i, (name, c) in enumerate(core.shader.namedColors.items()): # self.surfacePalette.setRgbValue( [i + 1] + list(c) ) for i, (name, c) in enumerate(core.shader.namedColors.items()): col = i % self.WIDTH row = math.floor(i / self.WIDTH) b = PySide2.QtWidgets.QPushButton(' ') pal = b.palette() pal.setColor(PySide2.QtGui.QPalette.Button, PySide2.QtGui.QColor( c[0] * 255.0, c[1] * 255.0, c[2] * 255.0 ) ) b.setAutoFillBackground(True) b.setPalette(pal) b.clicked.connect( partial(self.changeSurfaceColor, i) ) grid.addWidget( b, row, col) def changeSurfaceColor(self, colorIndex): #colorIndex = self.surfacePalette.getSetCurCell() - 1 if colorIndex == -1: self.defineSurfaceColor() color = self.customColor[:] else: color = list(core.shader.namedColors.values()[colorIndex]) color.append(0.5) sel = selected() for obj in sel: try: core.shader.assign(obj, color) except Exception: pass if sel: select(sel) def defineSurfaceColor(self): val = colorEditor(rgb=self.customColor) if val[-1] == '1': # Control has strange returns, see maya docs self.customColor = [ float(f) for f in val.split()][:-1] self.surfacePalette.setRgbValue( [0] + self.customColor ) palettePort(self.surfacePalette, e=True, redraw=True) return True return False class CurveColorEditor(object): WIDTH = 8 HEIGHT = 4 def __init__(self, grid): self._colorChangeObjs = [] """ columnLayout() self.curvePalette = palettePort( dim=(8, 4), w=(8 * 20), h=(4 * 20), td=True, colorEditable=False, transparent=0) self.curvePalette.changeCommand( core.alt.Callback(self.changeCurveColor) ) for i in range(1, 32): param = [i] + colorIndex(i, q=True) self.curvePalette.setRgbValue( param ) self.curvePalette.setRgbValue( (0, .6, .6, .6) ) """ for i in range(1, 32): col = i % self.WIDTH row = math.floor(i / self.WIDTH) b = PySide2.QtWidgets.QPushButton(' ') pal = b.palette() color = colorIndex(i, q=True) pal.setColor(PySide2.QtGui.QPalette.Button, PySide2.QtGui.QColor( color[0] * 255.0, color[1] * 255.0, color[2] * 255.0 ) ) b.setAutoFillBackground(True) b.setPalette(pal) b.clicked.connect( partial(self.changeCurveColor, i) ) grid.addWidget( b, row, col) def changeCurveColor(self, colorIndex): #colorIndex = self.curvePalette.getSetCurCell() select(cl=True) for obj in self._colorChangeObjs: controllerShape.setCurveColor(obj, colorIndex) def update(self): if selected(): self._colorChangeObjs = selected() def mirrorAllKinematicShapes(ctrls): ''' Copies all the shapes for that motion type, ex, ik left -> ik right ''' done = set() for ctrl in selected(): main = rig.getMainController(ctrl) if main in done: continue if not main: continue other = main.getOppositeSide() if not other: continue controllerShape.copyShape(main, other, mirror=True) for name, ctrl in main.subControl.items(): controllerShape.copyShape(ctrl, other.subControl[name], mirror=True) done.add(main)
{ "repo_name": "patcorwin/fossil", "path": "pdil/tool/fossil/ui/controllerEdit.py", "copies": "1", "size": "16489", "license": "bsd-3-clause", "hash": -2290697681728292900, "line_mean": 32.6530612245, "line_max": 134, "alpha_frac": 0.537995027, "autogenerated": false, "ratio": 4.077398615232443, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5115393642232443, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from functools import partial import json import os import re import time import datetime import jinja2 from .conda_interface import PY3 from .environ import get_dict as get_environ from .utils import (get_installed_packages, apply_pin_expressions, get_logger, HashableDict, string_types) from .render import get_env_dependencies from .utils import copy_into, check_call_env, rm_rf, ensure_valid_spec from .variants import DEFAULT_COMPILERS from .exceptions import CondaBuildException from . import _load_setup_py_data class UndefinedNeverFail(jinja2.Undefined): """ A class for Undefined jinja variables. This is even less strict than the default jinja2.Undefined class, because it permits things like {{ MY_UNDEFINED_VAR[:2] }} and {{ MY_UNDEFINED_VAR|int }}. This can mask lots of errors in jinja templates, so it should only be used for a first-pass parse, when you plan on running a 'strict' second pass later. Note: When using this class, any usage of an undefined variable in a jinja template is recorded in the (global) all_undefined_names class member. Therefore, after jinja rendering, you can detect which undefined names were used by inspecting that list. Be sure to clear the all_undefined_names list before calling template.render(). """ all_undefined_names = [] def __init__(self, hint=None, obj=jinja2.runtime.missing, name=None, exc=jinja2.exceptions.UndefinedError): jinja2.Undefined.__init__(self, hint, obj, name, exc) # Using any of these methods on an Undefined variable # results in another Undefined variable. __add__ = __radd__ = __mul__ = __rmul__ = __div__ = __rdiv__ = \ __truediv__ = __rtruediv__ = __floordiv__ = __rfloordiv__ = \ __mod__ = __rmod__ = __pos__ = __neg__ = __call__ = \ __getitem__ = __lt__ = __le__ = __gt__ = __ge__ = \ __complex__ = __pow__ = __rpow__ = \ lambda self, *args, **kwargs: self._return_undefined(self._undefined_name) # Accessing an attribute of an Undefined variable # results in another Undefined variable. def __getattr__(self, k): try: return object.__getattr__(self, k) except AttributeError: self._return_undefined(self._undefined_name + '.' + k) # Unlike the methods above, Python requires that these # few methods must always return the correct type __str__ = __repr__ = lambda self: self._return_value(str()) __unicode__ = lambda self: self._return_value(u'') __int__ = lambda self: self._return_value(0) __float__ = lambda self: self._return_value(0.0) __nonzero__ = lambda self: self._return_value(False) def _return_undefined(self, result_name): # Record that this undefined variable was actually used. UndefinedNeverFail.all_undefined_names.append(self._undefined_name) return UndefinedNeverFail(hint=self._undefined_hint, obj=self._undefined_obj, name=result_name, exc=self._undefined_exception) def _return_value(self, value=None): # Record that this undefined variable was actually used. UndefinedNeverFail.all_undefined_names.append(self._undefined_name) return value class FilteredLoader(jinja2.BaseLoader): """ A pass-through for the given loader, except that the loaded source is filtered according to any metadata selectors in the source text. """ def __init__(self, unfiltered_loader, config): self._unfiltered_loader = unfiltered_loader self.list_templates = unfiltered_loader.list_templates self.config = config def get_source(self, environment, template): # we have circular imports here. Do a local import from .metadata import select_lines, ns_cfg contents, filename, uptodate = self._unfiltered_loader.get_source(environment, template) return (select_lines(contents, ns_cfg(self.config), variants_in_place=bool(self.config.variant)), filename, uptodate) def load_setup_py_data(m, setup_file='setup.py', from_recipe_dir=False, recipe_dir=None, permit_undefined_jinja=True): _setuptools_data = None # we must copy the script into the work folder to avoid incompatible pyc files origin_setup_script = os.path.join(os.path.dirname(__file__), '_load_setup_py_data.py') dest_setup_script = os.path.join(m.config.work_dir, '_load_setup_py_data.py') copy_into(origin_setup_script, dest_setup_script) env = get_environ(m) env["CONDA_BUILD_STATE"] = "RENDER" if os.path.isfile(m.config.build_python): args = [m.config.build_python, dest_setup_script, m.config.work_dir, setup_file] if from_recipe_dir: assert recipe_dir, 'recipe_dir must be set if from_recipe_dir is True' args.append('--from-recipe-dir') args.extend(['--recipe-dir', recipe_dir]) if permit_undefined_jinja: args.append('--permit-undefined-jinja') check_call_env(args, env=env) # this is a file that the subprocess will have written with open(os.path.join(m.config.work_dir, 'conda_build_loaded_setup_py.json')) as f: _setuptools_data = json.load(f) else: try: _setuptools_data = _load_setup_py_data.load_setup_py_data(setup_file, from_recipe_dir=from_recipe_dir, recipe_dir=recipe_dir, work_dir=m.config.work_dir, permit_undefined_jinja=permit_undefined_jinja) except (TypeError, OSError): # setup.py file doesn't yet exist. Will get picked up in future parsings pass except ImportError as e: if permit_undefined_jinja: log = get_logger(__name__) log.debug("Reading setup.py failed due to missing modules. This is probably OK, " "since it may succeed in later passes. Watch for incomplete recipe " "info, though.") else: raise CondaBuildException("Could not render recipe - need modules " "installed in root env. Import error was \"{}\"".format(e)) # cleanup: we must leave the source tree empty unless the source code is already present rm_rf(os.path.join(m.config.work_dir, '_load_setup_py_data.py')) return _setuptools_data if _setuptools_data else {} def load_setuptools(m, setup_file='setup.py', from_recipe_dir=False, recipe_dir=None, permit_undefined_jinja=True): log = get_logger(__name__) log.warn("Deprecation notice: the load_setuptools function has been renamed to " "load_setup_py_data. load_setuptools will be removed in a future release.") return load_setup_py_data(m, setup_file=setup_file, from_recipe_dir=from_recipe_dir, recipe_dir=recipe_dir, permit_undefined_jinja=permit_undefined_jinja) def load_npm(): # json module expects bytes in Python 2 and str in Python 3. mode_dict = {'mode': 'r', 'encoding': 'utf-8'} if PY3 else {'mode': 'rb'} with open('package.json', **mode_dict) as pkg: return json.load(pkg) def load_file_regex(config, load_file, regex_pattern, from_recipe_dir=False, recipe_dir=None, permit_undefined_jinja=True): match = False log = get_logger(__name__) cd_to_work = False if from_recipe_dir and recipe_dir: load_file = os.path.abspath(os.path.join(recipe_dir, load_file)) elif os.path.exists(config.work_dir): cd_to_work = True cwd = os.getcwd() os.chdir(config.work_dir) if not os.path.isabs(load_file): load_file = os.path.join(config.work_dir, load_file) else: message = ("Did not find {} file in manually specified location, and source " "not downloaded yet.".format(load_file)) if permit_undefined_jinja: log.debug(message) return {} else: raise RuntimeError(message) if os.path.isfile(load_file): with open(load_file, 'r') as lfile: match = re.search(regex_pattern, lfile.read()) else: if not permit_undefined_jinja: raise TypeError('{} is not a file that can be read'.format(load_file)) # Reset the working directory if cd_to_work: os.chdir(cwd) return match if match else None cached_env_dependencies = {} def pin_compatible(m, package_name, lower_bound=None, upper_bound=None, min_pin='x.x.x.x.x.x', max_pin='x', permit_undefined_jinja=False, exact=False, bypass_env_check=False): """dynamically pin based on currently installed version. only mandatory input is package_name. upper_bound is the authoritative upper bound, if provided. The lower bound is the the currently installed version. pin expressions are of the form 'x.x' - the number of pins is the number of x's separated by ``.``. """ global cached_env_dependencies compatibility = "" # optimization: this is slow (requires solver), so better to bypass it # until the finalization stage. if not bypass_env_check and not permit_undefined_jinja: # this is the version split up into its component bits. # There are two cases considered here (so far): # 1. Good packages that follow semver style (if not philosophy). For example, 1.2.3 # 2. Evil packages that cram everything alongside a single major version. For example, 9b key = (m.name(), HashableDict(m.config.variant)) if key in cached_env_dependencies: pins = cached_env_dependencies[key] else: if m.is_cross and not m.build_is_host: pins, _, _ = get_env_dependencies(m, 'host', m.config.variant) else: pins, _, _ = get_env_dependencies(m, 'build', m.config.variant) if m.build_is_host: host_pins, _, _ = get_env_dependencies(m, 'host', m.config.variant) pins.extend(host_pins) cached_env_dependencies[key] = pins versions = {p.split(' ')[0]: p.split(' ')[1:] for p in pins} if versions: if exact and versions.get(package_name): compatibility = ' '.join(versions[package_name]) else: version = lower_bound or versions.get(package_name) if version: if hasattr(version, '__iter__') and not isinstance(version, string_types): version = version[0] else: version = str(version) if upper_bound: if min_pin or lower_bound: compatibility = ">=" + str(version) + "," compatibility += '<{upper_bound}'.format(upper_bound=upper_bound) else: compatibility = apply_pin_expressions(version, min_pin, max_pin) if (not compatibility and not permit_undefined_jinja and not bypass_env_check): check = re.compile(r'pin_compatible\s*\(\s*[''"]{}[''"]'.format(package_name)) if check.search(m.extract_requirements_text()): raise RuntimeError("Could not get compatibility information for {} package. " "Is it one of your host dependencies?".format(package_name)) return " ".join((package_name, compatibility)) if compatibility is not None else package_name def pin_subpackage_against_outputs(metadata, matching_package_keys, outputs, min_pin, max_pin, exact, permit_undefined_jinja, skip_build_id=False): pin = None if matching_package_keys: # two ways to match: # 1. only one other output named the same as the subpackage_name from the key # 2. whole key matches (both subpackage name and variant (used keys only)) if len(matching_package_keys) == 1: key = matching_package_keys[0] elif len(matching_package_keys) > 1: key = None for pkg_name, variant in matching_package_keys: # This matches other outputs with any keys that are common to both # metadata objects. For debugging, the keys are always the (package # name, used vars+values). It used to be (package name, variant) - # but that was really big and hard to look at. shared_vars = set(variant.keys()) & set(metadata.config.variant.keys()) if not shared_vars or all(variant[sv] == metadata.config.variant[sv] for sv in shared_vars): key = (pkg_name, variant) break if key in outputs: sp_m = outputs[key][1] if permit_undefined_jinja and not sp_m.version(): pin = None else: if exact: pin = " ".join([sp_m.name(), sp_m.version(), sp_m.build_id() if not skip_build_id else str(sp_m.build_number())]) else: pin = "{0} {1}".format(sp_m.name(), apply_pin_expressions(sp_m.version(), min_pin, max_pin)) else: pin = matching_package_keys[0][0] return pin def pin_subpackage(metadata, subpackage_name, min_pin='x.x.x.x.x.x', max_pin='x', exact=False, permit_undefined_jinja=False, allow_no_other_outputs=False, skip_build_id=False): """allow people to specify pinnings based on subpackages that are defined in the recipe. For example, given a compiler package, allow it to specify either a compatible or exact pinning on the runtime package that is also created by the compiler package recipe """ pin = None if not hasattr(metadata, 'other_outputs'): if allow_no_other_outputs: pin = subpackage_name else: raise ValueError("Bug in conda-build: we need to have info about other outputs in " "order to allow pinning to them. It's not here.") else: # two ways to match: # 1. only one other output named the same as the subpackage_name from the key # 2. whole key matches (both subpackage name and variant) keys = list(metadata.other_outputs.keys()) matching_package_keys = [k for k in keys if k[0] == subpackage_name] pin = pin_subpackage_against_outputs(metadata, matching_package_keys, metadata.other_outputs, min_pin, max_pin, exact, permit_undefined_jinja, skip_build_id=skip_build_id) if not pin: pin = subpackage_name if not permit_undefined_jinja and not allow_no_other_outputs: raise ValueError("Didn't find subpackage version info for '{}', which is used in a" " pin_subpackage expression. Is it actually a subpackage? If not, " "you want pin_compatible instead.".format(subpackage_name)) return pin def native_compiler(language, config): compiler = language for platform in [config.platform, config.platform.split('-')[0]]: try: compiler = DEFAULT_COMPILERS[platform][language] break except KeyError: continue if hasattr(compiler, 'keys'): compiler = compiler.get(config.variant.get('python', 'nope'), 'vs2017') return compiler def compiler(language, config, permit_undefined_jinja=False): """Support configuration of compilers. This is somewhat platform specific. Native compilers never list their host - it is always implied. Generally, they are metapackages, pointing at a package that does specify the host. These in turn may be metapackages, pointing at a package where the host is the same as the target (both being the native architecture). """ compiler = native_compiler(language, config) version = None if config.variant: target_platform = config.variant.get('target_platform', config.subdir) language_compiler_key = '{}_compiler'.format(language) # fall back to native if language-compiler is not explicitly set in variant compiler = config.variant.get(language_compiler_key, compiler) version = config.variant.get(language_compiler_key + '_version') else: target_platform = config.subdir # support cross compilers. A cross-compiler package will have a name such as # gcc_target # gcc_linux-cos6-64 compiler = '_'.join([compiler, target_platform]) if version: compiler = ' '.join((compiler, version)) compiler = ensure_valid_spec(compiler, warn=False) return compiler def cdt(package_name, config, permit_undefined_jinja=False): """Support configuration of Core Dependency Trees. We should define CDTs in a single location. The current idea is to emit parts of the following to index.json (the bits that the solver could make use of) and parts to about.json (the other bits). "system": { "os": { "type": "windows", "linux", "bsd", "darwin", "os_distribution": "CentOS", "FreeBSD", "Windows", "osx", "os_version": "6.9", "10.12.3", "os_kernel_version" : "2.6.32", "os_libc_family": "glibc", "os_libc_version": "2.12", } "cpu": { # Whichever cpu_architecture/cpu_isa we build-out for: # .. armv6 is compatible with and uses all CPU features of a Raspberry PI 1 # .. armv7a is compatible with and uses all CPU features of a Raspberry PI 2 # .. aarch64 is compatible with and uses all CPU features of a Raspberry PI 3 "cpu_architecture": "x86", "x86_64", "armv6", "armv7a", "aarch32", "aarch64", "powerpc", "powerpc64", "s390", "s390x", "cpu_isa": "nocona", "armv8.1-a", "armv8.3-a", # "?" because the vfpu is specified by cpu_architecture + cpu_isa + rules. "vfpu": "?", "cpu_endianness": "BE", "LE", } "gpu ?": { } "compilerflags": { # When put into a CDT these should be the base defaults. # Package builds can and will change these frequently. "CPPFLAGS": "-D_FORTIFY_SOURCE=2", "CFLAGS": "-march=nocona -mtune=haswell -ftree-vectorize -fPIC -fstack-protector-strong -O2 -pipe", "CXXFLAGS": "-fvisibility-inlines-hidden -std=c++17 -fmessage-length=0 -march=nocona -mtune=haswell -ftree-vectorize -fPIC -fstack-protector-strong -O2 -pipe", "LDFLAGS": "-Wl,-O1,--sort-common,--as-needed,-z,relro", "FFLAGS": "-fopenmp", # These are appended to the non-DEBUG values: "DEBUG_CFLAGS": "-Og -g -Wall -Wextra -fcheck=all -fbacktrace -fimplicit-none -fvar-tracking-assignments", "DEBUG_CXXFLAGS": "-Og -g -Wall -Wextra -fcheck=all -fbacktrace -fimplicit-none -fvar-tracking-assignments", "DEBUG_FFLAGS": "-Og -g -Wall -Wextra -fcheck=all -fbacktrace -fimplicit-none -fvar-tracking-assignments", } } """ # NOQA cdt_name = 'cos6' arch = config.host_arch or config.arch if arch == 'ppc64le' or arch == 'aarch64': cdt_name = 'cos7' cdt_arch = arch else: cdt_arch = 'x86_64' if arch == '64' else 'i686' if config.variant: cdt_name = config.variant.get('cdt_name', cdt_name) cdt_arch = config.variant.get('cdt_arch', cdt_arch) if ' ' in package_name: name = package_name.split(' ')[0] ver_build = package_name.split(' ')[1:] result = (name + '-' + cdt_name + '-' + cdt_arch + ' ' + ' '.join(ver_build)) else: result = (package_name + '-' + cdt_name + '-' + cdt_arch) return result def resolved_packages(m, env, permit_undefined_jinja=False, bypass_env_check=False): """Returns the final list of packages that are listed in host or build. This include all packages (including the indirect dependencies) that will be installed in the host or build environment. An example usage of this jinja function can be:: requirements: host: - curl 7.55.1 run_constrained: {% for package in resolved_packages('host') %} - {{ package }} {% endfor %} which will render to:: requirements: host: - ca-certificates 2017.08.26 h1d4fec5_0 - curl 7.55.1 h78862de_4 - libgcc-ng 7.2.0 h7cc24e2_2 - libssh2 1.8.0 h9cfc8f7_4 - openssl 1.0.2n hb7f436b_0 - zlib 1.2.11 ha838bed_2 run_constrained: - ca-certificates 2017.08.26 h1d4fec5_0 - curl 7.55.1 h78862de_4 - libgcc-ng 7.2.0 h7cc24e2_2 - libssh2 1.8.0 h9cfc8f7_4 - openssl 1.0.2n hb7f436b_0 - zlib 1.2.11 ha838bed_2 """ if env not in ('host', 'build'): raise ValueError('Only host and build dependencies are supported.') package_names = [] # optimization: this is slow (requires solver), so better to bypass it # until the finalization stage as done similarly in pin_compatible. if not bypass_env_check and not permit_undefined_jinja: package_names, _, _ = get_env_dependencies(m, env, m.config.variant) return package_names def context_processor(initial_metadata, recipe_dir, config, permit_undefined_jinja, allow_no_other_outputs=False, bypass_env_check=False, skip_build_id=False, variant=None): """ Return a dictionary to use as context for jinja templates. initial_metadata: Augment the context with values from this MetaData object. Used to bootstrap metadata contents via multiple parsing passes. """ ctx = get_environ(m=initial_metadata, for_env=False, skip_build_id=skip_build_id, escape_backslash=True, variant=variant) environ = dict(os.environ) environ.update(get_environ(m=initial_metadata, skip_build_id=skip_build_id)) ctx.update( load_setup_py_data=partial(load_setup_py_data, m=initial_metadata, recipe_dir=recipe_dir, permit_undefined_jinja=permit_undefined_jinja), # maintain old alias for backwards compatibility: load_setuptools=partial(load_setuptools, m=initial_metadata, recipe_dir=recipe_dir, permit_undefined_jinja=permit_undefined_jinja), load_npm=load_npm, load_file_regex=partial(load_file_regex, config=config, recipe_dir=recipe_dir, permit_undefined_jinja=permit_undefined_jinja), installed=get_installed_packages(os.path.join(config.host_prefix, 'conda-meta')), pin_compatible=partial(pin_compatible, initial_metadata, permit_undefined_jinja=permit_undefined_jinja, bypass_env_check=bypass_env_check), pin_subpackage=partial(pin_subpackage, initial_metadata, permit_undefined_jinja=permit_undefined_jinja, allow_no_other_outputs=allow_no_other_outputs, skip_build_id=skip_build_id), compiler=partial(compiler, config=config, permit_undefined_jinja=permit_undefined_jinja), cdt=partial(cdt, config=config, permit_undefined_jinja=permit_undefined_jinja), resolved_packages=partial(resolved_packages, initial_metadata, permit_undefined_jinja=permit_undefined_jinja, bypass_env_check=bypass_env_check), time=time, datetime=datetime, environ=environ) return ctx
{ "repo_name": "pelson/conda-build", "path": "conda_build/jinja_context.py", "copies": "2", "size": "24722", "license": "bsd-3-clause", "hash": -8923736294765678, "line_mean": 45.382739212, "line_max": 167, "alpha_frac": 0.5962300785, "autogenerated": false, "ratio": 3.9733204757312763, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5569550554231276, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from functools import partial import numpy as np import tables as tb from datashape import Record, from_numpy, datetime_, date_ from blaze.expr import (Selection, Head, Field, Broadcast, Projection, Symbol, Sort, Reduction, count, Slice, Expr, nelements) from blaze.compatibility import basestring, map from ..dispatch import dispatch __all__ = ['drop', 'create_index'] @dispatch(tb.Table) def discover(t): return t.shape[0] * Record([[col, discover(getattr(t.cols, col))] for col in t.colnames]) @dispatch(tb.Column) def discover(c): dshape = from_numpy(c.shape, c.dtype) return {'time64': datetime_, 'time32': date_}.get(c.type, dshape.subshape[1]) @dispatch(tb.Table) def drop(t): t.remove() @dispatch(tb.Table, basestring) def create_index(t, column, name=None, **kwargs): create_index(getattr(t.cols, column), **kwargs) @dispatch(tb.Table, list) def create_index(t, columns, name=None, **kwargs): if not all(map(partial(hasattr, t.cols), columns)): raise ValueError('table %s does not have all passed in columns %s' % (t, columns)) for column in columns: create_index(t, column, **kwargs) @dispatch(tb.Column) def create_index(c, optlevel=9, kind='full', name=None, **kwargs): c.create_index(optlevel=optlevel, kind=kind, **kwargs) @dispatch(Selection, tb.Table) def compute_up(expr, data, **kwargs): predicate = optimize(expr.predicate, data) assert isinstance(predicate, Broadcast) s = predicate._scalars[0] cols = [s[field] for field in s.fields] expr_str = print_numexpr(cols, predicate._scalar_expr) return data.read_where(expr_str) @dispatch(Symbol, tb.Table) def compute_up(ts, t, **kwargs): return t @dispatch(Reduction, (tb.Column, tb.Table)) def compute_up(r, c, **kwargs): return compute_up(r, c[:]) @dispatch(Projection, tb.Table) def compute_up(proj, t, **kwargs): # only options here are # read the whole thing in and then select # or # create an output array that is at most the size of the on disk table and # fill it will the columns iteratively # both of these options aren't ideal but pytables has no way to select # multiple column subsets so pick the one where we can optimize for the best # case rather than prematurely pessimizing # # TODO: benchmark on big tables because i'm not sure exactly what the # implications here are for memory usage columns = proj.fields dtype = np.dtype([(col, t.dtype[col]) for col in columns]) out = np.empty(t.shape, dtype=dtype) for c in columns: out[c] = t.col(c) return out @dispatch(Field, tb.File) def compute_up(expr, data, **kwargs): return data.getNode('/')._v_children[expr._name] @dispatch(Field, tb.Node) def compute_up(expr, data, **kwargs): return data._v_children[expr._name] @dispatch(Field, tb.Table) def compute_up(c, t, **kwargs): return getattr(t.cols, c._name) @dispatch(count, tb.Column) def compute_up(r, c, **kwargs): return len(c) @dispatch(Head, (tb.Column, tb.Table)) def compute_up(h, t, **kwargs): return t[:h.n] @dispatch(Broadcast, tb.Table) def compute_up(expr, data, **kwargs): if len(expr._children) != 1: raise ValueError("Only one child in Broadcast allowed") s = expr._scalars[0] cols = [s[field] for field in s.fields] expr_str = print_numexpr(cols, expr._scalar_expr) uservars = dict((c, getattr(data.cols, c)) for c in s.fields) e = tb.Expr(expr_str, uservars=uservars, truediv=True) return e.eval() @dispatch(Sort, tb.Table) def compute_up(s, t, **kwargs): if isinstance(s.key, Field) and s.key._child.isidentical(s._child): key = s.key._name else: key = s.key assert hasattr(t.cols, key), 'Table has no column(s) %s' % s.key result = t.read_sorted(sortby=key, checkCSI=True) if s.ascending: return result return result[::-1] @dispatch(Slice, (tb.Table, tb.Column)) def compute_up(expr, x, **kwargs): return x[expr.index] from .numexpr import broadcast_numexpr_collect, print_numexpr from ..expr import Arithmetic, RealMath, USub, Not Broadcastable = (Arithmetic, RealMath, Field, Not, USub) WantToBroadcast = (Arithmetic, RealMath, Not, USub) @dispatch(Expr, tb.Table) def optimize(expr, seq): return broadcast_numexpr_collect(expr, Broadcastable=Broadcastable, WantToBroadcast=WantToBroadcast) @dispatch(nelements, tb.Table) def compute_up(expr, x, **kwargs): return compute_up.dispatch(type(expr), np.ndarray)(expr, x, **kwargs)
{ "repo_name": "xlhtc007/blaze", "path": "blaze/compute/pytables.py", "copies": "10", "size": "4785", "license": "bsd-3-clause", "hash": 708549473064104800, "line_mean": 27.8253012048, "line_max": 80, "alpha_frac": 0.6570532915, "autogenerated": false, "ratio": 3.297725706409373, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.00028965394221485, "num_lines": 166 }
from __future__ import absolute_import, division, print_function from functools import partial import numpy as np import tables as tb import datashape as ds from blaze.expr import (Selection, Head, Field, Broadcast, Projection, Symbol, Sort, Reduction, count, Symbol, Slice) from blaze.expr import eval_str from blaze.compatibility import basestring, map from ..dispatch import dispatch __all__ = ['drop', 'create_index'] @dispatch(tb.Table) def discover(t): return t.shape[0] * ds.Record([[col, discover(getattr(t.cols, col))] for col in t.colnames]) @dispatch(tb.Column) def discover(c): dshape = ds.from_numpy(c.shape, c.dtype) return {'time64': ds.datetime_, 'time32': ds.date_}.get(c.type, dshape.subshape[1]) @dispatch(tb.Table) def drop(t): t.remove() @dispatch(tb.Table, basestring) def create_index(t, column, name=None, **kwargs): create_index(getattr(t.cols, column), **kwargs) @dispatch(tb.Table, list) def create_index(t, columns, name=None, **kwargs): if not all(map(partial(hasattr, t.cols), columns)): raise ValueError('table %s does not have all passed in columns %s' % (t, columns)) for column in columns: create_index(t, column, **kwargs) @dispatch(tb.Column) def create_index(c, optlevel=9, kind='full', name=None, **kwargs): c.create_index(optlevel=optlevel, kind=kind, **kwargs) @dispatch(Selection, tb.Table) def compute_up(sel, t, **kwargs): s = eval_str(sel.predicate._expr) return t.read_where(s) @dispatch(Symbol, tb.Table) def compute_up(ts, t, **kwargs): return t @dispatch(Reduction, (tb.Column, tb.Table)) def compute_up(r, c, **kwargs): return compute_up(r, c[:]) @dispatch(Projection, tb.Table) def compute_up(proj, t, **kwargs): # only options here are # read the whole thing in and then select # or # create an output array that is at most the size of the on disk table and # fill it will the columns iteratively # both of these options aren't ideal but pytables has no way to select # multiple column subsets so pick the one where we can optimize for the best # case rather than prematurely pessimizing # # TODO: benchmark on big tables because i'm not sure exactly what the # implications here are for memory usage columns = proj.fields dtype = np.dtype([(col, t.dtype[col]) for col in columns]) out = np.empty(t.shape, dtype=dtype) for c in columns: out[c] = t.col(c) return out @dispatch(Field, tb.Table) def compute_up(c, t, **kwargs): return getattr(t.cols, c._name) @dispatch(count, tb.Column) def compute_up(r, c, **kwargs): return len(c) @dispatch(Head, (tb.Column, tb.Table)) def compute_up(h, t, **kwargs): return t[:h.n] @dispatch(Broadcast, tb.Table) def compute_up(c, t, **kwargs): uservars = dict((col, getattr(t.cols, col)) for col in c.active_columns()) e = tb.Expr(str(c._expr), uservars=uservars, truediv=True) return e.eval() @dispatch(Sort, tb.Table) def compute_up(s, t, **kwargs): if isinstance(s.key, Field) and s.key._child.isidentical(s._child): key = s.key._name else: key = s.key assert hasattr(t.cols, key), 'Table has no column(s) %s' % s.key result = t.read_sorted(sortby=key, checkCSI=True) if s.ascending: return result return result[::-1] @dispatch(Slice, tb.Table) def compute_up(expr, x, **kwargs): return x[expr.index]
{ "repo_name": "vitan/blaze", "path": "blaze/compute/pytables.py", "copies": "1", "size": "3582", "license": "bsd-3-clause", "hash": -4663923710757874000, "line_mean": 26.984375, "line_max": 80, "alpha_frac": 0.644332775, "autogenerated": false, "ratio": 3.262295081967213, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4406627856967213, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from functools import partial from ...external.qt import QtGui from ...external.qt.QtCore import Qt from ...core import message as msg from ...clients.histogram_client import HistogramClient from ..widget_properties import (connect_int_spin, ButtonProperty, FloatLineProperty, ValueProperty) from ..glue_toolbar import GlueToolbar from ..mouse_mode import HRangeMode from .data_viewer import DataViewer from .mpl_widget import MplWidget, defer_draw from ..qtutil import pretty_number, load_ui __all__ = ['HistogramWidget'] WARN_SLOW = 10000000 def _hash(x): return str(id(x)) class HistogramWidget(DataViewer): LABEL = "Histogram" _property_set = DataViewer._property_set + \ 'component xlog ylog normed cumulative autoscale xmin xmax nbins'.split( ) xmin = FloatLineProperty('ui.xmin', 'Minimum value') xmax = FloatLineProperty('ui.xmax', 'Maximum value') normed = ButtonProperty('ui.normalized_box', 'Normalized?') autoscale = ButtonProperty('ui.autoscale_box', 'Autoscale view to histogram?') cumulative = ButtonProperty('ui.cumulative_box', 'Cumulative?') nbins = ValueProperty('ui.binSpinBox', 'Number of bins') xlog = ButtonProperty('ui.xlog_box', 'Log-scale the x axis?') ylog = ButtonProperty('ui.ylog_box', 'Log-scale the y axis?') def __init__(self, session, parent=None): super(HistogramWidget, self).__init__(session, parent) self.central_widget = MplWidget() self.setCentralWidget(self.central_widget) self.option_widget = QtGui.QWidget() self.ui = load_ui('histogramwidget', self.option_widget) self._tweak_geometry() self.client = HistogramClient(self._data, self.central_widget.canvas.fig, artist_container=self._container) self._init_limits() self.make_toolbar() self._connect() # maps _hash(componentID) -> componentID self._component_hashes = {} @staticmethod def _get_default_tools(): return [] def _init_limits(self): validator = QtGui.QDoubleValidator(None) validator.setDecimals(7) self.ui.xmin.setValidator(validator) self.ui.xmax.setValidator(validator) lo, hi = self.client.xlimits self.ui.xmin.setText(str(lo)) self.ui.xmax.setText(str(hi)) def _tweak_geometry(self): self.central_widget.resize(600, 400) self.resize(self.central_widget.size()) def _connect(self): ui = self.ui cl = self.client ui.attributeCombo.currentIndexChanged.connect( self._set_attribute_from_combo) ui.attributeCombo.currentIndexChanged.connect( self._update_minmax_labels) connect_int_spin(cl, 'nbins', ui.binSpinBox) ui.normalized_box.toggled.connect(partial(setattr, cl, 'normed')) ui.autoscale_box.toggled.connect(partial(setattr, cl, 'autoscale')) ui.cumulative_box.toggled.connect(partial(setattr, cl, 'cumulative')) ui.xlog_box.toggled.connect(partial(setattr, cl, 'xlog')) ui.ylog_box.toggled.connect(partial(setattr, cl, 'ylog')) ui.xmin.editingFinished.connect(self._set_limits) ui.xmax.editingFinished.connect(self._set_limits) @defer_draw def _set_limits(self): lo = float(self.ui.xmin.text()) hi = float(self.ui.xmax.text()) self.client.xlimits = lo, hi def _update_minmax_labels(self): lo, hi = pretty_number(self.client.xlimits) self.ui.xmin.setText(lo) self.ui.xmax.setText(hi) def make_toolbar(self): result = GlueToolbar(self.central_widget.canvas, self, name='Histogram') for mode in self._mouse_modes(): result.add_mode(mode) self.addToolBar(result) return result def _mouse_modes(self): axes = self.client.axes def apply_mode(mode): return self.apply_roi(mode.roi()) rect = HRangeMode(axes, roi_callback=apply_mode) return [rect] @defer_draw def _update_attributes(self): """Repopulate the combo box that selects the quantity to plot""" combo = self.ui.attributeCombo component = self.component new = self.client.component or component combo.blockSignals(True) combo.clear() # implementation note: # PySide doesn't robustly store python objects with setData # use _hash(x) instead model = QtGui.QStandardItemModel() data_ids = set(_hash(d) for d in self._data) self._component_hashes = dict((_hash(c), c) for d in self._data for c in d.components) found = False for d in self._data: if d not in self._container: continue item = QtGui.QStandardItem(d.label) item.setData(_hash(d), role=Qt.UserRole) assert item.data(Qt.UserRole) == _hash(d) item.setFlags(item.flags() & ~Qt.ItemIsEnabled) model.appendRow(item) for c in d.visible_components: if not d.get_component(c).numeric: continue if c is new: found = True item = QtGui.QStandardItem(c.label) item.setData(_hash(c), role=Qt.UserRole) model.appendRow(item) combo.setModel(model) # separators below data items for i in range(combo.count()): if combo.itemData(i) in data_ids: combo.insertSeparator(i + 1) combo.blockSignals(False) if found: self.component = new else: combo.setCurrentIndex(2) # skip first data + separator self._set_attribute_from_combo() @property def component(self): combo = self.ui.attributeCombo index = combo.currentIndex() return self._component_hashes.get(combo.itemData(index), None) @component.setter def component(self, component): combo = self.ui.attributeCombo if combo.count() == 0: # cold start problem, when restoring self._update_attributes() # combo.findData doesn't seem to work robustly for i in range(combo.count()): data = combo.itemData(i) if data == _hash(component): combo.setCurrentIndex(i) return raise IndexError("Component not present: %s" % component) @defer_draw def _set_attribute_from_combo(self, *args): self.client.set_component(self.component) self.update_window_title() @defer_draw def add_data(self, data): """ Add data item to combo box. If first addition, also update attributes """ if self.data_present(data): return True if data.size > WARN_SLOW and not self._confirm_large_data(data): return False self.client.add_layer(data) self._update_attributes() self._update_minmax_labels() return True def add_subset(self, subset): pass def _remove_data(self, data): """ Remove data item from the combo box """ pass def data_present(self, data): return data in self._container def register_to_hub(self, hub): super(HistogramWidget, self).register_to_hub(hub) self.client.register_to_hub(hub) hub.subscribe(self, msg.DataCollectionDeleteMessage, handler=lambda x: self._remove_data(x.data)) hub.subscribe(self, msg.DataUpdateMessage, handler=lambda *args: self._update_labels()) hub.subscribe(self, msg.ComponentsChangedMessage, handler=lambda x: self._update_attributes()) def unregister(self, hub): super(HistogramWidget, self).unregister(hub) self.client.unregister(hub) hub.unsubscribe_all(self) @property def window_title(self): c = self.client.component if c is not None: label = str(c.label) else: label = 'Histogram' return label def _update_labels(self): self.update_window_title() self._update_attributes() def __str__(self): return "Histogram Widget" def options_widget(self): return self.option_widget
{ "repo_name": "JudoWill/glue", "path": "glue/qt/widgets/histogram_widget.py", "copies": "1", "size": "8704", "license": "bsd-3-clause", "hash": -879310024402242700, "line_mean": 32.0950570342, "line_max": 80, "alpha_frac": 0.5960477941, "autogenerated": false, "ratio": 4.048372093023255, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.00004694174529409003, "num_lines": 263 }
from __future__ import absolute_import, division, print_function from functools import partial from . import converters, exceptions, filters, validators from ._config import get_run_validators, set_run_validators from ._funcs import asdict, assoc, astuple, evolve, has from ._make import ( NOTHING, Attribute, Factory, attrib, attrs, fields, fields_dict, make_class, validate ) __version__ = "18.1.0" __title__ = "attrs" __description__ = "Classes Without Boilerplate" __uri__ = "http://www.attrs.org/" __doc__ = __description__ + " <" + __uri__ + ">" __author__ = "Hynek Schlawack" __email__ = "hs@ox.cx" __license__ = "MIT" __copyright__ = "Copyright (c) 2015 Hynek Schlawack" s = attributes = attrs ib = attr = attrib dataclass = partial(attrs, auto_attribs=True) # happy Easter ;) __all__ = [ "Attribute", "Factory", "NOTHING", "asdict", "assoc", "astuple", "attr", "attrib", "attributes", "attrs", "converters", "evolve", "exceptions", "fields", "fields_dict", "filters", "get_run_validators", "has", "ib", "make_class", "s", "set_run_validators", "validate", "validators", ]
{ "repo_name": "cbrewster/servo", "path": "tests/wpt/web-platform-tests/tools/third_party/attrs/src/attr/__init__.py", "copies": "41", "size": "1196", "license": "mpl-2.0", "hash": -7945556152844370000, "line_mean": 19.9824561404, "line_max": 68, "alpha_frac": 0.6045150502, "autogenerated": false, "ratio": 3.197860962566845, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0, "num_lines": 57 }
from __future__ import absolute_import, division, print_function from functools import partial import cloudpickle from dask.callbacks import Callback from kazoo.client import NoNodeError from kazoo.recipe.lock import Lock as ZkLock class ZookeeperBase(Callback): def __init__(self, zk, name, ns='/epos', ephemeral=False): self.zk = zk self.ephemeral = ephemeral template = '/{ns}/{name}/{task}'.replace('//', '/') self.path = partial(template.format, ns=ns, name=name) def _load(self, task): return cloudpickle.loads(self.zk.get(self.path(task=task))[0]) def _save(self, task, value): return self.zk.create(self.path(task=task), cloudpickle.dumps(value), makepath=True) def _finish(self, dsk, state, failed): pass def __exit__(self, *args): if self.ephemeral: self.zk.delete(self.path(task='').rstrip('/'), recursive=True) super(ZookeeperBase, self).__exit__(*args) class Persist(ZookeeperBase): def _start(self, dsk): persisted = {} for k, v in dsk.items(): try: persisted[k] = self._load(k) except NoNodeError: pass overlap = set(dsk) & set(persisted) for key in overlap: dsk[key] = persisted[key] def _posttask(self, key, value, dsk, state, id): self._save(key, value) class Lock(ZookeeperBase): def __init__(self, zk, name, ns='/epos', ephemeral=False, blocking=True, timeout=None): super(Lock, self).__init__( zk=zk, name=name, ns=ns, ephemeral=ephemeral) self.blocking = blocking self.timeout = timeout self.locks = {} def _pretask(self, key, dsk, state): self.locks[key] = ZkLock(self.zk, self.path(task=key)) self.locks[key].acquire(blocking=self.blocking, timeout=self.timeout) def _posttask(self, key, value, dsk, state, id): self.locks[key].release() del self.locks[key] def __exit__(self, *args): for key, lock in self.locks.items(): lock.release() del self.locks[key] super(Lock, self).__exit__(*args)
{ "repo_name": "lensacom/dask.mesos", "path": "daskos/context.py", "copies": "1", "size": "2267", "license": "apache-2.0", "hash": 2089901027017111800, "line_mean": 28.4415584416, "line_max": 77, "alpha_frac": 0.5765328628, "autogenerated": false, "ratio": 3.644694533762058, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.47212273965620577, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from functools import partial import numpy as np from matplotlib.ticker import AutoLocator, MaxNLocator, LogLocator from matplotlib.ticker import (LogFormatterMathtext, ScalarFormatter, FuncFormatter) from ..core.data import CategoricalComponent def small_view(data, attribute): """ Extract a downsampled view from a dataset, for quick statistical summaries """ shp = data.shape view = tuple([slice(None, None, max(s / 50, 1)) for s in shp]) return data[attribute, view] def small_view_array(data): """ Same as small_view, except using a numpy array as input """ shp = data.shape view = tuple([slice(None, None, max(s / 50, 1)) for s in shp]) return np.asarray(data)[view] def visible_limits(artists, axis): """Determines the data limits for the data in a set of artists Ignores non-visible artists Assumes each artist as a get_data method wich returns a tuple of x,y :param artists: An iterable collection of artists :param axis: Which axis to compute. 0=xaxis, 1=yaxis :rtype: A tuple of min, max for the requested axis, or None if no data present """ data = [] for art in artists: if not art.visible: continue xy = art.get_data() assert isinstance(xy, tuple) val = xy[axis] if val.size > 0: data.append(xy[axis]) if len(data) == 0: return data = np.hstack(data) if data.size == 0: return data = data[np.isfinite(data)] if data.size == 0: return lo, hi = np.nanmin(data), np.nanmax(data) if not np.isfinite(lo): return return lo, hi def tick_linker(all_categories, pos, *args): try: pos = np.round(pos) return all_categories[int(pos)] except IndexError: return '' def update_ticks(axes, coord, components, is_log): """ Changes the axes to have the proper tick formatting based on the type of component. :param axes: A matplotlib axis object to alter :param coord: 'x' or 'y' :param components: A list() of components that are plotted along this axis :param is_log: Boolean for log-scale. :kwarg max_categories: The maximum number of categories to display. :return: None or #categories if components is Categorical """ if coord == 'x': axis = axes.xaxis elif coord == 'y': axis = axes.yaxis else: raise TypeError("coord must be one of x,y") is_cat = all(isinstance(comp, CategoricalComponent) for comp in components) if is_log: axis.set_major_locator(LogLocator()) axis.set_major_formatter(LogFormatterMathtext()) elif is_cat: all_categories = np.empty((0,), dtype=np.object) for comp in components: all_categories = np.union1d(comp._categories, all_categories) locator = MaxNLocator(10, integer=True) locator.view_limits(0, all_categories.shape[0]) format_func = partial(tick_linker, all_categories) formatter = FuncFormatter(format_func) axis.set_major_locator(locator) axis.set_major_formatter(formatter) return all_categories.shape[0] else: axis.set_major_locator(AutoLocator()) axis.set_major_formatter(ScalarFormatter())
{ "repo_name": "JudoWill/glue", "path": "glue/clients/util.py", "copies": "1", "size": "3412", "license": "bsd-3-clause", "hash": -1243107895231004400, "line_mean": 28.6695652174, "line_max": 79, "alpha_frac": 0.6377491208, "autogenerated": false, "ratio": 3.8423423423423424, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.49800914631423426, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from functools import partial import numpy as np from scipy.spatial import KDTree from scipy.special import psi from joblib import Parallel, delayed def estimate(X, Y, k=None, n_jobs=1): """ Estimate univesal k-NN divergence. Parameters ---------- X, Y: 2-dimensional array where each row is a sample. k: k-NN to be used. None for adaptive choice. n_jobs: number of jobs to run in parallel. Python 2 may only work with ``n_jobs=1``. """ if not (isinstance(k, int) or k is None): raise ValueError('k has incorrect type.') if k is not None and k <= 0: raise ValueError('k cannot be <= 0') X = np.array(X) Y = np.array(Y) if len(X.shape) != 2 or len(Y.shape) != 2: raise ValueError('X or Y has incorrect dimension.') if X.shape[0] <= 1 or Y.shape[0] <= 1: raise ValueError('number of samples is not sufficient.') if X.shape[1] != Y.shape[1]: raise ValueError('numbers of columns of X and Y are different.') d = X.shape[1] n = X.shape[0] m = Y.shape[0] X_tree = KDTree(X) Y_tree = KDTree(Y) P = Parallel(n_jobs) nhu_ro = P(delayed(__calc_nu_rho)(x, X_tree, Y_tree, k) for x in X) r = (d / n) * sum(nhu_ro) + np.log(m / (n - 1)) if k is None: l_k = P(delayed(__calc_l_k)(x, X_tree, Y_tree) for x in X) r += (1 / n) * sum(l_k) return r def __get_epsilon(a, X_tree, Y_tree): offset_X = len([None for x in X_tree.data if (x == np.array(a)).all()]) offset_Y = len([None for y in Y_tree.data if (y == np.array(a)).all()]) rho_d, _ = X_tree.query([a], offset_X+1) nu_d, _ = Y_tree.query([a], offset_Y+1) rho_d = rho_d[0] if offset_X == 0 else rho_d[0][-1] nu_d = nu_d[0] if offset_Y == 0 else nu_d[0][-1] return max(rho_d, nu_d) + 0.5 ** 40 def __get_epsilon_sample_num(a, tree, X_tree, Y_tree, default_offset=0): e = __get_epsilon(a, X_tree, Y_tree) return len(tree.query_ball_point(a, e)) - default_offset def __get_distance(a, tree, X_tree, Y_tree, k, default_offset): if k is None: k_ = __get_epsilon_sample_num(a, tree, X_tree, Y_tree) else: k_ = k + default_offset d, _ = tree.query([a], k_) return d[0] if k_ == 1 else d[0][-1] def __calc_nu_rho(x, X_tree, Y_tree, k): rho = partial(__get_distance, tree=X_tree, default_offset=1, X_tree=X_tree, Y_tree=Y_tree, k=k) nu = partial(__get_distance, tree=Y_tree, default_offset=0, X_tree=X_tree, Y_tree=Y_tree, k=k) return np.log(nu(x) / rho(x)) def __calc_l_k(x, X_tree, Y_tree): _l = partial(__get_epsilon_sample_num, tree=X_tree, default_offset=1, X_tree=X_tree, Y_tree=Y_tree) _k = partial(__get_epsilon_sample_num, tree=Y_tree, default_offset=0, X_tree=X_tree, Y_tree=Y_tree) return psi(_l(x)) - psi(_k(x))
{ "repo_name": "slaypni/universal-divergence", "path": "src/estimator.py", "copies": "1", "size": "3010", "license": "mit", "hash": 7462912781235174000, "line_mean": 31.7173913043, "line_max": 75, "alpha_frac": 0.5641196013, "autogenerated": false, "ratio": 2.810457516339869, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.8874577117639869, "avg_score": 0, "num_lines": 92 }
from __future__ import absolute_import, division, print_function from functools import partial import numpy as np import numpy.fft as npfft from .core import map_blocks chunk_error = ("Dask array only supports taking an FFT along an axis that \n" "has a single chunk. An FFT operation was tried on axis %s \n" "which has chunks %s. To change the array's chunks use " "dask.Array.rechunk.") fft_preamble = """ Wrapping of numpy.fft.%s The axis along which the FFT is applied must have a one chunk. To change the array's chunking use dask.Array.rechunk. The numpy.fft.%s docstring follows below: """ def _fft_wrap(fft_func, dtype, out_chunk_fn): def func(a, n=None, axis=-1): if len(a.chunks[axis]) != 1: raise ValueError(chunk_error % (axis, a.chunks[axis])) chunks = out_chunk_fn(a, n, axis) return map_blocks(partial(fft_func, n=n, axis=axis), a, dtype=dtype, chunks=chunks) np_name = fft_func.__name__ func.__doc__ = (fft_preamble % (np_name, np_name)) + fft_func.__doc__ func.__name__ = np_name return func def _fft_out_chunks(a, n, axis): """ For computing the output chunks of fft and ifft""" if n is None: return a.chunks chunks = list(a.chunks) chunks[axis] = (n,) return chunks def _rfft_out_chunks(a, n, axis): if n is None: n = a.chunks[axis][0] chunks = list(a.chunks) chunks[axis] = (n//2 + 1,) return chunks def _irfft_out_chunks(a, n, axis): if n is None: n = 2 * (a.chunks[axis][0] - 1) chunks = list(a.chunks) chunks[axis] = (n,) return chunks def _hfft_out_chunks(a, n, axis): if n is None: n = 2 * (a.chunks[axis][0] - 1) chunks = list(a.chunks) chunks[axis] = (n,) return chunks def _ihfft_out_chunks(a, n, axis): if n is None: n = a.chunks[axis][0] chunks = list(a.chunks) if n % 2 == 0: m = (n//2) + 1 else: m = (n + 1)//2 chunks[axis] = (m,) return chunks fft = _fft_wrap(npfft.fft, np.complex_, _fft_out_chunks) ifft = _fft_wrap(npfft.ifft, np.complex_, _fft_out_chunks) rfft = _fft_wrap(npfft.rfft, np.complex_, _rfft_out_chunks) irfft = _fft_wrap(npfft.irfft, np.float_, _irfft_out_chunks) hfft = _fft_wrap(npfft.hfft, np.float_, _hfft_out_chunks) ihfft = _fft_wrap(npfft.ihfft, np.complex_, _ihfft_out_chunks)
{ "repo_name": "pombredanne/dask", "path": "dask/array/fft.py", "copies": "3", "size": "2467", "license": "bsd-3-clause", "hash": 1902008013467571000, "line_mean": 22.9514563107, "line_max": 77, "alpha_frac": 0.5905958654, "autogenerated": false, "ratio": 2.9975698663426487, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5088165731742649, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from functools import partial import numpy as np from ..core.client import Client from ..core.data import Data, IncompatibleAttribute, ComponentID, CategoricalComponent from ..core.subset import RoiSubsetState, RangeSubsetState, CategoricalRoiSubsetState, AndState from ..core.roi import PolygonalROI, RangeROI, CategoricalRoi, RectangularROI from ..core.util import relim from ..core.edit_subset_mode import EditSubsetMode from ..core.message import ComponentReplacedMessage from ..utils import lookup_class from .viz_client import init_mpl from .layer_artist import ScatterLayerArtist, LayerArtistContainer from .util import update_ticks, visible_limits from ..core.callback_property import (CallbackProperty, add_callback, delay_callback) class ScatterClient(Client): """ A client class that uses matplotlib to visualize tables as scatter plots. """ xmin = CallbackProperty(0) xmax = CallbackProperty(1) ymin = CallbackProperty(0) ymax = CallbackProperty(1) ylog = CallbackProperty(False) xlog = CallbackProperty(False) yflip = CallbackProperty(False) xflip = CallbackProperty(False) xatt = CallbackProperty() yatt = CallbackProperty() jitter = CallbackProperty() def __init__(self, data=None, figure=None, axes=None, artist_container=None): """ Create a new ScatterClient object :param data: :class:`~glue.core.data.DataCollection` to use :param figure: Which matplotlib figure instance to draw to. One will be created if not provided :param axes: Which matplotlib axes instance to use. Will be created if necessary """ Client.__init__(self, data=data) figure, axes = init_mpl(figure, axes) self.artists = artist_container if self.artists is None: self.artists = LayerArtistContainer() self._layer_updated = False # debugging self._xset = False self._yset = False self.axes = axes self._connect() self._set_limits() def is_layer_present(self, layer): """ True if layer is plotted """ return layer in self.artists def get_layer_order(self, layer): """If layer exists as a single artist, return its zorder. Otherwise, return None""" artists = self.artists[layer] if len(artists) == 1: return artists[0].zorder else: return None @property def layer_count(self): return len(self.artists) def _connect(self): add_callback(self, 'xlog', self._set_xlog) add_callback(self, 'ylog', self._set_ylog) add_callback(self, 'xflip', self._set_limits) add_callback(self, 'yflip', self._set_limits) add_callback(self, 'xmin', self._set_limits) add_callback(self, 'xmax', self._set_limits) add_callback(self, 'ymin', self._set_limits) add_callback(self, 'ymax', self._set_limits) add_callback(self, 'xatt', partial(self._set_xydata, 'x')) add_callback(self, 'yatt', partial(self._set_xydata, 'y')) add_callback(self, 'jitter', self._jitter) self.axes.figure.canvas.mpl_connect('draw_event', lambda x: self._pull_properties()) def _set_limits(self, *args): xlim = min(self.xmin, self.xmax), max(self.xmin, self.xmax) if self.xflip: xlim = xlim[::-1] ylim = min(self.ymin, self.ymax), max(self.ymin, self.ymax) if self.yflip: ylim = ylim[::-1] xold = self.axes.get_xlim() yold = self.axes.get_ylim() self.axes.set_xlim(xlim) self.axes.set_ylim(ylim) if xlim != xold or ylim != yold: self._redraw() def plottable_attributes(self, layer, show_hidden=False): data = layer.data comp = data.components if show_hidden else data.visible_components return [c for c in comp if data.get_component(c).numeric] def add_layer(self, layer): """ Adds a new visual layer to a client, to display either a dataset or a subset. Updates both the client data structure and the plot. Returns the created layer artist :param layer: the layer to add :type layer: :class:`~glue.core.data.Data` or :class:`~glue.core.subset.Subset` """ if layer.data not in self.data: raise TypeError("Layer not in data collection") if layer in self.artists: return self.artists[layer][0] result = ScatterLayerArtist(layer, self.axes) self.artists.append(result) self._update_layer(layer) self._ensure_subsets_added(layer) return result def _ensure_subsets_added(self, layer): if not isinstance(layer, Data): return for subset in layer.subsets: self.add_layer(subset) def _visible_limits(self, axis): """Return the min-max visible data boundaries for given axis""" return visible_limits(self.artists, axis) def _snap_xlim(self): """ Reset the plotted x rng to show all the data """ is_log = self.xlog rng = self._visible_limits(0) if rng is None: return rng = relim(rng[0], rng[1], is_log) if self.xflip: rng = rng[::-1] self.axes.set_xlim(rng) self._pull_properties() def _snap_ylim(self): """ Reset the plotted y rng to show all the data """ rng = [np.infty, -np.infty] is_log = self.ylog rng = self._visible_limits(1) if rng is None: return rng = relim(rng[0], rng[1], is_log) if self.yflip: rng = rng[::-1] self.axes.set_ylim(rng) self._pull_properties() def snap(self): """Rescale axes to fit the data""" self._snap_xlim() self._snap_ylim() self._redraw() def set_visible(self, layer, state): """ Toggle a layer's visibility :param layer: which layer to modify :type layer: class:`~glue.core.data.Data` or :class:`~glue.coret.Subset` :param state: True to show. false to hide :type state: boolean """ if layer not in self.artists: return for a in self.artists[layer]: a.visible = state self._redraw() def is_visible(self, layer): if layer not in self.artists: return False return any(a.visible for a in self.artists[layer]) def _set_xydata(self, coord, attribute, snap=True): """ Redefine which components get assigned to the x/y axes :param coord: 'x' or 'y' Which axis to reassign :param attribute: Which attribute of the data to use. :type attribute: core.data.ComponentID :param snap: If True, will rescale x/y axes to fit the data :type snap: bool """ if coord not in ('x', 'y'): raise TypeError("coord must be one of x,y") if not isinstance(attribute, ComponentID): raise TypeError("attribute must be a ComponentID") # update coordinates of data and subsets if coord == 'x': new_add = not self._xset self.xatt = attribute self._xset = self.xatt is not None elif coord == 'y': new_add = not self._yset self.yatt = attribute self._yset = self.yatt is not None # update plots list(map(self._update_layer, self.artists.layers)) if coord == 'x' and snap: self._snap_xlim() if new_add: self._snap_ylim() elif coord == 'y' and snap: self._snap_ylim() if new_add: self._snap_xlim() self._update_axis_labels() self._pull_properties() self._redraw() def _process_categorical_roi(self, roi): """ Returns a RoiSubsetState object. """ if isinstance(roi, RectangularROI): subsets = [] axes = [('x', roi.xmin, roi.xmax), ('y', roi.ymin, roi.ymax)] for coord, lo, hi in axes: comp = list(self._get_data_components(coord)) if comp: if comp[0].categorical: subset = CategoricalRoiSubsetState.from_range(comp[0], self.xatt, lo, hi) else: subset = RangeSubsetState(lo, hi, self.xatt) else: subset = None subsets.append(subset) else: raise AssertionError return AndState(*subsets) def apply_roi(self, roi): # every editable subset is updated # using specified ROI if isinstance(roi, RangeROI): lo, hi = roi.range() att = self.xatt if roi.ori == 'x' else self.yatt if self._check_categorical(att): comp = list(self._get_data_components(roi.ori)) if comp: subset_state = CategoricalRoiSubsetState.from_range(comp[0], att, lo, hi) else: subset_state = None else: subset_state = RangeSubsetState(lo, hi, att) else: if self._check_categorical(self.xatt) or self._check_categorical(self.yatt): subset_state = self._process_categorical_roi(roi) else: subset_state = RoiSubsetState() subset_state.xatt = self.xatt subset_state.yatt = self.yatt x, y = roi.to_polygon() subset_state.roi = PolygonalROI(x, y) mode = EditSubsetMode() visible = [d for d in self._data if self.is_visible(d)] focus = visible[0] if len(visible) > 0 else None mode.update(self._data, subset_state, focus_data=focus) def _set_xlog(self, state): """ Set the x axis scaling :param state: The new scaling for the x axis :type state: string ('log' or 'linear') """ mode = 'log' if state else 'linear' lim = self.axes.get_xlim() self.axes.set_xscale(mode) # Rescale if switching to log with negative bounds if state and min(lim) <= 0: self._snap_xlim() self._redraw() def _set_ylog(self, state): """ Set the y axis scaling :param state: The new scaling for the y axis :type state: string ('log' or 'linear') """ mode = 'log' if state else 'linear' lim = self.axes.get_ylim() self.axes.set_yscale(mode) # Rescale if switching to log with negative bounds if state and min(lim) <= 0: self._snap_ylim() self._redraw() def _remove_data(self, message): """Process DataCollectionDeleteMessage""" for s in message.data.subsets: self.delete_layer(s) self.delete_layer(message.data) def _remove_subset(self, message): self.delete_layer(message.subset) def delete_layer(self, layer): if layer not in self.artists: return self.artists.pop(layer) self._redraw() assert not self.is_layer_present(layer) def _update_data(self, message): data = message.sender self._update_layer(data) def _numerical_data_changed(self, message): data = message.sender self._update_layer(data, force=True) for s in data.subsets: self._update_layer(s, force=True) def _redraw(self): self.axes.figure.canvas.draw() def _jitter(self, *args): for attribute in [self.xatt, self.yatt]: if attribute is not None: for data in self.data: try: comp = data.get_component(attribute) comp.jitter(method=self.jitter) except (IncompatibleAttribute, NotImplementedError): continue def _update_axis_labels(self, *args): self.axes.set_xlabel(self.xatt) self.axes.set_ylabel(self.yatt) if self.xatt is not None: update_ticks(self.axes, 'x', list(self._get_data_components('x')), self.xlog) if self.yatt is not None: update_ticks(self.axes, 'y', list(self._get_data_components('y')), self.ylog) def _add_subset(self, message): subset = message.sender # only add subset if data layer present if subset.data not in self.artists: return subset.do_broadcast(False) self.add_layer(subset) subset.do_broadcast(True) def add_data(self, data): result = self.add_layer(data) for subset in data.subsets: self.add_layer(subset) return result @property def data(self): """The data objects in the scatter plot""" return list(self._data) def _get_data_components(self, coord): """ Returns the components for each dataset for x and y axes. """ if coord == 'x': attribute = self.xatt elif coord == 'y': attribute = self.yatt else: raise TypeError('coord must be x or y') for data in self._data: try: yield data.get_component(attribute) except IncompatibleAttribute: pass def _check_categorical(self, attribute): """ A simple function to figure out if an attribute is categorical. :param attribute: a core.Data.ComponentID :return: True iff the attribute represents a CategoricalComponent """ for data in self._data: try: comp = data.get_component(attribute) if isinstance(comp, CategoricalComponent): return True except IncompatibleAttribute: pass return False def _update_subset(self, message): self._update_layer(message.sender) def restore_layers(self, layers, context): """ Re-generate a list of plot layers from a glue-serialized list""" for l in layers: cls = lookup_class(l.pop('_type')) if cls != ScatterLayerArtist: raise ValueError("Scatter client cannot restore layer of type " "%s" % cls) props = dict((k, context.object(v)) for k, v in l.items()) layer = self.add_layer(props['layer']) layer.properties = props def _update_layer(self, layer, force=False): """ Update both the style and data for the requested layer""" if self.xatt is None or self.yatt is None: return if layer not in self.artists: return self._layer_updated = True for art in self.artists[layer]: art.xatt = self.xatt art.yatt = self.yatt art.force_update() if force else art.update() self._redraw() def _pull_properties(self): xlim = self.axes.get_xlim() ylim = self.axes.get_ylim() xsc = self.axes.get_xscale() ysc = self.axes.get_yscale() xflip = (xlim[1] < xlim[0]) yflip = (ylim[1] < ylim[0]) with delay_callback(self, 'xmin', 'xmax', 'xflip', 'xlog'): self.xmin = min(xlim) self.xmax = max(xlim) self.xflip = xflip self.xlog = (xsc == 'log') with delay_callback(self, 'ymin', 'ymax', 'yflip', 'ylog'): self.ymin = min(ylim) self.ymax = max(ylim) self.yflip = yflip self.ylog = (ysc == 'log') def _on_component_replace(self, msg): old = msg.old new = msg.new if self.xatt is old: self.xatt = new if self.yatt is old: self.yatt = new def register_to_hub(self, hub): super(ScatterClient, self).register_to_hub(hub) hub.subscribe(self, ComponentReplacedMessage, self._on_component_replace)
{ "repo_name": "JudoWill/glue", "path": "glue/clients/scatter_client.py", "copies": "1", "size": "16522", "license": "bsd-3-clause", "hash": 7072736969692220000, "line_mean": 31.8469184891, "line_max": 97, "alpha_frac": 0.5601016826, "autogenerated": false, "ratio": 3.999515855725006, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5059617538325006, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from functools import partial import numpy as np from .core import Array, normalize_chunks from ..base import tokenize def linspace(start, stop, num=50, chunks=None, dtype=None): """ Return `num` evenly spaced values over the closed interval [`start`, `stop`]. TODO: implement the `endpoint`, `restep`, and `dtype` keyword args Parameters ---------- start : scalar The starting value of the sequence. stop : scalar The last value of the sequence. chunks : int The number of samples on each block. Note that the last block will have fewer samples if `num % blocksize != 0` num : int, optional Number of samples to in the returned dask array, including the endpoints. Returns ------- samples : dask array """ num = int(num) if chunks is None: raise ValueError("Must supply a chunks= keyword argument") chunks = normalize_chunks(chunks, (num,)) range_ = stop - start space = float(range_) / (num - 1) name = 'linspace-' + tokenize((start, stop, num, chunks, dtype)) dsk = {} blockstart = start for i, bs in enumerate(chunks[0]): blockstop = blockstart + ((bs - 1) * space) task = (partial(np.linspace, dtype=dtype), blockstart, blockstop, bs) blockstart = blockstart + (space * bs) dsk[(name, i)] = task return Array(dsk, name, chunks, dtype=dtype) def arange(*args, **kwargs): """ Return evenly spaced values from `start` to `stop` with step size `step`. The values are half-open [start, stop), so including start and excluding stop. This is basically the same as python's range function but for dask arrays. When using a non-integer step, such as 0.1, the results will often not be consistent. It is better to use linspace for these cases. Parameters ---------- start : int, optional The starting value of the sequence. The default is 0. stop : int The end of the interval, this value is excluded from the interval. step : int, optional The spacing between the values. The default is 1 when not specified. The last value of the sequence. chunks : int The number of samples on each block. Note that the last block will have fewer samples if `num % chunks != 0`. num : int, optional Number of samples to in the returned dask array, including the endpoints. Returns ------- samples : dask array """ if len(args) == 1: start = 0 stop = args[0] step = 1 elif len(args) == 2: start = args[0] stop = args[1] step = 1 elif len(args) == 3: start, stop, step = args else: raise TypeError(''' arange takes 3 positional arguments: arange([start], stop, [step]) ''') if 'chunks' not in kwargs: raise ValueError("Must supply a chunks= keyword argument") chunks = kwargs['chunks'] dtype = kwargs.get('dtype', None) if dtype is None: dtype = np.arange(0, 1, step).dtype range_ = stop - start num = int(abs(range_ // step)) if (range_ % step) != 0: num += 1 chunks = normalize_chunks(chunks, (num,)) name = 'arange-' + tokenize((start, stop, step, chunks, num)) dsk = {} elem_count = 0 for i, bs in enumerate(chunks[0]): blockstart = start + (elem_count * step) blockstop = start + ((elem_count + bs) * step) task = (np.arange, blockstart, blockstop, step, dtype) dsk[(name, i)] = task elem_count += bs return Array(dsk, name, chunks, dtype=dtype) def diag(v): """Construct a diagonal array, with ``v`` on the diagonal. Currently only implements diagonal array creation on the zeroth diagonal. Support for the ``k``th diagonal or diagonal extraction, as per the numpy interface, is not yet implemented. Parameters ---------- v : dask array Returns ------- out_array : dask array Examples -------- >>> diag(arange(3, chunks=3)).compute() array([[0, 0, 0], [0, 1, 0], [0, 0, 2]]) """ if not isinstance(v, Array): raise TypeError("v must be a dask array") if v.ndim != 1: raise NotImplementedError("Extracting diagonals with `diag` is not " "implemented.") chunks_1d = v.chunks[0] name = 'diag-' + tokenize(v) blocks = v._keys() dsk = v.dask.copy() for i, m in enumerate(chunks_1d): for j, n in enumerate(chunks_1d): key = (name, i, j) if i == j: dsk[key] = (np.diag, blocks[i]) else: dsk[key] = (np.zeros, (m, n)) return Array(dsk, name, (chunks_1d, chunks_1d), dtype=v._dtype)
{ "repo_name": "vikhyat/dask", "path": "dask/array/creation.py", "copies": "2", "size": "4936", "license": "bsd-3-clause", "hash": 6356779549676619000, "line_mean": 26.8870056497, "line_max": 79, "alpha_frac": 0.5836709887, "autogenerated": false, "ratio": 3.9236883942766294, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.550735938297663, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from functools import partial import numpy as np from .core import Array, normalize_chunks from . import chunk from ..base import tokenize def linspace(start, stop, num=50, chunks=None, dtype=None): """ Return `num` evenly spaced values over the closed interval [`start`, `stop`]. TODO: implement the `endpoint`, `restep`, and `dtype` keyword args Parameters ---------- start : scalar The starting value of the sequence. stop : scalar The last value of the sequence. num : int, optional Number of samples to include in the returned dask array, including the endpoints. chunks : int The number of samples on each block. Note that the last block will have fewer samples if `num % blocksize != 0` Returns ------- samples : dask array See Also -------- dask.array.arange """ num = int(num) if chunks is None: raise ValueError("Must supply a chunks= keyword argument") chunks = normalize_chunks(chunks, (num,)) range_ = stop - start space = float(range_) / (num - 1) if dtype is None: dtype = np.linspace(0, 1, 1).dtype name = 'linspace-' + tokenize((start, stop, num, chunks, dtype)) dsk = {} blockstart = start for i, bs in enumerate(chunks[0]): blockstop = blockstart + ((bs - 1) * space) task = (partial(np.linspace, dtype=dtype), blockstart, blockstop, bs) blockstart = blockstart + (space * bs) dsk[(name, i)] = task return Array(dsk, name, chunks, dtype=dtype) def arange(*args, **kwargs): """ Return evenly spaced values from `start` to `stop` with step size `step`. The values are half-open [start, stop), so including start and excluding stop. This is basically the same as python's range function but for dask arrays. When using a non-integer step, such as 0.1, the results will often not be consistent. It is better to use linspace for these cases. Parameters ---------- start : int, optional The starting value of the sequence. The default is 0. stop : int The end of the interval, this value is excluded from the interval. step : int, optional The spacing between the values. The default is 1 when not specified. The last value of the sequence. chunks : int The number of samples on each block. Note that the last block will have fewer samples if ``len(array) % chunks != 0``. Returns ------- samples : dask array See Also -------- dask.array.linspace """ if len(args) == 1: start = 0 stop = args[0] step = 1 elif len(args) == 2: start = args[0] stop = args[1] step = 1 elif len(args) == 3: start, stop, step = args else: raise TypeError(''' arange takes 3 positional arguments: arange([start], stop, [step]) ''') if 'chunks' not in kwargs: raise ValueError("Must supply a chunks= keyword argument") chunks = kwargs['chunks'] dtype = kwargs.get('dtype', None) if dtype is None: dtype = np.arange(0, 1, step).dtype num = max(np.ceil((stop - start) / step), 0) chunks = normalize_chunks(chunks, (num,)) name = 'arange-' + tokenize((start, stop, step, chunks, num)) dsk = {} elem_count = 0 for i, bs in enumerate(chunks[0]): blockstart = start + (elem_count * step) blockstop = start + ((elem_count + bs) * step) task = (chunk.arange, blockstart, blockstop, step, bs, dtype) dsk[(name, i)] = task elem_count += bs return Array(dsk, name, chunks, dtype=dtype)
{ "repo_name": "gameduell/dask", "path": "dask/array/creation.py", "copies": "3", "size": "3795", "license": "bsd-3-clause", "hash": 763515359029443300, "line_mean": 26.700729927, "line_max": 79, "alpha_frac": 0.6018445323, "autogenerated": false, "ratio": 3.982161594963274, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.6084006127263274, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from functools import partial import numpy as np from glue.core.callback_property import (CallbackProperty, add_callback, delay_callback) from glue.core.message import ComponentReplacedMessage, SettingsChangeMessage from glue.core.edit_subset_mode import EditSubsetMode from glue.core.roi import RectangularROI from glue.core.subset import RangeSubsetState, CategoricalROISubsetState, AndState from glue.core.data import Data, IncompatibleAttribute, ComponentID from glue.core.client import Client from glue.core.layer_artist import LayerArtistContainer from glue.core.state import lookup_class_with_patches from glue.core.util import relim, update_ticks, visible_limits from glue.viewers.common.viz_client import init_mpl, update_appearance_from_settings from .layer_artist import ScatterLayerArtist class ScatterClient(Client): """ A client class that uses matplotlib to visualize tables as scatter plots. """ xmin = CallbackProperty(0) xmax = CallbackProperty(1) ymin = CallbackProperty(0) ymax = CallbackProperty(1) ylog = CallbackProperty(False) xlog = CallbackProperty(False) yflip = CallbackProperty(False) xflip = CallbackProperty(False) xatt = CallbackProperty() yatt = CallbackProperty() jitter = CallbackProperty() def __init__(self, data=None, figure=None, axes=None, layer_artist_container=None): """ Create a new ScatterClient object :param data: :class:`~glue.core.data.DataCollection` to use :param figure: Which matplotlib figure instance to draw to. One will be created if not provided :param axes: Which matplotlib axes instance to use. Will be created if necessary """ Client.__init__(self, data=data) figure, axes = init_mpl(figure, axes) self.artists = layer_artist_container if self.artists is None: self.artists = LayerArtistContainer() self._layer_updated = False # debugging self._xset = False self._yset = False self.axes = axes self._connect() self._set_limits() def is_layer_present(self, layer): """ True if layer is plotted """ return layer in self.artists def get_layer_order(self, layer): """If layer exists as a single artist, return its zorder. Otherwise, return None""" artists = self.artists[layer] if len(artists) == 1: return artists[0].zorder else: return None @property def layer_count(self): return len(self.artists) def _connect(self): add_callback(self, 'xlog', self._set_xlog) add_callback(self, 'ylog', self._set_ylog) add_callback(self, 'xflip', self._set_limits) add_callback(self, 'yflip', self._set_limits) add_callback(self, 'xmin', self._set_limits) add_callback(self, 'xmax', self._set_limits) add_callback(self, 'ymin', self._set_limits) add_callback(self, 'ymax', self._set_limits) add_callback(self, 'xatt', partial(self._set_xydata, 'x')) add_callback(self, 'yatt', partial(self._set_xydata, 'y')) add_callback(self, 'jitter', self._jitter) self.axes.figure.canvas.mpl_connect('draw_event', lambda x: self._pull_properties()) def _set_limits(self, *args): xlim = min(self.xmin, self.xmax), max(self.xmin, self.xmax) if self.xflip: xlim = xlim[::-1] ylim = min(self.ymin, self.ymax), max(self.ymin, self.ymax) if self.yflip: ylim = ylim[::-1] xold = self.axes.get_xlim() yold = self.axes.get_ylim() self.axes.set_xlim(xlim) self.axes.set_ylim(ylim) if xlim != xold or ylim != yold: self._redraw() def plottable_attributes(self, layer, show_hidden=False): data = layer.data comp = data.components if show_hidden else data.visible_components return [c for c in comp if data.get_component(c).numeric or data.get_component(c).categorical] def add_layer(self, layer): """ Adds a new visual layer to a client, to display either a dataset or a subset. Updates both the client data structure and the plot. Returns the created layer artist :param layer: the layer to add :type layer: :class:`~glue.core.data.Data` or :class:`~glue.core.subset.Subset` """ if layer.data not in self.data: raise TypeError("Layer not in data collection") if layer in self.artists: return self.artists[layer][0] result = ScatterLayerArtist(layer, self.axes) self.artists.append(result) self._update_layer(layer) self._ensure_subsets_added(layer) return result def _ensure_subsets_added(self, layer): if not isinstance(layer, Data): return for subset in layer.subsets: self.add_layer(subset) def _visible_limits(self, axis): """Return the min-max visible data boundaries for given axis""" return visible_limits(self.artists, axis) def _snap_xlim(self): """ Reset the plotted x rng to show all the data """ is_log = self.xlog rng = self._visible_limits(0) if rng is None: return rng = relim(rng[0], rng[1], is_log) if self.xflip: rng = rng[::-1] self.axes.set_xlim(rng) self._pull_properties() def _snap_ylim(self): """ Reset the plotted y rng to show all the data """ rng = [np.infty, -np.infty] is_log = self.ylog rng = self._visible_limits(1) if rng is None: return rng = relim(rng[0], rng[1], is_log) if self.yflip: rng = rng[::-1] self.axes.set_ylim(rng) self._pull_properties() def snap(self): """Rescale axes to fit the data""" self._snap_xlim() self._snap_ylim() self._redraw() def set_visible(self, layer, state): """ Toggle a layer's visibility :param layer: which layer to modify :type layer: class:`~glue.core.data.Data` or :class:`~glue.coret.Subset` :param state: True to show. false to hide :type state: boolean """ if layer not in self.artists: return for a in self.artists[layer]: a.visible = state self._redraw() def is_visible(self, layer): if layer not in self.artists: return False return any(a.visible for a in self.artists[layer]) def _set_xydata(self, coord, attribute, snap=True): """ Redefine which components get assigned to the x/y axes :param coord: 'x' or 'y' Which axis to reassign :param attribute: Which attribute of the data to use. :type attribute: core.data.ComponentID :param snap: If True, will rescale x/y axes to fit the data :type snap: bool """ if coord not in ('x', 'y'): raise TypeError("coord must be one of x,y") if not isinstance(attribute, ComponentID): raise TypeError("attribute must be a ComponentID") # update coordinates of data and subsets if coord == 'x': new_add = not self._xset self.xatt = attribute self._xset = self.xatt is not None elif coord == 'y': new_add = not self._yset self.yatt = attribute self._yset = self.yatt is not None # update plots list(map(self._update_layer, self.artists.layers)) if coord == 'x' and snap: self._snap_xlim() if new_add: self._snap_ylim() elif coord == 'y' and snap: self._snap_ylim() if new_add: self._snap_xlim() self._update_axis_labels() self._pull_properties() self._redraw() def apply_roi(self, roi): # every editable subset is updated # using specified ROI for x_comp, y_comp in zip(self._get_data_components('x'), self._get_data_components('y')): subset_state = x_comp.subset_from_roi(self.xatt, roi, other_comp=y_comp, other_att=self.yatt, coord='x') mode = EditSubsetMode() visible = [d for d in self._data if self.is_visible(d)] focus = visible[0] if len(visible) > 0 else None mode.update(self._data, subset_state, focus_data=focus) def _set_xlog(self, state): """ Set the x axis scaling :param state: The new scaling for the x axis :type state: string ('log' or 'linear') """ mode = 'log' if state else 'linear' lim = self.axes.get_xlim() self.axes.set_xscale(mode) # Rescale if switching to log with negative bounds if state and min(lim) <= 0: self._snap_xlim() self._redraw() def _set_ylog(self, state): """ Set the y axis scaling :param state: The new scaling for the y axis :type state: string ('log' or 'linear') """ mode = 'log' if state else 'linear' lim = self.axes.get_ylim() self.axes.set_yscale(mode) # Rescale if switching to log with negative bounds if state and min(lim) <= 0: self._snap_ylim() self._redraw() def _remove_data(self, message): """Process DataCollectionDeleteMessage""" for s in message.data.subsets: self.delete_layer(s) self.delete_layer(message.data) def _remove_subset(self, message): self.delete_layer(message.subset) def delete_layer(self, layer): if layer not in self.artists: return self.artists.pop(layer) self._redraw() assert not self.is_layer_present(layer) def _update_data(self, message): data = message.sender self._update_layer(data) def _numerical_data_changed(self, message): data = message.sender self._update_layer(data, force=True) for s in data.subsets: self._update_layer(s, force=True) def _redraw(self): self.axes.figure.canvas.draw() def _jitter(self, *args): for attribute in [self.xatt, self.yatt]: if attribute is not None: for data in self.data: try: comp = data.get_component(attribute) comp.jitter(method=self.jitter) except (IncompatibleAttribute, NotImplementedError): continue def _update_axis_labels(self, *args): self.axes.set_xlabel(self.xatt) self.axes.set_ylabel(self.yatt) if self.xatt is not None: update_ticks(self.axes, 'x', list(self._get_data_components('x')), self.xlog) if self.yatt is not None: update_ticks(self.axes, 'y', list(self._get_data_components('y')), self.ylog) def _add_subset(self, message): subset = message.sender # only add subset if data layer present if subset.data not in self.artists: return subset.do_broadcast(False) self.add_layer(subset) subset.do_broadcast(True) def add_data(self, data): result = self.add_layer(data) for subset in data.subsets: self.add_layer(subset) return result @property def data(self): """The data objects in the scatter plot""" return list(self._data) def _get_attribute(self, coord): if coord == 'x': return self.xatt elif coord == 'y': return self.yatt else: raise TypeError('coord must be x or y') def _get_data_components(self, coord): """ Returns the components for each dataset for x and y axes. """ attribute = self._get_attribute(coord) for data in self._data: try: yield data.get_component(attribute) except IncompatibleAttribute: pass def _check_categorical(self, attribute): """ A simple function to figure out if an attribute is categorical. :param attribute: a core.Data.ComponentID :return: True iff the attribute represents a CategoricalComponent """ for data in self._data: try: comp = data.get_component(attribute) if comp.categorical: return True except IncompatibleAttribute: pass return False def _update_subset(self, message): self._update_layer(message.sender) def restore_layers(self, layers, context): """ Re-generate a list of plot layers from a glue-serialized list""" for l in layers: cls = lookup_class_with_patches(l.pop('_type')) if cls != ScatterLayerArtist: raise ValueError("Scatter client cannot restore layer of type " "%s" % cls) props = dict((k, context.object(v)) for k, v in l.items()) layer = self.add_layer(props['layer']) layer.properties = props def _update_layer(self, layer, force=False): """ Update both the style and data for the requested layer""" if self.xatt is None or self.yatt is None: return if layer not in self.artists: return self._layer_updated = True for art in self.artists[layer]: art.xatt = self.xatt art.yatt = self.yatt art.force_update() if force else art.update() self._redraw() def _pull_properties(self): xlim = self.axes.get_xlim() ylim = self.axes.get_ylim() xsc = self.axes.get_xscale() ysc = self.axes.get_yscale() xflip = (xlim[1] < xlim[0]) yflip = (ylim[1] < ylim[0]) with delay_callback(self, 'xmin', 'xmax', 'xflip', 'xlog'): self.xmin = min(xlim) self.xmax = max(xlim) self.xflip = xflip self.xlog = (xsc == 'log') with delay_callback(self, 'ymin', 'ymax', 'yflip', 'ylog'): self.ymin = min(ylim) self.ymax = max(ylim) self.yflip = yflip self.ylog = (ysc == 'log') def _on_component_replace(self, msg): old = msg.old new = msg.new if self.xatt is old: self.xatt = new if self.yatt is old: self.yatt = new def register_to_hub(self, hub): super(ScatterClient, self).register_to_hub(hub) hub.subscribe(self, ComponentReplacedMessage, self._on_component_replace) def is_appearance_settings(msg): return ('BACKGROUND_COLOR' in msg.settings or 'FOREGROUND_COLOR' in msg.settings) hub.subscribe(self, SettingsChangeMessage, self._update_appearance_from_settings, filter=is_appearance_settings) def _update_appearance_from_settings(self, message): update_appearance_from_settings(self.axes) self._redraw()
{ "repo_name": "saimn/glue", "path": "glue/viewers/scatter/client.py", "copies": "2", "size": "15861", "license": "bsd-3-clause", "hash": 8732573729360618000, "line_mean": 31.568788501, "line_max": 87, "alpha_frac": 0.5652228737, "autogenerated": false, "ratio": 3.985175879396985, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.0002047583901039812, "num_lines": 487 }
from __future__ import absolute_import, division, print_function from functools import partial, wraps from itertools import product from math import factorial, log, ceil import numpy as np from toolz import compose, partition_all, merge, get from . import chunk from .core import _concatenate2, Array, atop, sqrt, lol_tuples from .numpy_compat import divide from ..compatibility import getargspec, builtins from ..base import tokenize from ..context import _globals from ..utils import ignoring def reduction(x, chunk, aggregate, axis=None, keepdims=None, dtype=None, split_every=None, combine=None): """ General version of reductions >>> reduction(my_array, np.sum, np.sum, axis=0, keepdims=False) # doctest: +SKIP """ if axis is None: axis = tuple(range(x.ndim)) if isinstance(axis, int): axis = (axis,) axis = tuple(i if i >= 0 else x.ndim + i for i in axis) if dtype and 'dtype' in getargspec(chunk).args: chunk = partial(chunk, dtype=dtype) if dtype and 'dtype' in getargspec(aggregate).args: aggregate = partial(aggregate, dtype=dtype) # Normalize split_every split_every = split_every or _globals.get('split_every', 32) if isinstance(split_every, dict): split_every = dict((k, split_every.get(k, 2)) for k in axis) elif isinstance(split_every, int): n = builtins.max(int(split_every ** (1/(len(axis) or 1))), 2) split_every = dict.fromkeys(axis, n) else: split_every = dict((k, v) for (k, v) in enumerate(x.numblocks) if k in axis) # Map chunk across all blocks inds = tuple(range(x.ndim)) tmp = atop(partial(chunk, axis=axis, keepdims=True), inds, x, inds) tmp._chunks = tuple((1,)*len(c) if i in axis else c for (i, c) in enumerate(tmp.chunks)) # Reduce across intermediates depth = 1 for i, n in enumerate(tmp.numblocks): if i in split_every and split_every[i] != 1: depth = int(builtins.max(depth, ceil(log(n, split_every[i])))) func = compose(partial(combine or aggregate, axis=axis, keepdims=True), partial(_concatenate2, axes=axis)) for i in range(depth - 1): tmp = partial_reduce(func, tmp, split_every, True, None) func = compose(partial(aggregate, axis=axis, keepdims=keepdims), partial(_concatenate2, axes=axis)) return partial_reduce(func, tmp, split_every, keepdims=keepdims, dtype=dtype) def partial_reduce(func, x, split_every, keepdims=False, dtype=None, name=None): """Partial reduction across multiple axes. Parameters ---------- func : function x : Array split_every : dict Maximum reduction block sizes in each dimension. Example ------- Reduce across axis 0 and 2, merging a maximum of 1 block in the 0th dimension, and 3 blocks in the 2nd dimension: >>> partial_reduce(np.min, x, {0: 1, 2: 3}) # doctest: +SKIP """ name = name or 'p_reduce-' + tokenize(func, x, split_every, keepdims, dtype) parts = [list(partition_all(split_every.get(i, 1), range(n))) for (i, n) in enumerate(x.numblocks)] keys = product(*map(range, map(len, parts))) out_chunks = [tuple(1 for p in partition_all(split_every[i], c)) if i in split_every else c for (i, c) in enumerate(x.chunks)] if not keepdims: out_axis = [i for i in range(x.ndim) if i not in split_every] getter = lambda k: get(out_axis, k) keys = map(getter, keys) out_chunks = list(getter(out_chunks)) dsk = {} for k, p in zip(keys, product(*parts)): decided = dict((i, j[0]) for (i, j) in enumerate(p) if len(j) == 1) dummy = dict(i for i in enumerate(p) if i[0] not in decided) g = lol_tuples((x.name,), range(x.ndim), decided, dummy) dsk[(name,) + k] = (func, g) return Array(merge(dsk, x.dask), name, out_chunks, dtype=dtype) @wraps(chunk.sum) def sum(a, axis=None, dtype=None, keepdims=False, split_every=None): if dtype is not None: dt = dtype elif a._dtype is not None: dt = np.empty((1,), dtype=a._dtype).sum().dtype else: dt = None return reduction(a, chunk.sum, chunk.sum, axis=axis, keepdims=keepdims, dtype=dt, split_every=split_every) @wraps(chunk.prod) def prod(a, axis=None, dtype=None, keepdims=False, split_every=None): if dtype is not None: dt = dtype elif a._dtype is not None: dt = np.empty((1,), dtype=a._dtype).prod().dtype else: dt = None return reduction(a, chunk.prod, chunk.prod, axis=axis, keepdims=keepdims, dtype=dt, split_every=split_every) @wraps(chunk.min) def min(a, axis=None, keepdims=False, split_every=None): return reduction(a, chunk.min, chunk.min, axis=axis, keepdims=keepdims, dtype=a._dtype, split_every=split_every) @wraps(chunk.max) def max(a, axis=None, keepdims=False, split_every=None): return reduction(a, chunk.max, chunk.max, axis=axis, keepdims=keepdims, dtype=a._dtype, split_every=split_every) @wraps(chunk.any) def any(a, axis=None, keepdims=False, split_every=None): return reduction(a, chunk.any, chunk.any, axis=axis, keepdims=keepdims, dtype='bool', split_every=split_every) @wraps(chunk.all) def all(a, axis=None, keepdims=False, split_every=None): return reduction(a, chunk.all, chunk.all, axis=axis, keepdims=keepdims, dtype='bool', split_every=split_every) @wraps(chunk.nansum) def nansum(a, axis=None, dtype=None, keepdims=False, split_every=None): if dtype is not None: dt = dtype elif a._dtype is not None: dt = chunk.nansum(np.empty((1,), dtype=a._dtype)).dtype else: dt = None return reduction(a, chunk.nansum, chunk.sum, axis=axis, keepdims=keepdims, dtype=dt, split_every=split_every) with ignoring(AttributeError): @wraps(chunk.nanprod) def nanprod(a, axis=None, dtype=None, keepdims=False, split_every=None): if dtype is not None: dt = dtype elif a._dtype is not None: dt = np.empty((1,), dtype=a._dtype).nanprod().dtype else: dt = None return reduction(a, chunk.nanprod, chunk.prod, axis=axis, keepdims=keepdims, dtype=dt, split_every=split_every) @wraps(chunk.nanmin) def nanmin(a, axis=None, keepdims=False, split_every=None): return reduction(a, chunk.nanmin, chunk.nanmin, axis=axis, keepdims=keepdims, dtype=a._dtype, split_every=split_every) @wraps(chunk.nanmax) def nanmax(a, axis=None, keepdims=False, split_every=None): return reduction(a, chunk.nanmax, chunk.nanmax, axis=axis, keepdims=keepdims, dtype=a._dtype, split_every=split_every) def numel(x, **kwargs): """ A reduction to count the number of elements """ return chunk.sum(np.ones_like(x), **kwargs) def nannumel(x, **kwargs): """ A reduction to count the number of elements """ return chunk.sum(~np.isnan(x), **kwargs) def mean_chunk(x, sum=chunk.sum, numel=numel, dtype='f8', **kwargs): n = numel(x, dtype=dtype, **kwargs) total = sum(x, dtype=dtype, **kwargs) result = np.empty(shape=n.shape, dtype=[('total', total.dtype), ('n', n.dtype)]) result['n'] = n result['total'] = total return result def mean_combine(pair, sum=chunk.sum, numel=numel, dtype='f8', **kwargs): n = sum(pair['n'], **kwargs) total = sum(pair['total'], **kwargs) result = np.empty(shape=n.shape, dtype=pair.dtype) result['n'] = n result['total'] = total return result def mean_agg(pair, dtype='f8', **kwargs): return divide(pair['total'].sum(dtype=dtype, **kwargs), pair['n'].sum(dtype=dtype, **kwargs), dtype=dtype) @wraps(chunk.mean) def mean(a, axis=None, dtype=None, keepdims=False, split_every=None): if dtype is not None: dt = dtype elif a._dtype is not None: dt = np.mean(np.empty(shape=(1,), dtype=a._dtype)).dtype else: dt = None return reduction(a, mean_chunk, mean_agg, axis=axis, keepdims=keepdims, dtype=dt, split_every=split_every, combine=mean_combine) def nanmean(a, axis=None, dtype=None, keepdims=False, split_every=None): if dtype is not None: dt = dtype elif a._dtype is not None: dt = np.mean(np.empty(shape=(1,), dtype=a._dtype)).dtype else: dt = None return reduction(a, partial(mean_chunk, sum=chunk.nansum, numel=nannumel), mean_agg, axis=axis, keepdims=keepdims, dtype=dt, split_every=split_every, combine=partial(mean_combine, sum=chunk.nansum, numel=nannumel)) with ignoring(AttributeError): nanmean = wraps(chunk.nanmean)(nanmean) def moment_chunk(A, order=2, sum=chunk.sum, numel=numel, dtype='f8', **kwargs): total = sum(A, dtype=dtype, **kwargs) n = numel(A, **kwargs) u = total/n M = np.empty(shape=n.shape + (order - 1,), dtype=dtype) for i in range(2, order + 1): M[..., i - 2] = sum((A - u)**i, dtype=dtype, **kwargs) result = np.empty(shape=n.shape, dtype=[('total', total.dtype), ('n', n.dtype), ('M', M.dtype, (order-1,))]) result['total'] = total result['n'] = n result['M'] = M return result def _moment_helper(Ms, ns, inner_term, order, sum, kwargs): M = Ms[..., order - 2].sum(**kwargs) + sum(ns * inner_term**order, **kwargs) for k in range(1, order - 1): coeff = factorial(order)/(factorial(k)*factorial(order - k)) M += coeff * sum(Ms[..., order - k - 2] * inner_term**k, **kwargs) return M def moment_combine(data, order=2, ddof=0, dtype='f8', sum=np.sum, **kwargs): kwargs['dtype'] = dtype kwargs['keepdims'] = True totals = data['total'] ns = data['n'] Ms = data['M'] total = totals.sum(**kwargs) n = sum(ns, **kwargs) mu = divide(total, n, dtype=dtype) inner_term = divide(totals, ns, dtype=dtype) - mu M = np.empty(shape=n.shape + (order - 1,), dtype=dtype) for o in range(2, order + 1): M[..., o - 2] = _moment_helper(Ms, ns, inner_term, o, sum, kwargs) result = np.zeros(shape=n.shape, dtype=[('total', total.dtype), ('n', n.dtype), ('M', Ms.dtype, (order-1,))]) result['total'] = total result['n'] = n result['M'] = M return result def moment_agg(data, order=2, ddof=0, dtype='f8', sum=np.sum, **kwargs): totals = data['total'] ns = data['n'] Ms = data['M'] kwargs['dtype'] = dtype # To properly handle ndarrays, the original dimensions need to be kept for # part of the calculation. keepdim_kw = kwargs.copy() keepdim_kw['keepdims'] = True n = sum(ns, **keepdim_kw) mu = divide(totals.sum(**keepdim_kw), n, dtype=dtype) inner_term = divide(totals, ns, dtype=dtype) - mu M = _moment_helper(Ms, ns, inner_term, order, sum, kwargs) return divide(M, sum(n, **kwargs) - ddof, dtype=dtype) def moment(a, order, axis=None, dtype=None, keepdims=False, ddof=0, split_every=None): if not isinstance(order, int) or order < 2: raise ValueError("Order must be an integer >= 2") if dtype is not None: dt = dtype elif a._dtype is not None: dt = np.var(np.ones(shape=(1,), dtype=a._dtype)).dtype else: dt = None return reduction(a, partial(moment_chunk, order=order), partial(moment_agg, order=order, ddof=ddof), axis=axis, keepdims=keepdims, dtype=dt, split_every=split_every, combine=partial(moment_combine, order=order)) @wraps(chunk.var) def var(a, axis=None, dtype=None, keepdims=False, ddof=0, split_every=None): if dtype is not None: dt = dtype elif a._dtype is not None: dt = np.var(np.ones(shape=(1,), dtype=a._dtype)).dtype else: dt = None return reduction(a, moment_chunk, partial(moment_agg, ddof=ddof), axis=axis, keepdims=keepdims, dtype=dt, split_every=split_every, combine=moment_combine) def nanvar(a, axis=None, dtype=None, keepdims=False, ddof=0, split_every=None): if dtype is not None: dt = dtype elif a._dtype is not None: dt = np.var(np.ones(shape=(1,), dtype=a._dtype)).dtype else: dt = None return reduction(a, partial(moment_chunk, sum=chunk.nansum, numel=nannumel), partial(moment_agg, sum=np.nansum, ddof=ddof), axis=axis, keepdims=keepdims, dtype=dt, split_every=split_every, combine=partial(moment_combine, sum=np.nansum)) with ignoring(AttributeError): nanvar = wraps(chunk.nanvar)(nanvar) @wraps(chunk.std) def std(a, axis=None, dtype=None, keepdims=False, ddof=0, split_every=None): result = sqrt(a.var(axis=axis, dtype=dtype, keepdims=keepdims, ddof=ddof, split_every=split_every)) if dtype and dtype != result.dtype: result = result.astype(dtype) return result def nanstd(a, axis=None, dtype=None, keepdims=False, ddof=0, split_every=None): result = sqrt(nanvar(a, axis=axis, dtype=dtype, keepdims=keepdims, ddof=ddof, split_every=split_every)) if dtype and dtype != result.dtype: result = result.astype(dtype) return result with ignoring(AttributeError): nanstd = wraps(chunk.nanstd)(nanstd) def vnorm(a, ord=None, axis=None, dtype=None, keepdims=False, split_every=None): """ Vector norm See np.linalg.norm """ if ord is None or ord == 'fro': ord = 2 if ord == np.inf: return max(abs(a), axis=axis, keepdims=keepdims, split_every=split_every) elif ord == -np.inf: return min(abs(a), axis=axis, keepdims=keepdims, split_every=split_every) elif ord == 1: return sum(abs(a), axis=axis, dtype=dtype, keepdims=keepdims, split_every=split_every) elif ord % 2 == 0: return sum(a**ord, axis=axis, dtype=dtype, keepdims=keepdims, split_every=split_every)**(1./ord) else: return sum(abs(a)**ord, axis=axis, dtype=dtype, keepdims=keepdims, split_every=split_every)**(1./ord) def _arg_combine(data, axis, argfunc): """Merge intermediate results from ``arg_*`` functions""" vals = data['vals'] arg = data['arg'] ns = data['n'] args = argfunc(vals, axis=axis) offsets = np.roll(np.cumsum(ns, axis=axis), 1, axis) offsets[tuple(slice(None) if i != axis else 0 for i in range(ns.ndim))] = 0 inds = list(reversed(np.meshgrid(*map(np.arange, args.shape), sparse=True))) inds.insert(axis, args) arg = (arg + offsets)[tuple(inds)] vals = vals[tuple(inds)] n = ns.sum(axis=axis).take(0, 0) return arg, vals, n def arg_chunk(func, argfunc, x, axis=None, **kwargs): axis = axis[0] if isinstance(axis, tuple) else axis vals = func(x, axis=axis, keepdims=True) arg = argfunc(x, axis=axis, keepdims=True) result = np.empty(shape=vals.shape, dtype=[('vals', vals.dtype), ('arg', arg.dtype), ('n', 'i8')]) result['vals'] = vals result['arg'] = arg result['n'] = x.shape[axis] return result def arg_combine(func, argfunc, data, axis=None, **kwargs): axis = axis[0] if isinstance(axis, tuple) else axis arg, vals, n = _arg_combine(data, axis, argfunc) shape = tuple(s if i != axis else 1 for (i, s) in enumerate(data.shape)) result = np.empty(shape=shape, dtype=[('vals', vals.dtype), ('arg', arg.dtype), ('n', 'i8')]) result['vals'] = vals.reshape(shape) result['arg'] = arg.reshape(shape) result['n'] = n return result def arg_agg(func, argfunc, data, axis=None, **kwargs): axis = axis[0] if isinstance(axis, tuple) else axis return _arg_combine(data, axis, argfunc)[0] def arg_reduction(func, argfunc): chunk = partial(arg_chunk, func, argfunc) agg = partial(arg_agg, func, argfunc) combine = partial(arg_combine, func, argfunc) @wraps(argfunc) def _(a, axis=None, split_every=None): if axis < 0: axis = a.ndim + axis return reduction(a, chunk, agg, axis=axis, dtype='i8', split_every=split_every, combine=combine) return _ argmin = arg_reduction(chunk.min, chunk.argmin) argmax = arg_reduction(chunk.max, chunk.argmax) nanargmin = arg_reduction(chunk.nanmin, chunk.nanargmin) nanargmax = arg_reduction(chunk.nanmax, chunk.nanargmax)
{ "repo_name": "vikhyat/dask", "path": "dask/array/reductions.py", "copies": "1", "size": "17067", "license": "bsd-3-clause", "hash": -6765742454215944000, "line_mean": 35.3901918977, "line_max": 85, "alpha_frac": 0.6002226519, "autogenerated": false, "ratio": 3.3869815439571345, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4487204195857134, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from functools import partial, wraps from itertools import product, repeat from math import factorial, log, ceil import operator import numpy as np from toolz import compose, partition_all, get, accumulate, pluck from . import chunk from .core import _concatenate2, Array, atop, lol_tuples from .ufunc import sqrt from .numpy_compat import divide from ..compatibility import getargspec, builtins from ..base import tokenize from ..context import _globals from ..utils import ignoring, funcname from .. import sharedict def reduction(x, chunk, aggregate, axis=None, keepdims=None, dtype=None, split_every=None, combine=None, name=None): """ General version of reductions >>> reduction(my_array, np.sum, np.sum, axis=0, keepdims=False) # doctest: +SKIP """ if axis is None: axis = tuple(range(x.ndim)) if isinstance(axis, int): axis = (axis,) axis = tuple(validate_axis(x.ndim, a) for a in axis) if dtype is None: raise ValueError("Must specify dtype") if 'dtype' in getargspec(chunk).args: chunk = partial(chunk, dtype=dtype) if 'dtype' in getargspec(aggregate).args: aggregate = partial(aggregate, dtype=dtype) # Map chunk across all blocks inds = tuple(range(x.ndim)) # The dtype of `tmp` doesn't actually matter, and may be incorrect. tmp = atop(chunk, inds, x, inds, axis=axis, keepdims=True, dtype=x.dtype) tmp._chunks = tuple((1, ) * len(c) if i in axis else c for (i, c) in enumerate(tmp.chunks)) return _tree_reduce(tmp, aggregate, axis, keepdims, dtype, split_every, combine, name=name) def _tree_reduce(x, aggregate, axis, keepdims, dtype, split_every=None, combine=None, name=None): """Perform the tree reduction step of a reduction. Lower level, users should use ``reduction`` or ``arg_reduction`` directly. """ # Normalize split_every split_every = split_every or _globals.get('split_every', 4) if isinstance(split_every, dict): split_every = dict((k, split_every.get(k, 2)) for k in axis) elif isinstance(split_every, int): n = builtins.max(int(split_every ** (1 / (len(axis) or 1))), 2) split_every = dict.fromkeys(axis, n) else: split_every = dict((k, v) for (k, v) in enumerate(x.numblocks) if k in axis) # Reduce across intermediates depth = 1 for i, n in enumerate(x.numblocks): if i in split_every and split_every[i] != 1: depth = int(builtins.max(depth, ceil(log(n, split_every[i])))) func = compose(partial(combine or aggregate, axis=axis, keepdims=True), partial(_concatenate2, axes=axis)) for i in range(depth - 1): x = partial_reduce(func, x, split_every, True, dtype=dtype, name=(name or funcname(combine or aggregate)) + '-partial') func = compose(partial(aggregate, axis=axis, keepdims=keepdims), partial(_concatenate2, axes=axis)) return partial_reduce(func, x, split_every, keepdims=keepdims, dtype=dtype, name=(name or funcname(aggregate)) + '-aggregate') def partial_reduce(func, x, split_every, keepdims=False, dtype=None, name=None): """Partial reduction across multiple axes. Parameters ---------- func : function x : Array split_every : dict Maximum reduction block sizes in each dimension. Examples -------- Reduce across axis 0 and 2, merging a maximum of 1 block in the 0th dimension, and 3 blocks in the 2nd dimension: >>> partial_reduce(np.min, x, {0: 1, 2: 3}) # doctest: +SKIP """ name = (name or funcname(func)) + '-' + tokenize(func, x, split_every, keepdims, dtype) parts = [list(partition_all(split_every.get(i, 1), range(n))) for (i, n) in enumerate(x.numblocks)] keys = product(*map(range, map(len, parts))) out_chunks = [tuple(1 for p in partition_all(split_every[i], c)) if i in split_every else c for (i, c) in enumerate(x.chunks)] if not keepdims: out_axis = [i for i in range(x.ndim) if i not in split_every] getter = lambda k: get(out_axis, k) keys = map(getter, keys) out_chunks = list(getter(out_chunks)) dsk = {} for k, p in zip(keys, product(*parts)): decided = dict((i, j[0]) for (i, j) in enumerate(p) if len(j) == 1) dummy = dict(i for i in enumerate(p) if i[0] not in decided) g = lol_tuples((x.name,), range(x.ndim), decided, dummy) dsk[(name,) + k] = (func, g) return Array(sharedict.merge(x.dask, (name, dsk)), name, out_chunks, dtype=dtype) @wraps(chunk.sum) def sum(a, axis=None, dtype=None, keepdims=False, split_every=None): if dtype is not None: dt = dtype else: dt = np.empty((1,), dtype=a.dtype).sum().dtype return reduction(a, chunk.sum, chunk.sum, axis=axis, keepdims=keepdims, dtype=dt, split_every=split_every) @wraps(chunk.prod) def prod(a, axis=None, dtype=None, keepdims=False, split_every=None): if dtype is not None: dt = dtype else: dt = np.empty((1,), dtype=a.dtype).prod().dtype return reduction(a, chunk.prod, chunk.prod, axis=axis, keepdims=keepdims, dtype=dt, split_every=split_every) @wraps(chunk.min) def min(a, axis=None, keepdims=False, split_every=None): return reduction(a, chunk.min, chunk.min, axis=axis, keepdims=keepdims, dtype=a.dtype, split_every=split_every) @wraps(chunk.max) def max(a, axis=None, keepdims=False, split_every=None): return reduction(a, chunk.max, chunk.max, axis=axis, keepdims=keepdims, dtype=a.dtype, split_every=split_every) @wraps(chunk.any) def any(a, axis=None, keepdims=False, split_every=None): return reduction(a, chunk.any, chunk.any, axis=axis, keepdims=keepdims, dtype='bool', split_every=split_every) @wraps(chunk.all) def all(a, axis=None, keepdims=False, split_every=None): return reduction(a, chunk.all, chunk.all, axis=axis, keepdims=keepdims, dtype='bool', split_every=split_every) @wraps(chunk.nansum) def nansum(a, axis=None, dtype=None, keepdims=False, split_every=None): if dtype is not None: dt = dtype else: dt = chunk.nansum(np.empty((1,), dtype=a.dtype)).dtype return reduction(a, chunk.nansum, chunk.sum, axis=axis, keepdims=keepdims, dtype=dt, split_every=split_every) with ignoring(AttributeError): @wraps(chunk.nanprod) def nanprod(a, axis=None, dtype=None, keepdims=False, split_every=None): if dtype is not None: dt = dtype else: dt = chunk.nanprod(np.empty((1,), dtype=a.dtype)).dtype return reduction(a, chunk.nanprod, chunk.prod, axis=axis, keepdims=keepdims, dtype=dt, split_every=split_every) @wraps(chunk.nancumsum) def nancumsum(x, axis, dtype=None): return cumreduction(chunk.nancumsum, operator.add, 0, x, axis, dtype) @wraps(chunk.nancumprod) def nancumprod(x, axis, dtype=None): return cumreduction(chunk.nancumprod, operator.mul, 1, x, axis, dtype) @wraps(chunk.nanmin) def nanmin(a, axis=None, keepdims=False, split_every=None): return reduction(a, chunk.nanmin, chunk.nanmin, axis=axis, keepdims=keepdims, dtype=a.dtype, split_every=split_every) @wraps(chunk.nanmax) def nanmax(a, axis=None, keepdims=False, split_every=None): return reduction(a, chunk.nanmax, chunk.nanmax, axis=axis, keepdims=keepdims, dtype=a.dtype, split_every=split_every) def numel(x, **kwargs): """ A reduction to count the number of elements """ return chunk.sum(np.ones_like(x), **kwargs) def nannumel(x, **kwargs): """ A reduction to count the number of elements """ return chunk.sum(~np.isnan(x), **kwargs) def mean_chunk(x, sum=chunk.sum, numel=numel, dtype='f8', **kwargs): n = numel(x, dtype=dtype, **kwargs) total = sum(x, dtype=dtype, **kwargs) result = np.empty(shape=n.shape, dtype=[('total', total.dtype), ('n', n.dtype)]) result['n'] = n result['total'] = total return result def mean_combine(pair, sum=chunk.sum, numel=numel, dtype='f8', **kwargs): n = sum(pair['n'], **kwargs) total = sum(pair['total'], **kwargs) result = np.empty(shape=n.shape, dtype=pair.dtype) result['n'] = n result['total'] = total return result def mean_agg(pair, dtype='f8', **kwargs): return divide(pair['total'].sum(dtype=dtype, **kwargs), pair['n'].sum(dtype=dtype, **kwargs), dtype=dtype) @wraps(chunk.mean) def mean(a, axis=None, dtype=None, keepdims=False, split_every=None): if dtype is not None: dt = dtype else: dt = np.mean(np.empty(shape=(1,), dtype=a.dtype)).dtype return reduction(a, mean_chunk, mean_agg, axis=axis, keepdims=keepdims, dtype=dt, split_every=split_every, combine=mean_combine) def nanmean(a, axis=None, dtype=None, keepdims=False, split_every=None): if dtype is not None: dt = dtype else: dt = np.mean(np.empty(shape=(1,), dtype=a.dtype)).dtype return reduction(a, partial(mean_chunk, sum=chunk.nansum, numel=nannumel), mean_agg, axis=axis, keepdims=keepdims, dtype=dt, split_every=split_every, combine=partial(mean_combine, sum=chunk.nansum, numel=nannumel)) with ignoring(AttributeError): nanmean = wraps(chunk.nanmean)(nanmean) def moment_chunk(A, order=2, sum=chunk.sum, numel=numel, dtype='f8', **kwargs): total = sum(A, dtype=dtype, **kwargs) n = numel(A, **kwargs).astype(np.int64, copy=False) u = total / n M = np.empty(shape=n.shape + (order - 1,), dtype=dtype) for i in range(2, order + 1): M[..., i - 2] = sum((A - u)**i, dtype=dtype, **kwargs) result = np.empty(shape=n.shape, dtype=[('total', total.dtype), ('n', n.dtype), ('M', M.dtype, (order - 1,))]) result['total'] = total result['n'] = n result['M'] = M return result def _moment_helper(Ms, ns, inner_term, order, sum, kwargs): M = Ms[..., order - 2].sum(**kwargs) + sum(ns * inner_term ** order, **kwargs) for k in range(1, order - 1): coeff = factorial(order) / (factorial(k) * factorial(order - k)) M += coeff * sum(Ms[..., order - k - 2] * inner_term**k, **kwargs) return M def moment_combine(data, order=2, ddof=0, dtype='f8', sum=np.sum, **kwargs): kwargs['dtype'] = dtype kwargs['keepdims'] = True totals = data['total'] ns = data['n'] Ms = data['M'] total = totals.sum(**kwargs) n = sum(ns, **kwargs) mu = divide(total, n, dtype=dtype) inner_term = divide(totals, ns, dtype=dtype) - mu M = np.empty(shape=n.shape + (order - 1,), dtype=dtype) for o in range(2, order + 1): M[..., o - 2] = _moment_helper(Ms, ns, inner_term, o, sum, kwargs) result = np.zeros(shape=n.shape, dtype=[('total', total.dtype), ('n', n.dtype), ('M', Ms.dtype, (order - 1,))]) result['total'] = total result['n'] = n result['M'] = M return result def moment_agg(data, order=2, ddof=0, dtype='f8', sum=np.sum, **kwargs): totals = data['total'] ns = data['n'] Ms = data['M'] kwargs['dtype'] = dtype # To properly handle ndarrays, the original dimensions need to be kept for # part of the calculation. keepdim_kw = kwargs.copy() keepdim_kw['keepdims'] = True n = sum(ns, **keepdim_kw) mu = divide(totals.sum(**keepdim_kw), n, dtype=dtype) inner_term = divide(totals, ns, dtype=dtype) - mu M = _moment_helper(Ms, ns, inner_term, order, sum, kwargs) return divide(M, sum(n, **kwargs) - ddof, dtype=dtype) def moment(a, order, axis=None, dtype=None, keepdims=False, ddof=0, split_every=None): if not isinstance(order, int) or order < 2: raise ValueError("Order must be an integer >= 2") if dtype is not None: dt = dtype else: dt = np.var(np.ones(shape=(1,), dtype=a.dtype)).dtype return reduction(a, partial(moment_chunk, order=order), partial(moment_agg, order=order, ddof=ddof), axis=axis, keepdims=keepdims, dtype=dt, split_every=split_every, combine=partial(moment_combine, order=order)) @wraps(chunk.var) def var(a, axis=None, dtype=None, keepdims=False, ddof=0, split_every=None): if dtype is not None: dt = dtype else: dt = np.var(np.ones(shape=(1,), dtype=a.dtype)).dtype return reduction(a, moment_chunk, partial(moment_agg, ddof=ddof), axis=axis, keepdims=keepdims, dtype=dt, split_every=split_every, combine=moment_combine, name='var') def nanvar(a, axis=None, dtype=None, keepdims=False, ddof=0, split_every=None): if dtype is not None: dt = dtype else: dt = np.var(np.ones(shape=(1,), dtype=a.dtype)).dtype return reduction(a, partial(moment_chunk, sum=chunk.nansum, numel=nannumel), partial(moment_agg, sum=np.nansum, ddof=ddof), axis=axis, keepdims=keepdims, dtype=dt, split_every=split_every, combine=partial(moment_combine, sum=np.nansum)) with ignoring(AttributeError): nanvar = wraps(chunk.nanvar)(nanvar) @wraps(chunk.std) def std(a, axis=None, dtype=None, keepdims=False, ddof=0, split_every=None): result = sqrt(a.var(axis=axis, dtype=dtype, keepdims=keepdims, ddof=ddof, split_every=split_every)) if dtype and dtype != result.dtype: result = result.astype(dtype) return result def nanstd(a, axis=None, dtype=None, keepdims=False, ddof=0, split_every=None): result = sqrt(nanvar(a, axis=axis, dtype=dtype, keepdims=keepdims, ddof=ddof, split_every=split_every)) if dtype and dtype != result.dtype: result = result.astype(dtype) return result with ignoring(AttributeError): nanstd = wraps(chunk.nanstd)(nanstd) def vnorm(a, ord=None, axis=None, dtype=None, keepdims=False, split_every=None): """ Vector norm See np.linalg.norm """ if ord is None or ord == 'fro': ord = 2 if ord == np.inf: return max(abs(a), axis=axis, keepdims=keepdims, split_every=split_every) elif ord == -np.inf: return min(abs(a), axis=axis, keepdims=keepdims, split_every=split_every) elif ord == 1: return sum(abs(a), axis=axis, dtype=dtype, keepdims=keepdims, split_every=split_every) elif ord % 2 == 0: return sum(a ** ord, axis=axis, dtype=dtype, keepdims=keepdims, split_every=split_every) ** (1. / ord) else: return sum(abs(a) ** ord, axis=axis, dtype=dtype, keepdims=keepdims, split_every=split_every) ** (1. / ord) def _arg_combine(data, axis, argfunc, keepdims=False): """Merge intermediate results from ``arg_*`` functions""" axis = None if len(axis) == data.ndim or data.ndim == 1 else axis[0] vals = data['vals'] arg = data['arg'] if axis is None: local_args = argfunc(vals, axis=axis, keepdims=keepdims) vals = vals.ravel()[local_args] arg = arg.ravel()[local_args] else: local_args = argfunc(vals, axis=axis) inds = np.ogrid[tuple(map(slice, local_args.shape))] inds.insert(axis, local_args) vals = vals[inds] arg = arg[inds] if keepdims: vals = np.expand_dims(vals, axis) arg = np.expand_dims(arg, axis) return arg, vals def arg_chunk(func, argfunc, x, axis, offset_info): arg_axis = None if len(axis) == x.ndim or x.ndim == 1 else axis[0] vals = func(x, axis=arg_axis, keepdims=True) arg = argfunc(x, axis=arg_axis, keepdims=True) if arg_axis is None: offset, total_shape = offset_info ind = np.unravel_index(arg.ravel()[0], x.shape) total_ind = tuple(o + i for (o, i) in zip(offset, ind)) arg[:] = np.ravel_multi_index(total_ind, total_shape) else: arg += offset_info result = np.empty(shape=vals.shape, dtype=[('vals', vals.dtype), ('arg', arg.dtype)]) result['vals'] = vals result['arg'] = arg return result def arg_combine(func, argfunc, data, axis=None, **kwargs): arg, vals = _arg_combine(data, axis, argfunc, keepdims=True) result = np.empty(shape=vals.shape, dtype=[('vals', vals.dtype), ('arg', arg.dtype)]) result['vals'] = vals result['arg'] = arg return result def arg_agg(func, argfunc, data, axis=None, **kwargs): return _arg_combine(data, axis, argfunc, keepdims=False)[0] def nanarg_agg(func, argfunc, data, axis=None, **kwargs): arg, vals = _arg_combine(data, axis, argfunc, keepdims=False) if np.any(np.isnan(vals)): raise ValueError("All NaN slice encountered") return arg def arg_reduction(x, chunk, combine, agg, axis=None, split_every=None): """Generic function for argreduction. Parameters ---------- x : Array chunk : callable Partialed ``arg_chunk``. combine : callable Partialed ``arg_combine``. agg : callable Partialed ``arg_agg``. axis : int, optional split_every : int or dict, optional """ if axis is None: axis = tuple(range(x.ndim)) ravel = True elif isinstance(axis, int): if axis < 0: axis += x.ndim if axis < 0 or axis >= x.ndim: raise ValueError("axis entry is out of bounds") axis = (axis,) ravel = x.ndim == 1 else: raise TypeError("axis must be either `None` or int, " "got '{0}'".format(axis)) # Map chunk across all blocks name = 'arg-reduce-chunk-{0}'.format(tokenize(chunk, axis)) old = x.name keys = list(product(*map(range, x.numblocks))) offsets = list(product(*(accumulate(operator.add, bd[:-1], 0) for bd in x.chunks))) if ravel: offset_info = zip(offsets, repeat(x.shape)) else: offset_info = pluck(axis[0], offsets) chunks = tuple((1, ) * len(c) if i in axis else c for (i, c) in enumerate(x.chunks)) dsk = dict(((name,) + k, (chunk, (old,) + k, axis, off)) for (k, off) in zip(keys, offset_info)) # The dtype of `tmp` doesn't actually matter, just need to provide something tmp = Array(sharedict.merge(x.dask, (name, dsk)), name, chunks, dtype=x.dtype) dtype = np.argmin([1]).dtype return _tree_reduce(tmp, agg, axis, False, dtype, split_every, combine) def make_arg_reduction(func, argfunc, is_nan_func=False): """Create a argreduction callable. Parameters ---------- func : callable The reduction (e.g. ``min``) argfunc : callable The argreduction (e.g. ``argmin``) """ chunk = partial(arg_chunk, func, argfunc) combine = partial(arg_combine, func, argfunc) if is_nan_func: agg = partial(nanarg_agg, func, argfunc) else: agg = partial(arg_agg, func, argfunc) @wraps(argfunc) def _(x, axis=None, split_every=None): return arg_reduction(x, chunk, combine, agg, axis, split_every) return _ def _nanargmin(x, axis, **kwargs): try: return chunk.nanargmin(x, axis, **kwargs) except ValueError: return chunk.nanargmin(np.where(np.isnan(x), np.inf, x), axis, **kwargs) def _nanargmax(x, axis, **kwargs): try: return chunk.nanargmax(x, axis, **kwargs) except ValueError: return chunk.nanargmax(np.where(np.isnan(x), -np.inf, x), axis, **kwargs) argmin = make_arg_reduction(chunk.min, chunk.argmin) argmax = make_arg_reduction(chunk.max, chunk.argmax) nanargmin = make_arg_reduction(chunk.nanmin, _nanargmin, True) nanargmax = make_arg_reduction(chunk.nanmax, _nanargmax, True) def cumreduction(func, binop, ident, x, axis, dtype=None): """ Generic function for cumulative reduction Parameters ---------- func: callable Cumulative function like np.cumsum or np.cumprod binop: callable Associated binary operator like ``np.cumsum->add`` or ``np.cumprod->mul`` ident: Number Associated identity like ``np.cumsum->0`` or ``np.cumprod->1`` x: dask Array axis: int dtype: dtype Returns ------- dask array See also -------- cumsum cumprod """ if dtype is None: dtype = func(np.empty((0,), dtype=x.dtype)).dtype assert isinstance(axis, int) axis = validate_axis(x.ndim, axis) m = x.map_blocks(func, axis=axis, dtype=dtype) name = '%s-axis=%d-%s' % (func.__name__, axis, tokenize(x, dtype)) n = x.numblocks[axis] full = slice(None, None, None) slc = (full,) * axis + (slice(-1, None),) + (full,) * (x.ndim - axis - 1) indices = list(product(*[range(nb) if i != axis else [0] for i, nb in enumerate(x.numblocks)])) dsk = dict() for ind in indices: shape = tuple(x.chunks[i][ii] if i != axis else 1 for i, ii in enumerate(ind)) dsk[(name, 'extra') + ind] = (np.full, shape, ident, m.dtype) dsk[(name,) + ind] = (m.name,) + ind for i in range(1, n): last_indices = indices indices = list(product(*[range(nb) if ii != axis else [i] for ii, nb in enumerate(x.numblocks)])) for old, ind in zip(last_indices, indices): this_slice = (name, 'extra') + ind dsk[this_slice] = (binop, (name, 'extra') + old, (operator.getitem, (m.name,) + old, slc)) dsk[(name,) + ind] = (binop, this_slice, (m.name,) + ind) return Array(sharedict.merge(m.dask, (name, dsk)), name, x.chunks, m.dtype) @wraps(np.cumsum) def cumsum(x, axis, dtype=None): return cumreduction(np.cumsum, operator.add, 0, x, axis, dtype) @wraps(np.cumprod) def cumprod(x, axis, dtype=None): return cumreduction(np.cumprod, operator.mul, 1, x, axis, dtype) def validate_axis(ndim, axis): """ Validate single axis dimension against number of dimensions """ if axis > ndim - 1 or axis < -ndim: raise ValueError("Axis must be between -%d and %d, got %d" % (ndim, ndim - 1, axis)) if axis < 0: return axis + ndim else: return axis
{ "repo_name": "cpcloud/dask", "path": "dask/array/reductions.py", "copies": "1", "size": "23040", "license": "bsd-3-clause", "hash": 2528149604603851000, "line_mean": 34.5555555556, "line_max": 86, "alpha_frac": 0.5967013889, "autogenerated": false, "ratio": 3.4183976261127595, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.45150990150127596, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from functools import partial, wraps from math import factorial import numpy as np from toolz import compose from . import chunk from .core import _concatenate2, Array, atop, sqrt, elemwise from .numpy_compat import divide from .slicing import insert_many from ..compatibility import getargspec from ..core import flatten from ..utils import ignoring def reduction(x, chunk, aggregate, axis=None, keepdims=None, dtype=None): """ General version of reductions >>> reduction(my_array, np.sum, np.sum, axis=0, keepdims=False) # doctest: +SKIP """ if axis is None: axis = tuple(range(x.ndim)) if isinstance(axis, int): axis = (axis,) axis = tuple(i if i >= 0 else x.ndim + i for i in axis) if dtype and 'dtype' in getargspec(chunk).args: chunk = partial(chunk, dtype=dtype) if dtype and 'dtype' in getargspec(aggregate).args: aggregate = partial(aggregate, dtype=dtype) chunk2 = partial(chunk, axis=axis, keepdims=True) aggregate2 = partial(aggregate, axis=axis, keepdims=keepdims) inds = tuple(range(x.ndim)) tmp = atop(chunk2, inds, x, inds) inds2 = tuple(i for i in inds if i not in axis) result = atop(compose(aggregate2, partial(_concatenate2, axes=axis)), inds2, tmp, inds, dtype=dtype) if keepdims: dsk = result.dask.copy() for k in flatten(result._keys()): k2 = (k[0],) + insert_many(k[1:], axis, 0) dsk[k2] = dsk.pop(k) chunks = insert_many(result.chunks, axis, [1]) return Array(dsk, result.name, chunks=chunks, dtype=dtype) else: return result @wraps(chunk.sum) def sum(a, axis=None, dtype=None, keepdims=False): if dtype is not None: dt = dtype elif a._dtype is not None: dt = np.empty((1,), dtype=a._dtype).sum().dtype else: dt = None return reduction(a, chunk.sum, chunk.sum, axis=axis, keepdims=keepdims, dtype=dt) @wraps(chunk.prod) def prod(a, axis=None, dtype=None, keepdims=False): if dtype is not None: dt = dtype elif a._dtype is not None: dt = np.empty((1,), dtype=a._dtype).prod().dtype else: dt = None return reduction(a, chunk.prod, chunk.prod, axis=axis, keepdims=keepdims, dtype=dt) @wraps(chunk.min) def min(a, axis=None, keepdims=False): return reduction(a, chunk.min, chunk.min, axis=axis, keepdims=keepdims, dtype=a._dtype) @wraps(chunk.max) def max(a, axis=None, keepdims=False): return reduction(a, chunk.max, chunk.max, axis=axis, keepdims=keepdims, dtype=a._dtype) @wraps(chunk.argmin) def argmin(a, axis=None): return arg_reduction(a, chunk.min, chunk.argmin, axis=axis, dtype='i8') @wraps(chunk.nanargmin) def nanargmin(a, axis=None): return arg_reduction(a, chunk.nanmin, chunk.nanargmin, axis=axis, dtype='i8') @wraps(chunk.argmax) def argmax(a, axis=None): return arg_reduction(a, chunk.max, chunk.argmax, axis=axis, dtype='i8') @wraps(chunk.nanargmax) def nanargmax(a, axis=None): return arg_reduction(a, chunk.nanmax, chunk.nanargmax, axis=axis, dtype='i8') @wraps(chunk.any) def any(a, axis=None, keepdims=False): return reduction(a, chunk.any, chunk.any, axis=axis, keepdims=keepdims, dtype='bool') @wraps(chunk.all) def all(a, axis=None, keepdims=False): return reduction(a, chunk.all, chunk.all, axis=axis, keepdims=keepdims, dtype='bool') @wraps(chunk.nansum) def nansum(a, axis=None, dtype=None, keepdims=False): if dtype is not None: dt = dtype elif a._dtype is not None: dt = chunk.nansum(np.empty((1,), dtype=a._dtype)).dtype else: dt = None return reduction(a, chunk.nansum, chunk.sum, axis=axis, keepdims=keepdims, dtype=dt) with ignoring(AttributeError): @wraps(chunk.nanprod) def nanprod(a, axis=None, dtype=None, keepdims=False): if dtype is not None: dt = dtype elif a._dtype is not None: dt = np.empty((1,), dtype=a._dtype).nanprod().dtype else: dt = None return reduction(a, chunk.nanprod, chunk.prod, axis=axis, keepdims=keepdims, dtype=dt) @wraps(chunk.nanmin) def nanmin(a, axis=None, keepdims=False): return reduction(a, chunk.nanmin, chunk.nanmin, axis=axis, keepdims=keepdims, dtype=a._dtype) @wraps(chunk.nanmax) def nanmax(a, axis=None, keepdims=False): return reduction(a, chunk.nanmax, chunk.nanmax, axis=axis, keepdims=keepdims, dtype=a._dtype) def numel(x, **kwargs): """ A reduction to count the number of elements """ return chunk.sum(np.ones_like(x), **kwargs) def nannumel(x, **kwargs): """ A reduction to count the number of elements """ return chunk.sum(~np.isnan(x), **kwargs) def mean_chunk(x, sum=chunk.sum, numel=numel, dtype='f8', **kwargs): n = numel(x, dtype=dtype, **kwargs) total = sum(x, dtype=dtype, **kwargs) result = np.empty(shape=n.shape, dtype=[('total', total.dtype), ('n', n.dtype)]) result['n'] = n result['total'] = total return result def mean_agg(pair, dtype='f8', **kwargs): return divide(pair['total'].sum(dtype=dtype, **kwargs), pair['n'].sum(dtype=dtype, **kwargs), dtype=dtype) @wraps(chunk.mean) def mean(a, axis=None, dtype=None, keepdims=False): if dtype is not None: dt = dtype elif a._dtype is not None: dt = np.mean(np.empty(shape=(1,), dtype=a._dtype)).dtype else: dt = None return reduction(a, mean_chunk, mean_agg, axis=axis, keepdims=keepdims, dtype=dt) def nanmean(a, axis=None, dtype=None, keepdims=False): if dtype is not None: dt = dtype elif a._dtype is not None: dt = np.mean(np.empty(shape=(1,), dtype=a._dtype)).dtype else: dt = None return reduction(a, partial(mean_chunk, sum=chunk.nansum, numel=nannumel), mean_agg, axis=axis, keepdims=keepdims, dtype=dt) with ignoring(AttributeError): nanmean = wraps(chunk.nanmean)(nanmean) def moment_chunk(A, order=2, sum=chunk.sum, numel=numel, dtype='f8', **kwargs): total = sum(A, dtype=dtype, **kwargs) n = numel(A, **kwargs) u = total/n M = np.empty(shape=n.shape + (order - 1,), dtype=dtype) for i in range(2, order + 1): M[..., i - 2] = sum((A - u)**i, dtype=dtype, **kwargs) result = np.empty(shape=n.shape, dtype=[('total', total.dtype), ('n', n.dtype), ('M', M.dtype, (order-1,))]) result['total'] = total result['n'] = n result['M'] = M return result def moment_agg(data, order=2, ddof=0, dtype='f8', sum=np.sum, **kwargs): totals = data['total'] ns = data['n'] Ms = data['M'] kwargs['dtype'] = dtype # To properly handle ndarrays, the original dimensions need to be kept for # part of the calculation. keepdim_kw = kwargs.copy() keepdim_kw['keepdims'] = True n = sum(ns, **keepdim_kw) mu = divide(totals.sum(**keepdim_kw), n, dtype=dtype) inner_term = divide(totals, ns, dtype=dtype) - mu result = Ms[..., -1].sum(**kwargs) for k in range(1, order - 1): coeff = factorial(order)/(factorial(k)*factorial(order - k)) result += coeff * sum(Ms[..., order - k - 2] * inner_term**k, **kwargs) result += sum(ns * inner_term**order, **kwargs) result = divide(result, sum(n, **kwargs) - ddof, dtype=dtype) return result def moment(a, order, axis=None, dtype=None, keepdims=False, ddof=0): if not isinstance(order, int) or order < 2: raise ValueError("Order must be an integer >= 2") if dtype is not None: dt = dtype elif a._dtype is not None: dt = np.var(np.ones(shape=(1,), dtype=a._dtype)).dtype else: dt = None return reduction(a, partial(moment_chunk, order=order), partial(moment_agg, order=order, ddof=ddof), axis=axis, keepdims=keepdims, dtype=dt) @wraps(chunk.var) def var(a, axis=None, dtype=None, keepdims=False, ddof=0): if dtype is not None: dt = dtype elif a._dtype is not None: dt = np.var(np.ones(shape=(1,), dtype=a._dtype)).dtype else: dt = None return reduction(a, moment_chunk, partial(moment_agg, ddof=ddof), axis=axis, keepdims=keepdims, dtype=dt) def nanvar(a, axis=None, dtype=None, keepdims=False, ddof=0): if dtype is not None: dt = dtype elif a._dtype is not None: dt = np.var(np.ones(shape=(1,), dtype=a._dtype)).dtype else: dt = None return reduction(a, partial(moment_chunk, sum=chunk.nansum, numel=nannumel), partial(moment_agg, sum=np.nansum, ddof=ddof), axis=axis, keepdims=keepdims, dtype=dt) with ignoring(AttributeError): nanvar = wraps(chunk.nanvar)(nanvar) @wraps(chunk.std) def std(a, axis=None, dtype=None, keepdims=False, ddof=0): result = sqrt(a.var(axis=axis, dtype=dtype, keepdims=keepdims, ddof=ddof)) if dtype and dtype != result.dtype: result = result.astype(dtype) return result def nanstd(a, axis=None, dtype=None, keepdims=False, ddof=0): result = sqrt(nanvar(a, axis=axis, dtype=dtype, keepdims=keepdims, ddof=ddof)) if dtype and dtype != result.dtype: result = result.astype(dtype) return result with ignoring(AttributeError): nanstd = wraps(chunk.nanstd)(nanstd) def vnorm(a, ord=None, axis=None, dtype=None, keepdims=False): """ Vector norm See np.linalg.norm """ if ord is None or ord == 'fro': ord = 2 if ord == np.inf: return max(abs(a), axis=axis, keepdims=keepdims) elif ord == -np.inf: return min(abs(a), axis=axis, keepdims=keepdims) elif ord == 1: return sum(abs(a), axis=axis, dtype=dtype, keepdims=keepdims) elif ord % 2 == 0: return sum(a**ord, axis=axis, dtype=dtype, keepdims=keepdims)**(1./ord) else: return sum(abs(a)**ord, axis=axis, dtype=dtype, keepdims=keepdims)**(1./ord) def arg_aggregate(func, argfunc, dims, pairs): """ >>> pairs = [([4, 3, 5], [10, 11, 12]), ... ([3, 5, 1], [1, 2, 3])] >>> arg_aggregate(np.min, np.argmin, (100, 100), pairs) array([101, 11, 103]) """ pairs = list(pairs) mins, argmins = zip(*pairs) mins = np.array(mins) argmins = np.array(argmins) args = argfunc(mins, axis=0) offsets = np.add.accumulate([0] + list(dims)[:-1]) offsets = offsets.reshape((len(offsets),) + (1,) * (argmins.ndim - 1)) return np.choose(args, argmins + offsets) def arg_reduction(a, func, argfunc, axis=0, dtype=None): """ General version of argmin/argmax >>> arg_reduction(my_array, np.min, axis=0) # doctest: +SKIP """ if not isinstance(axis, int): raise ValueError("Must specify integer axis= keyword argument.\n" "For example:\n" " Before: x.argmin()\n" " After: x.argmin(axis=0)\n") if axis < 0: axis = a.ndim + axis def argreduce(x): """ Get both min/max and argmin/argmax of each block """ return (func(x, axis=axis), argfunc(x, axis=axis)) a2 = elemwise(argreduce, a) return atop(partial(arg_aggregate, func, argfunc, a.chunks[axis]), [i for i in range(a.ndim) if i != axis], a2, list(range(a.ndim)), dtype=dtype)
{ "repo_name": "pombredanne/dask", "path": "dask/array/reductions.py", "copies": "1", "size": "11793", "license": "bsd-3-clause", "hash": -7251283381934206000, "line_mean": 30.5320855615, "line_max": 85, "alpha_frac": 0.6006953277, "autogenerated": false, "ratio": 3.3210363277949875, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4421731655494987, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from functools import partial, wraps from toolz import merge import pandas as pd from ..base import tokenize from ..utils import M def rolling_chunk(func, part1, part2, window, *args): if part1.shape[0] < window - 1: raise NotImplementedError("Window larger than partition size") if window > 1: extra = window - 1 combined = pd.concat([part1.iloc[-extra:], part2]) applied = func(combined, window, *args) return applied.iloc[extra:] else: return func(part2, window, *args) def wrap_rolling(func): """Create a chunked version of a pandas.rolling_* function""" @wraps(func) def rolling(arg, window, *args, **kwargs): if not isinstance(window, int): raise TypeError('Window must be an integer') if window < 0: raise ValueError('Window must be a positive integer') if 'freq' in kwargs or 'how' in kwargs: raise NotImplementedError('Resampling before rolling computations ' 'not supported') old_name = arg._name token = tokenize(func, arg, window, args, kwargs) new_name = 'rolling-' + token f = partial(func, **kwargs) dsk = {(new_name, 0): (f, (old_name, 0), window) + args} for i in range(1, arg.npartitions + 1): dsk[(new_name, i)] = (rolling_chunk, f, (old_name, i - 1), (old_name, i), window) + args return arg._constructor(merge(arg.dask, dsk), new_name, arg, arg.divisions) return rolling rolling_count = wrap_rolling(pd.rolling_count) rolling_sum = wrap_rolling(pd.rolling_sum) rolling_mean = wrap_rolling(pd.rolling_mean) rolling_median = wrap_rolling(pd.rolling_median) rolling_min = wrap_rolling(pd.rolling_min) rolling_max = wrap_rolling(pd.rolling_max) rolling_std = wrap_rolling(pd.rolling_std) rolling_var = wrap_rolling(pd.rolling_var) rolling_skew = wrap_rolling(pd.rolling_skew) rolling_kurt = wrap_rolling(pd.rolling_kurt) rolling_quantile = wrap_rolling(pd.rolling_quantile) rolling_apply = wrap_rolling(pd.rolling_apply) rolling_window = wrap_rolling(pd.rolling_window) def call_pandas_rolling_method_single(this_partition, rolling_kwargs, method_name, method_args, method_kwargs): # used for the start of the df/series (or for rolling through columns) method = getattr(this_partition.rolling(**rolling_kwargs), method_name) return method(*method_args, **method_kwargs) def call_pandas_rolling_method_with_neighbors(prev_partition, this_partition, next_partition, before, after, rolling_kwargs, method_name, method_args, method_kwargs): if prev_partition.shape[0] != before or next_partition.shape[0] != after: raise NotImplementedError("Window requires larger inter-partition view than partition size") combined = pd.concat([prev_partition, this_partition, next_partition]) method = getattr(combined.rolling(**rolling_kwargs), method_name) applied = method(*method_args, **method_kwargs) if after: return applied.iloc[before:-after] else: return applied.iloc[before:] class Rolling(object): # What you get when you do ddf.rolling(...) or similar """Provides rolling window calculations. """ def __init__(self, obj, window=None, min_periods=None, freq=None, center=False, win_type=None, axis=0): if freq is not None: msg = 'The deprecated freq argument is not supported.' raise NotImplementedError(msg) self.obj = obj # dataframe or series self.window = window self.min_periods = min_periods self.center = center self.win_type = win_type self.axis = axis # Allow pandas to raise if appropriate obj._meta.rolling(**self._rolling_kwargs()) def _rolling_kwargs(self): return { 'window': self.window, 'min_periods': self.min_periods, 'center': self.center, 'win_type': self.win_type, 'axis': self.axis} def _call_method(self, method_name, *args, **kwargs): # make sure dask does not mistake this for a task args = list(args) old_name = self.obj._name new_name = 'rolling-' + tokenize( self.obj, self._rolling_kwargs(), method_name, args, kwargs) dsk = {} if self.axis in [1, 'columns'] or self.window <= 1 or self.obj.npartitions == 1: # This is the easy scenario, we're rolling over columns (or not # really rolling at all, so each chunk is independent. for i in range(self.obj.npartitions): dsk[new_name, i] = ( call_pandas_rolling_method_single, (old_name, i), self._rolling_kwargs(), method_name, args, kwargs) else: # This is a bit trickier, we need to feed in information from the # neighbors to roll along rows. # Figure out how many we need to look at before and after. if self.center: before = self.window // 2 after = self.window - before - 1 else: before = self.window - 1 after = 0 head_name = 'head-{}-{}'.format(after, old_name) tail_name = 'tail-{}-{}'.format(before, old_name) # First chunk, only look after (if necessary) if after > 0: next_partition = (head_name, 1) dsk[next_partition] = (M.head, (old_name, 1), after) else: # Either we are only looking backward or this was the # only chunk. next_partition = self.obj._meta dsk[new_name, 0] = (call_pandas_rolling_method_with_neighbors, self.obj._meta, (old_name, 0), next_partition, 0, after, self._rolling_kwargs(), method_name, args, kwargs) # All the middle chunks for i in range(1, self.obj.npartitions - 1): # Get just the needed values from the previous partition dsk[tail_name, i - 1] = (M.tail, (old_name, i - 1), before) if after: next_partition = (head_name, i + 1) dsk[next_partition] = (M.head, (old_name, i + 1), after) dsk[new_name, i] = (call_pandas_rolling_method_with_neighbors, (tail_name, i - 1), (old_name, i), next_partition, before, after, self._rolling_kwargs(), method_name, args, kwargs) # The last chunk if self.obj.npartitions > 1: # if the first wasn't the only partition end = self.obj.npartitions - 1 dsk[tail_name, end - 1] = (M.tail, (old_name, end - 1), before) dsk[new_name, end] = ( call_pandas_rolling_method_with_neighbors, (tail_name, end - 1), (old_name, end), self.obj._meta, before, 0, self._rolling_kwargs(), method_name, args, kwargs) # Do the pandas operation to get the appropriate thing for metadata pd_rolling = self.obj._meta.rolling(**self._rolling_kwargs()) metadata = getattr(pd_rolling, method_name)(*args, **kwargs) return self.obj._constructor(merge(self.obj.dask, dsk), new_name, metadata, self.obj.divisions) def count(self, *args, **kwargs): return self._call_method('count', *args, **kwargs) def sum(self, *args, **kwargs): return self._call_method('sum', *args, **kwargs) def mean(self, *args, **kwargs): return self._call_method('mean', *args, **kwargs) def median(self, *args, **kwargs): return self._call_method('median', *args, **kwargs) def min(self, *args, **kwargs): return self._call_method('min', *args, **kwargs) def max(self, *args, **kwargs): return self._call_method('max', *args, **kwargs) def std(self, *args, **kwargs): return self._call_method('std', *args, **kwargs) def var(self, *args, **kwargs): return self._call_method('var', *args, **kwargs) def skew(self, *args, **kwargs): return self._call_method('skew', *args, **kwargs) def kurt(self, *args, **kwargs): return self._call_method('kurt', *args, **kwargs) def quantile(self, *args, **kwargs): return self._call_method('quantile', *args, **kwargs) def apply(self, *args, **kwargs): return self._call_method('apply', *args, **kwargs) def __repr__(self): return 'Rolling [{}]'.format(','.join( '{}={}'.format(k, v) for k, v in self._rolling_kwargs().items() if v is not None))
{ "repo_name": "jeffery-do/Vizdoombot", "path": "doom/lib/python3.5/site-packages/dask/dataframe/rolling.py", "copies": "1", "size": "9313", "license": "mit", "hash": 3721957123295669000, "line_mean": 38.4618644068, "line_max": 100, "alpha_frac": 0.5590035434, "autogenerated": false, "ratio": 3.9714285714285715, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5030432114828571, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from functools import partial, wraps from toolz import merge import pandas as pd from ..base import tokenize def rolling_chunk(func, part1, part2, window, *args): if part1.shape[0] < window-1: raise NotImplementedError("Window larger than partition size") if window > 1: extra = window - 1 combined = pd.concat([part1.iloc[-extra:], part2]) applied = func(combined, window, *args) return applied.iloc[extra:] else: return func(part2, window, *args) def wrap_rolling(func): """Create a chunked version of a pandas.rolling_* function""" @wraps(func) def rolling(arg, window, *args, **kwargs): if not isinstance(window, int): raise TypeError('Window must be an integer') if window < 0: raise ValueError('Window must be a positive integer') if 'freq' in kwargs or 'how' in kwargs: raise NotImplementedError('Resampling before rolling computations ' 'not supported') old_name = arg._name token = tokenize(func, arg, window, args, kwargs) new_name = 'rolling-' + token f = partial(func, **kwargs) dsk = {(new_name, 0): (f, (old_name, 0), window) + args} for i in range(1, arg.npartitions + 1): dsk[(new_name, i)] = (rolling_chunk, f, (old_name, i - 1), (old_name, i), window) + args return arg._constructor(merge(arg.dask, dsk), new_name, arg, arg.divisions) return rolling rolling_count = wrap_rolling(pd.rolling_count) rolling_sum = wrap_rolling(pd.rolling_sum) rolling_mean = wrap_rolling(pd.rolling_mean) rolling_median = wrap_rolling(pd.rolling_median) rolling_min = wrap_rolling(pd.rolling_min) rolling_max = wrap_rolling(pd.rolling_max) rolling_std = wrap_rolling(pd.rolling_std) rolling_var = wrap_rolling(pd.rolling_var) rolling_skew = wrap_rolling(pd.rolling_skew) rolling_kurt = wrap_rolling(pd.rolling_kurt) rolling_quantile = wrap_rolling(pd.rolling_quantile) rolling_apply = wrap_rolling(pd.rolling_apply) rolling_window = wrap_rolling(pd.rolling_window) def call_pandas_rolling_method_single(this_partition, rolling_kwargs, method_name, method_args, method_kwargs): # used for the start of the df/series (or for rolling through columns) method = getattr(this_partition.rolling(**rolling_kwargs), method_name) return method(*method_args, **method_kwargs) def call_pandas_rolling_method_with_neighbor(prev_partition, this_partition, rolling_kwargs, method_name, method_args, method_kwargs): # used for everything except for the start window = rolling_kwargs['window'] if prev_partition.shape[0] < window-1: raise NotImplementedError("Window larger than partition size") if window > 1: extra = window - 1 combined = pd.concat([prev_partition.iloc[-extra:], this_partition]) method = getattr(combined.rolling(window), method_name) applied = method(*method_args, **method_kwargs) return applied.iloc[extra:] else: method = getattr(this_partition.rolling(window), method_name) return method(*method_args, **method_kwargs) def tail(obj, n): return obj.tail(n) class Rolling(object): # What you get when you do ddf.rolling(...) or similar """Provides rolling window calculations. """ def __init__(self, obj, kwargs): self.obj = obj # dataframe or series self.rolling_kwargs = kwargs # Allow pandas to raise if appropriate obj._pd.rolling(**kwargs) def _call_method(self, method_name, *args, **kwargs): args = list(args) # make sure dask does not mistake this for a task old_name = self.obj._name new_name = 'rolling-' + tokenize( self.obj, self.rolling_kwargs, method_name, args, kwargs) # For all but the first chunk, we'll pass the whole previous chunk # in so we can use it to pre-feed our window dsk = {(new_name, 0): ( call_pandas_rolling_method_single, (old_name, 0), self.rolling_kwargs, method_name, args, kwargs)} if self.rolling_kwargs['axis'] in [0, 'rows']: # roll in the partition direction (will need to access neighbor) window = self.rolling_kwargs['window'] tail_name = 'tail-{}-{}'.format(window-1, old_name) for i in range(1, self.obj.npartitions + 1): # Get just the needed values from the previous partition dsk[tail_name, i-1] = (tail, (old_name, i-1), window-1) dsk[new_name, i] = ( call_pandas_rolling_method_with_neighbor, (tail_name, i-1), (old_name, i), self.rolling_kwargs, method_name, args, kwargs) else: # no communication needed between partitions for columns for i in range(1, self.obj.npartitions + 1): dsk[new_name, i] = ( call_pandas_rolling_method_single, (old_name, i), self.rolling_kwargs, method_name, args, kwargs) # Do the pandas operation to get the appropriate thing for metadata pd_rolling = self.obj._pd.rolling(**self.rolling_kwargs) metadata = getattr(pd_rolling, method_name)(*args, **kwargs) return self.obj._constructor( merge(self.obj.dask, dsk), new_name, metadata, self.obj.divisions) def count(self, *args, **kwargs): return self._call_method('count', *args, **kwargs) def sum(self, *args, **kwargs): return self._call_method('sum', *args, **kwargs) def mean(self, *args, **kwargs): return self._call_method('mean', *args, **kwargs) def median(self, *args, **kwargs): return self._call_method('median', *args, **kwargs) def min(self, *args, **kwargs): return self._call_method('min', *args, **kwargs) def max(self, *args, **kwargs): return self._call_method('max', *args, **kwargs) def std(self, *args, **kwargs): return self._call_method('std', *args, **kwargs) def var(self, *args, **kwargs): return self._call_method('var', *args, **kwargs) def skew(self, *args, **kwargs): return self._call_method('skew', *args, **kwargs) def kurt(self, *args, **kwargs): return self._call_method('kurt', *args, **kwargs) def quantile(self, *args, **kwargs): return self._call_method('quantile', *args, **kwargs) def apply(self, *args, **kwargs): return self._call_method('apply', *args, **kwargs)
{ "repo_name": "mikegraham/dask", "path": "dask/dataframe/rolling.py", "copies": "1", "size": "6779", "license": "bsd-3-clause", "hash": 8245465353481434000, "line_mean": 37.2994350282, "line_max": 79, "alpha_frac": 0.6114471161, "autogenerated": false, "ratio": 3.737045203969129, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4848492320069129, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from functools import reduce import operator import warnings import datashape from datashape import var, Map from datashape.predicates import ( isscalar, iscollection, isrecord, istabular, ) from odo import odo from pandas import DataFrame, Series import blaze from .compute import compute from .compute.core import coerce_scalar from .expr import Expr, Symbol, ndim from .dispatch import dispatch from .compatibility import _strtypes __all__ = ['to_html'] def data(*args, **kwargs): warnings.warn(DeprecationWarning( 'blaze.interactive.data has been moved to blaze.data')) return blaze.expr.literal.data(*args, **kwargs) def concrete_head(expr, n=10): """ Return head of computed expression """ if not expr._resources(): raise ValueError("Expression does not contain data resources") if not iscollection(expr.dshape): return compute(expr) head = expr.head(n + 1) if not iscollection(expr.dshape): return odo(head, object) elif isrecord(expr.dshape.measure): return odo(head, DataFrame) df = odo(head, DataFrame) df.columns = [expr._name] return df def _peek_tables(expr, n=10): return concrete_head(expr, n).rename(columns={None: ''}) def repr_tables(expr, n=10): result = concrete_head(expr, n).rename(columns={None: ''}) if isinstance(result, (DataFrame, Series)): s = repr(result) if len(result) > 10: s = '\n'.join(s.split('\n')[:-1]) + '\n...' return s else: return result.peek() # pragma: no cover def numel(shape): if var in shape: return None if not shape: return 1 return reduce(operator.mul, shape, 1) def short_dshape(ds, nlines=5): s = datashape.coretypes.pprint(ds) lines = s.split('\n') if len(lines) > 5: s = '\n'.join(lines[:nlines]) + '\n ...' return s def _peek(expr): # Pure Expressions, not interactive if not set(expr._resources().keys()).issuperset(expr._leaves()): return expr # Scalars if ndim(expr) == 0 and isscalar(expr.dshape): return coerce_scalar(compute(expr), str(expr.dshape)) # Tables if (ndim(expr) == 1 and (istabular(expr.dshape) or isscalar(expr.dshape.measure) or isinstance(expr.dshape.measure, Map))): return _peek_tables(expr, 10) # Smallish arrays if ndim(expr) >= 2 and numel(expr.shape) and numel(expr.shape) < 1000000: return compute(expr) # Other dat = expr._resources().values() if len(dat) == 1: dat = list(dat)[0] # may be dict_values return dat def expr_repr(expr, n=10): # Pure Expressions, not interactive if not set(expr._resources().keys()).issuperset(expr._leaves()): return str(expr) # Scalars if ndim(expr) == 0 and isscalar(expr.dshape): return repr(coerce_scalar(compute(expr), str(expr.dshape))) # Tables if (ndim(expr) == 1 and (istabular(expr.dshape) or isscalar(expr.dshape.measure) or isinstance(expr.dshape.measure, Map))): return repr_tables(expr, 10) # Smallish arrays if ndim(expr) >= 2 and numel(expr.shape) and numel(expr.shape) < 1000000: return repr(compute(expr)) # Other dat = expr._resources().values() if len(dat) == 1: dat = list(dat)[0] # may be dict_values s = 'Data: %s' % dat if not isinstance(expr, Symbol): s += '\nExpr: %s' % str(expr) s += '\nDataShape: %s' % short_dshape(expr.dshape, nlines=7) return s @dispatch(DataFrame) def to_html(df): return df.to_html() @dispatch(Expr) def to_html(expr): # Tables if not expr._resources() or ndim(expr) != 1: return to_html(expr_repr(expr)) return to_html(concrete_head(expr)) @dispatch(object) def to_html(o): return repr(o) @dispatch(_strtypes) def to_html(o): return o.replace('\n', '<br>') def table_length(expr): try: return expr._len() except ValueError: return int(expr.count()) Expr.peek = _peek Expr.__len__ = table_length def convert_base(typ, x): x = compute(x) try: return typ(x) except: return typ(odo(x, typ)) Expr.__int__ = lambda x: convert_base(int, x) Expr.__float__ = lambda x: convert_base(float, x) Expr.__complex__ = lambda x: convert_base(complex, x) Expr.__bool__ = lambda x: convert_base(bool, x) Expr.__nonzero__ = lambda x: convert_base(bool, x)
{ "repo_name": "ContinuumIO/blaze", "path": "blaze/interactive.py", "copies": "3", "size": "4644", "license": "bsd-3-clause", "hash": -1531395286350966800, "line_mean": 23.4421052632, "line_max": 77, "alpha_frac": 0.6106804479, "autogenerated": false, "ratio": 3.3897810218978104, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.550046146979781, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from functools import wraps from collections import defaultdict from glue.core.util import disambiguate from glue.core.decorators import singleton @singleton class Registry(object): """ Stores labels for classes of objects. Ensures uniqueness The registry ensures that labels for objects of the same "group" are unique, and disambiguates as necessary. By default, objects types are used to group, but anything can be used as a group Registry is a singleton, and thus all instances of Registry share the same information Usage: >>> r = Registry() >>> x, y, z = 3, 4, 5 >>> w = list() >>> r.register(x, 'Label') 'Label' >>> r.register(y, 'Label') # duplicate label disambiguated 'Label_01' >>> r.register(w, 'Label') # uniqueness only enforced within groups 'Label' >>> r.register(z, 'Label', group=int) # put z in integer registry 'Label_02' """ def __init__(self): self._registry = defaultdict(dict) self._disable = False def register(self, obj, label, group=None): """ Register label with object (possibly disamgiguating) :param obj: The object to label :param label: The desired label :param group: (optional) use the registry for group (default=type(obj)) :rtype: str *Returns* The disambiguated label """ group = group or type(obj) reg = self._registry[group] has_obj = obj in reg has_label = label in reg.values() label_is_obj = has_label and has_obj and reg[obj] == label if has_label and (not label_is_obj): values = set(reg.values()) if has_obj: values.remove(reg[obj]) if not self._disable: label = disambiguate(label, values) reg[obj] = label return label def unregister(self, obj, group=None): group = group or type(obj) reg = self._registry[group] if obj in reg: reg.pop(obj) def clear(self): """ Reset registry, clearing all stored values """ self._registry = defaultdict(dict) def disable(func): """ Decorator to temporarily disable disambiguation """ @wraps(func) def wrapper(*args, **kwargs): r = Registry() old = r._disable r._disable = True try: return func(*args, **kwargs) finally: r._disable = old return wrapper
{ "repo_name": "saimn/glue", "path": "glue/core/registry.py", "copies": "5", "size": "2605", "license": "bsd-3-clause", "hash": 7838172009700650000, "line_mean": 26.4210526316, "line_max": 79, "alpha_frac": 0.5888675624, "autogenerated": false, "ratio": 4.181380417335474, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.7270247979735474, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function from functools import wraps from collections import Iterator import numpy as np from toolz import merge, merge_sorted from .core import Array from ..base import tokenize from .. import sharedict @wraps(np.percentile) def _percentile(a, q, interpolation='linear'): if not len(a): return None if isinstance(q, Iterator): q = list(q) if str(a.dtype) == 'category': result = np.percentile(a.codes, q, interpolation=interpolation) import pandas as pd return pd.Categorical.from_codes(result, a.categories, a.ordered) if np.issubdtype(a.dtype, np.datetime64): a2 = a.astype('i8') result = np.percentile(a2, q, interpolation=interpolation) return result.astype(a.dtype) if not np.issubdtype(a.dtype, np.number): interpolation = 'nearest' return np.percentile(a, q, interpolation=interpolation) def percentile(a, q, interpolation='linear'): """ Approximate percentile of 1-D array See numpy.percentile for more information """ if not a.ndim == 1: raise NotImplementedError( "Percentiles only implemented for 1-d arrays") q = np.array(q) token = tokenize(a, list(q), interpolation) name = 'percentile_chunk-' + token dsk = dict(((name, i), (_percentile, (key), q, interpolation)) for i, key in enumerate(a._keys())) name2 = 'percentile-' + token dsk2 = {(name2, 0): (merge_percentiles, q, [q] * len(a.chunks[0]), sorted(dsk), a.chunks[0], interpolation)} dtype = a.dtype if np.issubdtype(dtype, np.integer): dtype = (np.array([], dtype=dtype) / 0.5).dtype dsk = merge(dsk, dsk2) dsk = sharedict.merge(a.dask, (name2, dsk)) return Array(dsk, name2, chunks=((len(q),),), dtype=dtype) def merge_percentiles(finalq, qs, vals, Ns, interpolation='lower'): """ Combine several percentile calculations of different data. Parameters ---------- finalq : numpy.array Percentiles to compute (must use same scale as ``qs``). qs : sequence of numpy.arrays Percentiles calculated on different sets of data. vals : sequence of numpy.arrays Resulting values associated with percentiles ``qs``. Ns : sequence of integers The number of data elements associated with each data set. interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} Specify the type of interpolation to use to calculate final percentiles. For more information, see numpy.percentile. Examples -------- >>> finalq = [10, 20, 30, 40, 50, 60, 70, 80] >>> qs = [[20, 40, 60, 80], [20, 40, 60, 80]] >>> vals = [np.array([1, 2, 3, 4]), np.array([10, 11, 12, 13])] >>> Ns = [100, 100] # Both original arrays had 100 elements >>> merge_percentiles(finalq, qs, vals, Ns) array([ 1, 2, 3, 4, 10, 11, 12, 13]) """ if isinstance(finalq, Iterator): finalq = list(finalq) finalq = np.array(finalq) qs = list(map(list, qs)) vals = list(vals) Ns = list(Ns) L = list(zip(*[(q, val, N) for q, val, N in zip(qs, vals, Ns) if N])) if not L: raise ValueError("No non-trivial arrays found") qs, vals, Ns = L # TODO: Perform this check above in percentile once dtype checking is easy # Here we silently change meaning if str(vals[0].dtype) == 'category': result = merge_percentiles(finalq, qs, [v.codes for v in vals], Ns, interpolation) import pandas as pd return pd.Categorical.from_codes(result, vals[0].categories, vals[0].ordered) if not np.issubdtype(vals[0].dtype, np.number): interpolation = 'nearest' if len(vals) != len(qs) or len(Ns) != len(qs): raise ValueError('qs, vals, and Ns parameters must be the same length') # transform qs and Ns into number of observations between percentiles counts = [] for q, N in zip(qs, Ns): count = np.empty(len(q)) count[1:] = np.diff(q) count[0] = q[0] count *= N counts.append(count) # Sort by calculated percentile values, then number of observations. # >95% of the time in this function is spent in `merge_sorted` below. # An alternative that uses numpy sort is shown. It is sometimes # comparable to, but typically slower than, `merge_sorted`. # # >>> A = np.concatenate(map(np.array, map(zip, vals, counts))) # >>> A.sort(0, kind='mergesort') combined_vals_counts = merge_sorted(*map(zip, vals, counts)) combined_vals, combined_counts = zip(*combined_vals_counts) combined_vals = np.array(combined_vals) combined_counts = np.array(combined_counts) # percentile-like, but scaled by total number of observations combined_q = np.cumsum(combined_counts) # rescale finalq percentiles to match combined_q desired_q = finalq * sum(Ns) # the behavior of different interpolation methods should be # investigated further. if interpolation == 'linear': rv = np.interp(desired_q, combined_q, combined_vals) else: left = np.searchsorted(combined_q, desired_q, side='left') right = np.searchsorted(combined_q, desired_q, side='right') - 1 np.minimum(left, len(combined_vals) - 1, left) # don't exceed max index lower = np.minimum(left, right) upper = np.maximum(left, right) if interpolation == 'lower': rv = combined_vals[lower] elif interpolation == 'higher': rv = combined_vals[upper] elif interpolation == 'midpoint': rv = 0.5 * (combined_vals[lower] + combined_vals[upper]) elif interpolation == 'nearest': lower_residual = np.abs(combined_q[lower] - desired_q) upper_residual = np.abs(combined_q[upper] - desired_q) mask = lower_residual > upper_residual index = lower # alias; we no longer need lower index[mask] = upper[mask] rv = combined_vals[index] else: raise ValueError("interpolation can only be 'linear', 'lower', " "'higher', 'midpoint', or 'nearest'") return rv
{ "repo_name": "mraspaud/dask", "path": "dask/array/percentile.py", "copies": "2", "size": "6272", "license": "bsd-3-clause", "hash": -6131227793143068000, "line_mean": 36.3333333333, "line_max": 90, "alpha_frac": 0.620057398, "autogenerated": false, "ratio": 3.678592375366569, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5298649773366569, "avg_score": null, "num_lines": null }