Datasets:
Commit
·
b9dedf6
1
Parent(s):
e8e891a
Add data card
Browse files- README.md +62 -0
- assets/cover.png +3 -0
- assets/montage2.png +3 -0
README.md
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# GraspGen: Scaling Simulated Grasping
|
2 |
+
GraspGen is a large-scale simulated grasp dataset for multiple robot embodiments and grippers
|
3 |
+
|
4 |
+
<img src="assets/cover.png" width="1000" height="250" title="readme1">
|
5 |
+
|
6 |
+
|
7 |
+
We release over 57 million grasps, computed for a subset of 8515 objects from the [Objaverse XL](https://objaverse.allenai.org/) (LVIS) dataset. We release grasps for three grippers: Franka Panda, the Robotiq-2f-140 industrial gripper, and suction.
|
8 |
+
|
9 |
+
<img src="assets/montage2.png" width="1000" height="500" title="readme2">
|
10 |
+
|
11 |
+
## Dataset Format
|
12 |
+
The dataset is released in the [WebDataset](https://github.com/webdataset/webdataset) format. The folder structure of the dataset is as follows:
|
13 |
+
```
|
14 |
+
grasp_data/
|
15 |
+
franka/shard_{0-7}.tar
|
16 |
+
robotiq2f140/shard_{0-7}.tar
|
17 |
+
suction/shard_{0-7}.tar
|
18 |
+
splits/
|
19 |
+
franka/{train/valid}_scenes.json
|
20 |
+
robotiq2f140/{train/valid}_scenes.json
|
21 |
+
suction/{train/valid}_scenes.json
|
22 |
+
```
|
23 |
+
We release test-train splits along with the grasp dataset.
|
24 |
+
|
25 |
+
Each json file in the shard has the following data in a python dictionary. Note that `num_grasps=2000` per object.
|
26 |
+
```
|
27 |
+
‘object’/
|
28 |
+
‘scale’ # This is the scale of the asset
|
29 |
+
‘grasps’/
|
30 |
+
‘object_in_gripper’ # boolean mask indicating grasp success, [num_grasps X 1]
|
31 |
+
‘transforms’ # Pose of the gripper in homogenous matrices, [num_grasps X 4 X 4]
|
32 |
+
```
|
33 |
+
|
34 |
+
## Visualizing the dataset
|
35 |
+
|
36 |
+
We have provided some standalone scripts for visualizing this dataset. See the header of the [visualize_dataset.py](scripts/visualize_dataset.py) for installation instructions
|
37 |
+
|
38 |
+
Before running any of the visualization scripts, remember to start meshcat-server in a separate terminal:
|
39 |
+
``` shell
|
40 |
+
meshcat-server
|
41 |
+
```
|
42 |
+
|
43 |
+
To visualize a single object from the dataset, alongside its grasps:
|
44 |
+
```shell
|
45 |
+
cd scripts/ && python visualize_dataset.py --dataset_path /path/to/dataset --object_uuid {object_uuid} --object_file /path/to/mesh --gripper_name {choose from: franka, suction, robotiq2f140}
|
46 |
+
```
|
47 |
+
|
48 |
+
## Objaverse dataset
|
49 |
+
Please download the Objaverse XL (LVIS) objects separately. See the helper script [download_objaverse.py](scripts/download_objaverse.py) for instructions and usage.
|
50 |
+
|
51 |
+
## License
|
52 |
+
License Copyright © 2025, NVIDIA Corporation & affiliates. All rights reserved.
|
53 |
+
|
54 |
+
|
55 |
+
The dataset is released under a CC-BY 4.0 License.
|
56 |
+
|
57 |
+
The visualization code is released under the [NVIDIA source code license](LICENSE).
|
58 |
+
|
59 |
+
## Contact
|
60 |
+
|
61 |
+
Please reach out to [Adithya Murali](adithyamurali.com) (admurali@nvidia.com) and [Clemens Eppner](https://clemense.github.io/) (ceppner@nvidia.com) for further enquiries
|
62 |
+
|
assets/cover.png
ADDED
![]() |
Git LFS Details
|
assets/montage2.png
ADDED
![]() |
Git LFS Details
|