adithyamurali commited on
Commit
b9dedf6
·
1 Parent(s): e8e891a

Add data card

Browse files
Files changed (3) hide show
  1. README.md +62 -0
  2. assets/cover.png +3 -0
  3. assets/montage2.png +3 -0
README.md ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # GraspGen: Scaling Simulated Grasping
2
+ GraspGen is a large-scale simulated grasp dataset for multiple robot embodiments and grippers
3
+
4
+ <img src="assets/cover.png" width="1000" height="250" title="readme1">
5
+
6
+
7
+ We release over 57 million grasps, computed for a subset of 8515 objects from the [Objaverse XL](https://objaverse.allenai.org/) (LVIS) dataset. We release grasps for three grippers: Franka Panda, the Robotiq-2f-140 industrial gripper, and suction.
8
+
9
+ <img src="assets/montage2.png" width="1000" height="500" title="readme2">
10
+
11
+ ## Dataset Format
12
+ The dataset is released in the [WebDataset](https://github.com/webdataset/webdataset) format. The folder structure of the dataset is as follows:
13
+ ```
14
+ grasp_data/
15
+ franka/shard_{0-7}.tar
16
+ robotiq2f140/shard_{0-7}.tar
17
+ suction/shard_{0-7}.tar
18
+ splits/
19
+ franka/{train/valid}_scenes.json
20
+ robotiq2f140/{train/valid}_scenes.json
21
+ suction/{train/valid}_scenes.json
22
+ ```
23
+ We release test-train splits along with the grasp dataset.
24
+
25
+ Each json file in the shard has the following data in a python dictionary. Note that `num_grasps=2000` per object.
26
+ ```
27
+ ‘object’/
28
+ ‘scale’ # This is the scale of the asset
29
+ ‘grasps’/
30
+ ‘object_in_gripper’ # boolean mask indicating grasp success, [num_grasps X 1]
31
+ ‘transforms’ # Pose of the gripper in homogenous matrices, [num_grasps X 4 X 4]
32
+ ```
33
+
34
+ ## Visualizing the dataset
35
+
36
+ We have provided some standalone scripts for visualizing this dataset. See the header of the [visualize_dataset.py](scripts/visualize_dataset.py) for installation instructions
37
+
38
+ Before running any of the visualization scripts, remember to start meshcat-server in a separate terminal:
39
+ ``` shell
40
+ meshcat-server
41
+ ```
42
+
43
+ To visualize a single object from the dataset, alongside its grasps:
44
+ ```shell
45
+ cd scripts/ && python visualize_dataset.py --dataset_path /path/to/dataset --object_uuid {object_uuid} --object_file /path/to/mesh --gripper_name {choose from: franka, suction, robotiq2f140}
46
+ ```
47
+
48
+ ## Objaverse dataset
49
+ Please download the Objaverse XL (LVIS) objects separately. See the helper script [download_objaverse.py](scripts/download_objaverse.py) for instructions and usage.
50
+
51
+ ## License
52
+ License Copyright © 2025, NVIDIA Corporation & affiliates. All rights reserved.
53
+
54
+
55
+ The dataset is released under a CC-BY 4.0 License.
56
+
57
+ The visualization code is released under the [NVIDIA source code license](LICENSE).
58
+
59
+ ## Contact
60
+
61
+ Please reach out to [Adithya Murali](adithyamurali.com) (admurali@nvidia.com) and [Clemens Eppner](https://clemense.github.io/) (ceppner@nvidia.com) for further enquiries
62
+
assets/cover.png ADDED

Git LFS Details

  • SHA256: cc224e50b30a36cfabbe088b3630cee98fa1e9e4a9c1949ece91f33e54ba3943
  • Pointer size: 131 Bytes
  • Size of remote file: 554 kB
assets/montage2.png ADDED

Git LFS Details

  • SHA256: cba2d0f2e176a222a844f51e880143d6e133d7f492b0cf97b526ca92469eafbc
  • Pointer size: 132 Bytes
  • Size of remote file: 1.35 MB