Datasets:

ArXiv:
License:
File size: 6,333 Bytes
6b88ca2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import os
import json
import logging
import argparse
from datetime import datetime
from typing import List, Dict, Set, Tuple, Any
import tempfile
import time
import numpy as np
from utils.io_utils import ValidateFile, validate_file_path, load_json_from_file, split_files_per_class, split_files_per_scene, get_no_of_objects_per_scene
from utils.trackeval.trackeval_utils import _evaluate_tracking_for_all_BEV_sensors


logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%y/%m/%d %H:%M:%S", level=logging.INFO)

def evaluate_tracking_for_all_BEV_sensors(ground_truth_file, prediction_file, output_root_dir, num_cores, scene_id, num_frames_to_eval):
    logging.info(f"Computing tracking results for scene id: {scene_id}...")
    output_directory = os.path.join(output_root_dir)
    os.makedirs(output_directory, exist_ok=True)

    split_files_per_class(ground_truth_file, prediction_file, output_directory, 0.0, num_frames_to_eval, 0.0, fps=30)
    all_class_results = _evaluate_tracking_for_all_BEV_sensors(ground_truth_file, prediction_file, output_directory, num_cores,  30)
    return all_class_results


def get_weighted_avg(weights, values):
    common = weights.keys() & values.keys()
    numerator   = sum(weights[k] * values[k] for k in common)
    denominator = sum(weights[k] for k in common)
    return numerator / denominator if denominator else 0.0


def run_evaluation(ground_truth_file, input_file, output_dir, num_cores, num_frames_to_eval, scene_id_2_scene_name_file):

    is_temp_dir = False
    if output_dir is None:
        temp_dir = tempfile.TemporaryDirectory()
        is_temp_dir = True
        output_dir = temp_dir.name
        logging.info(f"Temp files will be created here: {output_dir}")

    scene_id_2_scene_name = load_json_from_file(scene_id_2_scene_name_file)
    logging.info(f"Evaluating scenes: {list(scene_id_2_scene_name.keys())}")
    split_files_per_scene(ground_truth_file, input_file, output_dir, scene_id_2_scene_name, num_frames_to_eval)
    objects_per_scene = get_no_of_objects_per_scene(ground_truth_file, scene_id_2_scene_name)
    
    hota_per_scene = dict()
    detA_per_scene = dict()
    assA_per_scene = dict()
    locA_per_scene = dict()
    detailed_results = dict()

    for scene_id in scene_id_2_scene_name.keys():
        logging.info(f"Evaluating scene: {scene_id}")
        output_directory = os.path.join(output_dir, f"scene_{scene_id}")
        ground_truth_file = os.path.join(output_directory, "gt.txt")
        input_file = os.path.join(output_directory, "pred.txt")
        # check if both input & ground truth files exist
        if not os.path.exists(ground_truth_file) or not os.path.exists(input_file):
            logging.info(f"Skipping scene {scene_id} because input or ground truth file does not exist")
            continue
        results = evaluate_tracking_for_all_BEV_sensors(ground_truth_file, input_file, output_directory, num_cores, scene_id, num_frames_to_eval)
        hota_per_class = []
        detA_per_class = []
        assA_per_class = []
        locA_per_class = []
        for class_name, scene_results in results.items():
            class_results = dict()
            result = scene_results[0]["MTMCChallenge3DBBox"]["data"]["MTMC"]["class"]["HOTA"]

            # Avg. results across all thresholds
            hota_per_class.append(np.mean(result["HOTA"]))
            detA_per_class.append(np.mean(result["DetA"]))
            assA_per_class.append(np.mean(result["AssA"]))
            locA_per_class.append(np.mean(result["LocA"]))

            # single class results
            class_results[class_name] = {
                "hota": np.mean(result["HOTA"]),
                "detA": np.mean(result["DetA"]),
                "assA": np.mean(result["AssA"]),
                "locA": np.mean(result["LocA"])
            }
        scene_name = scene_id_2_scene_name[scene_id]
        detailed_results[scene_name] = class_results
        avg_hota_all_classes = np.mean(hota_per_class)
        avg_detA_all_classes = np.mean(detA_per_class)
        avg_assA_all_classes = np.mean(assA_per_class)
        avg_locA_all_classes = np.mean(locA_per_class)


        hota_per_scene[scene_name] = avg_hota_all_classes
        detA_per_scene[scene_name] = avg_detA_all_classes
        assA_per_scene[scene_name] = avg_assA_all_classes
        locA_per_scene[scene_name] = avg_locA_all_classes

    # match the keys: & then compute weighted avg
    final_hota = get_weighted_avg(objects_per_scene, hota_per_scene) * 100
    final_detA = get_weighted_avg(objects_per_scene, detA_per_scene) * 100
    final_assA = get_weighted_avg(objects_per_scene, assA_per_scene) * 100
    final_locA = get_weighted_avg(objects_per_scene, locA_per_scene) * 100

    logging.info(f"Final HOTA: {final_hota}")
    logging.info(f"Final DetA: {final_detA}")
    logging.info(f"Final AssA: {final_assA}")
    logging.info(f"Final LocA: {final_locA}")


if __name__ == "__main__":
    start_time = time.time()
    parser = argparse.ArgumentParser()
    parser.add_argument("--ground_truth_file", type=validate_file_path,
                        action=ValidateFile, help="Input ground truth file", required=True)
    parser.add_argument("--input_file", type=validate_file_path,
                        action=ValidateFile, help="Input prediction file", required=True)
    parser.add_argument("--output_dir", type=str, help="Optional Output directory")                        
    parser.add_argument("--scene_id_2_scene_name_file", type=validate_file_path,
                        action=ValidateFile, help="Input scene id to scene name file in json format", required=True)
    parser.add_argument("--num_cores", type=int, help="Number of cores to use")                        
    parser.add_argument("--num_frames_to_eval", type=int, help="Number of frames to evaluate", default=9000)

    # Parse arguments
    args = parser.parse_args()
    ground_truth_file = validate_file_path(args.ground_truth_file)
    input_file = validate_file_path(args.input_file)

    # Run evaluation
    run_evaluation(ground_truth_file, input_file, args.output_dir, args.num_cores, args.num_frames_to_eval, args.scene_id_2_scene_name_file)
    
    # Log processing time
    end_time = time.time()
    logging.info(f"Total time taken: {end_time - start_time} seconds")