text
stringlengths
0
1.05M
meta
dict
from __future__ import (absolute_import, division, print_function, unicode_literals) exec(open("ground.py").read()) # # mine import hamiltonian import diffeo import sde from utility import * # def run(dict,canload=0): """ Qr=dict['landmarks'][0,:,:] Apply push-forward map to sample Qr. Find average using MAP4. Plot phase-plane with confidence balls and original data (from push-forward map). """ import os.path if 'fname' in dict: filename=dict['fname'] else: print("No filename given") exit(1) print("\n",filename," ",dict['ext'],"============================================","\n") plt.ion() G=hamiltonian.GaussGreen(dict['ell'],0) # create set of landmarks by push-forward SDE = sde.SDE(G) SDE.set_lam_beta(dict['lam'],dict['beta'],True) Qr=dict['landmarks'][0,:,:] # use first set as reference dict['landmarks_n']=SDE.add_sde_noise(Qr, dict['num']) # find landmark average SDE=sde.MAP4(G) SDE.set_data_var(dict['data_var']) SDE.set_lam_beta(dict['lam'],dict['beta'],False) SDE.set_landmarks(dict['landmarks_n']) SDE.set_no_steps(dict['no_steps']) SDE.solve() cov_q,cov_p=SDE.cov() # # plot landmarks (noisy source data) if False: plt.figure(1) plot_setup() plt.axis('equal') plot_landmarks(dict['landmarks_n'],shadow=3,lw=0.2) plt.savefig(filename+dict['ext']+'_samps.pdf',bbox_inches='tight') # lam # plot landmarks with average and confidence ball plt.figure(1) plot_setup() plt.axis('equal') plot_average(SDE.Qh) # red star Qav=np.average(dict['landmarks_n'],axis=0) plot_average(Qav,2) # 2=blue dot add_sd_plot(SDE.Qh, cov_q) plt.savefig(filename+dict['ext']+'_av.pdf',bbox_inches='tight') #################################################################### if __name__ == "__main__": # do this plt.ion() # noise_var=0.0 dict=exp4(noise_var) dict['beta']=25.0 dict['lam']=0.1 i=4 if i==0: dict['ext']='2a' dict['num']=2 if i==1: dict['ext']='4a' dict['num']=4 if i==2: dict['ext']='16b' dict['num']=16 if i==3: dict['ext']='64b' dict['num']=64 if i==4: dict['ext']='256b' dict['num']=256 dict['data_var']=noise_var+0.05 run(dict)
{ "repo_name": "tonyshardlow/reg_sde", "path": "run_split2_add.py", "copies": "1", "size": "2420", "license": "mit", "hash": 1280729964433312500, "line_mean": 27.1395348837, "line_max": 92, "alpha_frac": 0.5429752066, "autogenerated": false, "ratio": 3.1065468549422337, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.41495220615422335, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) from builtins import * from future.utils import iteritems import inspect from datacheck.compat import native_type from datacheck.exceptions import (SchemaError, TypeValidationError, FieldValidationError, UnknownKeysError) from datacheck.path import init_path, list_item_path, dict_item_path def validate(data, schema, **kwargs): if 'path' not in kwargs: kwargs['path'] = init_path() return _validate(data, schema, **kwargs) def _get_validator(schema): if isinstance(schema, Validator): return schema elif inspect.isclass(schema): return Type(schema) elif isinstance(schema, list): l = len(schema) if l == 0: return Type(native_type(list)) elif l == 1: return List(schema[0]) else: raise SchemaError() elif isinstance(schema, dict): return Dict(schema) raise SchemaError() def _validate(data, schema, **kwargs): v = _get_validator(schema) return v.validate(data, **kwargs) class Validator(object): def validate(self, data, path=None): raise NotImplementedError() class Type(Validator): def __init__(self, expected_type): if not inspect.isclass(expected_type): raise SchemaError('expected_type must be a class type') self.expected_type = expected_type def validate(self, data, path=None): if not isinstance(data, self.expected_type): raise TypeValidationError(data, self.expected_type, path=path) return data class List(Validator): def __init__(self, schema): self.schema = schema def validate(self, data, path=None): if path is None: path = init_path() if not isinstance(data, list): raise TypeValidationError(data, native_type(list), path=path) output_list = [] for i, x in enumerate(data): subpath = list_item_path(path, i) output_list.append(_validate(x, self.schema, path=subpath)) return output_list class DictField(object): def __init__(self, schema): self.schema = schema class Required(DictField): pass class Optional(DictField): def __init__(self, schema): super(Optional, self).__init__(schema) self.has_default = False self.default_value = None def default(self, x): self.has_default = True self.default_value = x return self class Dict(Validator): def __init__(self, schema, allow_unknown=False): self.schema = schema self.allow_unknown = allow_unknown def validate(self, data, path=None): if path is None: path = init_path() if not isinstance(data, dict): raise TypeValidationError(data, native_type(dict), path=path) unknown_keys = set(data) output_dict = {} for key, field_spec in iteritems(self.schema): if isinstance(field_spec, DictField): item_schema = field_spec.schema is_optional = isinstance(field_spec, Optional) else: item_schema = field_spec is_optional = False try: actual_value = data[key] except KeyError: if is_optional: if field_spec.has_default: output_dict[key] = field_spec.default_value else: raise FieldValidationError(key, path=path) else: unknown_keys.remove(key) subpath = dict_item_path(path, key) output_dict[key] = _validate(actual_value, item_schema, path=subpath) if (not self.allow_unknown) and unknown_keys: raise UnknownKeysError(unknown_keys, path=path) else: output_dict.update({k: data[k] for k in unknown_keys}) return output_dict
{ "repo_name": "csdev/datacheck", "path": "datacheck/core.py", "copies": "1", "size": "4116", "license": "mit", "hash": 7225076665113634000, "line_mean": 27.1917808219, "line_max": 74, "alpha_frac": 0.583819242, "autogenerated": false, "ratio": 4.25206611570248, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.533588535770248, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) from builtins import * from future.utils import python_2_unicode_compatible from datacheck.compat import native_data_type from datacheck.path import path_to_str class DatacheckException(Exception): pass class SchemaError(DatacheckException): pass class ValidationError(DatacheckException): def __init__(self, path=None): self.path = path class MultipleValidationError(ValidationError): def __init__(self): pass @python_2_unicode_compatible class TypeValidationError(ValidationError): def __init__(self, data, expected_type, path=None): super(TypeValidationError, self).__init__(path=path) self.expected_type = expected_type self.actual_type = native_data_type(data) self.actual_value = data def __str__(self): return '%s: Expected %s, got %s (%s)' % ( path_to_str(self.path), self.expected_type.__name__, self.actual_type.__name__, self.actual_value, ) @python_2_unicode_compatible class FieldValidationError(ValidationError): def __init__(self, expected_field, path=None): super(FieldValidationError, self).__init__(path=path) self.expected_field = expected_field def __str__(self): msg = 'Missing required field "%s"' % self.expected_field if self.path: msg = path_to_str(self.path) + ': ' + msg return msg @python_2_unicode_compatible class UnknownKeysError(ValidationError): def __init__(self, unknown_keys, path=None): super(UnknownKeysError, self).__init__(path=path) self.unknown_keys = unknown_keys def __str__(self): return '%s: Unknown keys: %s' % ( path_to_str(self.path), ', '.join([('"%s"' % k if isinstance(k, str) else str(k)) for k in self.unknown_keys]), ) @python_2_unicode_compatible class DataValidationError(ValidationError): def __init__(self, error_message, data, path=None): super(DataValidationError, self).__init__(path=path) self.error_message = error_message self.data = data def __str__(self): return '%s: %s (Received value: %s)' % ( path_to_str(self.path), self.error_message, self.data )
{ "repo_name": "csdev/datacheck", "path": "datacheck/exceptions.py", "copies": "1", "size": "2417", "license": "mit", "hash": -3543301879415149000, "line_mean": 27.7738095238, "line_max": 69, "alpha_frac": 0.6123293339, "autogenerated": false, "ratio": 3.936482084690554, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5048811418590554, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) from builtins import * import six from abc import ABCMeta, abstractmethod, abstractproperty import torch @six.add_metaclass(ABCMeta) class AbstractWorld: @abstractmethod def step(self, *args): pass @abstractproperty def state(self): pass @abstractproperty def reset(self): pass @abstractproperty def min_agents(self): pass @abstractproperty def max_agents(self): pass @abstractproperty def num_agents(self): pass @six.add_metaclass(ABCMeta) class Sensor: @abstractmethod def observe(self): pass @abstractproperty def space(self): pass def __call__(self): return self.observe() @six.add_metaclass(ABCMeta) class Actuator: @abstractmethod def act(self): pass @abstractproperty def space(self): pass def __call__(self): self.act() @six.add_metaclass(ABCMeta) class AbstractAgent: def __init__(self, sensor, actuator, model): in_shape = model.input_shape out_shape = model(torch.zeros(1, *in_shape)).shape if in_shape != sensor.space.shape(): raise ValueError self.sensor = sensor self.actuator = actuator
{ "repo_name": "sig-ai/SDM", "path": "sdm/abstract/core.py", "copies": "1", "size": "1371", "license": "mit", "hash": -7187869851500013000, "line_mean": 17.28, "line_max": 58, "alpha_frac": 0.6134208607, "autogenerated": false, "ratio": 4.129518072289157, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5242938932989156, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) from builtins import * __author__ = 'Sander Bollen' import locale import os.path import logging from .generics import * from .models import * ENCODING = locale.getdefaultlocale()[1] class Reader(object): def __init__(self, filename): self._filename = os.path.basename(filename) self._handler = open(filename, 'rb') def __iter__(self): return self def next(self): try: line = next(self._handler) except ValueError: raise StopIteration return Record.fromline(line) # python 3 compatibility def __next__(self): return self.next() def close(self): self._handler.close() class Writer(object): def __init__(self, filename): self._filename = filename self._handler = open(filename, 'wb') def write(self, record): nline = record.line + "\n" self._handler.write(nline.encode(ENCODING)) def close(self): self._handler.close() class Record(object): def __init__(self, geneName, name, chrom, strand, txStart, txEnd, cdsStart, cdsEnd, exonCount, exonStarts, exonEnds): self._gene = geneName self._tr_name = name self._chr = chrom self._strand = strand self._tx_start = txStart self._tx_end = txEnd self._cds_start = cdsStart self._cds_end = cdsEnd self._exon_count = exonCount self._exon_start = exonStarts self._exon_ends = exonEnds @property def gene(self): return str(self._gene) @property def transcript(self): return str(self._tr_name) @property def chromosome(self): return str(self._chr) @property def strand(self): return str(self._strand) @property def txStart(self): return int(self._tx_start) @property def txEnd(self): return int(self._tx_end) @property def cdsStart(self): return int(self._cds_start) @property def cdsEnd(self): return int(self._cds_end) @property def n_exons(self): return int(self._exon_count) @property def exonStarts(self): return [int(x) for x in self._exon_start] @property def exonEnds(self): return [int(x) for x in self._exon_ends] @property def exons(self): return Exon.fromrecord(self) @property def cds_exons(self): """ Return those exons which lie within the cds Also returns those partially inside the cds :return: """ return [x for x in self.exons if x.stop >= self.cdsStart and x.start <= self.cdsEnd] def to_dict(self): d = {} d["geneName"] = self.gene d["name"] = self.transcript d["chrom"] = self.chromosome d["strand"] = self.strand d["txStart"] = self.txStart d["txEnd"] = self.txEnd d["cdsStart"] = self.cdsStart d["cdsEnd"] = self.cdsEnd d["exonStarts"] = self.exonStarts d["exonEnds"] = self.exonEnds d["exonCount"] = self.n_exons return d @property def line(self): line = [] d = self.to_dict() for nlc in NUMERIC_LIST_COLUMNS: d[nlc] = ",".join(map(str, d[nlc])) + "," for col in COLUMNS: line += [d[col]] return "\t".join(map(str, line)) @classmethod def fromdict(cls, items): """ Builds a record from a dictionary. This dictionary must contain all fields specified in generics.COLUMNS """ normal_columns = set(COLUMNS) - set(NUMERIC_LIST_COLUMNS) # <-- remember, this is UNORDERED! # first check whether all columns are there and properly formatted for c in COLUMNS: if c not in items: raise ValueError("Item {c} must be given".format(c=c)) for nlc in NUMERIC_LIST_COLUMNS: if not isinstance(items[nlc], list): raise ValueError("Item {nlc} must be a list of integers".format(nlc=nlc)) elif not all([isinstance(x, int) for x in items[nlc]]): raise ValueError("Item {nlc} must be a list of integers".format(nlc=nlc)) for nc in NUMERIC_COLUMNS: if not isinstance(items[nc], int): raise ValueError("Item {nc} must be an integer".format(nc=nc)) r = Record(**items) return r @classmethod def fromline(cls, line): """ Builds a record from a line """ raw_items = line.strip().split('\t') assert len(raw_items) >= 11, "Contains less than 11 columns!" items = dict() for i in xrange(11): items[COLUMNS[i]] = raw_items[i] for nc in NUMERIC_COLUMNS: items[nc] = int(items[nc]) for lnc in NUMERIC_LIST_COLUMNS: if not items[lnc].endswith(','): raise ValueError("Malformed refFlat file! Value {lnc} must end in a comma".format(lnc=lnc)) it = items[lnc].split(',') it.pop() items[lnc] = [int(x) for x in it] r = Record(**items) return r class RefFlatProcessor(object): def __init__(self, filename, log=True, log_level="INFO"): self.filename = filename self._already_processed = False self.genes = {} self.transcripts = {} self.n_duplicates = 0 self.duplicates = [] self.log = log if log: self.logger = logging.getLogger("RefFlatProcessor") numeric_level = getattr(logging, log_level.upper(), None) self.logger.setLevel(numeric_level) ch = logging.StreamHandler() ch.setLevel(numeric_level) formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') ch.setFormatter(formatter) self.logger.addHandler(ch) self.logger.info("Initializing...") def process(self, remove_duplicates=True, flush=True): """ Create gene and transcript tables for the input refflat file :param remove_duplicates: Boolean. True by default. If true, will remove duplicates from the tables. Duplicate is defined when the transcript name occurs more than one (aka transcript should be unique) Since we have no way of knowing what transcript is the correct one, the retained transcript is simply the first we encounter. Conflicting records will be placed in the `duplicates` list of this object Please note that if this variable is set to False, derived gene coordinates may no longer make sense (Yes, there are transcripts that are annotated on multiple chromosomes even!) :param flush: flush contents of object first :return: genes as dict to self.genes, transcript as dict to self.transcripts """ if flush: self._already_processed = False self.genes = {} self.transcripts = {} self.duplicates = [] self.n_duplicates = 0 for i, record in enumerate(Reader(self.filename)): if i % 1000 == 0 and self.log: self.logger.info("Processed {0} records".format(i)) if not record.gene in self.genes and not record.transcript in self.transcripts: tmptranscript = Transcript(record.transcript, record.chromosome, record.txStart, record.txEnd, record.cdsStart, record.cdsEnd, exons=record.exons, strand=record.strand) tmpgene = Gene(record.gene) tmpgene.update_transcripts(tmptranscript) tmptranscript.gene = tmpgene self.genes[record.gene] = tmpgene self.transcripts[tmptranscript.name] = tmptranscript elif record.gene in self.genes and not record.transcript in self.transcripts: tmptranscript = Transcript(record.transcript, record.chromosome, record.txStart, record.txEnd, record.cdsStart, record.cdsEnd, exons=record.exons, strand=record.strand) self.genes[record.gene].update_transcripts(tmptranscript) tmptranscript.gene = self.genes[record.gene] self.transcripts[tmptranscript.name] = tmptranscript elif record.gene in self.genes and record.transcript in self.transcripts: self.n_duplicates += 1 self.duplicates += [record] if not remove_duplicates: tmptranscript = Transcript(record.transcript, record.chromosome, record.txStart, record.txEnd, record.cdsStart, record.cdsEnd, exons=record.exons, strand=record.strand) self.genes[record.gene].update_transcripts(tmptranscript) tmptranscript.gene = self.genes[record.gene] self.transcripts[tmptranscript.name] = tmptranscript else: # would happen in record.transcript in transcripts and not record.gene in genes # which should not be possible raise ValueError("Something odd happened!") self._already_processed = True if self.log: self.logger.info("Done processing")
{ "repo_name": "sndrtj/pyrefflat", "path": "pyrefflat/parser.py", "copies": "1", "size": "9535", "license": "mit", "hash": 1086052792625860500, "line_mean": 32.9359430605, "line_max": 120, "alpha_frac": 0.5829050865, "autogenerated": false, "ratio": 4.122351923908344, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5205257010408344, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) from builtins import * from flask import Flask from commitsan.hooks_app import app as hooks frontend = Flask(__name__) frontend.config['DEBUG'] = True class CombiningMiddleware(object): """Allows one to mount middlewares or applications in a WSGI application. Unlike DispatcherMiddleware, this one doesn't alter the environment of the called application. That is, applications still receive the absolute path. """ def __init__(self, app, mounts=None): self.app = app self.mounts = mounts or {} def __call__(self, environ, start_response): script = environ.get('PATH_INFO', '') while '/' in script: if script in self.mounts: app = self.mounts[script] break script = script.rsplit('/', 1)[0] else: app = self.mounts.get(script, self.app) return app(environ, start_response) app = CombiningMiddleware(frontend, { '/hooks': hooks, }) @frontend.route('/') def hello(): return 'Hello World!'
{ "repo_name": "abusalimov/commitsan", "path": "commitsan/web_app.py", "copies": "1", "size": "1160", "license": "mit", "hash": -8525677558714258000, "line_mean": 25.3636363636, "line_max": 78, "alpha_frac": 0.6189655172, "autogenerated": false, "ratio": 4.233576642335766, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5352542159535766, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) from builtins import * from future.utils import native from past.builtins import basestring as _basestring # The future module redefines certain built-in types so that our python3 # code is also compatible with python2. However, we must be careful not to # expose one of these redefined type objects to a python2 user who is not # aware of the future module. # # http://python-future.org/what_else.html#passing-data-to-from-python-2-libraries # # Safe: # type(2) --> int # # Unsafe; use this function to convert: # int --> future.types.newint.newint # type(int(2)) --> future.types.newint.newint # # On python3, this function is effectively a no-op. # def native_type(t): if t == int: # future.types.newint.newint return native_data_type(0) elif t == list: # future.types.newlist.newlist return native_data_type([]) elif t == dict: # future.types.newdict.newdict return native_data_type({}) else: return t def native_data_type(x): return type(native(x)) def is_unicode_or_byte_string(x): return isinstance(x, _basestring)
{ "repo_name": "csdev/datacheck", "path": "datacheck/compat.py", "copies": "1", "size": "1197", "license": "mit", "hash": 5608630450762224000, "line_mean": 28.1951219512, "line_max": 81, "alpha_frac": 0.6883876358, "autogenerated": false, "ratio": 3.4297994269340975, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.46181870627340976, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) from builtins import * from .generics import * class Exon(object): """ This class defines an exon inside a record """ __slots__ = ["_gene", "_transcript", "_chr", "_start", "_end", "_number"] def __init__(self, gene, transcript, chr, start, stop, n): self._gene = gene self._transcript = transcript self._chr = chr self._start = start self._end = stop self._number = n @property def gene(self): return self._gene @property def transcript(self): return self._transcript @property def chr(self): return self._chr @property def start(self): return self._start @property def stop(self): return self._end @property def number(self): return self._number @classmethod def fromrecord(cls, record): exons = [] assert(len(record.exonStarts) == len(record.exonEnds)) if record.strand == "+": for i, (s, e) in enumerate(zip(record.exonStarts, record.exonEnds)): exons.append(Exon(record.gene, record.transcript, record.chromosome, s, e, i+1)) # for negative strand transcripts else: i = len(record.exonStarts) for (s, e) in zip(record.exonStarts, record.exonEnds): exons.append(Exon(record.gene, record.transcript, record.chromosome, s, e, i)) i -= 1 return exons class Transcript(object): __slots__ = ["name", "gene", "chr", "start", "end", "cds_start", "cds_end", "exons", "strand"] def __init__(self, name, chr, start, end, cds_start, cds_end, exons=None, gene=None, strand="+"): self.name = name self.gene = gene self.chr = chr self.start = start self.end = end self.cds_start = cds_start self.cds_end = cds_end self.exons = exons self.strand = strand def update_exons(self, exon): if exon.start < self.start: raise ValueError("Start of exon cannot be in front of start of transcript") if exon.stop > self.end: raise ValueError("End of exon cannot be behind end of transcript") if self.exons: self.exons.append(exon) else: self.exons = [exon] @property def cds_exons(self): """ Return those exons which lie within the cds Also returns those partially inside the cds :return: """ return [x for x in self.exons if x.stop >= self.cds_start and x.start <= self.cds_end] @property def line(self): line = [] d = self.to_dict() for nlc in NUMERIC_LIST_COLUMNS: d[nlc] = ",".join(map(str, d[nlc])) + "," for col in COLUMNS: line += [d[col]] return "\t".join(map(str, line)) def to_dict(self): d = {} d["geneName"] = self.gene.name d["name"] = self.name d["chrom"] = self.chr d["strand"] = self.strand d["txStart"] = self.start d["txEnd"] = self.end d["cdsStart"] = self.cds_start d["cdsEnd"] = self.cds_end d["exonStarts"] = [int(x.start) for x in self.exons] d["exonEnds"] = [int(x.stop) for x in self.exons] d["exonCount"] = len(self.exons) return d class Gene(object): __slots__ = ["name", "min_coord", "max_coord", "transcripts", "chr"] def __init__(self, name, chr=None, min_coord=None, max_coord=None, transcripts=None): self.name = name self.min_coord = min_coord self.max_coord = max_coord self.transcripts = transcripts self.chr = chr def update_transcripts(self, transcript): if self.min_coord: if transcript.start < self.min_coord: self.min_coord = transcript.start else: self.min_coord = transcript.start if self.max_coord: if transcript.end > self.max_coord: self.max_coord = transcript.end else: self.max_coord = transcript.end if self.transcripts: self.transcripts += [transcript] self.chr += [transcript.chr] else: self.transcripts = [transcript] self.chr = [transcript.chr]
{ "repo_name": "sndrtj/pyrefflat", "path": "pyrefflat/models.py", "copies": "1", "size": "4572", "license": "mit", "hash": -3593755624257228300, "line_mean": 27.9367088608, "line_max": 101, "alpha_frac": 0.5330271216, "autogenerated": false, "ratio": 3.7691673536685903, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.480219447526859, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) from builtins import * from github import ApiError from commitsan.github import github, GITHUB_BLOB_URL_TMPL from commitsan.worker import job CONTRIBUTING_FILENAME = 'CONTRIBUTING.md' def output(*args, **kwargs): kwargs.setdefault('file', sys.stderr) print(*args, **kwargs) @job() def post_status(repo, commit, context, description, state='pending', **kwargs): endpoint = github.repos(repo).statuses(commit) if 'target_url' not in kwargs: kwargs['target_url'] = (GITHUB_BLOB_URL_TMPL .format(filename=CONTRIBUTING_FILENAME, **locals())) output('Posting to {repo}: state of {commit} set to {state}: ' '{context} ({description})' .format(**dict(kwargs, **locals()))) endpoint.post(context='commitsan/{}'.format(context), description=description, state=state, **kwargs) def report_issue(repo, commit, context, description, fatal=False): post_status.delay(repo, commit, context, description, state='failure' if fatal else 'pending')
{ "repo_name": "abusalimov/commitsan", "path": "commitsan/report.py", "copies": "1", "size": "1215", "license": "mit", "hash": -8307745388300749000, "line_mean": 36.96875, "line_max": 79, "alpha_frac": 0.6255144033, "autogenerated": false, "ratio": 4.063545150501672, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5189059553801671, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) from builtins import * import collections import itertools import regex as re import textwrap from commitsan.checks import checker from commitsan.git import git_show def split_lines(s): return [line.strip() for line in s.split('\n') if line.strip()] ignores = split_lines(''' a again all always an any big bigger bit correct correctly couple couple of different differently do don't example of extra extreme extremely few good great greatly insignificant insignificantly less little lot lot of lots lots of major minor more never no more not anymore once again once more one more time one more times only proper properly significant significantly slight slightly small smaller some the various ''') whitelist = split_lines(''' ahead alone bogus buf buff bug bulk bus busy callee caller checksum child coding cold compiler down during event field file handler head help hole huge image issue killer know macro mgmt mode model nest net newly next node none once pending prompt resource role route scrub seen sense separately shared shell slave slot spelling stat status string stub stuck stuff there thread three trend unchanged unhandled uninitialized unsupported user void word worker zone ''') blacklist = split_lines(''' bug bugs does doesn't doing done new news nothing important nothing meaningful nothing significant nothing special now old optimisation optimisations optimization optimizations simplification simplifications stub stubs ''') verbs = split_lines(''' add adopt allow append avoid begin^ : began : begun build^ : built bump call change check clean cleanup^ clear clone close comment commit^ compile complain consolidate convert correct create deal : dealt define delete disable document drop^ : dropped : dropt eliminate enable ensure exchange export extract fix fold forbid^ : forbad : forbade : forbidden forget^ : forgot : forgotten get^ : got : gotten grow : grew : grown handle hold : held ignore implement improve include inform initialise initialize introduce issue kill make : made mark merge move need optimise optimize pass plug^ polish poll port prefer^ prepare prevent print provide redefine reduce reenable refactor reimplement reintroduce remove rename replace restore restructure return reverse revert reword rework rewrite : rewrote : rewritten roll save send : sent separate set^ : setup^ : show : shown simplify split^ squash start startup^ stop^ support switch throw : threw : thrown tidy try turn uncomment unexport unify unset^ : update use work workaround : write : wrote : written yield ''') def verb_forms(s): """ From a given verb makes 4-element tuple of: infinitive: The verb itself -s: The third form -ing: Continuous tense -ed: Past simple tense """ words = s.split() verb = words.pop(0) third = cont = past = None if verb[-1] == '^': verb = verb[:-1] cont = past = verb + verb[-1] # stop-s # stop-P-ing # stop-P-ed elif verb[-1] == 'e': cont = past = verb[:-1] # merge-s # merg-ing # merg-ed elif verb[-1] in 'sxz' or verb[-2:] in ('ch', 'sh'): third = verb + 'e' # fix-e-s # fix-ing # fix-ed elif verb[-1] == 'y': third = verb[:-1] + 'ie' # tr-ie-s # try-ing # tr-i-ed past = verb[:-1] + 'i' return tuple(' '.join([form] + words) for form in ((verb), (third or verb) + 's', (cont or verb) + 'ing', (past or verb) + 'ed')) def to_ident(word, prefix=''): if word is not None: return prefix + re.sub(r'\W', '', word).lower() def make_verb_forms(verb_lines): """ Constructs a pair of lists: 1. Containing verbs in imperative mood (like 'fix') 2. Forms considered wrong ('fixes / fixing / fixed') """ good_list = [] bad_list = [] bad_idents = {} # bad-to-good form mapping for line in verb_lines: phrases = [phrase.strip() for phrase in line.split(':')] if not any(phrases): continue verb, third, cont, past = verb_forms(phrases[0]) good_list.append(verb) for bad_form in filter(bool, (phrases[1:] or [past]) + [third, cont]): bad_list.append(bad_form) bad_idents[to_ident(bad_form, prefix='bad_')] = verb return good_list, bad_list, bad_idents good_verb_forms, bad_verb_forms, bad_idents_mapping = make_verb_forms(verbs) # These are not verbs, but verb_forms is used to make a plural form of nouns. whitelist = list(itertools.chain.from_iterable(verb_forms(word)[:2] for word in whitelist)) def to_regex(*word_lists, **name_prefix_kw): name_prefix = name_prefix_kw.pop('name_prefix', 'word_') words = sorted(itertools.chain.from_iterable(word_lists), key=len) return r'(?:{})'.format('|'.join('(?<{}>{})' .format(to_ident(word, name_prefix), r'\s+'.join(word.split())) for word in words)) FUZZINESS = { 0: '{i<=1,s<=1,e<=1}', 4: '{i<=1,d<=1,2i+2d+3s<=4}', 8: '{i<=2,d<=2,2i+2d+3s<=6}', } FUZZY_PAT_TMPL = r'''(?x: \m (?&{group}) \M | (?: (?= \m (?&{group}){fuzzy[0]} \M (?<__f_la>.*)$) .{{0,}} | (?= \m (?&{group}){fuzzy[4]} \M (?<__f_la>.*)$) .{{4,}} | (?= \m (?&{group}){fuzzy[8]} \M (?<__f_la>.*)$) .{{8,}} ) (?=\g<__f_la>$) )''' class Fuzzifier(object): def __init__(self, fuzziness={}): super(Fuzzifier, self).__init__() self.fuzziness = dict(FUZZINESS) self.fuzziness.update(fuzziness) def __getitem__(self, name): return FUZZY_PAT_TMPL.format(group=name, fuzzy=self.fuzziness) def __call__(self, pat, name): return (r'''(?x: (?<{group}> {pat} ){{0}} )''' .format(group=name, pat=pat) + self[name]) fuzzify = Fuzzifier() # - Bullets or numbered list # ^^^^ INDENT_RE = re.compile(r'''(?x)^ (?<bullet> \s{0,3} ( [*\-] | \d [:.)] | [^\W_] [.)] ) )? \s* ''') # [old-style] topic: (label) ... # ^^^^^^^^^^^ ^^^^^^ ^^^^^^^ TOPIC_RE = re.compile(r'''(?x)^ (?: \s{0,2} (?<topic> (?<brackets> (?=\[) (\[+ \S+? \]+){i<=1} (\s? :)? ) | (?<parens> (?=\() (\(+ \S+? \)+){i<=1} (\s? :)? ) | (?<plain> (?=\S) ( \S+? ){i<=2} (\s? :) ) | (?<plain> ([^\s;]+?) (?<!\(\)) (?<semi> \s? ;) ) ) (?<= [\]):;] ) )*+ \s* ''') # Some text; and more; ';' is ignored; func(); too; and also an orphan ; alone # ^^^^^^^^^ ^^^^^^^^ ^^^^^^^^^^^^^^ ^^^^^^^^^^^ ^^^^^^^^^^^^^^^^^^^^^^^^^^ SEMI_RE = re.compile(r'''(?x)^ (?: \s* (?<sentence> ( (?<!\\)(';'|";") | \(\); | \w+\(.*?\); | \s+; | . )*? ) ( ; | \s* $ ) )*+ $''') # Here goes the sentence itself. SENTENCE_RE = re.compile(r'''(?x)^ (?<head> (?<skipping> ( (?<skip> \m {skip_pat} \M ) \s* )*+ ) (?<verb> (?<head_verb> (?<good> \m .{{0,2}} # This compensates fuzziness, for example, # in "xxx's fix", where "s fix" ~ "fixes". \m {good_pat} \M ) | (?<bad> \m {bad_pat} \M ) ) )?+ ) (?<tail> (?(head_verb)| # Don't match if there was a verb at the beginning. # Also give up if some part of a sentence starts with a good verb. ( (?! [:;,.?!+] \s* (?<!\.) (?&skipping) (?&good) ) . )*? # Grab an auxiliary verb, if any, # but filter out a subordinating clause. (?<= (?<! \m (that|which)('?s)? \M \s* ) (?<aux> (?: \m (?: (are|is|was|were)(\s*not|n't)? (\s+being)? | (?: (have|has|had)?(\s*not|n't)? | (\s+ been) )+ ) \M \s*)?+ ) ) (?<verb> (?<tail_verb> (?! (?&good)|(?&skip) ) (?&bad) (?<!s|ing|ion) ) ) (?= \s* ([:;,.?!)](?!\w)|\s\(|$) ) )?+ .* ) # Consume till the end, for sake of convenience. $'''.format(good_pat=to_regex(good_verb_forms, whitelist, name_prefix='good_'), bad_pat=fuzzify(to_regex(bad_verb_forms, blacklist, name_prefix='bad_'), name='__bad_pat'), skip_pat=fuzzify(to_regex(ignores, name_prefix='skip_'), name='__skip_pat')), flags=re.I|re.B) END_PERIOD_RE = re.compile(r'''(?x) (?<! \m (?: Co | Ltd | Inc | et\ al | etc | e\.g | i\.e | R\.I\.P | mgmt | smth | std | stmt ) | \. ) \. $''', flags=re.I) def non_empty(iterable): return list(filter(None, iterable)) def strip_topics(iterable): return non_empty(s.strip('[( )]:;') for s in iterable) def wrap(s, width=32, ending=' ...'): lines = textwrap.wrap(s, width, break_long_words=False, break_on_hyphens=False) if not lines: return '' s = lines[0] if len(lines) > 1: s += ending return s def bad_to_good(sm): sc = sm.capturesdict() bad = sc['bad'][0] if sc['bad'] else None bad_ident = to_ident(bad, prefix='bad_') if bad: # Find out the exact verb/word. if bad not in sc[bad_ident]: # fuzzy? for bad_ident in bad_idents_mapping: if bad in sc[bad_ident]: break else: bad_ident = None return bad, bad_idents_mapping.get(bad_ident) def msg_regex(repo, commit, lines): indent = 0 for i, line in enumerate(lines or ['']): im = INDENT_RE.match(line) is_bullet_line = bool(im.group('bullet')) is_subject_line = (i == 0) is_paragraph_line = (i > 0) and (is_bullet_line or not lines[i-1]) line_indent = im.end() if is_bullet_line or line_indent < indent: indent = line_indent # Zero if the line is blank. if len(line) > 72 and not line.startswith(' ' * (indent+4)): if is_subject_line: yield ('error', 'msg/subj-limit', 'Keep the subject concise: 50 characters or less') else: yield ('error', 'msg/wrap', 'Wrap the body at 72 characters') if is_subject_line and is_bullet_line: yield ('warning', 'msg/subj-list', 'Do not put bullets on the subject line') if not is_subject_line and not is_paragraph_line: # Within a body, only lines starting a paragraph are considered. continue line = line[line_indent:] tm = TOPIC_RE.match(line) tc = tm.capturesdict() line = line[tm.end():] labels = [label.join('()') for label in strip_topics(tc['parens'])] colons_topic = ':'.join(strip_topics(tc['brackets'] + tc['plain'])) orig_topics = non_empty(re.split(r'\s*(?::\s*)+', colons_topic)) topics = [] sentence_matches = [] for topic in orig_topics: # Topic regex recognizes up to 3 words (\S+ with {i<=2} fuzziness). # Filter out false positives like in 'fixing smth.: works now' and # treat them as regular sentences performing additional checks # like capitalization or mood of the sentence. sm = SENTENCE_RE.match(topic) if (sm.captures('verb') and len(re.findall(r'\m[\w/.,+\-]+\M', topic)) > 1): sentence_matches.append(sm) else: topics.append(topic) if not (is_subject_line or topics or labels): # A paragraph looks like and ordinal statement, don't check it. continue semi_sentences = non_empty(SEMI_RE.match(line).captures('sentence')) sentence_matches.extend(map(SENTENCE_RE.match, semi_sentences)) topic = ': '.join(topics + ['']) label = ' '.join(labels + ['']) trunc_topic = ': '.join((topics[:-1] and ['...']) + topics[-1:] + ['']) trunc_label = ' '.join(labels[:1] + (labels[1:] and ['...']) + ['']) trunc_sentence = '' # The wrapped first sentence, if any. for j, sm in enumerate(sentence_matches): sentence = orig_sentence = sm.string.rstrip() is_first_sentence = (j == 0) bad, good = bad_to_good(sm) if bad: if good: if sm['head_verb']: # Fixup the sentence to keep examples used through # remaining unrelated checks consistent. The following # stmt replaces the 'bad' verb with a 'good' one. sentence = sm.expand(r'\g<skipping>{}\g<tail>' .format(good)) example = (": '{}', not '{}'" .format(good.capitalize(), bad)) else: # The sentence ends with some shit, strip it out. sentence = wrap(sentence, width=max(3, sm.start('aux'))) example = (": '{}', not '... {}{}'" .format(good.capitalize(), sm['aux'], bad)) else: example = ' mood' yield ('error' if is_subject_line else 'warning', 'msg/mood', 'Use the imperative'+example) if sm['head']: sentence = sentence.capitalize() if sentence and is_first_sentence: trunc_sentence = wrap(sentence, width=3) if orig_sentence[0].islower() and sentence[0].isupper(): yield ('warning', 'msg/case', "Capitalize the sentence: '{}{}{}'" .format(trunc_topic, trunc_label, sentence)) if not is_subject_line: continue if not trunc_sentence: yield ('error', 'msg', 'Must provide log message') elif not topic: yield ('warning', 'msg/topic', "Missing topic / subsystem") if topic: if tc['brackets'] or tc['semi']: yield ('error' if tc['brackets'] else 'warning', 'msg/brackets', "Use colons inside the topic: '{}{}{}'" .format(topic, trunc_label, trunc_sentence)) if tc['parens'] and tc['topic'][0].startswith(tc['parens'][0]): yield ('warning', 'msg/labels', "Put labels after the topic: '{}{}{}'" .format(trunc_topic, label, trunc_sentence)) def msg_subj(repo, commit, lines): if not lines: return empty_line_idx = lines.index('') if '' in lines else len(lines) subj_lines = lines[:empty_line_idx] body_lines = lines[empty_line_idx+1:] if not subj_lines: yield ('warning', 'msg/subj', 'Put subject on the first line') return if len(subj_lines) > 1: yield ('warning', 'msg/subj-line', 'Separate subject from body with a blank line') if any(END_PERIOD_RE.search(subj_lines[i]) for i in (0, -1)[len(subj_lines)==1:]): yield ('warning', 'msg/subj-period', 'Do not end the subject line with a period') @checker def check_msg(repo, commit): lines = [line.expandtabs().rstrip() for line in git_show(repo, commit).splitlines()] return itertools.chain(msg_subj(repo, commit, lines), msg_regex(repo, commit, lines))
{ "repo_name": "abusalimov/commitsan", "path": "commitsan/checks/msg.py", "copies": "1", "size": "16941", "license": "mit", "hash": -481625284503234900, "line_mean": 23.9499263623, "line_max": 79, "alpha_frac": 0.4892863467, "autogenerated": false, "ratio": 3.6315112540192924, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4620797600719292, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) from builtins import * import errno import os import sys import subprocess from subprocess import CalledProcessError REPOS_PATH = os.path.abspath('repos') # http://stackoverflow.com/a/600612/545027 def mkdir_p(path): try: os.makedirs(path) except OSError as e: # Python >2.5 if e.errno != errno.EEXIST or not os.path.isdir(path): raise def run_cmd(args, bypass_exit_code=False, **kwargs): try: return subprocess.check_output(args, **kwargs) except CalledProcessError: if not bypass_exit_code: raise def git_cmd(repo, args, no_git_dir=False): repo_path = os.path.join(REPOS_PATH, repo) env = {} if not no_git_dir: env['GIT_DIR'] = repo_path return run_cmd(['git'] + args, env=env, cwd=repo_path) def git_revlist(repo, *commits): try: out = git_cmd(repo, ['rev-list'] + list(commits) + ['--']) except CalledProcessError: return [] else: return out.splitlines() def git_show(repo, commit, format='%B'): format_arg = '--format={}'.format(format) # deal with it out = git_cmd(repo, ['show', '--no-patch', format_arg, commit]) return out def git_diff_check(repo, commit): try: git_cmd(repo, ['diff-tree', '--check', '--no-color', commit]) except CalledProcessError as e: out = e.output return sum(line[0] == '+' for line in out.splitlines() if line) or 1 else: return 0
{ "repo_name": "abusalimov/commitsan", "path": "commitsan/git.py", "copies": "1", "size": "1573", "license": "mit", "hash": -3330044426273844700, "line_mean": 26.5964912281, "line_max": 76, "alpha_frac": 0.6102987921, "autogenerated": false, "ratio": 3.4571428571428573, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9468649651225916, "avg_score": 0.019758399603388453, "num_lines": 57 }
from __future__ import (absolute_import, division, print_function, unicode_literals) from builtins import * import numpy as np from pois import * # Results from Noll (1976) Noll=[1.0299,0.582,0.134,0.111,0.0880,0.0648,0.0587,0.0525,0.0463,0.0401,0.0377,0.0352,0.0328,0.0304,0.0279,0.0267,0.0255,0.0243,0.0232,0.0220,0.0208] Noll=[1.0299,0.582,0.134,0.111,0.0880,0.0648,0.0587,0.0525,0.0463,0.0401,0.0377,0.0352,0.0328,0.0304,0.0279,0.0267,0.0255,0.0243,0.0232,0.0220,0.0208] def AoCorrect(gridSize=32, r0=32.0, screenSize=1024, numIter=10000, numRemove=6,numTelescope=1): screenGenerator=PhaseScreens(numTelescope,r0,gridSize,screenSize) aperture=CircularMaskGrid(gridSize) normalisation=np.sum(aperture) variance=0.0 for i in range(numIter): pupils = next(screenGenerator) screen=AdaptiveOpticsCorrect(pupils,gridSize, maxRadial=5,numRemove=numRemove) screen=screen*aperture variance = variance + np.sum(screen**2) print(normalisation) variance = variance/numIter/normalisation return(variance,Noll[numRemove-1]) def test_ao(): variance,noll=AoCorrect(numIter=1000) print('Residual variance:',variance) print('Noll 1976 result:',noll) assert(np.abs(variance-noll)<0.1*noll)
{ "repo_name": "dbuscher/pois", "path": "tests/test_ao.py", "copies": "1", "size": "1321", "license": "bsd-2-clause", "hash": 3197986659371759600, "line_mean": 40.28125, "line_max": 150, "alpha_frac": 0.6896290689, "autogenerated": false, "ratio": 2.5901960784313727, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.37798251473313726, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) from builtins import * import numpy as np from .Zernike import ZernikeGrid from .PhaseScreen import ScreenGenerator import functools import sys __version__="0.4.0" def PhaseScreens(numTelescope,r0,pupilSize,screenSize=1024,numRealisation=-1): """Return a generator for atmospheric wavefront perturbations across a set of *numTelescope* telescopes, each of size *pupilSize* and with Fried parameter *r0*. The perturbations are modelled as being uncorrelated between telescopes. The number of realisations is given by *numRealisation*, but if *numRealisation* is negative then an infinite sequence of realisations is generated. """ screenGenerators=[ScreenGenerator(screenSize,r0,pupilSize,pupilSize) for i in range(numTelescope)] iter=0 while numRealisation<0 or iter<numRealisation: iter+=1 yield np.array([next(screen) for screen in screenGenerators]) @functools.lru_cache() def RadiusGrid(gridSize): """ Return a square grid with values of the distance from the centre of the grid to each gridpoint """ x,y=np.mgrid[0:gridSize,0:gridSize] x = x-(gridSize-1.0)/2.0 y = y-(gridSize-1.0)/2.0 return np.abs(x+1j*y) @functools.lru_cache() def CircularMaskGrid(gridSize, diameter=None): """ Return a square grid with ones inside and zeros outside a given diameter circle """ if diameter is None: diameter=gridSize return np.less_equal(RadiusGrid(gridSize),diameter/2.0) def ComplexPupil(pupils,diameter=None): return np.exp(1j*pupils)*CircularMaskGrid(pupils.shape[-1],diameter) def AdaptiveOpticsCorrect(pupils,diameter,maxRadial,numRemove=None): """ Correct a wavefront using Zernike rejection up to some maximal order. Can operate on multiple telescopes in parallel. Note that this version removes the piston mode as well """ gridSize=pupils.shape[-1] pupilsVector=np.reshape(pupils,(-1,gridSize**2)) zernikes=np.reshape(ZernikeGrid(gridSize,maxRadial,diameter),(-1,gridSize**2)) if numRemove is None: numRemove=zernikes.shape[0] numScreen=pupilsVector.shape[0] normalisation=1.0/np.sum(zernikes[0]) # Note extra iteration to remove residual piston for i in list(range(numRemove))+[0,]: amplitudes=np.inner(zernikes[i],pupilsVector)*normalisation pupilsVector=pupilsVector-zernikes[i]*amplitudes[:,np.newaxis] return np.reshape(pupilsVector,pupils.shape) @functools.lru_cache() def FibreMode(gridSize,modeDiameter): """ Return a pupil-plane Gaussian mode with 1/e diameter given by *modeDiameter*, normalised so that integral power over the mode is unity """ rmode=modeDiameter/2 return np.exp(-(RadiusGrid(gridSize)/rmode)**2)/(np.sqrt(np.pi/2)*rmode) def FibreCouple(pupils,modeDiameter): """ Return the complex amplitudes coupled into a set of fibers """ gridSize=pupils.shape[-1] pupilsVector=np.reshape(pupils,(-1,gridSize**2)) mode=np.reshape(FibreMode(gridSize,modeDiameter),(gridSize**2,)) return np.inner(pupilsVector,mode) def SingleModeCombine(pupils,modeDiameter=None): """ Return the instantaneous coherent fluxes and photometric fluxes for a multiway single-mode fibre combiner """ if modeDiameter is None: modeDiameter=0.9*pupils.shape[-1] amplitudes=FibreCouple(pupils,modeDiameter) cc=np.conj(amplitudes) fluxes=(amplitudes*cc).real coherentFluxes=[amplitudes[i]*cc[j] for i in range(1,len(amplitudes)) for j in range(i)] return fluxes,coherentFluxes def MultimodeCombine(pupils): """ Return the instantaneous coherent fluxes and photometric fluxes for a multiway multimode combiner (no spatial filtering) """ fluxes=[np.vdot(pupils[i],pupils[i]).real for i in range(len(pupils))] coherentFluxes=[np.vdot(pupils[i],pupils[j]) for i in range(1,len(pupils)) for j in range(i)] return fluxes,coherentFluxes
{ "repo_name": "dbuscher/pois", "path": "pois/__init__.py", "copies": "1", "size": "4167", "license": "bsd-2-clause", "hash": 3497524458463220000, "line_mean": 35.2347826087, "line_max": 82, "alpha_frac": 0.7012239021, "autogenerated": false, "ratio": 3.222737819025522, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.44239617211255217, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) from builtins import * import os from hookserver import HookServer from commitsan import repos from commitsan.github import github github_webhook_secret = os.environ.get('GITHUB_WEBHOOK_SECRET') if not github_webhook_secret: raise RuntimeError('Missing GITHUB_WEBHOOK_SECRET environment variable') app = HookServer(__name__, bytes(github_webhook_secret, 'utf-8')) app.config['DEBUG'] = True NULL_SHA = '0'*40 @app.hook('ping') def ping(data, guid): repo = data['repository'] update_job = repos.update_repo.delay(repo['full_name'], repo['clone_url']) for branch in github.repos(repo['full_name']).branches.get(): if branch['name'] != 'master': commit_range = '{}..{}'.format('master', branch['commit']['sha']) repos.process_commit_range.delay(repo['full_name'], commit_range, depends_on=update_job) return 'pong: {}'.format(data['zen']) @app.hook('push') def push(data, guid): repo = data['repository'] update_job = repos.update_repo.delay(repo['full_name'], repo['clone_url']) from_commit = data['before'] to_commit = data['after'] if to_commit != NULL_SHA: # skip branch deletions if from_commit == NULL_SHA: from_commit = 'master' commit_range = '{}..{}'.format(from_commit, to_commit) repos.process_commit_range.delay(repo['full_name'], commit_range, depends_on=update_job) return 'OK'
{ "repo_name": "abusalimov/commitsan", "path": "commitsan/hooks_app.py", "copies": "1", "size": "1612", "license": "mit", "hash": 703870169976489500, "line_mean": 30.6078431373, "line_max": 78, "alpha_frac": 0.6160049628, "autogenerated": false, "ratio": 3.7401392111368907, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4856144173936891, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) from builtins import * __author__ = 'Sander Bollen' COLUMNS = ["geneName", "name", "chrom", "strand", "txStart", "txEnd", "cdsStart", "cdsEnd", "exonCount", "exonStarts", "exonEnds"] NO_EXON_COLUMNS = ["geneName", "name", "chrom", "strand", "txStart", "txEnd", "cdsStart", "cdsEnd", "exonCount"] NUMERIC_COLUMNS = ["txStart", "txEnd", "cdsStart", "cdsEnd"] NUMERIC_LIST_COLUMNS = ["exonStarts", "exonEnds"] STRING_COLUMNS = set(COLUMNS) - set(NUMERIC_COLUMNS) - set(NUMERIC_LIST_COLUMNS) def empty_line(): items = {} for n in NUMERIC_COLUMNS: items[n] = 0 for s in STRING_COLUMNS: items[s] = "undefined" for l in NUMERIC_LIST_COLUMNS: items[l] = [0] line = "\t".join([str(items[x]) for x in set(COLUMNS) - set(NUMERIC_LIST_COLUMNS)]) for c in NUMERIC_LIST_COLUMNS: line += "\t" + ",".join(map(str, items[c])) + "," return line, items
{ "repo_name": "sndrtj/pyrefflat", "path": "pyrefflat/generics.py", "copies": "1", "size": "1037", "license": "mit", "hash": 2446556390142052400, "line_mean": 28.6285714286, "line_max": 87, "alpha_frac": 0.5949855352, "autogenerated": false, "ratio": 3.1615853658536586, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.42565709010536584, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) from builtins import * import OpenEXR, Imath import numpy as np from collections import defaultdict import os FLOAT = Imath.PixelType(Imath.PixelType.FLOAT) HALF = Imath.PixelType(Imath.PixelType.HALF) UINT = Imath.PixelType(Imath.PixelType.UINT) NO_COMPRESSION = Imath.Compression(Imath.Compression.NO_COMPRESSION) RLE_COMPRESSION = Imath.Compression(Imath.Compression.RLE_COMPRESSION) ZIPS_COMPRESSION = Imath.Compression(Imath.Compression.ZIPS_COMPRESSION) ZIP_COMPRESSION = Imath.Compression(Imath.Compression.ZIP_COMPRESSION) PIZ_COMPRESSION = Imath.Compression(Imath.Compression.PIZ_COMPRESSION) PXR24_COMPRESSION = Imath.Compression(Imath.Compression.PXR24_COMPRESSION) NP_PRECISION = { "FLOAT": np.float32, "HALF": np.float16, "UINT": np.uint32 } def open(filename): # Check if the file is an EXR file if not OpenEXR.isOpenExrFile(filename): raise Exception("File '%s' is not an EXR file." % filename) # Return an `InputFile` return InputFile(OpenEXR.InputFile(filename), filename) def read(filename, channels = "default", precision = FLOAT): f = open(filename) if _is_list(channels): # Construct an array of precisions return f.get_dict(channels, precision=precision) else: return f.get(channels, precision) def read_all(filename, precision = FLOAT): f = open(filename) return f.get_all(precision=precision) def write(filename, data, channel_names = None, precision = FLOAT, compression = PIZ_COMPRESSION): # Helper function add a third dimension to 2-dimensional matrices (single channel) def make_ndims_3(matrix): if matrix.ndim > 3 or matrix.ndim < 2: raise Exception("Invalid number of dimensions for the `matrix` argument.") elif matrix.ndim == 2: matrix = np.expand_dims(matrix, -1) return matrix # Helper function to read channel names from default def get_channel_names(channel_names, depth): if channel_names: if depth != len(channel_names): raise Exception("The provided channel names have the wrong length (%d vs %d)." % (len(channel_names), depth)) return channel_names elif depth in _default_channel_names: return _default_channel_names[depth] else: raise Exception("There are no suitable default channel names for data of depth %d" % depth) # # Case 1, the `data` argument is a dictionary # if isinstance(data, dict): # Make sure everything has ndims 3 for group, matrix in data.items(): data[group] = make_ndims_3(matrix) # Prepare precisions if not isinstance(precision, dict): precisions = {group: precision for group in data.keys()} else: precisions = {group: precision.get(group, FLOAT) for group in data.keys()} # Prepare channel names if channel_names is None: channel_names = {} channel_names = {group: get_channel_names(channel_names.get(group), matrix.shape[2]) for group, matrix in data.items()} # Collect channels channels = {} channel_data = {} width = None height = None for group, matrix in data.items(): # Read the depth of the current group # and set height and width variables if not set yet if width is None: height, width, depth = matrix.shape else: depth = matrix.shape[2] names = channel_names[group] # Check the number of channel names if len(names) != depth: raise Exception("Depth does not match the number of channel names for channel '%s'" % group) for i, c in enumerate(names): if group == "default": channel_name = c else: channel_name = "%s.%s" % (group, c) channels[channel_name] = Imath.Channel(precisions[group]) channel_data[channel_name] = matrix[:,:,i].astype(NP_PRECISION[str(precisions[group])]).tostring() # Save header = OpenEXR.Header(width, height) header['compression'] = compression header['channels'] = channels out = OpenEXR.OutputFile(filename, header) out.writePixels(channel_data) # # Case 2, the `data` argument is one matrix # elif isinstance(data, np.ndarray): data = make_ndims_3(data) height, width, depth = data.shape channel_names = get_channel_names(channel_names, depth) header = OpenEXR.Header(width, height) header['compression'] = compression header['channels'] = {c: Imath.Channel(precision) for c in channel_names} out = OpenEXR.OutputFile(filename, header) out.writePixels({c: data[:,:,i].astype(NP_PRECISION[str(precision)]).tostring() for i, c in enumerate(channel_names)}) else: raise Exception("Invalid precision for the `data` argument. Supported are NumPy arrays and dictionaries.") def tonemap(matrix, gamma=2.2): return np.clip(matrix ** (1.0/gamma), 0, 1) class InputFile(object): def __init__(self, input_file, filename=None): self.input_file = input_file if not input_file.isComplete(): raise Exception("EXR file '%s' is not ready." % filename) header = input_file.header() dw = header['dataWindow'] self.width = dw.max.x - dw.min.x + 1 self.height = dw.max.y - dw.min.y + 1 self.channels = sorted(header['channels'].keys(),key=_channel_sort_key) self.depth = len(self.channels) self.precisions = [c.type for c in header['channels'].values()] self.channel_precision = {c: v.type for c, v in header['channels'].items()} self.channel_map = defaultdict(list) self.root_channels = set() self._init_channel_map() def _init_channel_map(self): # Make a dictionary of subchannels per channel for c in self.channels: self.channel_map['all'].append(c) parts = c.split('.') if len(parts) == 1: self.root_channels.add('default') self.channel_map['default'].append(c) else: self.root_channels.add(parts[0]) for i in range(1, len(parts)+1): key = ".".join(parts[0:i]) self.channel_map[key].append(c) def describe_channels(self): if 'default' in self.root_channels: for c in self.channel_map['default']: print (c) for group in sorted(list(self.root_channels)): if group != 'default': channels = self.channel_map[group] print("%-20s%s" % (group, ",".join([c[len(group)+1:] for c in channels]))) def get(self, group = 'default', precision=FLOAT): channels = self.channel_map[group] if len(channels) == 0: print("I did't find any channels in group '%s'." % group) print("You could try:") self.describe_channels() raise Exception("I did't find any channels in group '%s'." % group) strings = self.input_file.channels(channels) matrix = np.zeros((self.height, self.width, len(channels)), dtype=NP_PRECISION[str(precision)]) for i, string in enumerate(strings): precision = NP_PRECISION[str(self.channel_precision[channels[i]])] matrix[:,:,i] = np.frombuffer(string, dtype = precision) \ .reshape(self.height, self.width) return matrix def get_all(self, precision = {}): return self.get_dict(self.root_channels, precision) def get_dict(self, groups = [], precision = {}): if not isinstance(precision, dict): precision = {group: precision for group in groups} return_dict = {} todo = [] for group in groups: group_chans = self.channel_map[group] if len(group_chans) == 0: print("I didn't find any channels for the requested group '%s'." % group) print("You could try:") self.describe_channels() raise Exception("I did't find any channels in group '%s'." % group) if group in precision: p = precision[group] else: p = FLOAT matrix = np.zeros((self.height, self.width, len(group_chans)), dtype=NP_PRECISION[str(p)]) return_dict[group] = matrix for i, c in enumerate(group_chans): todo.append({'group': group, 'id': i, 'channel': c}) if len(todo) == 0: print("Please ask for some channels, I cannot process empty queries.") print("You could try:") self.describe_channels() raise Exception("Please ask for some channels, I cannot process empty queries.") strings = self.input_file.channels([c['channel'] for c in todo]) for i, item in enumerate(todo): precision = NP_PRECISION[str(self.channel_precision[todo[i]['channel']])] return_dict[item['group']][:,:,item['id']] = \ np.frombuffer(strings[i], dtype = precision) \ .reshape(self.height, self.width) return return_dict def _sort_dictionary(key): if key == 'R' or key == 'r': return "000010" elif key == 'G' or key == 'g': return "000020" elif key == 'B' or key == 'b': return "000030" elif key == 'A' or key == 'a': return "000040" elif key == 'X' or key == 'x': return "000110" elif key == 'Y' or key == 'y': return "000120" elif key == 'Z' or key == 'z': return "000130" else: return key def _channel_sort_key(i): return [_sort_dictionary(x) for x in i.split(".")] _default_channel_names = { 1: ['Z'], 2: ['X','Y'], 3: ['R','G','B'], 4: ['R','G','B','A'] } def _is_list(x): return isinstance(x, (list, tuple, np.ndarray))
{ "repo_name": "tvogels/pyexr", "path": "pyexr/exr.py", "copies": "1", "size": "9429", "license": "mit", "hash": -1979205115625419500, "line_mean": 32.0842105263, "line_max": 123, "alpha_frac": 0.6401527203, "autogenerated": false, "ratio": 3.574298711144807, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9609103273121948, "avg_score": 0.02106963166457172, "num_lines": 285 }
from __future__ import (absolute_import, division, print_function, unicode_literals) from builtins import * __metaclass__ = type try: # Python 2 from itertools import izip except ImportError: # Python 3 izip = zip try: # Python 2 from itertools import izip_longest as zip_longest except ImportError: # Python 3 from itertools import zip_longest from itertools import tee from threading import Timer def pairwise(iterable): """s -> (s0,s1), (s2,s3), (s4, s5), ...""" a, b = tee(iterable) next(b, None) a = iter(iterable) return list(zip(a, b)) def grouper(iterable, n, fillvalue=None): """ Collect data into fixed-length chunks or blocks grouper('ABCDEFG', 3, 'x') --> ABC DEF Gxx :param iterable: :param n: :param fillvalue: :rtype : object """ args = [iter(iterable)] * n return zip_longest(fillvalue=fillvalue, *args) class Interrupt(object): def __init__(self, interval, function, *args, **kwargs): self._timer = None self.interval = interval self.function = function self.args = args self.kwargs = kwargs self.is_running = False self.start() def _run(self): self.is_running = False self.start() self.function(*self.args, **self.kwargs) def start(self): if not self.is_running: self._timer = Timer(self.interval, self._run) self._timer.daemon = True self._timer.start() self.is_running = True def stop(self): self._timer.cancel() self.is_running = False
{ "repo_name": "friend0/tower", "path": "tower/utils/utils.py", "copies": "1", "size": "1656", "license": "isc", "hash": -2757541571328621600, "line_mean": 22, "line_max": 60, "alpha_frac": 0.5911835749, "autogenerated": false, "ratio": 3.7636363636363637, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9854819938536363, "avg_score": 0, "num_lines": 72 }
from __future__ import (absolute_import, division, print_function, unicode_literals) from builtins import * """ qutip_conv ========== QuTiP / tncontract conversions. Functionality for converting between `qutip.Qobj` and `Tensor`. Requires `qutip`. """ import numpy as np import qutip as qt import tncontract as tn import tncontract.onedim as onedim def qobj_to_tensor(qobj, labels=None, trim_dummy=True): """ Convert a `qutip.Qobj` object to a `Tensor` Parameters ---------- qobj : Qobj Qobj to convert. labels : list, optional List of labels for the indices. Output labels followed by input labels. Defaults to `['out1', ..., 'outk', 'in1', ..., 'ink'] trim_dummy : bool If true dummy indices of dimension one are trimmed away Returns ------ Tensor """ data = qobj.data.toarray() if not len(np.shape(qobj.dims)) == 2: # wrong dims (not a ket, bra or operator) raise ValueError("qobj element not a ket/bra/operator") output_dims = qobj.dims[0] input_dims = qobj.dims[1] nsys = len(output_dims) if labels is None: output_labels = ['out'+str(k) for k in range(nsys)] input_labels = ['in'+str(k) for k in range(nsys)] else: output_labels = labels[:nsys] input_labels = labels[nsys:] t = tn.matrix_to_tensor(data, output_dims+input_dims, output_labels+ input_labels) if trim_dummy: t.remove_all_dummy_indices() return t def tensor_to_qobj(tensor, output_labels, input_labels): """ Convert a `Tensor` object to a `qutip.Qobj` Parameters ---------- tensor : Tensor Tensor to convert. output_labels : list List of labels that will be the output indices for the `Qobj`. `None` can be used to insert a dummy index of dimension one. inpul_labels : list List of labels that will be the input indices for the `Qobj`. `None` can be used to insert a dummy index of dimension one. Returns ------- Qobj Notes ----- The `output_labels` and `input_labels` determines the tensor product structure of the resulting `Qobj`, inclding the order of the components. If the indices corresponding to `output_labels` have dimensions [dim_out1, ..., dim_outk] and the indices corresponding to `input_labels` have dimensions [dim_in1, ..., dim_inl], the `Qobj.dims` attribute will be `Qobj.dims = [[dim_out1, ..., dim_outk], [dim_in1, ..., dim_inl]] Examples -------- Turn a rank-one vector into a ket `Qobj` (note the use of a `None` input label to get a well defined `Qobj`) >>> t = Tensor(np.array([1,0]), labels=['idx1']) >>> q = tensor_to_qobj(t, ['idx1'], [None]) >>> print(q) Quantum object: dims = [[2], [1]], shape = [2, 1], type = ket Qobj data = [[ 1.] [ 0.]] """ output_dims = [] input_dims = [] t = tensor.copy() if not isinstance(output_labels, list): output_labels=[output_labels] if not isinstance(input_labels, list): input_labels=[input_labels] # order the indices according to output_labels and input_labels for i, label in enumerate(output_labels+input_labels): if label is None: label = 'dummy'+str(i) t.add_dummy_index(label, i) t.move_index(label, i) if i < len(output_labels): output_dims.append(t.shape[i]) else: input_dims.append(t.shape[i]) output_labels_new = [l if l is not None else 'dummy'+str(i) for i,l in enumerate(output_labels)] data = tn.tensor_to_matrix(t, output_labels_new) dims = [output_dims, input_dims] return qt.Qobj(data, dims=dims) def qobjlist_to_mpo(qobjlist): """ Construct an MPO from a list of Qobj operators. Many-body operators are put in MPO form by exact SVD, and virtual "left" and "right" indices with bond dimension one are added between the elements of the list. """ tensors = np.array([]) for i, qobj in enumerate(qobjlist): if not len(np.shape(qobj.dims)) == 2: # wrong dims (not a ket, bra or operator) raise ValueError("qobj element not a ket/bra/operator") t = qobj_to_tensor(qobj, trim_dummy=False) # Add left and right indices with bonddim one t.add_dummy_index('left', -1) t.add_dummy_index('right', -1) # Break up many-body operators by SVDing tmp_mpo = onedim.tensor_to_mpo(t) tensors = np.concatenate((tensors, tmp_mpo.data)) return onedim.MatrixProductOperator(tensors, left_label='left', right_label='right', physin_label='physin', physout_label='physout') def qobjlist_to_mps(qobjlist): """ Construct an MPS from a list of Qobj kets. Many-body states are put in MPS form by exact SVD, and virtual "left" and "right" indices with bond dimension one are added between the elements of the list. """ mpo = qobjlist_to_mpo(qobjlist) tensors = mpo.data for t in tensors: # Remove dummy input labels t.remove_all_dummy_indices(labels=[mpo.physin_label]) # Change physical label to the standard choice 'phys' t.replace_label(mpo.physout_label, 'phys') return onedim.MatrixProductState(tensors, left_label='left', right_label='right', phys_label='phys')
{ "repo_name": "andrewdarmawan/tncontract", "path": "tncontract/qutip_conv.py", "copies": "1", "size": "5459", "license": "mit", "hash": 8572781504548674000, "line_mean": 29.6685393258, "line_max": 79, "alpha_frac": 0.6164132625, "autogenerated": false, "ratio": 3.528765352294764, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4645178614794764, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) from builtins import ( # NOQA bytes, dict, int, list, object, range, str, ascii, chr, hex, input, next, oct, open, pow, round, super, filter, map, zip) from termcolor import colored def section(name): print("\n{} {}".format( colored("::", 'blue', attrs=['bold']), colored(name, attrs=['bold']) ) ) def task(name): print('{} {}'.format( colored("==>", 'green', attrs=['bold']), colored(name, attrs=['bold']) ) ) def subtask(name): print('{} {}'.format( colored(" ->", 'blue', attrs=['bold']), colored(name, attrs=['bold']) ) ) def failure(name): print('{} {}'.format( colored("==> ERROR:", 'red', attrs=['bold']), colored(name, attrs=['bold']) ) ) def subfailure(name): print('{} {}'.format( colored(" ->", 'red', attrs=['bold']), colored(name, 'red', attrs=['bold']) ) ) def prompt(name): print('{} {}'.format( colored("==>", 'yellow', attrs=['bold']), colored(name, attrs=['bold'])), end="" ) def subprompt(name): print('{} {}'.format( colored(" ->", 'yellow', attrs=['bold']), colored(name, attrs=['bold'])), end="")
{ "repo_name": "jonhoo/python-agenda", "path": "agenda/__init__.py", "copies": "1", "size": "1403", "license": "mit", "hash": 9056076559109853000, "line_mean": 20.921875, "line_max": 57, "alpha_frac": 0.4775481112, "autogenerated": false, "ratio": 3.9189944134078214, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9896542524607821, "avg_score": 0, "num_lines": 64 }
from __future__ import (absolute_import, division, print_function, unicode_literals) from collections import namedtuple from future.builtins import ( # noqa bytes, dict, int, list, object, range, str, ascii, chr, hex, input, next, oct, open, pow, round, super, filter, map, zip) from celery.tests.case import patch from conf.appconfig import HEALTH_OK from deployer.services import health from tests.helper import dict_compare __author__ = 'sukrit' @patch('deployer.services.health.ping') @patch('deployer.services.health.client') @patch('deployer.services.health.get_store') def test_get_health( get_store, client, ping): """ Should get the health status when elastic search is enabled """ # Given: Operational external services" ping.delay().get.return_value = 'pong' EtcdInfo = namedtuple('Info', ('machines',)) client.Client.return_value = EtcdInfo(['machine1']) get_store.return_value.health.return_value = {'type': 'mock'} # When: I get the health of external services health_status = health.get_health() # Then: Expected health status is returned dict_compare(health_status, { 'etcd': { 'status': HEALTH_OK, 'details': { 'machines': ['machine1'] } }, 'store': { 'status': HEALTH_OK, 'details': { 'type': 'mock' } }, 'celery': { 'status': HEALTH_OK, 'details': 'Celery ping:pong' } }) @patch('deployer.services.health.ping') @patch('deployer.services.health.client') @patch('deployer.services.health.get_store') def test_get_health_when_celery_is_enabled(get_store, client, ping): """ Should get the health status when elastic search is enabled """ # Given: Operational external services" ping.delay().get.return_value = 'pong' EtcdInfo = namedtuple('Info', ('machines',)) client.Client.return_value = EtcdInfo(['machine1']) get_store.return_value.health.return_value = {'type': 'mock'} # When: I get the health of external services health_status = health.get_health(check_celery=True) # Then: Expected health status is returned dict_compare(health_status, { 'etcd': { 'status': HEALTH_OK, 'details': { 'machines': ['machine1'] } }, 'store': { 'status': HEALTH_OK, 'details': { 'type': 'mock' } }, 'celery': { 'status': HEALTH_OK, 'details': 'Celery ping:pong' }, })
{ "repo_name": "totem/cluster-deployer", "path": "tests/unit/services/test_health.py", "copies": "1", "size": "2690", "license": "mit", "hash": -8542052839614012000, "line_mean": 28.2391304348, "line_max": 68, "alpha_frac": 0.5791821561, "autogenerated": false, "ratio": 3.7994350282485874, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9878617184348587, "avg_score": 0, "num_lines": 92 }
from __future__ import (absolute_import, division, print_function, unicode_literals) from copy import copy from textwrap import dedent from wtforms import (validators, StringField, SubmitField, FileField, IntegerField, SelectField, FieldList, FormField, HiddenField, FloatField) from wtforms import BooleanField from wtforms.utils import unset_value from wtforms.widgets import HiddenInput, Select from wtforms import Form #FlaskForm needed for wtf.simple_form in flask from flask_wtf import FlaskForm from bgmodelbuilder import component, emissionspec from .fields import (DictField, JSONField, StaticField, validate_units, NoValSelectField, NumericField, SimsDbField) from .widgets import SortableTable, InputChoices, StaticIfExists from collections import OrderedDict from flask import current_app from .. import utils ################ Model Forms ############################## class SaveModelForm(FlaskForm): """Form for editing basic bgmodel details""" name = StringField('Model Name', [validators.required()]) #version = IntegerField("Version", render_kw={'disabled':'disabled'}) description = StringField("Description", [validators.required()]) user = StringField("Your name", [validators.required()]) comment = StringField("Describe your edits", [validators.required()]) # temporarily force this to be true updatesimdata = BooleanField("Update with latest simulation data", default=True, render_kw={'disabled': True}) def populate_obj(self, obj): obj.name = self.name.data #obj.version = self.version.data obj.description = self.description.data obj.editDetails.update(dict(user=self.user.data, comment=self.comment.data)) class BackendForm(FlaskForm): """ Form to update simsdb database and view backend """ simsdb = SimsDbField() class NewModelForm(FlaskForm): name = StringField('Model Name', [validators.required()], render_kw={'class':'form-control'}) description = StringField("Description", render_kw={'class':'form-control'}) simsdb = SimsDbField() importmodel = FileField("Optional: Import JSON file", render_kw={'accept': '.json,.txt'}) submit = SubmitField("Submit", render_kw={'class':'btn btn-primary pull-right'}) ############ Shared stuff ####################3 dist_choices = ('bulk', 'surface_in', 'surface_out') dist_widget = InputChoices(choices=dist_choices) ################## Component Forms ######################## spectypes = (('CombinedSpec','RadioactiveContam'), ('RadonExposure','RadonExposure'), ('CosmogenicActivation','CosmogenicActivation')) class BoundSpecForm(Form): """Show mostly static info about a spec registered to a component""" id = HiddenField("Spec ID") name = StringField("Name", [validators.required()], widget=StaticIfExists(), render_kw={'class':'form-control'}) category = NoValSelectField("Category", render_kw={'class':'form-control'}, choices=copy(spectypes), widget=StaticIfExists(Select())) distribution = StringField("Dist.", default=(emissionspec.EmissionSpec. _default_distribution), widget=StaticIfExists(dist_widget), render_kw={'class':'form-control'}) #rate = StaticField("Rate", default='') querymod = JSONField("Querymod",render_kw={'class':'form-control'}) #edit = StaticField("Edit", default="edit") #override populate_obj to make new spec if necessary def populate_obj(self, obj): spec = self.id.data if not spec or spec == str(None): spec = emissionspec.buildspecfromdict({ '__class__': self.category.data, 'name': self.name.data, 'distribution': self.distribution.data, }) obj.spec = spec obj.querymod = self.querymod.data class BaseComponentForm(FlaskForm): """Edit basic info about a component""" #todo: is there any way to do this without repeating everything??? name = StringField("Name", [validators.required()]) description = StringField("Description") comment = StringField("Comment", description="Details of current implementation") moreinfo = DictField("Additional Info", suggested_keys=(('owner',"Part owner/designer/buyer"), ('partnum', "Part number"), ('vendor', "Part vendor"), ('datasheet', "URL for datasheet"))) querymod = JSONField("Query Modifier", description="JSON object modifying DB queries") specs = FieldList(FormField(BoundSpecForm, default=component.BoundSpec), label="Emission specs", widget=SortableTable(), render_kw={'_class':"table table-condensed"}) #default component to get units right defcomp = component.Component() class ComponentForm(BaseComponentForm): """Basic Info plus physical parameters of component""" material = StringField("Material") mass = StringField("Mass", [validate_units(defcomp.mass)]) volume = StringField("Volume", [validate_units(defcomp.volume)]) surface_in = StringField("Inner Surface", [validate_units(defcomp.surface_in)]) surface_out = StringField("Outer Surface", [validate_units(defcomp.surface_out)]) class PlacementForm(Form): component = HiddenField() name = StringField("Name",[validators.required()], #widget=StaticIfExists(), render_kw={'class':'form-control'}) cls = SelectField("Type", [validators.required()], choices=[(d,d) for d in ('Component','Assembly')], widget=StaticIfExists(Select()), render_kw={'class':'form-control'}) weight = NumericField("Quantity", [validators.required()] , render_kw={'size':1, 'class':'form-control'}) querymod = JSONField("Querymod") #edit = StaticField("Edit", default="link goes here"); #override BaseForm process to restructure placements class _FakePlacement(object): def __init__(self, placement): self.component = (placement.component.id if hasattr(placement.component,'id') else placement.component) self.name = placement.name self.cls = (type(placement.component).__name__ if self.component else None) self.weight = placement.weight self.querymod = placement.querymod def process(self, formdata=None, obj=None, data=None, **kwargs): if isinstance(obj, component.Placement): obj = self._FakePlacement(obj) super().process(formdata=formdata, obj=obj, data=data, **kwargs) #override populate_obj to make new component if necessary def populate_obj(self, obj): comp = self.component.data if not comp or comp == str(None): comp = component.buildcomponentfromdict({ '__class__': self.cls.data, 'name': self.name.data }) obj.component = comp obj.name = self.name.data obj.weight = self.weight.data obj.querymod = self.querymod.data class AssemblyForm(BaseComponentForm): """Basic info plus subcomponents""" #components = JSONField(default=list, widget=HiddenInput()) components = FieldList(FormField(PlacementForm, default=component.Placement), label="Subcomponents", widget=SortableTable(), render_kw={'_class':"table table-condensed"}) ############ EmissionSpec forms ################## #distribution_choices = [(d,d) for d # in emissionspec.EmissionSpec._distribution_types] #distribution_choices = [(d,d) for d in ('bulk','surface_in','surface_out')] dist_choices = ('bulk', 'surface_in', 'surface_out', 'flux') class EmissionspecForm(FlaskForm): name = StringField("Name", [validators.required()]) comment = StringField("Comment", description="Comment about current implementation") distribution = StringField("Distribution",[validators.required()], description=("Choices are suggestions; " "any value is valid"), widget=InputChoices(choices=dist_choices)) category = StringField("Category", description=("A description category " "for grouping sources " "(usually leave default)")) moreinfo = DictField("Additional Details", suggested_keys=(('reference',"Literature or assay source"), ('url', "Link to reference"), ('refdetail', "Summary of reference info"), ('refdate', "Date reference last checked"))) normfunc = StringField("Normalization", description=dedent("""\ Custom rate normalization function. Will be using 'eval', with variables 'component' and 'units' defined. Can also be 'piece' or 'per piece' indicating that the rate is already normalized""")) querymod = JSONField("Querymod", description="Overrides for generating simulation database queries") class RadioactiveIsotopeForm(Form): id = HiddenField("ID") name = StringField("Isotope", [validators.required()], render_kw={'size':7,'class':'form-control'}) rate = StringField("Decay rate",[validate_units(nonzero=True), validators.input_required()], render_kw={'size':20,'class':'form-control'}) err = StringField("Uncertainty", description="Fractional or same units as rate", render_kw={'size':12,'class':'form-control'}) islimit = BooleanField("Limit?", description="Is this a measurement upper limit?") def populate_obj(self, obj): # make sure isotope and name are always the same super().populate_obj(obj) self.name.populate_obj(obj, 'isotope') def _defaultisotope(): aspec = emissionspec.RadioactiveContam() aspec._id = "" return aspec class RadioactiveContamForm(EmissionspecForm): subspecs = FieldList(FormField(RadioactiveIsotopeForm, default=_defaultisotope), min_entries=1, label="Isotopes", widget=SortableTable(), render_kw={'_class':"table table-condensed"}) defradexp = emissionspec.RadonExposure() mode_choices = [(d,d) for d in emissionspec.RadonExposure._mode_types] class RadonExposureForm(EmissionspecForm): radonlevel = StringField("Radon Level", [validate_units(defradexp.radonlevel), validators.required()]) exposure = StringField("Exposure Time", [validate_units(defradexp.exposure, nonzero=True), validators.required()]) column_height = StringField("Plateout Column Height", [validate_units(defradexp.column_height)]) mode = SelectField("Airflow model", choices = mode_choices) class CosmogenicIsotopeForm(Form): id = HiddenField("ID") name = StringField("Isotope",[validators.required()]) halflife = StringField("Half-life", [validate_units('second', nonzero=True), validators.required()]) activationrate = StringField("Activation Rate", [validate_units('1/kg/day', nonzero=True), validators.required()], description=("Sea level activation " "atoms/mass/time")) defcosmic = emissionspec.CosmogenicActivation() class CosmogenicActivationForm(EmissionspecForm): exposure = StringField("Exposure time", [validate_units(defcosmic.exposure), validators.required()]) cooldown = StringField("Cooldown time", [validate_units(defcosmic.cooldown)]) integration = StringField("Measurement time", [validate_units(defcosmic.integration)]) isotopes = FieldList(FormField(CosmogenicIsotopeForm, default=emissionspec.CosmogenicIsotope), min_entries=1, label="Isotopes", widget=SortableTable(), render_kw={'_class':"table table-condensed"}) class DustAccumulationForm(RadioactiveContamForm): dustmass = StringField("Dust mass",[validate_units(),validators.required()], description=("Units match distribution, " "e.g. kg/cm**2 for surface")) ############### utilities ####################### def get_form(form, obj): """Get the correct form for a component Args: form: formdata returned from request, passed to Form class obj: object to populate, should be BaseComponent or Emissionspec """ cls = None if isinstance(obj, component.Component): cls = ComponentForm elif isinstance(obj, component.Assembly): cls = AssemblyForm if not cls: raise TypeError("Can't find form for object of type %s"%type(obj)) return cls(form, obj=obj)
{ "repo_name": "bloer/bgexplorer", "path": "bgexplorer/modeleditor/forms.py", "copies": "1", "size": "14255", "license": "bsd-2-clause", "hash": 4597161435493207600, "line_mean": 43.4080996885, "line_max": 104, "alpha_frac": 0.5787443002, "autogenerated": false, "ratio": 4.7485009993337775, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.008600479944600116, "num_lines": 321 }
from __future__ import (absolute_import, division, print_function, unicode_literals) from flask import (Blueprint, render_template, render_template_string, request, abort, url_for, g, json, flash, redirect, Response, get_flashed_messages, current_app) from .. import utils import io def findsimmatches(dataset, model=None): """find all simdatamatch objects associated with the given dataset""" res = [] model = g.get('model', model) if not model: return res #make sure we're not working with a full dataset object try: dataset = dataset.get('_id') except AttributeError: pass for match in model.getsimdata(): if match.dataset == dataset: res.append(match) else: try: if dataset in match.dataset: res.append(match) except TypeError: pass return res class SimsViewer(object): """Blueprint for searching and inspecting simulation data Args: app: the bgexplorer Flask object url_prefix (str): Where to mount this blueprint relative to root detailtemplate: path to template file for detailed simulation view enableupload (bool): if True, allow uploading new entries uploadsummary (func): generate a summary projection from uploaded (json-generated) documents """ def __init__(self, app=None, url_prefix='/simulations', detailtemplate=None, enableupload=True, uploadsummary=None): self.app = app self.enable_upload = enableupload self.uploadsummary = uploadsummary self.bp = Blueprint('simsviewer', __name__, static_folder='static', template_folder='templates') self.bp.add_app_template_global(lambda : self, 'getsimsviewer') self.bp.add_app_template_global(findsimmatches, 'findsimmatches') self.bp.add_app_template_global(json.dumps, 'json_dumps') #handle 'query' requests for non strings @self.bp.url_defaults def url_defaults(endpoint, values): query=values.get('query', None) if query and not isinstance(query, str): values['query'] = json.dumps(query) @self.bp.before_request def preprocess(): if 'query' in request.args: try: args = request.args.copy() args['query'] = json.loads(args['query']) request.args = args except (KeyError, json._json.JSONDecodeError): pass self.register_endpoints() if self.app: self.init_app(app, url_prefix) def init_app(self, app, url_prefix=''): """Register ourselves with the app""" app.register_blueprint(self.bp, url_prefix=url_prefix) app.extensions['SimulationsViewer'] = self key = "ENABLE_SIMULATION_UPLOADS" self.enable_upload = app.config.setdefault(key, self.enable_upload) @property def simsdb(self): return g.simsdbview.simsdb def getcolnames(self, sims): """ Get the column names to display in summary table """ columns = [] try: columns = g.simsdbview.summarycolumns except AttributeError: pass if sims and not columns: #non-underscore keys with string or number values for key, val in sims[0].items(): if (not key.startswith('_') and key != 'id' and isinstance(val,(str,int,float))): columns.append(key) return columns def register_endpoints(self): """Attach the model if requested""" @self.bp.url_value_preprocessor def find_model(endpoint, values): if 'modelid' in request.args: g.model = utils.getmodelordie(request.args['modelid']) values.setdefault('dbname', g.model.simsdb) if 'dbname' in values: g.dbname = values.pop('dbname') g.simsdbview = utils.get_simsdbview(name=g.dbname) """ make sure we have a simsdb """ @self.bp.url_defaults def addsimsdbview(endpoint, values): model = values.pop('model', None) or g.get('model', None) if model: #values['modelid'] = model.id dbname = model.simsdb if not dbname: dbname = current_app.getdefaultsimviewname() values.setdefault('dbname', dbname) simsdbview = values.pop('simsdbview', None) or g.get('simsdbview', None) if simsdbview and 'dbname' not in values: values['dbname'] = current_app.getsimviewname(simsdbview) """Define the view functions here""" @self.bp.route('/') def index(): dbnames = list(current_app.simviews.keys()) if len(dbnames) == 1: return redirect(url_for('.overview', dbname=dbnames[0])) return render_template('listdbs.html', dbnames=dbnames) @self.bp.route('/<dbname>/') def overview(): query = request.args.get('query',None) try: projection = g.simsdbview.summarypro sims = list(self.simsdb.runquery(query, projection=projection)) except Exception as e: abort(400, "Invalid query specifier") columns = self.getcolnames(sims) return render_template('simoverview.html', sims=sims, query=query, colnames=columns) @self.bp.route('/<dbname>/dataset/<dataset>') def detailview(dataset): detail = self.simsdb.getdatasetdetails(dataset) matches = findsimmatches(dataset) return render_template('datasetview.html',dataset=dataset, detail=detail) @self.bp.route('/<dbname>/dataset/<dataset>/raw') def rawview(dataset): """Export the dataset as raw JSON""" detail = self.simsdb.getdatasetdetails(dataset) return json.jsonify(detail) if not self.enable_upload: return @self.bp.route('/<dbname>/api/upload', methods=('POST',)) def api_upload(): """ Upload files to be inserted, return JSON response """ files = request.files.getlist('fupload') if request.is_json: print(request.data, request.json) fakefile = io.BytesIO(request.data) fakefile.filename = 'JSON' files = [fakefile] try: result = g.simsdbview.handle_uploads(files) except NotImplementedError: abort(501, "Uploads are not implemented for this database") except BaseException as e: err = f"{type(e).__name__}: {str(e)}" result = dict(entries={}, errors = {None: err}) return result @self.bp.route('/<dbname>/upload', methods=('GET','POST')) def upload(): """ Upload new JSON-formatted entries """ result = None if request.method == 'POST': result = api_upload() return render_template('uploadsimdata.html', result=result)
{ "repo_name": "bloer/bgexplorer", "path": "bgexplorer/simsviewer/simsviewer.py", "copies": "1", "size": "7569", "license": "bsd-2-clause", "hash": -195944395584794600, "line_mean": 37.2272727273, "line_max": 84, "alpha_frac": 0.5562161448, "autogenerated": false, "ratio": 4.410839160839161, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.007108280391626909, "num_lines": 198 }
from __future__ import (absolute_import, division, print_function, unicode_literals) from future.builtins import * import unittest from yandex_money.api import Wallet from .constants import CLIENT_ID, ACCESS_TOKEN class WalletTestSuite(unittest.TestCase): def setUp(self): super(WalletTestSuite, self).setUp() self.api = Wallet(ACCESS_TOKEN) def assert_auth_header_present(self): pass def testAccountInfo(self): self.api.account_info() self.assert_auth_header_present() def testGetAuxToken(self): response = self.api.get_aux_token(["account-info", "operation-history"]) self.assertIn('aux_token', response) def testOperationHistory(self): options = {"records": 3} self.api.operation_history(options) def testOperationDetails(self): self.api.operation_details("some-invalid-id") def testRequestPayment(self): options = { "pattern_id": "p2p", "to": "410011161616877", "amount_due": "0.02", "comment": "test payment comment from yandex-money-python", "message": "test payment message from yandex-money-python", "label": "testPayment", "test_payment": True, "test_result": "success" } response = self.api.request_payment(options) self.assertEqual(response['status'], 'success') def testResponsePayment(self): options = { "request_id": "test-p2p", "test_payment": True, "test_result": "success" } response = self.api.process_payment(options) self.assertEqual(response['status'], 'success') def testIncomingTransferAccept(self): operation_id = "some id" protection_code = "some code" # TODO: test when it's None response = self.api.incoming_transfer_accept( operation_id=operation_id, protection_code=protection_code ) self.assertEqual(response['status'], "refused") def testIncomingTransferReject(self): operation_id = "some operatoin id" self.api.incoming_transfer_reject( operation_id=operation_id, ) def testObtainTokenUrl(self): Wallet.build_obtain_token_url( "client-id", "http://localhost/redirect", ["account-info", "operation_history"] ) # TODO: check url def testGetAccessToken(self): options = { "code": "code", "client_id": "client_id", "grant_type": "authorization_code", "redirect_uri": "redirect_uri", "client_secret": "client_secret" } response = Wallet.get_access_token( code=options["code"], client_id=options["client_id"], redirect_uri=options["redirect_uri"], client_secret=options["client_secret"] ) self.assertEqual(response['error'], 'unauthorized_client')
{ "repo_name": "yandex-money/yandex-money-sdk-python", "path": "tests/testWallet.py", "copies": "1", "size": "3092", "license": "mit", "hash": 5586738745187833000, "line_mean": 30.5510204082, "line_max": 71, "alpha_frac": 0.5795601552, "autogenerated": false, "ratio": 4.111702127659575, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5191262282859574, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) from future.builtins import * from blockext import * import sphero __version__ = '0.2.1' class Sphero: def __init__(self): self.robot = sphero.Sphero() self.robot.connect() self.name = self.robot.get_bluetooth_info().name """def _is_connected(self): try: self.robot.get_bluetooth_info() except: self.robot = False if not self.robot: try: self.robot.connect() self.name = self.robot.get_bluetooth_info().name except: pass return bool(self.robot)""" def _problem(self): if not self.robot: return "Your Sphero is not connected" def _on_reset(self): self.robot.roll(0,0) def get_sphero_name(self): return self.name def set_sphero_name(self, name): self.name = name self.robot.set_device_name(name) def roll_sphero(self, power, heading): self.robot.roll(power*2.55, heading) """def set_sphero_color(self, r, g, b): self.robot.set_rgb(r,g,b)""" descriptor = Descriptor( name = "Orbotix Sphero", port = 7575, blocks = [ Block('roll_sphero', 'command', 'roll Sphero %n percent speed at %n degrees', defaults=[100,0]), Block('get_sphero_name', 'reporter', 'get Sphero name'), Block('set_sphero_name', 'command', 'set Sphero name to %s', defaults=['Rob Orb']) ] ) extension = Extension(Sphero, descriptor) if __name__ == '__main__': extension.run_forever(debug=True)
{ "repo_name": "blockext/sphero", "path": "__init__.py", "copies": "1", "size": "1738", "license": "mit", "hash": -1661544438369770200, "line_mean": 25.7384615385, "line_max": 104, "alpha_frac": 0.5506329114, "autogenerated": false, "ratio": 3.598343685300207, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4648976596700207, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) #from future.builtins import * from .blocks import Block, Input from .languages import language_codes class Program(object): """For exporting blocks to a specfic block language.""" name = "Program" # "Scratch 2", "Snap" """Name of the hardware or extension. Must be filename-friendly.""" by_short_name = {} # "scratch2": ScratchProgram, "snap": SnapProgram file_extension = "xml" content_type = "application/octet-stream" @classmethod def get_filename(cls, descriptor, lang): language = language_codes.get(lang) or lang fmt = "{cls.name} {descriptor.name} {language}.{cls.file_extension}" return fmt.format(**locals()) @classmethod def generate_file(cls, descriptor, language): raise NotImplementedError(self) #-- Scratch 2.0 --# import json BLOCK_SHAPES = { "command": " ", "reporter": "r", "predicate": "b", } class ScratchProgram(Program): name = "Scratch" file_extension = "s2e" @classmethod def generate_file(cls, descriptor, language): s2e = { "extensionName": descriptor.name, "extensionPort": descriptor.port, "blockSpecs": [], "menus": language.get_menus(descriptor.menus), } for block in descriptor.blocks: shape = BLOCK_SHAPES[block.shape] if block.shape == "command" and block.is_blocking: shape = "w" spec = language.get(block.spec) blockspec = [shape, spec, block.selector] + block.defaults s2e["blockSpecs"].append(blockspec) return json.dumps(s2e, ensure_ascii=False).encode("utf-8") # TODO check Scratch will accept utf-8 json Program.by_short_name["scratch"] = ScratchProgram #-- Snap! --# import re from xml.etree import ElementTree from xml.etree.ElementTree import Element, SubElement INPUT_SELECTORS = { "number": "n", "string": "s", "boolean": "b", "readonly-menu": "txt", "number-menu": "n", "color": "clr", } class SnapProgram(Program): name = "Snap" file_extension = "xml" content_type = "application/xml" @classmethod def generate_file(cls, descriptor, language): return generate_snap(descriptor, language) def generate_snap(descriptor, language): root = Element("blocks", { "app": "Snap! 4.0, http://snap.berkeley.edu", "version": "1", }) menus = language.get_menus(descriptor.menus) for block in descriptor.blocks: defn = SubElement(root, "block-definition", { "type": "%s" % block.shape, # Can't use a future.builtins.str "category": "other", }) if block.help_text: comment = SubElement(defn, "comment", w="360", collapsed="false") comment.text = block.help_text SubElement(defn, "header") SubElement(defn, "code") inputs = SubElement(defn, "inputs") snap_spec = "" for part in block.parts: if isinstance(part, Input): input_el = SubElement(inputs, "input", { "type": "%{shape}".format(shape=INPUT_SELECTORS[part.shape]), "readonly": "true" if part.shape == "m" else "", }) input_el.text = str(part.default) if "menu" in part.shape: options = SubElement(input_el, "options") options.text = "\n".join(menus[part.menu]) # TODO menus # XXX ^ why is there a todo comment here? index = block.inputs.index(part) part = "%'arg-{}'".format(index) else: assert isinstance(part, str) # Snap! doesn't allow %-signs in block text yet. part = re.compile(r" *% *").sub(" ", part) snap_spec += part defn.attrib["s"] = snap_spec http_block = Element("block", s="reportURL") join_block = SubElement(http_block, "block", s="reportJoinWords") list_ = SubElement(join_block, "list") url = "localhost:{descriptor.port}/{block.selector}".format(**vars()) if block.is_blocking: url += "/-" # Blank request id SubElement(list_, "l").text = url for index, input_ in enumerate(block.inputs): SubElement(list_, "l").text = "/" encode = SubElement(list_, "block", s="reportTextFunction") l = SubElement(encode, "l") SubElement(l, "option").text = "encode URI component" join = SubElement(encode, "block", s="reportJoinWords") SubElement(join, "block", var="arg-{}".format(index)) if block.shape == "command": script_xml = """ <script> <block s="{cmd}"> <block s="reifyReporter"> <autolambda> {http_block_xml} </autolambda> </block> </block> </script> """.format( cmd="doRun" if block.is_blocking else "fork", http_block_xml="{http_block_xml}", ) elif block.shape == "predicate": script_xml = """ <script> <block s="doDeclareVariables"> <list> <l>result</l> </list> </block> <block s="doSetVar"> <l>result</l> {http_block_xml} </block> <block s="doIf"> <block s="reportEquals"> <block var="result"/> <l>true</l> </block> <script> <block s="doSetVar"> <l>result</l> <block s="reportTrue"/> </block> </script> </block> <block s="doIf"> <block s="reportEquals"> <block var="result"/> <l>false</l> </block> <script> <block s="doSetVar"> <l>result</l> <block s="reportFalse"/> </block> </script> </block> <block s="doReport"> <block var="result"/> </block> </script> """ elif block.shape == "reporter": script_xml = """ <script> <block s="doReport"> {http_block_xml} </block> </script> """ script = ElementTree.fromstring(script_xml.format( http_block_xml=str(ElementTree.tostring(http_block).decode("utf-8")) )) defn.append(script) return ElementTree.tostring(root) Program.by_short_name["snap"] = SnapProgram def generate_file(descriptor, program_short_name, language_code="en"): program = Program.by_short_name[program_short_name] filename = Program.get_filename(descriptor, language_code) language = descriptor.translations[language_code] contents = program.generate_file(descriptor, language) return filename, contents
{ "repo_name": "ilmanzo/scratch_extensions", "path": "venv/lib/python3.4/site-packages/blockext/generate.py", "copies": "1", "size": "7598", "license": "mit", "hash": -3068451133420673500, "line_mean": 31.1949152542, "line_max": 81, "alpha_frac": 0.5011845222, "autogenerated": false, "ratio": 4.242322724734785, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.007830790663752151, "num_lines": 236 }
from __future__ import (absolute_import, division, print_function, unicode_literals) from future.builtins import * from future.moves.urllib.parse import urlparse, urlencode import requests from . import exceptions class BasePayment(object): MONEY_URL = "https://money.yandex.ru" SP_MONEY_URL = "https://sp-money.yandex.ru" @classmethod def send_request(cls, url, headers=None, body=None): if not headers: headers = {} if not body: body = {} full_url = cls.MONEY_URL + url return cls.process_result( requests.post(full_url, headers=headers, data=body) ) @classmethod def process_result(cls, result): if result.status_code == 400: raise exceptions.FormatError elif result.status_code == 401: raise exceptions.ScopeError elif result.status_code == 403: raise exceptions.TokenError return result.json() class Wallet(BasePayment): def __init__(self, access_token): self.access_token = access_token def _send_authenticated_request(self, url, options=None): return self.send_request(url, { "Authorization": "Bearer {}".format(self.access_token) }, options) def account_info(self): return self._send_authenticated_request("/api/account-info") def get_aux_token(self, scope): return self._send_authenticated_request("/api/token-aux", { "scope": ' '.join(scope) }) def operation_history(self, options): return self._send_authenticated_request("/api/operation-history", options) def request_payment(self, options): return self._send_authenticated_request("/api/request-payment", options) def process_payment(self, options): return self._send_authenticated_request("/api/process-payment", options) def incoming_transfer_accept(self, operation_id, protection_code=None): return self._send_authenticated_request( "/api/incoming-transfer-accept", { "operation_id": operation_id, "protection_code": protection_code }) def incoming_transfer_reject(self, operation_id): return self._send_authenticated_request("/api/incoming-transfer-reject", { "operation_id": operation_id }) @classmethod def build_obtain_token_url(self, client_id, redirect_uri, scope): return "{}/oauth/authorize?{}".format(self.SP_MONEY_URL, urlencode({ "client_id": client_id, "redirect_uri": redirect_uri, "scope": " ".join(scope) })) @classmethod def get_access_token(self, client_id, code, redirect_uri, client_secret=None): full_url = self.SP_MONEY_URL + "/oauth/token" return self.process_result(requests.post(full_url, data={ "code": code, "client_id": client_id, "grant_type": "authorization_code", "redirect_uri": redirect_uri, "client_secret": client_secret } )) @classmethod def revoke_token(self, token, revoke_all=False): return self.send_request("/api/revoke", body={ "revoke-all": revoke_all }, headers={"Authorization": "Bearer {}".format(token)}) class ExternalPayment(BasePayment): def __init__(self, instance_id): self.instance_id = instance_id @classmethod def get_instance_id(cls, client_id): return cls.send_request("/api/instance-id", body={ "client_id": client_id }) def request(self, options): options['instance_id'] = self.instance_id return self.send_request("/api/request-external-payment", body=options) def process(self, options): options['instance_id'] = self.instance_id return self.send_request("/api/process-external-payment", body=options)
{ "repo_name": "raymank26/yandex-money-sdk-python", "path": "yandex_money/api.py", "copies": "1", "size": "4061", "license": "mit", "hash": 777057204400781400, "line_mean": 31.75, "line_max": 80, "alpha_frac": 0.5968973159, "autogenerated": false, "ratio": 4.077309236947791, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.012881756102028082, "num_lines": 124 }
from __future__ import (absolute_import, division, print_function, unicode_literals) #from future.builtins import * import os import re class Block(object): _highest_id = 0 def __init__(self, selector, shape, parts_or_spec, is_blocking=False, help_text="", defaults=[]): self.shape = str(shape) """A string determining the kind of values the block reports. * ``"command"`` -- Doesn't report a value. (puzzle-piece) * ``"reporter"`` -- Reports a number. (round ends) * ``"predicate"`` -- Reports a boolean. (pointy ends) """ if selector.startswith("_"): raise ValueError("names starting with an underscore are reserved") self.selector = str(selector) """Used by the block language to identify the block.""" if isinstance(parts_or_spec, list): self.parts = [p if isinstance(p, Input) else str(p) for p in parts] else: self.parts = parse_spec(parts_or_spec) for input_, value in zip(self.inputs, defaults): input_.default = value self.is_blocking = bool(is_blocking) """True if the block language should wait for the block to return.""" self.help_text = str(help_text) """Text explaining the block to a Scratch user.""" self.translations = {} @property def inputs(self): return [p for p in self.parts if isinstance(p, Input)] @property def defaults(self): return [x.default for x in self.inputs] @property def spec(self): return generate_spec(self.parts) def __repr__(self): return "<Block({spec})>".format(spec=repr(generate_spec(self.parts))) def __call__(self, func): func._block = self Block._highest_id += 1 func._block_id = Block._highest_id return func class Input(object): """The specification for an argument to a :class:`Block`.""" DEFAULTS = { "number": 0, "number-menu": 0, "readonly-menu": None, # Set in _set_menu_defaults() "string": "", "boolean": False, } def __init__(self, shape, menu=None): self.shape = str(shape) """A string identifying the kind of values the input accepts. * ``'number'`` -- number input (round ends) * ``'string'`` -- string input (square ends) * ``'boolean'`` -- boolean input (pointy ends) * ``'readonly-menu'`` -- menu input * ``'number-menu'`` -- editable number input with menu * ``'color'`` -- color input with picker """ if 'menu' in shape: assert menu, "Menu is required" else: assert not menu, "Menu not allowed" self.menu = str(menu) if menu else None """For menu inputs: the options the drop-down menu contains. The options come from an earlier :attr:`Extension.menu` call:: ext.add_menu("menuName", ["one", "two", "three", ...]) """ self.default = Input.DEFAULTS.get(self.shape) def __repr__(self): r = "Input({}".format(repr(self.menu)) if self.menu: r += ", menu={}".format(repr(self.menu)) return r + ")" def __eq__(self, other): return (isinstance(other, Input) and self.shape == other.shape and self.menu == other.menu) def _set_menu_defaults(self, menus): if self.default is None: self.default = "" if self.shape == "readonly-menu": try: options = menus[self.menu] except KeyError: raise ValueError( "menu not found: {}".format(repr(self.menu)) ) self.default = options[0] INPUT_SPECS = { "n": "number", "s": "string", "b": "boolean", "m": "readonly-menu", "d": "number-menu", "c": "color", } def parse_spec(spec): def generate_parts(spec): for part in re.split(r"(%[^ ](?:\.[A-z]+)?)", spec): match = re.match(r"^%([^ ])(?:\.([A-z]+))?$", part) if match: shape = INPUT_SPECS.get(match.group(1)) if not shape: raise ValueError("Unknown input shape %s" % part) part = Input(shape, match.group(2)) else: part = str(part) yield part spec = str(spec) parts = list(generate_parts(spec)) inputs = [p for p in parts if isinstance(p, Input)] return parts def generate_spec(block_parts): """A string identifying the labels and inputs to the block. Words starting with "%" produce input slots. Supported input types are: * ``%n`` -- number input (round ends) * ``%s`` -- string input (square ends) * ``%b`` -- boolean input (pointy ends) * ``%m.menuName`` -- menu input * ``%d.menuName`` -- editable number input with menu The last two input slots produce a drop-down menu. The options come from an earlier :attr:`Extension.menu` call:: ext.add_menu("menuName", ["one", "two", "three", ...]) """ def stringify_part(part): if isinstance(part, Input): for s, shape in INPUT_SPECS.items(): if shape == part.shape: break else: assert False r = "%" + s if part.menu: r += "." + part.menu return r return part spec = "".join(map(stringify_part, block_parts)) return spec def load_po_files(this_file, relative_folder=None, **language_file_paths): translations = {} base = "" if this_file is not None: base = os.path.abspath(os.path.dirname(this_file)) if relative_folder: base = os.path.join(base, relative_folder) for lang, path in language_file_paths.items(): path = os.path.join(base, path) with open(path) as f: translations[lang] = Language.from_po_file(f) return translations class Language(object): def __init__(self, strings): self._strings = strings def __getitem__(self, key): """Return translation if possible, else untranslated string.""" return self._strings.get(key, key) get = __getitem__ @classmethod def from_po_file(cls, path): return raise NotImplementedError() def get_menus(self, menus): translated_menus = {} for key, options in menus.items(): translated_menus[key] = list(map(self.get, options)) return translated_menus class Descriptor(object): def __init__(self, name, port, blocks, menus=None, translations=None): self.name = str(name) """Human-readable name of the hardware.""" self.port = int(port) """Port the extension runs on.""" self.blocks = list(blocks) """The list of blocks displayed in the interface.""" menus = menus or {} menus = dict((str(k), list(map(str, v))) for k, v in menus.items()) self.menus = menus """Options for custom drop-down menus.""" translations = translations or {} if "en" in translations: raise ValueError("english must be default") translations["en"] = Language({}) self.translations = translations """Translations for block specs and menu options.""" # Set default menu options for block in self.blocks: for input_ in block.inputs: input_._set_menu_defaults(self.menus) def __repr__(self): return "<Descriptor(%r, %i)>" % (self.name, self.port)
{ "repo_name": "ilmanzo/scratch_extensions", "path": "venv/lib/python3.4/site-packages/blockext/blocks.py", "copies": "1", "size": "7819", "license": "mit", "hash": 8718690200306638000, "line_mean": 29.0730769231, "line_max": 79, "alpha_frac": 0.544570917, "autogenerated": false, "ratio": 4.091575091575091, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5136146008575091, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) #from future.builtins import * """Library for writing Scratch 2.0 and Snap! extensions. Blockext provides two things: - automatic generation of extension files for both Scratch and Snap! from blocks defined in Python code. - an method for extensions to communicate with Scratch and Snap!. """ __version__ = '0.2.0a' from collections import OrderedDict from functools import wraps import re from .blocks import Block, Input, Descriptor, load_po_files from .generate import generate_file from .helper import Extension _doc_pat = re.compile(r'[ \t]*\n[ \t]*') def _shape(shape): def make_block(spec, defaults=[], help_text="", **kwargs): def wrapper(func, help_text=help_text): # Magic: name -> selector selector = func.__name__ # Magic: docstring -> help text help_text = help_text or func.__doc__ or "" help_text = _doc_pat.sub("\n", help_text) block = Block(selector, shape, spec, defaults=defaults, help_text=help_text, **kwargs) block(func) # attaches itself to func._block return func return wrapper return make_block command = _shape("command") reporter = _shape("reporter") predicate = _shape("predicate") del _shape def get_decorated_blocks_from_class(cls, selectors=None): if selectors: cls_vars = vars(cls) values = map(cls_vars.get, selectors) else: values = vars(cls).values() functions = [] for value in values: if callable(value) and hasattr(value, '_block'): functions.append(value) functions.sort(key=lambda func: func._block_id) return [f._block for f in functions]
{ "repo_name": "ilmanzo/scratch_extensions", "path": "venv/lib/python3.4/site-packages/blockext/__init__.py", "copies": "1", "size": "1824", "license": "mit", "hash": 5955652564398279000, "line_mean": 27.0615384615, "line_max": 73, "alpha_frac": 0.6326754386, "autogenerated": false, "ratio": 3.8238993710691824, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.49565748096691825, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) from future.builtins import ( # noqa bytes, dict, int, list, object, range, str, ascii, chr, hex, input, next, oct, open, pow, round, super, filter, map, zip) from nose.tools import eq_, ok_ from mock import patch from deployer.services.security import using_encryption_store, \ decrypt_config MOCK_BUCKET = 'mockbucket' MOCK_PASSPHRASE = 'mock-passphrase' MOCK_BASE = 'mock-base' @patch.dict('deployer.services.security.ENCRYPTION', { 'store': 's3', 's3': { 'bucket': MOCK_BUCKET, 'base': MOCK_BASE, }, 'passphrase': MOCK_PASSPHRASE }) def test_using_encryption_store_with_s3(): # Given: Mock function wrapped with using_encryption_store @using_encryption_store def mock_fn(*args, **kwargs): eq_(args, ('arg1', )) eq_(kwargs.get('arg2'), 'arg2') eq_(kwargs.get('passphrase'), MOCK_PASSPHRASE) store = kwargs.get('store') ok_(store is not None) eq_(store.bucket, MOCK_BUCKET) eq_(store.keys_base, MOCK_BASE) # When: I invoke mock_fn mock_fn('arg1', arg2='arg2') # Then: Function is called with expected args @patch.dict('deployer.services.security.ENCRYPTION', {}) def test_using_encryption_store_with_no_provider(): # Given: Mock function wrapped with using_encryption_store @using_encryption_store def mock_fn(*args, **kwargs): store = kwargs.get('store') ok_(store is None) # When: I invoke mock_fn mock_fn('arg1', arg2='arg2') # Then: Function is called with no store set @patch.dict('deployer.services.security.ENCRYPTION', {}) @patch('deployer.services.security.decrypt_obj') def test_decrypt_config(m_decrypt_obj): # When: I invoke decrypt config decrypt_config({'mockkey': 'mockvalue'}) # Then: decrypt_obj is called with expected parameters m_decrypt_obj.assert_called_once_with( {'mockkey': 'mockvalue'}, profile='default', store=None, passphrase=None)
{ "repo_name": "totem/cluster-deployer", "path": "tests/unit/services/test_security.py", "copies": "1", "size": "2094", "license": "mit", "hash": -3378675459002436600, "line_mean": 28.9142857143, "line_max": 64, "alpha_frac": 0.647086915, "autogenerated": false, "ratio": 3.4440789473684212, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9591165862368422, "avg_score": 0, "num_lines": 70 }
from __future__ import (absolute_import, division, print_function, unicode_literals) from future.moves.urllib.parse import urlencode import requests from . import exceptions # change it to debug/demo hosts config = { 'MONEY_URL': "https://money.yandex.ru", } class BasePayment(object): def send_request(self, url, headers=None, body=None): if not headers: headers = {} headers['User-Agent'] = "Yandex.Money.SDK/Python" if self.access_token: headers['Authorization'] = "Bearer " + self.access_token if not body: body = {} full_url = config['MONEY_URL'] + url return self.process_result( requests.post(full_url, headers=headers, data=body) ) @classmethod def process_result(cls, result): if result.status_code == 400: raise exceptions.FormatError elif result.status_code == 401: raise exceptions.TokenError elif result.status_code == 403: raise exceptions.ScopeError return result.json() class Wallet(BasePayment): def __init__(self, access_token): self.access_token = access_token def _send_authenticated_request(self, url, options=None): return self.send_request(url, options) def account_info(self): """ Returns information about a user's wallet http://api.yandex.com/money/doc/dg/reference/account-info.xml https://tech.yandex.ru/money/doc/dg/reference/account-info-docpage/ Returns: A dictionary containing account information. Raises: exceptions.FormatError: Authorization header is missing or has an invalid value exceptions.TokenEror: Nonexistent, expired, or revoked token specified exceptions.ScopeError: The token does not have permissions for the requested operation """ return self._send_authenticated_request("/api/account-info") def get_aux_token(self, scope): return self._send_authenticated_request("/api/token-aux", { "scope": ' '.join(scope) }) def operation_history(self, options): """ Returns operation history of a user's wallet http://api.yandex.com/money/doc/dg/reference/operation-history.xml https://tech.yandex.ru/money/doc/dg/reference/operation-history-docpage/ Args: options: A dictionary with filter parameters according to documetation Returns: A dictionary containing user's wallet operations. Raises: exceptions.FormatError: Authorization header is missing or has an invalid value exceptions.TokenEror: Nonexistent, expired, or revoked token specified exceptions.ScopeError: The token does not have permissions for the requested operation """ return self._send_authenticated_request("/api/operation-history", options) def operation_details(self, operation_id): """ Returns details of operation specified by operation_id http://api.yandex.com/money/doc/dg/reference/operation-details.xml https://tech.yandex.ru/money/doc/dg/reference/operation-details-docpage/ Args: operation_id: A operation identifier Returns: A dictionary containing all details of requested operation. Raises: exceptions.FormatError: Authorization header is missing or has an invalid value exceptions.TokenEror: Nonexistent, expired, or revoked token specified exceptions.ScopeError: The token does not have permissions for the requested operation """ return self._send_authenticated_request("/api/operation-details", {"operation_id": operation_id}) def request_payment(self, options): """ Requests a payment. http://api.yandex.com/money/doc/dg/reference/request-payment.xml https://tech.yandex.ru/money/doc/dg/reference/request-payment-docpage/ Args: options: A dictionary of method's parameters. Check out docs for more information. Returns: A dictionary containing `payment_id` and additional information about a recipient and payer Raises: exceptions.FormatError: Authorization header is missing or has an invalid value exceptions.TokenEror: Nonexistent, expired, or revoked token specified exceptions.ScopeError: The token does not have permissions for the requested operation """ return self._send_authenticated_request("/api/request-payment", options) def process_payment(self, options): """ Confirms a payment that was created using the request-payment method. http://api.yandex.com/money/doc/dg/reference/process-payment.xml https://tech.yandex.ru/money/doc/dg/reference/process-payment-docpage/ Args: options: A dictionary of method's parameters. Check out docs for more information. Returns: A dictionary containing status of payment and additional steps for authorization(if needed) Raises: exceptions.FormatError: Authorization header is missing or has an invalid value exceptions.TokenEror: Nonexistent, expired, or revoked token specified exceptions.ScopeError: The token does not have permissions for the requested operation """ return self._send_authenticated_request("/api/process-payment", options) def incoming_transfer_accept(self, operation_id, protection_code=None): """ Accepts incoming transfer with a protection code or deferred transfer http://api.yandex.com/money/doc/dg/reference/incoming-transfer-accept.xml https://tech.yandex.ru/money/doc/dg/reference/incoming-transfer-accept-docpage/ Args: operation_id: A operation identifier protection_code: secret code of four decimal digits. Specified for an incoming transfer proteced by a secret code. Omitted for deferred transfers Returns: A dictionary containing information about operation result Raises: exceptions.FormatError: Authorization header is missing or has an invalid value exceptions.TokenEror: Nonexistent, expired, or revoked token specified exceptions.ScopeError: The token does not have permissions for the requested operation """ return self._send_authenticated_request( "/api/incoming-transfer-accept", { "operation_id": operation_id, "protection_code": protection_code }) def incoming_transfer_reject(self, operation_id): """ Rejects incoming transfer with a protection code or deferred transfer http://api.yandex.com/money/doc/dg/reference/incoming-transfer-reject.xml https://tech.yandex.ru/money/doc/dg/reference/incoming-transfer-reject-docpage/ Args: operation_id: A operation identifier Returns: A dictionary containing information about operation result Raises: exceptions.FormatError: Authorization header is missing or has an invalid value exceptions.TokenEror: Nonexistent, expired, or revoked token specified exceptions.ScopeError: The token does not have permissions for the requested operation """ return self._send_authenticated_request( "/api/incoming-transfer-reject", { "operation_id": operation_id }) @classmethod def build_obtain_token_url(self, client_id, redirect_uri, scope): return "{}/oauth/authorize?{}".format(config['MONEY_URL'], urlencode({ "client_id": client_id, "redirect_uri": redirect_uri, "scope": " ".join(scope), "response_type": "code" })) @classmethod def get_access_token(self, client_id, code, redirect_uri, client_secret=None): full_url = config['MONEY_URL'] + "/oauth/token" return self.process_result(requests.post(full_url, data={ "code": code, "client_id": client_id, "grant_type": "authorization_code", "redirect_uri": redirect_uri, "client_secret": client_secret } )) @classmethod def revoke_token(self, token=None, revoke_all=False): """ Revokes access token. http://api.yandex.com/money/doc/dg/reference/revoke-access-token.xml https://tech.yandex.ru/money/doc/dg/reference/revoke-access-token-docpage/ Args: token: A token to be revoked Returns: None Raises: exceptions.FormatError: Authorization header is missing or has an invalid value exceptions.TokenEror: Nonexistent, expired, or revoked token specified exceptions.ScopeError: The token does not have permissions for the requested operation """ self.send_request("/api/revoke", body={ "revoke-all": revoke_all }, headers={"Authorization": "Bearer {}".format(token)}) class ExternalPayment(BasePayment): def __init__(self, instance_id): self.instance_id = instance_id @classmethod def get_instance_id(cls, client_id): """ Registers an instance of the application http://api.yandex.com/money/doc/dg/reference/instance-id.xml https://tech.yandex.ru/money/doc/dg/reference/instance-id-docpage/ Args: client_id: A identifier of an application Returns: A dictionary with status of an operation """ return cls.send_request("/api/instance-id", body={ "client_id": client_id }) def request(self, options): """ Requests an external payment http://api.yandex.com/money/doc/dg/reference/request-external-payment.xml https://tech.yandex.ru/money/doc/dg/reference/request-external-payment-docpage/ Args: options: A dictionary of method's parameters. Check out docs for more information. Returns: A dictionary containing `payment_id` and additional information about a recipient and payer """ options['instance_id'] = self.instance_id return self.send_request("/api/request-external-payment", body=options) def process(self, options): """ Confirms a payment that was created using the request-extenral-payment method http://api.yandex.com/money/doc/dg/reference/process-external-payment.xml https://tech.yandex.ru/money/doc/dg/reference/process-external-payment-docpage/ Args: options: A dictionary of method's parameters. Check out docs for more information. Returns: A dictionary containing status of payment and additional steps for authorization(if needed) """ options['instance_id'] = self.instance_id return self.send_request("/api/process-external-payment", body=options)
{ "repo_name": "yandex-money/yandex-money-sdk-python", "path": "yandex_money/api.py", "copies": "1", "size": "12797", "license": "mit", "hash": 7880417883619010000, "line_mean": 37.7787878788, "line_max": 91, "alpha_frac": 0.5663046026, "autogenerated": false, "ratio": 4.996876220226474, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.6063180822826474, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) from future.utils import iteritems from datetime import datetime import osisoftpy # main package from dateutil import parser # x = parser.parse(None) # print(x) # print(None if x == None else x.strftime('%Y%m%d%H%M%S')) # print(datetime.strptime('05-24-2017', '%Y-%m-%dT%H:%M:%SZ')) webapi = osisoftpy.webapi('https://dev.dstcontrols.com/piwebapi/') print('Connected to {}'.format(webapi.links.get('Self'))) points = webapi.points(query='name:EdwinPythonTest') # shittyPoints = webapi.points(query='name:EdwinPythonTest2') print('good points: {}'.format(points)) # print('shitty points: {}'.format(shittyPoints)) def callback(sender): print('{} changed! {}'.format(sender.name, sender)) subscriptions = webapi.subscribe(points, 'interpolatedattimes', startdatetime='2015-01-01T00:00:00Z', callback=callback) # subscriptions = webapi.subscribe(points, 'interpolatedattimes', startdatetime='2015-01-01T00:00:00Z', callback=callback) print(len(subscriptions)) for point in points: # point.update_value('2015-01-01T00:00:00Z', 123) x = point.interpolatedattimes(['2015-01-01T00:00:00Z','2015-01-02T00:00:00Z']) # x = point.interpolatedattimes('2015-01-01T00:00:00Z') for value in x: print('{} : {}'.format(value.timestamp, value.value)) # subscriptions = webapi.unsubscribe(points, 'interpolatedattimes', '05-20-2017') # print(len(subscriptions)) # subscriptions = webapi.unsubscribe(points, 'interpolatedattimes', '05-21-2017') # print(len(subscriptions)) # subscriptions = webapi.unsubscribe(points, 'getvalue') # print(subscriptions) # # if v1 == v2: # print('objects match') # print(v1) # print(v2) # else: # print('objects don''t match') # print(v1) # print(v2) #subscriber example # def callback(sender): # print('{} changed! {}'.format(sender.name, sender)) # subscriptions = webapi.subscribe(points, 'current', callback) # print(subscriptions) # print(points) # print(len(points)) # for point in points: # #current # point.current(time='2017-05-15') # point.current(time='2017-05-16') # point.current(time='2017-05-16') # subscriptions = webapi.unsubscribe(shittyPoints, 'current') # print(subscriptions) #recorded # recordedpoints = point.recorded() # print(len(recordedpoints)) # recordedpoints = point.recordedattime('2016-06-01') # print(len(recordedpoints)) #interpolated # interpolatedpoints = point.interpolatedattimes(time = ['2016-06-01','2016-05-31','2016-05-30']) # interpolatedpoints = point.interpolated() # print(interpolatedpoints.__len__()) # for interpolatedpoint in interpolatedpoints: # print(interpolatedpoint.timestamp) # print(interpolatedpoint.value) #end # p = point.plot(starttime='*-2d') # print(p[0].value) # p = point.recorded(starttime='*-2d') # q = point.summary(summarytype='Average') # print(q) #update insert # point.update_value('2017-06-01 06:00', 900, updateoption='Insert') # p = point.current(time='2017-06-01 06:00') # print(len(p)) # print(len(p.timestamp)) # print(len(p.value)) #updating # point.update_values(["2017-06-01 04:20","2017-06-01 04:25","2017-06-01 04:30"], [5,2,4]) # point.update_value("2017-06-01 05:00", 100) # p = point.current(time="2017-06-01 05:00") # print(point.name)
{ "repo_name": "dstcontrols/osisoftpy", "path": "examples/insert_data_to_tags.py", "copies": "1", "size": "3533", "license": "apache-2.0", "hash": -313731113144642500, "line_mean": 31.1181818182, "line_max": 122, "alpha_frac": 0.6592131333, "autogenerated": false, "ratio": 3.151650312221231, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9200705288258041, "avg_score": 0.022031631452638045, "num_lines": 110 }
from __future__ import (absolute_import, division, print_function, unicode_literals) import base64 from future.builtins import ( # noqa bytes, dict, int, list, object, range, str, ascii, chr, hex, input, next, oct, open, pow, round, super, filter, map, zip) import requests import yaml from configservice.cluster_config.base import AbstractConfigProvider class GithubConfigProvider(AbstractConfigProvider): """ Config provider that fetches totem config from a given repository """ def __init__(self, token=None, config_base='/'): """ :keyword token: Optional github API token for authentication. Needed if private repositories are getting deployed. :type token: str """ self.auth = (token, 'x-oauth-basic') if token else None self.config_base = config_base def _github_fetch(self, owner, repo, ref, name): """ Fetches the raw totem config for a given owner, repo, ref and name. :param owner: Repository owner / organization :type owner: str :param repo: Repository name :type repo: str :param ref: Branch/tag :type ref: str :param name: Name of totem config (totem.yml) :type name: str :return: Raw totem config :rtype: str :raises GithubFetchException: If fetch fails """ path_params = { 'owner': owner, 'repo': repo, 'path': self.config_base + name } query_params = { 'ref': ref } hub_url = 'https://api.github.com/repos/{owner}/{repo}/contents' \ '{path}'.format(**path_params) resp = requests.get(hub_url, params=query_params, auth=self.auth) if resp.status_code == 200: return base64.decodebytes(resp.json()[u'content'].encode('utf-8')) elif resp.status_code == 404: return None else: hub_response = { 'url': hub_url, 'response': resp.json() if 'json' in resp.headers.get( 'content-type', {}) else {'raw': resp.text}, 'status': resp.status_code } raise GithubFetchException(hub_response) def load(self, name, *paths): """ Loads the config for given paths. Github provider only supports fetch for full path with (owner, repo, and ref). If partial path is provided, an empty config is returned :param name: Name of the config file. :param paths: Paths used for loading config (owner, repo, and ref): :type paths: tuple :return: Totem config as dictionary :rtype: dict """ if len(paths) < 4: return {} else: owner, repo, ref = paths[1:4] raw = self._github_fetch(owner, repo, ref, name) if raw: return yaml.load(raw) else: return {} class GithubFetchException(Exception): """ Exception thrown if github provider fails to fetch the config. """ def __init__(self, github_response=None): """ :param github_response: Dictionary representation of github response comprising of url, status, raw response, json response. :type github_response: dict :return: """ self.response = github_response or {} self.code = 'GITHUB_CONFIG_FETCH_FAILED' resp = self.response.get('response', {}) reason = resp.get('message', None) or \ resp.get('raw', None) or \ str(resp) self.message = 'Failed to fetch config from github using url:{0}. ' \ 'Status:{1}. Reason: {2}'.format( self.response.get('url'), self.response.get('status'), reason) super(GithubFetchException, self).__init__(github_response) def to_dict(self): return { 'message': self.message, 'code': self.code, 'details': self.response } def __str__(self): return self.message
{ "repo_name": "totem/config", "path": "configservice/cluster_config/github.py", "copies": "1", "size": "4187", "license": "mit", "hash": -6387497151172016000, "line_mean": 33.0406504065, "line_max": 79, "alpha_frac": 0.5581561978, "autogenerated": false, "ratio": 4.263747454175153, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0, "num_lines": 123 }
from __future__ import (absolute_import, division, print_function, unicode_literals) import json from parser import ParserError from future.builtins import ( # noqa bytes, dict, int, list, object, range, str, ascii, chr, hex, input, next, oct, open, pow, round, super, filter, map, zip) from jsonschema import ValidationError from mock import patch from nose.tools import eq_, raises from conf.appconfig import DEFAULT_DEPLOYER_URL, DEFAULT_DEPLOYER_CONFIG from orchestrator.cluster_config.effective import MergedConfigProvider from orchestrator.cluster_config.etcd import EtcdConfigProvider from orchestrator.cluster_config.github import GithubConfigProvider from orchestrator.cluster_config.s3 import S3ConfigProvider from orchestrator.services import config from orchestrator.services.errors import ConfigProviderNotFound from orchestrator.services.exceptions import ConfigValidationError, \ ConfigParseError from tests.helper import dict_compare import orchestrator.services.config as service __author__ = 'sukrit' @patch.dict('orchestrator.services.config.CONFIG_PROVIDERS', { 'provider1': {}, 'provider3': {} }) @patch('orchestrator.services.config.CONFIG_PROVIDER_LIST') def test_get_providers(mock_provider_list): """ Should get the list of available providers """ # Given: Existing config provider list" mock_provider_list.__iter__.return_value = ['provider1', 'provider2'] # When: I fetch provider list providers = service.get_providers() # Then: Expected provider list is returned eq_(list(providers), ['provider1', 'effective']) @raises(ConfigProviderNotFound) def test_get_provider_when_not_found(): """ Should raise ConfigProviderNotFound when provider is not found """ # When: I fetch provider that does not exists service.get_provider('invalid') # Then: ConfigProviderNotFound is raised @patch.dict('orchestrator.services.config.CONFIG_PROVIDERS', { 'etcd': { 'host': 'mockhost', 'port': 10000, 'base': '/mock' } }) @patch('orchestrator.services.config.CONFIG_PROVIDER_LIST') def test_get_etcd_provider(mock_provider_list): """ Should return etcd provider """ # Given: Existing config provider list" mock_provider_list.__contains__.return_value = True mock_provider_list.__iter__.return_value = ['etcd'] # When: I fetch provider that does not exists provider = service.get_provider('etcd') # Then: Etcd Config Provider is returned eq_(isinstance(provider, EtcdConfigProvider), True) eq_(provider.etcd_cl.host, 'mockhost') eq_(provider.etcd_cl.port, 10000) eq_(provider.config_base, '/mock/config') eq_(provider.ttl, None) @patch.dict('orchestrator.services.config.CONFIG_PROVIDERS', { 's3': { 'bucket': 'mockbucket', 'base': '/mock' } }) @patch('orchestrator.services.config.CONFIG_PROVIDER_LIST') def test_get_s3_provider(mock_provider_list): """ Should return s3 provider """ # Given: Existing config provider list" mock_provider_list.__contains__.return_value = True mock_provider_list.__iter__.return_value = ['s3'] # When: I fetch provider that does not exists provider = service.get_provider('s3') # Then: Etcd Config Provider is returned eq_(isinstance(provider, S3ConfigProvider), True) eq_(provider.bucket, 'mockbucket') eq_(provider.config_base, '/mock') @patch.dict('orchestrator.services.config.CONFIG_PROVIDERS', { 'github': { 'token': 'mocktoken', 'config_base': '/mock' } }) @patch('orchestrator.services.config.CONFIG_PROVIDER_LIST') def test_get_github_provider(mock_provider_list): """ Should return github provider """ # Given: Existing config provider list" mock_provider_list.__contains__.return_value = True mock_provider_list.__iter__.return_value = ['github'] # When: I fetch provider that does not exists provider = service.get_provider('github') # Then: Etcd Config Provider is returned eq_(isinstance(provider, GithubConfigProvider), True) eq_(provider.auth, ('mocktoken', 'x-oauth-basic')) eq_(provider.config_base, '/mock') @patch.dict('orchestrator.services.config.CONFIG_PROVIDERS', { 'etcd': { 'host': 'mockhost', 'port': 10000, 'base': '/mock' }, 'effective': { 'cache': { 'enabled': True, 'ttl': 300 } } }) @patch('orchestrator.services.config.CONFIG_PROVIDER_LIST') def test_get_effective_provider(mock_provider_list): """ Should return effective provider :return: """ """ Should return effective provider provider """ # Given: Existing config provider list" mock_provider_list.__contains__.return_value = True mock_provider_list.__iter__.return_value = ['effective', 'default'] # When: I fetch provider that does not exists provider = service.get_provider('effective') # Then: Etcd Config Provider is returned eq_(isinstance(provider, MergedConfigProvider), True) eq_(len(provider.providers), 1) def test_evaluate_value_with_nested_variables(): """ Should evaluate value by parsing templates. :return: """ # Given: Object that needs to be evaluated obj = { 'variables': { 'var2': { 'value': '{{ var2 }}-modified' } }, 'str-key': '{{ var1 }}', 'int-key': 2, 'nested-key': { 'nested-key1': { 'value': '{{ var1 }}', 'template': True }, 'variables': { 'var1': { 'value': '{{ var1 }}-modified' } }, 'nested-key-2': {}, '__defaults__': { 'default1': { 'value': '{{ var1 }} ', 'template': True } } }, 'list-key': [ 'list-value1', { 'value': '\n\n{{ var2 }}\n\n', } ], 'value-key': { 'value': '{{ var1 }}', 'encrypted': True, 'template': True } } # And: variables that needs to be applied variables = { 'var1': 'var1-value', 'var2': 'var2-value' } # When: I evaluate object result = service.evaluate_value(obj, variables) # Then: Expected result with evaluated values is returned dict_compare(result, { 'str-key': '{{ var1 }}', 'int-key': 2, 'nested-key': { 'nested-key1': 'var1-value-modified', 'nested-key-2': { 'default1': 'var1-value-modified' }, }, 'list-key': [ 'list-value1', 'var2-value-modified', ], 'value-key': { 'value': 'var1-value', 'encrypted': True } }) def test_evaluate_variables(): """ Should evaluate config variables :return: None """ # Given: Variables that needs to be expanded variables = { 'var1': { 'value': True }, 'var2': { 'value': '{{var1}}-var2value', 'template': True, 'priority': 2, }, 'var3': { 'value': '{{default1}}-var3value', 'template': True, 'priority': 1, }, 'var4': False } # When: I evaluate the config result = service.evaluate_variables(variables, { 'default1': 'default1value' }) # Then: Expected config is returned dict_compare(result, { 'var1': 'true', 'var2': 'true-var2value', 'var3': 'default1value-var3value', 'default1': 'default1value', 'var4': 'false' }) def test_evaluate_config_with_no_deployers(): """ Should evaluate config as expected :return: None """ # Given: Config that needs to be evaluated config = { 'variables': { 'var1': 'value1', 'var2': { 'value': '{{var1}}-var2value', 'template': True, 'priority': 2, }, }, 'key1': { 'value': 'test-{{var1}}-{{var2}}-{{var3}}', 'template': True } } # When: I evaluate the config result = service.evaluate_config(config, { 'var1': 'default1', 'var2': 'default2', 'var3': 'default3' }) # Then: Expected config is returned dict_compare(result, { 'key1': 'test-value1-value1-var2value-default3', 'deployers': {} }) def test_evaluate_config_with_deployers(): """ Should evaluate config as expected :return: None """ # Given: Config that needs to be evaluated config = { 'defaults': {}, 'variables': { 'var1': 'value1', 'var2': { 'value': '{{var1}}-var2value', 'template': True, 'priority': 2, }, }, 'key1': { 'value': 'test-{{var1}}-{{var2}}-{{var3}}', 'template': True }, 'deployers': { '__defaults__': DEFAULT_DEPLOYER_CONFIG, 'default': { 'enabled': True }, 'deployer2': { 'url': 'deployer2-url', 'enabled': True, 'deployer-name': { 'value': '{{deployer}}' } }, 'deployer3': { 'enabled': { 'value': '{{ False }}' } } } } # When: I evaluate the config result = service.evaluate_config(config, { 'var1': 'default1', 'var2': 'default2', 'var3': 'default3' }) # Then: Expected config is returned dict_compare(result, { 'key1': 'test-value1-value1-var2value-default3', 'deployers': { 'default': { 'url': DEFAULT_DEPLOYER_URL, 'enabled': True, 'proxy': {}, 'templates': { 'app': { 'args': {} } }, 'deployment': {} }, 'deployer2': { 'url': 'deployer2-url', 'enabled': True, 'proxy': {}, 'templates': { 'app': { 'args': {} } }, 'deployer-name': 'deployer2', 'deployment': {} } } }) @patch('orchestrator.services.config.validate') @patch('orchestrator.services.config.open') @patch('repoze.lru.lru_cache') def test_validate_schema_for_successful_validation(m_lru_cache, m_open, m_validate): # Given: Existing schema m_open.return_value.__enter__().read.return_value = '''{ "title": "Schema for Job Config", "id": "#generic-hook-v1", "properties": { "mock": { "$ref": "${base_url}/link/config#/properties/mock" } } }''' # And: Validator that succeeds validation m_validate.return_value = None # And: Config that needs to be validated config = { 'mock-obj': 'mock-value' } # When: I validate against existing schema ret_value = service.validate_schema(config) # Then: Validation succeeds dict_compare(ret_value, config) dict_compare(m_validate.call_args[0][0], config) @raises(ConfigValidationError) @patch('orchestrator.services.config.validate') @patch('orchestrator.services.config.open') def test_validate_schema_for_failed_validation(m_open, m_validate): # Given: Existing schema schema = '''{ "title": "Schema for Job Config", "id": "#generic-hook-v1" }''' m_open().__enter__().read.return_value = schema # And: Validator that succeeds validation m_validate.side_effect = ValidationError('MockError', schema=json.loads(schema)) # And: Config that needs to be validated config = { 'mock-obj': 'mock-value' } # When: I validate against existing schema service.validate_schema(config) # Then: ConfigValidationError is raised def test_transform_string_values(): """ Should transform string values inside config as expected. :return: """ # Given: Config that needs to be transformed config = { 'key1': 'value1', 'port': 1212, 'enabled': 'True', 'nested-port-key': { 'port': u'2321', 'nodes': u'12', 'min-nodes': '13', 'enabled': 'False', 'force-ssl': 'true' }, 'array-config': [ { 'port': '123', 'nodes': '13', 'min-nodes': '14', 'attempts': '10', 'enabled': False }, 'testval' ], 'null-key': None } # When: I transform string values in config result = service.transform_string_values(config) # Then: Transformed config is returned dict_compare(result, { 'key1': 'value1', 'port': 1212, 'enabled': True, 'nested-port-key': { 'port': 2321, 'nodes': 12, 'min-nodes': 13, 'enabled': False, 'force-ssl': True }, 'array-config': [ { 'port': 123, 'nodes': 13, 'min-nodes': 14, 'attempts': 10, 'enabled': False }, 'testval' ], 'null-key': None }) @patch('orchestrator.services.config.get_provider') @patch('orchestrator.services.config.validate_schema') def test_load_config(m_validate_schema, m_get_provider): """ Should load config successfully :return: """ # Given: Existing valid config cfg1 = { 'mockkey': 'mockvalue', 8080: 'number-key', 'deployers': { '__defaults__': DEFAULT_DEPLOYER_CONFIG, 'deployer1': { 'enabled': False, 'variables': {} }, 'deployer2': { 'enabled': True, 'variables': {} } }, } cfg2 = { 'mockkey2': 'mockvalue2', 'deployers': { 'deployer1': { 'variables': { 'deployer_url': 'deployer1-url1', }, 'url': { 'value': '{{deployer_url}}' } }, 'deployer2': { 'variables': { 'deployer_url': 'deployer2-url1', }, 'url': { 'value': '{{deployer_url}}' } } }, 'environment': { 'env1': 'val1' } } m_get_provider.return_value.load.side_effect = [cfg1, cfg2] m_validate_schema.side_effect = lambda vcfg, schema_name=None: vcfg # When: I load the config loaded_config = config.load_config('mockpath1', 'mockpath2') # Then: Config gets loaded as expected dict_compare(loaded_config, { 'mockkey': 'mockvalue', 'mockkey2': 'mockvalue2', '8080': 'number-key', 'deployers': { 'deployer2': { 'templates': { 'app': { 'args': {} }, }, 'proxy': {}, 'deployment': {}, 'url': 'deployer2-url1', 'enabled': True } }, 'environment': { 'env1': { 'value': 'val1', 'encrypted': False } } }) @raises(ConfigParseError) @patch('orchestrator.services.config.get_provider') @patch('orchestrator.services.config.validate_schema') def test_load_config_when_config_is_invalid(m_validate_schema, m_get_provider): """ Should raise ConfigParseError when configuration is invalid :return: """ # Given: Existing valid config m_get_provider.return_value.load.side_effect = ParserError('Mock') m_validate_schema.side_effect = lambda vcfg, schema_name=None: vcfg # When: I load the config config.load_config('mockpath1', 'mockpath2') # Then: ConfigParseError is raised def test_normalize_config(): """ Should normalize the config containing environment variables """ # Given: Existing config that needs to be normalized input_config = { 'environment': { 'var1': 'value1', 'var2': 2, 'var3': True, 'var4': { 'value': 'value4' }, 'var5': { }, 'var6': { 'value': 'value6', 'encrypted': True } }, 'nested': { 'environment': { 'var7': 'value7', } }, 'other': { 'test-key': 'test-val' }, 'direct-string': 'value', 'direct-int': 1 } # When: I normalize the config normalized_config = dict(service.normalize_config(input_config)) # Then: Config gets normalized as expected dict_compare(normalized_config, { 'environment': { 'var1': { 'value': 'value1', 'encrypted': False }, 'var2': { 'value': '2', 'encrypted': False }, 'var3': { 'value': 'True', 'encrypted': False }, 'var4': { 'value': 'value4', 'encrypted': False }, 'var5': { 'value': '', 'encrypted': False }, 'var6': { 'value': 'value6', 'encrypted': True } }, 'nested': { 'environment': { 'var7': { 'value': 'value7', 'encrypted': False } } }, 'other': { 'test-key': 'test-val' }, 'direct-string': 'value', 'direct-int': 1 })
{ "repo_name": "totem/cluster-orchestrator", "path": "tests/unit/orchestrator/services/test_config.py", "copies": "1", "size": "18737", "license": "mit", "hash": -5665225141035386000, "line_mean": 25.7671428571, "line_max": 79, "alpha_frac": 0.5002401665, "autogenerated": false, "ratio": 4.051243243243243, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5051483409743243, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import numpy as np import sys, time from astropy.table import Table from . import loki def prob(sub1 = None, sub2 = None, RAs1 = None, DECs1 = None, RAs2 = None, DECs2 = None, dists1 = None, dists2 = None, disterrs1 = None, disterrs2 = None, PMras1 = None, PMdecs1 = None, PMras2 = None, PMdecs2 = None, PMraerrs1 = None, PMdecerrs1 = None, PMraerrs2 = None, PMdecerrs2 = None, RVs1 = None, RVs2 = None, RVerrs1 = None, RVerrs2 = None, PM = False, RV = False, DIST = False, DISTERR = False, size = 10000, infile = None, outfile = None, nstepsMC = 1000, subset = False, random = False): """ This program reads in (or an input can be used) a list of binaries and calculates the number of stars expected in the LOS and volume occupied by the binary system by creating "fake" galaxies and randomly distributing the stars in that galaxy. It uses the rejection method (Press et al. 1992) to distribute the stars using the stellar density profile as calculated by Bochanski et al. (2009) using SDSS low-mass stars. Written by : Saurav Dhital Written on : April 17, 2009 Ported to Python: Chris Theissen, June 29, 2015 """ # Start the program and time it print('Start Time: ', time.strftime("%I:%M:%S")) t_start = time.time() # Check if there is kinematic and positional information if PMras1 is not None and PM == False: PM = True # Proper motions available if RVs1 is not None and RV == False: RV = True # Radial velocities available if dists1 is not None and DIST == False: DIST = True # Distances available # Get the file and/or define the parameters if infile is None: # Case where there is no file if RAs1 is None and RAs2 is None: raise Exception('Either a file or a list of RADECs must be included') else: # Check if (numpy) arrays if isinstance( RAs1, np.ndarray ) == False: RAs1 = np.array( RAs1 ).flatten() DECs1 = np.array( DECs1 ).flatten() RAs2 = np.array( RAs2 ).flatten() DECs2 = np.array( DECs2 ).flatten() n = len( RAs1 ) # See how long the file is if DIST and isinstance( dists1, np.ndarray ) == False: dists1 = np.array( dists1 ).flatten() dists2 = np.array( dists2 ).flatten() if disterrs1 is not None: disterrs1 = np.array( disterrs1 ).flatten() disterrs2 = np.array( disterrs2 ).flatten() if PM and isinstance( PMras1, np.ndarray ) == False: PMras1 = np.array( PMras1 ).flatten() PMdecs1 = np.array( PMdecs1 ).flatten() PMras2 = np.array( PMras2 ).flatten() PMdecs2 = np.array( PMdecs2 ).flatten() PMraerrs1 = np.array( PMraerrs1 ).flatten() PMdecerrs1 = np.array( PMdecerrs1 ).flatten() PMraerrs2 = np.array( PMraerrs2 ).flatten() PMdecerrs2 = np.array( PMdecerrs2 ).flatten() if RV and isinstance(RVs1, np.ndarray) == False: RVs1 = np.array( RVs1 ).flatten() RVs2 = np.array( RVs2 ).flatten() RVerrs1 = np.array( RVerrs1 ).flatten() RVerrs2 = np.array( RVerrs2 ).flatten() else: # Case where there is a file binaries = Table.read(infile) # Read in the file # Define the parameters RAs1 = binaries['RA1'] DECs1 = binaries['DEC1'] RAs2 = binaries['RA2'] DECs2 = binaries['DEC2'] if DIST: dists1 = binaries['DIST1'] dists2 = binaries['DIST2'] if DISTERR == False: # Just apply a 20% uncertainty disterrs1 = .2*binaries['DIST1'] disterrs2 = .2*binaries['DIST2'] else: disterrs1 = binaries['DISTERR1'] disterrs2 = binaries['DISTERR2'] if PM: PMras1 = binaries['PMRA1'] PMdecs1 = binaries['PMDEC1'] PMras2 = binaries['PMRA1'] PMdecs2 = binaries['PMDEC1'] PMraerrs1 = binaries['PMRAERR1'] PMdecerrs1 = binaries['PMDECERR1'] PMraerrs2 = binaries['PMRAERR2'] PMdecerrs2 = binaries['PMDECERR2'] if RV: RVs1 = binaries['RV1'] RVs2 = binaries['RV2'] RVerrs1 = binaries['RVERR1'] RVerrs2 = binaries['RVERR2'] n = len(RAs1) # See how many candidates there are binaries_theta = loki.angdist(RAs1, DECs1, RAs2, DECs2) # Get the angular distances between the pairs # ************************************************************************** print('') print('No. of candidate pairs: %s'%n) print('No. of MC steps : %s'%nstepsMC) print('') # storage arrays nstars = np.zeros(n) # stores no. of stars in each LOS count_star = np.zeros( (n, 5), dtype=np.float64) # stores no. of companions for each LOS count_binary = np.zeros( (n, 5), dtype=np.float64) # stores no. of companions for each LOS print('We are at (%s):'%('%')) count = 0 for i in range(0, n): # loop for each LOS (binary) ra0 = RAs1[i] # system properties are subscripted with 0 dec0 = DECs1[i] theta0 = binaries_theta[i] if DIST: # Check if distances are within uncertainties dist0 = 0.5 * (dists1[i] + dists2[i]) if DISTERR == False: # Fudge factor for things without distance uncertainties sig_ddist0 = 0.1383 * np.sqrt( dists1[i] ** 2 + dists2[i] ** 2 ) else: sig_ddist0 = np.sqrt( disterrs1[i] ** 2 + disterrs2[i] ** 2 ) # Get the kinematic information if available if RV and PM: # Case with proper motions and radial velocities vel0 = 0.5 * np.array( [ PMras1[i] + PMras2[i], PMdecs1[i] + PMdecs2[i], RVs1[i] + RVs2[i] ] ) sig_vel0 = np.sqrt( np.array( [ PMraerrs1[i] ** 2 + PMraerrs2[i] ** 2, PMdecerrs1[i] ** 2 + PMdecerrs2[i] ** 2, RVerrs1[i] ** 2 + RVerrs2[i] ** 2 ] ) ) #vel0 = 0.5 * np.array([bry['PMRA'][i][0] + bry['PMRA'][i][1], # bry['PMDEC'][i][0] + bry['PMDEC'][i][1], # bry['RV'][i][0] + bry['RV'][i][1]]) #sig_vel0 = np.sqrt( np.array([bry['PMRAERR'][i][0]**2 + bry['PMRAERR'][i][1]**2, # bry['PMDECERR'][i][0]**2 + bry['PMDECERR'][i][1]**2, # bry['RVERR'][i][0]**2 + bry['RVERR'][i][1]**2]) ) if RV == False and PM: # Case with proper motions but no radial velocities vel0 = 0.5 * np.array( [ PMras1[i] + PMras2[i], PMdecs1[i] + PMdecs2[i] ] ) sig_vel0 = np.sqrt( np.array( [ PMraerrs1[i] ** 2 + PMraerrs2[i] ** 2, PMdecerrs1[i] ** 2 + PMdecerrs2[i] ** 2 ] ) ) # ********************************************************** # ******************** CALC PROB ******************* # ********************************************************** # storage arrays count_MC = np.zeros(5, dtype = np.float64) # store data for each niter count_MC2 = np.zeros(5, dtype = np.float64) # store data for each niter # count the number of stars in each cell of length cell_size nstars_tot, nstars2, dists = loki.count_nstars(ra0, dec0, full = True) #nstars_tot = np.around(nstars_tot) #nstars[i] = nstars_tot # Need to create a probability distribution based on the float randstar = np.random.random_sample( size ) nstars_tot2 = np.zeros( size, dtype=np.int64 ) + np.floor( nstars_tot ) nstars_tot2[ np.where( randstar < nstars_tot - np.floor( nstars_tot ) ) ] += 1 nstars_tot3 = np.random.choice(nstars_tot2, size = 1) # Select a random choice of stars (need an integer) nstars[i] = nstars_tot3 # Add the value to the total stars simulated for niter in range(0, nstepsMC): # Loop through the MC (Could probably do this more efficiently) # This keeps track of the binary probability b1, b2, b3, b4, b5 = 0, 0, 0, 0, 0 c1, c2, c3, c4, c5 = 0, 0, 0, 0, 0 ra, dec, dist = loki.gen_nstars( ra0, dec0, nstars_tot, nstars2, dists ) theta = loki.angdist( ra0, dec0, ra, dec ) # ************** COUNT FOR MATCHES ******************* ind1 = np.where( ( theta >= 0 ) & ( theta <= theta0 ) ) # counts all stars within given theta and all d c1 = len( ind1[0] ) if c1 >= 1: b1 += 1 if DIST: ddist = abs( dist0 - dist ) ind2 = np.where( ( theta >= 0) & ( theta <= theta0 ) & ( ddist <= sig_ddist0 ) & ( ddist <= 100 ) ) # counts stars within given theta and d c2 = len( ind2[0] ) if c2 >= 1: b2 += 1 # if kinematics are available # NEED TO COME BACK AND FIX THIS if c2 > 0 and ( PM or RV ): R0, T0, Z0 = loki.conv_to_galactic( ra0, dec0, dist0 ) # Convert RADECs to Galactic coordinates vel1 = loki.gen_pm( R0, T0, Z0, ra0, dec0, dist0, c2 ) # returns [[pmra], [pmdec],[rv]] if PM and RV == False: vel = np.array( [ vel1[0], vel1[1] ] ) # replicate vel0 to match the dimensions of generated velocity array # allows for vector arithmetic vel0_arr = np.tile( vel0, ( c2, 1 ) ).transpose() sig_vel0_arr = np.tile( sig_vel0, ( c2, 1 ) ).transpose() # difference in binary and simulated velocity in units of sigma dVel = abs( vel - vel0_arr ) / sig_vel0_arr if PM: # PM match ind3 = np.where( np.sqrt( dVel[0] ** 2 + dVel[1] ** 2 ) <= 2 ) c3 = len( ind3[0] ) if c3 >= 1: b3 += 1 else: c3 = 0 if RV: # RV match ind4 = np.where( dVel[2] <= 1 ) c4 = len( ind4[0] ) if c4 >= 1: b4 += 1 else: c4 = 0 if PM and RV: # PM + RV match ind5 = np.where( ( dVel[0] ** 2 + dVel[1] ** 2 <= 2 ) & ( dVel[2] <= 1 ) ) c5 = len( ind5[0] ) if c5 >= 1: b5 += 1 else: c3, c4, c5 = 0, 0, 0 # End of one MC step # ******************** STORE DATA FOR EACH NITER ******** count_MC += [c1, c2, c3, c4, c5] # This counts the number of stars in the LOS count_MC2 += [b1, b2, b3, b4, b5] # This counts the binary (yes or no; there is another star in the LOS) count += 1 # Keep a running update sys.stdout.write("\r%0.4f" %( float(count) / (nstepsMC*n)*100 ) ) sys.stdout.flush() # *********************** STORE DATA FOR EACH STAR *********** count_star[i,:] = count_MC count_binary[i,:] = count_MC2 # Convert to probabilities prob = count_star / nstepsMC prob2 = count_binary / nstepsMC if outfile is None: outfile='Probabilities.csv' print(' ************* ') print(' ************* ') # Create the table for results if DIST: Table1 = Table([RAs1, DECs1, 0.5 * (dists1 + dists2), binaries_theta, prob[:,0], prob[:,1], prob[:,2], prob[:,3], prob[:,4], prob2[:,0], prob2[:,1], prob2[:,2], prob2[:,3], prob2[:,4], nstars], names = ['RA','DEC','DIST','THETA','P1','P2','P3','P4','P5', 'PB1','PB2','PB3','PB4','PB5','Nstars']) else: Table1 = Table([RAs1, DECs1, binaries_theta, prob[:,0], prob[:,1], prob[:,2], prob[:,3], prob[:,4], prob2[:,0], prob2[:,1], prob2[:,2], prob2[:,3], prob2[:,4], nstars], names = ['RA','DEC','THETA','P1','P2','P3','P4','P5', 'PB1','PB2','PB3','PB4','PB5','Nstars']) # Write the table locally (overwrite is on by default, scary) Table1.write(outfile) print('TOTAL TIME TAKEN : ', (time.time() - t_start) / 3600.,' hours') print('TIME TAKEN PER LOS : ', (time.time() - t_start) / (60*n),' minutes') print('END TIME : ', time.strftime("%I:%M:%S")) def main(): SLW_6D(sub1 = None, sub2 = None, RAs1 = None, DECs1 = None, RAs2 = None, DECs2 = None, dists1 = None, dists2 = None, disterrs1 = None, disterrs2 = None, PMras1 = None, PMdecs1 = None, PMras2 = None, PMdecs2 = None, PMraerrs1 = None, PMdecerrs1 = None, PMraerrs2 = None, PMdecerrs2 = None, RVs1 = None, RVs2 = None, RVerrs1 = None, RVerrs2 = None, PM = False, RV = False, DIST = False, DISTERR = False, size = 10000, infile = None, outfile = None, nstepsMC = 1000, subset = False, random = False) if __name__ == '__main__': main()
{ "repo_name": "ctheissen/LoKi", "path": "loki/binary_probability.py", "copies": "1", "size": "14320", "license": "mit", "hash": 5019688978316929000, "line_mean": 41.619047619, "line_max": 119, "alpha_frac": 0.475698324, "autogenerated": false, "ratio": 3.420926899187769, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4396625223187769, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import os import boto from boto.s3.key import Key from future.builtins import ( # noqa bytes, dict, int, list, object, range, str, ascii, chr, hex, input, next, oct, open, pow, round, super, filter, map, zip) from nose.plugins.attrib import attr from nose.tools import eq_ from configservice.cluster_config.s3 import S3ConfigProvider from tests.helper import dict_compare from tests.integration.configservice.cluster_config import MOCK_CONFIG, \ MOCK_SERIALIZED_CONFIG __author__ = 'sukrit' S3_TEST_BUCKET = os.getenv('S3_TEST_BUCKET', 'totem-integration') S3_CONFIG_BASE = 'totem-%s/config' % (os.getenv('USER')) @attr(s3='true') class TestS3ConfigProvider: """ Integration tests for S3ConfigProvide """ @classmethod def teardown_class(cls): bucket = boto.connect_s3().get_bucket(S3_TEST_BUCKET) for key in bucket.list(prefix=S3_CONFIG_BASE): key.delete() def setup(self): self.provider = S3ConfigProvider(S3_TEST_BUCKET, config_base=S3_CONFIG_BASE) def test_write(self): """ should write config to s3 """ # When: I write config using provider self.provider.write('totem.yml', MOCK_CONFIG, 'cluster1', 'test_write') # Then: Config gets serialized as yaml and written to s3 key = self.provider._s3_bucket().get_key( '/%s/cluster1/test_write/totem.yml' % (S3_CONFIG_BASE)) eq_(key is not None, True) eq_(key.get_contents_as_string().decode(), MOCK_SERIALIZED_CONFIG) def test_load(self): """ Should read config from s3 """ # Given: Existing config key = Key(self.provider._s3_bucket()) key.key = '/%s/cluster1/test_load/totem.yml' % (S3_CONFIG_BASE) key.set_contents_from_string(MOCK_SERIALIZED_CONFIG) # When: I load config using provider ret_value = self.provider.load('totem.yml', 'cluster1', 'test_load') # Then: Config gets loaded dict_compare(ret_value, MOCK_CONFIG) def test_delete(self): """ Should delete config from s3 """ # Given: Existing config key = Key(self.provider._s3_bucket()) key.key = '/%s/cluster1/test_delete/totem.yml' % (S3_CONFIG_BASE) key.set_contents_from_string(MOCK_SERIALIZED_CONFIG) # When: I load config using provider ret_value = self.provider.delete('totem.yml', 'cluster1', 'test_delete') # Then: Config gets loaded eq_(ret_value, True) check_key = self.provider._s3_bucket().get_key(key.key) eq_(check_key is None, True)
{ "repo_name": "totem/config", "path": "tests/integration/configservice/cluster_config/test_s3.py", "copies": "1", "size": "2834", "license": "mit", "hash": -8739348841973782000, "line_mean": 31.5747126437, "line_max": 79, "alpha_frac": 0.6104446013, "autogenerated": false, "ratio": 3.546933667083855, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4657378268383855, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import os import numpy as np import scipy.linalg from warnings import warn # Here comes the fast implementation: try: from _block_diag_ilu import PyILU except ImportError: if os.environ.get("USE_FAST_FAKELU", "0") == "1": # You better not use fast_FakeLU()... raise class PyILU: pass class ILU: def __init__(self, A, sub, sup, blockw, ndiag=0): fA = np.empty((blockw, A.shape[0]), order='F') ssub = np.empty_like(sub) ssup = np.empty_like(sup) nblocks = A.shape[0]//blockw for bi in range(nblocks): slc = slice(bi*blockw, (bi+1)*blockw) fA[0:blockw, slc] = A[slc, slc] idx = 0 for di in range(ndiag): for bi in range(nblocks-di-1): for ci in range(blockw): ssub[idx] = A[blockw*(bi+di+1)+ci, blockw*bi + ci] ssup[idx] = A[blockw*bi + ci, blockw*(bi+di+1) + ci] idx += 1 self._pyilu = PyILU(fA, ssub, ssup, blockw, ndiag) def solve(self, b): return self._pyilu.solve(b) @property def sub(self): sub = [] for di in range(self._pyilu.ndiag): ssub = [] for bi in range(self._pyilu.nblocks - di - 1): for ci in range(self._pyilu.blockw): ssub.append(self._pyilu.sub_get(di, bi, ci)) sub.append(ssub) return sub @property def sup(self): sup = [] for di in range(self._pyilu.ndiag): ssup = [] for bi in range(self._pyilu.nblocks - di - 1): for ci in range(self._pyilu.blockw): ssup.append(self._pyilu.sup_get(di, bi, ci)) sup.append(ssup) return sup @property def rowbycol(self): nblocks = self._pyilu.nblocks blockw = self._pyilu.blockw rbc = [] for bi in range(nblocks): l = [] for ci in range(blockw): l.append(self._pyilu.rowbycol_get(bi*blockw+ci)) rbc.append(l) return rbc @property def colbyrow(self): nblocks = self._pyilu.nblocks blockw = self._pyilu.blockw rbc = [] for bi in range(nblocks): l = [] for ri in range(blockw): l.append(self._pyilu.colbyrow_get(bi*blockw+ri)) rbc.append(l) return rbc @property def LU_merged(self): nblocks = self._pyilu.nblocks blockw = self._pyilu.blockw ndiag = self._pyilu.ndiag dim = nblocks*blockw LU = np.zeros((dim, dim)) LUblocks = self._pyilu.get_LU() for bi in range(nblocks): slc = slice(bi*blockw, (bi+1)*blockw) LU[slc, slc] = LUblocks[:, slc] for di in range(ndiag): idx = 0 for bi in range(nblocks-di-1): for ci in range(blockw): lri_u = self._pyilu.rowbycol_get(idx) lri_l = self._pyilu.rowbycol_get(idx+blockw*di) LU[bi*blockw + lri_l + blockw*(di+1), idx] = self._pyilu.sub_get( di, bi, ci) LU[bi*blockw + lri_u, idx + blockw*(di+1)] = self._pyilu.sup_get( di, bi, ci) idx += 1 return LU @property def piv(self): blockw = self._pyilu.blockw p = [] for bi in range(self._pyilu.nblocks): pp = [] for ci in range(blockw): pp.append(self._pyilu.piv_get(bi*blockw+ci)) p.append(pp) return p def fast_FakeLU(A, n, ndiag=0): assert A.shape[0] == A.shape[1] assert A.shape[0] % n == 0 nblocks = A.shape[0]//n sub, sup = [], [] for di in range(ndiag): ssub, ssup = [], [] for gi in range((nblocks-di-1)*n): ssub.append(A[gi + (di+1)*n, gi]) ssup.append(A[gi, gi + (di+1)*n]) sub.extend(ssub) sup.extend(ssup) # memory view taking address of first element workaround: # if len(sub) == 0: # sub.append(0) # sup.append(0) return ILU(np.asfortranarray(A), np.array(sub, dtype=np.float64), np.array(sup, dtype=np.float64), n, ndiag) # Below is the prototype from which block_diag_ilu.hpp was # designed: (tests were made for FakeLU and should pass # for fast_FakeLU above) def rowpiv2rowbycol(piv): rowbycol = np.arange(len(piv)) for i in range(len(piv)): j = piv[i] if i != j: tmp = rowbycol[j] rowbycol[j] = i rowbycol[i] = tmp return rowbycol class FakeLU: def __init__(self, A, n, ndiag=0): self.lu, self.piv, self.rowbycol = [], [], [] self.colbyrow = [] self.n = n self.ndiag = ndiag assert A.shape[0] == A.shape[1] assert A.shape[0] % n == 0 self.N = A.shape[0]//n # Block diagonal for bi in range(self.N): slc = slice(bi*self.n, (bi+1)*self.n) lu, piv = scipy.linalg.lu_factor(A[slc, slc]) self.lu.append(lu) self.piv.append(piv) self.rowbycol.append(rowpiv2rowbycol(piv)) self.colbyrow.append([list(self.rowbycol[-1]).index(x) for x in range(self.n)]) # Sub diagonal self.sub, self.sup = [], [] for di in range(1, self.ndiag+1): ssub = [] ssup = [] for bi in range(self.N-di): for ci in range(self.n): d = self.lu[bi][ci, ci] ssub.append(A[(bi+di)*n + ci, bi*n + ci]/d) # sub[column_idx] ssup.append(A[bi*n + ci, (bi+di)*n + ci]) # sup[column_idx] self.sub.append(ssub) self.sup.append(ssup) @property def L_dot_U(self): # ILU => L*U ~= A # this should give a better approximation of A # Only useful for debugging / accuracy tests... A = np.zeros((self.N*self.n, self.N*self.n)) for bi in range(self.N): # Diagonal blocks... L = np.zeros((self.n, self.n)) U = L.copy() for ri in range(self.n): for ci in range(self.n): if ci == ri: U[ri, ci] = self.lu[bi][ri, ci] L[ri, ci] = 1.0 elif ci > ri: U[ri, ci] = self.lu[bi][ri, ci] else: L[ri, ci] = self.lu[bi][ri, ci] slc = slice(bi*self.n, (bi+1)*self.n) A[slc, slc] = np.dot(L, U) for di in range(1, self.ndiag+1): # diag for bi in range(self.N-di): # block for ci in range(self.n): # upper A[bi*self.n + self.rowbycol[bi][ci], (bi+di)*self.n+ci] = self.sup[di-1][bi*self.n + ci] # lower A[(bi+di)*self.n+self.rowbycol[bi+di][ci], bi*self.n+ci] = self.sub[di-1][bi*self.n + ci]*self.lu[bi][ci, ci] return A # def permute_vec(self, x): # n = np.empty_like(x) # for bi in range(self.N): # for li in range(self.n): # n[bi*self.n+li] = x[bi*self.n+self.rowbycol[bi][li]] # return n # def antipermute_vec(self, x): # n = x[:] # for bi in range(self.N): # for li in range(self.n): # n[bi*self.n+li] = x[bi*self.n+self.colbyrow[bi][li]] # return n def solve(self, b): """ LUx = b: Ly = b Ux = y """ #b = self.permute_vec(b) y = [] for bri in range(self.N): # block row index for li in range(self.n): # local row index s = 0.0 for lci in range(li): # local column index s += self.lu[bri][li, lci]*y[bri*self.n+lci] for di in range(1, self.ndiag+1): if bri >= di: # di:th sub diagonal (counted as distance from main diag) ci = self.colbyrow[bri][li] s += self.sub[di-1][(bri-di)*self.n+ci]*y[ (bri-di)*self.n + ci] y.append(b[bri*self.n+self.rowbycol[bri][li]]-s) # Doolittle: L[i, i] == 1 x = [0]*len(y) for bri in range(self.N-1, -1, -1): for li in range(self.n - 1, -1, -1): s = 0.0 for ci in range(li+1, self.n): s += self.lu[bri][li, ci]*x[bri*self.n + ci] for di in range(1, self.ndiag+1): if bri < self.N-di: ci = self.colbyrow[bri][li] s += self.sup[di-1][bri*self.n+ci]*x[(bri+di)*self.n + ci] x[bri*self.n+li] = (y[bri*self.n + li] - s)/self.lu[bri][li, li] return x #self.antipermute_vec(x) @property def LU_merged(self): A = np.zeros((self.N*self.n, self.N*self.n)) for bi in range(self.N): slc = slice(bi*self.n, (bi+1)*self.n) A[slc, slc] = self.lu[bi] for ci in range(self.n): for di in range(1, self.ndiag+1): # bi means block row index: if bi >= di: A[bi*self.n+self.rowbycol[bi][ci], (bi-di)*self.n+ci] = self.sub[di-1][(bi-di)*self.n + ci] if bi < self.N-di: A[bi*self.n+self.rowbycol[bi][ci], (bi+di)*self.n+ci] = self.sup[di-1][bi*self.n + ci] return A
{ "repo_name": "chemreac/block_diag_ilu", "path": "python_prototype/fakelu.py", "copies": "1", "size": "9838", "license": "bsd-2-clause", "hash": -7718856516726367000, "line_mean": 33.7632508834, "line_max": 129, "alpha_frac": 0.4699125839, "autogenerated": false, "ratio": 3.100535770564135, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9061368037048072, "avg_score": 0.0018160634832124667, "num_lines": 283 }
from __future__ import (absolute_import, division, print_function, unicode_literals) import os import string REMOVE_PUNCT_TABLE = str.maketrans( string.punctuation, ' ' * len(string.punctuation)) class Corpus(object): '''Memory Friendly Corpus Reader''' def __init__(self, files=None, documents=None): self.files = files self.documents = documents if files is not None and documents is not None: raise ValueError('Define corpus with files or documents but not both') if documents is not None: self.cached = True else: self.cached = False @staticmethod def _document(file): with open(file, 'r') as f: return f.read() def __getitem__(self, item): return self._document(self.files[item]) def __iter__(self): if not self.cached: for file in self.files: yield self._document(file) else: for document in self.documents: yield document def __len__(self): if self.cached: return len(self.documents) else: return len(self.files) def transform(self, function, output_dir='', suffix='', overwrite=False): '''Transform a corpus with a function Args: function (callable): function with one parameter. output_dir (str): path to folder where the transformed files will be stored. suffix (str): will be appended to the filenames. Returns: Corpus: the transformed corpus ''' if self.cached: return Corpus(documents=[function(x) for x in self]) if output_dir == '' and suffix == '' and not overwrite: raise IOError('default output_dir and suffix parameters' ' would overwrite files, use overwrite=True') transformed_files = [] extension = '.txt' for file in self.files: with open(file, 'r') as f: text = function(f.read()) name, old_extension = os.path.splitext(file) name = os.path.basename(name) transformed_file = os.path.join( output_dir, name + suffix + extension) with open(transformed_file, 'w') as f: f.write(text) transformed_files.append(transformed_file) return Corpus(files=transformed_files) def cached(self): '''Return a new corpus with documents in memory''' if self.cached: return self return Corpus(documents=[x for x in self]) def flushed(self, output_dir, suffix=''): '''Return a new corpus with documents in disk''' extension = '.txt' files = [] for i, document in enumerate(self.documents): file = os.path.join( output_dir, 'doc_' + str(i) + suffix + extension) with open(file, 'w') as f: f.write(document) files.append(file) return Corpus(files=files) def vocabulary(self, preprocessor): '''Extract the vocabulary from all documents''' n_tokens = 0 vocabulary = set() for document in self: tokens = (preprocessor.preprocess( document.translate(REMOVE_PUNCT_TABLE)) .split()) n_tokens += len(tokens) vocabulary.update(tokens) return vocabulary, n_tokens @staticmethod def _vocabulary_map(vocabulary): '''Maps each element of the vocabulary to an integer also returns a list mapping integers to words ''' vocabulary_map= {x: i for i, x in enumerate(vocabulary)} vocabulary_list = [''] * len(vocabulary_map) for x, i in vocabulary_map.items(): vocabulary_list[i] = x return vocabulary_map, vocabulary_list def vocabulary_map(self, preprocessor): '''Maps each element of the vocabulary to an integer also returns a list mapping integers to words and a count of the total number of tokens in the corpus ''' vocabulary, n_tokens = self.vocabulary(preprocessor) vocabulary_map, vocabulary_list = self._vocabulary_map(vocabulary) return vocabulary_map, vocabulary_list, n_tokens
{ "repo_name": "latorrefabian/topmine", "path": "topmine/corpus.py", "copies": "1", "size": "4415", "license": "bsd-2-clause", "hash": -2342320210285858300, "line_mean": 34.0396825397, "line_max": 82, "alpha_frac": 0.5716874292, "autogenerated": false, "ratio": 4.58939708939709, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5661084518597089, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import os import subprocess from django_linter.checkers.settings import SettingsShecker from django_linter.checkers.models import ModelsChecker from django_linter.checkers.misc import MiscChecker from django_linter.checkers.layout import LayoutChecker from django_linter.checkers.forms import FormsChecker from django_linter.checkers.views import ViewsChecker def main(): out = open('README.rst', 'w') print("""Django linter ============= .. image:: https://travis-ci.org/geerk/django_linter.svg?branch=master :target: https://travis-ci.org/geerk/django_linter This is a simple extension for pylint that aims to check some common mistakes in django projects. Contributions are welcome. Installation ------------ :: pip install django_linter Usage ----- It can be used as a plugin or standalone script. To use it as a plugin it should be installed first, then run with pylint: :: pylint --load-plugins=django_linter TARGET To use it as a standalone script: """, file=out) print('::', file=out) print('', file=out) usage = os.tmpfile() p = subprocess.Popen( ['python', '-m', 'django_linter.main', '-h'], stdout=usage) p.wait() usage.seek(0) for line in usage: if line != '\n': out.write(' ' + line.replace('main.py', 'django-linter')) else: out.write(line) print('', file=out) print('Implemented checks', file=out) print('------------------', file=out) print('', file=out) for checker in (SettingsShecker, ModelsChecker, FormsChecker, ViewsChecker, LayoutChecker, MiscChecker): print('**%s:**' % checker.name.title(), file=out) print('', file=out) for k in sorted(checker.msgs.viewkeys()): print('- %s (%s): %s' % (k, checker.msgs[k][1], checker.msgs[k][2]), file=out) print('', file=out) print("""Implemented suppressers ----------------------- - "Meta" classes - urlpatterns - logger Implemented transformers ------------------------ **Models** - "id" field - "objects" manager - "DoesNotExist" exception - "MultipleObjectsReturned" exception **Testing** - test responses (django and DRF) **Factories** - factory-boy's factories (factory should return django model, but not always possible to infer model class) """, file=out) if __name__ == '__main__': main()
{ "repo_name": "geerk/django_linter", "path": "generate_readme.py", "copies": "1", "size": "2505", "license": "mit", "hash": 5119779267303338000, "line_mean": 24.824742268, "line_max": 122, "alpha_frac": 0.6315369261, "autogenerated": false, "ratio": 3.75, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9879486887386766, "avg_score": 0.00041000774264660653, "num_lines": 97 }
from __future__ import (absolute_import, division, print_function, unicode_literals) import os import sys from datetime import datetime import tarfile import tempfile from optparse import make_option import re from django.conf import settings from django.core.management.base import BaseCommand from django.core.management.base import CommandError from dbbackup import utils from dbbackup.storage.base import BaseStorage from dbbackup.storage.base import StorageError from dbbackup import settings as dbbackup_settings class Command(BaseCommand): help = "backup_media [--encrypt]" option_list = BaseCommand.option_list + ( make_option("-c", "--clean", help="Clean up old backup files", action="store_true", default=False), make_option("-s", "--servername", help="Specify server name to include in backup filename"), make_option("-e", "--encrypt", help="Encrypt the backup files", action="store_true", default=False), ) @utils.email_uncaught_exception def handle(self, *args, **options): try: self.servername = options.get('servername') self.storage = BaseStorage.storage_factory() self.backup_mediafiles(options.get('encrypt')) if options.get('clean'): self.cleanup_old_backups() except StorageError as err: raise CommandError(err) def backup_mediafiles(self, encrypt): source_dir = self.get_source_dir() if not source_dir: print("No media source dir configured.") sys.exit(0) print("Backing up media files in %s" % source_dir) output_file = self.create_backup_file(source_dir, self.get_backup_basename()) if encrypt: encrypted_file = utils.encrypt_file(output_file) output_file = encrypted_file print(" Backup tempfile created: %s (%s)" % (output_file.name, utils.handle_size(output_file))) print(" Writing file to %s: %s" % (self.storage.name, self.storage.backup_dir)) self.storage.write_file(output_file, self.get_backup_basename()) def get_backup_basename(self): # TODO: use DBBACKUP_FILENAME_TEMPLATE server_name = self.get_servername() if server_name: server_name = '-%s' % server_name return '%s%s-%s.media.tar.gz' % ( self.get_databasename(), server_name, datetime.now().strftime(dbbackup_settings.DATE_FORMAT) ) def get_databasename(self): # TODO: WTF is this?? return settings.DATABASES['default']['NAME'] def create_backup_file(self, source_dir, backup_basename): temp_dir = tempfile.mkdtemp() try: backup_filename = os.path.join(temp_dir, backup_basename) try: tar_file = tarfile.open(backup_filename, 'w|gz') try: tar_file.add(source_dir) finally: tar_file.close() return utils.create_spooled_temporary_file(backup_filename) finally: if os.path.exists(backup_filename): os.remove(backup_filename) finally: os.rmdir(temp_dir) def get_source_dir(self): return dbbackup_settings.MEDIA_PATH def cleanup_old_backups(self): """ Cleanup old backups, keeping the number of backups specified by DBBACKUP_CLEANUP_KEEP and any backups that occur on first of the month. """ print("Cleaning Old Backups for media files") file_list = self.get_backup_file_list() for backup_date, filename in file_list[0:-dbbackup_settings.CLEANUP_KEEP_MEDIA]: if int(backup_date.strftime("%d")) != 1: print(" Deleting: %s" % filename) self.storage.delete_file(filename) def get_backup_file_list(self): """ Return a list of backup files including the backup date. The result is a list of tuples (datetime, filename). The list is sorted by date. """ server_name = self.get_servername() if server_name: server_name = '-%s' % server_name media_re = re.compile(r'^%s%s-(.*)\.media\.tar\.gz' % (self.get_databasename(), server_name)) def is_media_backup(filename): return media_re.search(filename) def get_datetime_from_filename(filename): datestr = re.findall(media_re, filename)[0] return datetime.strptime(datestr, dbbackup_settings.DATE_FORMAT) file_list = [ (get_datetime_from_filename(f), f) for f in self.storage.list_directory() if is_media_backup(f) ] return sorted(file_list, key=lambda v: v[0]) def get_servername(self): return self.servername or dbbackup_settings.SERVER_NAME
{ "repo_name": "typecode/django-dbbackup", "path": "dbbackup/management/commands/mediabackup.py", "copies": "3", "size": "4897", "license": "bsd-3-clause", "hash": -4707936916178057000, "line_mean": 35.552238806, "line_max": 121, "alpha_frac": 0.6128241781, "autogenerated": false, "ratio": 4.004088307440719, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.611691248554072, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import os import tempfile import string import math import re import unicodedata import pdb from collections import Counter from itertools import chain from heapq import heappush, heappop, heapify NORMALIZE_PUNCT_TABLE = str.maketrans( string.punctuation, '.' * len(string.punctuation)) REMOVE_PUNCT_TABLE = str.maketrans( string.punctuation, ' ' * len(string.punctuation)) def to_ascii(s): '''Adapted from sklearn.feature_extraction.text''' nkfd_form = unicodedata.normalize('NFKD', s) only_ascii = nkfd_form.encode('ASCII', 'ignore').decode('ASCII') return only_ascii def strip_tags(s): '''Taken from sklearn.feature_extraction.text''' return re.compile(r'<([^>]+)>', flags=re.UNICODE).sub('', s) class RomanPreprocessor(object): '''Taken from sklearn.feature_extraction.text''' def preprocess(self, unicode_text): '''Preprocess strings''' return to_ascii(strip_tags(unicode_text.lower())) def __repr__(self): return 'RomanPreprocessor()' DEFAULT_PREPROCESSOR = RomanPreprocessor() class TopmineTokenizer(object): def __init__(self, preprocessor=DEFAULT_PREPROCESSOR, threshold=1, min_support=1): self.preprocessor = preprocessor self.counter = None self.threshold = threshold self.min_support = min_support self.vocabulary_map = None self.vocabulary = None self.n_tokens = None def fit(self, corpus): '''Fits the vocabulary and vocabulary_map to a given corpus. Calculates the counter of phrases given the min_support ''' self.vocabulary_map, self.vocabulary, self.n_tokens = ( corpus.vocabulary_map(self.preprocessor)) sentences = self.corpus_to_list(corpus) self.counter = phrase_frequency(sentences, self.min_support) def transform_document(self, document): '''Splits a document into sentences, transform the sentences and return the results in a list ''' return [x for sentence in self.doc_to_list(document) for x in self.transform_sentence(sentence)] def transform_sentence(self, sentence): '''Given a sentence, encoded as a list of integers using the vocabulary_map, return it as a sequence of significant phrases. ''' phrases = [(x,) for x in sentence] phrase_start = [x for x in range(len(phrases))] phrase_end = [x for x in range(len(phrases))] costs = [(self.cost(phrases[i], phrases[i + 1]), i, i + 1, 2) for i in range(len(phrases) - 1)] heapify(costs) while True and len(costs) > 0: # a = phrase a, b = phrase b # i_a = phrase a index, i_b = phrase b index # phrase_start[x] = x means that a phrase starts at that position cost, i_a, i_b, length = heappop(costs) if cost > -self.threshold: break if phrase_start[i_a] != i_a: continue if phrase_start[i_b] != i_b: continue if length != len(phrases[i_a] + phrases[i_b]): continue phrase_start[i_b] = i_a phrase_end[i_a] = phrase_end[i_b] merged_phrase = phrases[i_a] + phrases[i_b] phrases[i_a] = merged_phrase phrases[i_b] = None if i_a > 0: prev_phrase_start = phrase_start[i_a - 1] prev_phrase = phrases[prev_phrase_start] heappush(costs, ( self.cost(prev_phrase, merged_phrase), prev_phrase_start, i_a, len(prev_phrase) + len(merged_phrase))) if phrase_end[i_b] < len(phrases) - 1: next_phrase_start = phrase_end[i_b] + 1 next_phrase = phrases[next_phrase_start] heappush(costs, ( self.cost(merged_phrase, next_phrase), i_a, next_phrase_start, len(merged_phrase) + len(next_phrase))) encoded_phrases = [x for x in phrases if x is not None] return self.decode_phrases(encoded_phrases) def corpus_to_list(self, corpus): '''Transforms a corpus into a list of lists, one list per sentence in the corpus, encoded using the vocabulary_map ''' sentences = [] for document in corpus: for sentence in self.doc_to_list(document): sentences.append(sentence) return sentences def doc_to_list(self, document): '''Splits a document on punctuation and returns a list of indices using the vocabulary_map, one list per sentence ''' document = self.preprocessor.preprocess( document.translate(NORMALIZE_PUNCT_TABLE)) sentences = document.split('.') return [[self.vocabulary_map[x] for x in y.split()] for y in sentences] def decode_phrases(self, encoded_phrases): '''Takes a list of tuples of indices, and translate each tuple to a phrase, using the word given by such index in the vocabulary ''' return [' '.join([self.vocabulary[i] for i in phrase]) for phrase in encoded_phrases] def cost(self, a, b): '''Calculates the cost of merging two phrases. Cost is defined as the negative of significance. This way we can use the python min-heap implementation ''' # flatten the tuples a, b ab = self.counter[tuple([x for x in chain(*(a, b))])] if ab > 0: return (-(ab - (self.counter[a] * self.counter[b]) / self.n_tokens ) / math.sqrt(ab)) else: return math.inf def phrase_frequency(sentences, min_support): '''Calculates counter with frequent phrases Args: sentences (list): each sentence is a list of words ''' indices = [range(len(sentence)) for sentence in sentences] counter = Counter(((x,) for x in chain(*sentences))) n = 1 while len(sentences) > 0: for i, sentence in enumerate_backwards(sentences): indices[i] = [ j for j in indices[i] if counter[tuple(sentence[j: j+n])] >= min_support] if len(indices[i]) == 0: indices.pop(i) sentences.pop(i) continue for j in indices[i]: if j + 1 in indices[i]: counter.update([tuple(sentence[i: i+n+1])]) indices[i].pop() n = n + 1 return counter def enumerate_backwards(array): '''Generate indices and elements of an array from last to first this allows to pop elements and still traverse each index in the list ''' for i, x in zip(range(len(array)-1, -1, -1), reversed(array)): yield i, x
{ "repo_name": "latorrefabian/topmine", "path": "topmine/tokenizer.py", "copies": "1", "size": "7046", "license": "bsd-2-clause", "hash": 1510086413674108200, "line_mean": 35.5077720207, "line_max": 80, "alpha_frac": 0.5797615668, "autogenerated": false, "ratio": 3.996596710153148, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.006517348105650952, "num_lines": 193 }
from __future__ import (absolute_import, division, print_function, unicode_literals) import random import sys import numpy as np class Discrete(object): """ Discrete space from [0, dims-1] """ def __init__(self, dims): self._dims = dims def sample(self): """ Randomly sample from distribution space """ return random.randrange(self.dims) def __eq__(self, other): if isinstance(other, Discrete): return other.dims == self.dims return False def __repr__(self): return "Discrete(%d)" % (self.dims) def __str__(self): return "Discrete space from 0 to %d" % (self.dims - 1) @property def dims(self): return self._dims class Box(object): """ Continuous space for R^n, all from a lower bound to an upper bound if lower or upper is None, there is no bound (we use MAX_INT and MIN_INT to bound it) """ def __init__(self, dims, lower=sys.maxint, upper=(-sys.maxint-1)): self._dims = dims self._lower = lower self._upper = upper def sample(self): """ Return a random sample from the R^n space. """ return np.array([random.randrange(self.lower, self.upper) for _ in range(self.dims)]) def __repr__(self): return "Box(%d, %d, %d)" % (self.dims, self.lower, self.upper) def __str__(self): return "Continuous Space of %d dimensions in [%d, %d]" % (self.dims, self.lower, self.upper) def __eq__(self, other): if isinstance(other, Box): return (other.dims == self.dims) and (other.lower == self.lower) and (other.upper and self.upper) return False @property def dims(self): return self._dims @property def lower(self): return self._lower @property def upper(self): return self._upper
{ "repo_name": "sig-ai/SDM", "path": "sdm/abstract/types.py", "copies": "1", "size": "1936", "license": "mit", "hash": -1538342591894962000, "line_mean": 21.2528735632, "line_max": 109, "alpha_frac": 0.5671487603, "autogenerated": false, "ratio": 3.856573705179283, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4923722465479283, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import six from matplotlib import pyplot as plt import numpy as np from matplotlib.legend_handler import HandlerLineCollection import matplotlib.collections as mcol from matplotlib.lines import Line2D class HandlerDashedLines(HandlerLineCollection): """ Custom Handler for LineCollection instances. """ def create_artists(self, legend, orig_handle, xdescent, ydescent, width, height, fontsize, trans): # figure out how many lines there are numlines = len(orig_handle.get_segments()) xdata, xdata_marker = self.get_xdata(legend, xdescent, ydescent, width, height, fontsize) leglines = [] # divide the vertical space where the lines will go # into equal parts based on the number of lines ydata = ((height) / (numlines + 1)) * np.ones(xdata.shape, float) # for each line, create the line at the proper location # and set the dash pattern for i in range(numlines): legline = Line2D(xdata, ydata * (numlines - i) - ydescent) self.update_prop(legline, orig_handle, legend) # set color, dash pattern, and linewidth to that # of the lines in linecollection try: color = orig_handle.get_colors()[i] except IndexError: color = orig_handle.get_colors()[0] try: dashes = orig_handle.get_dashes()[i] except IndexError: dashes = orig_handle.get_dashes()[0] try: lw = orig_handle.get_linewidths()[i] except IndexError: lw = orig_handle.get_linewidths()[0] if dashes[0] != None: legline.set_dashes(dashes[1]) legline.set_color(color) legline.set_transform(trans) legline.set_linewidth(lw) leglines.append(legline) return leglines x = np.linspace(0, 5, 100) plt.figure() colors = ['red', 'orange', 'yellow', 'green', 'blue'] styles = ['solid', 'dashed', 'dashed', 'dashed', 'solid'] lines = [] for i, color, style in zip(range(5), colors, styles): plt.plot(x, np.sin(x) - .1 * i, c=color, ls=style) # make proxy artists # make list of one line -- doesn't matter what the coordinates are line = [[(0, 0)]] # set up the proxy artist lc = mcol.LineCollection(5 * line, linestyles=styles, colors=colors) # create the legend plt.legend([lc], ['multi-line'], handler_map={type(lc): HandlerDashedLines()}, handlelength=2.5, handleheight=3) plt.show()
{ "repo_name": "bundgus/python-playground", "path": "matplotlib-playground/examples/pylab_examples/legend_demo5.py", "copies": "1", "size": "2723", "license": "mit", "hash": -7500364954340138000, "line_mean": 37.3521126761, "line_max": 78, "alpha_frac": 0.5989717224, "autogenerated": false, "ratio": 3.884450784593438, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9978743013912951, "avg_score": 0.0009358986160974563, "num_lines": 71 }
from __future__ import (absolute_import, division, print_function, unicode_literals) import sys import logging import csv import os import subprocess import multiprocessing import platform import time import shutil import gzip import edlib import pandas as pd from builtins import range from Bio import SeqIO from Bio.SeqIO.QualityIO import FastqGeneralIterator from natsort import natsorted from amptk.__version__ import __version__ try: from urllib.request import urlopen except ImportError: from urllib2 import urlopen parentdir = os.path.join(os.path.dirname(__file__)) ASCII = {'!':'0','"':'1','#':'2','$':'3','%':'4','&':'5', "'":'6','(':'7',')':'8','*':'9','+':'10',',':'11', '-':'12','.':'13','/':'14','0':'15','1':'16','2':'17', '3':'18','4':'19','5':'20','6':'21','7':'22','8':'23', '9':'24',':':'25',';':'26','<':'27','=':'28','>':'29', '?':'30','@':'31','A':'32','B':'33','C':'34','D':'35', 'E':'36','F':'37','G':'38','H':'39','I':'40','J':'41', 'K':'42','L':'43','M':'44','N':'45','O':'46','P':'47', 'Q':'48','R':'49','S':'50'} primer_db = {'fITS7': 'GTGARTCATCGAATCTTTG', 'fITS7-ion': 'AGTGARTCATCGAATCTTTG', 'ITS4': 'TCCTCCGCTTATTGATATGC', 'ITS1-F': 'CTTGGTCATTTAGAGGAAGTAA', 'ITS2': 'GCTGCGTTCTTCATCGATGC', 'ITS3': 'GCATCGATGAAGAACGCAGC', 'ITS4-B': 'CAGGAGACTTGTACACGGTCCAG', 'ITS1': 'TCCGTAGGTGAACCTGCGG', 'LR0R': 'ACCCGCTGAACTTAAGC', 'LR2R': 'AAGAACTTTGAAAAGAG', 'LR3': 'CCGTGTTTCAAGACGGG', 'JH-LS-369rc': 'CTTCCCTTTCAACAATTTCAC', '16S_V3': 'CCTACGGGNGGCWGCAG', '16S_V4': 'GACTACHVGGGTATCTAATCC', 'ITS3_KYO2': 'GATGAAGAACGYAGYRAA', 'COI-F': 'GGTCAACAAATCATAAAGATATTGG', 'COI-R': 'GGWACTAATCAATTTCCAAATCC', '515FB': 'GTGYCAGCMGCCGCGGTAA', '806RB': 'GGACTACNVGGGTWTCTAAT', 'ITS4-B21': 'CAGGAGACTTGTACACGGTCC', 'LCO1490': 'GGTCAACAAATCATAAAGATATTGG', 'mlCOIintR': 'GGRGGRTASACSGTTCASCCSGTSCC'} degenNuc = [("R", "A"), ("R", "G"), ("M", "A"), ("M", "C"), ("W", "A"), ("W", "T"), ("S", "C"), ("S", "G"), ("Y", "C"), ("Y", "T"), ("K", "G"), ("K", "T"), ("V", "A"), ("V", "C"), ("V", "G"), ("H", "A"), ("H", "C"), ("H", "T"), ("D", "A"), ("D", "G"), ("D", "T"), ("B", "C"), ("B", "G"), ("B", "T"), ("N", "G"), ("N", "A"), ("N", "T"), ("N", "C"), ("X", "G"), ("X", "A"), ("X", "T"), ("X", "C")] degenNucSimple = [("R", "A"), ("R", "G"), ("M", "A"), ("M", "C"), ("W", "A"), ("W", "T"), ("S", "C"), ("S", "G"), ("Y", "C"), ("Y", "T"), ("K", "G"), ("K", "T"), ("V", "A"), ("V", "C"), ("V", "G"), ("H", "A"), ("H", "C"), ("H", "T"), ("D", "A"), ("D", "G"), ("D", "T"), ("B", "C"), ("B", "G"), ("B", "T")] class colr(object): GRN = '\033[92m' END = '\033[0m' WARN = '\033[93m' #setup functions def download(url, name): file_name = name u = urlopen(url) f = open(file_name, 'wb') meta = u.info() file_size = 0 for x in meta.items(): if x[0].lower() == 'content-length': file_size = int(x[1]) print("Downloading: {0} Bytes: {1}".format(url, file_size)) file_size_dl = 0 block_sz = 8192 while True: buffer = u.read(block_sz) if not buffer: break file_size_dl += len(buffer) f.write(buffer) p = float(file_size_dl) / file_size status = r"{0} [{1:.2%}]".format(file_size_dl, p) status = status + chr(8)*(len(status)+1) sys.stdout.write(status) f.close() #functions for system checks, etc def git_version(): def _minimal_ext_cmd(cmd): # construct minimal environment out = subprocess.Popen(cmd, stdout = subprocess.PIPE, stderr = open(os.devnull, 'w'), cwd=parentdir).communicate()[0] return out try: out = _minimal_ext_cmd(['git', 'rev-parse', '--short', 'HEAD']) GIT_REVISION = out.strip().decode('ascii') except OSError: GIT_REVISION = False return GIT_REVISION def getSize(filename): st = os.stat(filename) return st.st_size def execute(cmd): DEVNULL = open(os.devnull, 'w') popen = subprocess.Popen(cmd, stdout=subprocess.PIPE, universal_newlines=True, stderr=DEVNULL) for stdout_line in iter(popen.stdout.readline, ""): yield stdout_line popen.stdout.close() return_code = popen.wait() if return_code: raise subprocess.CalledProcessError(return_code, cmd) def minimap_otutable(otus, fastq, output, method='ont', min_mapq=1, cpus=1, min_pident=0.90): # function to map reads with minimap2 and create OTU table # requires barcodelable= or barcode= or sample= in fastq header if method == 'pacbio': cmd = ['minimap2', '-x', 'map-pb', '-c', '-t', str(cpus), '--secondary=no', otus, fastq] else: cmd = ['minimap2', '-x', 'map-ont', '-c', '-t', str(cpus), '--secondary=no', otus, fastq] tmpOut = 'minimap2_{}.paf'.format(os.getpid()) runSubprocess2(cmd, log, tmpOut) Results = {} with open(tmpOut, 'r') as infile: for line in infile: line = line.rstrip() qname, qlen, qstart, qend, strand, tname, tlen, tstart, tend, match, alnlen, mapq = line.split('\t')[:12] theRest = line.split('\t')[12:] pident = 0.0 barcodelabel = None if int(mapq) < min_mapq: continue if ';' not in qname: continue for x in qname.split(';'): if x.startswith('barcodelabel='): barcodelabel = x.replace('barcodelabel=', '') break elif x.startswith('barcode='): barcodelabel = x.replace('barcode=', '') break elif x.startswith('sample='): barcodelabel = x.replace('sample=', '') break if not barcodelabel: continue for y in theRest: if y.startswith('de:f:'): pident = 1 - float(y.replace('de:f:', '')) if pident < min_pident: continue #print(tname, barcodelabel, str(pident)) if barcodelabel not in Results: Results[barcodelabel] = {tname: 1} else: if tname not in Results[barcodelabel]: Results[barcodelabel][tname] = 1 else: Results[barcodelabel][tname] += 1 df = pd.DataFrame(Results) df.index.rename('#OTU ID', inplace=True) df.fillna(0, inplace=True) df = df.astype(int) df.to_csv(output, sep='\t') os.remove(tmpOut) def checkfile(input): if os.path.isfile(input): filesize = getSize(input) if int(filesize) < 1: return False else: return True elif os.path.islink(input): return True else: return False def SafeRemove(input): if os.path.isdir(input): shutil.rmtree(input) elif os.path.isfile(input): os.remove(input) else: return def number_present(s): return any(i.isdigit() for i in s) def get_version(): if git_version(): version = __version__+'-'+git_version else: version = __version__ return version def get_usearch_version(usearch): try: version = subprocess.Popen([usearch, '-version'], stderr=subprocess.PIPE, stdout=subprocess.PIPE).communicate() except OSError: log.error("%s not found in your PATH, exiting." % usearch) sys.exit(1) vers = version[0].decode('utf-8').replace('usearch v', '') vers2 = vers.split('_')[0] return vers2 def get_vsearch_version(): version = subprocess.Popen(['vsearch', '--version'], stderr=subprocess.PIPE, stdout=subprocess.PIPE).communicate() for v in version: v = v.decode('utf-8') if v.startswith('vsearch'): vers = v.replace('vsearch v', '') vers2 = vers.split('_')[0] return vers2 def versiontuple(v): return tuple(map(int, (v.split(".")))) def gvc(input, check): if versiontuple(input) >= versiontuple(check): return True else: return False def versionDependencyChecks(usearch, method='vsearch'): #to run amptk need usearch > 9.0.2132 and vsearch > 2.2.0 usearch_pass = '9.0.2132' vsearch_pass = '2.2.0' amptk_version = get_version() if method == 'usearch': usearch_version = get_usearch_version(usearch) if not gvc(usearch_version, usearch_pass): log.error("USEARCH v%s detected, needs to be atleast v%s" % (usearch_version, usearch_pass)) sys.exit(1) vsearch_version = get_vsearch_version() if not gvc(vsearch_version, vsearch_pass): log.error("VSEARCH v%s detected, needs to be atleast v%s" % (vsearch_version, vsearch_pass)) sys.exit(1) if method == 'usearch': log.info("AMPtk v%s, USEARCH v%s, VSEARCH v%s" % (amptk_version, usearch_version, vsearch_version)) else: log.info("AMPtk v%s, VSEARCH v%s" % (amptk_version, vsearch_version)) def checkusearch10(usearch): #to run amptk need usearch > 10.0.2132 and vsearch > 2.2.0 amptk_version = get_version() usearch_version = get_usearch_version(usearch) vsearch_version = get_vsearch_version() usearch_pass = '10.0.240' vsearch_pass = '2.2.0' if not gvc(usearch_version, usearch_pass): log.error("USEARCH v%s detected, needs to be atleast v%s" % (usearch_version, usearch_pass)) sys.exit(1) if not gvc(vsearch_version, vsearch_pass): log.error("VSEARCH v%s detected, needs to be atleast v%s" % (vsearch_version, vsearch_pass)) sys.exit(1) #log.info("AMPtk v%s, USEARCH v%s, VSEARCH v%s" % (amptk_version, usearch_version, vsearch_version)) def checkRversion(): #need to have R version > 3.2 cmd = ['Rscript', '--vanilla', os.path.join(parentdir, 'check_version.R')] proc = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = proc.communicate() versions = stdout.decode('utf-8').replace(' \n', '') Rvers = versions.split(',')[0] dada2 = versions.split(',')[1] phyloseq = versions.split(',')[2] lulu = versions.split(',')[3] return (Rvers, dada2, phyloseq, lulu) def checkfastqsize(input): filesize = os.path.getsize(input) return filesize def getCPUS(): cores = multiprocessing.cpu_count() return cores def MemoryCheck(): import psutil mem = psutil.virtual_memory() RAM = int(mem.total) return round(RAM / 1024000000) def systemOS(): if sys.platform == 'darwin': system_os = 'MacOSX '+ platform.mac_ver()[0] elif sys.platform == 'linux': linux_version = platform.linux_distribution() system_os = linux_version[0]+ ' '+linux_version[1] else: system_os = sys.platform return system_os def SystemInfo(): system_os = systemOS() python_vers = str(sys.version_info[0])+'.'+str(sys.version_info[1])+'.'+str(sys.version_info[2]) log.info("OS: %s, %i cores, ~ %i GB RAM. Python: %s" % (system_os, multiprocessing.cpu_count(), MemoryCheck(), python_vers)) #print python modules to logfile mod_versions() def mod_versions(): import pkg_resources modules = ['numpy', 'pandas', 'matplotlib', 'psutil', 'natsort', 'biopython', 'edlib', 'biom-format'] results = [] for x in modules: try: vers = pkg_resources.get_distribution(x).version hit = "%s v%s" % (x, vers) except pkg_resources.DistributionNotFound: hit = "%s NOT installed!" % x results.append(hit) if x == 'edlib': if '.post' in vers: vers = vers.split('.post')[0] if not gvc(vers, '1.2.1'): log.error("Edlib v%s detected, at least v1.2.1 required for degenerate nucleotide search, please upgrade. e.g. pip install -U edlib or conda install edlib" % vers) sys.exit(1) log.debug("Python Modules: %s" % ', '.join(results)) class gzopen(object): def __init__(self, fname): f = open(fname) # Read magic number (the first 2 bytes) and rewind. magic_number = f.read(2) f.seek(0) # Encapsulated 'self.f' is a file or a GzipFile. if magic_number == '\x1f\x8b': self.f = gzip.GzipFile(fileobj=f) else: self.f = f # Define '__enter__' and '__exit__' to use in # 'with' blocks. Always close the file and the # GzipFile if applicable. def __enter__(self): return self def __exit__(self, type, value, traceback): try: self.f.fileobj.close() except AttributeError: pass finally: self.f.close() # Reproduce the interface of an open file # by encapsulation. def __getattr__(self, name): return getattr(self.f, name) def __iter__(self): return iter(self.f) def __next__(self): return next(self.f) def Funzip(input, output, cpus): ''' function to unzip as fast as it can, pigz -> bgzip -> gzip ''' if which('pigz'): cmd = ['pigz', '--decompress', '-c', '-p', str(cpus), input] else: cmd = ['gzip', '--decompress', '-c', input] try: runSubprocess2(cmd, log, output) except NameError: with open(output, 'w') as outfile: subprocess.call(cmd, stdout=outfile) def Fzip(input, output, cpus): ''' function to zip as fast as it can, pigz -> bgzip -> gzip ''' if which('pigz'): cmd = ['pigz', '-c', '-p', str(cpus), input] else: cmd = ['gzip', '-c', input] try: runSubprocess2(cmd, log, output) except NameError: with open(output, 'w') as outfile: subprocess.call(cmd, stdout=outfile) def Fzip_inplace(input): ''' function to zip as fast as it can, pigz -> bgzip -> gzip ''' cpus = multiprocessing.cpu_count() if which('pigz'): cmd = ['pigz', '-f', '-p', str(cpus), input] else: cmd = ['gzip', '-f', input] try: runSubprocess(cmd, log) except NameError: subprocess.call(cmd) def fastalen2dict(input): Lengths = {} with open(input, 'r') as infile: for rec in SeqIO.parse(infile, 'fasta'): if not rec.id in Lengths: Lengths[rec.id] = len(rec.seq) return Lengths def myround(x, base=10): return int(base * round(float(x)/base)) def GuessRL(input): #read first 50 records, get length then exit lengths = [] for title, seq, qual in FastqGeneralIterator(gzopen(input)): if len(lengths) < 50: lengths.append(len(seq)) else: break return myround(max(set(lengths))) def countfasta(input): count = 0 with open(input, 'r') as f: for line in f: if line.startswith(">"): count += 1 return count def countfastq(input): lines = sum(1 for line in gzopen(input)) count = int(lines) // 4 return count def line_count(fname): with open(fname) as f: i = -1 for i, l in enumerate(f): pass return i + 1 def softwrap(string, every=80): lines = [] for i in range(0, len(string), every): lines.append(string[i:i+every]) return '\n'.join(lines) def line_count2(fname): count = 0 with open(fname, 'r') as f: for line in f: if not '*' in line: count += 1 return count def getreadlength(input): with gzopen(input) as fp: for i, line in enumerate(fp): if i == 1: read_length = len(line) - 1 #offset to switch to 1 based counts elif i > 2: break return read_length def runSubprocess(cmd, logfile): logfile.debug(' '.join(cmd)) proc = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = proc.communicate() if stdout: logfile.debug(stdout.decode("utf-8")) if stderr: logfile.debug(stderr.decode("utf-8")) def runSubprocess2(cmd, logfile, output): #function where output of cmd is STDOUT, capture STDERR in logfile logfile.debug(' '.join(cmd)) with open(output, 'w') as out: proc = subprocess.Popen(cmd, stdout=out, stderr=subprocess.PIPE) stderr = proc.communicate() if stderr: if stderr[0] != None: logfile.debug(stderr.decode("utf-8")) def runSubprocess3(cmd, logfile, folder, output): #function where output of cmd is STDOUT, capture STDERR in logfile logfile.debug(' '.join(cmd)) with open(output, 'w') as out: proc = subprocess.Popen(cmd, stdout=out, stderr=out, cwd=folder) stderr = proc.communicate() if stderr: if stderr[0] != None: logfile.debug(stderr.decode("utf-8")) def runSubprocess4(cmd, logfile, logfile2): #function where cmd is issued in logfile, and log captured in logfile 2 logfile.debug(' '.join(cmd)) with open(logfile2, 'w') as out: proc = subprocess.Popen(cmd, stdout=out, stderr=out) stderr = proc.communicate() if stderr: if stderr[0] != None: logfile.debug(stderr.decode("utf-8")) def runSubprocess5(cmd): #function where no logfile and stdout/stderr to fnull FNULL = open(os.devnull, 'w') #print(' '.join(cmd)) subprocess.call(cmd, stdout=FNULL, stderr=FNULL) def getSize(filename): st = os.stat(filename) return st.st_size def check_valid_file(input): if os.path.isfile(input): filesize = getSize(input) if int(filesize) < 1: return False else: return True else: return False def bam2fastq(input, output): from . import pybam with open(output, 'w') as fastqout: with open(input, 'r') as bamin: for title, seq, qual in pybam.read(bamin,['sam_qname', 'sam_seq','sam_qual']): fastqout.write("@%s\n%s\n+\n%s\n" % (title, seq, qual)) def scan_linepos(path): """return a list of seek offsets of the beginning of each line""" linepos = [] offset = 0 with gzopen(path) as inf: # WARNING: CPython 2.7 file.tell() is not accurate on file.next() for line in inf: linepos.append(offset) offset += len(line) return linepos def return_lines(path, linepos, nstart, nstop): """return nsamp lines from path where line offsets are in linepos""" offsets = linepos[int(nstart):int(nstop)] lines = [] with gzopen(path) as inf: for offset in offsets: inf.seek(offset) lines.append(inf.readline()) return lines def split_fastq(input, numseqs, outputdir, chunks): #get number of sequences and then number of sequences in each chunk numlines = numseqs*4 n = numlines // chunks #make sure n is divisible by 4 (number of lines in fastq) if ( n % 4 ) != 0: n = ((n // 4) + 1) * 4 splits = [] count = 0 for i in range(chunks): start = count end = count+n if end > numlines: end = numlines splits.append((start, end)) count += n #get line positions from file linepos = scan_linepos(input) #make sure output directory exists if not os.path.isdir(outputdir): os.makedirs(outputdir) #loop through the positions and write output for i, x in enumerate(splits): num = i+1 with open(os.path.join(outputdir, 'chunk_'+str(num)+'.fq'), 'w') as output: lines = return_lines(input, linepos, x[0], x[1]) output.write('%s' % ''.join(lines)) def split_fastqPE(R1, R2, numseqs, outputdir, chunks): #get number of sequences and then number of sequences in each chunk numlines = numseqs*4 n = numlines // chunks #make sure n is divisible by 4 (number of lines in fastq) if ( n % 4 ) != 0: n = ((n // 4) + 1) * 4 splits = [] count = 0 for i in range(chunks): start = count end = count+n if end > numlines: end = numlines splits.append((start, end)) count += n #get line positions from file linepos = scan_linepos(R1) #make sure output directory exists if not os.path.isdir(outputdir): os.makedirs(outputdir) #loop through the positions and write output for i, x in enumerate(splits): num = i+1 with open(os.path.join(outputdir, 'chunk_'+str(num)+'_R1.fq'), 'w') as output1: with open(os.path.join(outputdir, 'chunk_'+str(num)+'_R2.fq'), 'w') as output2: lines1 = return_lines(R1, linepos, x[0], x[1]) output1.write('%s' % ''.join(lines1)) lines2 = return_lines(R2, linepos, x[0], x[1]) output2.write('%s' % ''.join(lines2)) def split_fastqPEandI(R1, R2, I1, numseqs, outputdir, chunks): #get number of sequences and then number of sequences in each chunk numlines = numseqs*4 n = numlines // chunks #make sure n is divisible by 4 (number of lines in fastq) if ( n % 4 ) != 0: n = ((n // 4) + 1) * 4 splits = [] count = 0 for i in range(chunks): start = count end = count+n if end > numlines: end = numlines splits.append((start, end)) count += n #get line positions from file linepos = scan_linepos(R1) linepos2 = scan_linepos(I1) #make sure output directory exists if not os.path.isdir(outputdir): os.makedirs(outputdir) #loop through the positions and write output for i, x in enumerate(splits): num = i+1 with open(os.path.join(outputdir, 'chunk_'+str(num)+'_R1.fq'), 'w') as output1: with open(os.path.join(outputdir, 'chunk_'+str(num)+'_R2.fq'), 'w') as output2: with open(os.path.join(outputdir, 'chunk_'+str(num)+'_R3.fq'), 'w') as output3: lines1 = return_lines(R1, linepos, x[0], x[1]) output1.write('%s' % ''.join(lines1)) lines2 = return_lines(R2, linepos, x[0], x[1]) output2.write('%s' % ''.join(lines2)) lines3 = return_lines(I1, linepos2, x[0], x[1]) output3.write('%s' % ''.join(lines3)) def split_fasta(input, outputdir, chunks): #function to return line positions of fasta files for chunking fastapos = [] position = 0 numseqs = 0 with open(input, 'r') as infile: for line in infile: if line.startswith('>'): numseqs += 1 fastapos.append(position) position += 1 splits = [] n = numseqs // chunks num = 0 lastline = line_count(input) for i in range(chunks): if i == 0: start = 0 num = n lastpos = fastapos[n+1] elif i == chunks-1: #last one start = lastpos lastpos = lastline else: start = lastpos num = num + n try: lastpos = fastapos[num+1] #find the n+1 seq except IndexError: lastpos = fastapos[-1] splits.append((start, lastpos)) #check if output folder exists, if not create it if not os.path.isdir(outputdir): os.makedirs(outputdir) #get line positions from file linepos = scan_linepos(input) #loop through the positions and write output for i, x in enumerate(splits): num = i+1 with open(os.path.join(outputdir, 'chunk_'+str(num)+'.fasta'), 'w') as output: lines = return_lines(input, linepos, x[0], x[1]) output.write('{:}'.format(''.join(lines))) def trim3prime(input, trimlen, output, removelist): with open(output, 'w') as outfile: for title, seq, qual in FastqGeneralIterator(gzopen(input)): if not title.split(' ')[0] in removelist: Seq = seq[:trimlen] Qual = qual[:trimlen] outfile.write("@%s\n%s\n+\n%s\n" % (title, Seq, Qual)) def PEsanitycheck(R1, R2): R1count = line_count(R1) R2count = line_count(R2) if R1count != R2count: return False else: return True def PEandIndexCheck(R1, R2, R3): R1count = countfastq(R1) R2count = countfastq(R2) R3count = countfastq(R3) if R1count == R2count == R3count: return True else: return False def mapIndex(seq, mapDict, bcmismatch): besthit = [] for index_name,index in mapDict.items(): align = edlib.align(index, seq, mode="SHW", k=bcmismatch, additionalEqualities=degenNuc) if align["editDistance"] < 0: continue elif align["editDistance"] == 0: return (index_name, 0) else: if len(besthit) < 3: besthit = [index, index_name, align["editDistance"]] else: if align["editDistance"] < int(besthit[2]): besthit = [index, index_name, align["editDistance"]] if len(besthit) == 3: return (besthit[1], besthit[2]) else: return (None,None) def DemuxIllumina(R1, R2, I1, mapDict, mismatch, fwdprimer, revprimer, primer_mismatch, outR1, outR2): try: from itertools import zip_longest except ImportError: from itertools import izip_longest as zip_longest Total = 0 FPrimer = 0 RPrimer = 0 BCFound = 0 #function to loop through PE reads, renaming according to index file1 = FastqGeneralIterator(gzopen(R1)) file2 = FastqGeneralIterator(gzopen(R2)) file3 = FastqGeneralIterator(gzopen(I1)) counter = 1 with open(outR1, 'w') as outfile1: with open(outR2, 'w') as outfile2: for read1, read2, index in zip(file1, file2, file3): Total += 1 Name,Diffs = mapIndex(index[1], mapDict, mismatch) if Name: BCFound += 1 #strip primers if found R1ForPos = trimForPrimer(fwdprimer, read1[1], primer_mismatch) R1RevPos = trimRevPrimer(revprimer, read1[1], primer_mismatch) R2ForPos = trimForPrimer(revprimer, read2[1], primer_mismatch) R2RevPos = trimRevPrimer(fwdprimer, read2[1], primer_mismatch) if R1ForPos > 0: FPrimer += 1 if R1RevPos > 0: RPrimer += 1 header = 'R_'+str(counter)+';barcodelabel='+Name+';bcseq='+index[1]+';bcdiffs='+str(Diffs)+';' outfile1.write('@%s\n%s\n+\n%s\n' % (header, read1[1][R1ForPos:R1RevPos], read1[2][R1ForPos:R1RevPos])) outfile2.write('@%s\n%s\n+\n%s\n' % (header, read2[1][R2ForPos:R2RevPos], read2[2][R2ForPos:R2RevPos])) counter += 1 return Total, BCFound, FPrimer, RPrimer def stripPrimersPE(R1, R2, RL, samplename, fwdprimer, revprimer, primer_mismatch, require_primer, full_length, outR1, outR2): try: from itertools import zip_longest except ImportError: from itertools import izip_longest as zip_longest #can walk through dataset in pairs file1 = FastqGeneralIterator(gzopen(R1)) file2 = FastqGeneralIterator(gzopen(R2)) counter = 1 Total = 0 multihits = 0 findForPrimer = 0 findRevPrimer = 0 with open(outR1, 'w') as outfile1: with open(outR2, 'w') as outfile2: for read1, read2 in zip(file1, file2): Total += 1 ffp = False frp = False R1Seq = read1[1][:RL] R1Qual = read1[2][:RL] R2Seq = read2[1][:RL] R2Qual = read2[2][:RL] ForTrim, RevTrim = (0,)*2 #look for forward primer in forward read R1foralign = edlib.align(fwdprimer, R1Seq, mode="HW", k=primer_mismatch, additionalEqualities=degenNuc) if R1foralign['editDistance'] < 0: if require_primer == 'on' or full_length: #not found continue else: if len(R1foralign['locations']) > 1: #multiple hits multihits += 1 continue try: ForTrim = R1foralign["locations"][0][1]+1 findForPrimer += 1 ffp = True except IndexError: pass R1revalign = edlib.align(RevComp(revprimer), R1Seq, mode="HW", k=primer_mismatch, additionalEqualities=degenNuc) if R1revalign['editDistance'] < 0: R1RevCut = RL else: R1RevCut = R1revalign["locations"][0][0] findRevPrimer += 1 frp = True #look for reverse primer in reverse read R2foralign = edlib.align(revprimer, R2Seq, mode="HW", k=primer_mismatch, additionalEqualities=degenNuc) if R2foralign['editDistance'] < 0: if require_primer == 'on' or full_length: #not found continue else: if len(R2foralign['locations']) > 1: #multiple hits multihits += 1 continue try: RevTrim = R2foralign["locations"][0][1]+1 if not frp: findRevPrimer += 1 except IndexError: pass R2revalign = edlib.align(RevComp(fwdprimer), R2Seq, mode="HW", k=primer_mismatch, additionalEqualities=degenNuc) if R2revalign['editDistance'] < 0: R2RevCut = RL else: R2RevCut = R2revalign["locations"][0][0] if not ffp: findForPrimer += 1 header = 'R_{:};barcodelabel={:};'.format(counter,samplename) outfile1.write('@%s\n%s\n+\n%s\n' % (header, R1Seq[ForTrim:R1RevCut], R1Qual[ForTrim:R1RevCut])) outfile2.write('@%s\n%s\n+\n%s\n' % (header, R2Seq[RevTrim:R2RevCut], R2Qual[RevTrim:R2RevCut])) counter += 1 return Total, counter-1, multihits, findForPrimer, findRevPrimer def primerFound(primer, seq, mismatch): align = edlib.align(primer, seq, mode="HW", k=mismatch, additionalEqualities=degenNuc) if align['editDistance'] < 0: return False else: return True def illuminaReorient(R1, R2, fwdprimer, revprimer, mismatch, ReadLength, outR1, outR2): ''' function to re-orient reads based on primer sequences only useful if primers in the reads drops reads that don't have matching primers ''' try: from itertools import zip_longest except ImportError: from itertools import izip_longest as zip_longest Total = 0 Correct = 0 Flipped = 0 Dropped = 0 #function to loop through PE reads, renaming according to index file1 = FastqGeneralIterator(gzopen(R1)) file2 = FastqGeneralIterator(gzopen(R2)) with open(outR1, 'w') as outfile1: with open(outR2, 'w') as outfile2: for read1, read2 in zip(file1, file2): Total += 1 if primerFound(fwdprimer, read1[1], mismatch) and primerFound(revprimer, read2[1], mismatch): Correct += 1 outfile1.write('@%s\n%s\n+\n%s\n' % (read1[0], read1[1][:ReadLength], read1[2][:ReadLength])) outfile2.write('@%s\n%s\n+\n%s\n' % (read2[0], read2[1][:ReadLength], read2[2][:ReadLength])) elif primerFound(fwdprimer, read2[1], mismatch) and primerFound(revprimer, read1[1], mismatch): Flipped += 1 outfile1.write('@%s\n%s\n+\n%s\n' % (read2[0], read2[1][:ReadLength], read2[2][:ReadLength])) outfile2.write('@%s\n%s\n+\n%s\n' % (read1[0], read1[1][:ReadLength], read1[2][:ReadLength])) else: Dropped += 1 return Total, Correct, Flipped, Dropped def demuxIlluminaPE(R1, R2, fwdprimer, revprimer, samples, forbarcodes, revbarcodes, barcode_mismatch, primer_mismatch, outR1, outR2, stats): try: from itertools import zip_longest except ImportError: from itertools import izip_longest as zip_longest #function to loop through PE reads, renaming according to index file1 = FastqGeneralIterator(gzopen(R1)) file2 = FastqGeneralIterator(gzopen(R2)) counter = 1 Total = 0 NoBarcode = 0 NoRevBarcode = 0 NoPrimer = 0 NoRevPrimer = 0 ValidSeqs = 0 with open(outR1, 'w') as outfile1: with open(outR2, 'w') as outfile2: for read1, read2 in zip(file1, file2): Total += 1 #look for valid barcode in forward read if len(forbarcodes) > 0: BC, BCLabel = AlignBarcode(read1[1], forbarcodes, barcode_mismatch) if BC == '': NoBarcode += 1 continue if len(samples) > 0: #sample dictionary so enforce primers and barcodes from here FwdPrimer = samples[BCLabel]['ForPrimer'] RevPrimer = samples[BCLabel]['RevPrimer'] foralign = edlib.align(FwdPrimer, read1[1], mode="HW", k=primer_mismatch, additionalEqualities=degenNuc) if foralign['editDistance'] < 0: #not found NoPrimer += 1 continue stringent = {} stringent[BCLabel] = samples[BCLabel]['RevBarcode'] revBC, revBCLabel = AlignBarcode(read2[1], stringent, barcode_mismatch) if revBC == '': NoRevBarcode += 1 continue #look for reverse primer in reverse read revalign = edlib.align(RevPrimer, read2[1], mode="HW", k=primer_mismatch, additionalEqualities=degenNuc) if revalign['editDistance'] < 0: #not found NoRevPrimer += 1 continue else: #look for forward primer foralign = edlib.align(fwdprimer, read1[1], mode="HW", k=primer_mismatch, additionalEqualities=degenNuc) if foralign['editDistance'] < 0: #not found NoPrimer += 1 continue if len(revbarcodes) > 0: #look for valid revbarcodes if len(revbarcodes) > 0: revBC, revBCLabel = AlignBarcode(read2[1], revbarcodes, barcode_mismatch) if revBC == '': NoRevBarcode += 1 continue #look for reverse primer in reverse read revalign = edlib.align(revprimer, read2[1], mode="HW", k=primer_mismatch, additionalEqualities=degenNuc) if revalign['editDistance'] < 0: #not found NoRevPrimer += 1 continue #if get here, then all is well, construct new header and trim reads if BCLabel == revBCLabel: label = BCLabel else: label = BCLabel+':-:'+revBCLabel ForTrim = foralign["locations"][0][1]+1 RevTrim = revalign["locations"][0][1]+1 header = 'R_{:};barcodelabel={:};'.format(counter,label) outfile1.write('@%s\n%s\n+\n%s\n' % (header, read1[1][ForTrim:], read1[2][ForTrim:])) outfile2.write('@%s\n%s\n+\n%s\n' % (header, read2[1][RevTrim:], read2[2][RevTrim:])) counter += 1 ValidSeqs += 1 with open(stats, 'w') as statsout: statsout.write('%i,%i,%i,%i,%i,%i\n' % (Total, NoBarcode, NoPrimer, NoRevBarcode, NoRevPrimer, ValidSeqs)) def demuxIlluminaPE2(R1, R2, fwdprimer, revprimer, samples, forbarcodes, revbarcodes, barcode_mismatch, primer_mismatch, outR1, outR2, stats): try: from itertools import zip_longest except ImportError: from itertools import izip_longest as zip_longest #function to loop through PE reads, renaming according to index file1 = FastqGeneralIterator(gzopen(R1)) file2 = FastqGeneralIterator(gzopen(R2)) counter = 1 Total = 0 NoBarcode = 0 NoRevBarcode = 0 NoPrimer = 0 NoRevPrimer = 0 ValidSeqs = 0 with open(outR1, 'w') as outfile1: with open(outR2, 'w') as outfile2: for read1, read2 in zip(file1, file2): Total += 1 #look for forward primer first, should all have primer and in correct orientation R1ForTrim = trimForPrimer(fwdprimer, read1[1], primer_mismatch) if R1ForTrim == 0: #no primer found continue if len(forbarcodes) > 0: #search for barcode match in seq upstream of primer R1BCtrim = R1ForTrim - len(fwdprimer) BC, BCLabel = AlignBarcode2(read1[1][:R1BCtrim], forbarcodes, barcode_mismatch) if BC == '': NoBarcode += 1 continue if len(samples) > 0: #sample dictionary so enforce primers and barcodes from here FwdPrimer = samples[BCLabel]['ForPrimer'] RevPrimer = samples[BCLabel]['RevPrimer'] stringent = {} stringent[BCLabel] = samples[BCLabel]['RevBarcode'] #find rev primer in reverse read R2ForTrim = trimForPrimer(RevPrimer, read2[1], primer_mismatch) if R2ForTrim == 0: continue #look for reverse barcode R2BCTrim = R2ForTrim - len(RevPrimer) revBC, revBCLabel = AlignBarcode2(read2[1][:R2BCTrim], stringent, barcode_mismatch) if revBC == '': NoRevBarcode += 1 continue #okay, found both primers and barcodes, now 1 more cleanup step trip revcomped primers R1RevTrim = trimRevPrimer(RevPrimer, read1[1], primer_mismatch) R2RevTrim = trimRevPrimer(FwdPrimer, read2[1], primer_mismatch) else: #no samples dictionary, so allow all combinations of matches R2ForTrim = trimForPrimer(revprimer, read2[1], primer_mismatch) if R2ForTrim == 0: continue if len(revbarcodes) > 0: #look for reverse barcode R2BCTrim = R2ForTrim - len(revprimer) revBC, revBCLabel = AlignBarcode2(read2[1][:R2BCTrim], revbarcodes, barcode_mismatch) if revBC == '': NoRevBarcode += 1 continue #okay, found both primers and barcodes, now 1 more cleanup step trip revcomped primers R1RevTrim = trimRevPrimer(revprimer, read1[1], primer_mismatch) R2RevTrim = trimRevPrimer(fwdprimer, read2[1], primer_mismatch) #if get here, then all is well, construct new header and trim reads if BCLabel == revBCLabel: label = BCLabel else: label = BCLabel+':-:'+revBCLabel header = 'R_{:};barcodelabel={:};'.format(counter,label) outfile1.write('@%s\n%s\n+\n%s\n' % (header, read1[1][R1ForTrim:R1RevTrim], read1[2][R1ForTrim:R1RevTrim])) outfile2.write('@%s\n%s\n+\n%s\n' % (header, read2[1][R2ForTrim:R2RevTrim], read2[2][R2ForTrim:R2RevTrim])) counter += 1 ValidSeqs += 1 with open(stats, 'w') as statsout: statsout.write('%i,%i,%i,%i,%i,%i\n' % (Total, NoBarcode, NoPrimer, NoRevBarcode, NoRevPrimer, ValidSeqs)) def trimForPrimer(primer, seq, primer_mismatch): foralign = edlib.align(primer, seq, mode="HW", k=primer_mismatch, additionalEqualities=degenNuc) if foralign['editDistance'] < 0: return 0 else: CutPos = foralign["locations"][0][1]+1 return CutPos def trimRevPrimer(primer, seq, primer_mismatch): revprimer = RevComp(primer) revalign = edlib.align(revprimer, seq, mode="HW", k=primer_mismatch, task="locations", additionalEqualities=degenNuc) if revalign['editDistance'] < 0: return len(seq) else: CutPos = revalign["locations"][0][0] return CutPos def losslessTrim(input, fwdprimer, revprimer, mismatch, trimLen, padding, minlength, output): ''' function to trim primers if found from SE reads and then trim/pad to a set length ''' with open(output, 'w') as outfile: for title, seq, qual in FastqGeneralIterator(gzopen(input)): #sometimes primers sneek through the PE merging pipeline, check quickly again trim if found ForTrim = trimForPrimer(fwdprimer, seq, mismatch) RevTrim = trimRevPrimer(revprimer, seq, mismatch) Seq = seq[ForTrim:RevTrim] Qual = qual[ForTrim:RevTrim] if len(Seq) < int(minlength): #need this check here or primer dimers will get through continue if len(Seq) < int(trimLen) and padding == 'on': pad = int(trimLen) - len(Seq) SeqF = Seq + pad*'N' QualF = Qual + pad*'I' else: SeqF = Seq[:trimLen] QualF = Qual[:trimLen] outfile.write('@%s\n%s\n+\n%s\n' % (title, SeqF, QualF)) def checkBCinHeader(input): #read first header for title, seq, qual in FastqGeneralIterator(open(input)): header = title.split(' ') info = header[-1] if info.split(':')[-1].isdigit(): return False else: return True break def illuminaBCmismatch(R1, R2, index): remove = [] for file in [R1,R2]: for title, seq, qual in FastqGeneralIterator(open(file)): ID = title.split(' ')[0] BC = title.split(':')[-1] if BC != index: remove.append(ID) remove = set(remove) return remove def fasta2barcodes(input, revcomp): BC = {} with open(input, 'r') as infile: for rec in SeqIO.parse(infile, 'fasta'): if not rec.id in BC: if revcomp: Seq = RevComp(str(rec.seq)) else: Seq = str(rec.seq) BC[rec.id] = Seq return BC def AlignBarcode(Seq, BarcodeDict, mismatch): besthit = [] for BL in list(BarcodeDict.keys()): B = BarcodeDict[BL] #apparently people use N's in barcode sequences, this doesn't work well with #edlib, so if N then trim and then align, need to trim the seq as well if B.startswith('N'): origLen = len(B) B = B.lstrip('N') newLen = len(B) lenDiff = origLen - newLen newSeq = Seq[lenDiff:] else: newSeq = Seq align = edlib.align(B, newSeq, mode="SHW", k=mismatch, additionalEqualities=degenNuc) if align["editDistance"] < 0: continue elif align["editDistance"] == 0: return B, BL elif align["editDistance"] > 0 and mismatch == 0: continue else: if len(besthit) < 3: besthit = [B, BL, align["editDistance"]] else: if align["editDistance"] < int(besthit[2]): besthit = [B, BL, align["editDistance"]] if len(besthit) == 3: return besthit[0], besthit[1] else: return "", "" def AlignRevBarcode(Seq, BarcodeDict, mismatch): besthit = [] for BL in list(BarcodeDict.keys()): B = BarcodeDict[BL] if B.endswith('N'): B = B.rstrip('N') align = edlib.align(B, Seq, mode="HW", k=mismatch, additionalEqualities=degenNuc) if align["editDistance"] < 0: continue elif align["editDistance"] == 0: return B, BL elif align["editDistance"] > 0 and mismatch == 0: continue else: if len(besthit) < 3: besthit = [B, BL, align["editDistance"]] else: if align["editDistance"] < int(besthit[2]): besthit = [B, BL, align["editDistance"]] if len(besthit) == 3: return besthit[0], besthit[1] else: return "", "" def AlignBarcode2(Seq, BarcodeDict, mismatch): besthit = [] for BL in list(BarcodeDict.keys()): B = BarcodeDict[BL] #apparently people use N's in barcode sequences, this doesn't work well with #edlib, so if N then trim and then align, need to trim the seq as well if B.startswith('N'): origLen = len(B) B = B.lstrip('N') newLen = len(B) lenDiff = origLen - newLen newSeq = Seq[lenDiff:] else: newSeq = Seq align = edlib.align(B, newSeq, mode="HW", k=int(mismatch), additionalEqualities=degenNuc) if align["editDistance"] < 0: continue elif align["editDistance"] == 0: return B, BL elif align["editDistance"] > 0 and mismatch == 0: continue else: if len(besthit) < 3: besthit = [B, BL, align["editDistance"]] else: if align["editDistance"] < int(besthit[2]): besthit = [B, BL, align["editDistance"]] if len(besthit) == 3: return besthit[0], besthit[1] else: return "", "" def findFwdPrimer(primer, sequence, mismatch, equalities): #trim position TrimPos = None #search for match align = edlib.align(primer, sequence, mode="HW", k=int(mismatch), additionalEqualities=equalities) if align["editDistance"] >= 0: #we found a hit TrimPos = align["locations"][0][1]+1 #return position will be None if not found return TrimPos def findRevPrimer(primer, sequence, mismatch, equalities): #trim position TrimPos = None #search for match align = edlib.align(primer, sequence, mode="HW", task="locations", k=int(mismatch), additionalEqualities=equalities) if align["editDistance"] >= 0: #we found a hit TrimPos = align["locations"][0][0] #return position will be None if not found return TrimPos def MergeReadsSimple(R1, R2, tmpdir, outname, minlen, usearch, rescue, method='vsearch'): #check that num sequences is identical if not PEsanitycheck(R1, R2): log.error("%s and %s are not properly paired, exiting" % (R1, R2)) sys.exit(1) #next run USEARCH/vsearch mergepe merge_out = os.path.join(tmpdir, outname + '.merged.fq') skip_for = os.path.join(tmpdir, outname + '.notmerged.R1.fq') report = os.path.join(tmpdir, outname +'.merge_report.txt') log.debug("Now merging PE reads") if method == 'usearch': cmd = [usearch, '-fastq_mergepairs', R1, '-reverse', R2, '-fastqout', merge_out, '-fastq_trunctail', '5', '-fastqout_notmerged_fwd', skip_for, '-minhsp', '12', '-fastq_maxdiffs', '8', '-report', report, '-fastq_minmergelen', str(minlen), '-threads', '1'] elif method == 'vsearch': log.debug('Merging PE reads using vsearch --fastq_mergepairs: {} {}'.format(os.path.basename(R1), os.path.basename(R2))) cmd = ['vsearch', '--fastq_mergepairs', R1, '--reverse', R2, '--fastqout', merge_out, '--fastqout_notmerged_fwd', skip_for, '--fastq_minmergelen', str(minlen), '--fastq_allowmergestagger', '--threads', '1'] runSubprocess(cmd, log) #now concatenate files for downstream pre-process_illumina.py script final_out = os.path.join(tmpdir, outname) tmp_merge = os.path.join(tmpdir, outname+'.tmp') with open(tmp_merge, 'w') as cat_file: shutil.copyfileobj(open(merge_out,'r'), cat_file) if rescue == 'on': shutil.copyfileobj(open(skip_for,'r'), cat_file) phixsize = getSize(tmp_merge) phixcount = countfastq(tmp_merge) if method == 'usearch': #run phix removal #since most users have 32 bit usearch, check size of file, if > 3 GB, split into parts log.debug("Removing phix from %s" % outname) log.debug('File Size: %i bytes' % phixsize) if phixsize > 3e9: log.debug('FASTQ > 3 GB, splitting FASTQ file into chunks to avoid potential memory problems with 32 bit usearch') phixdir = os.path.join(tmpdir, 'phix_'+str(os.getpid())) os.makedirs(phixdir) num = round(int((phixsize / 3e9))) + 1 split_fastq(tmp_merge, phixcount, phixdir, int(num)) for file in os.listdir(phixdir): if file.endswith(".fq"): output = os.path.join(phixdir, file+'.phix') file = os.path.join(phixdir, file) cmd = [usearch, '-filter_phix', file, '-output', output, '-threads', '1'] runSubprocess(cmd, log) with open(final_out, 'w') as finalout: for file in os.listdir(phixdir): if file.endswith('.phix'): with open(os.path.join(phixdir, file), 'r') as infile: shutil.copyfileobj(infile, finalout) shutil.rmtree(phixdir) else: cmd = [usearch, '-filter_phix', tmp_merge, '-output', final_out, '-threads', '1'] runSubprocess(cmd, log) else: os.rename(tmp_merge, final_out) #count output finalcount = countfastq(final_out) SafeRemove(merge_out) SafeRemove(skip_for) SafeRemove(tmp_merge) return phixcount, finalcount def MergeReads(R1, R2, tmpdir, outname, read_length, minlen, usearch, rescue, method, index, mismatch): removelist = [] if mismatch == 0 and index != '': if checkBCinHeader(R1): log.debug("Searching for index mismatches > 0: %s" % index) removelist = illuminaBCmismatch(R1, R2, index) log.debug("Removing %i reads with index mismatch > 0" % len(removelist)) pretrim_R1 = os.path.join(tmpdir, outname + '.pretrim_R1.fq') pretrim_R2 = os.path.join(tmpdir, outname + '.pretrim_R2.fq') log.debug("Removing index 3prime bp 'A' from reads") trim3prime(R1, read_length, pretrim_R1, removelist) trim3prime(R2, read_length, pretrim_R2, removelist) #check that num sequences is identical if not PEsanitycheck(pretrim_R1, pretrim_R2): log.error("%s and %s are not properly paired, exiting" % (R1, R2)) sys.exit(1) #next run USEARCH/vsearch mergepe merge_out = os.path.join(tmpdir, outname + '.merged.fq') skip_for = os.path.join(tmpdir, outname + '.notmerged.R1.fq') report = os.path.join(tmpdir, outname +'.merge_report.txt') log.debug("Now merging PE reads") if method == 'usearch': cmd = [usearch, '-fastq_mergepairs', pretrim_R1, '-reverse', pretrim_R2, '-fastqout', merge_out, '-fastq_trunctail', '5', '-fastqout_notmerged_fwd', skip_for,'-minhsp', '12','-fastq_maxdiffs', '8', '-report', report, '-fastq_minmergelen', str(minlen)] else: cmd = ['vsearch', '--fastq_mergepairs', pretrim_R1, '--reverse', pretrim_R2, '--fastqout', merge_out, '--fastqout_notmerged_fwd', skip_for, '--fastq_minmergelen', str(minlen), '--fastq_allowmergestagger'] runSubprocess(cmd, log) #now concatenate files for downstream pre-process_illumina.py script final_out = os.path.join(tmpdir, outname) tmp_merge = os.path.join(tmpdir, outname+'.tmp') with open(tmp_merge, 'w') as cat_file: shutil.copyfileobj(open(merge_out,'r'), cat_file) if rescue == 'on': shutil.copyfileobj(open(skip_for,'r'), cat_file) #run phix removal #since most users have 32 bit usearch, check size of file, if > 3 GB, split into parts log.debug("Removing phix from %s" % outname) phixsize = getSize(tmp_merge) phixcount = countfastq(tmp_merge) log.debug('File Size: %i bytes' % phixsize) if phixsize > 3e9: log.debug('FASTQ > 3 GB, splitting FASTQ file into chunks to avoid potential memory problems with 32 bit usearch') phixdir = os.path.join(tmpdir, 'phix_'+str(os.getpid())) os.makedirs(phixdir) num = round(int((phixsize / 3e9))) + 1 split_fastq(tmp_merge, phixcount, phixdir, int(num)) for file in os.listdir(phixdir): if file.endswith(".fq"): output = os.path.join(phixdir, file+'.phix') file = os.path.join(phixdir, file) cmd = [usearch, '-filter_phix', file, '-output', output] runSubprocess(cmd, log) with open(final_out, 'wb') as finalout: for file in os.listdir(phixdir): if file.endswith('.phix'): with open(os.path.join(phixdir, file), 'r') as infile: shutil.copyfileobj(infile, finalout) shutil.rmtree(phixdir) else: cmd = [usearch, '-filter_phix', tmp_merge, '-output', final_out] runSubprocess(cmd, log) #count output origcount = countfastq(R1) finalcount = countfastq(final_out) log.debug("Removed %i reads that were phiX" % (origcount - finalcount - len(removelist))) pct_out = finalcount / float(origcount) #clean and close up intermediate files os.remove(merge_out) os.remove(pretrim_R1) os.remove(pretrim_R2) os.remove(skip_for) os.remove(tmp_merge) return log.info('{0:,}'.format(finalcount) + ' reads passed ('+'{0:.1%}'.format(pct_out)+')') def validateorientation(tmp, reads, otus, output): orientcounts = os.path.join(tmp, 'orient.uc') cmd = ['vsearch', '--usearch_global', reads, '--db', otus, '--sizein', '--id', '0.97', '--strand', 'plus', '--uc', orientcounts] runSubprocess(cmd, log) OTUCounts = {} with open(orientcounts, 'r') as countdata: for line in countdata: line = line.rstrip() cols = line.split('\t') ID = cols[9] if ID == '*': continue size = cols[8].split('size=')[-1].replace(';', '') if not ID in OTUCounts: OTUCounts[ID] = int(size) else: OTUCounts[ID] += int(size) orientmap = os.path.join(tmp, 'orient-map.txt') cmd = ['vsearch', '--usearch_global', otus, '--db', otus, '--self', '--id', '0.95', '--strand', 'both', '--userout', orientmap, '--userfields', 'query+target+qstrand+id'] runSubprocess(cmd, log) orient_remove = [] keeper = [] with open(orientmap, 'r') as selfmap: for line in selfmap: line = line.rstrip() cols = line.split('\t') if cols[2] == '-': qCount = OTUCounts.get(cols[0]) tCount = OTUCounts.get(cols[1]) if qCount > tCount: if not cols[1] in orient_remove and not cols[1] in keeper: orient_remove.append(cols[1]) if not cols[0] in keeper: keeper.append(cols[0]) else: if not cols[0] in orient_remove and not cols[0]: orient_remove.append(cols[0]) if not cols[1] in keeper: keeper.append(cols[1]) log.debug('Dropping {:,} OTUs: {:}'.format(len(orient_remove), ', '.join(orient_remove))) count = 0 with open(output, 'w') as outfile: with open(otus, 'r') as infile: for rec in SeqIO.parse(infile, 'fasta'): if not rec.id in orient_remove: count += 1 SeqIO.write(rec, outfile, 'fasta') return count, len(orient_remove) def validateorientationDADA2(OTUCounts, otus, output): orientmap = 'orient-map.txt' cmd = ['vsearch', '--usearch_global', otus, '--db', otus, '--self', '--id', '0.95', '--strand', 'both', '--userout', orientmap, '--userfields', 'query+target+qstrand+id'] runSubprocess(cmd, log) orient_remove = [] keeper = [] with open(orientmap, 'r') as selfmap: for line in selfmap: line = line.rstrip() cols = line.split('\t') if cols[2] == '-': qCount = OTUCounts.get(cols[0]) tCount = OTUCounts.get(cols[1]) if qCount > tCount: if not cols[1] in orient_remove and not cols[1] in keeper: orient_remove.append(cols[1]) if not cols[0] in keeper: keeper.append(cols[0]) else: if not cols[0] in orient_remove and not cols[0]: orient_remove.append(cols[0]) if not cols[1] in keeper: keeper.append(cols[1]) log.debug('Dropping {:,} OTUs: {:}'.format(len(orient_remove), ', '.join(natsorted(orient_remove)))) count = 0 with open(output, 'w') as outfile: with open(otus, 'r') as infile: for rec in SeqIO.parse(infile, 'fasta'): if not rec.id in orient_remove: count += 1 SeqIO.write(rec, outfile, 'fasta') SafeRemove(orientmap) return count, len(orient_remove) def dictFlip(input): #flip the list of dictionaries outDict = {} for k,v in input.items(): for i in v: if not i in outDict: outDict[i] = k else: print("duplicate ID found: %s" % i) return outDict def classifier2dict(input, pcutoff): ClassyDict = {} with open(input, 'r') as infile: for line in infile: cols = line.split('\t') ID = cols[0] tax = cols[1].split(',') passtax = [] scores = [] hit = False for i,level in enumerate(tax): if '(' in level: score = level.split('(')[-1].replace(')', '') if float(score) >= float(pcutoff): hit = True passtax.append(level.split('(')[0]) scores.append(score) if hit: if not ID in ClassyDict: ClassyDict[ID] = (scores[-1], passtax) return ClassyDict def usearchglobal2dict(input): GlobalDict = {} with open(input, 'r') as infile: for line in infile: line = line.rstrip() cols = line.split('\t') ID = cols[0] if cols[1] != '*': tax = cols[1].split('tax=')[-1] tax = tax.split(',') pident = float(cols[-1]) / 100 besthit = cols[1].split(';tax=')[0] else: tax = ['No hit'] besthit = 'None' pident = 0.0000 pident = "{0:.4f}".format(pident) #since we can have multiple hits with same pident, need to get best taxonomy if not ID in GlobalDict: GlobalDict[ID] = [(pident, besthit, '', tax,)] else: GlobalDict[ID].append((pident, besthit, '', tax)) Results = {} for k,v in natsorted(GlobalDict.items()): mostTax = [] lcaTax = [] mt = 0 for hit in v: if len(hit[-1]) > mt: mt = len(hit[-1]) #loop through getting the ones with most tax info for x in v: if len(x[-1]) == mt: mostTax.append(x) lcaTax.append(x[-1]) #now if mostTax has more than 1 hit, need to do LCA if len(mostTax) <= 1: Results[k] = mostTax[0] else: lcaResult = lcaTax[0] lcaFinal = [] for x in lcaTax[1:]: s = set(x) lcaFinal = [z for z in lcaResult if z in s] lcaResult = lcaFinal if len(lcaResult) < mt: Results[k] = (mostTax[0][0], mostTax[0][1], 'LCA', lcaResult) else: Results[k] = (mostTax[0][0], mostTax[0][1], '',lcaResult) return Results def bestclassifier(utax, sintax, otus): #both are dictionaries from classifier2dict, otus is a list of OTUs in order BestClassify = {} for otu in otus: sintaxhit, utaxhit, hit = (None,)*3 if otu in sintax: sintaxhit = sintax.get(otu) #this should be okay... if otu in utax: utaxhit = utax.get(otu) #returns tuple of (score, [taxlist] if sintaxhit and utaxhit: if len(utaxhit[1]) > len(sintaxhit[1]): hit = (utaxhit[0], 'U', utaxhit[1]) elif len(utaxhit[1]) == len(sintaxhit[1]): if float(utaxhit[0]) >= float(sintaxhit[0]): hit = (utaxhit[0], 'U', utaxhit[1]) else: hit = (sintaxhit[0], 'S', sintaxhit[1]) else: hit = (sintaxhit[0], 'S', sintaxhit[1]) elif not sintaxhit and utaxhit: hit = (utaxhit[0], 'U', utaxhit[1]) elif sintaxhit and not utaxhit: hit = (sintaxhit[0], 'S', sintaxhit[1]) BestClassify[otu] = hit return BestClassify def bestTaxonomy(usearch, classifier): Taxonomy = {} for k,v in natsorted(list(usearch.items())): globalTax = v[-1] #this should be a list try: classiTax = classifier.get(k)[-1] #also should be list except TypeError: classiTax = None pident = float(v[0]) besthitID = v[1] LCA = v[2] discrep = 'S' if pident < 0.9700 and classiTax: #if global alignment hit is less than 97%, then default to classifier result method = classifier.get(k)[1].split()[0] #get first letter, either U or S score = float(classifier.get(k)[0]) tax = ','.join(classiTax) fulltax = method+discrep+"|{0:.4f}".format(score)+'|'+besthitID+';'+tax else: #should default to global alignment with option to update taxonomy from classifier if more information method = 'G' score = pident * 100 if classiTax and len(globalTax) < len(classiTax): #iterate through and make sure all levels match else stop where no longer matches tax = ','.join(classiTax) for lvl in globalTax: if not lvl in classiTax: #now we have a problem error = globalTax.index(lvl) #move one position backwards and keep only that level of taxonomy discrep = 'D' tax = ','.join(globalTax[:error]) break else: tax = ','.join(globalTax) if discrep == 'S' and LCA == '': fulltax = method+discrep+"|{0:.1f}".format(score)+'|'+besthitID+';'+tax else: fulltax = method+discrep+"L|{0:.1f}".format(score)+'|'+besthitID+';'+tax Taxonomy[k] = fulltax return Taxonomy def utax2qiime(input, output): domain = False with open(output, 'w') as outfile: outfile.write('#OTUID\ttaxonomy\n') with open(input, 'r') as infile: for line in infile: if line.startswith('#'): continue line = line.replace('\n', '') OTU = line.split('\t')[0] tax = line.split('\t')[1] try: levels = tax.split(';')[1] except IndexError: levels = '*' levels = levels.replace(',', ';') if levels.startswith('d:'): domain = True changes = ['d','p','c','o','f','g','s'] else: changes = ['k','p','c','o','f','g','s'] for i in changes: levels = levels.replace(i+':', i+'__') try: levList = levels.split(';') except IndexError: levList = [levels] #now loop through and add empty levels if not domain: if not levList[0].startswith('k__'): levList = ['k__', 'p__', 'c__', 'o__', 'f__', 'g__', 's__'] if len(levList) < 2 and levList[0].startswith('k__'): levList.extend(['p__', 'c__', 'o__', 'f__', 'g__', 's__']) if len(levList) > 2 and not levList[2].startswith('c__'): levList.insert(2,'c__') if len(levList) > 3 and not levList[3].startswith('o__'): levList.insert(3,'o__') if len(levList) > 4 and not levList[4].startswith('f__'): levList.insert(4,'f__') if len(levList) > 5 and not levList[5].startswith('g__'): levList.insert(5,'g__') if len(levList) > 6 and not levList[6].startswith('s__'): levList.insert(6,'s__') else: if not levList[0].startswith('d__'): levList = ['d__','p__', 'c__', 'o__', 'f__', 'g__', 's__'] if len(levList) < 2 and levList[0].startswith('d__'): levList.extend(['p__', 'c__', 'o__', 'f__', 'g__', 's__']) if len(levList) > 2 and not levList[2].startswith('c__'): levList.insert(2,'c__') if len(levList) > 3 and not levList[3].startswith('o__'): levList.insert(3,'o__') if len(levList) > 4 and not levList[4].startswith('f__'): levList.insert(4,'f__') if len(levList) > 5 and not levList[5].startswith('g__'): levList.insert(5,'g__') if len(levList) > 6 and not levList[6].startswith('s__'): levList.insert(6,'s__') outfile.write('%s\t%s\n' % (OTU, ';'.join(levList))) def barcodes2dict(input, mapDict, bcmismatch): #here expecting the index reads from illumina, create dictionary for naming? Results = {} NoMatch = [] for title, seq, qual in FastqGeneralIterator(gzopen(input)): hit = [None, None, None] titlesplit = title.split(' ') readID = titlesplit[0] orient = titlesplit[1] if orient.startswith('2:'): seq = RevComp(seq) if seq in mapDict: BC = mapDict.get(seq) hit = [BC,seq, 0] else: for k,v in list(mapDict.items()): alignment = edlib.align(k, seq, mode="NW", k=bcmismatch) if alignment["editDistance"] < 0: continue if hit[0]: oldhit = hit[2] if alignment["editDistance"] < oldhit: hit = [v, k, alignment["editDistance"]] else: hit = [v, k, alignment["editDistance"]] if not hit[0]: #no match, discard read NoMatch.append(readID) continue if not readID in Results: Results[readID] = (hit[0], hit[1], hit[2]) return Results, NoMatch def RevComp(s): rev_comp_lib = {'A':'T','C':'G','G':'C','T':'A','U':'A','M':'K','R':'Y','W':'W','S':'S','Y':'R','K':'M','V':'B','H':'D','D':'H','B':'V','X':'X','N':'N'} cseq = '' n = len(s) for i in range(0,n): c = s[n-i-1] cseq += rev_comp_lib[c.upper()] return cseq def mapping2dict(input): #parse a qiime mapping file pull out seqs and ID into dictionary MapDict = {} IDs = [] with open(input, 'r') as inputfile: for line in inputfile: if line.startswith('#'): continue cols = line.split('\t') ID = cols[0] Seq = cols[1] if not Seq in MapDict: MapDict[Seq] = ID else: log.error("duplicate BC seq found %s: %s" % (Seq, ID)) if not ID in IDs: IDs.append(ID) else: log.error("duplicate ID in mapping file: %s, exiting" (ID)) sys.exit(1) return MapDict def runMultiProgress(function, inputList, cpus, args=False): #setup pool p = multiprocessing.Pool(cpus) #setup results and split over cpus tasks = len(inputList) results = [] for i in inputList: results.append(p.apply_async(function, args=([i]), kwds={'args':args})) #refresh pbar every 5 seconds while True: incomplete_count = sum(1 for x in results if not x.ready()) if incomplete_count == 0: break sys.stdout.write(" Progress: %.2f%% \r" % (float(tasks - incomplete_count) / tasks * 100)) sys.stdout.flush() time.sleep(1) p.close() p.join() def batch_iterator(iterator, batch_size): entry = True #Make sure we loop once while entry : batch = [] while len(batch) < batch_size : try : entry = next(iterator) except StopIteration : entry = None if entry is None : #End of file break batch.append(entry) if batch : yield batch def setupLogging(LOGNAME): global log if 'darwin' in sys.platform: stdoutformat = logging.Formatter(colr.GRN+'%(asctime)s'+colr.END+': %(message)s', datefmt='[%b %d %I:%M %p]') else: stdoutformat = logging.Formatter('%(asctime)s: %(message)s', datefmt='[%I:%M:%S %p]') fileformat = logging.Formatter('%(asctime)s: %(message)s', datefmt='[%x %H:%M:%S]') log = logging.getLogger(__name__) log.setLevel(logging.DEBUG) sth = logging.StreamHandler() sth.setLevel(logging.INFO) sth.setFormatter(stdoutformat) log.addHandler(sth) fhnd = logging.FileHandler(LOGNAME) fhnd.setLevel(logging.DEBUG) fhnd.setFormatter(fileformat) log.addHandler(fhnd) def FastMaxEEFilter(input, trunclen, maxee, output): from Bio.SeqIO.QualityIO import FastqGeneralIterator with open(output, 'w') as out: with open(input, 'r') as file: for title, seq, qual in FastqGeneralIterator(file): trunclen = int(trunclen) Seq = seq[:trunclen] Qual = qual[:trunclen] ee = 0 for bp, Q in enumerate(Qual): q = int(ASCII.get(Q)) P = 10**(float(-q)/10) ee += P if ee <= float(maxee): out.write("@%s\n%s\n+\n%s\n" % (title, Seq, Qual)) def MaxEEFilter(input, maxee): from Bio import SeqIO with open(input, 'r') as f: for rec in SeqIO.parse(f, "fastq"): ee = 0 for bp, Q in enumerate(rec.letter_annotations["phred_quality"]): P = 10**(float(-Q)/10) ee += P if ee <= float(maxee): rec.name = "" rec.description = "" yield rec def dereplicate(input, output): from Bio.SeqIO.QualityIO import FastqGeneralIterator seqs = {} with open(input, 'r') as file: for title, sequence, qual in FastqGeneralIterator(file): if sequence not in seqs: if title.endswith(';'): seqs[sequence]=title+'size=1;' else: seqs[sequence]=title+';size=1;' else: count = int(seqs[sequence].split('=')[-1].rstrip(';')) + 1 formated_string = seqs[sequence].rsplit('=', 1)[0]+'='+str(count)+';' seqs[sequence] = formated_string with open(output, 'w') as out: for sequence in seqs: out.write('>'+seqs[sequence]+'\n'+sequence+'\n') def convertSize(num, suffix='B'): for unit in ['','K','M','G','T','P','E','Z']: if abs(num) < 1024.0: return "%3.1f %s%s" % (num, unit, suffix) num /= 1024.0 return "%.1f%s%s" % (num, 'Y', suffix) def faqual2fastq(fasta, qual, fastq): global skipCount from Bio.SeqIO.QualityIO import PairedFastaQualIterator with open(fastq, 'w') as output: records = PairedFastaQualIterator(open(fasta), open(qual)) for rec in records: try: SeqIO.write(rec, output, 'fastq') except ValueError: skipCount +1 return skipCount def checkfastqsize(input): filesize = os.path.getsize(input) return filesize def fastqreindex(input, output): from Bio.SeqIO.QualityIO import FastqGeneralIterator count = 1 with open(output, 'w') as out: with open(input, 'r') as fastq: for title, sequence, qual in FastqGeneralIterator(fastq): cols = title.split(';') header = 'R_'+str(count)+';'+cols[1]+';' count += 1 out.write("@%s\n%s\n+\n%s\n" % (header, sequence, qual)) def which(name): try: with open(os.devnull) as devnull: diff = ['tbl2asn', 'dustmasker', 'mafft'] if not any(name in x for x in diff): subprocess.Popen([name], stdout=devnull, stderr=devnull).communicate() else: subprocess.Popen([name, '--version'], stdout=devnull, stderr=devnull).communicate() except OSError as e: if e.errno == os.errno.ENOENT: return False return True def CheckDependencies(input): missing = [] for p in input: if which(p) == False: missing.append(p) if missing != []: error = ", ".join(missing) log.error("Missing Dependencies: %s. Please install missing dependencies and re-run script" % (error)) sys.exit(1) def fastarename(input, relabel, output): from Bio.SeqIO.FastaIO import FastaIterator with open(output, 'w') as outfile: counter = 1 for record in FastaIterator(open(input)): newName = relabel+str(counter) outfile.write(">%s\n%s\n" % (newName, record.seq)) counter += 1 def fasta_strip_padding(file, output, stripsize=False): from Bio.SeqIO.FastaIO import FastaIterator with open(output, 'w') as outputfile: for record in FastaIterator(gzopen(file)): Seq = record.seq.rstrip('N') if ';size=' in record.id: record.id = record.id.split(';size=')[0] outputfile.write(">%s\n%s\n" % (record.id, Seq)) def fastq_strip_padding(file, output): from Bio.SeqIO.QualityIO import FastqGeneralIterator with open(output, 'w') as outputfile: for title, seq, qual in FastqGeneralIterator(open(file)): Seq = seq.rstrip('N') Qual = qual[:len(Seq)] assert len(Seq) == len(Qual) outputfile.write("@%s\n%s\n+\n%s\n" % (title, Seq, Qual)) def ReverseComp(input, output): with open(output, 'w') as revcomp: with open(input, 'r') as fasta: for rec in SeqIO.parse(fasta, 'fasta'): revcomp.write(">%s\n%s\n" % (rec.id, rec.seq.reverse_complement())) def guess_csv_dialect(header): """ completely arbitrary fn to detect the delimiter :type header: str :raise ValueError: :rtype: csv.Dialect """ possible_delims = "\t," lines = header.split("\n") if len(lines) < 2: raise ValueError("CSV header must contain at least 1 line") dialect = csv.Sniffer().sniff(header, delimiters=possible_delims) return dialect def fasta2list(input): seqlist = [] with open(input, 'r') as inseq: for rec in SeqIO.parse(inseq, 'fasta'): if not rec.description in seqlist: seqlist.append(rec.description) return seqlist def updateMappingFile(mapfile, barcode_count, output): with open(output, 'w') as outfile: with open(mapfile, 'r') as infile: for line in infile: line = line.rstrip() cols = line.split('\t') if line.startswith('#Sample'): #header row, look for DemuxReads if 'DemuxReads' in cols: loc = cols.index('DemuxReads') elif 'phinchID' in cols: loc = cols.index('phinchID')+1 cols.insert(loc,'DemuxReads') else: cols.append('DemuxReads') loc = cols.index('DemuxReads') outfile.write('{:}\n'.format('\t'.join(cols))) else: if cols[0] in barcode_count: outfile.write('{:}\t{:}\t{:}\n'.format('\t'.join(cols[:loc]), str(barcode_count[cols[0]]), '\t'.join(cols[loc+1:]))) def CreateGenericMappingFile(barcode_dict, revbarcode_dict, fwd_primer, rev_primer, output, barcodes_found): with open(output, 'w') as outfile: outfile.write('#SampleID\tBarcodeSequence\tLinkerPrimerSequence\tRevBarcodeSequence\tReversePrimer\tphinchID\tDemuxReads\tTreatment\n') for k,v in natsorted(barcodes_found.items()): sample = k Fsample,Rsample = (None,)*2 if ':-:' in sample: Fsample, Rsample = sample.split(':-:') count = v forbarcode, revbarcode = ('no_data',)*2 if Fsample: if Fsample in barcode_dict: forbarcode = barcode_dict[Fsample] else: if sample in barcode_dict: forbarcode = barcode_dict[sample] if Rsample: if Rsample in revbarcode_dict: revbarcode = revbarcode_dict[Rsample] else: if sample in revbarcode_dict: revbarcode = revbarcode_dict[sample] outfile.write('%s\t%s\t%s\t%s\t%s\t%s\t%i\t%s\n' % (sample, forbarcode, fwd_primer, revbarcode, rev_primer, sample, count, 'no_data')) def CreateGenericMappingFileIllumina(samples, fwd_primer, rev_primer, output, barcodes): with open(output, 'w') as outfile: outfile.write('#SampleID\tBarcodeSequence\tLinkerPrimerSequence\tRevBarcodeSequence\tReversePrimer\tphinchID\tDemuxReads\tTreatment\n') for k,v in natsorted(list(samples.items())): count = barcodes.get(k, 0) if count > 0: if '-' in v: forbarcode,revbarcode = v.split('-') else: forbarcode = v revbarcode = 'no_data' outfile.write('%s\t%s\t%s\t%s\t%s\t%s\t%i\t%s\n' % (k, forbarcode, fwd_primer, revbarcode, rev_primer, k, int(count), "no_data")) def parseMappingFile(input, output): ''' function to parse mapping file pull out primers and barcode sequences ''' fwdprimer = '' revprimer = '' with open(output, 'w') as outfile: with open(input, 'r') as inputfile: for line in inputfile: line = line.replace('\n', '') if line.startswith('#'): continue cols = line.split('\t') outfile.write('>%s\n%s\n' % (cols[0], cols[1])) match = edlib.align(cols[1], cols[2], mode="HW", k=0) if match["editDistance"] == 0: Trim = match["locations"][0][1]+1 if fwdprimer == '': fwdprimer = cols[2][Trim:] revprimer = cols[3] return (fwdprimer, revprimer) def getMappingHeaderIndexes(input): IDx,FBCx,RBCx,FPx,RPx = (None,)*5 with open(input, 'r') as infile: for line in infile: line = line.rstrip('\n') if line.startswith('#'): cols = line.split('\t') if '#SampleID' in cols: IDx = cols.index('#SampleID') if 'BarcodeSequence' in cols: FBCx = cols.index('BarcodeSequence') if 'LinkerPrimerSequence' in cols: FPx = cols.index('LinkerPrimerSequence') if 'RevBarcodeSequence' in cols: RBCx = cols.index('RevBarcodeSequence') if 'ReversePrimer' in cols: RPx = cols.index('ReversePrimer') return IDx, FBCx, FPx, RBCx, RPx exampleMapFile='#SampleID\tBarcodeSequence\tLinkerPrimerSequence\tRevBarcodeSequence\tReversePrimer\tphinchID\tTreatment\n' def parseMappingFileNEW(input): ''' function to parse mapping file pull out primers and barcode sequences ''' results = {} ForBCDict = {} RevBCDict = {} IDx, FBCx, FPx, RBCx, RPx = getMappingHeaderIndexes(input) if not any([IDx, FBCx, FPx, RPx]): log.error('Mapping file incorrectly formatted, headers should be (RevBarcodeSequence is optional):\n{:}'.format(exampleMapFile)) sys.exit(1) if not RBCx: log.debug('Mapping file missing header: "RevBarcodeSequence", skipping reverse barcodes') with open(input, 'r') as inputfile: for line in inputfile: line = line.rstrip() if line.startswith('#'): continue cols = line.split('\t') if len(cols) < 4: continue ID = cols[IDx] FBC = cols[FBCx] FP = cols[FPx] if FBC in FP: #barcode nested in primer_db loc = FP.index(FBC) + len(FBC) FP = FP[loc:] RP = cols[RPx] if RBCx: RBC = cols[RBCx] if RBC != '': if RBC in RP: loc = RP.index(RBC) + len(RBC) RP = RP[loc:] else: RBC = None else: RBC = None if not ID in results: results[ID] = {'ForBarcode': FBC, 'ForPrimer': FP, 'RevBarcode': RBC, 'RevPrimer': RP} ForBCDict[ID] = FBC if RBC: RevBCDict[ID] = RBC else: log.error('Please fix duplicate SampleID detected in mapping file: {:}'.format(ID)) sys.exit(1) return results, ForBCDict, RevBCDict, FP, RP def parseMappingFileIllumina(input): fwdprimer = '' revprimer = '' samples = [] with open(input, 'r') as inputfile: for line in inputfile: line = line.replace('\n', '') if line.startswith('#'): continue cols = line.split('\t') if not cols[0] in samples: samples.append(cols[0]) match = edlib.align(cols[1], cols[2], mode="HW", k=0) if match["editDistance"] == 0: Trim = match["locations"][0][1]+1 if fwdprimer == '': fwdprimer = cols[2][Trim:] revprimer = cols[3] else: fwdprimer = cols[2] revprimer = cols[3] return (samples, fwdprimer, revprimer) def removefile(input): if os.path.isfile(input): os.remove(input)
{ "repo_name": "nextgenusfs/ufits", "path": "amptk/amptklib.py", "copies": "1", "size": "84854", "license": "bsd-2-clause", "hash": 4554148208261997600, "line_mean": 38.5958936071, "line_max": 259, "alpha_frac": 0.5360855116, "autogenerated": false, "ratio": 3.5844210704177755, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9591792879580539, "avg_score": 0.005742740487447303, "num_lines": 2143 }
from __future__ import (absolute_import, division, print_function, unicode_literals) import sys import os install = False base_path = os.path.dirname(os.path.realpath(__file__)) sys.path.append(os.path.join(base_path, 'python')) if len(sys.argv) >= 2 and sys.argv[1] == '--install': install_only = True else: install_only = False try: import uflash except: install = True if __name__ == '__main__': if install: uflash_link = "https://raw.githubusercontent.com/ntoll/uflash/e3eeb6504089963683f4cc141bba8901752cef8d/uflash.py" try: from urllib.request import urlopen except: from urllib import urlopen resp = urlopen(uflash_link) text = resp.read() install_dir = os.path.join(base_path, 'python') if not os.path.isdir(install_dir): os.mkdir(install_dir) with open(os.path.join(install_dir, 'uflash.py'), 'wb') as f: f.write(text) f.flush() print('Local uflash installed') try: import uflash except: pass if not install_only: uflash.main(sys.argv[1:])
{ "repo_name": "Giannie/atom-microbit-python", "path": "lib/microbit-python.py", "copies": "1", "size": "1178", "license": "mit", "hash": 3028820889007108600, "line_mean": 30, "line_max": 121, "alpha_frac": 0.5925297114, "autogenerated": false, "ratio": 3.4955489614243325, "config_test": false, "has_no_keywords": true, "few_assignments": false, "quality_score": 0.4588078672824332, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) __all__ = ['save_to_regions', 'save_galaxy_to_regions', 'save_to_dsim'] from itertools import cycle import numpy as np from astropy.coordinates import SkyCoord from astropy import units as u from .utils import mask_to_sky def save_to_regions(mask, center, writeto=None): ''' mask is a Mask, center is a SkyCoord, writeto is the output file name ''' with open(writeto, 'w') as f: f.write('# Region file format: DS9 version 4.1\n') f.write('global color=red move=0 select=0\n') f.write('j2000\n') ra_str, dec_str = center.to_string('hmsdms').split(' ') name = mask.name + '_PA{:0.1f}'.format(mask.mask_pa) x, y = mask.slit_positions() ra_offsets, dec_offsets = mask_to_sky(x, y, mask.mask_pa) ra = (ra_offsets / np.cos(center.dec.radian) + center.ra.arcsec) * u.arcsec dec = (dec_offsets + center.dec.arcsec) * u.arcsec coords = SkyCoord(ra, dec) for i, slit in enumerate(mask.slits): name = slit.name ra, dec = coords[i].to_string('hmsdms', sep=':').split() pa = '{:.2f}'.format(slit.pa) height = '{:.2f}'.format(slit.length) + '\"' width = '{:.2f}'.format(slit.width) + '\"' line = 'box(' + ', '.join([ra, dec, width, height, pa]) + ') # text={' + name + '}\n' f.write(line) def save_galaxy_to_regions(galaxy, writeto=None, annotate=False): with open(writeto, 'w') as f: f.write('# Region file format: DS9 version 4.1\n') f.write('global color=red move=0 select=0\n') f.write('j2000\n') center = galaxy.center ra_str, dec_str = center.to_string('hmsdms').split(' ') colors = cycle(['red', 'green', 'blue', 'magenta', 'cyan', 'yellow']) for mask in galaxy.masks: color = next(colors) x, y = mask.slit_positions() ra_offsets, dec_offsets = mask_to_sky(x, y, mask.mask_pa) ra = (ra_offsets / np.cos(center.dec.radian) + center.ra.arcsec) * u.arcsec dec = (dec_offsets + center.dec.arcsec) * u.arcsec coords = SkyCoord(ra, dec) for i, slit in enumerate(mask.slits): name = mask.name[0] + slit.name ra, dec = coords[i].to_string('hmsdms', sep=':').split() pa = '{:.2f}'.format(slit.pa) height = '{:.2f}'.format(slit.length) + '\"' width = '{:.2f}'.format(slit.width) + '\"' line = 'box(' + ', '.join([ra, dec, width, height, pa]) if annotate: line += ') # color=' + color + ' text={' + name + '}\n' else: line += ') # color=' + color + '\n' f.write(line) def save_to_dsim(mask, center, writeto=None): ''' mask is a Mask, center is a SkyCoord, writeto is the output file name ''' with open(writeto, 'w') as f: ra_str, dec_str = center.to_string('hmsdms').split(' ') name = mask.name + '_PA{:0.1f}'.format(mask.mask_pa) header = '\t'.join([name, ra_str, dec_str, '2000.0', 'PA={:.2f}'.format(mask.mask_pa)]) + '\n\n' f.write(header) x, y = mask.slit_positions() ra_offsets, dec_offsets = mask_to_sky(x, y, mask.mask_pa) ra = (ra_offsets / np.cos(center.dec.radian) + center.ra.arcsec) * u.arcsec dec = (dec_offsets + center.dec.arcsec) * u.arcsec coords = SkyCoord(ra, dec) for i, slit in enumerate(mask.slits): name = slit.name + ' ' * (16 - len(slit.name)) ra, dec = coords[i].to_string('hmsdms', sep=':').split() pa = '{:.2f}'.format(slit.pa) half_len = '{:.2f}'.format(slit.length / 2) width = '{:.2f}'.format(slit.width) line = name + '\t'.join([ra, dec, '2000.0', '0', 'R', '100', '1', '1', pa, half_len, width]) + '\n' f.write(line)
{ "repo_name": "adwasser/masktools", "path": "masktools/superskims/outputs.py", "copies": "1", "size": "4094", "license": "mit", "hash": -3929564301761052000, "line_mean": 45.5227272727, "line_max": 104, "alpha_frac": 0.5217391304, "autogenerated": false, "ratio": 3.1371647509578544, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.41589038813578544, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) from ast import literal_eval from builtins import * from future.utils import iteritems import os import json import logging from brave.palettes import * from brave.notebook_display import * ipython = try_import_ipython() logger = logging.getLogger(__name__) __mode = 'script' __EMBEDDED_INITIALIZED = False def start_notebook_mode(in_iframe=False): if ipython is None: raise ImportError('start_notebook_mode can only run inside an IPython Notebook.') global __mode global __EMBEDDED_INITIALIZED if in_iframe: __mode = 'iframe' else: __mode = 'embedded' if not __EMBEDDED_INITIALIZED: ipython.display.display({'application/javascript': get_init_script()}, raw=True) def save(html, path): with open(path, 'w', encoding='utf-8') as f: f.write(html) def brave(docData, collData, save_to_path=None, width=800, height=600): if save_to_path is None and __mode == 'embedded': html = get_embedded_html(json.dumps(collData, indent=4, sort_keys=True), json.dumps(docData, indent=4, sort_keys=True)) return HtmlContainer(html) parent = os.path.dirname(__file__) parent = os.path.dirname(parent) fn = os.path.join(parent, 'templates', 'embedded_brat__template.html') template = open(fn, encoding='utf-8').read() template = template.replace("{0}", json.dumps(collData, indent=4, sort_keys=True)) html = template.replace("{1}", json.dumps(docData, indent=4, sort_keys=True)) if save_to_path: save(html, save_to_path) if __mode == 'iframe': if save_to_path: eff_path = save_to_path else: eff_path = 'temp_visual.html' save(html, eff_path) ret_val = HtmlContainer("""<iframe width="{width}" height="{height}" src="{src}" frameborder="0" allowfullscreen ></iframe> """.format(src=eff_path, width=width, height=height)) else: ret_val = html return ret_val def brave_simple(doc_data, save_to_path=None, width=800, height=600): """ This method currently supported only entities and relations! Args: doc_data: save_to_path: width: height: Returns: """ brave_data = BraveData(doc_data) return brave(brave_data.doc_data, brave_data.coll_data, save_to_path=save_to_path, width=width, height=height) def brave_compare(true_doc_data, pred_doc_data, true_suffix='*', pred_suffix='', save_to_path=None, width=800, height=600): """ This method currently supported only entities and relations! Args: true_doc_data: pred_doc_data: true_suffix: pred_suffix: save_to_path: width: height: Returns: """ if true_doc_data['text'] != pred_doc_data['text']: raise ValueError('The text should be equal in both true_doc_data and pred_doc_data') if true_suffix == pred_suffix: raise ValueError('true_suffix should be different than pred_suffix') ret_val = {} ret_val['text'] = true_doc_data['text'] add_suffix(ret_val, true_doc_data, suffix=true_suffix) add_suffix(ret_val, pred_doc_data, suffix=pred_suffix) return brave_simple(ret_val, save_to_path=save_to_path, width=width, height=height) def add_suffix(ret_val, doc_data, suffix='*'): ret_val['entities'] = ret_val.get('entities', []) for key, type_, span in doc_data.get('entities', []): ret_val['entities'].append((key + suffix, type_ + suffix, span)) ret_val['triggers'] = ret_val.get('triggers', []) for key, type_, span in doc_data.get('triggers', []): ret_val['triggers'].append((key + suffix, type_ + suffix, span)) ret_val['attributes'] = ret_val.get('attributes', []) for key, type_, ent_key in doc_data.get('attributes', []): ret_val['attributes'].append((key + suffix, type_ + suffix, ent_key + suffix)) ret_val['relations'] = ret_val.get('relations', []) for key, type_, lst in doc_data.get('relations', []): new_lst = [] for role, ent_key in lst: new_lst.append((role, ent_key + suffix)) ret_val['relations'].append((key + suffix, type_ + suffix, new_lst)) ret_val['events'] = ret_val.get('events', []) for key, trigger_key, lst in doc_data.get('events', []): new_lst = [] for role, ent_key in lst: new_lst.append((role, ent_key + suffix)) ret_val['events'].append((key + suffix, trigger_key + suffix, new_lst)) class HtmlContainer(object): def __init__(self, html): self.html = html def _repr_html_(self): return self.html class BraveData(object): def __init__(self, doc_data, coll_data=None): self.doc_data = doc_data if coll_data is not None: self.coll_data = coll_data else: self.coll_data = {} self.__parse_entities() self.__parse_relations() def __parse_entities(self): self.ent_dict = dict([(x[0], x[1]) for x in self.doc_data['entities']]) ent_types = set(self.ent_dict.values()) range_ = range(0, len(entities_palettte), (len(entities_palettte) // len(ent_types))) colors = [entities_palettte[i] for i in range_] ent_colors = dict(zip(ent_types, colors)) entity_types = [] for name in ent_types: t = { 'bgColor': ent_colors[name], 'borderColor': 'darken', 'labels': [name, name[0:3]], 'type': name } entity_types.append(t) self.coll_data['entity_types'] = entity_types def __parse_relations(self): relation_args = {} for rel in self.doc_data['relations']: key, name, role_ents = rel for role, ent_key in role_ents: curr_roles = relation_args.get(name, {}) curr_types = curr_roles.get(role, set()) curr_types.add(self.ent_dict[ent_key]) curr_roles[role] = curr_types relation_args[name] = curr_roles range_ = range(0, len(relations_palette), (len(relations_palette) // len(relation_args.keys()))) colors = [relations_palette[i] for i in range_] rel_colors = dict(zip(relation_args.keys(), colors)) relation_types = [] for name, args in iteritems(relation_args): rel_dict = { 'args': [{'role': role, 'targets': list(targets)} for role, targets in iteritems(args)], 'color': rel_colors[name], 'dashArray': '3,3', 'labels': [name, name[0:3]], 'type': name } relation_types.append(rel_dict) self.coll_data['relation_types'] = relation_types def merge_doc_datas(*docs): """ Merges several docDatas into one, updating values and indexes as necessary. ***Currently supports only Entities and Relations*** Args: *docs: Returns: docData """ res = {"text": "", "entities": [], "relations": []} offsets = [0] t_index = 0 r_index = 0 for i, doc in enumerate(docs): # Offset initializaion offset = offsets[i] # Update doc doc["entities"] = update_doc_data_entities(doc["entities"], offset, t_index) doc["relations"] = update_doc_data_relations(doc["relations"], r_index, t_index) # Update indexes t_index = int(doc["entities"][-1][0][1:]) r_index = int(doc["relations"][-1][0][1:]) # Extend res res["text"] += (doc["text"] + "\n") res["entities"].extend(doc["entities"]) res["relations"].extend(doc["relations"]) # Update offsets offsets.append(len(res["text"])) return res def update_doc_data_entities(entity, offset, t_index): indexes, types, spans = zip(*entity) indexes = ["T" + str(int(ind[1:]) + t_index) for ind in indexes] new_spans = [] for span in spans: new_span = increase_spans(span, offset) new_spans.append(new_span) res = zip(indexes, types, new_spans) res = [list(ent) for ent in res] return res def update_doc_data_relations(relation, r_index, t_index): indexes, types, entities = zip(*relation) indexes = ["R" + str(int(ind[1:]) + r_index) for ind in indexes] entities = [[[t1[0], "T" + str(int(t1[1][1:]) + t_index)], [t2[0], "T" + str(int(t2[1][1:]) + t_index)]] for t1, t2 in entities] res = zip(indexes, types, entities) res = [list(ent) for ent in res] return res def increase_spans(spans_input, x): if type(spans_input) == str: spans_input = literal_eval(spans_input) groups = [] for span in spans_input: span[0] += x span[1] += x groups.append(span) return groups
{ "repo_name": "chorusai/brave", "path": "brave/_brave.py", "copies": "1", "size": "9141", "license": "apache-2.0", "hash": 23207818562231096, "line_mean": 31.3003533569, "line_max": 127, "alpha_frac": 0.5722568647, "autogenerated": false, "ratio": 3.5361702127659576, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.960405041615124, "avg_score": 0.0008753322629434837, "num_lines": 283 }
from __future__ import (absolute_import, division, print_function, unicode_literals) from astroid import MANAGER, Class, Instance, Function, Arguments, Pass def transform_model_class(cls): if cls.is_subtype_of('django.db.models.base.Model'): core_exceptions = MANAGER.ast_from_module_name('django.core.exceptions') # add DoesNotExist exception DoesNotExist = Class('DoesNotExist', None) DoesNotExist.bases = core_exceptions.lookup('ObjectDoesNotExist')[1] cls.locals['DoesNotExist'] = [DoesNotExist] # add MultipleObjectsReturned exception MultipleObjectsReturned = Class('MultipleObjectsReturned', None) MultipleObjectsReturned.bases = core_exceptions.lookup( 'MultipleObjectsReturned')[1] cls.locals['MultipleObjectsReturned'] = [MultipleObjectsReturned] # add objects manager if 'objects' not in cls.locals: try: Manager = MANAGER.ast_from_module_name( 'django.db.models.manager').lookup('Manager')[1][0] QuerySet = MANAGER.ast_from_module_name( 'django.db.models.query').lookup('QuerySet')[1][0] except IndexError: pass else: if isinstance(Manager.body[0], Pass): # for django >= 1.7 for func_name, func_list in QuerySet.locals.items(): if (not func_name.startswith('_') and func_name not in Manager.locals): func = func_list[0] if (isinstance(func, Function) and 'queryset_only' not in func.instance_attrs): f = Function(func_name, None) f.args = Arguments() Manager.locals[func_name] = [f] cls.locals['objects'] = [Instance(Manager)] # add id field if 'id' not in cls.locals: try: AutoField = MANAGER.ast_from_module_name( 'django.db.models.fields').lookup('AutoField')[1][0] except IndexError: pass else: cls.locals['id'] = [Instance(AutoField)]
{ "repo_name": "geerk/django_linter", "path": "django_linter/transformers/models.py", "copies": "1", "size": "2345", "license": "mit", "hash": 7649735360608835000, "line_mean": 45.9, "line_max": 80, "alpha_frac": 0.5356076759, "autogenerated": false, "ratio": 4.69, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.57256076759, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) from astroid import MANAGER from astroid.builder import AstroidBuilder BASE_REQUEST_DEFINITION = """ from django.http import HttpResponse, HttpRequest def request(self, *args, **kwargs): resp = HttpResponse() resp.client = self resp.content = '' resp.context = {} resp.request = HttpRequest() resp.templates = [] %s return resp """ DJANGO_REQUEST_DEFINITION = BASE_REQUEST_DEFINITION % '' DRF_REQUEST_DEFINITION = BASE_REQUEST_DEFINITION % 'resp.data = {}' DJANGO_CLIENT_REQUEST = AstroidBuilder( MANAGER).string_build(DJANGO_REQUEST_DEFINITION).locals['request'] DRF_CLIENT_REQUEST = AstroidBuilder( MANAGER).string_build(DRF_REQUEST_DEFINITION).locals['request'] HTTP_METHODS = ('get', 'post', 'put', 'head', 'delete', 'options') def transform_test_response(cls): if cls.is_subtype_of('django.test.client.Client'): for method in HTTP_METHODS: cls.locals[method] = DJANGO_CLIENT_REQUEST elif cls.is_subtype_of('rest_framework.test.APIClient'): for method in HTTP_METHODS: cls.locals[method] = DRF_CLIENT_REQUEST
{ "repo_name": "geerk/django_linter", "path": "django_linter/transformers/testing.py", "copies": "1", "size": "1215", "license": "mit", "hash": 1876369248286100500, "line_mean": 33.7142857143, "line_max": 70, "alpha_frac": 0.6839506173, "autogenerated": false, "ratio": 3.5526315789473686, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4736582196247368, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) from astropy.coordinates import SkyCoord from astropy import units as u __all__ = ['table_to_regions'] def table_to_regions(table, writeto=None, color='red'): ''' Parameters ---------- table : astropy Table object with USNO entries writeto : str, filename for output color : str, as recognized by ds9 Returns ------- None ''' coords = SkyCoord(table['RAJ2000'], table['DEJ2000']) names = table['USNO-B1.0'] width = '4"' height = '4"' pa = '0' with open(writeto, 'w') as f: f.write('# Region file format: DS9 version 4.1\n') f.write('global color=' + color + ' move=0 \n') f.write('j2000\n') for i in range(len(coords)): ra, dec = coords[i].to_string('hmsdms', sep=':').split() name = names[i] line = 'box(' + ', '.join([ra, dec, width, height, pa]) + ') # text={' + name + '}\n' f.write(line)
{ "repo_name": "adwasser/masktools", "path": "masktools/stars/outputs.py", "copies": "1", "size": "1051", "license": "mit", "hash": -6111002348045318000, "line_mean": 29.9117647059, "line_max": 97, "alpha_frac": 0.5451950523, "autogenerated": false, "ratio": 3.445901639344262, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9486970040983997, "avg_score": 0.000825330132052821, "num_lines": 34 }
from __future__ import (absolute_import, division, print_function, unicode_literals) from builtins import (ascii, bytes, chr, dict, filter, hex, input, int, map, next, oct, open, pow, range, round, str, super, zip) from hexagondisasm import common from hexagondisasm.common import InstructionTemplate, TemplateToken, TemplateBranch from hexagondisasm.common import UnexpectedException import re class HexagonInstructionDecoder(object): """Hexagon instruction decoder. Takes instruction definitions and process them to instruction templates. Attributes: inst_def_list (List[InstructionDefintion]): List of instruction definitions saved during the parsing stage. inst_template_list (List[InstructionTemplate]): List of instruction definitions templates generated by the decoder from the list of definitions. """ __slots__ = ['inst_def_list', 'inst_template_list'] def __init__(self): """Load the instruction definitions and convert it to instruction templates. Creates the InstructionTemplate and processes it. TODOs: * All the calls in the loop could be done inside the InstructionTemplate constructor, should it? """ self.inst_def_list = common.pickle_load(common.INST_DEF_PATH) self.inst_template_list = [InstructionTemplate(inst_def) for inst_def in self.inst_def_list] for template in self.inst_template_list: self.analyze_branch(template) self.resolve_constant_extender(template) self.tokenize_syntax(template) def tokenize_syntax(self, template): """Generate a list of tokens from the instruction syntax. Takes the syntax string and split it in smaller strings (tokens). The split is done to generate a link between the instruction operands and the substrings that correspond to it, e.g., ``Rd=add(Rs,#s16)`` would be splitted like: ``['Rd', '=add(', 'Rs', ',', '#s16', ')']`` to isolate the three operand strings (registers ``Rd``, ``Rs`` and immediate ``#s16``) from the rest of the syntax string. The substrings are later used to generate TemplateToken objects, which are composed of a string with its associated operand (if it exists). Args: template (InstructionTemplate): to be processed. Returns: None: the data is applied to the template itself. TODOs: * Should the 2 steps (split and match) be done together? """ tokens = [template.syntax] # type: List[str] # The syntax will be splitted to this list of strings that will be later # used to create the template tokens. for op in template.reg_ops + template.imm_ops: # type: InstructionOperand new_tokens = [] # type: List[str] # New tokens generated from the current tokens, updated at the end of the loop. for str_token in tokens: new_tokens.extend( re.split('(' + op.syntax_name + ')', str_token) ) # If a operand is found in the current token, split it to isolate # the operand, re.split is used because, unlike string.split, it doesn't # discard the separator (the operator name in this case) when enclosed # in parenthesis. if len(new_tokens) != len(tokens) + 2 * template.syntax.count(op.syntax_name): raise UnexpectedException() # Every split (appearance of the operand in the syntax) # has to generate 2 new tokens (an old token is split into 3, # the separator and left/right tokens, that are always generated # even if they are empty strings). tokens = new_tokens # TODO: use list comprehensions and eliminate `new_tokens`. # Discard possibly empty generated strings. tokens = list(filter(lambda s: len(s) > 0, tokens)) # Generate list of TemplateToken and match string tokens to operands. for str_token in tokens: template_token = TemplateToken(str_token.lower()) # TODO: Is it ok to convert to lowercase here? # The letter case of the operands text is useful (specially in IDA) to # identify them quickly in the visual analysis (from the rest of the instruction). for op in template.reg_ops + template.imm_ops: # type: InstructionOperand if str_token == op.syntax_name: # The string token names the operand, match them. template_token.op = op break template.tokens.append(template_token) return def resolve_constant_extender(self, template): """In case there are two imm. operands, indicate to which one would apply a constant extension. This is done for instructions that can be extended by a constant but have two immediate operands and it has to be indicated to which one the extension applies. The function ``apply_extension()`` in instruction behaviours is used as an indication that a constant extension can be applied, and the argument of the function specifies the syntax of which immediate operand it applies to. Args: template (InstructionTemplate): to be processed. Returns: None: the data is applied to the template itself. TODOs: * Add to the function description an example of an instruction where there are two imm. ops. and the ``apply_extension()`` resolves which one. """ if len(template.imm_ops) < 2: # There's no need to perform the check, there's (at most) only one # immediate operand to choose from. return m = re.search(r""" # Looking for something like: "apply_extension(...);" apply_extension \( (.*?) # Capture group for the imm. op. name, e.g., ``#s``. \) """, template.behavior.replace(' ', ''), re.X) # The spaces are removed from the behavior string to simplify the regex. if m is None: # No constant extension found in the behavior. return imm_op_ext_name = m.group(1) # Name of the imm. op. that is the argument of ``apply_extension()``. for imm_op in template.imm_ops: if imm_op_ext_name in imm_op.syntax_name: # An equal comparison is not made in the previous if because # the op. name in the apply_extension argument is usually a shorter # version of the name in the syntax (normally because the # operand's bit size was removed), e.g., ``#s16`` in # ``Rd=add(Rs,#s16)`` is referenced as ``apply_extension(#s);``. template.imm_ext_op = imm_op return raise UnexpectedException() # If the regex matched, the operand should have been found in the previous loop. def analyze_branch(self, template): """Find a branch in the instruction syntax and generate the template info. Used in (IDA) static analysis. Args: template (InstructionTemplate): to be processed. Returns: None: the data is applied to the template itself. TODOs: * Change function name to something like 'find_branch(es)'. * This type of analysis should be done by studying the REIL translation of the instruction, which truly reflects its behaviour. When the REIL translation is added this function should be adapted. * Multiple branches in one instruction: is it possible? I think not, at most, two branches in one packet but separate. Check this. * The branch string itself is used to represent it, maybe some constants should be used instead. """ for branch_syntax in TemplateBranch.all_branches: # type: str # Find any of the possible branch syntaxes in the instruction # to detect a branch. m = re.search(branch_syntax, template.syntax, re.X) if m is None: continue if branch_syntax == TemplateBranch.dealloc_ret_syntax: # The instruction is a 'dealloc_return', a jump to the # LR as target. return # TODO: Should this case be handled? Is it of interest to static analysis? template.branch = TemplateBranch(branch_syntax) template.branch.is_conditional = ('if' in template.syntax) # TODO: The if could be applying to another sub-instruction. Improve detection. if branch_syntax in [TemplateBranch.jump_reg_syntax, TemplateBranch.call_reg_syntax]: # Branch type: jump/call register. # Find which register is the target of the branch. for reg in template.reg_ops: # type: RegisterTemplate m = re.search(branch_syntax + r'\s*' + reg.syntax_name, template.syntax, re.X) if m: template.branch.target = reg return # The target register operand was not found, this shouldn't happen, but # for now the case of register alias (specially the case of LR) is not # being handled, so an exception can't be raised, and this case is # tolerated (retuning instead). # raise UnexpectedException() return if branch_syntax in [TemplateBranch.jump_imm_syntax, TemplateBranch.call_imm_syntax]: # Branch type: jump/call immediate. for imm in template.imm_ops: # type: ImmediateTemplate m = re.search(branch_syntax + r'\s*' + imm.syntax_name.replace('#', r'\#'), template.syntax, re.X) # The '#' (used in imm. op. names) is escaped, as it is interpreted as # a comment in verbose regex (re.X), and verbose regex is used because # the branch syntax is written with spaces (verbose style) to improve # its readability. if m: template.branch.target = imm return raise UnexpectedException() # The target immediate operand should have been found. return if __name__ == "__main__": print("Starting decodification...") deco = HexagonInstructionDecoder() common.pickle_dump(common.INST_TEMPL_PATH, deco.inst_template_list) print("Decoding done.") # TODO: move this to a general main, to call the importer together with the decoder.
{ "repo_name": "programa-stic/hexag00n", "path": "hexagondisasm/decoder.py", "copies": "1", "size": "11204", "license": "bsd-2-clause", "hash": -6031173822719517000, "line_mean": 40.8059701493, "line_max": 118, "alpha_frac": 0.5948768297, "autogenerated": false, "ratio": 4.755517826825128, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5850394656525127, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) from collections import defaultdict from copy import deepcopy import datetime from decimal import Decimal from future.utils import iteritems, iterkeys, itervalues import inspect import json import os from past.builtins import basestring from fixtureupper.base import BaseFixtureUpper class ModelFixtureUpper(BaseFixtureUpper): required_attributes = [] generated_field_order = [] def __init__(self, *args, **kwargs): super(ModelFixtureUpper, self).__init__(*args, **kwargs) self._model_id = self.start_id if getattr(self, 'model', None): # Load the primary key of model into fixture upper self.attr_key = self.get_model_attr_key() @classmethod def get_upper_class_key(cls): try: return cls.model.__name__ except: return None @classmethod def make_obj_json(cls, obj, str_obj, super_class=None): obj_json = { '__class__': type(obj).__name__, '__value__': str_obj, } if super_class: obj_json['__super_class__'] = super_class return obj_json @classmethod def dynamic_import_and_eval(cls, import_statement, eval_str): # FIXME Runtime imports and evals...ew. # noinspection PyUnresolvedReferences exec(import_statement) return eval(eval_str) @classmethod def get_python_objects_for_json(cls): pos = { datetime.datetime: { 'to_json': lambda obj: cls.make_obj_json(obj, repr(obj)), 'from_json': lambda obj: cls.dynamic_import_and_eval('import datetime', obj['__value__']), }, Decimal: { 'to_json': lambda obj: cls.make_obj_json(obj, repr(obj)), 'from_json': lambda obj: cls.dynamic_import_and_eval('from decimal import Decimal', obj['__value__']), }, } def get_from_json(model): return lambda obj: model(**obj['__value__']) for name, upper_class in iteritems(cls._upper_classes): if getattr(upper_class, 'model', None): pos[upper_class.model] = { 'to_json': lambda obj: cls.get_fixture_to_json(obj), 'from_json': get_from_json(upper_class.model), } return pos @classmethod def get_fixture_to_dict(cls, fixture): raise NotImplementedError @classmethod def get_fixture_to_json(cls, fixture): fields = cls.get_fixture_to_dict(fixture) return cls.make_obj_json(fixture, fields) def get_current_json_breakdown(self): return self.breakdown_to_json(self.get_all_fixtures()) def get_current_sql_breakdown(self): return self.breakdown_to_sql(self.get_all_fixtures()) @classmethod def sorted_models_key(cls, model_name): # FIXME: sort working depends on number of fixture model classes being less than 10000 try: order_num = cls.all_fixtures_order.index(model_name) except: order_num = len(cls.all_fixtures_order) return '%04d_%s' % (order_num, model_name) @classmethod def sorted_fixtures_key(cls, f): return cls.sorted_models_key(type(f).__name__) # Transform python object into json compatible representation @classmethod def get_default_to_json(cls): python_objects = cls.get_python_objects_for_json() def _to_json(obj): # Check if type is directly in python_objects transforms = python_objects.get(type(obj)) if transforms: return transforms['to_json'](obj) # Else check if superclass is in python_objects for python_object, transforms in iteritems(python_objects): if isinstance(obj, python_object): return transforms['to_json'](obj) return obj return _to_json @classmethod def breakdown_to_json(cls, fixtures): out = sorted(fixtures or [], key=cls.sorted_fixtures_key) return json.dumps(out, indent=4, default=cls.get_default_to_json(), sort_keys=True) @classmethod def print_breakdown(cls, *args, **kwargs): return cls.print_json_breakdown(*args, **kwargs) @classmethod def _print_breakdown(cls, savedir, fname, data): """Function to print model fixtures into generated file""" if not os.path.exists(savedir): os.makedirs(savedir) with open(os.path.join(savedir, fname), 'w') as fout: fout.write(data) @classmethod def print_json_breakdown(cls, savedir, fname, fixtures): return cls._print_breakdown(savedir, fname, cls.breakdown_to_json(fixtures)) @classmethod def print_sql_breakdown(cls, savedir, fname, fixtures): return cls._print_breakdown(savedir, fname, cls.breakdown_to_sql(fixtures)) @classmethod def sort_fixtures_by_model(cls, fixtures): def _get_default_dict(): return { 'keys': set(), 'values': [], } _fixtures = defaultdict(_get_default_dict) for f in fixtures: table = _fixtures[type(f).__name__] table['keys'].update(cls.get_fixture_to_dict(f).keys()) table['values'].append(f) return _fixtures @classmethod def to_sql(cls, val): if isinstance(val, datetime.datetime): return 'TIMESTAMP \'%s\'' % str(val) elif isinstance(val, basestring): return "'%s'" % val elif val is None: return 'NULL' return json.dumps(val) @classmethod def get_table_name_from_fixture(cls, f): raise NotImplementedError @classmethod def breakdown_to_sql(cls, fixtures): fixtures = cls.sort_fixtures_by_model(fixtures) statement_groups = [] def _sort_key(_tuple): return cls.sorted_models_key(_tuple[0]) for model_name, table_dict in sorted(iteritems(fixtures), key=_sort_key): fixture_list = table_dict['values'] if not fixture_list: continue table_name = cls.get_table_name_from_fixture(fixture_list[0]) data_keys = sorted(list(table_dict['keys'])) header = 'INSERT INTO %s (%s) VALUES' % (table_name, ', '.join(data_keys)) statements = [ '(%s)' % ', '.join(cls.to_sql(getattr(f, key)) for key in data_keys) for f in fixture_list ] statement_groups.append('%s\n%s;\n' % (header, ',\n'.join(statements))) return '\n'.join(statement_groups) @classmethod def fixup_from_json(cls, json_str): python_objects = cls.get_python_objects_for_json() po_by_name = {po.__name__: transforms for po, transforms in iteritems(python_objects)} # Transform json representation of python object to python object # TODO Add ability to get using super_classes def from_json(obj): if '__class__' in obj: transforms = po_by_name.get(obj['__class__']) if transforms: return transforms['from_json'](obj) return obj return json.loads(json_str, object_hook=from_json) @classmethod def read_json_breakdown(cls, fname): """Read json file to get fixture data""" if not os.path.exists(fname): raise RuntimeError with open(fname, 'r') as data_file: return cls.fixup_from_json(data_file.read()) def get_model_attr_key(self, model=None): raise NotImplementedError def get_model_id(self, inc=True): v = self._model_id if inc: self._model_id += 1 return v def set_relation(self, fixture, related_fixtures, relation_prop): raise NotImplementedError def _is_generator_function(self, obj): return callable(obj) def _call_generator_function(self, fn, fixture, key): return fn(self, fixture, key) def set_fixture_values(self, model_values, fixture=None): # Init model if None passed fixture = fixture or self.model() buckets = defaultdict(dict) relationships = self.get_relationships() # Get function that sets attribute onto fixture def _get_fn(value, attr, is_relation=False, is_generated=False): def _set_attr_fn(fixture): attr_value = value if is_generated: attr_value = self._call_generator_function(value, fixture, attr) if is_relation: self.set_relation(fixture, attr_value, attr) else: setattr(fixture, attr, attr_value) return _set_attr_fn def _dict_as_key(_dict): return str(sorted(iteritems(_dict))) # Group into buckets whether attribute value is a relation and is a generator for attr, value in iteritems(model_values): params = { 'is_relation': bool(relationships.get(attr)), 'is_generated': self._is_generator_function(value), } buckets[_dict_as_key(params)][attr] = _get_fn(value, attr, **params) # Call static values first bucket = buckets[_dict_as_key({'is_relation': False, 'is_generated': False})] for static_values in itervalues(bucket): static_values(fixture) # Call static relations next bucket = buckets[_dict_as_key({'is_relation': True, 'is_generated': False})] for static_relations in itervalues(bucket): static_relations(fixture) # Call generated functions now, according to sorted order, but otherwise prioritize relations gen_values = buckets[_dict_as_key({'is_relation': False, 'is_generated': True})] gen_relations = buckets[_dict_as_key({'is_relation': True, 'is_generated': True})] relation_keys = set(iterkeys(gen_relations)) combined = dict(gen_values, **gen_relations) for attr, generator in self.sorted_by_generated_order(combined, other_prioritized=relation_keys): generator(fixture) return fixture @classmethod def get_relationships(cls): raise NotImplementedError def sorted_by_generated_order(self, data, other_prioritized={}): def _sort(_tuple): attr = _tuple[0] try: # Attributes in self.generated_field order prioritized before everything else return self.generated_field_order.index(attr) except: # lower number if a prioritized attribute return len(self.generated_field_order) + int(attr not in other_prioritized) return sorted(iteritems(data), key=_sort) def update_fixtures_with_data(self, data, fixtures=None): fixtures = fixtures or self.fixtures for i, d in enumerate(data): for key, val in iteritems(d): setattr(fixtures[i], key, val) def single_fixup(self, data=None, defaults=None, default_overrides={}, **kwargs): data = data or {} # Get model values through mix of default values and passed in values defaults = dict(defaults or self.defaults, **default_overrides) model_values = dict(defaults, **data) # Generate model's primary key value if it has a primary key if self.attr_key and not model_values.get(self.attr_key): model_values[self.attr_key] = self.get_model_id() fixture = self.set_fixture_values(model_values) # Check to make sure required attibutes have been set for attr in self.required_attributes: if getattr(fixture, attr, None) is None: raise Exception('%s is not set for %s' % (attr, str(fixture))) self.fixtures.append(fixture) return fixture def fixup(self, data=None, **kwargs): if isinstance(data, list): fixtures = [] for d in data: fixtures.append(self.single_fixup(data=d, **kwargs)) return fixtures else: return self.single_fixup(data=data, **kwargs)
{ "repo_name": "Rhathe/fixtureupper", "path": "fixtureupper/model.py", "copies": "1", "size": "12419", "license": "mit", "hash": -1515020694854973000, "line_mean": 33.8848314607, "line_max": 118, "alpha_frac": 0.5932039617, "autogenerated": false, "ratio": 4.117705570291777, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5210909531991778, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) from copy import deepcopy import datetime from decimal import Decimal from future.utils import iteritems import inspect import json import operator import os from random import Random from six import with_metaclass from sqlalchemy.inspection import inspect as sqlalchemy_inspect # Watch when new FixtureUppers are created and register them to the class's global dictionary class UpperWatcher(type): def __init__(cls, name, bases, clsdict): cls._UPPER_KEY = cls.get_upper_class_key() if cls._UPPER_KEY: cls._upper_classes[cls._UPPER_KEY] = cls super(UpperWatcher, cls).__init__(name, bases, clsdict) class BaseFixtureUpper(with_metaclass(UpperWatcher, object)): _upper_classes = {} upper_aliases = {} all_fixtures_order = [] def __init__(self, start_id=1, seed=None, upper_instances=None, **kwargs): self.start_id = start_id self.seed = seed self.fixtures = [] self.defaults = getattr(self, 'defaults', {}) self.seed_random() if upper_instances is None: upper_instances = {} self.upper_instances = upper_instances # Save most recent instance of upper # to upper map if getattr(self, '_UPPER_KEY', None): self.upper_instances[self._UPPER_KEY] = self @classmethod def get_upper_class_key(cls): # Don't register Base Fixture Upper Classes if cls.__name__ == 'BaseFixtureUpper': return None key = cls.__name__ if key in cls._upper_classes: raise Exception('Fixture Upper with name %s exists, use another name' % key) return key @classmethod def sorted_fixtures_key(cls, f): return f def get_all_fixtures(self): list_of_lists = iter([ instance.fixtures for key, instance in iteritems(self.upper_instances) ]) return sorted( iter([fixture for fixture_list in list_of_lists for fixture in fixture_list]), key=self.sorted_fixtures_key ) def seed_random(self, seed=None): seed = seed or self.seed self.random = Random() self.random.seed(seed) def get_passed_kwarg_keys(self): return ['start_id', 'seed'] def get_upper(self, key, **kwargs): # Get alias of key if available key = self.upper_aliases.get(key, key) if key not in self.upper_instances: kwargs['upper_instances'] = self.upper_instances for kw in self.get_passed_kwarg_keys(): if not kwargs.get(kw): kwargs[kw] = getattr(self, kw) self._upper_classes[key](**kwargs) return self.upper_instances[key] def randint(self, *args): return self.random.randint(*args) def override_defaults(self, defaults): # Make sure global class defaults are not overridden self.defaults = dict(deepcopy(self.defaults), **defaults) def reset_defaults(self): self.defaults = self.__class__.defaults def fixup(self, **kwargs): raise NotImplementedError
{ "repo_name": "Rhathe/fixtureupper", "path": "fixtureupper/base.py", "copies": "1", "size": "3259", "license": "mit", "hash": -2018741662184129300, "line_mean": 28.8990825688, "line_max": 93, "alpha_frac": 0.615526235, "autogenerated": false, "ratio": 4.109709962168979, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.00030149783410579075, "num_lines": 109 }
from __future__ import (absolute_import, division, print_function, unicode_literals) from gatspy.periodic import LombScargleFast from gatspy.periodic import LombScargle import matplotlib.pyplot as plt import mousestyles.data as data from mousestyles.visualization.plot_lomb_scargle import lombscargle_visualize import numpy as np import pandas as pd import statsmodels.api as sm import statsmodels.formula.api as smf from scipy.stats import chi2 plt.style.use('ggplot') INTERVAL_FEATURES = ["AS", "F", "M_AS", "M_IS", "W"] ALL_FEATURES = ["AS", "F", "M_AS", "M_IS", "W", "Distance"] METHOD = ["LombScargleFast", "LombScargle"] def aggregate_interval(strain, mouse, feature, bin_width): """ Aggregate the interval data based on n-minute time intervals, return a time series. Parameters ---------- strain: int nonnegative integer indicating the strain number mouse: int nonnegative integer indicating the mouse number feature: {"AS", "F", "M_AS", "M_IS", "W"} "AS": Active state probalibity "F": Food consumed (g) "M_AS": Movement outside homebase "M_IS": Movement inside homebase "W": Water consumed (g) bin_width: number of minutes of time interval for data aggregation Returns ------- ts: pandas.tseries a pandas time series of length 12(day)*24(hour)*60(minute)/n """ # Input Check if (not isinstance(strain, int)) or (strain < 0): raise ValueError( 'Strain must be a non-negative integer') if (not isinstance(mouse, int)) or (mouse < 0): raise ValueError( 'Mouse value must be a non-negative integer') if feature not in INTERVAL_FEATURES: raise ValueError( 'Input value must in {"AS", "F", "M_AS", "M_IS", "W"}') if (not isinstance(bin_width, int)) or bin_width < 0 or bin_width > 1440: raise ValueError( 'Bin width (minutes) must be a non-negative integer below 1440') # load data intervals = data.load_intervals(feature) mouse_data = intervals.loc[ (intervals['strain'] == strain) & (intervals['mouse'] == mouse)] # build data frame days = sorted(np.unique(mouse_data['day'])) bin_count = int(24 * 60 / bin_width) time_behaviour = np.repeat(0.0, bin_count * len(days)) bin_length = bin_width * 60 for j in days: df = mouse_data.loc[mouse_data['day'] == j] start_end = data.load_start_time_end_time(strain, mouse, j) start = np.asarray(df['start']) - start_end[0] end = np.asarray(df['stop']) - start_end[0] for i in range(len(start)): start_time = start[i] end_time = end[i] start_index = int(start_time / (bin_width * 60)) end_index = int(end_time / (bin_width * 60)) if start_index == end_index: time_behaviour[start_index + j * bin_count] += end_time - start_time elif end_index - start_index == 1: time_behaviour[ start_index + j * bin_count] += bin_length * end_index - start_time time_behaviour[end_index + j * bin_count] += end_time % bin_length else: time_behaviour[ start_index + j * bin_count] += bin_length * (start_index + 1) - start_time time_behaviour[end_index + j * bin_count] += end_time % bin_length time_behaviour[start_index + j * bin_count + 1:end_index + j * bin_count] += bin_length if feature == 'F' or feature == 'W': all_feature = data.load_all_features() group = all_feature[ ["strain", "mouse", "day", "hour", "Food", "Water"]].groupby( ["strain", "mouse", "day"]).sum() group = group.reset_index() mouse_data = group.loc[(group['strain'] == strain) & (group['mouse'] == mouse)].copy() mouse_data.loc[:, 'day'] = np.arange(len(mouse_data)) for i in mouse_data['day'].astype('int'): if feature == 'F': food_amount = float(mouse_data['Food'][mouse_data['day'] == i]) time_behaviour[ (bin_count * i):(bin_count * (i + 1))] /= sum( time_behaviour[(bin_count * i):(bin_count * (i + 1))]) time_behaviour[(bin_count * i):(bin_count * (i + 1))] *= food_amount else: food_amount = float(mouse_data['Water'][ mouse_data['day'] == i]) time_behaviour[ (bin_count * i):(bin_count * (i + 1))] /= sum( time_behaviour[(bin_count * i):(bin_count * (i + 1))]) time_behaviour[(bin_count * i):(bin_count * (i + 1))] *= food_amount if feature == 'AS': time_behaviour /= (bin_width * 60) ts = pd.Series(time_behaviour, index=pd.date_range( '01/01/2014', periods=len(time_behaviour), freq=str(bin_width) + 'min')) return ts def aggregate_movement(strain, mouse, bin_width): """ Aggregate the movement data based on n-minute time intervals, return a time series. Parameters ---------- strain: int nonnegative integer indicating the strain number mouse: int nonnegative integer indicating the mouse number bin_width: number of minutes of time interval for data aggregation Returns ------- ts: pandas.tseries a pandas time series of length (#day)*24(hour)*60(minute)/n """ # Input Check if (not isinstance(strain, int)) or (strain < 0): raise ValueError( 'Strain must be a non-negative integer') if (not isinstance(mouse, int)) or (mouse < 0): raise ValueError( 'Mouse value must be a non-negative integer') if (not isinstance(bin_width, int)) or bin_width < 0 or bin_width > 1440: raise ValueError( 'Bin width (minutes) must be a non-negative integer below 1440') # determine number of days intervals = data.load_intervals('IS') mouse_data = intervals.loc[ (intervals['strain'] == strain) & (intervals['mouse'] == mouse)] days = sorted(np.unique(mouse_data['day'])) # build data frame bin_count = int(24 * 60 / bin_width) time_movements = np.repeat(0.0, bin_count * len(days)) bin_length = bin_width * 60 for j in days: M = data.load_movement(strain, mouse, day=int(j)) distance_df = pd.DataFrame({"start": M["t"].values[0:-1], "end": M["t"].values[1:], "distance": np.linalg.norm(M[["x", "y"]].values[1:] - M[["x", "y"]].values[0:-1], axis=1)}) start_end = data.load_start_time_end_time(strain, mouse, j) start = np.asarray(distance_df['start']) - start_end[0] end = np.asarray(distance_df['end']) - start_end[0] dist = distance_df['distance'] for i in range(len(start)): start_time = start[i] end_time = end[i] start_index = int(start_time / (bin_width * 60)) end_index = int(end_time / (bin_width * 60)) if start_index == end_index: time_movements[start_index + j * bin_count] += dist[i] else: time_movements[ end_index + j * bin_count] += end_time % \ bin_length / (end_time - start_time) * dist[i] time_movements[ start_index + j * bin_count] += dist[i] - \ end_time % bin_length / (end_time - start_time) * dist[i] ts = pd.Series(time_movements, index=pd.date_range( '01/01/2014', periods=len(time_movements), freq=str(bin_width) + 'min')) return ts def aggregate_data(feature, bin_width, nmouse=4, nstrain=3): r""" Aggregate all the strains and mouses with any feature together in one dataframe. It combines the results you got from aggregate_movements and aggregate_interval. It will return a dataframe with three variables: mouse, strain, feature and hour. Parameters ---------- feature : {"AS", "F", "IS", "M_AS", "M_IS", "W", "Distance"} bin_width : int Number of minutes, the time interval for data aggregation. Returns ------- pandas.dataframe describe : Column 0: the mouse number (number depends on strain)(0-3) Column 1: the strain of the mouse (0-2) Column 2: hour(numeric values below 24 accourding to bin_width) Column 3: feature values Examples -------- >>> test = aggregate_data("Distance",20) >>> print(np.mean(test["Distance"])) 531.4500177747973 """ if feature not in ALL_FEATURES: raise ValueError( 'Input value must in {"AS", "F", "M_AS", "M_IS", "W", "Distance"}') if (not isinstance(bin_width, int)) or bin_width < 0 or bin_width > 1440: raise ValueError( 'Bin width (minutes) must be a non-negative integer below 1440') init = pd.DataFrame(columns=["mouse", "strain", "hour", feature]) for i in range(nstrain): for j in range(nmouse): if feature == "Distance": tmp = aggregate_movement(strain=i, mouse=j, bin_width=bin_width) else: tmp = aggregate_interval(strain=i, mouse=j, feature=feature, bin_width=bin_width) tmp = pd.DataFrame(list(tmp.values), index=tmp.index) tmp.columns = [feature] tmp["strain"] = i tmp["mouse"] = j tmp["hour"] = tmp.index.hour + tmp.index.minute / 60 init = init.append(tmp) return init def seasonal_decomposition(strain, mouse, feature, bin_width, period_length): """ Apply seasonal decomposition model on the time series of specified strain, mouse, feature and bin_width. Parameters ---------- strain: int nonnegative integer indicating the strain number mouse: int nonnegative integer indicating the mouse number feature: {"AS", "F", "M_AS", "M_IS", "W", "Distance"} "AS": Active state probalibity "F": Food consumed (g) "M_AS": Movement outside homebase "M_IS": Movement inside homebase "W": Water consumed (g) "Distance": Distance traveled bin_width: int number of minutes, the time interval for data aggregation period_length: int or float number of hours, usually the significant period length indicated by Lomb-scargle model Returns ------- res: statsmodel seasonal decomposition object seasonal decomposition result for the mouse. Check the seasonal decomposition plot by res.plot(), seasonl term and trend term by res.seasonal and res.trend separately. Examples -------- >>> res = seasonal_decomposition(strain=0, mouse=0, feature="W", bin_width=30, period_length = 24) """ if (not isinstance(strain, int)) or (strain < 0): raise ValueError( 'Strain must be a non-negative integer') if (not isinstance(mouse, int)) or (mouse < 0): raise ValueError( 'Mouse value must be a non-negative integer') if feature not in ALL_FEATURES: raise ValueError( 'Input value must in {"AS", "F", "M_AS", "M_IS", "W", "Distance"}') if (not isinstance(bin_width, int)) or bin_width < 0 or bin_width > 1440: raise ValueError( 'Bin width (minutes) must be a non-negative integer below 1440') if period_length < 0: raise ValueError( 'Peoriod length must be a non-negative integer or float') freq = int(period_length * 60 / bin_width) if feature == "Distance": ts = aggregate_movement(strain=strain, mouse=mouse, bin_width=bin_width) else: ts = aggregate_interval(strain=strain, mouse=mouse, feature=feature, bin_width=bin_width) res = sm.tsa.seasonal_decompose(ts.values, freq=freq, model="additive") return res def strain_seasonal(strain, mouse, feature, bin_width, period_length): """ Use seansonal decomposition model on the time series of specified strain, mouse, feature and bin_width. return the seasonal term and the plot of seasonal term by mouse of a set of mouses in a strain Parameters ---------- strain: int nonnegative integer indicating the strain number mouse: list, set or tuple nonnegative integer indicating the mouse number feature: {"AS", "F", "M_AS", "M_IS", "W", "Distance"} "AS": Active state probalibity "F": Food consumed (g) "M_AS": Movement outside homebase "M_IS": Movement inside homebase "W": Water consumed (g) "Distance": Distance traveled bin_width: int number of minutes, the time interval for data aggregation period_length: int or float number of hours, usually the significant period length indicated by Lomb-scargle model Returns ------- seasonal_all: numpy array containing the seasonal term for every mouse indicated by the input parameter Examples -------- >>> res = strain_seasonal(strain=0, mouse={0, 1, 2, 3}, feature="W", bin_width=30, period_length = 24) """ if (not isinstance(strain, int)) or (strain < 0): raise ValueError( 'Strain must be a non-negative integer') if (not all([isinstance(m, int) for m in mouse])) or (any([m < 0 for m in mouse])): raise ValueError( 'Mouse value must be a non-negative integer') if feature not in ALL_FEATURES: raise ValueError( 'Input value must in {"AS", "F", "M_AS", "M_IS", "W", "Distance"}') if (not isinstance(bin_width, int)) or bin_width < 0 or bin_width > 1440: raise ValueError( 'Bin width (minutes) must be a non-negative integer below 1440') if period_length < 0: raise ValueError( 'Peoriod length must be a non-negative integer or float') # seasonal decomposition seasonal_all = np.array([]) freq = int(period_length * 60 / bin_width) for m in mouse: res = seasonal_decomposition( strain, m, feature, bin_width, period_length) seasonal_all = np.append(seasonal_all, res.seasonal[0:freq]) seasonal_all = seasonal_all.reshape([len(mouse), -1]) return seasonal_all def find_cycle(feature, strain, mouse=None, bin_width=15, methods='LombScargleFast', disturb_t=False, gen_doc=False, plot=True, search_range_fit=None, nyquist_factor=3, n_cycle=10, search_range_find=(2, 26), sig=np.array([0.05])): """ Use Lomb-Scargel method on different strain and mouse's data to find the best possible periods with highest p-values. The function can be used on specific strains and specific mouses, as well as just specific strains without specifying mouse number. We use the O(NlogN) fast implementation of Lomb-Scargle from the gatspy package, and also provide a way to visualize the result. Note that either plotting or calculating L-S power doesn't use the same method in finding best cycle. The former can use user-specified search_range, while the latter uses default two grid search_range. Parameters ---------- feature: string in {"AS", "F", "M_AS", "M_IS", "W", "Distance"} "AS": Active state probalibity "F": Food consumed (g) "M_AS": Movement outside homebase "M_IS": Movement inside homebase "W": Water consumed (g) "Distance": Distance traveled strain: int nonnegative integer indicating the strain number mouse: int, default is None nonnegative integer indicating the mouse number bin_width: int, minute unit, default is 15 minutes number of minutes, the time interval for data aggregation methods: string in {"LombScargleFast", "LombScargle"} indicating the method used in determining periods and best cycle. If choose 'LombScargle', 'disturb_t' must be True. disturb_t: boolean, default is False If True, add uniformly distributed noise to the time sequence which are used to fit the Lomb Scargle model. This is to avoid the singular matrix error that could happen sometimes. plot: boolean, default is True If True, call the visualization function to plot the Lomb Scargle power versus periods plot. First use the data (either strain specific or strain-mouse specific) to fit the LS model, then use the search_range_fit as time sequence to predict the corresponding LS power, at last draw the plot out. There will also be stars and horizontal lines indicating the p-value of significance. Three stars will be p-value in [0,0.001], two stars will be p-value in [0.001,0.01], one star will be p-value in [0.01,0.05]. The horizontal line is the LS power that has p-value of 0.05. search_range_fit: list, numpy array or numpy arange, hours unit, default is None list of numbers as the time sequence to predict the corrsponding Lomb Scargle power. If plot is 'True', these will be drawn as the x-axis. Note that the number of search_range_fit points can not be too small, or the prediction smooth line will not be accurate. However the plot will always give the right periods and their LS power with 1,2 or 3 stars. This could be a sign to check whether search_range_fit is not enough to draw the correct plot. We recommend the default None, which is easy to use. nyquist_factor: int If search_range_fit is None, the algorithm will automatically choose the periods sequence. 5 * nyquist_factor * length(time sequence) / 2 gives the number of power and periods used to make LS prediction and plot the graph. n_cycle: int, default is 10 numbers of periods to be returned by function, which have the highest Lomb Scargle power and p-value. search_range_find: list, tuple or numpy array with length of 2, default is (2,26), hours unit Range of periods to be searched for best cycle. Note that the minimum should be strictly larger than 0 to avoid 1/0 issues. sig: list or numpy array, default is [0.05]. significance level to be used for plot horizontal line. gen_doc: boolean, default is False If true, return the parameters needed for visualize the LS power versus periods Returns ------- cycle: numpy array of length 'n_cycle' The best periods with highest LS power and p-values. cycle_power: numpy array of length 'n_cycle' The corrsponding LS power of 'cycle'. cycle_pvalue: numpy array of length 'n_cycle' The corrsponding p-value of 'cycle'. periods: numpy array of the same length with 'power' use as time sequence in LS model to make predictions.Only return when gen_doc is True. power: numpy array of the same length with 'periods' the corresponding predicted power of periods. Only return when gen_doc is True. sig: list, tuple or numpy array, default is [0.05]. significance level to be used for plot horizontal line. Only return when gen_doc is True. N: int the length of time sequence in the fit model. Only return when gen_doc is True. Examples ------- >>> a,b,c = find_cycle(feature='F', strain = 0,mouse = 0, plot=False,) >>> print(a,b,c) >>> [ 23.98055016 4.81080233 12.00693952 6.01216335 8.0356203 3.4316698 2.56303353 4.9294791 21.37925713 3.5697756 ] [ 0.11543449 0.05138839 0.03853218 0.02982237 0.02275952 0.0147941 0.01151601 0.00998443 0.00845883 0.0082382 ] [ 0.00000000e+00 3.29976046e-10 5.39367189e-07 8.10528027e-05 4.71001953e-03 3.70178834e-01 9.52707020e-01 9.99372657e-01 9.99999981e-01 9.99999998e-01] """ if feature not in ALL_FEATURES: raise ValueError( 'Input value must in {"AS", "F", "M_AS", "M_IS", "W", "Distance"}') if methods not in METHOD: raise ValueError( 'Input value must in {"LombScargleFast","LombScargle"}') # get data if mouse is None: data_all = aggregate_data(feature=feature, bin_width=bin_width) n_mouse_in_strain = len( set(data_all.loc[data_all['strain'] == strain]['mouse'])) data = [[] for i in range(n_mouse_in_strain)] t = [[] for i in range(n_mouse_in_strain)] for i in range(n_mouse_in_strain): data[i] = data_all.loc[(data_all['strain'] == strain) & ( data_all['mouse'] == i)][feature] t[i] = np.array(np.arange(0, len(data[i]) * bin_width / 60, bin_width / 60)) data = [val for sublist in data for val in sublist] N = len(data) t = [val for sublist in t for val in sublist] else: if feature == 'Distance': data = aggregate_movement( strain=strain, mouse=mouse, bin_width=bin_width) N = len(data) t = np.arange(0, N * bin_width / 60, bin_width / 60) else: data = aggregate_interval( strain=strain, mouse=mouse, feature=feature, bin_width=bin_width) N = len(data) t = np.arange(0, N * bin_width / 60, bin_width / 60) y = data # fit model if disturb_t is True: t = t + np.random.uniform(-bin_width / 600, bin_width / 600, N) if methods == 'LombScargleFast': model = LombScargleFast(fit_period=False).fit(t=t, y=y) elif methods == 'LombScargle': model = LombScargle(fit_period=False).fit(t=t, y=y) # calculate periods' LS power if search_range_fit is None: periods, power = model.periodogram_auto(nyquist_factor=nyquist_factor) else: periods = search_range_fit power = model.periodogram(periods=search_range_fit) # find best cycle model.optimizer.period_range = search_range_find cycle, cycle_power = model.find_best_periods( return_scores=True, n_periods=n_cycle) cycle_pvalue = 1 - (1 - np.exp(cycle_power / (-2) * (N - 1))) ** (2 * N) # visualization if plot is True: lombscargle_visualize(periods=periods, power=power, sig=sig, N=N, cycle_power=cycle_power, cycle_pvalue=cycle_pvalue, cycle=cycle) if gen_doc is True: return periods, power, sig, N, cycle, cycle_power, cycle_pvalue return cycle, cycle_power, cycle_pvalue def mix_strain(data, feature, print_opt=True, nstrain=3, search_range=(3, 12), degree=1): """ Fit the linear mixed model onto our aggregate data. The fixed effects are the hour, strain, interactions between hour and strain; The random effect is mouse because we want to make sure that the different mouses will not give out any differences. We added two dummy variables: strain0 and strain1 to be our fixed effects. Parameters ---------- data: data frame output from aggregate_data function feature: {"AS", "F", "IS", "M_AS", "M_IS", "W", "Distance"} print_opt: True or False nstrain: positive integer range: array contains two elements degree: positive integer Returns ------- Two mixed model regression results which includes all the coefficients, t statistics and p values for corresponding coefficients; The first model includes interaction terms while the second model does not include the interaction terms Likelihood ratio test p values, if it is below our significance level, we can conclude that the different strains have significantly different time patterns Examples -------- >>> result = mix_strain(data = aggregate_data("F",30), feature = "F", >>> print_opt = False, degree = 2) >>> print(result) 2.5025846540930469e-09 """ if not isinstance(data, pd.DataFrame): raise ValueError( 'Data must be a pandas data frame') if feature not in ALL_FEATURES: raise ValueError( 'Input value must in {"AS", "F", "M_AS", "M_IS", "W", "Distance"}') data["cycle"] = 0 for i in range(nstrain): result = find_cycle(feature="W", strain=i, plot=False, search_range_find=search_range) cycle = result[0][0] data.loc[data["strain"] == i, "cycle"] = cycle b = pd.get_dummies(data["strain"]) data["strain0"] = b.ix[:, 0] data["strain1"] = b.ix[:, 1] data["strain2"] = b.ix[:, 2] data["hour2"] = np.array(data["hour"].values)**degree data = data.drop('strain', 1) names = data.columns.tolist() names[names.index(feature)] = 'feature' data.columns = names if degree == 1: md1 = smf.mixedlm("feature ~ hour + strain0 + strain1 + cycle \ + strain0*hour + strain1*hour", data, groups=data["mouse"]) else: md1 = smf.mixedlm("feature ~ hour + hour2 + strain0 + strain1 + \ strain0*hour+ strain1*hour + strain0*hour2+ \ strain1*hour2", data, groups=data["mouse"]) mdf1 = md1.fit() like1 = mdf1.llf if print_opt: print(mdf1.summary()) if degree == 1: md2 = smf.mixedlm("feature ~ hour + cycle + strain0 \ + strain1", data, groups=data["mouse"]) else: md2 = smf.mixedlm("feature ~ hour + hour2 + cycle + strain0 + \ strain1", data, groups=data["mouse"]) mdf2 = md2.fit() like2 = mdf2.llf if print_opt: print(mdf2.summary()) fstat = 2 * abs(like1 - like2) p_v = chi2.pdf(fstat, df=2) return p_v
{ "repo_name": "togawa28/mousestyles", "path": "mousestyles/ultradian/__init__.py", "copies": "3", "size": "26924", "license": "bsd-2-clause", "hash": -9176317693295174000, "line_mean": 39.1251862891, "line_max": 79, "alpha_frac": 0.5833085723, "autogenerated": false, "ratio": 3.7603351955307263, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5843643767830726, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) from itertools import cycle import numpy as np import matplotlib as mpl from matplotlib import pyplot as plt from .utils import mask_to_sky __all__ = ['plot_mask', 'plot_galaxy'] def slit_patches(mask, color=None, sky_coords=False, center=None): ''' Constructs mpl patches for the slits of a mask. If sky_coords is true, output in relative ra/dec. galaxy center is necessary for sky_coords ''' patches = [] for slit in mask.slits: x = slit.x y = slit.y dx = slit.length dy = slit.width # bottom left-hand corner if sky_coords: L = np.sqrt(dx**2 + dy**2) / 2 alpha = np.tan(dy / dx) phi = np.pi / 2 - np.radians(slit.pa) delta_x = L * (np.cos(alpha + phi) - np.cos(alpha)) delta_y = L * (np.sin(alpha + phi) - np.sin(alpha)) ra, dec = mask_to_sky(x - dx / 2, y - dy / 2, mask.mask_pa) blc0 = (ra, dec) angle = (90 - slit.pa) blc = (ra + delta_x, dec - delta_y) # blc = (ra + x1 + x2, dec - y1 + y2) else: blc = (x - dx / 2, y - dy / 2) angle = slit.pa - mask.mask_pa patches.append(mpl.patches.Rectangle(blc, dx, dy, angle=angle, fc=color, ec='k', alpha=0.5)) # patches.append(mpl.patches.Rectangle(blc0, dx, dy, angle=0, # fc=color, ec='k', alpha=0.1)) return patches def plot_mask(mask, color=None, writeto=None, annotate=False): '''Plot the slits in a mask, in mask coords''' fig, ax = plt.subplots() for p in slit_patches(mask, color=color, sky_coords=False): ax.add_patch(p) if annotate: for slit in mask.slits: ax.text(slit.x - 3, slit.y + 1, slit.name, size=8) xlim = mask.x_max / 2 ylim = mask.y_max / 2 lim = min(xlim, ylim) ax.set_title(mask.name) ax.set_xlim(-lim, lim) ax.set_ylim(-lim, lim) ax.set_xlabel('x offset (arcsec)', fontsize=16) ax.set_ylabel('y offset (arcsec)', fontsize=16) if writeto is not None: fig.savefig(writeto) return fig, ax def plot_galaxy(galaxy, writeto=None): '''Plot all slit masks''' fig, ax = plt.subplots() colors = cycle(['r', 'b', 'm', 'c', 'g']) handles = [] for i, mask in enumerate(galaxy.masks): color = next(colors) label = str(i + 1) + galaxy.name + ' (PA = {:.2f})'.format(mask.mask_pa) handles.append(mpl.patches.Patch(fc=color, ec='k', alpha=0.5, label=label)) for p in slit_patches(mask, color=color, sky_coords=True, center=galaxy.center): ax.add_patch(p) xlim = galaxy.masks[0].x_max / 2 ylim = galaxy.masks[0].y_max / 2 lim = min(xlim, ylim) # reverse x axis so it looks like sky ax.set_xlim(lim, -lim) # ax.set_xlim(-lim, lim) ax.set_ylim(-lim, lim) ax.set_title(galaxy.name, fontsize=16) ax.set_xlabel('RA offset (arcsec)', fontsize=16) ax.set_ylabel('Dec offset (arcsec)', fontsize=16) ax.legend(handles=handles, loc='best') if writeto is not None: fig.savefig(writeto) #, bbox_inches='tight') return fig, ax
{ "repo_name": "adwasser/masktools", "path": "masktools/superskims/plotting.py", "copies": "1", "size": "3437", "license": "mit", "hash": 4474493122683881500, "line_mean": 34.8020833333, "line_max": 80, "alpha_frac": 0.5423334303, "autogenerated": false, "ratio": 3.135948905109489, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.91571763949116, "avg_score": 0.004221188099577775, "num_lines": 96 }
from __future__ import (absolute_import, division, print_function, unicode_literals) from itertools import groupby import pkg_resources import re import sys try: import simplejson as json json # silences pyflakes :< except ImportError: import json GRAPHS = {} DICTIONARY_MATCHERS = [] def translate(string, chr_map): out = '' for char in string: out += chr_map[char] if char in chr_map else char return out #------------------------------------------------------------------------------- # dictionary match (common passwords, english, last names, etc) ---------------- #------------------------------------------------------------------------------- def dictionary_match(password, ranked_dict): result = [] length = len(password) pw_lower = password.lower() for i in range(0, length): for j in range(i, length): word = pw_lower[i:j+1] if word in ranked_dict: rank = ranked_dict[word] result.append( {'pattern':'dictionary', 'i' : i, 'j' : j, 'token' : password[i:j+1], 'matched_word' : word, 'rank': rank, }) return result def _build_dict_matcher(dict_name, ranked_dict): def func(password): matches = dictionary_match(password, ranked_dict) for match in matches: match['dictionary_name'] = dict_name return matches return func def _build_ranked_dict(unranked_list): result = {} i = 1 for word in unranked_list: result[word] = i i += 1 return result def _load_frequency_lists(): data = pkg_resources.resource_string(__name__, 'generated/frequency_lists.json') data = data.decode('utf-8') dicts = json.loads(data) for name, wordlist in list(dicts.items()): DICTIONARY_MATCHERS.append(_build_dict_matcher(name, _build_ranked_dict(wordlist))) def _load_adjacency_graphs(): global GRAPHS data = pkg_resources.resource_string(__name__, 'generated/adjacency_graphs.json') data = data.decode('utf-8') GRAPHS = json.loads(data) # on qwerty, 'g' has degree 6, being adjacent to 'ftyhbv'. '\' has degree 1. # this calculates the average over all keys. def _calc_average_degree(graph): average = 0.0 for neighbors in list(graph.values()): average += len([n for n in neighbors if n is not None]) average /= len(graph) return average _load_frequency_lists() _load_adjacency_graphs() KEYBOARD_AVERAGE_DEGREE = _calc_average_degree(GRAPHS[u'qwerty']) # slightly different for keypad/mac keypad, but close enough KEYPAD_AVERAGE_DEGREE = _calc_average_degree(GRAPHS[u'keypad']) KEYBOARD_STARTING_POSITIONS = len(GRAPHS[u'qwerty']) KEYPAD_STARTING_POSITIONS = len(GRAPHS[u'keypad']) #------------------------------------------------------------------------------- # dictionary match with common l33t substitutions ------------------------------ #------------------------------------------------------------------------------- L33T_TABLE = { 'a': ['4', '@'], 'b': ['8'], 'c': ['(', '{', '[', '<'], 'e': ['3'], 'g': ['6', '9'], 'i': ['1', '!', '|'], 'l': ['1', '|', '7'], 'o': ['0'], 's': ['$', '5'], 't': ['+', '7'], 'x': ['%'], 'z': ['2'], } # makes a pruned copy of L33T_TABLE that only includes password's possible substitutions def relevant_l33t_subtable(password): password_chars = set(password) filtered = {} for letter, subs in list(L33T_TABLE.items()): relevent_subs = [sub for sub in subs if sub in password_chars] if len(relevent_subs) > 0: filtered[letter] = relevent_subs return filtered # returns the list of possible 1337 replacement dictionaries for a given password def enumerate_l33t_subs(table): subs = [[]] def dedup(subs): deduped = [] members = set() for sub in subs: key = str(sorted(sub)) if key not in members: deduped.append(sub) return deduped keys = list(table.keys()) while len(keys) > 0: first_key = keys[0] rest_keys = keys[1:] next_subs = [] for l33t_chr in table[first_key]: for sub in subs: dup_l33t_index = -1 for i in range(0, len(sub)): if sub[i][0] == l33t_chr: dup_l33t_index = i break if dup_l33t_index == -1: sub_extension = list(sub) sub_extension.append((l33t_chr, first_key)) next_subs.append(sub_extension) else: sub_alternative = list(sub) sub_alternative.pop(dup_l33t_index) sub_alternative.append((l33t_chr, first_key)) next_subs.append(sub) next_subs.append(sub_alternative) subs = dedup(next_subs) keys = rest_keys return [dict(sub) for sub in subs] def l33t_match(password): matches = [] for sub in enumerate_l33t_subs(relevant_l33t_subtable(password)): if len(sub) == 0: break subbed_password = translate(password, sub) for matcher in DICTIONARY_MATCHERS: for match in matcher(subbed_password): token = password[match['i']:match['j'] + 1] if token.lower() == match['matched_word']: continue match_sub = {} for subbed_chr, char in list(sub.items()): if token.find(subbed_chr) != -1: match_sub[subbed_chr] = char match['l33t'] = True match['token'] = token match['sub'] = match_sub match['sub_display'] = ', '.join([("%s -> %s" % (k, v)) for k, v in list(match_sub.items())]) matches.append(match) return matches # ------------------------------------------------------------------------------ # spatial match (qwerty/dvorak/keypad) ----------------------------------------- # ------------------------------------------------------------------------------ def spatial_match(password): matches = [] for graph_name, graph in list(GRAPHS.items()): matches.extend(spatial_match_helper(password, graph, graph_name)) return matches def spatial_match_helper(password, graph, graph_name): result = [] i = 0 while i < len(password) - 1: j = i + 1 last_direction = None turns = 0 shifted_count = 0 while True: prev_char = password[j-1] found = False found_direction = -1 cur_direction = -1 adjacents = graph[prev_char] if prev_char in graph else [] # consider growing pattern by one character if j hasn't gone over the edge. if j < len(password): cur_char = password[j] for adj in adjacents: cur_direction += 1 if adj and adj.find(cur_char) != -1: found = True found_direction = cur_direction if adj.find(cur_char) == 1: # index 1 in the adjacency means the key is shifted, 0 means unshifted: A vs a, % vs 5, etc. # for example, 'q' is adjacent to the entry '2@'. @ is shifted w/ index 1, 2 is unshifted. shifted_count += 1 if last_direction != found_direction: # adding a turn is correct even in the initial case when last_direction is null: # every spatial pattern starts with a turn. turns += 1 last_direction = found_direction break # if the current pattern continued, extend j and try to grow again if found: j += 1 # otherwise push the pattern discovered so far, if any... else: if j - i > 2: # don't consider length 1 or 2 chains. result.append({ 'pattern': 'spatial', 'i': i, 'j': j-1, 'token': password[i:j], 'graph': graph_name, 'turns': turns, 'shifted_count': shifted_count, }) # ...and then start a new search for the rest of the password. i = j break return result #------------------------------------------------------------------------------- # repeats (aaa) and sequences (abcdef) ----------------------------------------- #------------------------------------------------------------------------------- def repeat_match(password): result = [] repeats = groupby(password) i = 0 for char, group in repeats: length = len(list(group)) if length > 2: j = i + length - 1 result.append({ 'pattern': 'repeat', 'i': i, 'j': j, 'token': password[i:j+1], 'repeated_char': char, }) i += length return result SEQUENCES = { 'lower': 'abcdefghijklmnopqrstuvwxyz', 'upper': 'ABCDEFGHIJKLMNOPQRSTUVWXYZ', 'digits': '01234567890', } def sequence_match(password): result = [] i = 0 while i < len(password): j = i + 1 seq = None # either lower, upper, or digits seq_name = None seq_direction = None # 1 for ascending seq abcd, -1 for dcba for seq_candidate_name, seq_candidate in list(SEQUENCES.items()): i_n = seq_candidate.find(password[i]) j_n = seq_candidate.find(password[j]) if j < len(password) else -1 if i_n > -1 and j_n > -1: direction = j_n - i_n if direction in [1, -1]: seq = seq_candidate seq_name = seq_candidate_name seq_direction = direction break if seq: while True: if j < len(password): prev_char, cur_char = password[j-1], password[j] prev_n, cur_n = seq_candidate.find(prev_char), seq_candidate.find(cur_char) if j == len(password) or cur_n - prev_n != seq_direction: if j - i > 2: # don't consider length 1 or 2 chains. result.append({ 'pattern': 'sequence', 'i': i, 'j': j-1, 'token': password[i:j], 'sequence_name': seq_name, 'sequence_space': len(seq), 'ascending': seq_direction == 1, }) break else: j += 1 i = j return result #------------------------------------------------------------------------------- # digits, years, dates --------------------------------------------------------- #------------------------------------------------------------------------------- def match_all(password, pattern_name, regex): out = [] for match in regex.finditer(password): i = match.start() j = match.end() out.append({ 'pattern' : pattern_name, 'i' : i, 'j' : j, 'token' : password[i:j+1] }) return out DIGITS_MATCH = re.compile(r'\d{3,}') def digits_match(password): return match_all(password, 'digits', DIGITS_MATCH) YEAR_MATCH = re.compile(r'19\d\d|200\d|201\d') def year_match(password): return match_all(password, 'year', YEAR_MATCH) def date_match(password): l = date_without_sep_match(password) l.extend(date_sep_match(password)) return l DATE_WITHOUT_SEP_MATCH = re.compile(r'\d{4,8}') def date_without_sep_match(password): date_matches = [] for digit_match in DATE_WITHOUT_SEP_MATCH.finditer(password): i, j = digit_match.start(), digit_match.end() token = password[i:j+1] end = len(token) candidates_round_1 = [] # parse year alternatives if len(token) <= 6: # 2-digit year prefix candidates_round_1.append({ 'daymonth': token[2:], 'year': token[0:2], 'i': i, 'j': j, }) # 2-digit year suffix candidates_round_1.append({ 'daymonth': token[0:end-2], 'year': token[end-2:], 'i': i, 'j': j, }) if len(token) >= 6: # 4-digit year prefix candidates_round_1.append({ 'daymonth': token[4:], 'year': token[0:4], 'i': i, 'j': j, }) # 4-digit year suffix candidates_round_1.append({ 'daymonth': token[0:end-4], 'year': token[end-4:], 'i': i, 'j': j, }) candidates_round_2 = [] # parse day/month alternatives for candidate in candidates_round_1: if len(candidate['daymonth']) == 2: # ex. 1 1 97 candidates_round_2.append({ 'day': candidate['daymonth'][0], 'month': candidate['daymonth'][1], 'year': candidate['year'], 'i': candidate['i'], 'j': candidate['j'], }) elif len(candidate['daymonth']) == 3: # ex. 11 1 97 or 1 11 97 candidates_round_2.append({ 'day': candidate['daymonth'][0:2], 'month': candidate['daymonth'][2], 'year': candidate['year'], 'i': candidate['i'], 'j': candidate['j'], }) candidates_round_2.append({ 'day': candidate['daymonth'][0], 'month': candidate['daymonth'][1:3], 'year': candidate['year'], 'i': candidate['i'], 'j': candidate['j'], }) elif len(candidate['daymonth']) == 4: # ex. 11 11 97 candidates_round_2.append({ 'day': candidate['daymonth'][0:2], 'month': candidate['daymonth'][2:4], 'year': candidate['year'], 'i': candidate['i'], 'j': candidate['j'], }) # final loop: reject invalid dates for candidate in candidates_round_2: try: day = int(candidate['day']) month = int(candidate['month']) year = int(candidate['year']) except ValueError: continue valid, (day, month, year) = check_date(day, month, year) if not valid: continue date_matches.append( { 'pattern': 'date', 'i': candidate['i'], 'j': candidate['j'], 'token': password[i:j+1], 'separator': '', 'day': day, 'month': month, 'year': year, }) return date_matches DATE_RX_YEAR_SUFFIX = re.compile(r"(\d{1,2})(\s|-|/|\\|_|\.)(\d{1,2})\2(19\d{2}|200\d|201\d|\d{2})") #DATE_RX_YEAR_SUFFIX = "(\d{1,2})(\s|-|/|\\|_|\.)" DATE_RX_YEAR_PREFIX = re.compile(r"(19\d{2}|200\d|201\d|\d{2})(\s|-|/|\\|_|\.)(\d{1,2})\2(\d{1,2})") def date_sep_match(password): matches = [] for match in DATE_RX_YEAR_SUFFIX.finditer(password): day, month, year = tuple(int(match.group(x)) for x in [1, 3, 4]) matches.append( { 'day' : day, 'month' : month, 'year' : year, 'sep' : match.group(2), 'i' : match.start(), 'j' : match.end() }) for match in DATE_RX_YEAR_PREFIX.finditer(password): day, month, year = tuple(int(match.group(x)) for x in [4, 3, 1]) matches.append( { 'day' : day, 'month' : month, 'year' : year, 'sep' : match.group(2), 'i' : match.start(), 'j' : match.end() }) out = [] for match in matches: valid, (day, month, year) = check_date(match['day'], match['month'], match['year']) if not valid: continue out.append({ 'pattern': 'date', 'i': match['i'], 'j': match['j']-1, 'token': password[match['i']:match['j']], 'separator': match['sep'], 'day': day, 'month': month, 'year': year, }) return out def check_date(day, month, year): if 12 <= month <= 31 and day <= 12: # tolerate both day-month and month-day order day, month = month, day if day > 31 or month > 12: return (False, (0, 0, 0)) if not (1900 <= year <= 2019): return (False, (0, 0, 0)) return (True, (day, month, year)) MATCHERS = list(DICTIONARY_MATCHERS) MATCHERS.extend([ l33t_match, digits_match, year_match, date_match, repeat_match, sequence_match, spatial_match ]) def omnimatch(password, user_inputs=[]): ranked_user_inputs_dict = {} for i, user_input in enumerate(user_inputs): ranked_user_inputs_dict[user_input.lower()] = i+1 user_input_matcher = _build_dict_matcher('user_inputs', ranked_user_inputs_dict) matches = user_input_matcher(password) for matcher in MATCHERS: matches.extend(matcher(password)) matches.sort(key=lambda x : (x['i'], x['j'])) return matches
{ "repo_name": "moreati/python-zxcvbn", "path": "zxcvbn/matching.py", "copies": "1", "size": "18275", "license": "mit", "hash": -609420198228645100, "line_mean": 32.7800369686, "line_max": 120, "alpha_frac": 0.4584404925, "autogenerated": false, "ratio": 4.065628476084538, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5024068968584539, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) from jumpdir.directories import Directories from jumpdir.pathfinder import PathFinder from jumpdir.bookmarks import Bookmarks import argparse import os import sys HOME = os.getenv('HOME') DATA_DIR = os.path.join(HOME, '.jumpdir') BOOKMARKS = os.path.join(DATA_DIR, '.jdbookmarks.json') CACHE_FILE = os.path.join(DATA_DIR, '.jdcache.json') if not os.path.isdir(DATA_DIR): os.mkdir(DATA_DIR) def parse_args(args): """Parse list/tuple of arguments with argparse module - **Parameters** and **returns**:: :param list args: arguments to be parsed :returns namespace: parsed arguments """ parser = argparse.ArgumentParser(description='jumpdir') subparsers = parser.add_subparsers(help='sub-command help', dest='commands') # jumpdir search ... parser_search = subparsers.add_parser('search', help='search home directory for a directory matching given search term') parser_search.add_argument('search_term', help='directory name to search for (case insensitive).',) parser_search.set_defaults(which='search') # jumpdir add ... parser_add = subparsers.add_parser('add', help='add bookmark') parser_add.add_argument('name', help='name of bookmark to add') parser_add.add_argument('-p', '--path', default=os.getcwd(), help="define path that bookmark points to") # jumpdir delete ... parser_delete = subparsers.add_parser('delete', help='delete bookmark') parser_delete.add_argument('name', help='name of bookmark to remove') # jumpdir list ... subparsers.add_parser('list', help='list saved bookmarks') return parser.parse_args(args) def run_search(search_term, bookmarks): if search_term == HOME: return HOME # Check bookmarks try: return bookmarks[search_term] except KeyError: pass # Check cache ddict = Directories(HOME, CACHE_FILE) try: return ddict.shallowest_path_to(search_term) except KeyError: pass # Remap home folder and check for match ddict.map_directories() try: return ddict.shallowest_path_to(search_term) except (KeyError, IndexError): pass def main(argv=sys.argv[1:]): if len(argv) < 1: raise ValueError("error: no commands given") args = parse_args(argv) bookmarks = Bookmarks(BOOKMARKS) # Sub command logic if not args.commands: raise ValueError("error: command not recognised") elif args.commands == 'add': bookmarks.add_bookmark(args.name, args.path) raise SystemExit elif args.commands == 'delete': bookmarks.del_bookmark(args.name) raise SystemExit elif args.commands == 'list': bookmarks.list_bookmarks() raise SystemExit else: return run_search(args.search_term, bookmarks) if __name__ == '__main__': main()
{ "repo_name": "cgmcintyr/jumpdir", "path": "jumpdir/main.py", "copies": "2", "size": "3041", "license": "mit", "hash": 9053473243663789000, "line_mean": 28.8137254902, "line_max": 84, "alpha_frac": 0.6484708977, "autogenerated": false, "ratio": 3.9699738903394257, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.0009914393564912597, "num_lines": 102 }
from __future__ import (absolute_import, division, print_function, unicode_literals) from mousestyles import data from mousestyles.classification import clustering def test_prep_data(): # Check prep_data return the correct dimension mouse_data = data.load_all_features() preped_data = clustering.prep_data(mouse_data) assert preped_data.shape == (170, 20) def test_hc_param(): # Check get_optimal_hc_params returns appropriate parameters mouse_data = data.load_all_features() preped_data = clustering.prep_data(mouse_data) method, dist = clustering.get_optimal_hc_params(preped_data) assert method in ['ward', 'average', 'complete'] assert dist in ['cityblock', 'euclidean', 'chebychev'] def test_fit_hc(): # Check fit_hc returns appropriate result mouse_data = data.load_all_features() preped_data = clustering.prep_data(mouse_data) mouse_day_X = preped_data[:, 2:] res = clustering.fit_hc(mouse_day_X, "average", "chebychev", num_clusters=range(2, 17)) assert len(res) == 2 assert len(res[0]) == 15 assert len(res[1][0]) == 170 assert len(set(res[1][14])) <= 16 # silhouette score should be between -1 and 1 assert all(value < 1 for value in res[0]) assert all(value > -1 for value in res[0]) def test_fit_kmeans(): # Check get_optimal_fit_kmeans returns expected result mouse_data = data.load_all_features() preped_data = clustering.prep_data(mouse_data) mouse_day_X = preped_data[:, 2:] res = clustering.get_optimal_fit_kmeans( mouse_day_X, num_clusters=range(2, 17), raw=False) assert len(res) == 2 assert len(res[0]) == 15 assert len(res[1][0]) == 170 assert len(set(res[1][14])) <= 16 # silhouette score should be between -1 and 1 assert all(value < 1 for value in res[0]) assert all(value > -1 for value in res[0]) def test_cluster_in_strain(): # Check cluster_in_strain calculate correct strain counts res = clustering.cluster_in_strain([1, 2, 1, 0, 0], [0, 1, 1, 2, 1]) assert res == {0: [0, 1, 0], 1: [1, 1, 1], 2: [1, 0, 0]}
{ "repo_name": "togawa28/mousestyles", "path": "mousestyles/classification/tests/test_clustering.py", "copies": "3", "size": "2156", "license": "bsd-2-clause", "hash": 7564547194971933000, "line_mean": 35.5423728814, "line_max": 72, "alpha_frac": 0.6410018553, "autogenerated": false, "ratio": 3.232383808095952, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5373385663395952, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) from nose.plugins.attrib import attr from nose.tools import raises import numpy as np from numpy.testing import (assert_equal, assert_almost_equal) from ..irr import (compute_ts, simulate_ts_dist, simulate_npc_dist) from ..data import nsgk R = 10 Ns = 35 from numpy.random import RandomState RNG = RandomState(42) res = RNG.binomial(1, .5, (R, Ns)) def test_irr(): rho_s = compute_ts(res) assert_almost_equal(rho_s, 0.51936507) #res = spt(group, condition, response, iterations=1000) #res1 = spt(group, condition, response, iterations=1000) #assert_less(res[1], 0.01) #assert_almost_equal(res[3], res1[3]) def test_simulate_ts_dist(): expected_res1 = {'dist': None, 'geq': 624, 'obs_ts': 0.51936507936507936, 'pvalue': 0.0624, 'num_perm': 10000} res1 = simulate_ts_dist(res, seed=42) assert_equal(res1, expected_res1) expected_res2 = {'geq': 9457, 'obs_ts': 0.46285714285714286, 'num_perm': 10000} res2 = simulate_ts_dist(res[:5], seed=42, keep_dist=True) assert_equal(res2['geq'], expected_res2['geq']) assert_equal(res2['obs_ts'], expected_res2['obs_ts']) assert_equal(res2['num_perm'], expected_res2['num_perm']) assert_equal(res2['dist'].shape, (10000,)) @attr('slow') def test_with_naomi_data(): """ Test irr functionality using Naomi data.""" x = nsgk() t = x[1] y = t[0] res = simulate_ts_dist(y, num_perm=10, keep_dist=True, seed=42) expected_res = {'dist': np.array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]), 'geq': 10, 'num_perm': 10, 'pvalue': 1, 'obs_ts': 1.0} assert_equal(res, expected_res) freq = RNG.choice([0.2, 0.8], Ns) res2 = np.zeros((R, Ns)) for i in range(len(freq)): res2[:, i] = RNG.binomial(1, freq[i], R) def test_irr_concordance(): rho_s2 = compute_ts(res2) assert_almost_equal(rho_s2, 0.70476190476190481) def test_simulate_ts_dist_concordance(): expected_res_conc = {'dist': None, 'geq': 0, 'obs_ts': 0.70476190476190481, 'pvalue': 0.0, 'num_perm': 10000} res_conc = simulate_ts_dist(res2, seed=42) assert_equal(res_conc, expected_res_conc) res1 = simulate_ts_dist(res, keep_dist=True, seed=42) res_conc = simulate_ts_dist(res2, keep_dist=True, seed=42) true_pvalue = np.array( [res1['geq'] / res1['num_perm'], res_conc['geq'] / res_conc['num_perm']]) rho_perm = np.transpose(np.vstack((res1['dist'], res_conc['dist']))) def test_simulate_npc_dist(): expected_npc_res = {'num_perm': 10000, 'obs_npc': -0.010547525099011886, 'pvalue': 0.0016} obs_npc_res = simulate_npc_dist( rho_perm, size=np.array([Ns, Ns]), pvalues=true_pvalue) assert_equal(obs_npc_res, expected_npc_res) @raises(ValueError) def test_simulate_npc_error(): simulate_npc_dist(rho_perm, size=np.array([Ns, Ns])) def test_simulate_npc_perfect(): mat1 = np.tile(np.array([1, 0, 1, 0, 0]), (5, 1)) mat2 = np.tile(np.array([0, 1, 0]), (5, 1)) videos = [mat1, mat2] time_stamps = np.array([5, 3]) d = [] # list of the permutation distributions for each video tst = [] # list of test statistics for each video pval = [] for j in range(len(videos)): # loop over videos res = simulate_ts_dist(videos[j], keep_dist=True, seed=5) d.append(res['dist']) tst.append(res['obs_ts']) pval.append(res['pvalue']) perm_distr = np.asarray(d).transpose() overall1 = simulate_npc_dist( perm_distr, size=time_stamps, pvalues=np.array(pval)) overall2 = simulate_npc_dist( perm_distr, size=time_stamps, obs_ts=tst) expected_overall = {'num_perm': 10000, 'obs_npc': -0.0076080098859340932, 'pvalue': 0.0} assert_equal(overall1, expected_overall) assert_equal(overall2, expected_overall)
{ "repo_name": "qqqube/permute", "path": "permute/tests/test_irr.py", "copies": "1", "size": "4322", "license": "bsd-2-clause", "hash": -5376585036092745000, "line_mean": 31.7424242424, "line_max": 79, "alpha_frac": 0.5666358168, "autogenerated": false, "ratio": 2.9889349930843707, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.40555708098843707, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) from pylint.checkers import BaseChecker from pylint.checkers.utils import safe_infer from pylint.interfaces import IAstroidChecker from astroid import YES, List from ..__pkginfo__ import BASE_ID class SettingsShecker(BaseChecker): __implements__ = IAstroidChecker name = 'settings' msgs = { 'E%s21' % BASE_ID: ( 'Required setting "%s" is missed', 'required-setting-missed', 'Used when required setting missed in settings file.'), 'E%s22' % BASE_ID: ( 'Empty setting "%s"', 'empty-setting', 'Used when setting is empty value.'), 'W%s21' % BASE_ID: ( 'Improper settings import', 'improper-settings-import', 'Used when settings is not imported from django.conf'), } _REQUIRED_SETTINGS = ('STATIC_ROOT', 'ALLOWED_HOSTS') @staticmethod def _is_settings_module(node): if node.name.rsplit('.', 1)[-1] == 'settings': return True return False def visit_import(self, node): if ('settings' in node.as_string() and 'django.conf' not in node.as_string()): self.add_message('improper-settings-import', node=node) def visit_from(self, node): if node.modname.rsplit('.', 1)[-1] == 'settings' or ( 'settings' in dict(node.names) and 'django.conf' not in node.modname): self.add_message('improper-settings-import', node=node) def leave_module(self, node): if self._is_settings_module(node): module_locals = node.locals for setting_name in self._REQUIRED_SETTINGS: if setting_name not in module_locals: self.add_message( 'required-setting-missed', args=setting_name, node=node) else: setting = module_locals[setting_name][-1] val = safe_infer(setting) if val is not None and val is not YES: if isinstance(val, List): is_empty = not val.elts else: is_empty = not val.value if is_empty: self.add_message('empty-setting', args=setting_name, node=setting)
{ "repo_name": "geerk/django_linter", "path": "django_linter/checkers/settings.py", "copies": "1", "size": "2509", "license": "mit", "hash": -6074785726384013000, "line_mean": 36.447761194, "line_max": 80, "alpha_frac": 0.5332801913, "autogenerated": false, "ratio": 4.325862068965518, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5359142260265517, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) from pylint.checkers import BaseChecker from pylint.interfaces import IAstroidChecker from astroid import Name, CallFunc, AssName, Getattr, Tuple, Subscript from ..__pkginfo__ import BASE_ID class ViewsChecker(BaseChecker): __implements__ = IAstroidChecker name = 'views' msgs = { 'W%s31' % BASE_ID: ( 'is_authenticated is not called', 'is-authenticated-not-called', 'Used when is_authenticated method is not called'), 'W%s32' % BASE_ID: ( 'objects.get is used without catching DoesNotExist', 'objects-get-without-doesnotexist', 'Used when Model.objects.get is used without enclosing it ' 'in try-except block to catch DoesNotExist exception.'), 'W%s33' % BASE_ID: ( 'Fetching model objects only for getting len', 'fetching-db-objects-len', 'Used when there is db query that fetches objects from ' 'database only to check the number of returned objects.'), 'W%s34' % BASE_ID: ( 'Accessing raw GET or POST data, consider using forms', 'raw-get-post-access', 'Used when request.GET or request.POST dicts is accessed ' 'directly, it is better to use forms.'), } _is_view_function = False _is_view_class = False _is_inside_try_except = False _try_except_node = None _is_len = False @staticmethod def _is_does_not_exist(node): if (isinstance(node, (Name, Getattr)) and 'DoesNotExist' in node.as_string()): return True return False @staticmethod def _is_getattr_or_name(node, name): if ((isinstance(node, Name) and node.name == name) or (isinstance(node, Getattr) and node.attrname == name)): return True return False def visit_attribute(self, node): parent = node.parent expr = node.expr if self._is_getattr_or_name(expr, 'user'): if (node.attrname == 'is_authenticated' and not isinstance(parent, CallFunc)): self.add_message('is-authenticated-not-called', node=node) elif self._is_getattr_or_name(expr, 'request'): if node.attrname in ('GET', 'POST'): if (isinstance(parent, Subscript) or isinstance(parent, Getattr) and parent.attrname == 'get'): self.add_message('raw-get-post-access', node=node) elif isinstance(parent, Getattr) and node.attrname == 'objects': if parent.attrname == 'get': if self._is_view_function or self._is_view_class: if not self._is_inside_try_except: self.add_message( 'objects-get-without-doesnotexist', node=node) else: for h in self._try_except_node.handlers: if self._is_does_not_exist(h.type): break elif isinstance(h.type, Tuple): _does_not_exist_found = False for exc_cls in h.type.elts: if self._is_does_not_exist(exc_cls): _does_not_exist_found = True break if _does_not_exist_found: break else: self.add_message( 'objects-get-without-doesnotexist', node=node) elif parent.attrname in ('all', 'filter', 'exclude'): if self._is_len: self.add_message('fetching-db-objects-len', node=node) def visit_functiondef(self, node): if 'views' in node.root().file: args = node.args.args if (args and isinstance(args[0], AssName) and args[0].name == 'request'): self._is_view_function = True def leave_functiondef(self, node): self._is_view_function = False def visit_tryexcept(self, node): self._is_inside_try_except = True self._try_except_node = node def leave_tryexcept(self, node): self._is_inside_try_except = False self._try_except_node = None def visit_call(self, node): if isinstance(node.func, Name) and node.func.name == 'len': self._is_len = True def leave_call(self, node): self._is_len = False def visit_classdef(self, node): if node.is_subtype_of('django.views.generic.base.View'): self._is_view_class = True def leave_classdef(self, node): self._is_view_class = False
{ "repo_name": "geerk/django_linter", "path": "django_linter/checkers/views.py", "copies": "1", "size": "4979", "license": "mit", "hash": -8903418102390117000, "line_mean": 38.832, "line_max": 78, "alpha_frac": 0.5312311709, "autogenerated": false, "ratio": 4.194608256107835, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5225839427007835, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) from pylint.checkers import BaseChecker from pylint.interfaces import IAstroidChecker from ..__pkginfo__ import BASE_ID class LayoutChecker(BaseChecker): __implements__ = IAstroidChecker name = 'layout' msgs = { 'W%s01' % BASE_ID: ( 'Form %s not in forms module', 'forms-layout', 'Used when form class definition is not in forms module.'), 'W%s02' % BASE_ID: ( 'Admin class %s not in admin module', 'admin-layout', 'Used when admin class definition is not in admin module.'), } def leave_class(self, node): if node.is_subtype_of('django.forms.forms.BaseForm'): if not ('forms' in node.root().file): self.add_message('forms-layout', node=node, args=(node.name,)) elif node.is_subtype_of('django.contrib.admin.options.ModelAdmin'): if not ('admin' in node.root().file): self.add_message('admin-layout', node=node, args=(node.name,))
{ "repo_name": "geerk/django_linter", "path": "django_linter/checkers/layout.py", "copies": "1", "size": "1126", "license": "mit", "hash": -6042957599171366000, "line_mean": 35.3225806452, "line_max": 78, "alpha_frac": 0.593250444, "autogenerated": false, "ratio": 3.923344947735192, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5016595391735191, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) from pylint.checkers import BaseChecker from pylint.interfaces import IAstroidChecker class LayoutChecker(BaseChecker): __implements__ = IAstroidChecker name = 'layout' msgs = { 'W5301': ('Form %s not in forms module', 'forms-layout', 'Used when form class definition is not in forms module.'), 'W5302': ('Admin class %s not in admin module', 'admin-layout', 'Used when admin class definition is not in admin module.'), } def leave_class(self, node): if node.is_subtype_of('django.forms.forms.BaseForm'): if not ('forms' in node.root().file): self.add_message('W5301', node=node, args=(node.name,)) elif node.is_subtype_of('django.contrib.admin.options.ModelAdmin'): if not ('admin' in node.root().file): self.add_message('W5302', node=node, args=(node.name,))
{ "repo_name": "johndeng/django_linter", "path": "django_linter/checkers/layout.py", "copies": "1", "size": "1055", "license": "mit", "hash": 8075019166732364000, "line_mean": 38.0740740741, "line_max": 78, "alpha_frac": 0.590521327, "autogenerated": false, "ratio": 4.073359073359073, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5163880400359073, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) from pylint.checkers.utils import safe_infer from astroid import MANAGER, Class, Name, Instance, YES from astroid.builder import AstroidBuilder try: DjangoModel = AstroidBuilder(MANAGER).string_build(""" from django.db import models class Model(models.Model): id = models.AutoField()""").lookup('Model')[1][0] except IndexError: DjangoModel = None def transform_factory_return(node): if (isinstance(node.func, Name) and 'factory' in node.func._repr_name().lower()): val = safe_infer(node.func) if (isinstance(val, Class) and val.is_subtype_of('factory.django.DjangoModelFactory')): try: model = safe_infer(val.locals['Meta'][0].locals['model'][0]) except (KeyError, IndexError): pass else: if model is not None and model is not YES: if isinstance(model, Class): def infer_call_result(self, caller, context=None): yield Instance(model) val.infer_call_result = infer_call_result elif DjangoModel is not None: def infer_call_result(self, caller, context=None): yield Instance(DjangoModel) val.infer_call_result = infer_call_result
{ "repo_name": "geerk/django_linter", "path": "django_linter/transformers/factories.py", "copies": "1", "size": "1462", "license": "mit", "hash": -8051333480113470000, "line_mean": 38.5135135135, "line_max": 76, "alpha_frac": 0.5820793434, "autogenerated": false, "ratio": 4.403614457831325, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5485693801231325, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) from scipy.cluster.hierarchy import linkage from sklearn.cluster import AgglomerativeClustering, KMeans from sklearn import metrics import numpy as np from scipy.cluster.hierarchy import cophenet from scipy.spatial.distance import pdist from mousestyles.data.utils import day_to_mouse_average # prep data functions def prep_data(mouse_data, melted=False, std=True, rescale=True): """ Returns a ndarray data to be used in clustering algorithms: column 0 : strain, column 1: mouse, other columns corresponding to feature avg/std of a mouse over 16 days that may or may not be rescaled to the same unit as specified Parameters ---------- mouse_data: (i) a 21131 * (4 + ) pandas DataFrame, column 0 : strain, column 1: mouse, column 2: day, column 3: hour, other columns corresponding to features or (ii) a 1921 * (3 + ) pandas DataFrame, column 0: strain, column 1: mouse, column 2: day, other columns corresponding to features melted: bool, False if the input mouse_data is of type (i) std: bool, whether the standard deviation of each feature is returned rescale: bool, whether each column is rescaled or not (rescale is performed by the column's maximum) Returns ------- The ndarray as specified """ if melted: mouse_X = np.array(mouse_data.iloc[:, 3:], dtype=float) else: mouse_X = np.array(mouse_data.iloc[:, 4:], dtype=float) mouse_labels = np.array(mouse_data.iloc[:, 0:3]) mouse_dayavg, mouse_daystd = day_to_mouse_average( mouse_X, mouse_labels, num_strains=16, stdev=True, stderr=False) mouse_dayavgstd = np.hstack([mouse_dayavg, mouse_daystd[:, 2:]]) mouse_dayavgstd_X = mouse_dayavgstd[:, 2:] mouse_dayavgstd_X_scl = mouse_dayavgstd_X / np.max( mouse_dayavgstd_X, axis=0) mouse_dayavgstd_scl = np.hstack( [mouse_dayavgstd[:, 0:2], mouse_dayavgstd_X_scl]) if (std is False and rescale is False): return mouse_dayavg elif (std is True and rescale is True): return mouse_dayavgstd elif (std is False and rescale is True): return mouse_dayavgstd_scl[:, 0:(mouse_dayavg.shape[1])] else: return mouse_dayavgstd_scl # model fitting functions def get_optimal_hc_params(mouse_day): """ Returns a list of 2: [method, dist] method: {'ward', 'average', 'complete'} dist: {'cityblock', 'euclidean', 'chebychev'} Parameters ---------- mouse_day: a 170 * M numpy array, column 0 : strain, column 1: mouse, other columns corresponding to feature avg/std of a mouse over 16 days Returns ------- method_distance: list [method, dist] """ methods = ['ward', 'average', 'complete'] dists = ['cityblock', 'euclidean', 'chebychev'] method_dists = [(methods[i], dists[j]) for i in range(len(methods)) for j in range(len(dists))] method_dists = [(method, dist) for method, dist in method_dists if method != 'ward' or dist == 'euclidean'] cs = [] for method, dist in method_dists: Z = linkage(mouse_day[:, 2:], method=method, metric=dist) c, coph_dists = cophenet(Z, pdist(mouse_day[:, 2:])) cs.append(c) # determine the distance method method, dist = method_dists[np.argmax(cs)] return [method, dist] def fit_hc(mouse_day_X, method, dist, num_clusters=range(2, 17)): """ Returns a list of 2: [silhouettes, cluster_labels] silhouettes: list of float, cluster_labels: list of list, each sublist is the labels corresponding to the silhouette Parameters ---------- mouse_day_X: a 170 * M numpy array, all columns corresponding to feature avg/std of a mouse over 16 days method: str, method of calculating distance between clusters dist: str, distance metric num_clusters: range range of number of clusters Returns ------- A list of 2: [silhouettes, cluster_labels] """ if (dist == "chebychev"): dist = "chebyshev" cluster_labels = [] silhouettes = [] for n_clusters in num_clusters: clustering = AgglomerativeClustering( linkage=method, n_clusters=n_clusters) clustering.fit(mouse_day_X) labels = clustering.labels_ silhouettes.append(metrics.silhouette_score( mouse_day_X, labels, metric=dist)) cluster_labels.append(list(labels)) return [silhouettes, cluster_labels] def get_optimal_fit_kmeans(mouse_X, num_clusters, raw=False): """ Returns a list of 2: [silhouettes, cluster_labels] silhouettes: list of float, cluster_labels: list of list, each sublist is the labels corresponding to the silhouette Parameters ---------- mouse_X: a 170 * M numpy array or 21131 * M numpy array, all columns corresponding to feature avg/std of a mouse over 16 days or the raw data without averaging over days num_clusters: range or a list or a numpy array range of number of clusters raw: a boolean with default is False False if using the 170 * M array Returns ------- A list of 2: [silhouettes, cluster_labels] """ if raw: sample_amount = 1000 else: sample_amount = mouse_X.shape[0] cluster_labels = [] silhouettes = [] for n_clusters in num_clusters: clustering = KMeans(n_clusters=n_clusters) clustering.fit(mouse_X) labels = clustering.labels_ silhouettes.append( metrics.silhouette_score( mouse_X, labels, metric="euclidean", sample_size=sample_amount)) cluster_labels.append(list(labels)) return [silhouettes, cluster_labels] def cluster_in_strain(labels_first, labels_second): """ Returns a dictionary object indicating the count of different clusters in each different strain (when put cluster labels as first) or the count of different strain in each clusters (when put strain labels as first). Parameters ---------- labels_first: numpy arrary or list A numpy arrary or list of integers representing which cluster the mice in, or representing which strain mice in. labels_second: numpy arrary or list A numpy array or list of integers (0-15) representing which strain the mice in, or representing which cluster the mice in Returns ------- count_data : dictionary A dictioanry object with key is the strain number and value is a list indicating the distribution of clusters, or the key is the cluster number and the value is a list indicating the distribution of each strain. Examples -------- >>> count_1 = cluster_in_strain([1,2,1,0,0],[0,1,1,2,1]) """ count_data = {} labels_first = np.asarray(labels_first) labels_second = np.asarray(labels_second) for label_2 in np.unique(labels_second): label_2_index = labels_second == label_2 label_1_sub = labels_first[label_2_index] count_list = [] for label_1 in np.unique(labels_first): count_list.append(sum(label_1_sub == label_1)) count_data[label_2] = count_list return count_data
{ "repo_name": "togawa28/mousestyles", "path": "mousestyles/classification/clustering.py", "copies": "3", "size": "7621", "license": "bsd-2-clause", "hash": 5986788904131656000, "line_mean": 32.7212389381, "line_max": 78, "alpha_frac": 0.6231465687, "autogenerated": false, "ratio": 3.82964824120603, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.595279480990603, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) from unittest import TestCase from fixtureupper.register import UpperRegister from tests.models import Article, Author, CoWrite, Draft class BaseTestCase(TestCase): def setUp(self): self.SqlAlchemyModelFixtureUpper = UpperRegister('SqlAlchemyModel') class AuthorFixtureUpper(self.SqlAlchemyModelFixtureUpper): model = Author defaults = {} class ArticleFixtureUpper(self.SqlAlchemyModelFixtureUpper): model = Article defaults = {} class DraftFixtureUpper(self.SqlAlchemyModelFixtureUpper): model = Draft defaults = {} class CoWriteFixtureUpper(self.SqlAlchemyModelFixtureUpper): model = CoWrite defaults = {} self.m_fu = self.SqlAlchemyModelFixtureUpper(start_id=150) self.AuthorFixtureUpperClass = AuthorFixtureUpper self.ArticleFixtureUpperClass = ArticleFixtureUpper self.DraftFixtureUpperClass = DraftFixtureUpper self.CoWriteFixtureUpperClass = CoWriteFixtureUpper self.au_fu = self.m_fu.get_upper('Author') self.ar_fu = self.m_fu.get_upper('Article', start_id=250) self.dr_fu = self.m_fu.get_upper('Draft', start_id=300) self.co_fu = self.m_fu.get_upper('CoWrite', start_id=370) self.json_dict = [ { '__class__': 'Article', '__value__': {'id': 250, 'main_author_id': 150} }, { '__class__': 'Article', '__value__': {'id': 251, 'main_author_id': 150} }, { '__class__': 'Article', '__value__': { 'id': 252, 'main_author_id': 151, 'is_visible': True, 'title': u'some title', } }, { '__class__': 'Author', '__value__': {'id': 150} }, { '__class__': 'Author', '__value__': {'id': 151} }, ]
{ "repo_name": "Rhathe/fixtureupper", "path": "tests/functional/sqlalchemy/__init__.py", "copies": "1", "size": "2213", "license": "mit", "hash": -5030520393336035000, "line_mean": 32.0298507463, "line_max": 75, "alpha_frac": 0.5155896972, "autogenerated": false, "ratio": 4.443775100401607, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5459364797601607, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) from yieldfrom2.syntax import expand_yield_from, from_, return_ def foobar(): for i in range(3): try: x = yield i while x is not None: x = yield x except RuntimeError as e: print("Caught error:", e) # FIXME: should return in non-generator functions. return_(123) @expand_yield_from def yieldfrom_test(): try: x = yield from_(foobar()) print("yieldfrom result:", x) yield from_([100, 200, 300]) except Exception as err: print("yieldfrom exc:", err) yield from_([1000, 2000]) yield from_(foobar()) if __name__ == '__main__': it = yieldfrom_test() assert next(it) == 0 assert it.send('foobar') == 'foobar' assert next(it) == 1 assert it.throw(RuntimeError("hello world")) == 2 assert next(it) == 100 # FIXME: raises when forwarding the error to list iterator # assert it.throw(Exception("cuckoo")) == 1000 # assert next(it) == 2000 it.close()
{ "repo_name": "immerrr/yieldfrom2", "path": "test_yieldfrom2.py", "copies": "1", "size": "1133", "license": "bsd-2-clause", "hash": 8560333471266669000, "line_mean": 25.9761904762, "line_max": 63, "alpha_frac": 0.5701676964, "autogenerated": false, "ratio": 3.906896551724138, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.99726550770483, "avg_score": 0.0008818342151675485, "num_lines": 42 }
from __future__ import (absolute_import, division, print_function, unicode_literals) import json import os from collections import defaultdict try: from os import scandir except ImportError: from scandir import scandir class Directories: """Used to build dictionary of directory names and corresponding paths Recursivley creates and stores a dict of directory names and a list of corresponding paths below a given root directory. - **parameters** and **instance variables**:: :param str base_dir : path to root directory :param str cache_file: path to json directory cache file :ivar defaultdict dirs: *{str directory name: list paths}* dictionary of directory names and corresponding paths """ def __init__(self, base_dir, cache_file): self.base_dir = base_dir # Top level directory to start from self.cache_file = cache_file self.dirs = {} self.load_cache(cache_file) def __getitem__(self, key): return self.dirs[key] def __iter__(self): return iter(self.dirs) def map_directories(self): self.dirs = defaultdict(list) self.dict_builder(self.base_dir) self.cache_dirs(self.cache_file) def dict_builder(self, base_dir): """Walks through base_dir and populates instance's dirs defaultdict - **parameters** and **returns**:: :param str base_dir: path to root directory :returns None """ try: for entry in scandir(base_dir): entry_name = entry.name try: entry_name = unicode(entry.name, 'utf-8') except NameError: pass if entry.is_dir() and not entry_name.startswith('.'): self.dirs[entry.name.lower()].append(entry.path) self.dict_builder(entry.path) except OSError: # Permission denied return def shallowest_path_to(self, dname): """Returns the shallowest path from corresponding paths in dirs dictionary - **parameters** and **returns**:: :param str dname: directory name to retrieve path from :returns str: shallowest path from corresponding list of paths """ return sorted(self.dirs[dname], key=len)[0] def cache_dirs(self, cache_file): """Saves current directory dictionary as json file - **parameters** and **returns**:: :param str cache_file: location of file to save to :returns None """ if cache_file is None: cache_file = self.cache_file with open(cache_file, "w") as cache_file: json.dump(self.dirs, cache_file, sort_keys=True, indent=4, separators=(',', ': ')) def load_cache(self, cache_file): """Loads a directory dictionary from a json file - **parameters** and **returns**:: :param str cache_file: location of file to load :returns None """ if cache_file is None: cache_file = self.cache_file if os.path.exists(cache_file): with open(cache_file, 'r') as cache_file: self.dirs = json.load(cache_file) else: with open(cache_file, 'w') as cache_file: self.dirs = {} json.dump(self.dirs, cache_file)
{ "repo_name": "chrsintyre/jumpdir", "path": "jumpdir/directories.py", "copies": "2", "size": "3488", "license": "mit", "hash": -8204736896167319000, "line_mean": 33.1960784314, "line_max": 82, "alpha_frac": 0.5791284404, "autogenerated": false, "ratio": 4.36, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.0002602053568065955, "num_lines": 102 }
from __future__ import (absolute_import, division, print_function, unicode_literals) import logging import click import semantic_version from changes import attributes log = logging.getLogger(__name__) def current_version(module_name): return attributes.extract_attribute(module_name, '__version__') def get_new_version(module_name, current_version, no_input, major=False, minor=False, patch=False): proposed_new_version = increment( current_version, major=major, minor=minor, patch=patch ) if no_input: new_version = proposed_new_version else: new_version = click.prompt( 'What is the release version for "{0}" '.format(module_name), default=proposed_new_version ) return new_version.strip() def increment(version, major=False, minor=False, patch=True): """ Increment a semantic version :param version: str of the version to increment :param major: bool specifying major level version increment :param minor: bool specifying minor level version increment :param patch: bool specifying patch level version increment :return: str of the incremented version """ version = semantic_version.Version(version) if major: version.major += 1 version.minor = 0 version.patch = 0 elif minor: version.minor += 1 version.patch = 0 elif patch: version.patch += 1 return str(version) def increment_version(context): """Increments the __version__ attribute of your module's __init__.""" attributes.replace_attribute( context.module_name, '__version__', context.new_version, dry_run=context.dry_run) log.info('Bumped version from %s to %s' % (context.current_version, context.new_version))
{ "repo_name": "goldsborough/changes", "path": "changes/version.py", "copies": "1", "size": "1882", "license": "mit", "hash": -9023675135143636000, "line_mean": 25.8857142857, "line_max": 93, "alpha_frac": 0.6418703507, "autogenerated": false, "ratio": 4.219730941704036, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5361601292404036, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import math import re from zxcvbn.matching import (KEYBOARD_STARTING_POSITIONS, KEYBOARD_AVERAGE_DEGREE, KEYPAD_STARTING_POSITIONS, KEYPAD_AVERAGE_DEGREE) def binom(n, k): """ Returns binomial coefficient (n choose k). """ # http://blog.plover.com/math/choose.html if k > n: return 0 if k == 0: return 1 result = 1 for denom in range(1, k + 1): result *= n result /= denom n -= 1 return result def lg(n): """ Returns logarithm of n in base 2. """ return math.log(n, 2) # ------------------------------------------------------------------------------ # minimum entropy search ------------------------------------------------------- # ------------------------------------------------------------------------------ # # takes a list of overlapping matches, returns the non-overlapping sublist with # minimum entropy. O(nm) dp alg for length-n password with m candidate matches. # ------------------------------------------------------------------------------ def get(a, i): if i < 0 or i >= len(a): return 0 return a[i] def minimum_entropy_match_sequence(password, matches): """ Returns minimum entropy Takes a list of overlapping matches, returns the non-overlapping sublist with minimum entropy. O(nm) dp alg for length-n password with m candidate matches. """ bruteforce_cardinality = calc_bruteforce_cardinality(password) # e.g. 26 for lowercase up_to_k = [0] * len(password) # minimum entropy up to k. # for the optimal sequence of matches up to k, holds the final match (match['j'] == k). null means the sequence ends # without a brute-force character. backpointers = [] for k in range(0, len(password)): # starting scenario to try and beat: adding a brute-force character to the minimum entropy sequence at k-1. up_to_k[k] = get(up_to_k, k-1) + lg(bruteforce_cardinality) backpointers.append(None) for match in matches: if match['j'] != k: continue i, j = match['i'], match['j'] # see if best entropy up to i-1 + entropy of this match is less than the current minimum at j. up_to = get(up_to_k, i-1) candidate_entropy = up_to + calc_entropy(match) if candidate_entropy < up_to_k[j]: #print "New minimum: using " + str(match) #print "Entropy: " + str(candidate_entropy) up_to_k[j] = candidate_entropy backpointers[j] = match # walk backwards and decode the best sequence match_sequence = [] k = len(password) - 1 while k >= 0: match = backpointers[k] if match: match_sequence.append(match) k = match['i'] - 1 else: k -= 1 match_sequence.reverse() # fill in the blanks between pattern matches with bruteforce "matches" # that way the match sequence fully covers the password: match1.j == match2.i - 1 for every adjacent match1, match2. def make_bruteforce_match(i, j): return { 'pattern': 'bruteforce', 'i': i, 'j': j, 'token': password[i:j+1], 'entropy': lg(math.pow(bruteforce_cardinality, j - i + 1)), 'cardinality': bruteforce_cardinality, } k = 0 match_sequence_copy = [] for match in match_sequence: i, j = match['i'], match['j'] if i - k > 0: match_sequence_copy.append(make_bruteforce_match(k, i - 1)) k = j + 1 match_sequence_copy.append(match) if k < len(password): match_sequence_copy.append(make_bruteforce_match(k, len(password) - 1)) match_sequence = match_sequence_copy min_entropy = 0 if len(password) == 0 else up_to_k[len(password) - 1] # corner case is for an empty password '' crack_time = entropy_to_crack_time(min_entropy) # final result object return { 'password': password, 'entropy': round_to_x_digits(min_entropy, 3), 'match_sequence': match_sequence, 'crack_time': round_to_x_digits(crack_time, 3), 'crack_time_display': display_time(crack_time), 'score': crack_time_to_score(crack_time), } def round_to_x_digits(number, digits): """ Returns 'number' rounded to 'digits' digits. """ return round(number * math.pow(10, digits)) / math.pow(10, digits) # ------------------------------------------------------------------------------ # threat model -- stolen hash catastrophe scenario ----------------------------- # ------------------------------------------------------------------------------ # # assumes: # * passwords are stored as salted hashes, different random salt per user. # (making rainbow attacks infeasable.) # * hashes and salts were stolen. attacker is guessing passwords at max rate. # * attacker has several CPUs at their disposal. # ------------------------------------------------------------------------------ # for a hash function like bcrypt/scrypt/PBKDF2, 10ms per guess is a safe lower bound. # (usually a guess would take longer -- this assumes fast hardware and a small work factor.) # adjust for your site accordingly if you use another hash function, possibly by # several orders of magnitude! SINGLE_GUESS = .010 NUM_ATTACKERS = 100 # number of cores guessing in parallel. SECONDS_PER_GUESS = SINGLE_GUESS / NUM_ATTACKERS def entropy_to_crack_time(entropy): return (0.5 * math.pow(2, entropy)) * SECONDS_PER_GUESS # average, not total def crack_time_to_score(seconds): if seconds < math.pow(10, 2): return 0 if seconds < math.pow(10, 4): return 1 if seconds < math.pow(10, 6): return 2 if seconds < math.pow(10, 8): return 3 return 4 # ------------------------------------------------------------------------------ # entropy calcs -- one function per match pattern ------------------------------ # ------------------------------------------------------------------------------ def calc_entropy(match): if 'entropy' in match: return match['entropy'] if match['pattern'] == 'repeat': entropy_func = repeat_entropy elif match['pattern'] == 'sequence': entropy_func = sequence_entropy elif match['pattern'] == 'digits': entropy_func = digits_entropy elif match['pattern'] == 'year': entropy_func = year_entropy elif match['pattern'] == 'date': entropy_func = date_entropy elif match['pattern'] == 'spatial': entropy_func = spatial_entropy elif match['pattern'] == 'dictionary': entropy_func = dictionary_entropy match['entropy'] = entropy_func(match) return match['entropy'] def repeat_entropy(match): cardinality = calc_bruteforce_cardinality(match['token']) return lg(cardinality * len(match['token'])) def sequence_entropy(match): first_chr = match['token'][0] if first_chr in ['a', '1']: base_entropy = 1 else: if first_chr.isdigit(): base_entropy = lg(10) # digits elif first_chr.isalpha(): base_entropy = lg(26) # lower else: base_entropy = lg(26) + 1 # extra bit for uppercase if not match['ascending']: base_entropy += 1 # extra bit for descending instead of ascending return base_entropy + lg(len(match['token'])) def digits_entropy(match): return lg(math.pow(10, len(match['token']))) NUM_YEARS = 119 # years match against 1900 - 2019 NUM_MONTHS = 12 NUM_DAYS = 31 def year_entropy(match): return lg(NUM_YEARS) def date_entropy(match): if match['year'] < 100: entropy = lg(NUM_DAYS * NUM_MONTHS * 100) # two-digit year else: entropy = lg(NUM_DAYS * NUM_MONTHS * NUM_YEARS) # four-digit year if match['separator']: entropy += 2 # add two bits for separator selection [/,-,.,etc] return entropy def spatial_entropy(match): if match['graph'] in ['qwerty', 'dvorak']: s = KEYBOARD_STARTING_POSITIONS d = KEYBOARD_AVERAGE_DEGREE else: s = KEYPAD_STARTING_POSITIONS d = KEYPAD_AVERAGE_DEGREE possibilities = 0 L = len(match['token']) t = match['turns'] # estimate the number of possible patterns w/ length L or less with t turns or less. for i in range(2, L + 1): possible_turns = min(t, i - 1) for j in range(1, possible_turns+1): x = binom(i - 1, j - 1) * s * math.pow(d, j) possibilities += x entropy = lg(possibilities) # add extra entropy for shifted keys. (% instead of 5, A instead of a.) # math is similar to extra entropy from uppercase letters in dictionary matches. if 'shifted_count' in match: S = match['shifted_count'] U = L - S # unshifted count possibilities = sum(binom(S + U, i) for i in range(0, min(S, U) + 1)) entropy += lg(possibilities) return entropy def dictionary_entropy(match): match['base_entropy'] = lg(match['rank']) # keep these as properties for display purposes match['uppercase_entropy'] = extra_uppercase_entropy(match) match['l33t_entropy'] = extra_l33t_entropy(match) ret = match['base_entropy'] + match['uppercase_entropy'] + match['l33t_entropy'] return ret START_UPPER = re.compile('^[A-Z][^A-Z]+$') END_UPPER = re.compile('^[^A-Z]+[A-Z]$') ALL_UPPER = re.compile('^[A-Z]+$') def extra_uppercase_entropy(match): word = match['token'] if word.islower(): return 0 # a capitalized word is the most common capitalization scheme, # so it only doubles the search space (uncapitalized + capitalized): 1 extra bit of entropy. # allcaps and end-capitalized are common enough too, underestimate as 1 extra bit to be safe. for regex in [START_UPPER, END_UPPER, ALL_UPPER]: if regex.match(word): return 1 # Otherwise calculate the number of ways to capitalize U+L uppercase+lowercase letters with U uppercase letters or # less. Or, if there's more uppercase than lower (for e.g. PASSwORD), the number of ways to lowercase U+L letters # with L lowercase letters or less. upp_len = len([x for x in word if x.isupper()]) low_len = len([x for x in word if x.islower()]) possibilities = sum(binom(upp_len + low_len, i) for i in range(0, min(upp_len, low_len) + 1)) return lg(possibilities) def extra_l33t_entropy(match): if 'l33t' not in match or not match['l33t']: return 0 possibilities = 0 for subbed, unsubbed in list(match['sub'].items()): sub_len = len([x for x in match['token'] if x == subbed]) unsub_len = len([x for x in match['token'] if x == unsubbed]) possibilities += sum(binom(unsub_len + sub_len, i) for i in range(0, min(unsub_len, sub_len) + 1)) # corner: return 1 bit for single-letter subs, like 4pple -> apple, instead of 0. if possibilities <= 1: return 1 return lg(possibilities) # utilities -------------------------------------------------------------------- def calc_bruteforce_cardinality(password): lower, upper, digits, symbols = 0, 0, 0, 0 for char in password: if char.islower(): lower = 26 elif char.isdigit(): digits = 10 elif char.isupper(): upper = 26 else: symbols = 33 cardinality = lower + digits + upper + symbols return cardinality def display_time(seconds): minute = 60 hour = minute * 60 day = hour * 24 month = day * 31 year = month * 12 century = year * 100 if seconds < minute: return 'instant' elif seconds < hour: return '%s minutes' % (1 + math.ceil(seconds / minute),) elif seconds < day: return '%s hours' % (1 + math.ceil(seconds / hour),) elif seconds < month: return '%s days' % (1 + math.ceil(seconds / day),) elif seconds < year: return '%s months' % (1 + math.ceil(seconds / month),) elif seconds < century: return '%s years' % (1 + math.ceil(seconds / year),) else: return 'centuries'
{ "repo_name": "erikr/python-zxcvbn", "path": "zxcvbn/scoring.py", "copies": "2", "size": "12311", "license": "mit", "hash": 2746137209404965400, "line_mean": 34.5809248555, "line_max": 120, "alpha_frac": 0.5719275445, "autogenerated": false, "ratio": 3.7340006066120717, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5305928151112073, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import matplotlib.pyplot as plt import numpy as np from mousestyles.distribution import (powerlaw_pdf, exp_pdf, powerlaw_inverse_cdf, exp_inverse_cdf) from mousestyles.est_power_param import (fit_powerlaw, fit_exponential, getdistance) from mousestyles.kde import kde def plot_powerlaw(estimation): """ Return the histogram of all estimators of power law to check the distribution. Parameters ---------- estimation: dataframe dataframe of strain, mouse, day and the estimator Returns ------- plot : histogram The histogram of all estimators of power law """ plt.hist(list(estimation.ix[estimation["strain"] == 0, 3])) plt.hist(list(estimation.ix[estimation["strain"] == 1, 3])) plt.hist(list(estimation.ix[estimation["strain"] == 2, 3])) plt.title("Histogram: Power Law parameters distribution by strain") def plot_exponential(estimation): """ Return the histogram of all estimators of exponential to check the distribution. Parameters ---------- estimation: dataframe dataframe of strain, mouse, day and the estimator Returns ------- plot : histogram The histogram of all estimators of exponential. """ plt.hist(list(estimation.ix[estimation["strain"] == 0, 4])) plt.hist(list(estimation.ix[estimation["strain"] == 1, 4])) plt.hist(list(estimation.ix[estimation["strain"] == 2, 4])) plt.title("Histogram: Exponential parameters distribution by strain") def plot_fitted(strain, mouse, day, hist=True, density=False): """ Return the plot of one single mouse day -fitted power law -fitted exponential -histogram of distance -kernel density curve Parameters ---------- strain : int the strain number of the mouse mouse : int the mouse number in its strain day : int the day number hist : boolean Plot histogram if True density : boolean plot density if True Returns ------- plot : 1 histogram (blue) + 2 fitted curve + 1 density (cyan) """ fig, ax = plt.subplots(1, 1) x = np.arange(1, 2.7, 0.01) alpha = fit_powerlaw(strain, mouse, day) lamb = fit_exponential(strain, mouse, day) cut_dist = getdistance(strain, mouse, day) ax.plot(x, powerlaw_pdf(x, alpha), 'r-', lw=2, alpha=2, label='powerlaw pdf') ax.plot(x, exp_pdf(x, lamb), 'y-', lw=2, alpha=2, label='exp pdf') if hist: weights = np.ones_like(cut_dist) / len(cut_dist) * 10 ax.hist(cut_dist, weights=weights, bins=np.arange(1, 2.6, 0.1)) if density: np.random.seed(0) sample_cut_dist = np.random.choice(cut_dist, 1000, replace=False) pdf = kde(sample_cut_dist, x_grid=x, symmetric_correction=True, cutoff=1) ax.plot(x, pdf, 'c', lw=2, alpha=2, label='powerlaw pdf') def plot_relative_dist(strain, mouse, day): """ Return the relative distribution of distance of a single mouse day The relative distribution of a comparison distribution with density g vs a reference distribution with density f is g(F^(-1)(x))/f(F^(-1)(x)) It's a prob distribution on [0, 1]. Parameters ---------- strain : int the strain number of the mouse mouse : int the mouse number in its strain day : int the day number Returns ------- pdf_rel_power : numpy.ndarray the relative distribution, referencing the best fit powerlaw distribution, at grid points np.arange(0, 1.0, 0.02) pdf_rel_exp : numpy.ndarray the relative distribution, referencing the best fit exponential distribution, at grid points np.arange(0, 1.0, 0.02) """ # calculate the best fit parameters for powerlaw and exponential alpha = fit_powerlaw(strain, mouse, day) lamb = fit_exponential(strain, mouse, day) # set up the grid points on [0, 1] x = np.arange(0, 1.0, 0.02) # transform x to F^(-1)(x) = y y_grid_power = powerlaw_inverse_cdf(x, alpha) y_grid_exp = exp_inverse_cdf(x, lamb) cut_dist = getdistance(strain, mouse, day) # to save computation, we do random sampling np.random.seed(0) sample_cut_dist = np.random.choice(cut_dist, 1000, replace=False) # get the corresponding density at points y pdf_grid_power = kde(sample_cut_dist, x_grid=y_grid_power, symmetric_correction=True, cutoff=1) pdf_grid_exp = kde(sample_cut_dist, x_grid=y_grid_exp, symmetric_correction=True, cutoff=1) # calculate the ratio as relative distribution pdf_rel_power = pdf_grid_power / powerlaw_pdf(y_grid_power, alpha) pdf_rel_exp = pdf_grid_exp / exp_pdf(y_grid_exp, lamb) # plot the relative distribution fig, ax = plt.subplots(1, 2) ax[0].plot(x, pdf_rel_power, lw=2, alpha=2, c='b', label='Relative distribution, powerlaw') ax[0].axhline(y=1, c='r') ax[1].plot(x, pdf_rel_exp, lw=2, alpha=2, c='b', label='Relative distribution, exponential') ax[1].axhline(y=1, c='r')
{ "repo_name": "changsiyao/mousestyles", "path": "mousestyles/visualization/distribution_plot.py", "copies": "3", "size": "5349", "license": "bsd-2-clause", "hash": 3443265401003458000, "line_mean": 33.9607843137, "line_max": 76, "alpha_frac": 0.6191811554, "autogenerated": false, "ratio": 3.6387755102040815, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5757956665604081, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import matplotlib.pyplot as plt import numpy as np from mousestyles.ultradian import strain_seasonal from mousestyles.ultradian import find_cycle ALL_FEATURES = ["AS", "F", "M_AS", "M_IS", "W", "Distance"] def plot_strain_seasonal(strains, mouse, feature, bin_width, period_length): """ Use seansonal decomposition model on the time series of specified strain, mouse, feature and bin_width. return the seasonal term and the plot of seasonal term by mouse of a set of mouses in a strain Parameters ---------- strain: list, set or tuple nonnegative integer indicating the strain number mouse: list, set or tuple nonnegative integer indicating the mouse number feature: {"AS", "F", "M_AS", "M_IS", "W", "Distance"} "AS": Active state probalibity "F": Food consumed (g) "M_AS": Movement outside homebase "M_IS": Movement inside homebase "W": Water consumed (g) "Distance": Distance traveled bin_width: int number of minutes, the time interval for data aggregation period_length: float or int number of hours, usually the significant period length indicated by Lomb-scargle model Returns ------- seasonal_plot: plot of seasonal term by mouse Examples -------- >>> res = plot_strain_seasonal(strains={0, 1, 2,}, mouse={0, 1, 2, 3}, feature="W", bin_width=30, period_length = 24) """ if (not all([isinstance(m, int) for m in mouse])) or (any([m < 0 for m in mouse])): raise ValueError( 'Strain must be a non-negative integer') if (not all([isinstance(m, int) for m in mouse])) or (any([m < 0 for m in mouse])): raise ValueError( 'Mouse value must be a non-negative integer') if feature not in ALL_FEATURES: raise ValueError( 'Input value must in {"AS", "F", "M_AS", "M_IS", "W", "Distance"}') if (not isinstance(bin_width, int)) or bin_width < 0 or bin_width > 1440: raise ValueError( 'Bin width (minutes) must be a non-negative integer below 1440') if period_length < 0: raise ValueError( 'Peoriod length must be a non-negative float or int') time = np.arange(0, period_length, bin_width / 60) fig = plt.figure(figsize=(8, 8)) flag = 0 for strain in strains: if flag == 0: ax = fig.add_subplot(3, 1, strain + 1) flag += 1 else: ax = fig.add_subplot(3, 1, strain + 1, sharey=ax) seasonal_all = strain_seasonal(strain, mouse, feature, bin_width, period_length) for i in np.arange(len(mouse)): ax.plot(time, seasonal_all[i, :]) ax.legend(['mouse' + str(i) for i in np.arange(len(mouse))], loc='upper right', prop={'size': 10}) ax.set_title('strain ' + str(strain)) plt.xlabel('Time') plt.ylabel('Seasonal Variation') plt.suptitle(feature, fontsize=20) fig.show() return fig def compare_strain(feature, n_strain=3, bin_width=15, disturb_t=False): """ Use the data from function find_cycle and plotting method from function lombscargle_visualize to compare the Lomb-Scargle plots between different strains. Parameters ---------- feature: string in {"AS", "F", "M_AS", "M_IS", "W", "Distance"} "AS": Active state probalibity "F": Food consumed (g) "M_AS": Movement outside homebase "M_IS": Movement inside homebase "W": Water consumed (g) "Distance": Distance traveled n_strain: int, defalt is 3 nonnegative integer indicating total number of strains to be compared bin_width: int, minute unit, default is 15 minutes number of minutes, the time interval for data aggregation disturb_t: boolean, default is False If True, add uniformly distributed noise to the time sequence which are used to fit the Lomb Scargle model. This is to avoid the singular matrix error that could happen sometimes. Returns ------- Lomb Scargle Power versus Periods (hours) plot with significant levels. Examples ------- """ if feature not in ALL_FEATURES: raise ValueError( 'Input value must in {"AS", "F", "M_AS", "M_IS", "W", "Distance"}') fig = plt.figure(figsize=(16, 8)) flag = 0 for i in range(n_strain): if flag == 0 or feature == "M_IS": ax = fig.add_subplot(1, n_strain, i + 1) flag += 1 else: ax = fig.add_subplot(1, n_strain, i + 1, sharey=ax) periods, power, sig, N, cycle, cycle_power, cycle_pvalue = find_cycle( feature=feature, strain=i, bin_width=bin_width, methods='LombScargleFast', disturb_t=disturb_t, gen_doc=True, plot=False) ax.plot(periods, power, color='steelblue') ax.set(xlim=(0, 26), ylim=(0, max(cycle_power)), xlabel='Period (hours)', ylabel='Lomb-Scargle Power') ax.set_title('strain' + str(i)) for i in sig: power_sig = -2 / (N - 1) * np.log( 1 - (1 - np.asarray(i)) ** (1 / 2 / N)) plt.axhline(y=power_sig, color='green', ls='dashed', lw=1) ax.text(x=24, y=power_sig, s='P-value:' + str(float(i)), ha='right', va='bottom') idx = [i for i, x in enumerate(cycle_pvalue) if x < 0.001] for j in idx: if cycle[j] > min( periods) and cycle[j] < min(max(periods), 23): ax.text(x=cycle[j], y=cycle_power[j], s=r'$\bigstar\bigstar\bigstar$', ha='right', va='top') idx = [i for i, x in enumerate( cycle_pvalue) if x > 0.001 and x < 0.01] for j in idx: if cycle[j] > min(periods) and cycle[j] < max(periods): ax.text(x=cycle[j], y=cycle_power[ j], s=r'$\bigstar\bigstar$', ha='right', va='top') idx = [i for i, x in enumerate( cycle_pvalue) if x > 0.01 and x < 0.05] for j in idx: if cycle[j] > min(periods) and cycle[j] < max(periods): ax.text(x=cycle[j], y=cycle_power[j], s=r'$\bigstar$', ha='right', va='top') plt.suptitle('Feature: ' + feature, fontsize=20) return fig
{ "repo_name": "changsiyao/mousestyles", "path": "mousestyles/visualization/plot_ultradian.py", "copies": "3", "size": "6750", "license": "bsd-2-clause", "hash": -6393349086081615000, "line_mean": 37.7931034483, "line_max": 79, "alpha_frac": 0.5533333333, "autogenerated": false, "ratio": 3.6486486486486487, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5701981981948648, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import matplotlib.pyplot as plt import numpy as np def lombscargle_visualize(periods, power, sig, N, cycle, cycle_power, cycle_pvalue): """ Use Lomb-Scargel method on different strain and mouse's data to find the best possible periods with highest p-values, and plot the Lomb Scargle power versus periods plot. use the periods as time sequence to predict the corresponding LS power, draw the plot. There will also be stars and horizontal lines indicating the p-value of significance. Three stars will be p-value in [0,0.001], two stars will be p-value in [0.001,0.01], one star will be p-value in [0.01,0.05]. The horizontal line is the LS power that has p-value of 0.05. Parameters ---------- periods: numpy array of the same length with 'power' use as time sequence in LS model to make predictions power: numpy array of the same length with 'periods' the corresponding predicted power of periods sig: list, tuple or numpy array, default is [0.05]. significance level to be used for plot horizontal line. N: int the length of time sequence in the fit model cycle: numpy array periods cycle_power: numpy array LS power corrsponding to the periods in 'cycle' cycle_pvalue: numpy array p-values corresponding to the periods in 'cycle' Returns ------- Lomb Scargle Power versus Periods (hours) plot with significant levels. Examples -------- """ fig, ax = plt.subplots() ax.plot(periods, power, color='steelblue') ax.set(xlim=(0, 26), ylim=(0, max(cycle_power)), xlabel='Period (hours)', ylabel='Lomb-Scargle Power') for i in sig: power_sig = -2 / (N - 1) * np.log( 1 - (1 - np.asarray(i)) ** (1 / 2 / N)) plt.axhline(y=power_sig, color='green', ls='dashed', lw=1) ax.text(x=24, y=power_sig, s='P-value:' + str(float(i)), ha='right', va='bottom') idx = [i for i, x in enumerate(cycle_pvalue) if x < 0.001] for j in idx: if cycle[j] > min(periods) and cycle[j] < max(periods): ax.text(x=cycle[j], y=cycle_power[j], s=r'$\bigstar\bigstar\bigstar$', ha='right', va='top') idx = [i for i, x in enumerate(cycle_pvalue) if x > 0.001 and x < 0.01] for j in idx: if cycle[j] > min(periods) and cycle[j] < max(periods): ax.text(x=cycle[j], y=cycle_power[j], s=r'$\bigstar\bigstar$', ha='right', va='top') idx = [i for i, x in enumerate(cycle_pvalue) if x > 0.01 and x < 0.05] for j in idx: if cycle[j] > min(periods) and cycle[j] < max(periods): ax.text(x=cycle[j], y=cycle_power[j], s=r'$\bigstar$', ha='right', va='top')
{ "repo_name": "changsiyao/mousestyles", "path": "mousestyles/visualization/plot_lomb_scargle.py", "copies": "3", "size": "3025", "license": "bsd-2-clause", "hash": -6727041823898236000, "line_mean": 40.4383561644, "line_max": 79, "alpha_frac": 0.5834710744, "autogenerated": false, "ratio": 3.554641598119859, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0, "num_lines": 73 }
from __future__ import (absolute_import, division, print_function, unicode_literals) import matplotlib.pyplot as plt import pandas as pd def plot_path(movement, paths, title='example plot of path', alpha=.1, linewidth=1., xlim=[-16.24, 3.76], ylim=[0.9, 43.5]): r""" Plot the lines along paths. Parameters ---------- movement : pandas.DataFrame CX, CY coordinates. Must have length greater than 1. paths: list a list containing the indices for all paths. title : str the title of the plot. Default is 'example plot of path' alpha : numeric graphical parameter which determines strongness of each line. Default is .1. linewidth : numeric graphical parameter which determines the width of each line. Default is 1. xlim, ylim : list list of length 2 indicating the end points of the plot. Returns ------- Drawing the plot of the path. Examples -------- >>> movement = data.load_movement(1,2,1) >>> sep = path_index(movement, 1, 1) >>> plot_path(movement, sep) """ if not isinstance(movement, pd.core.frame.DataFrame): raise TypeError("movement must be pandas DataFrame") if not set(movement.keys()).issuperset(['x', 'y']): raise ValueError("the keys of movement must contain 'x', 'y'") if len(movement) <= 1: raise ValueError("movement must contain at least 2 rows") if not isinstance(paths, list): raise TypeError("paths must be a list") if len(paths) == 0: raise ValueError("length of paths is 0") if not isinstance(title, str): raise TypeError("title must be a string") if not isinstance(alpha, float): raise TypeError("alpha must be float") if not isinstance(linewidth, float): raise TypeError("linewidth must be float") for sep in paths: path = movement[sep[0]:sep[1] + 1] plt.plot(path['x'], path['y'], 'b', linewidth=linewidth, alpha=alpha) plt.xlabel('x-coordinate') plt.xlim(xlim[0], xlim[1]) plt.ylabel('y-coordinate') plt.ylim(ylim[0], ylim[1]) plt.title(title)
{ "repo_name": "changsiyao/mousestyles", "path": "mousestyles/visualization/plot_path.py", "copies": "3", "size": "2241", "license": "bsd-2-clause", "hash": 8147876183867381000, "line_mean": 27.7307692308, "line_max": 70, "alpha_frac": 0.6055332441, "autogenerated": false, "ratio": 3.9946524064171123, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0, "num_lines": 78 }
from __future__ import (absolute_import, division, print_function, unicode_literals) import matplotlib.pyplot as plt def plot_box(list_of_arrays, title="Box Plot of Distribution", width=4, height=4): r""" Make a box plot of the desired metric (path length, speed, angle, etc) per mouse, day or strain. Parameters ---------- list_of_arrays : list each element of the list is a numpy array containing data on the metric to be plotted per mouse, day, or strain.Data is typically generated from another function in the package. title : str desired title of the plot width : int first argument in figure size specifying width of plot height : int second argument in figure size specifying height of plot Returns ------- box plot : box plot of the desired metric combinations """ if len(list_of_arrays) == 0: raise ValueError("List of arrays can not be empty") if type(title) != str: raise TypeError("Title must be a string") if type(list_of_arrays) != list: raise TypeError("List of arrays must be a list") plt.boxplot(list_of_arrays) plt.title(title) plt.figure(figsize=(width, height)) plt.show() def plot_hist(list_of_arrays, title="Histogram of Distribution", xlab="X Values", ylab="Y Values", leg=True): r""" Make a histogram of the desired metric (path length, speed, angle, etc) per mouse, day, or strain. Parameters ---------- list_of_arrays : list each element of the list is a numpy array containing data on the metric to be plotted per mouse, day, or strain.Data typically generated from another function in the package. title : str desired title of the plot xlab : str desired x axis label of the plot ylab : str desired y axis label of the plot leg : bool indicates whether a legend for the plot is desired Returns ------- hist plot : histogram of the desired metric combinations """ if len(list_of_arrays) == 0: raise ValueError("List of arrays can not be empty") if type(title) != str: raise TypeError("Title must be a string") if type(xlab) != str: raise TypeError("xlab must be a string") if type(ylab) != str: raise TypeError("ylab must be a string") if type(list_of_arrays) != list: raise TypeError("List of arrays must be a list") if type(leg) != bool: raise TypeError("leg must be a boolean") lab = list(range(len(list_of_arrays))) plt.hist(list_of_arrays, normed=True, label=lab) plt.xlabel(xlab) plt.ylabel(ylab) if leg is True: plt.legend() plt.title(title) plt.show()
{ "repo_name": "berkeley-stat222/mousestyles", "path": "mousestyles/visualization/path_diversity_plotting.py", "copies": "3", "size": "2827", "license": "bsd-2-clause", "hash": 3807215600274500600, "line_mean": 29.3978494624, "line_max": 75, "alpha_frac": 0.6239830209, "autogenerated": false, "ratio": 4.091172214182344, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.6215155235082344, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import numpy as np from astropy.coordinates import SkyCoord from .utils import sersic_profile_function from .mask import Mask class Galaxy: '''This is a representation of a galaxy which needs slitmasks.''' def __init__(self, name, center, r_eff, axial_ratio, position_angle, mu_eff=22.0, brightness_profile=None): ''' Parameters ---------- name: str, name of galaxy, e.g. 'n4551', used in file output labeling center: SkyCoord object of central position r_eff: float, in arcseconds, giving the effective radius of galaxy axial_ratio: float, ratio of minor axis to major axis, equal to (1 - flattening) position_angle: float, in degrees, giving the position angle measured counter-clockwise from north (i.e. positive declination) mu_eff: float, in mag [per arcsec2], giving the surface brightness at r_eff brightness_profile: f: radius in arcsec, position angle in degrees -> surface brightness in mag/arcsec^2 If None, default to de Vaucouleurs' profile ''' self.name = name assert isinstance(center, SkyCoord) self.center = center self.r_eff = r_eff self.mu_eff = mu_eff self.axial_ratio = axial_ratio self.position_angle = position_angle if brightness_profile is not None: self.brightness_profile = brightness_profile else: # default to deVaucouleurs' profile self.brightness_profile = sersic_profile_function(mu_eff, r_eff, 4, position_angle, axial_ratio) self.masks = [] def __repr__(self): return '<Galaxy ' + self.name + ': ' + self.center.to_string('hmsdms') + '>' def create_masks(self, num_masks, mask_cone_angles=None, cone_overlap=180.): ''' Parameters ---------- num_masks: int, number of masks to make for the galaxy mask_cone_angles: list, if not None, sets the individual opening angles for each mask cone_overlap: float, degrees, = cone_angle * num_masks ''' self.masks = [] if mask_cone_angles is not None: assert len(mask_cone_angles) == num_masks cone_angles = mask_cone_angles else: cone_angle = cone_overlap / num_masks cone_angles = [cone_angle] * num_masks sep_angle = 180. / num_masks for i in range(num_masks): delta_pa = i * sep_angle mask_pa = self.position_angle + delta_pa mask_r_eff = np.sqrt((self.r_eff * np.cos(np.radians(delta_pa)))**2 + (self.r_eff * self.axial_ratio * np.sin(np.radians(delta_pa)))**2) name = str(i + 1) + self.name self.masks.append(Mask(name, mask_pa, mask_r_eff, cone_angles[i], self.brightness_profile)) def slit_positions(self, best=False): ''' Returns the slit positions (x, y), rotated to the galaxy frame, (i.e., the x-axis is along the major axis and the y-axis is along the minor axis). if best, then get slit positions for the best fitting slits ''' # list of positions rotated to the major axis of galaxy x_positions = np.array([]) y_positions = np.array([]) for mask in self.masks: theta = np.radians(mask.mask_pa - self.position_angle) if best: x = np.array([slit.x for slit in mask.best_slits]) y = np.array([slit.x for slit in mask.best_slits]) else: x, y = mask.slit_positions() x_rot = x * np.cos(theta) - y * np.sin(theta) y_rot = x * np.sin(theta) + y * np.cos(theta) x_positions = np.concatenate([x_positions, x_rot, -x_rot]) y_positions = np.concatenate([y_positions, y_rot, -y_rot]) return x_positions, y_positions def sampling_metric(self, xx, yy, resolution): ''' Evaluates how well the given points sample the 2d space. Parameters ---------- xx: float array, arcsec along long end of mask yy: float array, arcsec along short end of mask resolution: float, arcsec, spacing between points in spatial grid Returns ------- metric: float, mean of minimum distances between spatial grid and slit samples ''' assert len(xx) == len(yy) # take only points on one side of minor axis # mask = xx >= 0 # xx = xx[mask] # yy = yy[mask] num_slits = len(xx) # make grid samples x_samples = np.linspace(0, np.amax(xx), int(np.amax(xx) / resolution)) y_samples = np.linspace(np.amin(yy), np.amax(yy), int(np.ptp(yy) / resolution)) # flatten grid x_flat = np.tile(x_samples, y_samples.shape) y_flat = np.tile(y_samples, (x_samples.size, 1)).T.flatten() num_points = len(x_flat) # tile grid to n_points by n_slits x_points = np.tile(x_flat, (num_slits, 1)) y_points = np.tile(y_flat, (num_slits, 1)) # tile slit positions to n_points by n_slits x_slits = np.tile(xx, (num_points, 1)).T y_slits = np.tile(yy, (num_points, 1)).T distances = np.amin(np.sqrt((x_slits - x_points)**2 + (y_slits - y_points)**2), axis=0) return np.amax(distances) def optimize(self, num_masks=4, num_iter=100, resolution=1, cone_angles=None, cone_overlap=180): ''' Find the optimal spatial sampling of mask slits. Parameters ---------- num_masks: int, number of masks to make for the galaxy num_iter: int, number of iterations in MC resolution: float, arcsec, spatial resolution of mask area to sample for MC ''' self.create_masks(num_masks, cone_angles, cone_overlap) # iteratively randomize slit distribution and check spatial sampling best_result = np.inf for i in range(num_iter): # print(i) # randomize slits for mask in self.masks: mask.random_slits() # list of positions rotated to the major axis of galaxy x_positions, y_positions = self.slit_positions() metric = self.sampling_metric(x_positions, y_positions, resolution) # minimize metric if metric < best_result: # copy current slit configuration to best setup for mask in self.masks: # cleanup first # del mask.best_slits[:] # storage next mask.best_slits = mask.slits best_result = metric # add sky slits and mirror the final results for mask in self.masks: mask.add_sky_slits() mask.mirror_slits() return best_result
{ "repo_name": "adwasser/masktools", "path": "masktools/superskims/galaxy.py", "copies": "1", "size": "7204", "license": "mit", "hash": -5305748656583879000, "line_mean": 41.1286549708, "line_max": 108, "alpha_frac": 0.5627429206, "autogenerated": false, "ratio": 3.807610993657505, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.48703539142575053, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import numpy as np from scipy import stats, optimize from mousestyles.data import load_movement def get_travel_distances(strain=0, mouse=0, day=0): """ Get distances travelled in 20ms for this strain, this mouse, on this day. Parameters ---------- strain: int {0, 1, 2} The strain of mouse to test mouse: int {0, 1, 2, 3} The mouse twin id with in the strain day: int {0, 1, ..., 11} The day to calculate the distance Returns ------- x: np.ndarray shape (n, 1) The distances travelled in 20ms for this mouse on this day, truncated at 1cm (i.e. only record mouse movement when it moves more than 1cm) Examples: >>> get_travel_distances(0, 0, 0)[:3] array([ 1.00648944, 1.02094319, 1.0178885 ]) """ df = load_movement(strain=strain, mouse=mouse, day=day) x = np.array(np.sqrt(df.x.diff()**2 + df.y.diff()**2))[1:] x = x[x >= 1] return x def perform_kstest(x, distribution=stats.pareto, verbose=True): """This function fits a distribution to data, and then test the fit of the distribution using Kolmogorov-Smirnov test. The Kolmogorov-Smirnov test constructs the test statistic, which is defined as $\sup |F_n(x) - F(x)|$, for $F_n$ is the sample CDF, and F is the theoretical CDF. This statistics can be considered as a measure of distance between the sample distribution and the theoretical distribution. The smaller it is, the more similar the two distributions. We first estimate the parameter using MLE, then by minimizing the KS test statistic. The Pareto distribution is sometimes known as the Power Law distribution, with the PDF: $b / x**(b + 1)$ for $x >= 1, b > 0$. The truncated exponential distribution is the same as the rescaled exponential distribution. Parameters ---------- x: np.ndarray (n,) The sample data to test the distribution distribution: A Scipy Stats Continuous Distribution {stats.pareto, stats.expon, stats.gamma} The distribution to test against. Currently support pareto, expon, and gamma, but any one-sided continuous distribution in Scipy.stats should work. verbose: boolean If True, will print out testing result Returns ------- params: np.ndarray shape (p,) The optimal parameter for the distribution. Optimal in the sense of minimizing K-S statistics. The function also print out the Kolmogorov-Smirnov test result for three cases 1. When comparing the empirical distribution against the distribution with parameters estimated with MLE 2. When comparing the empirical distribution against the distribution with parameters estimated by explicitely minimizing KS statistics 3. When comparing a resample with replacement of the empirical distribution against the Pareto in 2. A p-value > 0.05 means we fail to reject the Null hypothesis that the empirical distribution follow the specified distribution. Notes: ------ The MLE often does not fit the data very well. We instead minimizing the K-S distance, and obtain a better fit (as seen by the PDF and CDF similarity between sample data and the fit) References: ----------- 1. Kolmogorov-Smirnov test: https://en.wikipedia.org/wiki/Kolmogorov-Smirnov_test 2. Pareto Distribution (also known as power law distribution) https://en.wikipedia.org/wiki/Pareto_distribution Examples: --------- >>> x = get_travel_distances(0, 0, 0) >>> res = perform_kstest(x, verbose=False) >>> np.allclose(res, np.array([3.67593246, 0.62795748, 0.37224205])) True """ dist_name = distribution.name # Fit the parameters by MLE mle_params = distribution.fit(x) # Fit the Parameter by explicitely minimize KS-Statistics, and perform # K-S test. First define helper function to minimize def calculate_ks_statistics(params): return stats.kstest(x, dist_name, args=params)[0] # Define good initial parameters to help optimizer find optimal values if dist_name == "pareto": init_params = [4.5, .5, .5] else: init_params = mle_params opt_params = optimize.fmin(calculate_ks_statistics, x0=init_params, disp=0) if verbose: print("1. Testing {} distribution with MLE parameters".format( dist_name)) print(stats.kstest(x, dist_name, args=mle_params)) print("2. Testing {} distribution with optimal parameters". format(dist_name)) print(stats.kstest(x, dist_name, args=opt_params)) # Resample x, and test again x_bag = np.random.choice(x, size=len(x), replace=True) print("3. Similar to 2., but on a resample of x") print(stats.kstest(x_bag, dist_name, args=opt_params)) return opt_params
{ "repo_name": "berkeley-stat222/mousestyles", "path": "mousestyles/distributions/kolmogorov_test.py", "copies": "3", "size": "5049", "license": "bsd-2-clause", "hash": -8623030688448152000, "line_mean": 36.962406015, "line_max": 79, "alpha_frac": 0.660526837, "autogenerated": false, "ratio": 3.7962406015037593, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5956767438503758, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import numpy as np import matplotlib.pyplot as plt def plot_performance(result): """ Plots the performance of classification model.It is a side-by-side barplot. For each strain, it plots the precision, recall and F-1 measure. Parameters ---------- result: dataframe, columns of precision, recall and F-1 measure. Returns ------- None """ N = 16 ind = np.arange(N) # the x locations for the groups width = 0.2 fig = plt.figure() ax = fig.add_subplot(111) precision = result.iloc[:, 0] rects1 = ax.bar(ind, precision, width, color='Coral') recall = result.iloc[:, 1] rects2 = ax.bar(ind + width, recall, width, color='LightSeaGreen') f1 = result.iloc[:, 2] rects3 = ax.bar(ind + width * 2, f1, width, color='DodgerBlue') ax.set_ylabel('Performance Measures') ax.set_xlabel('Strains') ax.set_xticks(ind + width) ax.set_xticklabels(range(16)) ax.legend((rects1[0], rects2[0], rects3[0]), ('precision', 'recall', 'F1')) plt.show() def plot_comparison(comparison): """ Plots the F1 Measure of different classification models. It is a side-by-side barplot. For each strain, it plots the F-1 measure of RandomForest, GradientBoosting, SVM. Parameters ---------- comparison: dataframe, columns of F-1 measures of 3 methods Returns ------- None """ N = 16 ind = np.arange(N) # the x locations for the groups width = 0.2 fig = plt.figure() ax = fig.add_subplot(111) rf = comparison.iloc[:, 0] rects1 = ax.bar(ind, rf, width, color='Coral') gb = comparison.iloc[:, 1] rects2 = ax.bar(ind + width, gb, width, color='LightSeaGreen') svm = comparison.iloc[:, 2] rects3 = ax.bar(ind + width * 2, svm, width, color='DodgerBlue') ax.set_ylabel('F-1 measures') ax.set_xlabel('Strains') ax.set_xticks(ind + width) ax.set_xticklabels(range(16)) ax.legend((rects1[0], rects2[0], rects3[0]), ('RandomForest', 'GradientBoosting', 'SVM')) plt.show()
{ "repo_name": "togawa28/mousestyles", "path": "mousestyles/visualization/plot_classification.py", "copies": "3", "size": "2199", "license": "bsd-2-clause", "hash": 5948350357802199000, "line_mean": 29.9718309859, "line_max": 79, "alpha_frac": 0.6093678945, "autogenerated": false, "ratio": 3.3521341463414633, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5461502040841464, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import numpy as np import pandas as pd from mousestyles import data def getdistance(strain, mouse, day): """ Return the distance of each two consecutive points among coordinates which is bigger than 1cm(truncated). Parameters ---------- strain : int the strain number of the mouse mouse : int the mouse number in its strain day : int the day number Returns ------- cut_dist : an array of number The vector of truncated distance. Examples -------- >>> getdistance (0, 0, 0) array([ 1.00648944, 1.02094319, 1.0178885 , ..., 1.00099351, 1.01191156, 1.00423354]) """ df = data.load_movement(strain, mouse, day) xcood = df["x"] ycood = df["y"] distance_vector = np.sqrt(np.diff(xcood)**2 + np.diff(ycood)**2) msk = distance_vector > 1 cut_dist = distance_vector[msk] return cut_dist def fit_powerlaw(strain, mouse, day): """ Return the estimator of truncated power law. Parameters ---------- strain : int the strain number of the mouse mouse : int the mouse number in its strain day : int the day number Returns ------- estimator : a float number The estimator of truncated power law. Examples -------- >>> fit_powerlaw (0, 0, 0) 9.4748705008269827 """ cut_dist = getdistance(strain, mouse, day) ret_mle = 1 + len(cut_dist) * 1 / \ (np.sum(np.log(cut_dist / np.min(cut_dist)))) return ret_mle def fit_exponential(strain, mouse, day): """ Return the estimator of truncated exponential. Parameters ---------- strain : int the strain number of the mouse mouse : int the mouse number in its strain day : int the day number Returns ------- estimator : a float number The estimator of truncated exponential distribution. Examples -------- >>> fit_exponential (0, 0, 0) 7.385844980814098 """ cut_dist = getdistance(strain, mouse, day) ret_mle = len(cut_dist) / (np.sum(cut_dist) - len(cut_dist)) return ret_mle def fit_dist_all(): """ Return the estimators of truncated power law and exponential for each mouse day. Parameters ---------- Returns ------- estimator : a float number The estimator of truncated exponential distribution. Examples -------- >>> fit() 7.385844980814098 """ esti_df = {"strain": [], "mouse": [], "day": [], "power": [], "exp": []} for i in range(3): for j in range(4): for k in range(12): try: temp1 = fit_powerlaw(i, j, k) temp2 = fit_exponential(i, j, k) esti_df["strain"].append(i) esti_df["mouse"].append(j) esti_df["day"] .append(k) esti_df["power"] .append(temp1) esti_df["exp"] .append(temp2) except: next estimation = pd.DataFrame( esti_df, columns=["strain", "mouse", "day", "power", "exp"]) return estimation
{ "repo_name": "berkeley-stat222/mousestyles", "path": "mousestyles/est_power_param.py", "copies": "3", "size": "3303", "license": "bsd-2-clause", "hash": 6655419859544203000, "line_mean": 23.6492537313, "line_max": 76, "alpha_frac": 0.5467756585, "autogenerated": false, "ratio": 3.7878440366972477, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.0003109452736318408, "num_lines": 134 }
from __future__ import (absolute_import, division, print_function, unicode_literals) import numpy as np import pandas as pd import math def compute_accelerations(speeds, timestamps): r""" Returns a list of the accelerations along the path. Each element of the list is the ratio of the speed to the time difference. The length of the list is equal to the length of speeds minus 1. Parameters ---------- speeds : list the traveled distances along the path. Expecting the output of compute_distances. timestamps : list the time difference within the path. Its length must be equal to the length of speeds plus 1. Should not contain same time in adjacent rows; otherwise output would contain inf. Returns ------- accel : list contains the speeds along the path. Examples -------- >>> compute_accelerations([1, 2, 0], [3, 4, 5, 6]) [0.5, -1.0] """ if not isinstance(speeds, list) or not isinstance(timestamps, list): raise TypeError("speeds and timestamps must be lists") if len(speeds) is not len(timestamps) - 1: raise ValueError( "lengths of speeds must be the length of timestamps minus 1") speeds_diff = [x - y for x, y in zip(speeds[:len(speeds)], speeds[1:])] time_diffs = [x - y for x, y in zip(timestamps[:len(timestamps) - 1], timestamps[2:])] test = "timestamps should not contain same times in i th and i+2 th rows." if np.count_nonzero(time_diffs) is not len(time_diffs): raise ValueError(test) accel = [v / t for v, t in zip(speeds_diff, time_diffs)] return accel def angle_between(v1, v2): r""" Returns the angle in radians between vectors `v1` and `v2`. Both vectors must have same length. Parameters ---------- v1, v2 : lists Vectors whose angle would be calculated. Should have same lengths. Should not be zero vector. Returns ------- angle : numpy float object nan if either of `v1` or `v2` is zero vector, Examples -------- >>> angle_between([1, 0],[1, 0]) 0.0 >>> angle_between([1, 0],[0, 1]) 1.5707963267948966 >>> angle_between([1, 0],[-1, 0]) 3.1415926535897931 """ if not isinstance(v1, list) or not isinstance(v2, list): raise TypeError("v1 and v2 must be lists") if len(v1) is not len(v2): raise ValueError("both vectors must have same lengths") norm_v1 = np.linalg.norm(v1) norm_v2 = np.linalg.norm(v2) if np.count_nonzero([norm_v1, norm_v2]) is not 2: raise ValueError('both vectors must have norms greater than 0') v1_u = v1 / norm_v1 v2_u = v2 / norm_v2 return np.arccos(np.clip(np.dot(v1_u, v2_u), -1.0, 1.0)) def compute_angles(path_obj, radian=False): r""" Returns a list of the angles in the path. Each element of the list is the angle between the adjacent vectors in the path. The length of the list is equal to the length of speeds minus 2. Parameters ---------- path_obj : pandas.DataFrame CT, CX, CY coordinates and homebase status. Must have length greater than 3. radian : boolean True for the output in radians. False for in turns (i.e. 360 for a full turn). Default is False. Returns ------- angles : list contains the angles in the path. The first and last elements are None. Examples -------- >>> path = pd.DataFrame({'t':[2, 4.5, 10.5], 'x':[0, 1, 1],\ 'y':[0, 0, 1], 'isHB':[True, True, False]}) >>> compute_angles(path) [None, 90.0, None] """ if not isinstance(path_obj, pd.core.frame.DataFrame): raise TypeError("path_obj must be pandas DataFrame") if not set(path_obj.keys()).issuperset(['x', 'y']): raise ValueError("the keys of path_obj must contain 'x', 'y'") if len(path_obj) <= 2: raise ValueError("path_obj must contain at least 3 rows") if not isinstance(radian, bool): raise TypeError("radian must be bool") indices = path_obj.index[:len(path_obj) - 1] vectors = [path_obj.loc[i + 1, 'x':'y'] - path_obj.loc[i, 'x':'y'] for i in indices] angles = [angle_between(list(v1), list(v2)) for v1, v2 in zip(vectors[1:], vectors[:len(vectors)])] if not radian: angles = [theta * 180 / math.pi for theta in angles] # the first and last elements should be None angles.insert(len(angles), None) angles.insert(0, None) return angles
{ "repo_name": "berkeley-stat222/mousestyles", "path": "mousestyles/path_diversity/path_features.py", "copies": "3", "size": "4659", "license": "bsd-2-clause", "hash": -806828204126325400, "line_mean": 28.8653846154, "line_max": 78, "alpha_frac": 0.6016312513, "autogenerated": false, "ratio": 3.6313328137178487, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0, "num_lines": 156 }
from __future__ import (absolute_import, division, print_function, unicode_literals) import numpy as np from mousestyles.data.utils import (pull_locom_tseries_subset, total_time_rectangle_bins) def test_pull_locom(): M = np.array([[1, 2, 3, 4, 5, 6], [8, 7, 6, 5, 5, 4], [-1, 3, 4, 1, 1, 4]]) M_ = np.array([[1, 2, 3, 4], [8, 7, 6, 5], [-1, 3, 4, 1]]) Mnew = pull_locom_tseries_subset(M, start_time=1, stop_time=4) np.testing.assert_allclose(Mnew, M_) M_ = np.array([[1, 2, 3, 3.4], [8, 7, 6, 6], [-1, 3, 4, 4]]) Mnew = pull_locom_tseries_subset(M, start_time=1, stop_time=3.4) np.testing.assert_allclose(Mnew, M_) M_ = np.array([[1.2, 2, 3, 3.4], [8, 7, 6, 6], [-1, 3, 4, 4]]) Mnew = pull_locom_tseries_subset(M, start_time=1.2, stop_time=3.4) np.testing.assert_allclose(Mnew, M_) M_ = np.array([[1, 2, 3, 4, 5], [8, 7, 6, 5, 5], [-1, 3, 4, 1, 1]]) Mnew = pull_locom_tseries_subset(M, start_time=0, stop_time=5) np.testing.assert_allclose(Mnew, M_) M_ = np.array([[1.2, 1.5], [8, 8], [-1, -1]]) Mnew = pull_locom_tseries_subset(M, start_time=1.2, stop_time=1.5) np.testing.assert_allclose(Mnew, M_) Mnew = pull_locom_tseries_subset(M, start_time=1, stop_time=7) np.testing.assert_allclose(Mnew, M) def test_total_time(): M = np.array([[1, 2, 3], [.5, .1, .1], [.3, .4, .6]]) TT = total_time_rectangle_bins(M, xbins=2, ybins=2) np.testing.assert_allclose(TT, [[0., 0.], [1., 1.]]) M = np.array([[1, 2, 3], [.5, .6, .1], [.3, .4, .6]]) TT = total_time_rectangle_bins(M, xbins=3, ybins=5) np.testing.assert_allclose(TT, [[0., 0., 0.], [0., 0., 0.], [0., 1., 0.], [0., 1., 0.], [0., 0., 0.]]) M = np.array([[1, 2, 3, 4, 5, 6], [.51, .61, .11, .81, .21, .3], [.3, .41, .6, .1, .1, .1]]) TT = total_time_rectangle_bins(M, xbins=3, ybins=5) np.testing.assert_allclose(TT, [[0., 0., 0.], [1., 0., 0.], [ 0., 1., 0.], [0., 1., 0.], [1., 0., 1.]]) M = np.array([[1, 2], [.5, .5], [.3, .3]]) TT = total_time_rectangle_bins(M, xbins=3, ybins=5) np.testing.assert_allclose(TT, [[0., 0., 0.], [0., 0., 0.], [0., 0., 0.], [0., 1., 0.], [0., 0., 0.]])
{ "repo_name": "berkeley-stat222/mousestyles", "path": "mousestyles/data/tests/test_utils.py", "copies": "3", "size": "2371", "license": "bsd-2-clause", "hash": 2864342297630106000, "line_mean": 40.5964912281, "line_max": 79, "alpha_frac": 0.4812315479, "autogenerated": false, "ratio": 2.4723670490093848, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.44535985969093844, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import numpy as np from .slit import Slit class Mask: '''Represents a slitmask''' def __init__(self, name, mask_pa, mask_r_eff, cone_angle, brightness_profile, slit_separation=0.5, slit_width=1, min_slit_length=3, max_radius_factor=4, angle_offset=5): ''' Parameters ---------- name: str, gui name of mask mask_pa: float, degrees east of north mask_r_eff: float, arcsec, effective radius along the mask position angle cone_angle: float, degrees, the opening angle of the slit spatial distribution brightness_profile: f: radius in arcsec, position angle in degrees -> surface brightness in mag/arcsec^2 slit_separation: float, arcsec, minimum separation between slits slit_width: float, arcsec, width of slit, should not be less than 1 arcsec min_slit_length: float, arcsec, the minimum slit length max_radius_factor: float, factors of Reff to which to extend the skims angle_offset: float, degrees, rotate the slits from the mask_pa by this amount ''' # x_max, y_max, are the maximum spatial extent of the masks, in arcsec self.name = name self.x_max = 498 self.y_max = 146 self.mask_pa = mask_pa self.mask_r_eff = mask_r_eff self.cone_angle = cone_angle self.brightness_profile = brightness_profile self.slit_separation = slit_separation self.slit_width = slit_width self.min_slit_length = min_slit_length self.max_radius_factor = max_radius_factor self.angle_offset = angle_offset self.slits = [] self.best_slits = [] def __repr__(self): mask_params_str = '<Mask: ' + self.name + ': PA: {0:.2f}, Reff: {1:.2f}, Cone angle: {2:.2f}>' return mask_params_str.format(self.mask_pa, self.mask_r_eff, self.cone_angle) def get_slit(self, name): ''' Searches through the slit slit list for the named slit. Parameters ---------- name, str, name of slit Returns ------- slit, Slit, name of matching Slit object, or None if no match ''' for slit in self.slits: if slit.name.strip() == name.strip(): return slit print(name + ' not found in ' + self.name + '!') return None def get_slit_length(self, x, y, snr=35., sky=19, integration_time=7200, plate_scale=0.1185, gain=1.2, read_noise=2.5, dark_current=4, imag_count_20=1367): ''' Determine how long the slit should be, based on the required signal-to-noise ratio. Default signal-to-noise ratio is set by kinematic requirements. Default sky background is for dark sky conditions in I band. Default time is for two hours. Plate scale is set for DEIMOS. Gain, read noise, and dark current are rough estimates from http://www2.keck.hawaii.edu/inst/deimos/deimos_detector_data.html I band counts at I = 20 are from LRIS, but should be close to DEIMOS, see http://www2.keck.hawaii.edu/inst/deimos/lris_vs_deimos.html To do: calibrate what value counts should have for a desired signal-to-noise ratio Parameters ---------- x: float, arcsec, x coordinate y: float, arcsec, y coordinate snr: float, desired signal-to-noise ratio sky: float, brightness of sky in mag/arcsec^2, default (sky=19) is a wild and crazy guess integration_time: float, seconds plate_scale: float, arcsec per pixel gain: float, e- counts per ADU read_noise: float, e- counts dark_current: float, e- counts per pix per hour imag_count_20: float, e- counts per second at I = 20 mag ''' radius = np.sqrt(x**2 + y**2) angle = self.mask_pa + np.degrees(np.arctan(y/x)) source_sb = self.brightness_profile(radius, angle) # convert to e- per second per pix^2 mag_plate_scale = - 2.5 * np.log10(plate_scale**2) source_flux = imag_count_20 * 10**(0.4 * (20 - source_sb - mag_plate_scale)) sky_flux = imag_count_20 * 10**(0.4 * (20 - sky - mag_plate_scale)) # dark = dark_current / 3600. # denominator = (read_noise**2 + (gain / 2)**2 + # integration_time * (source_flux + sky_flux + dark)) npix = snr**2 * sky_flux / integration_time / source_flux**2 area = npix * plate_scale**2 length = area / self.slit_width return length def slit_positions(self): ''' Returns arrays with x, y positions of slits. ''' xx = np.array([slit.x for slit in self.slits]) yy = np.array([slit.y for slit in self.slits]) return xx, yy def _test_slits(self): # reset slits self.slits = [] # x is at the left edge of the slit x = self.slit_separation / 2. count = 0 while x < self.mask_r_eff * self.max_radius_factor: # y_cone = np.tan(np.radians(self.cone_angle / 2.)) * x # y = np.random.uniform(-y_cone, y_cone) y = 0 length = max(self.min_slit_length, self.get_slit_length(x, y)) # first run gets even indices, rotated copy gets odd indices name = 'skims{0:02d}'.format(2 * count) self.slits.append(Slit(x + length / 2, y, length, self.slit_width, self.mask_pa + self.angle_offset, name=name)) count += 1 x += length + self.slit_separation def random_slits(self): ''' Produce a random alignment (satisfying the opening angle restriction), with slit lengths satisfying a signal-to-noise requirement. ''' # reset slits self.slits = [] # x is at the left edge of the slit x = self.slit_separation / 2. count = 0 while x < self.mask_r_eff * self.max_radius_factor: y_cone = np.tan(np.radians(self.cone_angle / 2.)) * x y = np.random.uniform(-y_cone, y_cone) length = max(self.min_slit_length, self.get_slit_length(x, y)) # first run gets even indices, rotated copy gets odd indices name = 'skims{0:02d}'.format(2 * count) self.slits.append(Slit(x + length / 2, y, length, self.slit_width, self.mask_pa + self.angle_offset, name=name)) count += 1 x += length + self.slit_separation def add_sky_slits(self, num_sky_slits=10, sky_spacing=100): ''' Place sky slits on the mask Parameters ---------- num_sky_slits, int, maximum number of sky slits (per half of max) to place sky_spacing, float, arcsec, start placing slits this far from mask edge ''' x = self.x_max - sky_spacing count = 0 while x < self.x_max and count < num_sky_slits: y = np.random.uniform(-self.y_max, self.y_max) length = self.min_slit_length name = 'sky{0:02d}'.format(2 * count) self.slits.append(Slit(x + length / 2, y, length, self.slit_width, self.mask_pa + self.angle_offset, name=name)) count += 1 x += length + self.slit_separation def mirror_slits(self): ''' Adds the mirror image of the current slits to the mask. ''' nslits = len(self.slits) for i in range(nslits): slit = self.slits[i] x = -slit.x y = -slit.y length = slit.length width = slit.width pa = slit.pa slit_type = slit.name[:-2] index = int(slit.name[-2:]) # mirrored slits are odd name = slit_type + '{0:02d}'.format(index + 1) self.slits.append(Slit(x, y, length, width, pa, name)) def within_mask(self, x, y): x = np.abs(x) a = (y < -1) | (x < 360) b = (360 <= x) & (x < 420) & (y < -0.85*x+452.) c = (420. <= x) & (x < 460.) & (y < -1.075*x+546.5) d = (460. <= x) & (x < 498.) & (y < -1.9347368421*x+693.5789473684) return a | b | c | d def within_cones(self, x, y): x = np.abs(x) yline1 = np.tan(self.cone_angle / 2. * np.pi/180.) * np.array(x) yline2 = -np.tan(self.cone_angle / 2. * np.pi/180.) * np.array(x) return (yline2 < y) & (y < yline1) def within_slits(self, x, y): return np.sqrt(x**2 + y**2) <= self.mask_r_eff * self.max_radius_factor
{ "repo_name": "adwasser/masktools", "path": "masktools/superskims/mask.py", "copies": "1", "size": "8887", "license": "mit", "hash": -2388717992226478600, "line_mean": 40.9198113208, "line_max": 102, "alpha_frac": 0.5536176437, "autogenerated": false, "ratio": 3.3535849056603775, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4407202549360377, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import numpy as np def get_dist_speed(movement, start, end, return_array=True): r""" Return a list containing distance(s) covered in a path and average speed(s) within a path. Parameters ---------- movement : pandas.DataFrame CT, CX, CY coordinates and homebase status for the unique combination of strain, mouse, and day start : int positive integer indicating the starting index of a path end : int positive integer indicating the end index of a path return_array : bool boolean indicating whether an array of distances and average speeds are returned or the summation of those distances and speeds Returns ------- dist : distance(s) travelled along a path speed : average speed(s) along a path Examples -------- >>> movement = data.load_movement(1, 2, 1) >>> dist, speed = get_dist_speed(movement, 0, 3) >>> print(dist) [0.0, 0.17999999999999972, 0.19446593532030554] >>> print(speed) [0.0, 0.9999999999983815, 0.055246004352409776] >>> dist, speed = get_dist_speed(movement, 0, 3, return_array=False) >>> print(dist) 0.37446593532030525 >>> print(speed) 0.096661315260887087 """ # Check whether inputs are valid. if (start < 0) or (end < 0): raise ValueError("Start and end indices must be positive") if (type(start) != int) or (type(end) != int): raise TypeError("Start and end indices must be integers") if start > end: raise ValueError("Start index must be smaller than end index") if end - start > len(movement) - 1: raise ValueError("Number of observations must be less than \ or equal to total observations") if start == end: return [0, 0] x = movement['x'][start:(end + 1)].ravel() y = movement['y'][start:(end + 1)].ravel() if return_array: t = movement['t'][start:(end + 1)].ravel() time = np.diff(t) dist = np.sqrt((x[1:] - x[:-1])**2 + (y[1:] - y[:-1])**2).tolist() speed = (dist / time).tolist() else: t = movement['t'] time = t[end] - t[start] dist = sum(np.sqrt((x[1:] - x[:-1])**2 + (y[1:] - y[:-1])**2)) speed = dist / time return [dist, speed]
{ "repo_name": "togawa28/mousestyles", "path": "mousestyles/path_diversity/get_dist_speed.py", "copies": "3", "size": "2409", "license": "bsd-2-clause", "hash": 6795136597837399000, "line_mean": 29.8846153846, "line_max": 74, "alpha_frac": 0.5898713159, "autogenerated": false, "ratio": 3.606287425149701, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0, "num_lines": 78 }
from __future__ import (absolute_import, division, print_function, unicode_literals) import numpy as np def path_index(movement, stop_threshold, min_path_length): r""" Return a list object containing start and end indices for a specific movement. Each element in the list is a list containing two indices: the first element is the start index and the second element is the end index. Parameters ---------- movement : pandas.DataFrame CT, CX, CY coordinates and homebase status for the unique combination of strain, mouse and day stop_threshold : float positive number indicating the path cutoff criteria if the time difference between two observations is less than this threhold, they will be in the same path min_path_length : int positive integer indicating how many observations in a path Returns ------- paths index : a list containing the indices for all paths Examples -------- >>> movement = data.load_movement(1, 2, 1) >>> paths = path_index(movement, 1, 1)[:5] >>> paths [[0, 2], [6, 8], [107, 113], [129, 131], [144, 152]] """ # check if all inputs are positive integers conditions_value = [stop_threshold <= 0, min_path_length <= 0] conditions_type = type(min_path_length) != int if any(conditions_value): raise ValueError("Input values need to be positive") if conditions_type: raise TypeError("min_path_length needs to be integer") # Pull out time variable T = movement['t'].ravel() # Calculate time differences TD = np.diff(T) path = [] # index i = 0 while i < len(TD): start_index = i # If time difference is less than stop_threshold # start to track the index in this path while TD[i] < stop_threshold: i += 1 if i == len(TD): break end_index = i # Check whether start index is equal to end index # If they are equal jump to next index if start_index == end_index: next else: path.append([start_index, end_index]) i += 1 path = [p for p in path if (p[1] - p[0]) > min_path_length] return path
{ "repo_name": "berkeley-stat222/mousestyles", "path": "mousestyles/path_diversity/path_index.py", "copies": "3", "size": "2301", "license": "bsd-2-clause", "hash": 1224103679127582000, "line_mean": 29.68, "line_max": 66, "alpha_frac": 0.6014776184, "autogenerated": false, "ratio": 4.176043557168784, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.6277521175568784, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import numpy as np def powerlaw_pdf(x, a): """ The probability density function of truncated power law. Parameters ---------- x : float > 0, or a np.dnarray x in formula p(x)=(alpha-1)*x^(-alpha). a : float > 1 alpha in formula p(x)=(alpha-1)*x^(-alpha). Returns ------- probability density : float The probability density of power law at x. Examples -------- >>> powerlaw_pdf (2, 2) 0.25 """ return (a - 1) * x ** (-a) def exp_pdf(x, l): """ The probability density function of truncated exponential. Parameters ---------- x : float, or a np.dnarray x in formula p(x)=lambda*exp(-lambda*x). l : float lambda in formula p(x)=lambda*exp(-lambda*x). Returns ------- probability density : float The probability density of power law at x. Examples -------- >>> exp_pdf(1, 1) 0.36787944117144233 """ return l * np.exp(-l * (x - 1)) def powerlaw_inverse_cdf(y, a): """ The inverse CDF function of power law distribution Parameters ---------- y : float in [0, 1], or a np.dnarray y in formula F^(-1)(y) = (1 - y)^(1/(1-a)) a : float > 1 a in formula F^(-1)(y) = (1 - y)^(1/(1-a)) Returns ------- x : float The inverse CDF function of power law distribution with parameter a at point y Examples -------- >>> powerlaw_inverse_cdf(0.5, 5) 1.189207115002721 """ return (1 - y)**(1/(1-a)) def exp_inverse_cdf(y, l): """ The inverse CDF function of truncated (at 1) exponential distribution Parameters ---------- y : float in [0, 1], or a np.dnarray y in formula F^(-1)(y) = 1 - log(1 - y) / l l : float > 0 a in formula F^(-1)(y) = 1 - log(1 - y) / l Returns ------- x : float The inverse CDF function of truncated (at 1) exponential distribution distribution with parameter l at point y Examples -------- >>> exp_inverse_cdf(0.6,2) 1.4581453659370776 """ return 1 - np.log(1 - y) / l
{ "repo_name": "changsiyao/mousestyles", "path": "mousestyles/distribution.py", "copies": "3", "size": "2255", "license": "bsd-2-clause", "hash": 5994046351713556000, "line_mean": 21.1078431373, "line_max": 77, "alpha_frac": 0.5286031042, "autogenerated": false, "ratio": 3.5400313971742543, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5568634501374254, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import os as _os import numpy as np import pandas as pd from mousestyles import data_dir from mousestyles.intervals import Intervals import collections from matplotlib.externals import six INTERVAL_FEATURES = ["AS", "F", "IS", "M_AS", "M_IS", "W"] def load_all_features(): """ Returns a (21131, 13) size pandas.DataFrame object corresponding to 9 features over each mouse's 2-hour time bin. The first four columns index each mouses's 2-hour bin: Column 0: the strain of the mouse (0-15) Column 1: the mouse number (number depends on strain) Column 2: the day number (5-16) Column 3: the 2-hour time bin (e.g., value 4 corresponds to hours 4 to 6) The remaining 9 columns are the computed features. Returns ------- features_data_frame : pandas.DataFrame A dataframe of computed features. """ features = [ 'ASProbability', 'ASNumbers', 'ASDurations', 'Food', 'Water', 'Distance', 'ASFoodIntensity', 'ASWaterIntensity', 'MoveASIntensity'] # 9 x 1921 x (3 labels + 11 feature time bins) all_features = np.load( _os.path.join( data_dir, 'all_features_mousedays_11bins.npy')) # Here we begin reshaping the 3-d numpy array into a pandas 2-d dataframe columns = ['strain', 'mouse', 'day'] # Append 2-hour time bin values columns += list(range(0, 22, 2)) # For each feature, unpivot its dataframe so that the 2-hour # time bins become a value column, rather than a dimension data_frames = [] for (i, feature) in enumerate(features): df = pd.DataFrame(data=all_features[i, :, :], columns=columns) melted_df = pd.melt(df, id_vars=columns[:3], value_vars=columns[3:], var_name='hour', value_name=feature) data_frames.append(melted_df) # Connect each of the feature dataframes to make one dataframe all_features_df = data_frames.pop(0) other_features = [x.iloc[:, -1] for x in data_frames] other_features.insert(0, all_features_df) final_df = pd.concat(other_features, axis=1) # fix for data inconsistency final_df['day'] = final_df['day'] - 5 return final_df def load_mouseday_features(features=None): """ Returns a (1921, 3+11*n) size pandas.DataFrame object corresponding to each 2-hour time bin of the n inputted features over each mouse. The first three columns index each mouse: Column 0: the strain of the mouse (0-15) Column 1: the mouse number (number depends on strain) Column 2: the day number (5-16) The remaining 3*n columns are the values for each 2-hour time bin of the n inputted features. Parameters ---------- features: list, optional A list of one or more features chosen from {"ASProbability", "ASNumbers", "ASDurations", "Food", "Water", "Distance", "ASFoodIntensity", "ASWaterIntensity", "MoveASIntensity"} Default all features when optional Returns ------- features_data_frame : pandas.DataFrame A dataframe of computed features. Examples -------- >>> mouseday = load_mouseday_features() >>> mouseday = load_mouseday_features(["Food"]) >>> mouseday = load_mouseday_features(["Food", "Water", "Distance"]) """ features_list = [ "ASProbability", "ASNumbers", "ASDurations", "Food", "Water", "Distance", "ASFoodIntensity", "ASWaterIntensity", "MoveASIntensity"] if features is None: features = features_list if type(features) is str: features = [features] fea_str = "{" for item in features_list: fea_str += '"' + item + '", ' fea_str = fea_str[:-2] + "}" # Check if input is a list if type(features) is not list: raise TypeError( "Input value must be a list." ) # Check if input values are expected features for feature in features: if feature not in features_list: raise ValueError( "Input value must be chosen from " + fea_str + "." ) # 9 x 1921 x (3 labels + 11 feature time bins) all_features = np.load( _os.path.join( data_dir, "all_features_mousedays_11bins.npy")) # Locate each feature and aggregate numpy arrays dic = {} for (i, feature) in enumerate(features_list): dic[feature] = i all_data_orig = np.hstack( [all_features[0, :, 0:3]] + [all_features[dic[feature], :, 3:] for feature in features]) # Prepare column names columns = ["strain", "mouse", "day"] for feature in features: columns += [feature + "_" + str(x) for x in range(0, 22, 2)] # Transform into data frame data_all = pd.DataFrame(all_data_orig, columns=columns) return data_all def load_intervals(feature): """ Return a pandas.DataFrame object of project interval data for the specified feature. There are 5 columns in the dataframe: strain: the strain number of the mouse mouse: the mouse number in its strain day: the day number start: the start time stop: the stop time Parameters ---------- feature: {"AS", "F", "IS", "M_AS", "M_IS", "W"} Returns ------- intervals : pandas.DataFrame All data of the specified feature as a dataframe Examples -------- >>> AS = load_intervals('AS') >>> IS = load_intervals('IS') """ # check input is one of the provided choices if feature not in INTERVAL_FEATURES: raise ValueError( 'Input value must be one of {"AS", "F", "IS", "M_AS", "M_IS", "W"}' ) # get all file names file_names = _os.listdir(_os.path.join(data_dir, "intervals", feature)) # check if directory is empty if len(file_names) == 0: raise ValueError('Directory is empty; no file found.') # initialized data frame # use for loop to load every file and concat to overall data frame dt = pd.DataFrame() for item in file_names: strain = int(item.split("strain")[1].split("_mouse")[0]) mouse = int(item.split("mouse")[1].split("_day")[0]) day = int(item.split("day")[1].split(".npy")[0]) path = _os.path.join(data_dir, "intervals", feature, item) sub = np.load(path) dt_sub = pd.DataFrame() dt_sub["strain"] = [strain] * sub.shape[0] dt_sub["mouse"] = [mouse] * sub.shape[0] dt_sub["day"] = [day] * sub.shape[0] dt_sub["start"] = sub[:, 0] dt_sub["stop"] = sub[:, 1] dt = pd.concat([dt, dt_sub]) # sort based on strain, mouse and day dt = dt.sort_values(["strain", "mouse", "day"]) dt.index = range(dt.shape[0]) return dt def load_movement(strain, mouse, day): """ Return a pandas.DataFrame object of project movement data for the specified combination of strain, mouse and day. There are 4 columns in the dataframe: t: Time coordinates (in seconds) x: X coordinates indicating the left-right position of the cage y: Y coordinates indicating the front-back position of the cage isHB: Boolean indicating whether the point is in the home base or not Parameters ---------- strain: int nonnegative integer indicating the strain number mouse: int nonnegative integer indicating the mouse number day: int nonnegative integer indicating the day number Returns ------- movement : pandas.DataFrame CT, CX, CY coordinates and home base status of the combination of strain, mouse and day Examples -------- >>> movement = load_movement(0, 0, 0) >>> movement = load_movement(1, 2, 1) """ # check if all inputs are nonnegative integers conditions_value = [strain < 0, mouse < 0, day < 0] conditions_type = [type(strain) != int, type(mouse) != int, type(day) != int] if any(conditions_value): raise ValueError("Input values need to be nonnegative") if any(conditions_type): raise TypeError("Input values need to be integer") # load all four files of HB, CT, CX and CY data NHB_path = "txy_coords/C_idx_HB/C_idx_HB_strain{}_mouse{}_day{}.npy".\ format(strain, mouse, day) CT_path = "txy_coords/CT/CT_strain{}_mouse{}_day{}.npy".\ format(strain, mouse, day) CX_path = "txy_coords/CX/CX_strain{}_mouse{}_day{}.npy".\ format(strain, mouse, day) CY_path = "txy_coords/CY/CY_strain{}_mouse{}_day{}.npy".\ format(strain, mouse, day) try: HB = ~ np.load(_os.path.join(data_dir, NHB_path)) CT = np.load(_os.path.join(data_dir, CT_path)) CX = np.load(_os.path.join(data_dir, CX_path)) CY = np.load(_os.path.join(data_dir, CY_path)) except IOError: raise ValueError("No data exists for strain {}, mouse {}, day {}". format(strain, mouse, day)) # make data frame dt = pd.DataFrame() dt["t"] = CT dt["x"] = CX dt["y"] = CY dt["isHB"] = HB return dt def _lookup_intervals(times, intervals): """ Return a boolean array where each element is True if the corresponding element of `times` was in `intervals`. Parameters ---------- times: numpy.array of floats an array of timestamps intervals: pandas.DataFrame a data frame containing columns 'start' and 'stop', represent a series of time intervals Returns ------- numpy.array of booleans Array of booleans representing whether the timestamps in `times` fell in the intervals in `intervals` Examples -------- >>> t = pd.Series([1.5, 2.5, 3.5]) >>> ints = pd.DataFrame({'start': [1, 2], 'stop': [1.99, 2.99]}) >>> in_intervals = _lookup_intervals(t, ints) >>> t.shape == in_intervals.shape True >>> in_intervals 0 True 1 True 2 False dtype: bool """ ints = Intervals(intervals[['start', 'stop']]) return times.map(ints.contains) def load_movement_and_intervals(strain, mouse, day, features=INTERVAL_FEATURES): """ Return a pandas.DataFrame object of project movement and interval data for the specified combination of strain, mouse and day. There are 4 + len(features) columns in the dataframe: t: Time coordinates (in seconds) x: X coordinates indicating the left-right position of the cage y: Y coordinates indicating the front-back position of the cage isHB: Boolean indicating whether the point is in the home base or not Additonal columns taking their names from features: Boolean indicating whether the time point is in an interval of behavior of the given feature. Parameters ---------- strain: int nonnegative integer indicating the strain number mouse: int nonnegative integer indicating the mouse number day: int nonnegative integer indicating the day number features: list (or other iterable) of strings list of features from {"AS", "F", "IS", "M_AS", "M_IS", "W"} Returns ------- movement : pandas.DataFrame CT, CX, CY coordinates, home base status, and feature interval information for a given srain, mouse and day Examples -------- >>> m1 = load_movement(1, 1, 1) >>> m2 = load_movement_and_intervals(1, 1, 1, []) # don't add any features >>> np.all(m1 == m2) True >>> m3 = load_movement_and_intervals(1, 1, 1, ['AS']) >>> m3.shape[1] == m1.shape[1] + 1 # adds one column True >>> m3.shape[0] == m1.shape[0] # same number of rows True >>> m3[29:32] t x y isHB AS 29 56448.333 -6.289 34.902 False False 30 56448.653 -5.509 34.173 True True 31 56449.273 -5.048 33.284 True True """ if isinstance(features, six.string_types): features = [features] elif not isinstance(features, collections.Iterable): raise ValueError('features must be a string or iterable of strings') movements = load_movement(strain, mouse, day) for f in features: intervals = load_intervals(feature=f) mouse_intervals = intervals[(intervals['strain'] == strain) & (intervals['mouse'] == mouse) & (intervals['day'] == day)] movements[f] = _lookup_intervals(movements['t'], mouse_intervals) return movements def load_start_time_end_time(strain, mouse, day): """ Returns the start and end times recorded for the mouse-day. The first number indicates the number of seconds elapsed since midnight, the second number indicates when the cage is closed for cleaning. In other words, this is the interval for which all sensors are active. Parameters ---------- strain: int nonnegative integer indicating the strain number mouse: int nonnegative integer indicating the mouse number day: int nonnegative integer indicating the day number Returns ------- times: a tuple of (float, float) the start time and end time """ file_name = 'recordingStartTimeEndTime_strain{}_mouse{}_day{}.npy'.\ format(strain, mouse, day) path_to_file = _os.path.join(data_dir, 'txy_coords', 'recordingStartTimeEndTime', file_name) return tuple(np.load(path_to_file)) def distances(strain, mouse, day, step=50): """ Return a numpy array object of project movement data for the specified combination of strain, mouse and day. At regular timesteps, defined by the step parameter, compute the euclidian distance between the positions of the mouse at two consecutive times. More specifically: - let delta_t be the step parameter. - let $t_n$ be the sequance of non negative numbers such that $t_0 = 0$ and $t_(n+1) = t_n + delta_t$. The sequence is defined for all $n$ such that $n>=0$ and $t_n <= time$ of the experiment - let $d_n$ be the sequence of non negative numbers such that $d_0 = 0$ and $d_n$ equals the position of the mouse at a particular day at time $t_n$. $d_n$ is then defined on the same set of integers as the sequence $t_n$. - The function returns the sequence $d_n$. Parameters ---------- strain: int nonnegative integer indicating the strain number mouse: int nonnegative integer indicating the mouse number day: int nonnegative integer indicating the day number step: float positive float defining the time between two observations default corresponds to 1 second Returns ------- movement : numpy array Examples -------- >>> dist = distances(0, 0, 0, step=1e2) """ movement = load_movement(strain, mouse, day) # Compute distance between samples dist = np.sqrt(movement["x"].diff()[1:]**2 + movement["y"].diff()[1:]**2) time = movement['t'][1:] - movement['t'][0] t_final = time[len(time) - 1] # Aggregate distances according to step aggregate = np.zeros(int(t_final / step)) j = 1 for i in range(len(aggregate)): while time[j] < i * step: aggregate[i] = aggregate[i] + dist[j] j = j + 1 return aggregate def distances_bymouse(strain, mouse, step=50, verbose=False): """ Aggregates 'distances' for all days of recorded data for one particular mouse. More specifically: - let $d^1,...,d^D$ be the sequence of distances for one particular mouse for days $1$ to $D$. - The function returns the concatenation of the $d^i$. Parameters ---------- strain: int nonnegative integer indicating the strain number mouse: int nonnegative integer indicating the mouse number step: float positive float defining the time between two observations default corresponds to 1 second Returns ------- movement : numpy array Examples -------- >>> dist = distances_bymouse(0, 0, step=1e2) """ day = 0 res = np.array([]) while True: try: res = np.append(res, distances(strain, mouse, day, step=step)) day += 1 if verbose: print('day %s done.' % day) except ValueError: break return res def distances_bystrain(strain, step=50, verbose=False): """ Aggregates distances_bymouse for all mice in one given strain. More specifically: - let $d^1,...,d^M$ be the sequence of distances for one particular strain for mouses $1$ to $M$. - The function returns the sequence concatenation of the $d^i$. Parameters ---------- strain: int nonnegative integer indicating the strain number step: float positive float defining the time between two observations default corresponds to 1 second Returns ------- movement : numpy array Examples -------- >>> dist = distances_bystrain(0, step=1e2) """ mouse = 0 res = np.array([]) dist = np.array([0]) while dist.size > 0: dist = distances_bymouse(strain, mouse, step=step) res = np.append(res, dist) mouse += 1 if verbose: print('mouse %s done.' % mouse) return res def load_time_matrix_dynamics(): """ Load the time matrix for dynamics pattern project """ return pd.read_csv( _os.path.join( data_dir, 'time_matrix.csv'))
{ "repo_name": "togawa28/mousestyles", "path": "mousestyles/data/__init__.py", "copies": "3", "size": "18023", "license": "bsd-2-clause", "hash": 3760767207990582000, "line_mean": 30.6192982456, "line_max": 79, "alpha_frac": 0.5995672197, "autogenerated": false, "ratio": 3.837947189097104, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0, "num_lines": 570 }
from __future__ import (absolute_import, division, print_function, unicode_literals) import os import numpy as np import scipy.linalg if os.environ.get("USE_FAST_FAKELU", "0") == "1": print("Using C++ extension for FakeLU") from fakelu import fast_FakeLU as FakeLU else: from fakelu import FakeLU def test_FakeLU(): A = np.array([ [ 9, 3, .1, 0,.01, 0], [ -4, 18, 0, .5, 0,.02], [ .2, 0, 7, -2, 1, 0], [ 0,-.1, 3, 5, 0,-.1], [.03, 0, .1, 0, -9, 2], [ 0,.04, 0,.05, -3, 7] ]) b = np.array([-7, 3, 5, -4, 6, 1.5]) lu, piv = scipy.linalg.lu_factor(A) x = scipy.linalg.lu_solve((lu, piv), b) fLU = FakeLU(A, 2, 2) fx = np.array(fLU.solve(b)) assert np.allclose(x, fx, rtol=0.05, atol=1e-6) def _get_test_m1(): A = np.array([ [1, 3, 5], [2, 4, 7], [1, 1, 0] ]) ref = np.array([ [ 2.0, 4.0, 7.0], [ 0.5, 1.0, 1.5], [ 0.5,-1.0,-2.0] ]) return A, ref def _get_test_m2(): A = np.array([ [ 5, 3, 2, 0, 0, 0], [ 5, 8, 0, 3, 0, 0], [ 1, 0, 8, 4, 4, 0], [ 0, 2, 4, 4, 0, 5], [ 0, 0, 3, 0, 6, 9], [ 0, 0, 0, 4, 2, 7] ], dtype=np.float64) ref = np.array([ [ 5, 3, 2, 0, 0, 0], [ 1, 5, 0, 3, 0, 0], [1/5, 0, 8, 4, 4, 0], [ 0,2/5,1/2, 2, 0, 5], [ 0, 0,3/8, 0, 6, 9], [ 0, 0, 0,4/2,1/3, 4] ], dtype=np.float64) return A, ref def _get_test_m3(): A = np.array([ [-17, 63, .2, 0], [ 37, 13, 0, .3], [ .1, 0, 11, 72], [ 0, .2,-42, 24] ], dtype=np.float64) pivref = [[1, 1], [1, 1]] # [ 37, 13, 0, .3], # [-17, 63, .2, 0], # [ 0, .2,-42, 24] # [ .1, 0, 11, 72], ref = np.array([ [ 37, 13, 0, .3], [-17/37, 63+17/37*13, .2, 0], [ 0, .2/(63+17/37*13), -42, 24], [0.1/37, 0, -11/42, 72+11/42*24] ], dtype=np.float64) return A, ref, pivref def _get_test_m4(): A = np.array([ [-17, 63, .2, 0,.02, 0], [ 37, 13, 0, .3, 0,.03], [ .1, 0, 11, 72,-.1, 0], [ 0, .2,-42, 24, 0, .2], [.03, 0,-.1, 0, 72,-13], [ 0,-.1, 0,.08, 14,-57] ], dtype=np.float64) pivref = [[1, 1], [1, 1], [0, 1]] # [ 37, 13, 0, .3, 0,.03], # [-17, 63, .2, 0,.02, 0], # [ 0, .2,-42, 24, 0, .2], # [ .1, 0, 11, 72,-.1, 0], # [.03, 0,-.1, 0, 72,-13], # [ 0,-.1, 0,.08, 14,-57] a = 63 + 17/37*13 b = 72 + 11/42*24 c = -57 + 14/72*13 ref = np.array([ [ 37, 13, 0, .3, 0, .03], [-17/37, a, .2, 0, .02, 0], [ 0, .2/a, -42, 24, 0, .2], [ .1/37, 0, -11/42, b, -.1, 0], [.03/37, 0, .1/42, 0, 72, -13], [ 0, -.1/a, 0, .08/b, 14/72, c], ], dtype=np.float64) return A, ref, pivref def test_FakeLU_LU_merged_1(): A1, ref1 = _get_test_m1() fLU1 = FakeLU(A1, 3) assert np.allclose(fLU1.LU_merged, ref1) assert np.all(fLU1.piv[0] == [1, 1, 2]) def test_FakeLU_LU_merged_2(): A2, ref2 = _get_test_m2() fLU2 = FakeLU(A2, 2, 1) assert np.allclose(fLU2.LU_merged, ref2) for i in range(3): assert np.all(fLU2.piv[i] == [0, 1]) def test_FakeLU_LU_merged_3(): A3, ref3, pivref3 = _get_test_m3() fLU3 = FakeLU(A3, 2, 1) fLU3_LU_merged = fLU3.LU_merged assert np.allclose(ref3, fLU3_LU_merged) for i, pivref in enumerate(pivref3): assert np.all(pivref == fLU3.piv[i]) def test_FakeLU_solve_1(): A1, ref1 = _get_test_m1() fLU1 = FakeLU(A1, 3) xref = [2, 3, 5] b = np.array([2+9+25, 4+12+35, 2+3], dtype=np.float64) x = fLU1.solve(b) assert np.allclose(x, xref) def test_FakeLU_solve_2(): A2, ref2 = _get_test_m2() fLU2 = FakeLU(A2, 2, 1) assert np.allclose(fLU2.sub[0], [1/5, 2/5, 3/8, 4/2]) assert np.allclose(fLU2.sup[0], [2, 3, 4, 5]) b = np.array([65, 202, 11, 65, 60, 121], dtype=np.float64) # scipy.linalg.lu_solve(scipy.linalg.lu_factor(A2), b) gives xtrue: xtrue = [11, 12, -13, 17, 9, 5] # but here we verify the errornous result `xref` from the incomplete LU # factorization of A2 which is only midly diagonally dominant: # LUx = b # Ly = b yref = [b[0]] yref = yref + [b[1] - 1*yref[0]] yref = yref + [b[2] - yref[0]/5] yref = yref + [b[3] - 2/5*yref[1] - 1/2*yref[2]] yref = yref + [b[4] - 3/8*yref[2]] yref = yref + [b[5] - 2*yref[3] - 1/3*yref[4]] # Ux = y xref = [(yref[5] )/4] xref = [(yref[4]-9*xref[-1])/6] + xref xref = [(yref[3]-5*xref[-1])/2] + xref xref = [(yref[2]-4*xref[-2]-4*xref[-3])/8] + xref xref = [(yref[1]-3*xref[-3])/5] + xref xref = [(yref[0]-3*xref[-5]-2*xref[-4])/5] + xref x = fLU2.solve(b) assert np.allclose(xref, x) assert not np.allclose(xtrue, x) # <-- shows that the error is intentional def test_FakeLU_solve_3(): A3, ref3, pivref3 = _get_test_m3() fLU3 = FakeLU(A3, 2, 1) assert np.allclose(fLU3.sub[0], [0.1/37, .2/(63+17/37*13)]) assert np.allclose(fLU3.sup[0], [.2, .3]) assert np.all(fLU3.rowbycol[0] == [1, 0]) assert np.all(fLU3.rowbycol[1] == [1, 0]) assert np.all(fLU3.colbyrow[0] == [1, 0]) assert np.all(fLU3.colbyrow[1] == [1, 0]) b = np.array([-62, 207, 11, -14], dtype=np.float64) xtrue = scipy.linalg.lu_solve(scipy.linalg.lu_factor(A3), b.copy()) # LUx = b # Ly = b yref = [b[1]] yref = yref + [b[0] + 17/37*yref[0]] yref = yref + [b[3] - .2/(63+17/37*13)*yref[1]] yref = yref + [b[2] - 0.1/37*yref[0] + 11/42*yref[2]] # print('yref=',yref) # Ux = y xref = [(yref[3] )/(72+11/42*24)] xref = [(yref[2]-24*xref[-1])/(-42)] + xref xref = [(yref[1]-0.2*xref[-2])/(63+17/37*13)] + xref xref = [(yref[0]-0.3*xref[-1] - 13*xref[-3])/37] + xref xref = np.array(xref) x = fLU3.solve(b.copy()) # print('bsolveref', [b[1], b[0], b[3], b[2]]) # print('xtrue',xtrue) # print('xref',xref) # print('x',x) # print('xref-x',list(xref - x)) assert np.allclose(xref, x) assert np.allclose(xtrue, x, rtol=0.01, atol=1e-6) def test_FakeLU_solve_4(): A4, ref4, pivref4 = _get_test_m4() fLU4 = FakeLU(A4, 2, 2) assert np.allclose(fLU4.sub[0], [0.1/37, .2/(63+17/37*13), .1/42, .08/(72+11/42*24)]) # print(fLU4.sub[1]) assert np.allclose(fLU4.sub[1], [0.03/37, -.1/(63+17/37*13)]) assert np.allclose(fLU4.sup[0], [.2, .3, -.1, .2]) assert np.allclose(fLU4.sup[1], [.02, .03]) assert np.all(fLU4.rowbycol[0] == [1, 0]) assert np.all(fLU4.rowbycol[1] == [1, 0]) assert np.all(fLU4.rowbycol[2] == [0, 1]) assert np.all(fLU4.colbyrow[0] == [1, 0]) assert np.all(fLU4.colbyrow[1] == [1, 0]) assert np.all(fLU4.colbyrow[2] == [0, 1]) b = np.array([-62, 207, 11, -14, 25, -167], dtype=np.float64) xtrue = scipy.linalg.lu_solve(scipy.linalg.lu_factor(A4), b.copy()) a_ = 63 + 17/37*13 b_ = 72 + 11/42*24 c_ = -57 + 14/72*13 # LUx = b # Ly = b yref = [b[1]] yref = yref + [b[0] + 17/37*yref[0]] yref = yref + [b[3] - .2/a_*yref[1]] yref = yref + [b[2] - 0.1/37*yref[0] + 11/42*yref[2]] yref = yref + [b[4] - .03/37*yref[0] - .1/42*yref[2]] yref = yref + [b[5] + .1/a_*yref[1] - .08/b_*yref[3] - 14/72*yref[4]] # print('yref=',yref) # Ux = y xref = [(yref[5] )/c_] xref = [(yref[4]+13*xref[-1])/72] + xref xref = [(yref[3]+.1*xref[-2])/b_] + xref xref = [(yref[2]-24*xref[-3]-.2*xref[-1])/(-42)] + xref xref = [(yref[1]-0.2*xref[-4]-0.02*xref[-2])/a_] + xref xref = [(yref[0]-0.03*xref[-1]-0.3*xref[-3] - 13*xref[-5])/37] + xref print('\n'.join(["%23.17e," % x for x in xref])) xref = np.array(xref) x = fLU4.solve(b.copy()) # print('bsolveref', [b[1], b[0], b[3], b[2], b[4], b[5]]) # print('xtrue',xtrue) # print('xref',xref) # print('x',x) # print('x-xtrue',list(x-xtrue)) # print('x-xref',list(x-xref)) assert np.allclose(xref, x) assert np.allclose(xtrue, x, rtol=0.03, atol=1e-6) if __name__ == '__main__': test_FakeLU_solve_4()
{ "repo_name": "chemreac/block_diag_ilu", "path": "python_prototype/tests/test_fakelu.py", "copies": "1", "size": "8673", "license": "bsd-2-clause", "hash": 1797668231437794600, "line_mean": 31.0036900369, "line_max": 89, "alpha_frac": 0.4515161997, "autogenerated": false, "ratio": 2.2232760830556266, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.3174792282755627, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import os import time import codecs try: import simplejson as json json except ImportError: import json try: import urllib.request as urllib_request except ImportError: import urllib2 as urllib_request SLEEP_TIME = 20 # seconds def get_ranked_english(): ''' wikitionary has a list of ~40k English words, ranked by frequency of occurance in TV and movie transcripts. more details at: http://en.wiktionary.org/wiki/Wiktionary:Frequency_lists/TV/2006/explanation the list is separated into pages of 1000 or 2000 terms each. * the first 10k words are separated into pages of 1000 terms each. * the remainder is separated into pages of 2000 terms each: ''' URL_TMPL = 'http://en.wiktionary.org/wiki/Wiktionary:Frequency_lists/TV/2006/%s' urls = [] for i in range(10): freq_range = "%d-%d" % (i * 1000 + 1, (i+1) * 1000) urls.append(URL_TMPL % freq_range) for i in range(0,15): freq_range = "%d-%d" % (10000 + 2 * i * 1000 + 1, 10000 + (2 * i + 2) * 1000) urls.append(URL_TMPL % freq_range) urls.append(URL_TMPL % '40001-41284') ranked_terms = [] # ordered by rank, in decreasing frequency. for url in urls: html, is_cached = wiki_download(url) if not is_cached: time.sleep(SLEEP_TIME) new_terms = parse_wiki_terms(html) ranked_terms.extend(new_terms) return ranked_terms def wiki_download(url): ''' scrape friendly: sleep 20 seconds between each request, cache each result. ''' DOWNLOAD_TMPL = '../data/tv_and_movie_freqlist%s.html' freq_range = url[url.rindex('/')+1:] tmp_path = DOWNLOAD_TMPL % freq_range if os.path.exists(tmp_path): print('cached.......', url) with codecs.open(tmp_path, 'r', 'utf8') as f: return f.read(), True with codecs.open(tmp_path, 'w', 'utf8') as f: print('downloading...', url) req = urllib_request.Request(url, headers={ 'User-Agent': 'zxcvbn' }) response = urllib_request.urlopen(req) result = response.read().decode('utf8') f.write(result) return result, False def parse_wiki_terms(doc): '''who needs an html parser. fragile hax, but checks the result at the end''' results = [] last3 = ['', '', ''] header = True for line in doc.split('\n'): last3.pop(0) last3.append(line.strip()) if all(s.startswith('<td>') and not s == '<td></td>' for s in last3): if header: header = False continue last3 = [s.replace('<td>', '').replace('</td>', '').strip() for s in last3] rank, term, count = last3 rank = int(rank.split()[0]) term = term.replace('</a>', '') term = term[term.index('>')+1:].lower() results.append(term) assert len(results) in [1000, 2000, 1284] # early docs have 1k entries, later have 2k, last doc has 1284 return results def get_ranked_census_names(): ''' takes name lists from the the 2000 us census, prepares as a json array in order of frequency (most common names first). more info: http://www.census.gov/genealogy/www/data/2000surnames/index.html files in data are downloaded copies of: http://www.census.gov/genealogy/names/dist.all.last http://www.census.gov/genealogy/names/dist.male.first http://www.census.gov/genealogy/names/dist.female.first ''' FILE_TMPL = '../data/us_census_2000_%s.txt' SURNAME_CUTOFF_PERCENTILE = 85 # ie7 can't handle huge lists. cut surname list off at a certain percentile. lists = [] for list_name in ['surnames', 'male_first', 'female_first']: path = FILE_TMPL % list_name lst = [] for line in codecs.open(path, 'r', 'utf8'): if line.strip(): if list_name == 'surnames' and float(line.split()[2]) > SURNAME_CUTOFF_PERCENTILE: break name = line.split()[0].lower() lst.append(name) lists.append(lst) return lists def get_ranked_common_passwords(): lst = [] for line in codecs.open('../data/common_passwords.txt', 'r', 'utf8'): if line.strip(): lst.append(line.strip()) return lst def to_ranked_dict(lst): return dict((word, i) for i, word in enumerate(lst)) def filter_short(terms): ''' only keep if brute-force possibilities are greater than this word's rank in the dictionary ''' return [term for i, term in enumerate(terms) if 26**(len(term)) > i] def filter_dup(lst, lists): ''' filters lst to only include terms that don't have lower rank in another list ''' max_rank = len(lst) + 1 dct = to_ranked_dict(lst) dicts = [to_ranked_dict(l) for l in lists] return [word for word in lst if all(dct[word] < dct2.get(word, max_rank) for dct2 in dicts)] def filter_ascii(lst): ''' removes words with accent chars etc. (most accented words in the english lookup exist in the same table unaccented.) ''' return [word for word in lst if all(ord(c) < 128 for c in word)] def main(): english = get_ranked_english() surnames, male_names, female_names = get_ranked_census_names() passwords = get_ranked_common_passwords() [english, surnames, male_names, female_names, passwords] = [filter_ascii(filter_short(lst)) for lst in (english, surnames, male_names, female_names, passwords)] # make dictionaries disjoint so that d1 & d2 == set() for any two dictionaries all_dicts = set(tuple(l) for l in [english, surnames, male_names, female_names, passwords]) passwords = filter_dup(passwords, all_dicts - set([tuple(passwords)])) male_names = filter_dup(male_names, all_dicts - set([tuple(male_names)])) female_names = filter_dup(female_names, all_dicts - set([tuple(female_names)])) surnames = filter_dup(surnames, all_dicts - set([tuple(surnames)])) english = filter_dup(english, all_dicts - set([tuple(english)])) with open('../generated/frequency_lists.json', 'w') as f: # words are all ascii at this point lsts = locals() out = {} for lst_name in 'passwords male_names female_names surnames english'.split(): lst = lsts[lst_name] out[lst_name] = lst json.dump(out, f) print('\nall done! totals:\n') print('passwords....', len(passwords)) print('male.........', len(male_names)) print('female.......', len(female_names)) print('surnames.....', len(surnames)) print('english......', len(english)) print() if __name__ == '__main__': if os.path.basename(os.getcwd()) != 'scripts': print('run this from the scripts directory') exit(1) main()
{ "repo_name": "moreati/python-zxcvbn", "path": "zxcvbn/scripts/build_frequency_lists.py", "copies": "1", "size": "7091", "license": "mit", "hash": -1082776628520189400, "line_mean": 35.7409326425, "line_max": 123, "alpha_frac": 0.5968128614, "autogenerated": false, "ratio": 3.519106699751861, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4615919561151861, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import pandas as pd import numpy as np from mousestyles import data try: basestring except NameError: basestring = str def create_time_matrix(combined_gap=4, time_gap=1, days_index=137, verbose=False): r""" Return a time matrix for estimate the MLE parobability. The rows are 137 mousedays. The columns are time series in a day. The data are the mouse activity at that time. 0 represents IS, 1 represents eating, 2 represents drinking, 3 represents others activity in AS. Parameters ---------- combined_gap: nonnegative float or int The threshold for combining small intervals. If next start time minus last stop time is smaller than combined_gap than combined these two intervals. time_gap: positive float or int The time gap for create the columns time series days_index: nonnegative int The number of days to process, from day 0 to day days_index. verbose: bool If True, print out helpful information to the screen Returns ------- time: Pandas.DataFrame a matrix represents the activity for a certain mouse day and a certain time. Examples -------- >>> time = create_time_matrix(combined_gap=4, time_gap=1).iloc[0, 0:10] >>> strain 0 mouse 0 day 0 48007 0 48008 0 48009 0 48010 0 48011 0 48012 0 48013 0 Name: 0, dtype: float64 """ # check all the inputs condition_combined_gap = ((type(combined_gap) == int or type(combined_gap) == float) and combined_gap >= 0) condition_time_gap = ((type(time_gap) == int or type(time_gap) == float) and time_gap > 0) condition_days_index = (type(days_index) == int and days_index >= 0) if not condition_time_gap: raise ValueError("time_gap should be nonnegative int or float") if not condition_combined_gap: raise ValueError("combined_gap should be nonnegative int or float") if not condition_days_index: raise ValueError("days_index should be nonnegative int") intervals_AS = data.load_intervals('AS') intervals_F = data.load_intervals('F') intervals_W = data.load_intervals('W') intervals_IS = data.load_intervals('IS') # 137 days totally days = np.array(intervals_AS.iloc[:, 0:3].drop_duplicates(). reset_index(drop=True)) # set time range for columns initial = int(min(intervals_IS['stop'])) end = int(max(intervals_IS['stop'])) + 1 columns = np.arange(initial, end + 1, time_gap) # result matrix matrix = np.zeros((days.shape[0], len(columns))) # we set 0 as IS, 1 as F, 2 as W, 3 as Others for i in range(days.shape[0]): W = np.array(intervals_W[(intervals_W['strain'] == days[i, 0]) & (intervals_W['mouse'] == days[i, 1]) & (intervals_W['day'] == days[i, 2])]. iloc[:, 3:5]) F = np.array(intervals_F[(intervals_F['strain'] == days[i, 0]) & (intervals_F['mouse'] == days[i, 1]) & (intervals_F['day'] == days[i, 2])]. iloc[:, 3:5]) AS = np.array(intervals_AS[(intervals_AS['strain'] == days[i, 0]) & (intervals_AS['mouse'] == days[i, 1]) & (intervals_AS['day'] == days[i, 2])]. iloc[:, 3:5]) n = W.shape[0] index = (np.array(np.where(W[1:, 0] - W[0:n - 1, 1] > combined_gap))).ravel() stop_W = W[np.append(index, n - 1), 1] start_W = W[np.append(0, index + 1), 0] n = F.shape[0] index = (np.array(np.where(F[1:, 0] - F[0:n - 1, 1] > combined_gap))).ravel() stop_F = F[np.append(index, n - 1), 1] start_F = F[np.append(0, index + 1), 0] n = AS.shape[0] index = (np.array(np.where(AS[1:, 0] - AS[0:n - 1, 1] > combined_gap))).ravel() stop_AS = AS[np.append(index, n - 1), 1] start_AS = AS[np.append(0, index + 1), 0] for j in range(len(columns)): if sum(np.logical_and(columns[j] > start_AS, columns[j] < stop_AS)) != 0: if sum(np.logical_and(columns[j] > start_F, columns[j] < stop_F)) != 0: matrix[i, j] = 1 # food elif sum(np.logical_and(columns[j] > start_W, columns[j] < stop_W)) != 0: matrix[i, j] = 2 # water else: matrix[i, j] = 3 # others # give you the precent of matrix has been processed if verbose: print(i / days.shape[0], 'has been processed') if i > days_index: break # format data frame matrix = pd.DataFrame(matrix, columns=columns) title = pd.DataFrame(days, columns=['strain', 'mouse', 'day']) time_matrix = pd.concat([title, matrix], axis=1) return time_matrix def get_prob_matrix_list(time_df, interval_length=1000): r""" returns a list of probability transition matrices that will be later used to characterize and simu- late the behavior dynamics of different strains of mice. The data used as input is the pandas DataFrame generated by function create_time_matrix with de- fault parameters. The output is a list of numpy arrays, each being a transition matrix characterizing one small time interval. The interval length could be chosen. Parameters ---------- time_df: Pandas.DataFrame a huge data frame containing info on strain, mouse no., mouse day, and different states at chosen time points. interval_length: int an integer specifying the desired length of each small time interval. Returns ------- matrix_list: list a list of the mle estimations of the probability tran- sition matrices for each small time interval stored in the format of numpy array. Each element of this list is a numpy array matrix. Examples -------- >>> row_i = np.hstack((np.zeros(13), np.ones(10), np.ones(10)*2, np.ones(10)*3)) >>> time_df_eg = np.vstack((row_i, row_i,row_i)) >>> time_df_eg = pd.DataFrame(time_df_eg) >>> mat_list = get_prob_matrix_list(time_df_eg, interval_length=10) >>> mat_list[0] >>> array([[ 1., 0., 0., 0.], [ 0., 0., 0., 0.], [ 0., 0., 0., 0.], [ 0., 0., 0., 0.]]) >>> mat_list[1] >>> array([[ 0., 0., 0., 0.], [ 0., 1., 0., 0.], [ 0., 0., 0., 0.], [ 0., 0., 0., 0.]]) >>> mat_list[2] >>> array([[ 0., 0., 0., 0.], [ 0., 0., 0., 0.], [ 0., 0., 1., 0.], [ 0., 0., 0., 0.]]) >>> mat_list[3] >>> array([[ 0., 0., 0., 0.], [ 0., 0., 0., 0.], [ 0., 0., 0., 0.], [ 0., 0., 0., 1.]]) """ # check all the inputs condition_time_df = isinstance(time_df, pd.core.frame.DataFrame) condition_interval_length = isinstance(interval_length, int) and \ interval_length > 0 if not condition_time_df: raise ValueError("time_df should be pandas DataFrame") if not condition_interval_length: raise ValueError("interval_length should be positive int") time_array = np.array(time_df)[:, 3:] n = np.ceil(time_array.shape[1] / interval_length) matrix_list = [None] * int(n) for i in np.arange(n): i = int(i) ind = [(i * interval_length), ((i + 1) * interval_length)] small_time_array = time_array[:, ind[0]:ind[1]] small_time_list = list(small_time_array) small_time_str_list = ["".join(np.char.mod('%i', a)) for a in small_time_list] matrix_list[i] = get_prob_matrix_small_interval(small_time_str_list) return matrix_list def get_prob_matrix_small_interval(string_list, verbose=False): r""" return the MLE estimate of the probability matrix of the markov chain model. The data used as input is a list of strings that contains the information regarding the transition of states of the mouse be- havior. The output is a matrix stored in the format of numpy array, where the i,j th term indicates the probability of transiting from state i to state j. Parameters ---------- string_list: list a list of strings of the states in the given time slot. verbose: bool If True, print out helpful information to the screen Returns ------- M: numpy.ndarray the MLE estimation of the probability tran- sition matrix. Each entry M_ij represents the probability of transiting from state i to state j. Examples -------- >>> time_list = ['002', '001', '012'] >>> get_prob_matrix_small_interval(time_list) >>> array([[ 0.4, 0.4, 0.2, 0. ], [ 0. , 0. , 1. , 0. ], [ 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. ]]) """ # check all the inputs condition_string_list = isinstance(string_list, list) condition_list_item = isinstance(string_list[0], basestring) if verbose: print(string_list[0]) if not condition_string_list: raise ValueError("string_list should be a list") if not condition_list_item: raise ValueError("items in string_list should be str") Mat_prob = np.zeros(4 * 4).reshape(4, 4) for i in np.arange(4): i = int(i) for j in np.arange(4): j = int(j) ijth = str(i) + str(j) Mat_prob[i, j] = sum([string.count(ijth) for string in string_list]) for k in np.arange(4): k = int(k) if sum(Mat_prob[k, :]) != 0: Mat_prob[k, :] = Mat_prob[k, :] / sum(Mat_prob[k, :]) return Mat_prob def mcmc_simulation(mat_list, n_per_int): r""" This function gives the Monte Carlo simulation of the stochastic process modeling the dynamic changes of states of the mice behavior. The in- put of this function is a list of probability transition matrices and an integer indicates how many outputs for each matrix. This number is related to the interval_length parameter in function get_prob_matrix_list. The output is an array of numbers, each indicates one state. Parameters ---------- mat_list: List a list of numpy arrays storing the probabi- lity transition matrices for each small time interval chosen. n_per_int: int an integer specifying the desired output length of each probability transition matrix. This is the same as the parameter interval_length used in the function get_prob_matrix_small_interval Returns ------- simu_result: numpy.array an array of integers indicating the simulated states given a list of probability transition matrices. Examples -------- >>> mat0 = np.zeros(16).reshape(4, 4) >>> np.fill_diagonal(mat0, val=1) >>> mat1 = np.zeros(16).reshape(4, 4) >>> mat1[0, 1] = 1 >>> mat1[1, 0] = 1 >>> mat1[2, 2] = 1 >>> mat1[3, 3] = 1 >>> mat_list_example = [mat0, mat1] >>> mcmc_simulation(mat_list_example, 10) >>> array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0]) """ # check all the inputs condition_mat_list = (type(mat_list) == list) condition_list_item = (type(mat_list[0]) == np.ndarray) condition_n_per_int = (type(n_per_int) == int and n_per_int > 0) if not condition_mat_list: raise ValueError("mat_list should be a list") if not condition_list_item: raise ValueError("items in mat_list should be numpy array") if not condition_n_per_int: raise ValueError("n_per_int should be positive int") n = len(mat_list) simu_result = np.zeros(n * n_per_int) for i in np.arange(n): for j in np.arange(n_per_int): index = int(i * n_per_int + j) if index == 0: simu_result[index] = 0 state_i = simu_result[int(index - 1)] prob_trans = mat_list[i][int(state_i), :] prob_trans = np.cumsum(prob_trans) rand = np.random.uniform() state_j = sum(rand > prob_trans) simu_result[index] = int(state_j) simu_result = np.array(simu_result, dtype=int) return simu_result def get_score(true_day, simulated_day, weight=[1, 10, 50, 1]): r""" Returns the evaluation score for the simulted day that will be later used to choose the best time interval for different strains. The input data should be two numpy arrays and one list, the two arrays are possibly with different lengths, one being the activities for one particular day of one particular mouse, the other array is our simulated day for this mouse from the mcmc_simulation function. And the list is the weight for different status. We should give different rewards for making correct simulations on various status. For example, the average mouse day have 21200 timestamps. 10000 of them are IS, 1000 are EAT, 200 are drink, and the left 10000 are OTHERS. So we should weigh more on drink and eat, their ratio is 10000:1000:200:10000 = 1:0.1:0.02:0.1. So I took the inverse of them to be 1:10:50:1. The output will be one number between 0 and max(weight), indicating the similiary of the true day of a mouse and a simulated day of the same mouse. We will use this function to measure the performance of the simulation and then choose the appropriate time interval. Parameters ---------- true_day: numpy.array a numpy.array containing the activities for one particular mouse on a specific day simulated_day: numpy.array a numpy.array containing the simulated activities for this particular mouse. weight: list a list with positive numbers showing the rewards for making the right predictions of various status. Returns ------- score: float a float from 0 to max(weight), indicating the similarity of the simulated data with the actual value, and therefore, the performance of the simulation, with max(weight) being the most similar, and 0 being the least similar. Examples -------- >>> true_day_1 = np.zeros(13) >>> simulated_day_1 = np.ones(13) >>> get_score(true_day_1, simulated_day_1) >>> 0.0 >>> true_day_2 = np.ones(13) >>> simulated_day_2 = np.ones(13) >>> get_score(true_day_2, simulated_day_2) >>> 10.0 """ # check all the inputs condition_true_day = (isinstance(true_day, (np.ndarray, np.generic))) condition_simulated_day = (isinstance(simulated_day, (np.ndarray, np.generic))) condition_weight = (isinstance(weight, list)) if not condition_true_day: raise ValueError("true_day should be numpy array") if not condition_simulated_day: raise ValueError("simulated_day should be numpy array") if not condition_weight: raise ValueError("weight should be list") len_weight = len(weight) if len_weight != 4: raise ValueError("Length of weight should be 4") # check all the weights are positive for w in weight: if w <= 0: raise ValueError("All the weights should be positive") # make sure these two arrays have the same length len_true = len(true_day) len_simulated = len(simulated_day) if len_true > len_simulated: raise ValueError("Length of simulated_day is smaller than true_day") simulated_same_length = simulated_day[:len_true] score = 0 for i in np.arange(len_true): if true_day[i] == simulated_same_length[i]: status = true_day[i] score += weight[int(status)] score = score / len_true return score def find_best_interval(df, strain_num, interval_length_initial=np.arange(600, 7800, 600)): r""" Returns the optimized time interval length and the corresponding fake mouse behavior string with the evaluation score for a particular mouse strain. The input data are the pandas DataFrame generated by function create_time_matrix which contains all strains information, the strain number that we want to develop, and some initial time interval length we want to optimize on. The outputs are the optimized time interval length, the simulated mouse states string using that optimized time interval and the evaluation score comparing this simulated mouse with the real mice behavior in the strain using the same optimized time interval length. Parameters ---------- df: Pandas.DataFrame a huge data frame containing info on strain, mouse no., mouse day, and different states at chosen time points. strain_num: int an integer of 0, 1, 2 that specifying the desired mouse strain interval_length_initial: numpy.ndarray a numpy.ndarray specifying the range of time interval that it optimizes on, with the default value of a sequence from 600s to 7200s with 600s step since 10min to 2h is a reasonable choice. Returns ------- best_interval_length: int a interger indicating the optimized time interval in terms of the evaluation score best_fake_mouse: list a list of around 88,283 integers indicating the simulated states using the best_interval_length best_score: float a float between 0 and 1 representing the evaluation score comparing the best_fake_mouse with the real mice behavior in the strain under the same optimized time interval length. higher the score, better the simulation behavior. Examples -------- >>> row_i = np.hstack((np.zeros(40))) >>> time_df_eg = np.vstack((row_i, row_i, row_i)) >>> time_df_eg = pd.DataFrame(time_df_eg) >>> time_df_eg.rename(columns={0:'strain'}, inplace=True) >>> find_best_interval(time_df_eg, 0, np.arange(10, 40, 10)) (10, array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]), 0.98245614035087725) """ # check all the inputs: dataframe, strain number, intitial time length condition_df = (type(df) == pd.core.frame.DataFrame) condition_strain_num = (strain_num in (0, 1, 2)) condition_interval_length_initial = (type(interval_length_initial) == np.ndarray and np.sum(interval_length_initial > 0) == len(interval_length_initial) and all(isinstance(i, np.int64) for i in interval_length_initial)) if not condition_df: raise ValueError("df should be pandas DataFrame") if not condition_strain_num: raise ValueError("strain_num can only be 0, 1, 2") if not condition_interval_length_initial: raise ValueError("interval_length_initial positive np.array") interval_length_initial = [int(interval_length) for interval_length in interval_length_initial] data_strain = df[df.strain == strain_num] time_score = [] store_fake_mouse = [] for interval_length in interval_length_initial: prob_matrix_list = get_prob_matrix_list(data_strain, interval_length) np.random.seed([0]) fake_mouse = mcmc_simulation(prob_matrix_list, interval_length) store_fake_mouse.append(fake_mouse) real_mouse = data_strain.ix[:, 3:] real_mouse = real_mouse.reset_index() n_mouse = len(real_mouse) mouse_score = np.zeros(n_mouse) for mouse_index in range(0, n_mouse): real_mouse_list = list(real_mouse.ix[mouse_index, :]) mouse_score[mouse_index] = get_score(np.array(real_mouse_list), fake_mouse) time_score.append(np.mean(mouse_score)) best_score = max(time_score) best_score_index = time_score.index(best_score) best_interval_length = interval_length_initial[best_score_index] best_fake_mouse = store_fake_mouse[best_score_index] return best_interval_length, best_fake_mouse, best_score
{ "repo_name": "changsiyao/mousestyles", "path": "mousestyles/dynamics/__init__.py", "copies": "3", "size": "21301", "license": "bsd-2-clause", "hash": -6509979658280945000, "line_mean": 38.15625, "line_max": 79, "alpha_frac": 0.5785174405, "autogenerated": false, "ratio": 3.7754342431761785, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5853951683676178, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import pandas as pd import numpy as np import matplotlib.pyplot as plt from mousestyles.dynamics import find_best_interval def plot_dynamics(df, strain_num, interval_length_initial=np.arange(600, 7800, 600), plot_time_range=np.arange(36000, 36100, 1)): r""" returns a plot that can help understand the behavior dynamics that are obtained from the best simulation. The data used as input is the pandas DataFrame generated by function create_time_matrix. The output is a plot that summarizes the dynamics of a fake mouse of the given strain_num. The strain_num could be chosen. Of note is that 0 represents IS, 1 represents eating, 2 represents drinking, 3 represents others activity in AS. In the plot, blue represents IS, bright green represents eating, yellow represents drinking, and red represents other activities in AS. Parameters ---------- df: Pandas.DataFrame a huge data frame containing info on strain, mouse no., mouse day, and different states at chosen time points. starin_num: int an integer specifying the desired mouse strain. strain_num is 0, 1, or 2. interval_length_initial: numpy.ndarray a numpy.ndarray specifying the range of time interval that it optimizes on. plot_time_range: numpy.ndarray a numpy.ndarray specifying the range of time range of the plot. Returns ------- dynamics_plot: plot a plot of behavior dynamics of a fake mouse of the given strain_num. The x-axis is the time stamps that start from 0. For strain_num = 0, the x-aixs is from 0 to 92,400. For stain_num = 1, the x-axis is from 0 90,000. For strain_num = 2, the x-axis is from 0 to 88,800. We assign different colors for different states. In the plot, blue represents IS, bright green represents eating, yellow represents drinking, and red represents other activities in AS. Examples -------- >>> row_i = np.hstack((np.zeros(40))) >>> time_df_eg = np.vstack((row_i, row_i, row_i)) >>> time_df_eg = pd.DataFrame(time_df_eg) >>> time_df_eg.rename(columns={0:'strain'}, inplace=True) >>> plot_dynamics_plot(time_df_eg, 0, np.arange(10, 40, 10), np.arange(0, 40, 1)) """ # check all the inputs condition_df = (type(df) == pd.core.frame.DataFrame) condition_strain_num = (strain_num in (0, 1, 2)) condition_interval_length_initial = (type(interval_length_initial) == np.ndarray and np.sum(interval_length_initial > 0) == len(interval_length_initial) and all(isinstance(i, np.int64) for i in interval_length_initial)) condition_plot_time_range = (type(plot_time_range) == np.ndarray and np.sum(plot_time_range > 0) == len(plot_time_range) and all(isinstance(i, np.int64) for i in plot_time_range)) if not condition_df: raise ValueError("df should be pandas DataFrame") if not condition_strain_num: raise ValueError("strain_num can only be 0, 1, 2") if not condition_interval_length_initial: raise ValueError("interval_length_initial positive np.array") if not condition_plot_time_range: raise ValueError("plot_time_range positive np.array") value_array = find_best_interval(df, strain_num)[1][plot_time_range] value_list = list(value_array) time_list = list(plot_time_range) fig, dynamics_plot = plt.subplots(figsize=(6, 1)) dynamics_plot.scatter(time_list, [1] * len(time_list), c=value_list, marker='s', s=100) dynamics_plot.yaxis.set_visible(False) dynamics_plot.xaxis.set_ticks_position('bottom') dynamics_plot.get_yaxis().set_ticklabels([]) plt.show()
{ "repo_name": "changsiyao/mousestyles", "path": "mousestyles/visualization/dynamics.py", "copies": "3", "size": "4289", "license": "bsd-2-clause", "hash": -7869012206683845000, "line_mean": 42.3232323232, "line_max": 79, "alpha_frac": 0.6017719748, "autogenerated": false, "ratio": 3.989767441860465, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0, "num_lines": 99 }
from __future__ import (absolute_import, division, print_function, unicode_literals) import pandas as pd import numpy as np from mousestyles.path_diversity import detect_noise def smooth_noise(movement, paths, angle_threshold, delta_t): r""" Return a new smoothed movement pandas DataFrame object containing CT, CX, CY coordinates. The inputted movement DataFrame is passed through a noise detection function. At points where noise is detected, as defined by the input parameters (i.e., angle_threshold and delta_t), this function returns a new movement DataFrame by averaging points where noise is detected. Parameters ---------- movement : pandas.DataFrame CT, CX, CY coordinates and homebase status for the unique combination of strain, mouse and day paths index : a list containing the indices for all paths angle_threshold : float positive number indicating the minimum turning angle to flag as noise delta_t : float positive number indicating the delta_time interval Returns ------- smoothed movement : pandas.DataFrame CT, CX, CY coordinates and homebase status for the unique combination of strain, mouse and day Examples -------- >>> movement = data.load_movement(1, 2, 1) >>> paths = path_index(movement, 1, 1) >>> smoothed_movement = smooth_noise(movement, paths, 135, .1) """ # check if all inputs are positive if not isinstance(movement, pd.core.frame.DataFrame): raise TypeError("Movement must be pandas DataFrame") if set(movement.keys()).issuperset(['x', 'y', 't']) is False: raise ValueError( "The keys of movement must be 't', 'x', and 'y'") if len(movement) <= 1: raise ValueError("Movement must contain at least 2 rows") noise = detect_noise(movement, paths, angle_threshold, delta_t) max_noise = max(noise) drop_ind = np.array([]) for i in range(1, max_noise + 1): noise_chunk = noise[noise == i] movement_chunk = movement.loc[noise_chunk.index] x_avg = np.mean(movement_chunk['x']) y_avg = np.mean(movement_chunk['y']) t_avg = np.mean(movement_chunk['t']) movement['x'][noise_chunk.index[0]] = x_avg movement['y'][noise_chunk.index[0]] = y_avg movement['t'][noise_chunk.index[0]] = t_avg # Note: The above DataFrame manipulations result in a # SettingWithCopyWarning. The warning persists even after # attempting the following format: # .loc[row_indexer,col_indexer] = value. Despite this, # the output of the function is working as intended. drop_ind = np.append(drop_ind, noise_chunk.index[1:]) new_movement = movement.drop(drop_ind) new_movement.index = range(len(new_movement)) return new_movement
{ "repo_name": "togawa28/mousestyles", "path": "mousestyles/path_diversity/smooth_noise.py", "copies": "3", "size": "2904", "license": "bsd-2-clause", "hash": -4536697917981752300, "line_mean": 32, "line_max": 77, "alpha_frac": 0.6497933884, "autogenerated": false, "ratio": 3.8823529411764706, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.603214632957647, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import pandas as pd from mousestyles import path_diversity def test_smooth_noise(): movement = {'t': pd.Series([0., 0.02, 0.04, 0.06], index=[0, 1, 2, 3]), 'x': pd.Series([0., 0., 0.1, 0.2], index=[0, 1, 2, 3]), 'y': pd.Series([0., 1., 0., 1.], index=[0, 1, 2, 3]), 'isHB': pd.Series(['No', 'No', 'No', 'No'], index=[0, 1, 2, 3])} movement = pd.DataFrame(movement) paths = path_diversity.path_index(movement, 1, 1) # Check if function produces the correct outputs. smoothed = path_diversity.smooth_noise(movement, paths, 120, 1) assert len(smoothed) == 3 movement = {'t': pd.Series([0., 0.02, 0.04, 0.06], index=[0, 1, 2, 3]), 'x': pd.Series([0., 0., 0.1, 0.2], index=[0, 1, 2, 3]), 'y': pd.Series([0., 1., 0., 1.], index=[0, 1, 2, 3]), 'isHB': pd.Series(['No', 'No', 'No', 'No'], index=[0, 1, 2, 3])} movement = pd.DataFrame(movement) paths = path_diversity.path_index(movement, 1, 1) # Check if function produces the correct outputs. smoothed = path_diversity.smooth_noise(movement, paths, 120, 1) assert smoothed['y'][1] == 0.5 movement = {'t': pd.Series([0., 0.02, 0.04, 0.06], index=[0, 1, 2, 3]), 'x': pd.Series([0., 0., 0.1, 0.2], index=[0, 1, 2, 3]), 'y': pd.Series([0., 1., 0., 1.], index=[0, 1, 2, 3]), 'isHB': pd.Series(['No', 'No', 'No', 'No'], index=[0, 1, 2, 3])} movement = pd.DataFrame(movement) paths = path_diversity.path_index(movement, 1, 1) # Check if function produces the correct outputs. smoothed = path_diversity.smooth_noise(movement, paths, 120, 1) assert smoothed['x'][1] == 0.05 movement = {'t': pd.Series([0., 0.02, 0.04, 0.06], index=[0, 1, 2, 3]), 'x': pd.Series([0., 0., 0.1, 0.2], index=[0, 1, 2, 3]), 'y': pd.Series([0., 1., 0., 1.], index=[0, 1, 2, 3]), 'isHB': pd.Series(['No', 'No', 'No', 'No'], index=[0, 1, 2, 3])} movement = pd.DataFrame(movement) paths = path_diversity.path_index(movement, 1, 1) # Check if function produces the correct outputs. smoothed = path_diversity.smooth_noise(movement, paths, 120, 1) assert smoothed['t'][1] == 0.03
{ "repo_name": "berkeley-stat222/mousestyles", "path": "mousestyles/path_diversity/tests/test_smooth_noise.py", "copies": "3", "size": "2526", "license": "bsd-2-clause", "hash": 7851332215690985000, "line_mean": 46.6603773585, "line_max": 75, "alpha_frac": 0.5003958828, "autogenerated": false, "ratio": 2.9928909952606637, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4993286878060663, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import pandas as pd from mousestyles.path_diversity import compute_angles def detect_noise(movement, paths, angle_threshold, delta_t): r""" Return a list object containing boolean values at points where measurement noise is detected and will be passed to a smoothing function Parameters ---------- movement : pandas.DataFrame CT, CX, CY coordinates and homebase status for the unique combination of strain, mouse and day paths index : a list containing the indices for all paths angle_threshold : float positive number indicating the minimum turning angle to flag as noise delta_t : float positive number indicating the delta_time interval Returns ------- noise index : a pandas series containing the indices at which noise, as defined by input parameters, is detected Examples -------- >>> movement = data.load_movement(1, 2, 1) >>> paths = path_diversity.path_index(movement, 1, 1) >>> noise = detect_noise(movement, paths, 135, .1) """ # check if all inputs are positive conditions_value = [angle_threshold <= 0, delta_t <= 0] if any(conditions_value): raise ValueError("Input values need to be positive") if not isinstance(movement, pd.core.frame.DataFrame): raise TypeError("Movement must be pandas DataFrame") if set(movement.keys()) != {'isHB', 't', 'x', 'y'}: raise ValueError( "The keys of movement must be 't', 'x', 'y', and 'isHB'") if len(movement) <= 1: raise ValueError("Movement must contain at least 2 rows") noise_index = 1 noise_path = [] noise_path = pd.Series(noise_path) current_noise = False for path in paths: path_obj = movement[path[0]:path[1] + 1] if len(path_obj) > 3: path_obj['angles'] = compute_angles(path_obj, False) path_obj['sharp_angle'] = path_obj['angles'] > angle_threshold path_obj['noise'] = 0 # Note: The above DataFrame manipulations result in a # SettingWithCopyWarning. The warning persists even after # attempting the following format: # .loc[row_indexer,col_indexer] = value. Despite this, # the output of the function is working as intended. for i in range(0, len(path_obj) - 1): if path_obj['sharp_angle'].iloc[i]: if path_obj['sharp_angle'].iloc[i + 1]: if path_obj['t'].iloc[ i + 1] - path_obj['t'].iloc[i] < delta_t: path_obj['noise'].iloc[i] = noise_index path_obj['noise'].iloc[i + 1] = noise_index current_noise = True elif current_noise: noise_index += 1 current_noise = False elif current_noise: noise_index += 1 current_noise = False else: path_obj['noise'] = 0 noise_path = noise_path.append(path_obj.noise) return noise_path
{ "repo_name": "changsiyao/mousestyles", "path": "mousestyles/path_diversity/detect_noise.py", "copies": "3", "size": "3295", "license": "bsd-2-clause", "hash": 6925468621832961000, "line_mean": 33.6842105263, "line_max": 77, "alpha_frac": 0.5678300455, "autogenerated": false, "ratio": 4.2297817715019255, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.6297611817001925, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import permute.data as data from numpy.testing import assert_equal def test_botulinum(): """ Test that "Botulinum" data can be loaded. """ botulinum = data.botulinum() assert_equal((botulinum.size, len(botulinum.dtype)), (80, 28)) def test_chrom17m(): """ Test that "chrom17m" data can be loaded. """ chrom17m = data.chrom17m() assert_equal((chrom17m.size, len(chrom17m.dtype)), (10, 3)) def test_confocal(): """ Test that "confocal" data can be loaded. """ confocal = data.confocal() assert_equal((confocal.size, len(confocal.dtype)), (112, 17)) def test_germina(): """ Test that "germina" data can be loaded. """ germina = data.germina() assert_equal((germina.size, len(germina.dtype)), (40, 5)) def test_kenya(): """ Test that "Kenya" data can be loaded. """ kenya = data.kenya() assert_equal((kenya.size, len(kenya.dtype)), (16, 3)) def test_massaro_blair(): """ Test that "massaro_blair" data can be loaded. """ massaro_blair = data.massaro_blair() assert_equal((massaro_blair.size, len(massaro_blair.dtype)), (29, 2)) def test_monachus(): """ Test that "monachus" data can be loaded. """ monachus = data.monachus() assert_equal(monachus.size, 12) assert_equal(len(monachus.dtype), 17) def test_mult(): """ Test that "mult" data can be loaded. """ mult = data.mult() assert_equal(mult.size, 16) assert_equal(len(mult.dtype), 4) def test_perch(): """ Test that "perch" data can be loaded. """ perch = data.perch() assert_equal(perch.size, 108) assert_equal(len(perch.dtype), 31) def test_rats(): """ Test that "rats" data can be loaded. """ rats = data.rats() assert_equal(rats.size, 36) assert_equal(len(rats.dtype), 19) def test_setig(): """ Test that "setig" data can be loaded. """ setig = data.setig() assert_equal(setig.size, 334) assert_equal(len(setig.dtype), 6) def test_urology(): """ Test that "urology" data can be loaded. """ urology = data.urology() assert_equal(urology.size, 481) assert_equal(len(urology.dtype), 31) def test_washing_test(): """ Test that "washing_test" data can be loaded. """ washing_test = data.washing_test() assert_equal(washing_test.size, 800) assert_equal(len(washing_test.dtype), 4) def test_waterfalls(): """ Test that "waterfalls" data can be loaded. """ waterfalls = data.waterfalls() assert_equal(waterfalls.size, 42) assert_equal(len(waterfalls.dtype), 17)
{ "repo_name": "qqqube/permute", "path": "permute/data/tests/test_data.py", "copies": "1", "size": "2645", "license": "bsd-2-clause", "hash": 3957766991150778000, "line_mean": 26.2680412371, "line_max": 73, "alpha_frac": 0.6351606805, "autogenerated": false, "ratio": 2.929125138427464, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4064285818927464, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import pytest import pandas as pd import numpy as np from mousestyles.path_diversity.path_features_advanced import compute_advanced def test_compute_advanced_input(): # Check if function raises the correct type of errors. # not pandas DataFrame like_path = [1, 2, 3] # not having keys 'x', 'y' like_path2 = pd.DataFrame({'x': [5, -2, 1], 't': [-2, 3, 1], 'isHB': [True, True, False]}) # length is less than 2 like_path3 = pd.DataFrame({'t': [2], 'x': [5], 'y': [3], 'isHB': [True]}) with pytest.raises(TypeError) as info: compute_advanced(like_path) assert info.value.args[0] == "path_obj must be pandas DataFrame" with pytest.raises(ValueError) as info: compute_advanced(like_path2) assert info.value.args[0] == "the keys of path_obj must contain 'x', 'y'" with pytest.raises(ValueError) as info: compute_advanced(like_path3) assert info.value.args[0] == "path_obj must contain at least 3 rows" def test_compute_advanced(): '''path = pd.DataFrame({'t': [2, 4.5, 10.5], 'x': [0, 1, 1], 'y': [0, 0, 1], 'isHB': [True, True, False]}) adv_feats = compute_advanced(path) assert adv_feats['area_rec'] == 1 assert adv_feats['abs_distance'] == np.sqrt(2) assert len(adv_feats['radius']) == len(path) assert len(adv_feats['center_angles']) == len(path) - 1 assert adv_feats['center_angles'] == [np.pi / 2] * 2 assert adv_feats['radius'] == [np.sqrt(2) / 2] * 3 # in area covered some error was produced # so it's not exactly but approximately equal to 1/2 expected = 1 / 2 assert np.abs(adv_feats['area_cov'] - expected) < 0.00001 ''' path = pd.DataFrame({'x': [0, 3, 3, 0], 'y': [0, 0, 4, 4]}) adv_feats = compute_advanced(path) assert adv_feats['area_rec'] == 3 * 4 assert adv_feats['abs_distance'] == 4 assert len(adv_feats['center_angles']) == len(path) - 1 assert len(adv_feats['radius']) == len(path) assert adv_feats['radius'] == [np.sqrt(3 ** 2 + 4 ** 2) / 2] * 4 # in area covered some error was produced # so it's not exactly but approximately equal to # the theoretical value expected = 3 * 4 - 3 / 2 * 4 / 2 assert np.abs(adv_feats['area_cov'] - expected) < 0.0000001 # in center_angles some errors were produced # so it's not exactly but approximately equal to # the theoretical values # By law of cosines expected1 = (2 * 2.5 ** 2 - 3 ** 2) / (2 * 2.5 ** 2) expected2 = (2 * 2.5 ** 2 - 4 ** 2) / (2 * 2.5 ** 2) assert np.abs(np.cos(adv_feats['center_angles'][0]) - expected1) < 0.0000001 assert np.abs(np.cos(adv_feats['center_angles'][2]) - expected1) < 0.0000001 assert np.abs(np.cos(adv_feats['center_angles'][1]) - expected2) < 0.0000001
{ "repo_name": "togawa28/mousestyles", "path": "mousestyles/path_diversity/tests/test_path_features_advanced.py", "copies": "3", "size": "3099", "license": "bsd-2-clause", "hash": 1873030699862746000, "line_mean": 37.2592592593, "line_max": 78, "alpha_frac": 0.5666343982, "autogenerated": false, "ratio": 3.343042071197411, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0, "num_lines": 81 }
from __future__ import (absolute_import, division, print_function, unicode_literals) import pytest import pandas as pd from mousestyles import data from mousestyles import path_diversity def test_detect_noise_input(): movement = data.load_movement(0, 0, 0) paths = path_diversity.path_index(movement, 1, 1) # Check if function raises the correct type of errors. # Input negative angle_threshold with pytest.raises(ValueError) as excinfo: path_diversity.detect_noise(movement, paths, -1, 1) assert excinfo.value.args[0] == "Input values need to be positive" # Input negative delta_t with pytest.raises(ValueError) as excinfo: path_diversity.detect_noise(movement, paths, 1, -1) assert excinfo.value.args[0] == "Input values need to be positive" # Input zero angle_threshold with pytest.raises(ValueError) as excinfo: path_diversity.detect_noise(movement, paths, 0, 1) assert excinfo.value.args[0] == "Input values need to be positive" # Input zero delta_t with pytest.raises(ValueError) as excinfo: path_diversity.detect_noise(movement, paths, 1, 0) assert excinfo.value.args[0] == "Input values need to be positive" def test_detect_noise(): movement = {'t': pd.Series([0., 0.02, 0.04, 0.06], index=[0, 1, 2, 3]), 'x': pd.Series([0., 0., 0.1, 0.2], index=[0, 1, 2, 3]), 'y': pd.Series([0., 1., 0., 1.], index=[0, 1, 2, 3]), 'isHB': pd.Series(['No', 'No', 'No', 'No'], index=[0, 1, 2, 3])} movement = pd.DataFrame(movement) paths = path_diversity.path_index(movement, 2, 1) # Check if function produces the correct outputs noise = path_diversity.detect_noise(movement, paths, 120, 1) noise = list(noise) assert noise == [0, 1, 1, 0] movement = {'t': pd.Series([0., 2., 4., 7.], index=[0, 1, 2, 3]), 'x': pd.Series([0., 0., 0.1, 0.2], index=[0, 1, 2, 3]), 'y': pd.Series([0., 1., 0., 1.], index=[0, 1, 2, 3]), 'isHB': pd.Series(['No', 'No', 'No', 'No'], index=[0, 1, 2, 3])} movement = pd.DataFrame(movement) paths = path_diversity.path_index(movement, 4, 1) # Check if function produces the correct outputs noise = path_diversity.detect_noise(movement, paths, 120, 1) noise = list(noise) assert noise == [0, 0, 0, 0]
{ "repo_name": "togawa28/mousestyles", "path": "mousestyles/path_diversity/tests/test_detect_noise.py", "copies": "3", "size": "2458", "license": "bsd-2-clause", "hash": 7865435219276275000, "line_mean": 42.8928571429, "line_max": 75, "alpha_frac": 0.5919446705, "autogenerated": false, "ratio": 3.272969374167776, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5364914044667776, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import sys import h5py import numpy as np import os import re from collections import OrderedDict import pandas as pd import json import skimage.io as sio from PIL import Image import copy import glob import ast import matplotlib.animation as animation import matplotlib.pyplot as plt from collections.abc import Iterable from atom.api import Atom, Str, observe, Typed, Dict, List, Int, Float, Enum, Bool from .load_data_from_db import (db, fetch_data_from_db, flip_data, helper_encode_list, helper_decode_list, write_db_to_hdf, fetch_run_info) from ..core.utils import normalize_data_by_scaler, grid_interpolate from ..core.map_processing import (RawHDF5Dataset, compute_total_spectrum_and_count, TerminalProgressBar, dask_client_create) from .scan_metadata import ScanMetadataXRF import requests from distutils.version import LooseVersion import logging import warnings import pyxrf pyxrf_version = pyxrf.__version__ logger = logging.getLogger(__name__) warnings.filterwarnings('ignore') sep_v = os.sep class FileIOModel(Atom): """ This class focuses on file input and output. Attributes ---------- working_directory : str current working path file_name : str name of loaded file file_name_silent_change : bool If this flag is set to True, then ``file_name`` may be changed once without starting file read operation. The flag is automatically reset to False. load_status : str Description of file loading status data_sets : dict dict of experiment data, 3D array img_dict : dict Dict of 2D arrays, such as 2D roi pv or fitted data """ window_title = Str() window_title_base = Str() working_directory = Str() file_name = Str() file_name_silent_change = Bool(False) file_path = Str() load_status = Str() data_sets = Typed(OrderedDict) file_channel_list = List() img_dict = Dict() img_dict_keys = List() img_dict_default_selected_item = Int() img_dict_is_updated = Bool(False) runid = Int(-1) # Run ID of the current run runuid = Str() # Run UID of the current run h_num = Int(1) v_num = Int(1) fname_from_db = Str() file_opt = Int(-1) data = Typed(np.ndarray) data_total_count = Typed(np.ndarray) data_all = Typed(object) selected_file_name = Str() # file_name = Str() mask_data = Typed(object) mask_name = Str() # Displayed name of the mask (I'm not sure it is used, but let's keep it for now) mask_file_path = Str() # Full path to file with mask data mask_active = Bool(False) load_each_channel = Bool(False) # Spatial ROI selection roi_selection_active = Bool(False) # Active/inactive roi_row_start = Int(-1) # Selected values matter only when ROI selection is active roi_col_start = Int(-1) roi_row_end = Int(-1) roi_col_end = Int(-1) # Used while loading data from database # True: overwrite existing data file if it exists # False: create new file with unique name (original name + version number) file_overwrite_existing = Bool(False) data_ready = Bool(False) # Scan metadata scan_metadata = Typed(ScanMetadataXRF) # Indicates if metadata is available for recently loaded scan scan_metadata_available = Bool(False) # Indicates if the incident energy is available in metadata for recently loaded scan incident_energy_available = Bool(False) # Changing this variable sets incident energy in the ``plot_model`` # Must be linked with the function ``plot_model.set_incident_energy`` # This value is not updated if incident energy parameter is changed somewhere else, therefore # its value should not be used for computations!!! incident_energy_set = Float(0.0) def __init__(self, *, working_directory): self.working_directory = working_directory self.mask_data = None # Display PyXRF version in the window title ver_str, new_ver = self._get_pyxrf_version_str() if new_ver is not None: ver_str += f" - new version {new_ver} is available" self.window_title_base = f"PyXRF: X-ray Fluorescence Analysis Tool ({ver_str})" self.window_title = self.window_title_base def _get_pyxrf_version_str(self): """ The function returns the tuple of strings: - current version number of PyXRF; - the latest version of PyXRF from nsls2forge conda channel. If current version is the latest, then the second string None. """ # Determine the current version of PyXRF global pyxrf_version pyxrf_version_str = pyxrf_version if pyxrf_version_str[0].lower() != 'v': pyxrf_version_str = f"v{pyxrf_version_str}" logger.info("Checking for new version availability ...") # Now find the latest version available at nsls2forge pyxrf_latest_version_str = None try: # Create a list of available versions r = requests.get('https://conda.anaconda.org/nsls2forge/noarch/repodata.json') pkgs = r.json() pyxrf_ver = [] for pkg in pkgs['packages'].keys(): if pkg.startswith('pyxrf'): pkg_version = LooseVersion(pkg.split('-')[1]) pyxrf_ver.append(pkg_version) if len(pyxrf_ver): max_version = pyxrf_ver[0] for pkg_version in pyxrf_ver: if max_version < pkg_version: max_version = pkg_version current_version = LooseVersion(pyxrf_version) if current_version < max_version: pyxrf_latest_version_str = f"v{max_version}" if pyxrf_latest_version_str is not None: logger.info(f"New version of PyXRF ({pyxrf_latest_version_str}) was found " "in the 'nsls2forge' conda channel") else: logger.info("You have the latest version of PyXRF") except Exception: # This exception is mostly likely to happen if there is no internet connection or # nsls2forge is unreachable. Then ignore the procedure, assume that the current # version is the latest. logger.warning("Failed to check availability of the latest version of PyXRF " "in the 'nsls2forge' conda channel.") pass return pyxrf_version_str, pyxrf_latest_version_str def window_title_clear(self): self.window_title = self.window_title_base def window_title_set_file_name(self, file_name): self.window_title = f"{self.window_title_base} - File: {file_name}" def window_title_set_run_id(self, run_id): self.window_title = f"{self.window_title_base} - Scan ID: {run_id}" def is_databroker_available(self): """ Check if Databroker is configured and data can be loaded from the database. Returns ------- bool True - Databroker is available, False otherwise. """ return db is not None def _metadata_update_program_state(self): """ Update program state based on metadata: -- enable controls (mostly ``View Metadata`` button in ``File IO`` tab -- set incident energy if it is available -- print logger warning if incident energy is not available in metadata (or if metadata does not exist) """ self.scan_metadata_available = False self.incident_energy_available = False if self.scan_metadata is not None: self.scan_metadata_available = self.scan_metadata.is_metadata_available() self.incident_energy_available = self.scan_metadata.is_mono_incident_energy_available() if self.incident_energy_available: # Fetch incident energy from metadata if it exists self.incident_energy_set = self.scan_metadata.get_mono_incident_energy() logger.info(f"Incident energy {self.incident_energy_set} keV was extracted from the scan metadata") else: logger.warning( "Incident energy is not available in scan metadata and needs to be set manually:\n" " Click 'Find Elements Automatically' button in 'Fit' " "tab to access the settings dialog box.") def clear(self): """ Clear all existing data. The function should be called before loading new data (file or run) """ self.runid = -1 self.file_opt = -1 self.selected_file_name = "" self.file_path = "" # We don't clear the following data arrays for now. The commented code is left # mostly for future reference. # self.data = np.ndarray([]) # self.data_total_count = np.ndarray([]) # self.data_all = {} self.mask_data = {} self.mask_name = "" # Displayed name of the mask (I'm not sure it is used, but let's keep it for now) self.mask_file_path = "" # Full path to file with mask data self.mask_active = False # Spatial ROI selection self.roi_selection_active = False # Active/inactive self.roi_row_start = -1 # Selected values matter only when ROI selection is active self.roi_col_start = -1 self.roi_row_end = -1 self.roi_col_end = -1 self.img_dict = {} self.img_dict_keys = [] self.img_dict_default_selected_item = 0 self.data_sets = OrderedDict() self.scan_metadata = ScanMetadataXRF() self._metadata_update_program_state() @observe(str('file_name')) def load_data_from_file(self, change): """This function loads data file for GUI. It also generates preview data for default channel #0.""" if change['value'] == 'temp': # 'temp' is used to reload the same file return if self.file_name_silent_change: self.file_name_silent_change = False logger.info(f"File name is silently changed. New file name is '{change['value']}'") return self.file_channel_list = [] logger.info('File is loaded: %s' % (self.file_name)) # Clear data. If reading the file fails, then old data should not be kept. self.clear() # focus on single file only img_dict, self.data_sets, self.scan_metadata = \ file_handler(self.working_directory, self.file_name, load_each_channel=self.load_each_channel) self.img_dict = img_dict self.update_img_dict() # Replace relative scan ID with true scan ID. # Full path to the data file self.file_path = os.path.join(self.working_directory, self.file_name) # Process metadata self._metadata_update_program_state() if self.scan_metadata_available: if "scan_id" in self.scan_metadata: self.runid = int(self.scan_metadata["scan_id"]) if "scan_uid" in self.scan_metadata: self.runuid = self.scan_metadata["scan_uid"] self.data_ready = True self.file_channel_list = list(self.data_sets.keys()) default_channel = 0 # Use summed data as default self.file_opt = default_channel if self.file_channel_list and self.data_sets: self.data_sets[self.file_channel_list[default_channel]].selected_for_preview = True self.update_data_set_buffers() def get_dataset_map_size(self): map_size = None ds_name_first = "" for ds_name, ds in self.data_sets.items(): if map_size is None: map_size = ds.get_map_size() ds_name_first = ds_name else: map_size_other = ds.get_map_size() if map_size != map_size_other: logger.warning(f"Map sizes don't match for datasets '{ds_name}' and '{ds_name_first}': " f"{map_size_other} != {map_size}") return map_size def update_img_dict(self, img_dict_additional=None): if img_dict_additional is None: img_dict_additional = {} new_keys = list(img_dict_additional.keys()) selected_key = new_keys[0] if new_keys else None self.img_dict.update(img_dict_additional) self.img_dict_keys = self._get_img_dict_keys() if selected_key is None: selected_item = 1 if self.img_dict_keys else 0 else: selected_item = self.img_dict_keys.index(selected_key) + 1 self.select_img_dict_item(selected_item, always_update=True) def select_img_dict_item(self, selected_item, *, always_update=False): """ Select the set of image maps. Parameters ---------- selected_item : int Selected item (set of maps) in the `self.img_dict`. Range: `0..len(self.img_dict)`. 0 - no dataset is selected. always_update : boolean True - update even if the item is already selected. """ # Select no dataset if index is out of range selected_item = selected_item if (0 <= selected_item <= len(self.img_dict)) else 0 # Don't update the plots if the item is already selected if always_update or (selected_item != self.img_dict_default_selected_item): self.img_dict_default_selected_item = selected_item self.img_dict_is_updated = False self.img_dict_is_updated = True def _get_img_dict_keys(self): key_suffix = [r"scaler$", r"det\d+_roi$", r"roi$", r"det\d+_fit$", r"fit$"] keys = [[] for _ in range(len(key_suffix) + 1)] for k in self.img_dict.keys(): found = False for n, suff in enumerate(key_suffix): if re.search(suff, k): keys[n + 1].append(k) found = True break if not found: keys[0].append(k) keys_sorted = [] for n in reversed(range(len(keys))): keys[n].sort() keys_sorted += keys[n] return keys_sorted def get_dataset_preview_count_map_range(self, *, selected_only=False): """ Returns the range of the Total Count Maps in the loaded datasets. Parameters ---------- selected_only: bool True - use only datasets that are currently selected for preview, False - use all LOADED datasets (for which the total spectrum and total count map is computed Returns ------- tuple(float) the range of values `(value_min, value_max)`. Returns `(None, None)` if no datasets are loaded (or selected if `selected_only=True`) """ v_min, v_max = None, None for ds_name, ds in self.data_sets.items(): if not selected_only or ds.selected_for_preview: if ds.data_ready: dset_min, dset_max = ds.get_total_count_range() if (v_min is None) or (v_max is None): v_min, v_max = dset_min, dset_max elif (dset_min is not None) and (dset_max is not None): v_min = min(v_min, dset_min) v_max = max(v_max, dset_max) if (v_min is not None) and (v_max is not None): if v_min >= v_max: v_min, v_max = v_min - 0.005, v_max + 0.005 # Some small range return v_min, v_max def is_xrf_maps_available(self): """ The method returns True if one or more set XRF maps are loaded (or computed) and available for display. Returns ------- True/False - One or more sets of XRF Maps are available/not available """ regex_list = [".*_fit", ".*_roi"] for key in self.img_dict.keys(): for reg in regex_list: if re.search(reg, key): return True return False def get_uid_short(self, uid=None): uid = self.runuid if uid is None else uid return uid.split("-")[0] @observe(str('runid')) def _update_fname(self, change): self.fname_from_db = 'scan2D_'+str(self.runid) def load_data_runid(self, run_id_uid): """ Load data according to runID number. requires databroker """ # Clear data. If reading the file fails, then old data should not be kept. self.file_channel_list = [] self.clear() if db is None: raise RuntimeError("Databroker is not installed. The scan cannot be loaded.") s = f"ID {run_id_uid}" if isinstance(run_id_uid, int) \ else f"UID '{run_id_uid}'" logger.info(f"Loading scan with {s}") rv = render_data_to_gui(run_id_uid, create_each_det=self.load_each_channel, working_directory=self.working_directory, file_overwrite_existing=self.file_overwrite_existing) if rv is None: logger.error(f"Data from scan #{self.runid} was not loaded") return img_dict, self.data_sets, fname, detector_name, self.scan_metadata = rv # Process metadata self._metadata_update_program_state() # Replace relative scan ID with true scan ID. if "scan_id" in self.scan_metadata: self.runid = int(self.scan_metadata["scan_id"]) if "scan_uid" in self.scan_metadata: self.runuid = self.scan_metadata["scan_uid"] # Change file name without rereading the file self.file_name_silent_change = True self.file_name = os.path.basename(fname) logger.info(f"Data loading: complete dataset for the detector " f"'{detector_name}' was loaded successfully.") self.file_channel_list = list(self.data_sets.keys()) self.img_dict = img_dict self.data_ready = True default_channel = 0 # Use summed data as default self.file_opt = default_channel if self.file_channel_list and self.data_sets: self.data_sets[self.file_channel_list[default_channel]].selected_for_preview = True self.update_data_set_buffers() try: self.selected_file_name = self.file_channel_list[self.file_opt] except IndexError: pass # passed to fitting part for single pixel fitting self.data_all = self.data_sets[self.selected_file_name].raw_data # get summed data or based on mask self.data, self.data_total_count = \ self.data_sets[self.selected_file_name].get_total_spectrum_and_count() def update_data_set_buffers(self): """ Update buffers in all datasets """ for dset_name, dset in self.data_sets.items(): # Update only the data that are needed if dset.selected_for_preview or dset_name == self.selected_file_name: dset.update_buffers() @observe(str('file_opt')) def choose_file(self, change): if not self.data_ready: return if self.file_opt < 0 or self.file_opt >= len(self.file_channel_list): self.file_opt = 0 # selected file name from all channels # controlled at top level gui.py startup try: self.selected_file_name = self.file_channel_list[self.file_opt] except IndexError: pass # passed to fitting part for single pixel fitting self.data_all = self.data_sets[self.selected_file_name].raw_data # get summed data or based on mask self.data, self.data_total_count = \ self.data_sets[self.selected_file_name].get_total_spectrum_and_count() def get_selected_detector_channel(self): r""" Returns selected channel name. Expected values are ``sum``, ``det1``, ``det2``, etc. If no channel is selected or it is impossible to determine the channel name, then the return value is ``None`` (this is not a normal outcome). """ det_channel = None if self.selected_file_name: try: # The channel is supposed to be the last component of the 'selected_file_name' det_channel = self.selected_file_name.split("_")[-1] except Exception: pass return det_channel def apply_mask_to_datasets(self): """Set mask and ROI selection for datasets.""" if self.mask_active: # Load mask data if len(self.mask_file_path) > 0: ext = os.path.splitext(self.mask_file_path)[-1].lower() msg = "" try: if '.npy' == ext: self.mask_data = np.load(self.mask_file_path) elif '.txt' == ext: self.mask_data = np.loadtxt(self.mask_file_path) else: self.mask_data = np.array(Image.open(self.mask_file_path)) for k in self.data_sets.keys(): self.data_sets[k].set_mask(mask=self.mask_data, mask_active=self.mask_active) # TODO: remove the following code if not needed # I see no reason of adding the mask image to every processed dataset # for k in self.img_dict.keys(): # if 'fit' in k: # self.img_dict[k]["mask"] = self.mask_data except IOError as ex: msg = f"Mask file '{self.mask_file_path}' cannot be loaded: {str(ex)}." except Exception as ex: msg = f"Mask from file '{self.mask_file_path}' cannot be set: {str(ex)}." if msg: logger.error(msg) self.mask_data = None self.mask_active = False # Deactivate the mask # Now raise the exception so that proper error processing can be performed raise RuntimeError(msg) logger.debug(f"Mask was successfully loaded from file '{self.mask_file_path}'") else: # We keep the file name, but there is no need to keep the data, which is loaded from # file each time the mask is loaded. Mask is relatively small and the file can change # between the function calls, so it's better to load new data each time. self.mask_data = None # Now clear the mask in each dataset for k in self.data_sets.keys(): self.data_sets[k].set_mask(mask=self.mask_data, mask_active=self.mask_active) # TODO: remove the following code if not needed # There is also no reason to remove the mask image if it was not added # for k in self.img_dict.keys(): # if 'fit' in k: # self.img_dict[k]["mask"] = self.mask_data logger.debug("Setting spatial ROI ...") logger.debug(f" ROI selection is active: {self.roi_selection_active}") logger.debug(f" Starting position: ({self.roi_row_start}, {self.roi_col_start})") logger.debug(f" Ending position (not included): ({self.roi_row_end}, {self.roi_col_end})") try: for k in self.data_sets.keys(): self.data_sets[k].set_selection(pt_start=(self.roi_row_start, self.roi_col_start), pt_end=(self.roi_row_end, self.roi_col_end), selection_active=self.roi_selection_active) except Exception as ex: msg = f"Spatial ROI selection can not be set: {str(ex)}\n" logger.error(msg) raise RuntimeError(ex) # TODO: it may be more logical to pass the data somewhere else. We leave it here for now. # Select raw data to for single pixel fitting. self.data_all = self.data_sets[self.selected_file_name].raw_data # Create Dask client to speed up processing of multiple datasets client = dask_client_create() # Run computations with the new selection and mask # ... for the dataset selected for processing self.data, self.data_total_count = \ self.data_sets[self.selected_file_name].get_total_spectrum_and_count(client=client) # ... for all datasets selected for preview except the one selected for processing. for key in self.data_sets.keys(): if (key != self.selected_file_name) and self.data_sets[key].selected_for_preview: self.data_sets[key].update_buffers(client=client) client.close() plot_as = ['Sum', 'Point', 'Roi'] class DataSelection(Atom): """ The class used for management of raw data. Function `get_sum` is used to compute the total spectrum (sum of spectra for all pixels) and total count (sum of counts over all energy bins for each pixel). Selection of pixels may be set by selecting an area (limited by `point1` and `point2` or the mask `mask`. Selection of area also applied to the mask if both are set. There are some unresolved questions about logic: - what is exactly the role of `self.io_model.data`? It is definitely used when the data is plotted, but is it ever bypassed by directly calling `get_sum`? If the data is always accessed using `self.io_model.data`, then storing the averaged spectrum in cache is redundant, but since the array is small, it's not much overhead to keep another copy just in case. - there is no obvious way to set `point1` and `point2` (it seems like point selection doesn't work in PyXRF). May be at some point this needs to be fixed. Anyway, the logic is not defined to the level when it makes sense to write tests for this class. There are tests for underlying computational functions though. Attributes ---------- filename : str plot_choice : enum methods ot plot point1 : str starting position point2 : str ending position roi : list raw_data : array experiment 3D data data : array selected_for_preview : int plot data or not, sum or roi or point """ filename = Str() plot_choice = Enum(*plot_as) # point1 = Str('0, 0') # point2 = Str('0, 0') selection_active = Bool(False) sel_pt_start = List() sel_pt_end = List() # Not included mask_active = Bool(False) mask = Typed(np.ndarray) # 'raw_data' may be numpy array, dask array or core.map_processing.RawHDF5Dataset # Processing functions are expected to support all those types raw_data = Typed(object) selected_for_preview = Bool(False) # Dataset is currently selected for preview data_ready = Bool(False) # Total spectrum and total count map are computed fit_name = Str() fit_data = Typed(np.ndarray) _cached_spectrum = Dict() def get_total_spectrum(self, *, client=None): total_spectrum, _ = self._get_sum(client=client) return total_spectrum.copy() def get_total_count(self, *, client=None): _, total_count = self._get_sum(client=client) return total_count.copy() def get_total_spectrum_and_count(self, *, client=None): total_spectrum, total_count = self._get_sum(client=client) return total_spectrum.copy(), total_count.copy() def update_buffers(self, *, client=None): logger.debug(f"Dataset '{self.filename}': updating cached buffers.") self._get_sum(client=client) def get_total_count_range(self): """ Get the range of values of total count map Returns ------- tuple(float) (value_min, value_max) """ total_count = self.get_total_count() return total_count.min(), total_count.max() @observe(str('selected_for_preview')) def _update_roi(self, change): if self.selected_for_preview: self.update_buffers() def set_selection(self, *, pt_start, pt_end, selection_active): """ Set spatial ROI selection Parameters ---------- pt_start: tuple(int) or list(int) Starting point of the selection `(row_start, col_start)`, where `row_start` is in the range `0..n_rows-1` and `col_start` is in the range `0..n_cols-1`. pt_end: tuple(int) or list(int) End point of the selection, which is not included in the selection: `(row_end, col_end)`, where `row_end` is in the range `1..n_rows` and `col_end` is in the range `1..n_cols`. selection_active: bool `True` - selection is active, `False` - selection is not active. The selection points must be set before the selection is set active, otherwise `ValueError` is raised Raises ------ ValueError is raised if selection is active, but the points are not set. """ if selection_active and (pt_start is None or pt_end is None): raise ValueError("Selection is active, but at least one of the points is not set") def _check_pt(pt): if pt is not None: if not isinstance(pt, Iterable): raise ValueError(f"The point value is not iterable: {pt}.") if len(list(pt)) != 2: raise ValueError(f"The point ({pt}) must be represented by iterable of length 2.") _check_pt(pt_start) _check_pt(pt_end) pt_start = list(pt_start) pt_end = list(pt_end) def _reset_pt(pt, value, pt_range): """ Verify if pt is in the range `(pt_range[0], pt_range[1])` including `pt_range[1]`. Clip the value to be in the range. If `pt` is negative (assume it is not set), then set it to `value`. """ pt = int(np.clip(pt, a_min=pt_range[0], a_max=pt_range[1]) if pt >= 0 else value) return pt map_size = self.get_map_size() pt_start[0] = _reset_pt(pt_start[0], 0, (0, map_size[0] - 1)) pt_start[1] = _reset_pt(pt_start[1], 0, (0, map_size[1] - 1)) pt_end[0] = _reset_pt(pt_end[0], map_size[0], (1, map_size[0])) pt_end[1] = _reset_pt(pt_end[1], map_size[1], (1, map_size[1])) if pt_start[0] > pt_end[0] or pt_start[1] > pt_end[1]: msg = f"({pt_start[0]}, {pt_start[1]}) .. ({pt_end[0]}, {pt_end[1]})" raise ValueError(f"Selected spatial ROI does not include any points: {msg}") self.sel_pt_start = list(pt_start) if pt_start is not None else None self.sel_pt_end = list(pt_end) if pt_end is not None else None self.selection_active = selection_active def set_mask(self, *, mask, mask_active): """ Set mask by supplying np array. The size of the array must match the size of the map. Clear the mask by supplying `None`. Parameter --------- mask: ndarray or None Array that contains the mask data or None to clear the mask mask_active: bool `True` - apply the mask, `False` - don't apply the mask The mask must be set if `mask_active` is set `True`, otherwise `ValueError` is raised. """ if mask_active and mask is None: raise ValueError("Mask is set active, but no mask is set.") if (mask is not None) and not isinstance(mask, np.ndarray): raise ValueError(f"Mask must be a Numpy array or None: type(mask) = {type(mask)}") if mask is None: self.mask = None else: m_size = self.get_map_size() if any(mask.shape != m_size): raise ValueError(f"The mask shape({mask.shape}) is not equal to the map size ({m_size})") self.mask = np.array(mask) # Create a copy def get_map_size(self): """ Returns map size as a tuple `(n_rows, n_columns)`. The function is returning the dimensions 0 and 1 of the raw data without loading the data. """ return self.raw_data.shape[0], self.raw_data.shape[1] def get_raw_data_shape(self): """ Returns the shape of raw data: `(n_rows, n_columns, n_energy_bins)`. """ return self.raw_data.shape def _get_sum(self, *, client=None): # Only the values of 'mask', 'pos1' and 'pos2' will be cached mask = self.mask if self.mask_active else None pt_start = self.sel_pt_start if self.selection_active else None pt_end = self.sel_pt_end if self.selection_active else None def _compare_cached_settings(cache, pt_start, pt_end, mask): if not cache: return False # Verify that all necessary keys are in the dictionary if not all([_ in cache.keys() for _ in ("pt_start", "pt_end", "mask", "spec")]): return False if (cache["pt_start"] != pt_start) or (cache["pt_end"] != pt_end): return False mask_none = [_ is None for _ in (mask, cache["mask"])] if all(mask_none): # Mask is not applied in both cases return True elif any(mask_none): # Mask is applied only in one cases return False # Mask is applied in both cases, so compare the masks if not (cache["mask"] == mask).all(): return False return True cache_valid = _compare_cached_settings(self._cached_spectrum, pt_start=pt_start, pt_end=pt_end, mask=mask) if cache_valid: # We create copy to make sure that cache remains intact logger.debug(f"Dataset '{self.filename}': using cached copy of the averaged spectrum ...") # The following are references to cached objects. Care should be taken not to modify them. spec = self._cached_spectrum["spec"] count = self._cached_spectrum["count"] else: logger.debug(f"Dataset '{self.filename}': computing the total spectrum and total count map " "from raw data ...") SC = SpectrumCalculator(pt_start=pt_start, pt_end=pt_end, mask=mask) spec, count = SC.get_spectrum(self.raw_data, client=client) # Save cache the computed spectrum (with all settings) self._cached_spectrum["pt_start"] = pt_start.copy() if pt_start is not None else None self._cached_spectrum["pt_end"] = pt_end.copy() if pt_end is not None else None self._cached_spectrum["mask"] = mask.copy() if mask is not None else None self._cached_spectrum["spec"] = spec.copy() self._cached_spectrum["count"] = count.copy() self.data_ready = True # Return the 'sum' spectrum as regular 64-bit float (raw data is in 'np.float32') return spec.astype(np.float64, copy=False), count.astype(np.float64, copy=False) class SpectrumCalculator(object): """ Calculate summed spectrum according to starting and ending positions. """ def __init__(self, *, pt_start=None, pt_end=None, mask=None): """ Initialize the class. The spatial ROI selection and the mask are applied to the data. Parameters ---------- pt_start: iterable(int) or None indexes of the beginning of the selection: `(row_start, col_start)`. `row_start` is in the range `0..n_rows-1`, `col_start` is in the range `0..n_cols-1`. The point `col_start` is not included in the selection pt_end: iterable(int) or None indexes of the beginning of the selection: `(row_end, col_end)`. `row_end` is in the range `1..n_rows`, `col_end` is in the range `1..n_cols`. The point `col_end` is not included in the selection. If `pt_end` is None, then `pt_start` MUST be None. mask: ndarray(float) or None the mask that is applied to the data, shape (n_rows, n_cols) """ def _validate_point(v): v_out = None if v is not None: if isinstance(v, Iterable) and len(list(v)) == 2: v_out = list(v) else: logger.warning("SpectrumCalculator.__init__(): Spatial ROI selection " f"point '{v}' is invalid. Using 'None' instead.") return v_out self._pt_start = _validate_point(pt_start) self._pt_end = _validate_point(pt_end) # Validate 'mask' if mask is not None: if not isinstance(mask, np.ndarray): logger.warning(f"SpectrumCalculator.__init__(): type of parameter 'mask' must by np.ndarray, " f"type(mask) = {type(mask)}. Using mask=None instead.") mask = None elif mask.ndim != 2: logger.warning(f"SpectrumCalculator.__init__(): the number of dimensions " "in ndarray 'mask' must be 2, " f"mask.ndim = {mask.ndim}. Using mask=None instead.") mask = None self.mask = mask def get_spectrum(self, data, *, client=None): """ Run computation of the total spectrum and total count. Use the selected spatial ROI and/or mask Parameters ---------- data: ndarray(float) raw data array, shape (n_rows, n_cols, n_energy_bins) client: dask.distributed.Client or None Dask client. If None, then local client will be created """ selection = None if self._pt_start: if self._pt_end: # Region is selected selection = (self._pt_start[0], self._pt_start[1], self._pt_end[0] - self._pt_start[0], self._pt_end[1] - self._pt_start[1]) else: # Only a single point is selected selection = (self._pt_start[0], self._pt_start[1], 1, 1) progress_bar = TerminalProgressBar("Computing total spectrum: ") total_spectrum, total_count = compute_total_spectrum_and_count( data, selection=selection, mask=self.mask, chunk_pixels=5000, n_chunks_min=4, progress_bar=progress_bar, client=client) return total_spectrum, total_count def file_handler(working_directory, file_name, load_each_channel=True, spectrum_cut=3000): # send information on GUI level later ! get_data_nsls2 = True try: if get_data_nsls2 is True: return read_hdf_APS(working_directory, file_name, spectrum_cut=spectrum_cut, load_each_channel=load_each_channel) else: return read_MAPS(working_directory, file_name, channel_num=1) except IOError as e: logger.error("I/O error({0}): {1}".format(e.errno, str(e))) logger.error('Please select .h5 file') except Exception: logger.error("Unexpected error:", sys.exc_info()[0]) raise def read_xspress3_data(file_path): """ Data IO for xspress3 format. Parameters ---------- working_directory : str path folder file_name : str Returns ------- data_output : dict with data from each channel """ data_output = {} # file_path = os.path.join(working_directory, file_name) with h5py.File(file_path, 'r') as f: data = f['entry/instrument'] # data from channel summed exp_data = np.asarray(data['detector/data']) xval = np.asarray(data['NDAttributes/NpointX']) yval = np.asarray(data['NDAttributes/NpointY']) # data size is (ysize, xsize, num of frame, num of channel, energy channel) exp_data = np.sum(exp_data, axis=2) num_channel = exp_data.shape[2] # data from each channel for i in range(num_channel): channel_name = 'channel_'+str(i+1) data_output.update({channel_name: exp_data[:, :, i, :]}) # change x,y to 2D array xval = xval.reshape(exp_data.shape[0:2]) yval = yval.reshape(exp_data.shape[0:2]) data_output.update({'x_pos': xval}) data_output.update({'y_pos': yval}) return data_output def output_data(dataset_dict=None, output_dir=None, file_format='tiff', scaler_name=None, use_average=False, dataset_name=None, quant_norm=False, param_quant_analysis=None, positions_dict=None, interpolate_to_uniform_grid=False, scaler_name_list=None): """ Read data from h5 file and transfer them into txt. Parameters ---------- dataset_dict : dict(ndarray) Dictionary of XRF maps contained in the selected dataset. Each XRF map is saved in the individual file. File name consists of the detector channel name (e.g. 'detsum', 'det1' etc.) and map name (dictionary key). Optional list of scaler names 'scaler_name_list' may be passed to the function. If map name is contained in the scaler name list, then the detector channel name is not attached to the file name. output_dir : str which folder to save those txt file file_format : str, optional tiff or txt scaler_name : str, optional if given, normalization will be performed. use_average : Bool, optional when normalization, multiply by the mean value of scaler, i.e., norm_data = data/scaler * np.mean(scaler) dataset_name : str the name of the selected datset (in Element Map tab) should end with the suffix '_fit' (for sum of all channels), '_det1_fit" etc. quant_norm : bool True - quantitative normalization is enabled, False - disabled param_quant_analysis : ParamQuantitativeAnalysis reference to class, which contains parameters for quantitative normalization interpolate_to_uniform_grid : bool interpolate the result to uniform grid before saving to tiff and txt files The grid dimensions match the dimensions of positional data for X and Y axes. The range of axes is chosen to fit the values of X and Y. scaler_name_list : list(str) The list of names of scalers that may exist in the dataset 'dataset_dict' """ if not dataset_name: raise RuntimeError("Dataset is not selected. Data can not be saved.") if dataset_dict is None: dataset_dict = {} if positions_dict is None: positions_dict = {} # Extract the detector channel name from dataset name # Dataset name ends with '_fit' for the sum of all channels # and '_detX_fit' for detector X (X is 1, 2, 3 ..) # The extracted detector channel name should be 'detsum', 'det1', 'det2' etc. dset = None if re.search(r"_det\d+_fit$", dataset_name): dset = re.search(r"_det\d_", dataset_name)[0] dset = dset.strip('_') elif re.search(r"_fit$", dataset_name): dset = "detsum" elif re.search(r"_det\d+_fit$", dataset_name): dset = re.search(r"_det\d_", dataset_name)[0] dset = dset.strip('_') dset += "_roi" elif re.search(r"_roi$", dataset_name): dset = "detsum_roi" elif re.search(r"_scaler$", dataset_name): dset = "scaler" else: dset = dataset_name file_format = file_format.lower() fit_output = {} for k, v in dataset_dict.items(): fit_output[k] = v for k, v in positions_dict.items(): fit_output[k] = v logger.info(f"Saving data as {file_format.upper()} files. Directory '{output_dir}'") if scaler_name: logger.info(f"Data is NORMALIZED before saving. Scaler: '{scaler_name}'") if(interpolate_to_uniform_grid): if ("x_pos" in fit_output) and ("y_pos" in fit_output): logger.info("Data is INTERPOLATED to uniform grid.") for k, v in fit_output.items(): # Do not interpolation positions if 'pos' in k: continue fit_output[k], xx, yy = grid_interpolate(v, fit_output["x_pos"], fit_output["y_pos"]) fit_output["x_pos"] = xx fit_output["y_pos"] = yy else: logger.error("Positional data 'x_pos' and 'y_pos' is not found in the dataset.\n" "Iterpolation to uniform grid can not be performed. " "Data is saved without interpolation.") output_data_to_tiff(fit_output, output_dir=output_dir, file_format=file_format, name_prefix_detector=dset, name_append="", scaler_name=scaler_name, quant_norm=quant_norm, param_quant_analysis=param_quant_analysis, use_average=use_average, scaler_name_list=scaler_name_list) def output_data_to_tiff(fit_output, output_dir=None, file_format='tiff', name_prefix_detector=None, name_append=None, scaler_name=None, scaler_name_list=None, quant_norm=False, param_quant_analysis=None, use_average=False): """ Read data in memory and save them into tiff to txt. Parameters ---------- fit_output: dict of fitting data and scaler data output_dir : str, optional which folder to save those txt file file_format : str, optional tiff or txt name_prefix_detector : str prefix appended to file name except for the files that contain positional data and scalers name_append: str, optional more information saved to output file name scaler_name : str, optional if given, normalization will be performed. scaler_name_list : list(str) The list of names of scalers that may exist in the dataset 'dataset_dict' quant_norm : bool True - apply quantitative normalization, False - use normalization by scaler param_quant_analysis : ParamQuantitativeAnalysis reference to class, which contains parameters for quantitative normalization, if None, then quantitative normalization will be skipped use_average : Bool, optional when normalization, multiply by the mean value of scaler, i.e., norm_data = data/scaler * np.mean(scaler) """ if output_dir is None: raise ValueError("Output directory is not specified.") if name_append: name_append = f"_{name_append}" else: # If 'name_append' is None, set it to "" so that it could be safely appended to a string name_append = "" file_format = file_format.lower() allowed_formats = ('txt', 'tiff') if file_format not in allowed_formats: raise RuntimeError(f"The specified format '{file_format}' not in {allowed_formats}") # Create the output directory if it does not exist os.makedirs(output_dir, exist_ok=True) def _save_data(data, *, output_dir, file_name, name_prefix_detector, name_append, file_format, scaler_name_list): # The 'file_format' is specified as file extension file_extension = file_format.lower() # If data is scalar or position, then don't attach the prefix fname = f"{name_prefix_detector}_{file_name}" \ if (file_name not in scaler_name_list) and ("pos" not in file_name) \ else file_name fname = f"{fname}{name_append}.{file_extension}" fname = os.path.join(output_dir, fname) if file_format.lower() == 'tiff': sio.imsave(fname, data.astype(np.float32)) elif file_format.lower() == 'txt': np.savetxt(fname, data.astype(np.float32)) else: raise ValueError(f"Function is called with invalid file format '{file_format}'.") if quant_norm: if param_quant_analysis: for data_name, data in fit_output.items(): # Quantitative normalization data_normalized, quant_norm_applied = param_quant_analysis.apply_quantitative_normalization( data_in=data, scaler_dict=fit_output, scaler_name_default=None, # We don't want data to be scaled data_name=data_name, name_not_scalable=None) # For simplicity, all saved maps are normalized if quant_norm_applied: # Save data only if quantitative normalization was performed. _save_data(data_normalized, output_dir=output_dir, file_name=data_name, name_prefix_detector=name_prefix_detector, name_append=f"{name_append}_quantitative", file_format=file_format, scaler_name_list=scaler_name_list) else: logger.error("Quantitative analysis parameters are not provided. " f"Quantitative data is not saved in {file_format.upper()} format.") # Normalize data if scaler is provided if scaler_name is not None: if scaler_name in fit_output: scaler_data = fit_output[scaler_name] for data_name, data in fit_output.items(): if 'pos' in data_name or 'r2' in data_name: continue # Normalization of data data_normalized = normalize_data_by_scaler(data, scaler_data) if use_average is True: data_normalized *= np.mean(scaler_data) _save_data(data_normalized, output_dir=output_dir, file_name=data_name, name_prefix_detector=name_prefix_detector, name_append=f"{name_append}_norm", file_format=file_format, scaler_name_list=scaler_name_list) else: logger.warning(f"The scaler '{scaler_name}' was not found. Data normalization " f"was not performed for {file_format.upper()} file.") # Always save not normalized data for data_name, data in fit_output.items(): _save_data(data, output_dir=output_dir, file_name=data_name, name_prefix_detector=name_prefix_detector, name_append=name_append, file_format=file_format, scaler_name_list=scaler_name_list) def read_hdf_APS(working_directory, file_name, spectrum_cut=3000, # The following parameters allow fine grained control over what is loaded from the file load_summed_data=True, # Enable loading of RAW, FIT or ROI data from 'sum' channel load_each_channel=False, # .. RAW data from individual detector channels load_processed_each_channel=True, # .. FIT or ROI data from the detector channels load_raw_data=True, # For all channels: load RAW data load_fit_results=True, # .. load FIT data load_roi_results=True): # .. load ROI data """ Data IO for files similar to APS Beamline 13 data format. This might be changed later. Parameters ---------- working_directory : str path folder file_name : str selected h5 file spectrum_cut : int, optional only use spectrum from, say 0, 3000 load_summed_data : bool, optional load summed spectrum or not load_each_channel : bool, optional indicates whether to load raw experimental data for each detector channel or not load_raw_data : bool load raw experimental data load_processed_each_channel : bool indicates whether or not to load processed results (fit, roi) for each detector channel load_fit_results :bool load fitting results load_roi_results : bool load results of roi computation Returns ------- data_dict : dict with fitting data data_sets : dict data from each channel and channel summed, a dict of DataSelection objects """ data_sets = OrderedDict() img_dict = OrderedDict() # Empty container for metadata mdata = ScanMetadataXRF() file_path = os.path.join(working_directory, file_name) # defined in other_list in config file try: dict_sc = retrieve_data_from_hdf_suitcase(file_path) except Exception: dict_sc = {} with h5py.File(file_path, 'r+') as f: # Retrieve metadata if it exists if "xrfmap/scan_metadata" in f: # Metadata is always loaded metadata = f["xrfmap/scan_metadata"] for key, value in metadata.attrs.items(): # Convert ndarrays to lists (they were lists before they were saved) if isinstance(value, np.ndarray): value = list(value) mdata[key] = value data = f['xrfmap'] fname = file_name.split('.')[0] if load_summed_data and load_raw_data: try: # data from channel summed # exp_data = np.array(data['detsum/counts'][:, :, 0:spectrum_cut], # dtype=np.float32) # exp_data = np.array(data['detsum/counts'], dtype=np.float32) data_shape = data['detsum/counts'].shape exp_data = RawHDF5Dataset(file_path, 'xrfmap/detsum/counts', shape=data_shape) logger.warning(f"We use spectrum range from 0 to {spectrum_cut}") logger.info(f"Exp. data from h5 has shape of: {data_shape}") fname_sum = f"{fname}_sum" DS = DataSelection(filename=fname_sum, raw_data=exp_data) data_sets[fname_sum] = DS logger.info('Data of detector sum is loaded.') except KeyError: print('No data is loaded for detector sum.') if 'scalers' in data: # Scalers are always loaded if data is available det_name = data['scalers/name'] temp = {} for i, n in enumerate(det_name): if not isinstance(n, str): n = n.decode() temp[n] = data['scalers/val'][:, :, i] img_dict[f"{fname}_scaler"] = temp # also dump other data from suitcase if required if len(dict_sc) != 0: img_dict[f"{fname}_scaler"].update(dict_sc) if 'positions' in data: # Positions are always loaded if data is available pos_name = data['positions/name'] temp = {} for i, n in enumerate(pos_name): if not isinstance(n, str): n = n.decode() temp[n] = data['positions/pos'][i, :] img_dict['positions'] = temp # TODO: rewrite the algorithm for finding the detector channels (not robust) # find total channel: channel_num = 0 for v in list(data.keys()): if 'det' in v: channel_num = channel_num+1 channel_num = channel_num-1 # do not consider det_sum # data from each channel if load_each_channel and load_raw_data: for i in range(1, channel_num+1): det_name = f"det{i}" file_channel = f"{fname}_det{i}" try: # exp_data_new = np.array(data[f"{det_name}/counts"][:, :, 0:spectrum_cut], # dtype=np.float32) data_shape = data[f"{det_name}/counts"].shape exp_data_new = RawHDF5Dataset(file_path, f"xrfmap/{det_name}/counts", shape=data_shape) DS = DataSelection(filename=file_channel, raw_data=exp_data_new) data_sets[file_channel] = DS logger.info(f"Data from detector channel {i} is loaded.") except KeyError: print(f"No data is loaded for {det_name}.") if load_processed_each_channel: for i in range(1, channel_num + 1): det_name = f"det{i}" file_channel = f"{fname}_det{i}" if 'xrf_fit' in data[det_name] and load_fit_results: try: fit_result = get_fit_data(data[det_name]['xrf_fit_name'][()], data[det_name]['xrf_fit'][()]) img_dict.update({f"{file_channel}_fit": fit_result}) # also include scaler data if 'scalers' in data: img_dict[f"{file_channel}_fit"].update(img_dict[f"{fname}_scaler"]) except IndexError: logger.info(f"No fitting data is loaded for channel {i}.") if 'xrf_roi' in data[det_name] and load_roi_results: try: fit_result = get_fit_data(data[det_name]['xrf_roi_name'][()], data[det_name]['xrf_roi'][()]) img_dict.update({f"{file_channel}_roi": fit_result}) # also include scaler data if 'scalers' in data: img_dict[f"{file_channel}_roi"].update(img_dict[f"{fname}_scaler"]) except IndexError: logger.info(f"No ROI data is loaded for channel {i}.") # read fitting results from summed data if 'xrf_fit' in data['detsum'] and load_summed_data and load_fit_results: try: fit_result = get_fit_data(data['detsum']['xrf_fit_name'][()], data['detsum']['xrf_fit'][()]) img_dict.update({f"{fname}_fit": fit_result}) if 'scalers' in data: img_dict[f"{fname}_fit"].update(img_dict[f"{fname}_scaler"]) except (IndexError, KeyError): logger.info('No fitting data is loaded for channel summed data.') if 'xrf_roi' in data['detsum'] and load_summed_data and load_roi_results: try: fit_result = get_fit_data(data['detsum']['xrf_roi_name'][()], data['detsum']['xrf_roi'][()]) img_dict.update({f"{fname}_roi": fit_result}) if 'scalers' in data: img_dict[f"{fname}_roi"].update(img_dict[f"{fname}_scaler"]) except (IndexError, KeyError): logger.info('No ROI data is loaded for summed data.') return img_dict, data_sets, mdata def render_data_to_gui(run_id_uid, *, create_each_det=False, working_directory=None, file_overwrite_existing=False): """ Read data from databroker and save to Atom class which GUI can take. .. note:: Requires the databroker package from NSLS2 Parameters ---------- run_id_uid : int or str ID or UID of a run create_each_det : bool True: load data from all detector channels False: load only the sum of all channels working_directory : str path to the directory where data files are saved file_overwrite_existing : bool True: overwrite data file if it exists False: create unique file name by adding version number """ run_id, run_uid = fetch_run_info(run_id_uid) # May raise RuntimeError data_sets = OrderedDict() img_dict = OrderedDict() # Don't create unique file name if the existing file is to be overwritten fname_add_version = not file_overwrite_existing # Create file name here, so that working directory may be attached to the file name prefix = 'scan2D_' fname = f"{prefix}{run_id}.h5" if working_directory: fname = os.path.join(working_directory, fname) # It is better to use full run UID to fetch the data. data_from_db = fetch_data_from_db(run_uid, fpath=fname, fname_add_version=fname_add_version, file_overwrite_existing=file_overwrite_existing, create_each_det=create_each_det, # Always create data file (processing results # are going to be saved in the file) output_to_file=True) if not len(data_from_db): logger.warning(f"No detector data was found in Run #{run_id} ('{run_uid}').") return else: logger.info(f"Data from {len(data_from_db)} detectors were found " f"in Run #{run_id} ('{run_uid}').") if len(data_from_db) > 1: logger.warning(f"Selecting only the latest run (UID '{run_uid}') " f"with from Run ID #{run_id}.") # If the experiment contains data from multiple detectors (for example two separate # Xpress3 detectors) that need to be treated separately, only the data from the # first detector is loaded. Data from the second detector is saved to file and # can be loaded from the file. Currently this is a very rare case (only one set # of such experiments from SRX beamline exists). data_out = data_from_db[0]['dataset'] fname = data_from_db[0]['file_name'] detector_name = data_from_db[0]['detector_name'] scan_metadata = data_from_db[0]['metadata'] # Create file name for the 'sum' dataset ('file names' are used as dictionary # keys in data storage containers, as channel labels in plot legends, # and as channel names in data selection widgets. # Since there is currently no consistent metadata in the start documents # and/or data files, let's leave original labeling conventions for now. fname_no_ext = os.path.splitext(os.path.basename(fname))[0] fname_sum = fname_no_ext + '_sum' # Determine the number of available detector channels and create the list # of channel names. The channels are named as 'det1', 'det2', 'det3' etc. xrf_det_list = [nm for nm in data_out.keys() if 'det' in nm and 'sum' not in nm] # Replace the references to raw data by the references to HDF5 datasets. # This should also release memory used for storage of raw data # It is expected that 'data_out' has keys 'det_sum', 'det1', 'det2', etc. interpath = "xrfmap" dset = "counts" # Data from individual detectors may or may not be present in the file for det_name in xrf_det_list: dset_name = f"{interpath}/{det_name}/{dset}" with h5py.File(fname, "r") as f: dset_shape = f[dset_name].shape data_out[det_name] = RawHDF5Dataset(fname, dset_name, dset_shape) # The file is always expected to have 'detsum' dataset dset_name = f"{interpath}/detsum/{dset}" with h5py.File(fname, "r") as f: dset_shape = f[dset_name].shape data_out["det_sum"] = RawHDF5Dataset(fname, dset_name, dset_shape) # Now fill 'data_sets' dictionary DS = DataSelection(filename=fname_sum, raw_data=data_out["det_sum"]) data_sets[fname_sum] = DS logger.info("Data loading: channel sum is loaded successfully.") for det_name in xrf_det_list: exp_data = data_out[det_name] fln = f"{fname_no_ext}_{det_name}" DS = DataSelection(filename=fln, raw_data=exp_data) data_sets[fln] = DS logger.info("Data loading: channel data is loaded successfully.") if ('pos_data' in data_out) and ('pos_names' in data_out): if 'x_pos' in data_out['pos_names'] and 'y_pos' in data_out['pos_names']: p_dict = {} for v in ['x_pos', 'y_pos']: ind = data_out['pos_names'].index(v) p_dict[v] = data_out['pos_data'][ind, :, :] img_dict['positions'] = p_dict logger.info("Data loading: positions data are loaded successfully.") scaler_tmp = {} for i, v in enumerate(data_out['scaler_names']): scaler_tmp[v] = data_out['scaler_data'][:, :, i] img_dict[fname_no_ext+'_scaler'] = scaler_tmp logger.info("Data loading: scaler data are loaded successfully.") return img_dict, data_sets, fname, detector_name, scan_metadata def retrieve_data_from_hdf_suitcase(fpath): """ Retrieve data from suitcase part in hdf file. Data name is defined in config file. """ data_dict = {} with h5py.File(fpath, 'r+') as f: other_data_list = [v for v in f.keys() if v != 'xrfmap'] if len(other_data_list) > 0: f_hdr = f[other_data_list[0]].attrs['start'] if not isinstance(f_hdr, str): f_hdr = f_hdr.decode('utf-8') start_doc = ast.literal_eval(f_hdr) other_data = f[other_data_list[0]+'/primary/data'] if start_doc['beamline_id'] == 'HXN': current_dir = os.path.dirname(os.path.realpath(__file__)) config_file = 'hxn_pv_config.json' config_path = sep_v.join(current_dir.split(sep_v)[:-2]+['configs', config_file]) with open(config_path, 'r') as json_data: config_data = json.load(json_data) extra_list = config_data['other_list'] fly_type = start_doc.get('fly_type', None) subscan_dims = start_doc.get('subscan_dims', None) if 'dimensions' in start_doc: datashape = start_doc['dimensions'] elif 'shape' in start_doc: datashape = start_doc['shape'] else: logger.error('No dimension/shape is defined in hdr.start.') datashape = [datashape[1], datashape[0]] # vertical first, then horizontal for k in extra_list: # k = k.encode('utf-8') if k not in other_data.keys(): continue _v = np.array(other_data[k]) v = _v.reshape(datashape) if fly_type in ('pyramid',): # flip position the same as data flip on det counts v = flip_data(v, subscan_dims=subscan_dims) data_dict[k] = v return data_dict def read_MAPS(working_directory, file_name, channel_num=1): # data_dict = OrderedDict() data_sets = OrderedDict() img_dict = OrderedDict() # Empty container for metadata mdata = ScanMetadataXRF() # cut off bad point on the last position of the spectrum # bad_point_cut = 0 fit_val = None fit_v_pyxrf = None file_path = os.path.join(working_directory, file_name) print('file path is {}'.format(file_path)) with h5py.File(file_path, 'r+') as f: data = f['MAPS'] fname = file_name.split('.')[0] # for 2D MAP # data_dict[fname] = data # raw data exp_data = data['mca_arr'][:] # data from channel summed roi_channel = data['channel_names'][()] roi_val = data['XRF_roi'][:] scaler_names = data['scaler_names'][()] scaler_val = data['scalers'][:] try: # data from fit fit_val = data['XRF_fits'][:] except KeyError: logger.info('No fitting from MAPS can be loaded.') try: fit_data = f['xrfmap/detsum'] fit_v_pyxrf = fit_data['xrf_fit'][:] fit_n_pyxrf = fit_data['xrf_fit_name'][()] print(fit_n_pyxrf) except KeyError: logger.info('No fitting from pyxrf can be loaded.') # exp_shape = exp_data.shape exp_data = exp_data.T exp_data = np.rot90(exp_data, 1) logger.info('File : {} with total counts {}'.format(fname, np.sum(exp_data))) DS = DataSelection(filename=fname, raw_data=exp_data) data_sets.update({fname: DS}) # save roi and fit into dict temp_roi = {} temp_fit = {} temp_scaler = {} temp_pos = {} for i, name in enumerate(roi_channel): temp_roi[name] = np.flipud(roi_val[i, :, :]) img_dict[fname+'_roi'] = temp_roi if fit_val is not None: for i, name in enumerate(roi_channel): temp_fit[name] = fit_val[i, :, :] img_dict[fname+'_fit_MAPS'] = temp_fit cut_bad_col = 1 if fit_v_pyxrf is not None: for i, name in enumerate(fit_n_pyxrf): temp_fit[name] = fit_v_pyxrf[i, :, cut_bad_col:] img_dict[fname+'_fit'] = temp_fit for i, name in enumerate(scaler_names): if name == 'x_coord': temp_pos['x_pos'] = np.flipud(scaler_val[i, :, :]) elif name == 'y_coord': temp_pos['y_pos'] = np.flipud(scaler_val[i, :, :]) else: temp_scaler[name] = np.flipud(scaler_val[i, :, :]) img_dict[fname+'_scaler'] = temp_scaler img_dict['positions'] = temp_pos # read fitting results # if 'xrf_fit' in data[detID]: # fit_result = get_fit_data(data[detID]['xrf_fit_name'][()], # data[detID]['xrf_fit'][()]) # img_dict.update({fname+'_fit': fit_result}) return img_dict, data_sets, mdata def get_fit_data(namelist, data): """ Read fit data from h5 file. This is to be moved to filestore part. Parameters --------- namelist : list list of str for element lines data : array 3D array of fitting results """ data_temp = dict() for i, v in enumerate(namelist): if not isinstance(v, str): v = v.decode() data_temp.update({v: data[i, :, :]}) return data_temp def read_hdf_to_stitch(working_directory, filelist, shape, ignore_file=None): """ Read fitted results from each hdf file, and stitch them together. Parameters ---------- working_directory : str folder with all the h5 files and also the place to save output filelist : list of str names for all the h5 files shape : list or tuple shape defines how to stitch all the h5 files. [veritcal, horizontal] ignore_file : list of str to be implemented Returns ------- dict : combined results from each h5 file """ out = {} # shape_v = {} horizontal_v = 0 vertical_v = 0 h_index = np.zeros(shape) v_index = np.zeros(shape) for i, file_name in enumerate(filelist): img, _ = read_hdf_APS(working_directory, file_name, load_summed_data=False, load_each_channel=False) tmp_shape = img['positions']['x_pos'].shape m = i // shape[1] n = i % shape[1] if n == 0: h_step = 0 h_index[m][n] = h_step v_index[m][n] = m * tmp_shape[0] h_step += tmp_shape[1] if i < shape[1]: horizontal_v += tmp_shape[1] if i % shape[1] == 0: vertical_v += tmp_shape[0] if i == 0: out = copy.deepcopy(img) data_tmp = np.zeros([vertical_v, horizontal_v]) for k, v in out.items(): for m, n in v.items(): v[m] = np.array(data_tmp) for i, file_name in enumerate(filelist): img, _ = read_hdf_APS(working_directory, file_name, load_summed_data=False, load_each_channel=False) tmp_shape = img['positions']['x_pos'].shape m = i // shape[1] n = i % shape[1] h_i = h_index[m][n] v_i = v_index[m][n] keylist = ['fit', 'scaler', 'position'] for key_name in keylist: fit_key0, = [v for v in list(out.keys()) if key_name in v] fit_key, = [v for v in list(img.keys()) if key_name in v] for k, v in img[fit_key].items(): out[fit_key0][k][v_i:v_i+tmp_shape[0], h_i:h_i+tmp_shape[1]] = img[fit_key][k] return out def get_data_from_folder_helper(working_directory, foldername, filename, flip_h=False): """ Read fitted data from given folder. Parameters ---------- working_directory : string overall folder path where multiple fitting results are saved foldername : string folder name of given fitting result filename : string given element flip_h : bool x position is saved in a wrong way, so we may want to flip left right on the data, to be removed. Returns ------- 2D array """ fpath = os.path.join(working_directory, foldername, filename) if 'txt' in filename: data = np.loadtxt(fpath) elif 'tif' in filename: data = np.array(Image.open(fpath)) # x position is saved in a wrong way if flip_h is True: data = np.fliplr(data) return data def get_data_from_multiple_folders_helper(working_directory, folderlist, filename, flip_h=False): """ Read given element from fitted results in multiple folders. Parameters ---------- working_directory : string overall folder path where multiple fitting results are saved folderlist : list list of folder names saving fitting result filename : string given element flip_h : bool x position is saved in a wrong way, so we may want to flip left right on the data, to be removed. Returns ------- 2D array """ output = np.array([]) for foldername in folderlist: result = get_data_from_folder_helper(working_directory, foldername, filename, flip_h=flip_h) output = np.concatenate([output, result.ravel()]) return output def stitch_fitted_results(working_directory, folderlist, output=None): """ Stitch fitted data from multiple folders. Output stiched results as 1D array. Parameters ---------- working_directory : string overall folder path where multiple fitting results are saved folderlist : list list of folder names saving fitting result output : string, optional output folder name to save all the stiched results. """ # get all filenames fpath = os.path.join(working_directory, folderlist[0], '*') pathlist = [name for name in glob.glob(fpath)] filelist = [name.split(sep_v)[-1] for name in pathlist] out = {} for filename in filelist: if 'x_pos' in filename: flip_h = True else: flip_h = False data = get_data_from_multiple_folders_helper(working_directory, folderlist, filename, flip_h=flip_h) out[filename.split('.')[0]] = data if output is not None: outfolder = os.path.join(working_directory, output) if os.path.exists(outfolder) is False: os.mkdir(outfolder) for k, v in out.items(): outpath = os.path.join(outfolder, k+'_stitched.txt') np.savetxt(outpath, v) return out def save_fitdata_to_hdf(fpath, data_dict, datapath='xrfmap/detsum', data_saveas='xrf_fit', dataname_saveas='xrf_fit_name'): """ Add fitting results to existing h5 file. This is to be moved to filestore. Parameters ---------- fpath : str path of the hdf5 file data_dict : dict dict of array datapath : str path inside h5py file data_saveas : str, optional name in hdf for data array dataname_saveas : str, optional name list in hdf to explain what the saved data mean """ f = h5py.File(fpath, 'a') try: dataGrp = f.create_group(datapath) except ValueError: dataGrp = f[datapath] data = [] namelist = [] for k, v in data_dict.items(): if not isinstance(k, str): k = k.decode() namelist.append(k) data.append(v) if data_saveas in dataGrp: del dataGrp[data_saveas] data = np.asarray(data) ds_data = dataGrp.create_dataset(data_saveas, data=data) ds_data.attrs['comments'] = ' ' if dataname_saveas in dataGrp: del dataGrp[dataname_saveas] if not isinstance(dataname_saveas, str): dataname_saveas = dataname_saveas.decode() namelist = np.array(namelist).astype('|S20') name_data = dataGrp.create_dataset(dataname_saveas, data=namelist) name_data.attrs['comments'] = ' ' f.close() def export_to_view(fpath, output_name=None, output_folder='', namelist=None): """ Output fitted data to tablet data for visulization. Parameters ---------- fpath : str input file path, file is pyxrf h5 file output_name : str output file name otuput_folder : str, optional default as current working folder namelist : list, optional list of elemental names """ with h5py.File(fpath, 'r') as f: d = f['xrfmap/detsum/xrf_fit'][:] d = d.reshape([d.shape[0], -1]) elementlist = f['xrfmap/detsum/xrf_fit_name'][:] elementlist = helper_decode_list(elementlist) xy = f['xrfmap/positions/pos'][:] xy = xy.reshape([xy.shape[0], -1]) xy_name = ['X', 'Y'] names = xy_name + elementlist data = np.concatenate((xy, d), axis=0) data_dict = OrderedDict() if namelist is None: for i, k in enumerate(names): if 'Userpeak' in k or 'r2_adjust' in k: continue data_dict.update({k: data[i, :]}) else: for i, k in enumerate(names): if k in namelist or k in xy_name: data_dict.update({k: data[i, :]}) df = pd.DataFrame(data_dict) if output_name is None: fname = fpath.split(sep_v)[-1] output_name = fname.split('.')[0] + '_fit_view.csv' outpath = os.path.join(output_folder, output_name) print('{} is created.'.format(outpath)) df.to_csv(outpath, index=False) def get_header(fname): """ helper function to extract header in spec file. .. warning :: This function works fine for spec file format from Canadian light source. Others may need to be tested. Parameters ---------- fname : spec file name """ mydata = [] with open(fname, 'r') as f: for v in f: # iterate the file mydata.append(v) _sign = '#' _sign = _sign.encode('utf-8') if _sign not in v: break header_line = mydata[-2] # last line is space n = [v.strip() for v in header_line[1:].split('\t') if v.strip() != ''] return n def combine_data_to_recon(element_list, datalist, working_dir, norm=True, file_prefix='scan2D_', ic_name='sclr1_ch4', expand_r=2, internal_path='xrfmap/detsum'): """ Combine 2D data to 3D array for reconstruction. Parameters ---------- element_list : list list of elements datalist : list list of run number working_dir : str norm : bool, optional normalization or not file_prefix : str, optional prefix name for h5 file ic_name : str ion chamber name for normalization expand_r: int expand initial array to a larger size to include each 2D image easily, as each 2D image may have different size. Crop the 3D array back to a proper size in the end. internal_path : str, optional inside path to get fitting data in h5 file Returns ------- dict of 3d array with each array's shape like [num_sequences, num_row, num_col] """ element3d = {} for element_name in element_list: element3d[element_name] = None max_h = 0 max_v = 0 for i, v in enumerate(datalist): filename = file_prefix+str(v)+'.h5' filepath = os.path.join(working_dir, filename) with h5py.File(filepath, 'r+') as f: dataset = f[internal_path] try: data_all = dataset['xrf_fit'][()] data_name = dataset['xrf_fit_name'][()] data_name = helper_decode_list(data_name) except KeyError: print('Need to do fitting first.') scaler_dataset = f['xrfmap/scalers'] scaler_v = scaler_dataset['val'][()] scaler_n = scaler_dataset['name'][()] scaler_n = helper_decode_list(scaler_n) data_dict = {} for name_i, name_v in enumerate(data_name): data_dict[name_v] = data_all[name_i, :, :] if norm is True: scaler_dict = {} for s_i, s_v in enumerate(scaler_n): scaler_dict[s_v] = scaler_v[:, :, s_i] for element_name in element_list: data = data_dict[element_name] if norm is True: normv = scaler_dict[ic_name] data = data/normv if element3d[element_name] is None: element3d[element_name] = np.zeros( [len(datalist), data.shape[0]*expand_r, data.shape[1]*expand_r]) element3d[element_name][i, :data.shape[0], :data.shape[1]] = data max_h = max(max_h, data.shape[0]) max_v = max(max_v, data.shape[1]) for k, v in element3d.items(): element3d[k] = v[:, :max_h, :max_v] return element3d def h5file_for_recon(element_dict, angle, runid=None, filename=None): """ Save fitted 3d elemental data into h5 file for reconstruction use. Parameters ---------- element_dict : dict elements 3d data after normalization angle : list angle information runid : list or optional run ID filename : str """ if filename is None: filename = 'xrf3d.h5' with h5py.File(filename) as f: d_group = f.create_group('element_data') for k, v in element_dict.items(): sub_g = d_group.create_group(k) sub_g.create_dataset('data', data=np.asarray(v), compression='gzip') sub_g.attrs['comments'] = 'normalized fluorescence data for {}'.format(k) angle_g = f.create_group('angle') angle_g.create_dataset('data', data=np.asarray(angle)) angle_g.attrs['comments'] = 'angle information' if runid is not None: runid_g = f.create_group('runid') runid_g.create_dataset('data', data=np.asarray(runid)) runid_g.attrs['comments'] = 'run id information' def create_movie(data, fname='demo.mp4', dpi=100, cmap='jet', clim=None, fig_size=(6, 8), fps=20, data_power=1, angle=None, runid=None): """ Transfer 3d array into a movie. Parameters ---------- data : 3d array data shape is [num_sequences, num_row, num_col] fname : string, optional name to save movie dpi : int, optional resolution of the movie cmap : string, optional color format clim : list, tuple, optional [low, high] value to define plotting range fig_size : list, tuple, optional size (horizontal size, vertical size) of each plot fps : int, optional frame per second """ fig, ax = plt.subplots() ax.set_aspect('equal') ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) im = ax.imshow(np.zeros([data.shape[1], data.shape[2]]), cmap=cmap, interpolation='nearest') fig.set_size_inches(fig_size) fig.tight_layout() def update_img(n): tmp = data[n, :, :] im.set_data(tmp**data_power) if clim is not None: im.set_clim(clim) else: im.set_clim([0, np.max(data[n, :, :])]) figname = '' if runid is not None: figname = 'runid: {} '.format(runid[n]) if angle is not None: figname += 'angle: {}'.format(angle[n]) # if len(figname) != 0: # im.ax.set_title(figname) return im # legend(loc=0) ani = animation.FuncAnimation(fig, update_img, data.shape[0], interval=30) writer = animation.writers['ffmpeg'](fps=fps) ani.save(fname, writer=writer, dpi=dpi) def spec_to_hdf(wd, spec_file, spectrum_file, output_file, img_shape, ic_name=None, x_name=None, y_name=None): """ Transform spec data to hdf file pyxrf can take. Using this function, users need to have two input files ready, sepc_file and spectrum_file, with explanation as below. .. warning :: This function should be better defined to take care spec file in general. The work in suitcase should also be considered. This function works fine for spec file format from Canadian light source. Others may need to be tested. Parameters ---------- wd : str working directory for spec file, and created hdf spec_file : str spec txt data file spectrum_file : str fluorescence spectrum data file output_file : str the output h5 file for pyxrf img_shape : list or array the shape of two D scan, [num of row, num of column] ic_name : str the name of ion chamber for normalization, listed in spec file x_name : str x position name, listed in spec file y_name : str y position name, listed in spec file """ # read scaler data from spec file spec_path = os.path.join(wd, spec_file) h = get_header(spec_path) spec_data = pd.read_csv(spec_path, names=h, sep='\t', comment='#', index_col=False) if ic_name is not None: scaler_name = [str(ic_name)] scaler_val = spec_data[scaler_name].values scaler_val = scaler_val.reshape(img_shape) scaler_data = np.zeros([img_shape[0], img_shape[1], 1]) scaler_data[:, :, 0] = scaler_val if x_name is not None and y_name is not None: xy_data = np.zeros([2, img_shape[0], img_shape[1]]) xy_data[0, :, :] = spec_data[x_name].values.reshape(img_shape) xy_data[1, :, :] = spec_data[y_name].values.reshape(img_shape) xy_name = ['x_pos', 'y_pos'] spectrum_path = os.path.join(wd, spectrum_file) sum_data0 = np.loadtxt(spectrum_path) sum_data = np.reshape(sum_data0, [sum_data0.shape[0], img_shape[0], img_shape[1]]) sum_data = np.transpose(sum_data, axes=(1, 2, 0)) interpath = 'xrfmap' fpath = os.path.join(wd, output_file) with h5py.File(fpath) as f: dataGrp = f.create_group(interpath+'/detsum') ds_data = dataGrp.create_dataset('counts', data=sum_data, compression='gzip') ds_data.attrs['comments'] = 'Experimental data from channel sum' if ic_name is not None: dataGrp = f.create_group(interpath+'/scalers') dataGrp.create_dataset('name', data=helper_encode_list(scaler_name)) dataGrp.create_dataset('val', data=scaler_data) if x_name is not None and y_name is not None: dataGrp = f.create_group(interpath+'/positions') dataGrp.create_dataset('name', data=helper_encode_list(xy_name)) dataGrp.create_dataset('pos', data=xy_data) def make_hdf_stitched(working_directory, filelist, fname, shape): """ Read fitted results from each hdf file, stitch them together and save to a new h5 file. Parameters ---------- working_directory : str folder with all the h5 files and also the place to save output filelist : list of str names for all the h5 files fname : str name of output h5 file shape : list or tuple shape defines how to stitch all the h5 files. [veritcal, horizontal] """ print('Reading data from each hdf file.') fpath = os.path.join(working_directory, fname) out = read_hdf_to_stitch(working_directory, filelist, shape) result = {} img_shape = None for k, v in out.items(): for m, n in v.items(): if img_shape is None: img_shape = n.shape result[m] = n.ravel() current_dir = os.path.dirname(os.path.realpath(__file__)) config_file = 'srx_pv_config.json' config_path = sep_v.join(current_dir.split(sep_v)[:-2]+['configs', config_file]) with open(config_path, 'r') as json_data: config_data = json.load(json_data) print('Saving all the data into one hdf file.') write_db_to_hdf(fpath, result, img_shape, det_list=config_data['xrf_detector'], pos_list=('x_pos', 'y_pos'), scaler_list=config_data['scaler_list'], base_val=config_data['base_value']) # base value shift for ic fitkey, = [v for v in list(out.keys()) if 'fit' in v] save_fitdata_to_hdf(fpath, out[fitkey]) print('Done!')
{ "repo_name": "NSLS-II-HXN/PyXRF", "path": "pyxrf/model/fileio.py", "copies": "1", "size": "90612", "license": "bsd-3-clause", "hash": -1828295308468093700, "line_mean": 37.4927782498, "line_max": 111, "alpha_frac": 0.5709950117, "autogenerated": false, "ratio": 3.8728042056673933, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.993918340436025, "avg_score": 0.0009231626014285842, "num_lines": 2354 }
from __future__ import (absolute_import, division, print_function, unicode_literals) import tornado.httpserver import tornado.ioloop import tornado.options import tornado.web import tornado.gen import tornado.platform.twisted import mysql.connector tornado.platform.twisted.install() import toradbapi DB_NAME = 'test_toradbapi' DB_HOST = '127.0.0.1' DB_PORT = 3306 DB_USER = 'root' DB_PASSWORD = '' class MainHandler(tornado.web.RequestHandler): def initialize(self, db): self.db = db @tornado.gen.coroutine def get(self): people = yield self.db.run_query('SELECT `name` FROM `person`') self.finish('<html><head><title>Demo toradbapi</title></head>' '<body><h3>Type new name:</h3>' '<form method="post"><input name="name" type="text"/>' '<input type="submit" value="Submit"/></form>' '<h3>Already inserted names:</h3>' '<ul>%s</ul></body></html>' % ''.join( '<li>%s</li>' % name for name in people)) @tornado.gen.coroutine def post(self): name = self.get_argument('name') try: yield self.db.run_operation( # always use escaping functionality to avoid sql-injection 'INSERT INTO `person` (`name`) VALUES (%s)', (name,)) except mysql.connector.errors.DatabaseError as e: self.finish('<html><head><title>Demo toradbapi</title></head>' '<body><h3>Error inserting new name: %s</h3>' '<br/><a href="/">Main page</a></body></html>' % e) else: self.redirect('/') def setup_database(): # just to ensure that database and table exist cnx = mysql.connector.connect( user=DB_USER, passwd=DB_PASSWORD, host=DB_HOST, port=DB_PORT) cursor = cnx.cursor() try: cursor.execute('CREATE DATABASE `%s` CHARACTER SET utf8' % DB_NAME) except mysql.connector.errors.DatabaseError: # do nothing if database exists pass cursor.execute('USE `%s`' % DB_NAME) cursor.execute('CREATE TABLE IF NOT EXISTS `person` (' ' `name` varchar(255) NOT NULL,' ' `dob` date DEFAULT NULL,' ' UNIQUE KEY (`name`))') cursor.close() cnx.close() def main(): setup_database() tornado.options.parse_command_line() pool = toradbapi.ConnectionPool( 'mysql.connector', database=DB_NAME, user=DB_USER, port=DB_PORT, password=DB_PASSWORD, host=DB_HOST) application = tornado.web.Application([(r'/', MainHandler, {'db': pool})]) http_server = tornado.httpserver.HTTPServer(application) http_server.listen(8888, '127.0.0.1') try: tornado.ioloop.IOLoop.instance().start() except KeyboardInterrupt: pass finally: pool.close() tornado.ioloop.IOLoop.instance().stop() if __name__ == '__main__': main()
{ "repo_name": "geerk/toradbapi", "path": "demo.py", "copies": "1", "size": "3036", "license": "mit", "hash": 7133691057713358000, "line_mean": 31.2978723404, "line_max": 78, "alpha_frac": 0.5793807642, "autogenerated": false, "ratio": 3.8625954198473282, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4941976184047328, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import unittest from datacheck import validate from datacheck.exceptions import TypeValidationError class TestList(unittest.TestCase): def test_list_ok(self): input = [123, 456] result = validate(input, [int]) self.assertIsNot(result, input, 'input list should not be modified') self.assertEqual(result, input, 'input should be copied into result') def test_list_type_error(self): expected_msg = r'<unnamed field>: Expected list, got int \(123\)' with self.assertRaisesRegexp(TypeValidationError, expected_msg): validate(123, []) def test_list_validation_error(self): expected_msg = r'<unnamed list>\[2\]: Expected int, got float \(0.9\)' with self.assertRaisesRegexp(TypeValidationError, expected_msg): validate([1, 1, 0.9, 1], [int]) def test_list_of_list_ok(self): input = [[123, 456], []] result = validate(input, [[int]]) self.assertIsNot(result, input, 'input list should not be modified') for i in range(3): self.assertIsNot(input[0], result[0], 'nested input list should not be modified') self.assertEqual(result, input, 'input should be copied into result') def test_list_of_list_validation_error(self): input = [[123, 456], [1, 0.8, 2]] expected_msg = r'<unnamed list>\[1\]\[1\]: Expected int, got float \(0.8\)' with self.assertRaisesRegexp(TypeValidationError, expected_msg): validate(input, [[int]])
{ "repo_name": "csdev/datacheck", "path": "tests/functional_tests/test_list.py", "copies": "1", "size": "1657", "license": "mit", "hash": -2232977457908937700, "line_mean": 38.4523809524, "line_max": 83, "alpha_frac": 0.624019312, "autogenerated": false, "ratio": 4.021844660194175, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5145863972194175, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import unittest from mock import NonCallableMagicMock, patch, call from datacheck.core import Dict, Required, Optional from datacheck.exceptions import (TypeValidationError, FieldValidationError, UnknownKeysError) class TestDict(unittest.TestCase): def test_dict_ok(self): mock_validator = NonCallableMagicMock() dict_validator = Dict({ 'key1': mock_validator, 'key2': mock_validator, }) input_dict = { 'key1': 'value1', 'key2': 'value2' } # simulate underlying validator that passes all fields through # without validation errors def mock_validate(data, schema, **kwargs): return data with patch('datacheck.core._validate', side_effect=mock_validate) \ as mock_validate: result = dict_validator.validate(input_dict) expected_calls = [ call('value1', mock_validator, path=['key1']), call('value2', mock_validator, path=['key2']), ] mock_validate.assert_has_calls(expected_calls, any_order=True) self.assertIsNot(result, input_dict, 'input dict should not be modified') self.assertEqual(result, input_dict, 'input should be copied into result') def test_dict_type_error(self): mock_validator = NonCallableMagicMock() dict_validator = Dict({'mykey': mock_validator}) input_dict = 123 # not a dict with self.assertRaises(TypeValidationError) as ctx: dict_validator.validate(input_dict, path=['mydict']) e = ctx.exception self.assertEqual(e.expected_type, dict) self.assertEqual(e.actual_type, int) self.assertEqual(e.actual_value, input_dict) self.assertEqual(e.path, ['mydict']) def test_dict_field_error(self): mock_validator = NonCallableMagicMock() dict_validator = Dict({ 'key1': mock_validator, }) input_dict = {} with self.assertRaises(FieldValidationError) as ctx: dict_validator.validate(input_dict, path=['mydict']) e = ctx.exception self.assertEqual(e.expected_field, 'key1') self.assertEqual(e.path, ['mydict']) def test_dict_required_ok(self): mock_validator = NonCallableMagicMock() dict_validator = Dict({ 'key1': Required(mock_validator), }) input_dict = { 'key1': 'value1', } # simulate underlying validator that passes all fields through # without validation errors def mock_validate(data, schema, **kwargs): return data with patch('datacheck.core._validate', side_effect=mock_validate) \ as mock_validate: result = dict_validator.validate(input_dict, path=['mydict']) self.assertIsNot(result, input_dict, 'input dict should not be modified') self.assertEqual(result, input_dict, 'input should be copied into result') def test_dict_required_error(self): mock_validator = NonCallableMagicMock() dict_validator = Dict({ 'key1': Required(mock_validator), }) input_dict = {} with self.assertRaises(FieldValidationError) as ctx: dict_validator.validate(input_dict, path=['mydict']) e = ctx.exception self.assertEqual(e.expected_field, 'key1') self.assertEqual(e.path, ['mydict']) def test_dict_optional_ok(self): mock_validator = NonCallableMagicMock() dict_validator = Dict({ 'key1': Optional(mock_validator), }) input_dict = {} result = dict_validator.validate(input_dict, path=['mydict']) self.assertIsNot(result, input_dict, 'input dict should not be modified') self.assertEqual(result, {}) def test_dict_optional_default_ok(self): mock_validator = NonCallableMagicMock() dict_validator = Dict({ 'foo': Optional(mock_validator).default('bar'), }) input_dict = {} result = dict_validator.validate(input_dict, path=['mydict']) self.assertIsNot(result, input_dict, 'input dict should not be modified') self.assertEqual(result, {'foo': 'bar'}) def test_dict_unknown_keys_ok(self): dict_validator = Dict({}, allow_unknown=True) input_dict = { 'foo': 'bar', } result = dict_validator.validate(input_dict, path=['mydict']) self.assertIsNot(result, input_dict, 'input dict should not be modified') self.assertEqual(result, {'foo': 'bar'}) def test_dict_unknown_keys_error(self): dict_validator = Dict({}) input_dict = { 'foo': 'bar', } with self.assertRaises(UnknownKeysError) as ctx: dict_validator.validate(input_dict, path=['mydict']) e = ctx.exception self.assertEqual(len(e.unknown_keys), 1) self.assertIn('foo', e.unknown_keys) self.assertEqual(e.path, ['mydict'])
{ "repo_name": "csdev/datacheck", "path": "tests/unit_tests/test_dict.py", "copies": "1", "size": "5391", "license": "mit", "hash": -4375121416757386000, "line_mean": 31.6727272727, "line_max": 76, "alpha_frac": 0.5811537748, "autogenerated": false, "ratio": 4.330120481927711, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5411274256727711, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) def filter_path(movement, paths, time_threshold): r""" Return a list object containing start and end indices for movements lasting equal to or longer than the specified time threshold Parameters ---------- movement : pandas.DataFrame CT, CX, CY coordinates and homebase status for the unique combination of strain, mouse and day paths: list a list containing the indices for all paths time_threshold : float positive number indicating the time threshold Returns ------- paths index : a list containing the indices for all paths that the spending times are larger than a time threshold Examples -------- >>> movement = data.load_movement(1, 2, 1) >>> paths = path_index(movement, 1, 1) >>> filter_path(movement, paths, 20) [[26754, 26897], [28538, 28627] """ # check if all inputs are positive integers conditions_value = time_threshold <= 0 if conditions_value: raise ValueError("Input values need to be positive") # Variable that store paths equal to or larger than time threshold pass_paths = [] # Pull out time variable T = movement['t'] # Run through each path and check whether the time spending # on the path is equal to or larger than the time threshold for path in paths: start_time, end_time = T[path].ravel() if (end_time - start_time) >= time_threshold: pass_paths.append(path) return pass_paths
{ "repo_name": "togawa28/mousestyles", "path": "mousestyles/path_diversity/filter_path.py", "copies": "3", "size": "1618", "license": "bsd-2-clause", "hash": 4036271716335366000, "line_mean": 30.1153846154, "line_max": 70, "alpha_frac": 0.6452410383, "autogenerated": false, "ratio": 4.349462365591398, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.6494703403891398, "avg_score": null, "num_lines": null }