Datasets:

ArXiv:
License:
zhengthomastang's picture
Include evaluation tools for 2025 edition
6b88ca2
import os
import json
import logging
import argparse
from datetime import datetime
from typing import List, Dict, Set, Tuple, Any
import tempfile
import time
import numpy as np
from utils.io_utils import ValidateFile, validate_file_path, load_json_from_file, split_files_per_class, split_files_per_scene, get_no_of_objects_per_scene
from utils.trackeval.trackeval_utils import _evaluate_tracking_for_all_BEV_sensors
logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%y/%m/%d %H:%M:%S", level=logging.INFO)
def evaluate_tracking_for_all_BEV_sensors(ground_truth_file, prediction_file, output_root_dir, num_cores, scene_id, num_frames_to_eval):
logging.info(f"Computing tracking results for scene id: {scene_id}...")
output_directory = os.path.join(output_root_dir)
os.makedirs(output_directory, exist_ok=True)
split_files_per_class(ground_truth_file, prediction_file, output_directory, 0.0, num_frames_to_eval, 0.0, fps=30)
all_class_results = _evaluate_tracking_for_all_BEV_sensors(ground_truth_file, prediction_file, output_directory, num_cores, 30)
return all_class_results
def get_weighted_avg(weights, values):
common = weights.keys() & values.keys()
numerator = sum(weights[k] * values[k] for k in common)
denominator = sum(weights[k] for k in common)
return numerator / denominator if denominator else 0.0
def run_evaluation(ground_truth_file, input_file, output_dir, num_cores, num_frames_to_eval, scene_id_2_scene_name_file):
is_temp_dir = False
if output_dir is None:
temp_dir = tempfile.TemporaryDirectory()
is_temp_dir = True
output_dir = temp_dir.name
logging.info(f"Temp files will be created here: {output_dir}")
scene_id_2_scene_name = load_json_from_file(scene_id_2_scene_name_file)
logging.info(f"Evaluating scenes: {list(scene_id_2_scene_name.keys())}")
split_files_per_scene(ground_truth_file, input_file, output_dir, scene_id_2_scene_name, num_frames_to_eval)
objects_per_scene = get_no_of_objects_per_scene(ground_truth_file, scene_id_2_scene_name)
hota_per_scene = dict()
detA_per_scene = dict()
assA_per_scene = dict()
locA_per_scene = dict()
detailed_results = dict()
for scene_id in scene_id_2_scene_name.keys():
logging.info(f"Evaluating scene: {scene_id}")
output_directory = os.path.join(output_dir, f"scene_{scene_id}")
ground_truth_file = os.path.join(output_directory, "gt.txt")
input_file = os.path.join(output_directory, "pred.txt")
# check if both input & ground truth files exist
if not os.path.exists(ground_truth_file) or not os.path.exists(input_file):
logging.info(f"Skipping scene {scene_id} because input or ground truth file does not exist")
continue
results = evaluate_tracking_for_all_BEV_sensors(ground_truth_file, input_file, output_directory, num_cores, scene_id, num_frames_to_eval)
hota_per_class = []
detA_per_class = []
assA_per_class = []
locA_per_class = []
for class_name, scene_results in results.items():
class_results = dict()
result = scene_results[0]["MTMCChallenge3DBBox"]["data"]["MTMC"]["class"]["HOTA"]
# Avg. results across all thresholds
hota_per_class.append(np.mean(result["HOTA"]))
detA_per_class.append(np.mean(result["DetA"]))
assA_per_class.append(np.mean(result["AssA"]))
locA_per_class.append(np.mean(result["LocA"]))
# single class results
class_results[class_name] = {
"hota": np.mean(result["HOTA"]),
"detA": np.mean(result["DetA"]),
"assA": np.mean(result["AssA"]),
"locA": np.mean(result["LocA"])
}
scene_name = scene_id_2_scene_name[scene_id]
detailed_results[scene_name] = class_results
avg_hota_all_classes = np.mean(hota_per_class)
avg_detA_all_classes = np.mean(detA_per_class)
avg_assA_all_classes = np.mean(assA_per_class)
avg_locA_all_classes = np.mean(locA_per_class)
hota_per_scene[scene_name] = avg_hota_all_classes
detA_per_scene[scene_name] = avg_detA_all_classes
assA_per_scene[scene_name] = avg_assA_all_classes
locA_per_scene[scene_name] = avg_locA_all_classes
# match the keys: & then compute weighted avg
final_hota = get_weighted_avg(objects_per_scene, hota_per_scene) * 100
final_detA = get_weighted_avg(objects_per_scene, detA_per_scene) * 100
final_assA = get_weighted_avg(objects_per_scene, assA_per_scene) * 100
final_locA = get_weighted_avg(objects_per_scene, locA_per_scene) * 100
logging.info(f"Final HOTA: {final_hota}")
logging.info(f"Final DetA: {final_detA}")
logging.info(f"Final AssA: {final_assA}")
logging.info(f"Final LocA: {final_locA}")
if __name__ == "__main__":
start_time = time.time()
parser = argparse.ArgumentParser()
parser.add_argument("--ground_truth_file", type=validate_file_path,
action=ValidateFile, help="Input ground truth file", required=True)
parser.add_argument("--input_file", type=validate_file_path,
action=ValidateFile, help="Input prediction file", required=True)
parser.add_argument("--output_dir", type=str, help="Optional Output directory")
parser.add_argument("--scene_id_2_scene_name_file", type=validate_file_path,
action=ValidateFile, help="Input scene id to scene name file in json format", required=True)
parser.add_argument("--num_cores", type=int, help="Number of cores to use")
parser.add_argument("--num_frames_to_eval", type=int, help="Number of frames to evaluate", default=9000)
# Parse arguments
args = parser.parse_args()
ground_truth_file = validate_file_path(args.ground_truth_file)
input_file = validate_file_path(args.input_file)
# Run evaluation
run_evaluation(ground_truth_file, input_file, args.output_dir, args.num_cores, args.num_frames_to_eval, args.scene_id_2_scene_name_file)
# Log processing time
end_time = time.time()
logging.info(f"Total time taken: {end_time - start_time} seconds")