content
stringlengths
5
1.05M
"""this file router for delete user.""" from app import app from db.db_queries.get_user_for_delete_query import get_user_for_delete, \ redirect_recipe from db.db_queries.get_user_query import get_user from flask import flash, redirect, url_for from models.db import db from routers.login_required import login_required @app.route('/users/<int:user_id>/delete', methods=['POST', 'GET']) @login_required(default_role=1) def delete_user(user_id: int): """Router for delete user.""" user = get_user(user_id) del_user = get_user_for_delete() recipes = redirect_recipe(user_id) for recipe in recipes: recipe.author = del_user db.session.delete(user) db.session.commit() flash(f'Профиль успешно удалён!', 'success') return redirect(url_for('users'))
#coding:utf-8 ''' filename:points_distance.py chap:5 subject:11 conditions:pionts a,b solution:distance(a,b) ''' import math def distance(a:tuple,b:tuple)->float: c = sum([(a[i]-b[i])**2 for i in range(2)]) return math.sqrt(c) print(distance((0,2),(0,4)))
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. class CdmError(Exception): """Base CDM exception"""
#!/usr/bin/env python3 import os import sqlite3 from pygments.formatters import HtmlFormatter self_dir = os.path.dirname(os.path.realpath(__file__)) print("Setting up database...", end="") db = sqlite3.connect(self_dir + "/data/db.sqlite") db.execute(""" CREATE TABLE IF NOT EXISTS pastes ( id CHAR(8) PRIMARY KEY, title TEXT, lang CHAR(30) NOT NULL, hash VARCHAR(64) NOT NULL, create_time INTEGER NOT NULL )""") db.execute(""" CREATE TABLE IF NOT EXISTS contents ( hash CHAR(64) PRIMARY KEY, contents TEXT NOT NULL ) """) print("done") print("Generating stylesheets...", end="") with open(self_dir + "/static/_pygments.css", "w") as f: f.write(HtmlFormatter().get_style_defs('.highlight')) print("done")
from django.core.paginator import Paginator, EmptyPage, PageNotAnInteger def paginator(request, queryset, per_page=25): per_page = request.GET.get('per_page', per_page) paginator = Paginator(queryset, per_page) page = request.GET.get('page') try: return paginator.page(page) except PageNotAnInteger: # If page is not an integer, deliver first page. return paginator.page(1) except EmptyPage: # If page is out of range (e.g. 9999), deliver last page of results. return paginator.page(paginator.num_pages)
import os import pandas as pd import csv import json import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from datetime import datetime import compress_json def export_key(out): """Export Generated Key Template""" data_name = "Master_Key/master_key.csv" exists = os.path.exists(data_name) if exists: for i in range(100): if not os.path.exists("Master_Key/master_key_v%s.csv" % (i+ 1)): os.rename(data_name, "Master_Key/master_key_v%s.csv" % (i+ 1)) break for row in out: out_fields = [x for x in row] exists = os.path.exists(data_name) with open(data_name, "a") as fp: writer = csv.writer(fp) if not exists: writer.writerow(out_fields) writer.writerow([row[x] for x in out_fields]) def format_data(folders): """Format data to be added to template""" out = [] for key in folders: df = pd.read_csv(key) for col in folders[key]["cols"]: # print(df[col].dtype) row = { "File": key, "State": folders[key]["state"], "Column Name": col, "Category": "", "New Key": "", "Data Type": (df[col]).dtype } out.append(row) return out def iterate_dir(): """Iterate through directory to get all column names of all files""" unwanted = ["SouthKoreaCensus", "US_Census", "unacast", "nytimes"] directory = "../../../covid19demographics-fall" folders = {} for folder in os.listdir(directory): if folder in unwanted: continue path = directory + "/" + folder + "/data/" if os.path.exists(path): for filename in os.listdir(path): if filename.endswith(".csv"): # print(folder, filename) try: df = pd.read_csv(path + filename) except: print(folder, filename) raise folders[path + filename] = { "state": folder, "cols": df.columns } return folders def fix_percentages(current_df, current_file): """Fix percentages format from decimal to full number and check to see % values make sense""" sum_pct = 0 pct_cols = [] # Iterate through all columns for col in current_df.columns: # If a percentage column if type(col) != str: print("Irregular column name " + str(col) + " in " + current_file) continue if "%" in col: pct_cols.append(col) # If string, convert to numeric, ignoring errors if current_df[col].dtypes == "object": current_df[col] = pd.to_numeric(current_df[col], errors ="ignore") # Getting virst valid row index valid_index = current_df[col].first_valid_index() # If value still continues to be string, then strip % sign or raise exception if isinstance(current_df.loc[valid_index, col], str): if "%" in current_df.loc[valid_index, col]: current_df.loc[valid_index, col] = float(current_df.loc[valid_index, col].strip("%")) else: raise Exception(current_file, current_df.loc[valid_index, col]) # # If value is less than 1, multiply by 100 # if current_df.loc[valid_index, col] < 1: # current_df[col] *= 100 # # If value equals 1, check next index to see if it is less than 1, if so convert # elif current_df.loc[valid_index, col] == 1: # if current_df.loc[valid_index + 1, col] < 1: # current_df[col] *= 100 # # If value is greater than 100, raise problem - needs to be checked sum_pct += current_df.loc[valid_index, col] if current_df.loc[valid_index, col] > 103: print(current_file, col, current_df.loc[valid_index, col]) # Check sum_pct to see if we are dealing with decimals or not #print(current_file, sum_pct, len(pct_cols)) if sum_pct < 60: for col in pct_cols: if current_df.loc[valid_index, col] <= 1: current_df[col] *= 100 return current_df def fix_na(current_df, current_file): """Find out which columns have NA values""" na_df = current_df.isna().any().to_frame() file_array = [current_file for i in range(len(current_df.isna().any()))] na_df['File'] = file_array return na_df def output_na(na_list): curr_df = pd.concat(na_list) # Export to CSV data_name = "NAs/columns_na_list.csv" exists = os.path.exists(data_name) if exists: for i in range(100): if not os.path.exists("NAs/columns_na_list_v%s.csv" % (i+ 1)): os.rename(data_name, "NAs/columns_na_list_v%s.csv" % (i+ 1)) break curr_df.to_csv(data_name) def remove_dup(current_df, current_file): # Drop identical rows current_df = current_df.drop_duplicates() # Don't attempt with county if "county" in current_file or "zip" in current_file: # print(current_file) return current_df for col in current_df.columns: try: if "county" in col.lower() or "zip" in col.lower() or "fips" in col.lower(): return current_df except: print("Irregular column name [" + str(col) + "] in " + current_file) # Drop identical report dates if "Report Date" in current_df.columns: current_df = current_df.drop_duplicates(subset="Report Date") return current_df # Remove duplicates based on scrape time if "Scrape Time" not in current_df.columns: return current_df try: current_df["Scrape Time"] = pd.to_datetime(current_df["Scrape Time"]) except: print("Unable to convert Scrape time to datetime in: " + current_file) return current_df current_df = current_df.sort_values(by=["Scrape Time"]) prev_dt = None for index, row in current_df.iterrows(): if prev_dt == None: prev_dt = row["Scrape Time"] continue diff = row["Scrape Time"] - prev_dt # If difference is less than 8 hours, drop row if diff.total_seconds() <= 8*60*60: current_df.drop(index, inplace = True) else: prev_dt = row["Scrape Time"] # Convert datetime back to string to be able to JSONify current_df["Scrape Time"] = current_df["Scrape Time"].dt.strftime("%Y-%m-%d %r") return current_df def vlookup(key_df, case): # Helper variables current_file = None current_df = None current_state = None column_mapping = {} new_files = {} is_first = True na_list = [] # Iterate through files, create copy in code that substitutes column names # with new keys for index, row in key_df.iterrows(): # Check if file is current file - avoid reading df again if row['File'] != current_file: if not is_first: # Rename current columns current_df.rename(columns=column_mapping, inplace=True) # Find and remove duplicate dates current_df = remove_dup(current_df, current_file) # Fix percentage values current_df = fix_percentages(current_df, current_file) if case == "2": # Find NA values na_list.append(fix_na(current_df, current_file)) # Append df to dict key = (current_file.replace("../../../covid19demographics-fall/" + current_state + "/data/","")).replace(".csv","") if current_state not in new_files.keys(): new_files[current_state] = [{key: current_df}] else: new_files[current_state].append({key: current_df}) # Reset Column Mapping column_mapping = {} # Getting current information and assigning to global vars current_state = row["State"] current_file = row["File"] current_df = pd.read_csv(current_file) is_first = False # Add new key and value to column_mapping column_mapping[row["Column Name"]] = row["New Key"] # Append last df to new_files # Rename current columns current_df.rename(columns=column_mapping, inplace=True) # Find and remove duplicate dates current_df = remove_dup(current_df, current_file) # Fix percentage values current_df = fix_percentages(current_df, current_file) if case == "2": # Find NA values na_list.append(fix_na(current_df, current_file)) # Append df to dict key = (current_file.replace("../../../covid19demographics-fall/" + current_state + "/data/","")).replace(".csv","") if current_state not in new_files.keys(): new_files[current_state] = [{key: current_df}] else: new_files[current_state].append({key: current_df}) # Output NA columns to csv file # if case == "2": # output_na(na_list) return new_files def create_JSON(case): """"Create JSON with all Data""" # Read CSV key_file = "Master_Key/master_key.csv" key_df = pd.read_csv(key_file) key_df = key_df.sort_values(by=["File"]) # Remove Unacast key_df = key_df[key_df["File"] != "../../../covid19demographics-fall/unacast/data/2020-04-07 22:39:47.057978.csv"] new_files = vlookup(key_df, case) out = { "USA": {}, "Intl.": {} } intl_keys = ["Iceland", "SouthKorea", "SouthKoreaCensus"] # Add all rows to state key for state in new_files: international = False if state in intl_keys: out["Intl."][state] = [] international = True else: out["USA"][state] = [] for dic in new_files[state]: for key in dic: rows = dic[key].to_dict(orient="records") if international: out["Intl."][state].extend(rows) else: out["USA"][state].extend(rows) now = str(datetime.now()) # Export JSON - works when running on Andrew's PC compress_json.dump(out, "../../../covid19demographics/data/data.json.gz") # with open("../../../covid19demographics/data/data_" + now +".json", "w") as fp: # json.dump(out, fp) def generate_graphs(case): # Read CSV key_file = "Master_Key/master_key.csv" key_df = pd.read_csv(key_file) key_df = key_df.sort_values(by=["File"]) # Get data new_files = vlookup(key_df, case) # Make directory if it does not exist if not os.path.exists("Graphs"): os.mkdir("Graphs") # Create overall report files_error = [] for state in new_files: for dic in new_files[state]: for key in dic: datafile = key # Getting path path = "Graphs/" + str(state) + "_" + datafile if not os.path.exists(path): os.mkdir(path) # Get time variable time_priority = [ "Report Date", "Scrape Time", "Updated Date", "Edit Date", "Report Time", "Entry Creation Date", "Report Date Gender", "Quarantine Report Date", "Test Date", "Last Day Test Date", ] # Determining time variable time_var = "" for time in time_priority: if time in dic[key].columns: time_var = time break # Create report string report = "" if time_var == "": Exception("No time variable for " + state + " in " + datafile) report += "No time variable for " + state + " in " + datafile + "\n" files_error.append(str(state) + "_" + datafile) continue # Fix percentages current_df = fix_percentages(dic[key], path) # Getting NaN values: na_list = current_df.isna().any() na_cols = [] for index, val in na_list.items(): if val: na_cols.append(index) report += (index + " contains NaN values\n") files_error.append(str(state) + "_" + datafile) # Graphing every column for col in current_df: if col not in time_priority: name = col.replace("/", "_") try: # Check if column is numeric if current_df[col].dtypes == "object": report += (col + " in " + path + " is not numeric\n") files_error.append(str(state) + "_" + datafile) elif current_df[col].isnull().all(): report += ("Entire " + col + " is NaN\n") files_error.append(str(state) + "_" + datafile) else: # Graph line line = current_df.plot(x = time_var, y = col, kind = "line", rot=45, figsize = (25,15)) line_fig = line.get_figure() line_fig.savefig(path + "/" + name + "_line.png") plt.close() # Graph box box = current_df.boxplot(column=col) box_fig = box.get_figure() box_fig.savefig(path + "/" + name + "_box.png") plt.close() # Check for stale data and outliers std = current_df[col].std(skipna=True) mean = current_df[col].mean(skipna=True) upper = mean + std * 3 lower = mean - std * 3 count = 1 prev_val = "" start_time = "" for index, val in current_df[col].items(): if val > upper or val < lower: report += (col + ": " + str(val) + " at time " + str(current_df.loc[index, time_var]) + " is an outlier in " + datafile + "\n") files_error.append(str(state) + "_" + datafile) if str(val) == prev_val: count += 1 else: if count > 3: report += ("Repetitive values of " + str(val) + " in " + col + "starting at " + str(start_time) + " and ending at " + str(current_df.loc[index, time_var]) + "\n") files_error.append(str(state) + "_" + datafile) count = 1 prev_val = val start_time = str(current_df.loc[index, time_var]) except Exception as e: report += ("Unable to graph " + col + " in " + datafile + " for " + state + "\n") files_error.append(str(state) + "_" + datafile) print(state, datafile, col, e) with open(path + "/report_" + datafile + ".txt", "w") as text_file: text_file.write(report) report = "" uniq_error_files = [] [uniq_error_files.append(x) for x in files_error if x not in uniq_error_files] rep_str = "" for file in uniq_error_files: rep_str += (str(file) + "\n") with open("Graphs/overall_report.txt", "w") as fp: fp.write(rep_str) def make_key(args): while True: option = input("What do you wish to do?\n1) Create new key\n2) Create/Update JSON\n3) Generate SPC Graphs\n") option = option.strip() if option == "1": # Create new master_key template folders = iterate_dir() out = format_data(folders) export_key(out) break elif option == "2": # Create JSON create_JSON(option) break elif option == "3": generate_graphs(option) break else: print("Enter a valid input\n") if __name__ == '__main__': make_key({})
""" Collection of Numpy math functions, wrapped to fit Ivy syntax and signature. """ # global import numpy as _np try: from scipy.special import erf as _erf except (ImportError, ModuleNotFoundError): _erf = None tan = _np.tan asin = _np.arcsin acos = _np.arccos atan = _np.arctan atan2 = _np.arctan2 sinh = _np.sinh cosh = _np.cosh tanh = _np.tanh acosh = _np.arccosh atanh = _np.arctanh log = _np.log exp = _np.exp def erf(x): if _erf is None: raise Exception('scipy must be installed in order to call ivy.erf with a numpy backend.') return _erf(x)
try: # Python 3.5+ from http import HTTPStatus as HTTPStatus except ImportError: from http import client as HTTPStatus from flask import Blueprint, jsonify, request import json import logging from v1.db.db import Db from v1.auth.auth import auth from mongoengine import * unsubscribe = Blueprint('unsubscribe', 'unsubscribe') @unsubscribe.route('/', methods=['POST'], strict_slashes=False) @auth def unsubscribePost() -> object: """ Removes subscriptions from subscription database.. :return: list of remaining subscriptions """ log = logging.getLogger(__name__) log.debug("Beginning deletion") db = Db() body = request.get_json() log.debug(body) if body is None: return jsonify({"error": "json body is required"}), HTTPStatus.HTTPStatus.BAD_REQUEST if not('datasetId') in body: return jsonify({"error": "datasetId is a required attribute"}), HTTPStatus.HTTPStatus.BAD_REQUEST count = 0 idArray = json.loads(body['datasetId']) log.debug(str(idArray) + " has length " + str(len(idArray))) for deleteId in idArray: log.debug(deleteId) deletion = db.Subscriptions.objects( datasetId=deleteId, notificationUrl=body['notificationUrl'] ) log.debug(deletion) deletion.delete() count += 1 return jsonify(str(count) + " records deleted."), HTTPStatus.OK
""" IMAP sensor support. For more details about this platform, please refer to the documentation at https://home-assistant.io/components/sensor.imap/ """ import logging import voluptuous as vol from homeassistant.helpers.entity import Entity from homeassistant.components.sensor import PLATFORM_SCHEMA from homeassistant.const import ( CONF_NAME, CONF_PORT, CONF_USERNAME, CONF_PASSWORD) import homeassistant.helpers.config_validation as cv _LOGGER = logging.getLogger(__name__) CONF_SERVER = "server" DEFAULT_PORT = 993 ICON = 'mdi:email-outline' PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({ vol.Optional(CONF_NAME): cv.string, vol.Required(CONF_USERNAME): cv.string, vol.Required(CONF_PASSWORD): cv.string, vol.Required(CONF_SERVER): cv.string, vol.Optional(CONF_PORT, default=DEFAULT_PORT): cv.port, }) def setup_platform(hass, config, add_devices, discovery_info=None): """Setup the IMAP platform.""" sensor = ImapSensor(config.get(CONF_NAME, None), config.get(CONF_USERNAME), config.get(CONF_PASSWORD), config.get(CONF_SERVER), config.get(CONF_PORT)) if sensor.connection: add_devices([sensor]) else: return False class ImapSensor(Entity): """Representation of an IMAP sensor.""" def __init__(self, name, user, password, server, port): """Initialize the sensor.""" self._name = name or user self._user = user self._password = password self._server = server self._port = port self._unread_count = 0 self.connection = self._login() self.update() def _login(self): """Login and return an IMAP connection.""" import imaplib try: connection = imaplib.IMAP4_SSL(self._server, self._port) connection.login(self._user, self._password) return connection except imaplib.IMAP4.error: _LOGGER.error("Failed to login to %s.", self._server) return False @property def name(self): """Return the name of the sensor.""" return self._name @property def state(self): """Return the number of unread emails.""" return self._unread_count def update(self): """Check the number of unread emails.""" import imaplib try: self.connection.select() self._unread_count = len(self.connection.search( None, 'UnSeen UnDeleted')[1][0].split()) except imaplib.IMAP4.error: _LOGGER.info("Connection to %s lost, attempting to reconnect", self._server) try: self.connection = self._login() except imaplib.IMAP4.error: _LOGGER.error("Failed to reconnect.") @property def icon(self): """Return the icon to use in the frontend.""" return ICON
from typing import Optional from ..interfaces.data_manager import DataManager from ..mixins.pandas_storage_manager import PandasStorageManager from ..mixins.configured_resource_manager import ConfiguredResourceManager from ..mixins.logger import Logger from ..mixins.string_path_resolver import StringPathResolver class PandasConfiguredDataManager(StringPathResolver, PandasStorageManager, ConfiguredResourceManager, DataManager, Logger): @property def _config_root(self) -> Optional[str]: """" The config root, if set the subkey to use as the base config for the resources. This can be useful if you want to have multiple resource types within the same config tree. """ return "data.local" @property def id(self) -> str: return "pandas-configured"
import wx class StartPanel(wx.Panel): def __init__(self,parent,id): wx.Panel.__init__(self,parent,id) self.parent = parent self.txt = wx.StaticText(self, label="Drag A Pak File To Here") self.txt.SetFont(wx.Font(15, wx.DEFAULT, wx.SLANT, wx.BOLD)) Vsizer = wx.BoxSizer(wx.VERTICAL) Vsizer.Add(self.txt, 1, flag=wx.ALIGN_CENTER) Hsizer = wx.BoxSizer(wx.HORIZONTAL) Hsizer.Add(Vsizer, 1, flag=wx.ALIGN_CENTER) self.SetSizer(Hsizer)
import pickle from os.path import join as pjoin import click import pandas from vocabirt.embed_nn.loader.common import CVSplitEhara from vocabirt.embed_nn.utils import get_sv12k_word_list from .vocabirt2pl_svl12k import estimate_irt def split_modewise(split_mode, df, words): total_resp_splits = 3 if split_mode in ("respondent", "both") else 1 total_vocab_splits = 3 if split_mode in ("word", "both") else 1 for resp_split_idx in range(total_resp_splits): for vocab_split_idx in range(total_vocab_splits): splitter = CVSplitEhara( words, resp_split_idx=resp_split_idx, vocab_split_idx=vocab_split_idx, total_resp_splits=total_resp_splits, total_vocab_splits=total_vocab_splits, ) yield resp_split_idx, vocab_split_idx, splitter.split_all( df ), f"resp{resp_split_idx}_vocab{vocab_split_idx}" split_mode_opt = click.option( "--split-mode", type=click.Choice(["none", "respondent", "word", "both"]) ) @click.command() @click.argument("inf") @click.argument("outdir") @click.option("--difficulties") @split_mode_opt def main(inf, outdir, difficulties, split_mode): df = pandas.read_parquet(inf) words = get_sv12k_word_list(inf) for resp_split_idx, vocab_split_idx, split_tpl, basename in split_modewise( split_mode, df, words ): path = pjoin(outdir, f"{basename}.pkl") with open(path, "wb") as pickle_out: pickle.dump( estimate_irt(split_tpl.train_df, ordinal=True), pickle_out, ) if __name__ == "__main__": main()
import requests import os import config from templates.text import TextTemplate OPENWEATHER_API = os.environ.get('OPENWEATHER_API', config.OPENWEATHER_API) def process(input, entities, sender): output = {} try: location = entities['location'][0]['value'] r = requests.get('http://api.openweathermap.org/data/2.5/weather?q=' + location + '&appid=' + OPENWEATHER_API + '&units=imperial') data = r.json() description = data['weather'][0]['description'] temp = data['main']['temp'] wind = data['wind']['speed']; wind_direction = data['wind']['deg'] humidity = data['main']['humidity'] name = data['name'] msg = "Oh %s! Right now it's %s.\nTemperature: %sF\nHumidity: %s%%\nWind: %s mph" % (name, description, temp, humidity, wind) output['input'] = input output['output'] = TextTemplate(msg).get_message() output['success'] = True except: output['success'] = False return output
"""Simple test for monochromatic character LCD""" import time import board import digitalio import adafruit_character_lcd.character_lcd as characterlcd # Modify this if you have a different sized character LCD lcd_columns = 16 lcd_rows = 2 # Metro M0/M4 Pin Config: lcd_rs = digitalio.DigitalInOut(board.D7) lcd_en = digitalio.DigitalInOut(board.D8) lcd_d7 = digitalio.DigitalInOut(board.D12) lcd_d6 = digitalio.DigitalInOut(board.D11) lcd_d5 = digitalio.DigitalInOut(board.D10) lcd_d4 = digitalio.DigitalInOut(board.D9) lcd_backlight = digitalio.DigitalInOut(board.D13) # Initialise the LCD class lcd = characterlcd.Character_LCD_Mono( lcd_rs, lcd_en, lcd_d4, lcd_d5, lcd_d6, lcd_d7, lcd_columns, lcd_rows, lcd_backlight ) # Turn backlight on lcd.backlight = True # Print a two line message lcd.message = "Hello\nCircuitPython" # Wait 5s time.sleep(5) lcd.clear() # Print two line message right to left lcd.text_direction = lcd.RIGHT_TO_LEFT lcd.message = "Hello\nCircuitPython" # Wait 5s time.sleep(5) # Return text direction to left to right lcd.text_direction = lcd.LEFT_TO_RIGHT # Display cursor lcd.clear() lcd.cursor = True lcd.message = "Cursor! " # Wait 5s time.sleep(5) # Display blinking cursor lcd.clear() lcd.blink = True lcd.message = "Blinky Cursor!" # Wait 5s time.sleep(5) lcd.blink = False lcd.clear() # Create message to scroll scroll_msg = "<-- Scroll" lcd.message = scroll_msg # Scroll message to the left for i in range(len(scroll_msg)): time.sleep(0.5) lcd.move_left() lcd.clear() lcd.message = "Going to sleep\nCya later!" time.sleep(3) # Turn backlight off lcd.backlight = False time.sleep(2)
from http.server import HTTPServer from .handlers.http_request_handler import HttpRequestHandler from .router.router import Router class Application(Router): def __init__(self): super().__init__() self.instance = None self.asset_directory = {} pass def define_asset(self, name: str, directory: str): self.asset_directory = { "name": name, "directory": directory } def listen(self, port: int, callback): if not port and type(port) is not int: callback(ValueError("No port found.")) try: callback(None) self.instance = HTTPServer(('localhost', port), self._get_handler) self.instance.serve_forever() except: callback(ConnectionError("Impossible connection")) def _get_handler(self, *args): HttpRequestHandler(self.get_routes(), self.asset_directory, *args)
from aws_cdk import core from aws_cdk import (aws_dynamodb, aws_apigateway, aws_lambda, aws_s3, aws_lambda, aws_sns, aws_sns_subscriptions, aws_ecs, aws_ecs_patterns, aws_iam, aws_ec2 ) from aws_cdk.aws_lambda_event_sources import S3EventSource class AudiobookStack(core.Stack): def __init__(self, scope: core.Construct, id: str, **kwargs) -> None: super().__init__(scope, id, **kwargs) # ******* Database table audiobooksDB = aws_dynamodb.Table( self, "audiobooksDB", partition_key=aws_dynamodb.Attribute( name="id", type=aws_dynamodb.AttributeType.STRING ), read_capacity=2, write_capacity=2, billing_mode=aws_dynamodb.BillingMode.PROVISIONED ) # ******* Lambda functions book_upload_lambda_function = aws_lambda.Function(self, "HandleBookUploadLambda", handler='app.lambda_handler', runtime=aws_lambda.Runtime.PYTHON_3_8, code=aws_lambda.Code.from_asset( '../Functions/handlers/handle_book_upload')) polly_audio_lambda_function = aws_lambda.Function(self, "HandlePollyAudioLambda", handler='app.lambda_handler', runtime=aws_lambda.Runtime.PYTHON_3_8, code=aws_lambda.Code.from_asset( '../Functions/handlers/handle_polly_audio'), timeout=core.Duration.seconds(120)) # ******* S3 upload buckets BookUploadBucket = aws_s3.Bucket(self, "BookUploadBucket") AudioUploadBucket = aws_s3.Bucket(self, "AudioUploadBucket") VideoUploadBucket = aws_s3.Bucket(self, "VideoUploadBucket") ImageUploadBucket = aws_s3.Bucket(self, "ImageUploadBucket") # ******* Create S3 event source book_upload_lambda_function.add_event_source(S3EventSource(BookUploadBucket, events=[ aws_s3.EventType.OBJECT_CREATED], filters=[ {"suffix": '.txt'}] )) # ******* Create SNS topic PollySNSTopic = aws_sns.Topic(self, "PollySNSTopic") PollySNSTopic.add_subscription( aws_sns_subscriptions.LambdaSubscription(polly_audio_lambda_function)) # ******* Book function environment variables book_upload_lambda_function.add_environment( "TABLE_NAME", audiobooksDB.table_name) book_upload_lambda_function.add_environment( "AUDIO_S3_BUCKET", AudioUploadBucket.bucket_name) book_upload_lambda_function.add_environment( "SNS_TOPIC", PollySNSTopic.topic_arn) # ******* Book function permissions audiobooksDB.grant_write_data(book_upload_lambda_function) BookUploadBucket.grant_read(book_upload_lambda_function) AudioUploadBucket.grant_write(book_upload_lambda_function) PollySNSTopic.grant_publish(book_upload_lambda_function) book_upload_lambda_function.add_to_role_policy(aws_iam.PolicyStatement(actions=["polly:*"], resources=["*"])) # ******* Fargate container permissions role = aws_iam.Role(self, "FargateContainerRole", assumed_by=aws_iam.ServicePrincipal("ecs-tasks.amazonaws.com")) role.add_to_policy(aws_iam.PolicyStatement(actions=["s3:PutObject"], resources=[VideoUploadBucket.bucket_arn+"/*"])) role.add_to_policy(aws_iam.PolicyStatement(actions=["s3:GetObject"], resources=[AudioUploadBucket.bucket_arn+"/*"])) role.add_to_policy(aws_iam.PolicyStatement(actions=["s3:GetObject"], resources=[ImageUploadBucket.bucket_arn+"/*"])) # ******* Fargate container vpc = aws_ec2.Vpc(self, "CdkFargateVpc", max_azs=2) cluster = aws_ecs.Cluster(self, 'FargateCluster', vpc=vpc) image = aws_ecs.ContainerImage.from_asset("../Functions/ECSContainerFiles") task_definition = aws_ecs.FargateTaskDefinition( self, "FargateContainerTaskDefinition", execution_role=role, task_role=role, cpu=1024, memory_limit_mib=3072 ) port_mapping = aws_ecs.PortMapping(container_port=80, host_port=80) container = task_definition.add_container( "Container", image=image, logging=aws_ecs.AwsLogDriver(stream_prefix="videoProcessingContainer") ) container.add_port_mappings(port_mapping) # ******* Audio function environment variables polly_audio_lambda_function.add_environment("VIDEO_S3_BUCKET", VideoUploadBucket.bucket_name) polly_audio_lambda_function.add_environment("TASK_DEFINITION_ARN", task_definition.task_definition_arn) polly_audio_lambda_function.add_environment("CLUSTER_ARN", cluster.cluster_arn) polly_audio_lambda_function.add_environment("TABLE_NAME", audiobooksDB.table_name) polly_audio_lambda_function.add_environment("CONTAINER_NAME", container.container_name) polly_audio_lambda_function.add_environment("VPC_ID", str(vpc.vpc_id)) # ******* Audio function permissions audiobooksDB.grant_read_write_data(polly_audio_lambda_function) polly_audio_lambda_function.add_to_role_policy(aws_iam.PolicyStatement(actions=["ecs:RunTask"], resources=["*"])) polly_audio_lambda_function.add_to_role_policy(aws_iam.PolicyStatement(actions=["iam:PassRole"], resources=["*"])) polly_audio_lambda_function.add_to_role_policy(aws_iam.PolicyStatement(actions=["ec2:DescribeSubnets"], resources=["*"]))
# -*- encoding: latin-1 -*- import sys MKL_THREADS_VAR = str(sys.argv[1]) import os os.environ["MKL_NUM_THREADS"] = MKL_THREADS_VAR os.environ["NUMEXPR_NUM_THREADS"] = MKL_THREADS_VAR os.environ["OMP_NUM_THREADS"] = "1" from numpy import * from ir_load import ir_load from parameters import parameters from hamiltonian import hamiltonian from gfunction import gfunction_calc from gfunction import gfunction_load from eliashberg import eliashberg from kpath_extract import kpath_extract import matplotlib import matplotlib.pyplot as plt import datetime import time ##### Please input in order: # MKL_NUM_THREADS | T | T_load | JUratio | JU_ratio_load | round_it n_fill = 1.785 T = float(sys.argv[2]) T_load = float(sys.argv[3]) u0 = float(sys.argv[4]) JU_ratio = float(sys.argv[5]) JU_ratio_load = float(sys.argv[6]) round_it = int(sys.argv[7]) print(n_fill, T, T_load, u0, JU_ratio, JU_ratio_load, round_it) ### Initiate parameters ------------------------------------------------------- start = time.process_time() p = parameters(round(T, 5), round(n_fill ,5), round(JU_ratio,5), round(u0,5), round_it,\ T_load = round(T_load, 5), JU_ratio_load = round(JU_ratio_load, 5)) print("##################################################"\ , file=open(p.Logstr,'a')) print(datetime.datetime.now().strftime('%d. %B %Y %I:%M%p')\ , file=open(p.Logstr,'a')) print("Parameter set: n = {}, T = {}, U = {}, J/U = {}\n".format\ (p.n_fill, p.T, p.u0 ,p.JU_ratio), file=open(p.Logstr,'a')) print("Elapsed time - parameter init: " + str(time.process_time() - start)\ , file=open(p.Logstr,'a')) ### Load hamiltionian --------------------------------------------------------- t_hset = time.process_time() h = hamiltonian(p) print("Elapsed time - hamiltonian set (tot | module): " \ + str(time.process_time() - start) + " | " \ + str(time.process_time() - t_hset), file=open(p.Logstr,'a')) ### Load irbasis -------------------------------------------------------------- t_bload = time.process_time() b = ir_load(p.Lambda, p.beta, p.IR_tol) print("Elapsed time - basis load (tot | module): " \ + str(time.process_time() - start) + " | " \ + str(time.process_time() - t_bload), file=open(p.Logstr,'a')) ### Calculate full Greens function -------------------------------------------- t_gcal = time.process_time() g = gfunction_calc(p,h,b) #g = gfunction_load(p,b) print("Elapsed time - g_scf_calc load (tot | module): " \ + str(time.process_time() - start) + " | " \ + str(time.process_time() - t_gcal), file=open(p.Logstr,'a')) ### Security convergence check of greens function if g.tag == 'calc' and p.mode == 'FLEX': # U convergence if p.u0 != g.u0_pval: print("Not calculating eliashberg equation.\n!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"\ , file=open(p.Logstr,'a')) print(" " * len(p.err_str_begin) + "=> eliashberg skipped."\ , file=open(p.Logerrstr,'a')) print("##################################################\n"\ , file=open(p.Logstr,'a')) #continue # Sigma convergence if sum(abs(g.sigma_old-g.sigma))/sum(abs(g.sigma)) > p.g_sfc_tol: print("Not calculating eliashberg equation.\n!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"\ , file=open(p.Logstr,'a')) print(" " * len(p.err_str_begin) + "=> eliashberg skipped."\ , file=open(p.Logerrstr,'a')) print("##################################################\n"\ , file=open(p.Logstr,'a')) #continue # ### Calculate SC parameter -------------------------------------------------- t_eliashberg = time.process_time() el = eliashberg(g, p, b, h) print("Elapsed time - Eliashberg calc (tot | module): " \ + str(time.process_time() - start) + " | " \ + str(time.process_time() - t_eliashberg), file=open(p.Logstr,'a')) print("Done: n = {} | T/t = {} ({} K) | J/U = {} | abs(lambda) = {}".format\ (p.n_fill, p.T, round(p.T*(1.5/8.374)*1.16*10**4,2), p.JU_ratio,\ abs(el.result)), file=open(p.Logstr,'a')) #1.5/8.374 is factor for NaCoO2 model ### Save resulting lambda value ----------------------------------------------- with open(p.SC_EV_path, 'a') as file: file.write("{} {} {}\n".format(p.T, real(el.result), imag(el.result))) ### Extract quantities along HS path in BZ ------------------------------------ print("Now extract kpath of GF, X_s...", file=open(p.Logstr, 'a')) kpath_extract(p,h,b,g) print("Done.", file=open(p.Logstr,'a')) print("##################################################\n"\ , file=open(p.Logstr,'a'))
matrix=[[1,4,7,3],[12,63,43,65],[12,55,22,77]] for i in range(4): lst=[] for row in matrix: print(row[i]) transposed=[[row[i] for row in matrix] for i in range(4)] print(transposed)
import root_pandas import pandas as pd import numpy as np from nose.tools import raises def test_simple(): filename = 'tests/samples/simple.root' reference_df = pd.DataFrame() reference_df['one'] = np.array([1, 2, 3, 4], dtype=np.int32) reference_df['two'] = np.array([1.1, 2.2, 3.3, 4.4], dtype=np.float32) reference_df['three'] = [b'uno', b'dos', b'tres', b'quatro'] df = root_pandas.read_root(filename, key='tree') assert df.equals(reference_df) df = root_pandas.read_root(filename) assert df.equals(reference_df) @raises(TypeError) def test_small_evnt_tree_fullsplit(): """ FIXME """ filename = 'tests/samples/small-evnt-tree-fullsplit.root' root_pandas.read_root(filename, key='tree') def test_small_flat_tree(): filename = 'tests/samples/small-flat-tree.root' expected_columns = [ 'Int32', 'Int64', 'UInt32', 'UInt64', 'Float32', 'Float64', 'Str', 'ArrayInt32', 'ArrayInt64', 'ArrayUInt32', 'ArrayUInt64', 'ArrayFloat32', 'ArrayFloat64', 'N', 'SliceInt32', 'SliceInt64', 'SliceUInt32', 'SliceUInt64', 'SliceFloat32', 'SliceFloat64' ] df = root_pandas.read_root(filename, key='tree') assert set(df.columns) == set(expected_columns), df.columns
#!/usr/bin/env python import argparse from scapy.all import load_layer from scapy.sendrecv import AsyncSniffer from meter.flow_session import generate_session_class def create_sniffer(input_file, input_interface, output_mode, output_file): assert (input_file is None) ^ (input_interface is None) NewFlowSession = generate_session_class(output_mode, output_file) if input_file is not None: return AsyncSniffer(offline=input_file, filter='tcp port 443', prn=None, session=NewFlowSession, store=False) else: return AsyncSniffer(iface=input_interface, filter='tcp port 443', prn=None, session=NewFlowSession, store=False) def main(): parser = argparse.ArgumentParser() input_group = parser.add_mutually_exclusive_group(required=True) input_group.add_argument('-n', '--online', '--interface', action='store', dest='input_interface', help='capture online data from INPUT_INTERFACE') input_group.add_argument('-f', '--offline', '--file', action='store', dest='input_file', help='capture offline data from INPUT_FILE') output_group = parser.add_mutually_exclusive_group(required=True) output_group.add_argument('-c', '--csv', '--flow', action='store_const', const='flow', dest='output_mode', help='output flows as csv') output_group.add_argument('-s', '--json', '--sequence', action='store_const', const='sequence', dest='output_mode', help='output flow segments as json') parser.add_argument('output', help='output file name (in flow mode) or directory (in sequence mode)') args = parser.parse_args() load_layer('tls') sniffer = create_sniffer(args.input_file, args.input_interface, args.output_mode, args.output) sniffer.start() try: sniffer.join() except KeyboardInterrupt: sniffer.stop() finally: sniffer.join() if __name__ == '__main__': main()
import jsonpatch import re import subprocess import sys import typer import yaml from pathlib import Path from loguru import logger app = typer.Typer(add_completion=False) def _setup_logging(debug): """ Setup the log formatter for this script """ log_level = "INFO" if debug: log_level = "DEBUG" logger.remove() logger.add( sys.stdout, colorize=True, format="<level>{message}</level>", level=log_level, ) def process_node(hostname: str, domain: str, template: str, config_patches: list) -> dict: logger.info(f"Processing node {hostname}") with template.open('r') as fp: node_template = yaml.safe_load(fp) node_configpatches = [ {'op': 'add', 'path': '/machine/network/hostname', 'value': f"{hostname}.{domain}"} ] if config_patches: node_configpatches = node_configpatches + config_patches node_configpatches = jsonpatch.JsonPatch(node_configpatches) result = node_configpatches.apply(node_template) return result def _load_variables_from_file(path: Path) -> dict: file_parts = path.name.split('.') if file_parts[-2] == 'sops': logger.info("Detected encrypted variables file, trying to decrypt.") sops_result = subprocess.run( [ "sops", "-d", str(path) ], capture_output=True, encoding="utf8" ) if sops_result.returncode != 0: logger.error("Could not decrypt variables file.") data = sops_result.stdout else: with open(path, 'r') as fh: data = fh.readlines() output = yaml.safe_load(data) return(output) def parse_variables(input: dict, variable_pattern: str, variables: dict) -> dict: if isinstance(input, dict): return {k: parse_variables(v, variable_pattern, variables) for k, v in input.items()} elif isinstance(input, list): return [parse_variables(v, variable_pattern, variables) for v in input] elif isinstance(input, str): return re.sub(variable_pattern, lambda line: _replace_variable(line, variables), input) return input def _replace_variable(variable: re.Match, variables: dict) -> str: from functools import reduce variable_path = variable.groups()[0] try: env_var_value = reduce( lambda a, b: a[b], variable_path.split("."), variables ) except KeyError: env_var_value = "" return env_var_value @app.command() def main( cluster_config_file: Path = typer.Argument( ..., help="The YAML file containing the cluster configuration."), output_folder: Path = typer.Option( None, help="Folder where the output should be written."), variables_file: Path = typer.Option( None, help="File containing variables to load."), debug: bool = False, ): _setup_logging(debug) if not cluster_config_file.is_file(): logger.error(f"Could not find file {str(cluster_config_file)}") raise typer.Exit() base_folder = cluster_config_file.parent if output_folder is None: output_folder = Path.joinpath(base_folder, "machineConfigs") if not output_folder.is_dir(): create_output_folder = typer.confirm( f"Folder '{str(output_folder)}' does not exist. Create it?") if not create_output_folder: raise typer.Abort() output_folder.mkdir() with cluster_config_file.open('r') as fp: cluster_config = yaml.safe_load(fp) logger.info( f"Generating talos configuration files for cluster '{cluster_config['name']}'") template_controlplane = Path.joinpath(base_folder, 'controlplane.yaml') template_worker = Path.joinpath(base_folder, 'worker.yaml') template_taloscfg = Path.joinpath(base_folder, 'talosconfig') if not (template_controlplane.exists() and template_worker.exists()): logger.info( f"No existing configuration templates found in {str(base_folder)}, generating new ones.") subprocess.run( [ "talosctl", "gen", "config", cluster_config['name'], cluster_config['controlplane']['endpoint'], "--output-dir", str(base_folder) ], stdout=subprocess.DEVNULL ) template_taloscfg.unlink() variables = None if variables_file and variables_file.exists(): variables = _load_variables_from_file(variables_file) # Render control plane nodes for node in cluster_config['nodes']: hostname = node['hostname'] domain = node['domain'] if node.get('controlplane') and node['controlplane']: template = template_controlplane config_patches = cluster_config['controlplane'].get( 'configPatches') or [] else: template = template_worker config_patches = cluster_config['workers'].get( 'configPatches') or [] config_patches = config_patches + (node.get('configPatches') or []) result = process_node(hostname, domain, template, config_patches) if variables: result = parse_variables(result, r"\$\{(.*)\}", variables) with Path.joinpath(output_folder, f"{hostname}.yaml") .open('w') as fp: yaml.safe_dump(result, fp) # Render worker nodes logger.info("Done") if __name__ == "__main__": app()
""" Copyright: Wenyi Tang 2017-2018 Author: Wenyi Tang Email: wenyi.tang@intel.com Created Date: Oct 15th 2018 Extend the pre-Environment module, provide different and extensible training methodology for SISR, VSR or other image tasks. """ # Copyright (c): Wenyi Tang 2017-2019. # Author: Wenyi Tang # Email: wenyi.tang@intel.com # Update Date: 2019/4/3 下午8:28 import csv import time from pathlib import Path import numpy as np import tensorflow as tf import tqdm from ..Util.Config import Config from ..Util.Utility import to_list def _make_ckpt_name(name, scale, step): return '{}-sc{}-ep{:04d}.ckpt'.format(name, scale, step) def _parse_ckpt_name(name): # sample name: {model}-sc{scale}-ep{epoch}.ckpt(.index) if not name: return 0 model_name, scale, epochs = Path(name).stem.split('.')[0].split('-') return int(epochs[2:]) def _ensemble_expand(feature): r0 = feature r1 = np.rot90(feature, 1, axes=[-3, -2]) r2 = np.rot90(feature, 2, axes=[-3, -2]) r3 = np.rot90(feature, 3, axes=[-3, -2]) r4 = np.flip(feature, axis=-2) r5 = np.rot90(r4, 1, axes=[-3, -2]) r6 = np.rot90(r4, 2, axes=[-3, -2]) r7 = np.rot90(r4, 3, axes=[-3, -2]) return r0, r1, r2, r3, r4, r5, r6, r7 def _ensemble_reduce_mean(outputs): results = [] for i in outputs: outputs_ensemble = [ i[0], np.rot90(i[1], 3, axes=[-3, -2]), np.rot90(i[2], 2, axes=[-3, -2]), np.rot90(i[3], 1, axes=[-3, -2]), np.flip(i[4], axis=-2), np.flip(np.rot90(i[5], 3, axes=[-3, -2]), axis=-2), np.flip(np.rot90(i[6], 2, axes=[-3, -2]), axis=-2), np.flip(np.rot90(i[7], 1, axes=[-3, -2]), axis=-2), ] results.append(np.concatenate(outputs_ensemble).mean(axis=0, keepdims=True)) return results class Trainer: """A pure interface trainer. A trainer provides following APIs: >>> Trainer.fit >>> Trainer.infer >>> Trainer.benchmark >>> Trainer.export Args: model: the SR model object. @see SuperResolution work_dir: the dir to save training checkpoints and logs verbose: tf logging level """ def __init__(self, model, work_dir, verbose=tf.logging.INFO): self._m = model self._saved = Path(work_dir) / 'save' self._logd = Path(work_dir) / 'log' self._verb = verbose self._restored = False self._csv = verbose <= tf.logging.INFO def _startup(self): tf.logging.set_verbosity(self._verb) self._saved.mkdir(parents=True, exist_ok=True) self._logd.mkdir(parents=True, exist_ok=True) if self._csv: self._csv_file = open(Path(self._logd / 'train_metrics.csv'), 'a') self._csv_writer = csv.writer(self._csv_file) if self.model.compiled: self.graph = tf.get_default_graph() else: with tf.Graph().as_default() as g: self.model.compile() self.graph = g def __enter__(self): """Create session of tensorflow and build model graph""" self._startup() conf = tf.ConfigProto( allow_soft_placement=True, gpu_options=tf.GPUOptions(allow_growth=True)) sess = tf.Session(graph=self.graph, config=conf) sess.__enter__() self.savers = self.model.savers sess.run(tf.global_variables_initializer()) return self def __exit__(self, exc_type, exc_val, exc_tb): """Close session""" sess = tf.get_default_session() sess.__exit__(exc_type, exc_val, exc_tb) def _find_last_ckpt(self): # restore the latest checkpoint in save dir ckpt = tf.train.get_checkpoint_state(self._saved) if ckpt and ckpt.model_checkpoint_path: return tf.train.latest_checkpoint(self._saved) # try another way ckpt = to_list(self._saved.glob('*.ckpt.index')) # sort as modification time ckpt = sorted(ckpt, key=lambda x: x.stat().st_mtime_ns) return self._saved / ckpt[-1].stem if ckpt else None def _restore_model(self, sess): last_checkpoint_step = 0 for name in self.savers: saver = self.savers.get(name) ckpt = to_list(self._saved.glob('{}*.index'.format(name))) if ckpt: ckpt = sorted(ckpt, key=lambda x: x.stat().st_mtime_ns) ckpt = self._saved / ckpt[-1].stem try: saver.restore(sess, str(ckpt)) except tf.errors.NotFoundError: tf.logging.warning( '{} of model {} could not be restored'.format( name, self.model.name)) last_checkpoint_step = _parse_ckpt_name(ckpt) return last_checkpoint_step def _save_model(self, sess, step): for name in self.savers: saver = self.savers.get(name) file = self._saved / _make_ckpt_name(name, self.model.scale[0], step) saver.save(sess, str(file)) def _restore(self): # restore graph sess = tf.get_default_session() if sess is None: raise RuntimeError('No session initialized') if self._restored: return sess self.last_epoch = self._restore_model(sess) self._restored = True return sess def export(self, export_dir='.', freeze_model=False): """Export model as protobuf Args: export_dir: directory to save the exported model freeze_model: freeze all trainable variables """ self._restore() if freeze_model: self.model.export_freeze_model(export_dir) else: self.model.export_saved_model(export_dir) def set_seed(self, seed): np.random.seed(seed) tf.set_random_seed(seed) def fit(self, *args, **kwargs): raise NotImplementedError def infer(self, *args, **kwargs): raise NotImplementedError def benchmark(self, *args, **kwargs): raise NotImplementedError @property def model(self): return self._m class VSR(Trainer): """Default trainer for task SISR or VSR""" v = Config() # local variables """======================================= components, sub-functions, helpers ======================================= """ def query_config(self, config, **kwargs) -> Config: assert isinstance(config, Config) config.update(kwargs) # override parameters self.v.epoch = config.epoch # current epoch self.v.epochs = config.epochs # total epochs self.v.lr = config.lr # learning rate self.v.lr_schedule = config.lr_schedule self.v.memory_limit = config.memory_limit self.v.feature_callbacks = config.feature_callbacks or [] self.v.label_callbacks = config.label_callbacks or [] self.v.output_callbacks = config.output_callbacks or [] self.v.validate_every_n_epoch = config.validate_every_n_epoch or 1 self.v.subdir = config.subdir self.v.random_val = config.random_val self.v.ensemble = config.ensemble return self.v def fit_init(self) -> bool: v = self.v v.sess = self._restore() if self.last_epoch >= v.epochs: return False tf.logging.info('Fitting: {}'.format(self.model.name.upper())) self.model.display() v.summary_writer = tf.summary.FileWriter( str(self._logd), graph=tf.get_default_graph()) v.global_step = self.model.global_steps.eval() return True def fit_close(self): # flush all pending summaries to disk if self.v.summary_writer: self.v.summary_writer.close() if self._csv: self._csv_file.close() def fn_train_each_epoch(self): v = self.v mem = v.memory_limit train_iter = v.train_loader.make_one_shot_iterator(mem, shuffle=True) if hasattr(v.train_loader, 'prefetch'): v.train_loader.prefetch(v.memory_limit) date = time.strftime('%Y-%m-%d %T', time.localtime()) v.avg_meas = {} if v.lr_schedule and callable(v.lr_schedule): v.lr = v.lr_schedule(steps=v.global_step) print('| {} | Epoch: {}/{} | LR: {:.2g} |'.format( date, v.epoch, v.epochs, v.lr)) with tqdm.tqdm(train_iter, unit='batch', ascii=True) as r: for items in r: label, feature, name, post = items[:4] self.fn_train_each_step(label, feature, name, post) r.set_postfix(v.loss) for _k, _v in v.avg_meas.items(): print('| Epoch average {} = {:.6f} |'.format(_k, np.mean(_v))) if self._csv: if self._csv_file.tell() == 0: self._csv_writer.writerow(v.avg_meas.keys()) self._csv_writer.writerow([np.mean(s) for s in v.avg_meas.values()]) self._csv_file.flush() if v.epoch % v.validate_every_n_epoch == 0: self.benchmark(v.val_loader, v, epoch=v.epoch, memory_limit='1GB') v.summary_writer.add_summary(self.model.summary(), v.global_step) self._save_model(v.sess, v.epoch) def fn_train_each_step(self, label=None, feature=None, name=None, post=None): v = self.v for fn in v.feature_callbacks: feature = fn(feature, name=name) for fn in v.label_callbacks: label = fn(label, name=name) loss = self.model.train_batch(feature, label, learning_rate=v.lr, epochs=v.epoch) v.global_step = self.model.global_steps.eval() for _k, _v in loss.items(): v.avg_meas[_k] = \ v.avg_meas[_k] + [_v] if v.avg_meas.get(_k) else [_v] loss[_k] = '{:08.5f}'.format(_v) v.loss = loss def fn_infer_each_step(self, label=None, feature=None, name=None, post=None): v = self.v origin_feat = feature for fn in v.feature_callbacks: feature = fn(feature, name=name) if v.ensemble: # add self-ensemble boosting metric score feature_ensemble = _ensemble_expand(feature) outputs_ensemble = [] for f in feature_ensemble: y, _ = self.model.test_batch(f, None) outputs_ensemble.append(y) outputs = [] for i in range(len(outputs_ensemble[0])): outputs.append([j[i] for j in outputs_ensemble]) outputs = _ensemble_reduce_mean(outputs) else: outputs, _ = self.model.test_batch(feature, None) for fn in v.output_callbacks: outputs = fn(outputs, input=origin_feat, name=name, subdir=v.subdir, mode=v.color_format) def fn_benchmark_each_step(self, label=None, feature=None, name=None, post=None): v = self.v origin_feat = feature for fn in v.feature_callbacks: feature = fn(feature, name=name) for fn in v.label_callbacks: label = fn(label, name=name) outputs, metrics = self.model.test_batch(feature, label, epochs=v.epoch) for _k, _v in metrics.items(): if _k not in v.mean_metrics: v.mean_metrics[_k] = [] v.mean_metrics[_k] += [_v] for fn in v.output_callbacks: outputs = fn(outputs, input=origin_feat, label=label, name=name, mode=v.color_format, subdir=v.subdir) def fn_benchmark_body(self): v = self.v it = v.loader.make_one_shot_iterator(v.memory_limit, shuffle=v.random_val) for items in tqdm.tqdm(it, 'Test', ascii=True): label, feature, name, post = items[:4] self.fn_benchmark_each_step(label, feature, name, post) """======================================= Interface: fit, benchmark, infer ======================================= """ def fit(self, loaders, config, **kwargs): """Fit the model. Args: loaders: a tuple of 2 loaders, the 1st one is used for training, and the 2nd one is used for validating. config: fitting configuration, an instance of `Util.Config.Config` kwargs: additional arguments to override the same ones in config. """ v = self.query_config(config, **kwargs) v.train_loader, v.val_loader = loaders if not self.fit_init(): return for epoch in range(self.last_epoch + 1, v.epochs + 1): v.epoch = epoch self.fn_train_each_epoch() self.fit_close() def infer(self, loader, config, **kwargs): """Infer SR images. Args: loader: a loader for enumerating LR images config: inferring configuration, an instance of `Util.Config.Config` kwargs: additional arguments to override the same ones in config. """ v = self.query_config(config, **kwargs) v.color_format = loader.color_format self._restore() it = loader.make_one_shot_iterator() if len(it): tf.logging.info('Inferring {} at epoch {}'.format( self.model.name, self.last_epoch)) else: return # use original images in inferring for items in tqdm.tqdm(it, 'Infer', ascii=True): feature = items[0] name = items[2] self.fn_infer_each_step(None, feature, name) def benchmark(self, loader, config, **kwargs): """Benchmark/validate the model. Args: loader: a loader for enumerating LR images config: benchmark configuration, an instance of `Util.Config.Config` kwargs: additional arguments to override the same ones in config. """ v = self.query_config(config, **kwargs) v.color_format = loader.color_format self._restore() v.mean_metrics = {} v.loader = loader self.fn_benchmark_body() for _k, _v in v.mean_metrics.items(): print('{}: {:.6f}'.format(_k, np.mean(_v)), end=', ') print('')
from flask import render_template, request, redirect, url_for,abort from app.main import main from flask_login import login_required, current_user from app.main.forms import UpdateProfile, PitchForm, CommentForm from .. import db,photos from app.models import User, Pitch, Comment, ProfilePhoto @main.route('/') def index(): pitches = Pitch.query.all() return render_template('index.html', pitches=pitches) @main.route('/pitches/businesspitches') def business(): pitches = Pitch.get_pitches('business') return render_template("business.html", pitches=pitches) @main.route('/pitches/interviewpitches') def interview(): pitches = Pitch.get_pitches('interview') return render_template("interview.html", pitches=pitches) @main.route('/pitches/productpitches') def product(): pitches = Pitch.get_pitches('product') return render_template("product.html", pitches=pitches) @main.route('/user/<uname>') def profile(uname): user = User.query.filter_by(username = uname).first() if user is None: abort(404) return render_template("profile/profile.html", user = user) @main.route('/user/<uname>/update',methods = ['GET','POST']) @login_required def update_profile(uname): user = User.query.filter_by(username = uname).first() if user is None: abort(404) form = UpdateProfile() if form.validate_on_submit(): user.bio = form.bio.data db.session.add(user) db.session.commit() return redirect(url_for('.profile',uname=user.username)) return render_template('profile/update.html',form =form) @main.route('/user/<uname>/update/pic',methods= ['POST']) @login_required def update_pic(uname): user = User.query.filter_by(username = uname).first() if 'photo' in request.files: filename = photos.save(request.files['photo']) path = f'photos/{filename}' user.profile_pic_path = path db.session.commit() return redirect(url_for('main.profile',uname=uname)) @main.route('/pitch/new', methods=['GET', 'POST']) @login_required def pitch(): """ View pitch function that returns the pitch page and data """ pitch_form = PitchForm() if pitch_form.validate_on_submit(): title = pitch_form.title.data description = pitch_form.description.data category = pitch_form.category.data user_id = current_user._get_current_object().id new_pitch = Pitch(title=title, description=description, category=category, user_id=user_id) new_pitch.save_pitch() return redirect(url_for('main.index')) title = 'New Pitch' return render_template('pitch.html', title=title, pitch_form = pitch_form) @main.route('/comment/<int:id>', methods=['GET', 'POST']) @login_required def comment(id): form = CommentForm() pitch = Pitch.query.get(id) user = User.query.all() comments = Comment.query.filter_by(pitches_id=id).all() if form.validate_on_submit(): comment = form.comment.data user_id = current_user._get_current_object().id new_comment = Comment( comment=comment, user_id=user_id, pitches_id=pitch.id ) new_comment.save_comment() new_comments = [new_comment] print(new_comments) return redirect(url_for('.index')) return render_template('comment.html', form=form, comments=comments, user=user) @main.route('/like/<int:post_id>/<action>') @login_required def like_action(post_id, action): post = Pitch.query.filter_by(id=post_id).first_or_404() if action == 'like': current_user.like_post(post) db.session.commit() if action == 'unlike': current_user.unlike_post(post) db.session.commit() return redirect(request.referrer)
# -*- coding: utf-8 -*- """ test_utils.py Copyright 2017 CodeRatchet Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 """ from scrapytest.utils import find_first, merge_dict def test_find_first_returns_none_on_condition_not_found(): assert find_first({'foo': 'bar', 'baz': 'spam'}, lambda x, y: False) is None def test_merge_dict_sees_correct_values(): a = {'first': {'all_rows': {'pass': 'dog', 'number': '1'}}} b = {'first': {'all_rows': {'fail': 'cat', 'number': '5'}}} assert merge_dict(b, a) == {'first': {'all_rows': {'pass': 'dog', 'fail': 'cat', 'number': '5'}}}
from ._celery import app as celery_app __all__ = ["celery_app"]
import sys, socket, os, re, time from index import Index THREADS = 32 # num of threads processing the queue def process_file_name_and_text(path): with open(path) as f: return path.replace("/","\\"), f.read() def load_directories(path): docs = [path] while docs: top = docs.pop() if os.path.isdir(top): for i in os.listdir(top): abs_path = os.path.join(top, i) docs.append(abs_path) elif top.endswith('.txt'): try: yield process_file_name_and_text(top) # generators except: pass def create_dictionary_index(path): index = Index() docs_from_load = load_directories(path) start_time = time.perf_counter() index.bulk_index(docs_from_load, threads=THREADS) print("%s lasts to process 2000 files with %s threads" % (time.perf_counter() - start_time, THREADS)) return index def main(): print(sys.argv) if len(sys.argv) == 2: path = sys.argv[1] print('Inverted index would be created on data from folder %s' % path) index = create_dictionary_index(path) # local - console # print('Enter word to get top 10 documents that contains it') # while True: # try: # token = input('\nInput: ') # print(index.get_documents_containing_word(token, count=10, text_=True)) # except KeyboardInterrupt: # break # socket solution - https://habr.com/ru/post/149077/ print('Sent info from client to get top documents contains the word') while True: sock = socket.socket() sock.bind(('', 9090)) # on port 9090 sock.listen(10) conn, addr = sock.accept() while True: try: data = conn.recv(1024) except: # connection closed break if not data: break client_res_list = data.decode().replace("'","").strip(')(').split(', ') word = client_res_list[0] count = int(client_res_list[1]) if client_res_list[2].lower() == "y": send_text = True else: send_text = False index_res = index.get_documents_containing_word(word, count, text_=send_text) print(str(len(index_res)) + " Docs was sent to " + str(addr)) conn.send(str(index_res).encode()) conn.close() if __name__ == '__main__': main()
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 3/28/2018 2:27 PM # @Author : sunyonghai # @File : simple_argparse.py.py # @Software: ZJ_AI # ========================================================= import argparse ap = argparse.ArgumentParser() ap.add_argument("-n", "--name", required=True, help="name of the user") args = vars(ap.parse_args()) # display a friendly message to the user print("Hi there {}, it's nice to meet you!".format(args["name"]))
from collections import deque class Solution: def canFinish(self, numCourses: int, prerequisites: List[List[int]]) -> bool: # build graph graph, indeg = {i:[] for i in range(numCourses)}, {i:0 for i in range(numCourses)} for end, start in prerequisites: graph[start].append(end) indeg[end] += 1 # output topological ordering queue = deque([node for node, deg in indeg.items() if deg == 0]) visited = set() # or use set(queue) while queue: node = queue.popleft() visited.add(node) for neighbor in graph[node]: if neighbor in visited: # then a circle found return False indeg[neighbor] -= 1 if indeg[neighbor] == 0: queue.append(neighbor) return len(visited) == numCourses
import datetime import unittest from pikax import params, ClientException, APIUserError from pikax import settings from pikax.api.androidclient import AndroidAPIClient class AndroidClientTest(unittest.TestCase): def setUp(self) -> None: self.client = AndroidAPIClient(settings.username, settings.password) self.user = self.client.visits(user_id=38088) def test_following(self): ids = self.client.followings(user_id=18526689, limit=10) self.assertEqual(len(ids), 10) def test_search(self): ids = self.client.search(keyword='arknights', limit=7) self.assertEqual(len(ids), 7) def test_bookmark(self): ids = self.client.bookmarks(limit=15) self.assertEqual(len(ids), 15) def test_manga(self): # TODO: add some mangas into the account ids = self.client.mangas(limit=0) self.assertEqual(len(ids), 0) def test_search2(self): ids = self.client.search(keyword='arknights', limit=23, sort=params.Sort.DATE_DESC, search_type=params.SearchType.ILLUST_OR_MANGA, match=params.Match.PARTIAL, search_range=params.Range.A_YEAR) self.assertEqual(len(ids), 23) def test_rank_rookie(self): ids = self.client.rank(rank_type=params.RankType.ROOKIE, date=datetime.date.today(), content=params.Content.MANGA, limit=19) self.assertEqual(len(ids), 19) def test_user_illust(self): ids = self.user.illusts(limit=45) self.assertEqual(len(ids), 45) def test_user_manga(self): ids = self.user.mangas(limit=2) self.assertEqual(len(ids), 2) def test_following_invalid_id(self): with self.assertRaises(ClientException): self.client.followings(user_id=0, limit=123) def test_visits_invalid_id(self): with self.assertRaises(APIUserError): self.client.visits(user_id=0) def test_account(self): # default account's account name self.assertEqual(self.client.account, 'crawl_user') def test_name(self): # default account name is crawler self.assertEqual(self.client.name, 'crawler') def test_id(self): # default account's id self.assertEqual(self.client.id, '41689219') if __name__ == '__main__': unittest.main()
import numpy as np from common.constant import * from utils.data_load import normalize class ClusteringAlgorithm(): """ 聚类算法 """ def __init__(self, X : np.ndarray, cluster_num : int): self.X = X self.c = cluster_num self.n = X.shape[MatrixShapeIndex.column] self.feature_num = X.shape[MatrixShapeIndex.row] def __get_initial_U__(self) -> np.ndarray: U = np.random.rand(self.c, self.n) U = normalize(U) return U def __Update_U__(self, V : np.ndarray, U : np.ndarray) -> np.ndarray: # U for data input pass def __Update_V__(self, U : np.ndarray) -> np.ndarray: pass def iteration(self, iter_num = 200, quit_epsilon = epsilon): import time start = time.clock() random_choice = np.random.randint(0, self.n, self.c) initial_V = self.X[:, random_choice] V = initial_V.copy() U = self.__get_initial_U__() for t in range(iter_num): U_save = U.copy() U = self.__Update_U__(V, U) U_f = Frobenius(U, U_save) if U_f < quit_epsilon: break V_save = V.copy() V = self.__Update_V__(U) V_f = Frobenius(V, V_save) if V_f < quit_epsilon: break elapsed = (time.clock() - start) return { 'U' : U, 'V' : V, 't' : t, 'U_f' : U_f, 'V_f' : V_f, 'use_time' : elapsed } class Semi_SupervisedClusteringAlgorithm(ClusteringAlgorithm): """ 半监督聚类算法 """ def inputSemi_SupervisedInformaintion(self): pass class Semi_SupervisedWithPrioriKnowledgeClusteringAlgorithm(Semi_SupervisedClusteringAlgorithm): """ 以先验知识半监督的聚类算法 """ def __init__(self, X : np.ndarray, cluster_num : int): super(Semi_SupervisedWithPrioriKnowledgeClusteringAlgorithm, self).__init__(X, cluster_num) self.gave_tilde_U = False self.tilde_U = np.zeros((self.c, self.n)) self.initial_V = np.random.rand(self.feature_num, self.c) def inputSemi_SupervisedInformaintion(self, tilde_U : np.ndarray, initial_V : np.ndarray): assert tilde_U.shape[MatrixShapeIndex.row] == self.c and \ tilde_U.shape[MatrixShapeIndex.column] == self.n, '先验隶属度矩阵大小不匹配!' assert initial_V.shape[MatrixShapeIndex.column] == self.c and \ initial_V.shape[MatrixShapeIndex.row] == self.feature_num, '初始聚类中心矩阵大小不匹配!' self.tilde_U = tilde_U.copy() self.initial_V = initial_V self.gave_tilde_U = True
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from sedona.core.geom.envelope import Envelope from tests.test_base import TestBase class TestGeomPrimitives(TestBase): def test_jvm_envelope(self): envelope = Envelope(0.0, 5.0, 0.0, 5.0) jvm_instance = envelope.create_jvm_instance(self.spark.sparkContext._jvm) envelope_area = jvm_instance.getArea() assert envelope_area == 25.0, f"Expected area to be equal 25 but {envelope_area} was found"
import re import unicodedata from django.contrib.auth.models import PermissionsMixin from django.core import validators from django.utils.deconstruct import deconstructible from django.core import exceptions from django.utils.translation import gettext_lazy as _ from taggit.managers import TaggableManager from taggit.models import TagBase, CommonGenericTaggedItemBase from .enums import * @deconstructible class ASCIIUsernameValidator(validators.RegexValidator): regex = r'^[\w.][\w.-]*[\w-]\Z' message = _( 'Enter a valid username. This value must be longer than 2 characters and may contain only English letters, ' 'numbers, and ./-/_ characters but cannot start with a "-" or end with a ".".' ) flags = re.ASCII def validate_username_for_gitlab(value: str): if value.endswith('.git') or value.endswith('.atom'): raise exceptions.ValidationError(_('Enter a valid username. This value cannot end in ".git" or ".atom".')) class AccountTag(TagBase): """ Used for tags like "test" or "beta tester" for now. """ class Meta: verbose_name = _("Account Tag") verbose_name_plural = _("Account Tags") class TaggedAccount(CommonGenericTaggedItemBase): object_id = models.CharField(max_length=50, verbose_name=_("object ID"), db_index=True) tag = models.ForeignKey(AccountTag, models.CASCADE, related_name="%(app_label)s_%(class)s_items") class User(PermissionsMixin): fusion_user_id = models.CharField(max_length=50, primary_key=True) gitlab_user_id = models.PositiveIntegerField(unique=True, null=True, blank=True) discourse_user_id = models.PositiveIntegerField(unique=True, null=True, blank=True) username = models.CharField( _('username'), max_length=55, unique=True, help_text=_('Required. 2 to 55 characters. Letters, digits and ./-/_ only.'), validators=[ASCIIUsernameValidator(), validate_username_for_gitlab], error_messages={ 'unique': _("A user with that username already exists!") } ) email = models.EmailField(_('email'), unique=True) full_name = models.CharField(_('full name'), max_length=100) tags = TaggableManager(through=TaggedAccount, blank=True) date_joined = models.DateTimeField(_('date joined'), auto_now_add=True, editable=False) last_login = models.DateTimeField(_('last login'), blank=True, null=True, editable=False) is_staff = models.BooleanField( _('staff status'), default=False, help_text=_('Designates whether the user can log into the admin site.') ) is_active = models.BooleanField( _('active'), default=False, help_text=_( 'Designates whether this user should be treated as active. ' 'Unselect this instead of deleting accounts.' ) ) is_verified = models.BooleanField(default=False, help_text=_("Designates whether this user is a verified person.")) REQUIRED_FIELDS = [] EMAIL_FIELD = 'email' USERNAME_FIELD = 'username' class Meta: verbose_name = _('user') verbose_name_plural = _('users') def get_short_name(self): """Return the short name for the user.""" return self.full_name def get_full_name(self): """Return the first_name.""" return self.get_short_name() def get_username(self): """Return the username for this User.""" return getattr(self, self.USERNAME_FIELD) def clean(self): setattr(self, self.USERNAME_FIELD, self.normalize_username(self.get_username())) def natural_key(self): return self.get_username(), @property def is_anonymous(self): """ Always return False. This is a way of comparing User objects to anonymous users. """ return False @property def is_authenticated(self): """ Always return True. This is a way to tell if the user has been authenticated in templates. """ return True @classmethod def get_email_field_name(cls): try: return cls.EMAIL_FIELD except AttributeError: return 'email' @classmethod def normalize_username(cls, username): return unicodedata.normalize('NFKC', username) if isinstance(username, str) else username def check_password(self, raw_password): return False class Team(models.Model): creator = models.ForeignKey(User, models.CASCADE, related_name='teams_created') name = models.CharField(max_length=100, blank=True) individual = models.BooleanField(default=True) members = models.ManyToManyField(User, through='Member', related_name='teams') date_created = models.DateTimeField(_('date created'), auto_now_add=True, editable=False) class Member(models.Model): user = models.ForeignKey(User, models.CASCADE) team = models.ForeignKey(Team, models.CASCADE) access_level = models.PositiveSmallIntegerField(choices=MemberAccessLevel.choices, default=MemberAccessLevel.MEMBER) status = models.PositiveSmallIntegerField(choices=MembershipStatus.choices, default=MembershipStatus.PENDING) date_joined = models.DateTimeField(auto_now_add=True)
import unittest from datetime import timedelta import simplekv.memory from flask import Flask from flask_jwt_extended.config import get_access_expires, get_refresh_expires, \ get_algorithm, get_blacklist_enabled, get_blacklist_store, \ get_blacklist_checks, get_auth_header from flask_jwt_extended import JWTManager class TestEndpoints(unittest.TestCase): def setUp(self): self.app = Flask(__name__) self.app.secret_key = 'super=secret' JWTManager(self.app) self.client = self.app.test_client() def test_default_configs(self): with self.app.test_request_context(): self.assertEqual(get_access_expires(), timedelta(minutes=15)) self.assertEqual(get_refresh_expires(), timedelta(days=30)) self.assertEqual(get_algorithm(), 'HS256') self.assertEqual(get_blacklist_enabled(), False) self.assertEqual(get_blacklist_store(), None) self.assertEqual(get_blacklist_checks(), 'refresh') self.assertEqual(get_auth_header(), 'Bearer') def test_override_configs(self): self.app.config['JWT_ACCESS_TOKEN_EXPIRES'] = timedelta(minutes=5) self.app.config['JWT_REFRESH_TOKEN_EXPIRES'] = timedelta(days=7) self.app.config['JWT_ALGORITHM'] = 'HS512' self.app.config['JWT_BLACKLIST_ENABLED'] = True self.app.config['JWT_BLACKLIST_STORE'] = simplekv.memory.DictStore() self.app.config['JWT_BLACKLIST_TOKEN_CHECKS'] = 'all' self.app.config['JWT_AUTH_HEADER'] = 'JWT' with self.app.test_request_context(): self.assertEqual(get_access_expires(), timedelta(minutes=5)) self.assertEqual(get_refresh_expires(), timedelta(days=7)) self.assertEqual(get_algorithm(), 'HS512') self.assertEqual(get_blacklist_enabled(), True) self.assertIsInstance(get_blacklist_store(), simplekv.memory.DictStore) self.assertEqual(get_blacklist_checks(), 'all') self.assertEqual(get_auth_header(), 'JWT')
#!/usr/bin/env python # coding=utf-8 """Unit tests for pyiosxr, a module to interact with Cisco devices running IOS-XR.""" import os import sys import time import unittest from lxml import etree as ET from six import binary_type # ~~~ import pyIOSXR modules ~~~ from napalm.pyIOSXR import IOSXR # exceptions from napalm.pyIOSXR.exceptions import LockError from napalm.pyIOSXR.exceptions import UnlockError from napalm.pyIOSXR.exceptions import XMLCLIError from napalm.pyIOSXR.exceptions import CommitError from napalm.pyIOSXR.exceptions import TimeoutError from napalm.pyIOSXR.exceptions import IteratorIDError from napalm.pyIOSXR.exceptions import InvalidInputError from napalm.pyIOSXR.exceptions import InvalidXMLResponse class _MockedNetMikoDevice(object): """ Defines the minimum attributes necessary to mock a SSH connection using netmiko. """ def __init__(self): class _MockedParamikoTransport(object): def close(self): pass self.remote_conn = _MockedParamikoTransport() @staticmethod def get_mock_file(command, format="xml"): filename = ( command.replace( '<?xml version="1.0" encoding="UTF-8"?><Request MajorVersion="1" MinorVersion="0">', "", ) .replace("</Request>", "") .replace("<", "") .replace(">", "_") .replace("/", "") .replace("\n", "") .replace(".", "_") .replace(" ", "_") .replace('"', "_") .replace("=", "_") .replace("$", "") .replace(":", "") .replace("!", "")[:150] ) curr_dir = os.path.dirname(os.path.abspath(__file__)) filename = "{filename}.{fmt}".format(filename=filename, fmt=format) fullpath = os.path.join(curr_dir, "mock", filename) with open(fullpath) as file_data: return file_data.read() def find_prompt(self): return self.get_mock_file("\n", format="txt") def send_command( self, command_string, expect_string="", read_timeout=10, strip_prompt=True, strip_command=True, ): return self.get_mock_file(command_string) def send_command_timing(self, command_string, **kvargs): return self.get_mock_file(command_string) def receive_data_generator(self): return ["", ""] # to have an iteration inside private method _netmiko_recv def send_command_expect( self, command_string, expect_string=None, delay_factor=0.2, max_loops=500, auto_find_prompt=True, strip_prompt=True, strip_command=True, ): # for the moment returns the output from send_command only # this may change in time return self.send_command(command_string) class _MockedIOSXRDevice(IOSXR): """ Overrides only the very basic methods from the main device driver, that cannot be mocked. """ def open(self): self.device = _MockedNetMikoDevice() self._cli_prompt = self.device.find_prompt() self._enter_xml_mode() def is_alive(self): return True class TestIOSXRDevice(unittest.TestCase): """ Tests IOS-XR basic functions. """ HOSTNAME = "localhost" USERNAME = "vagrant" PASSWORD = "vagrant" PORT = 12205 TIMEOUT = 0.1 # for tests, smaller values are prefferred LOCK = False LOG = sys.stdout MOCK = True def __repr__(self): return ( "Connected as {user}@{host}:{port}, timeout is {tout}".format( user=self.USERNAME, host=self.HOSTNAME, port=self.PORT, tout=self.TIMEOUT, ) if not self.MOCK else "Simulates device behaviour using mocked data." ) __str__ = __repr__ @classmethod def setUpClass(cls): """ Opens the connection with the IOS-XR device. """ if cls.MOCK: __cls = _MockedIOSXRDevice else: __cls = IOSXR cls.device = __cls( cls.HOSTNAME, cls.USERNAME, cls.PASSWORD, port=cls.PORT, lock=cls.LOCK, logfile=cls.LOG, timeout=cls.TIMEOUT, ) cls.device.open() @classmethod def tearDownClass(cls): """ Closes the connection with the device. """ cls.device.close() def test_mock_lock_connection_open(self): if self.MOCK: self.device.lock_on_connect = True # because there's one single mock file # and it is already used for the lock test # will tesst if raises LockError on connect self.assertRaises(LockError, self.device.lock) self.device.lock_on_connect = False # enough to see that will try to lock during connect def test_mock_close(self): """Testing if unlocking when connection is closed""" if self.MOCK: self.device.locked = True self.device.close() self.assertFalse(self.device.locked, msg="Cannot unlock the DB.") def test_execute_rpc_method(self): """Testing private method _execute_rpc""" self.assertIsInstance( self.device._execute_rpc( "<Get><Configuration><NTP></NTP></Configuration></Get>" ), ET._Element, msg="Privat emethod _execute_rpc did not return a valid XML object.", ) def test__getttr__show_(self): """Testing special attribute __getattr___ against valid show command""" self.assertIsInstance( self.device.show_ntp_ass(), str, "Special attribute __getattr___ did not return a valid string.", ) def test__getttr__show_args(self): """Testing special attribute __getattr___ against valid show command with arguments""" self.assertIsInstance(self.device.show_ntp("ass"), str) def test_acquire_xml_agent(self): """Testing if able to acquire the XML agent.""" self.device._lock_xml_agent(time.time()) self.assertTrue(self.device._xml_agent_locker.locked()) self.device._unlock_xml_agent() def test_acquire_locked_agent_raises_timeout_error(self): """Testing if trying to acquire the XML agent while locked raises TimeoutError.""" self.device._lock_xml_agent(time.time()) # acquiring self.assertRaises( TimeoutError, self.device._lock_xml_agent, # trying to acquire again time.time(), ) self.device._unlock_xml_agent() # releasing back def test_release_xml_agent(self): """Testing releasing of XML agent.""" self.device._lock_xml_agent(time.time()) self.assertTrue(self.device._xml_agent_locker.locked()) self.device._unlock_xml_agent() self.assertFalse(self.device._xml_agent_locker.locked()) def test_in_cli_mode(self): """Testing the private method _in_cli_mode.""" self.assertTrue(self.device._in_cli_mode()) def test__getattr_show_config(self): """Testing special attribute __getattr___ against valid show config command""" self.assertIsInstance(self.device.show_run_ntp(config=True), str) def test__getattr__no_show(self): """Test special attribute __getattr__ agains a no-show command""" raised = False try: self.device.configure_exclusive() except AttributeError: raised = True self.assertTrue(raised) def test_make_rpc_call_returns_XML(self): """Test if public method make_rpc_call returns str""" self.assertIsInstance( self.device.make_rpc_call( "<Get><Configuration><NTP></NTP></Configuration></Get>" ), binary_type, ) def test_acquired_xml_agent(self): """ Testing if raises TimeoutError if the XML agent is alredy acquired and released when exception thrown """ self.device._lock_xml_agent(time.time()) # acquiring the XML agent self.assertRaises( TimeoutError, self.device.make_rpc_call, "<Get><Operational><SystemTime/><PlatformInventory/></Operational></Get>", ) self.assertFalse( self.device._xml_agent_locker.locked() ) # Exception raised => xml agent released def test_try_to_read_till_timeout(self): """Testing if will try to read from the device till time out""" if self.MOCK: # hard to reproduce without mock data # as this event is not deterministic self.assertRaises( TimeoutError, self.device.make_rpc_call, "<This/><Does/><Not/><Exist/>" ) def test_multiple_read_attempts_till_timeout(self): """Testing if will try to read non-empty replies from the device till time out""" if self.MOCK: # hard to reproduce without mock data # as this event is not deterministic self.assertRaises( TimeoutError, self.device.make_rpc_call, "<Empty/><Reply/>" ) def test_iterator_id_raises_IteratorIDError(self): """Testing if reply containing the IteratorID attribute raises IteratorIDError""" self.device.load_candidate_config(config="xml agent tty iteration on size 1") # minimum iteration size self.device.commit_config(comment="pyIOSXR-test_xml-agent-iteration-on") # turning on iteration # and a very small value # requesting something that we know for sure will be a big output self.assertRaises( IteratorIDError, self.device.make_rpc_call, "<Get><Operational><IPV4Network></IPV4Network></Operational></Get>", ) self.device.rollback() # going to prev state def test_channel_acquired_enter_xml_mode(self): """Test if not raises ConnectError when the channel is busy with other requests""" self.device._lock_xml_agent() self.assertIsNone(self.device._enter_xml_mode()) def test_truncated_response_raises_InvalidXMLResponse(self): """Testing if truncated XML reply raises InvalidXMLResponse""" if self.MOCK: # hard to reproduce without mock data # as this event is not deterministic self.assertRaises( InvalidXMLResponse, self.device._execute_rpc, "<Get><Configuration><Fake/></Configuration></Get>", ) def test_iosxr_bug_0x44318c06(self): """Tests if IOS-XR bug returns error 0x44318c06 and raise XMLCLIError""" if self.MOCK: # hard to reproduce this without mock data # as this event is not deterministic self.assertRaises( XMLCLIError, self.device._execute_config_show, "show commit changes diff", ) def test_empty_reply_raises_TimeoutError(self): """Testing if empty reply raises TimeoutError""" if self.MOCK: # hard to reproduce this without mock data # as this event is not deterministic self.assertRaises(TimeoutError, self.device._execute_rpc, "<Empty/>") def test_multiple_requests_raise_0xa3679e00(self): """Testing if simultaneuous requests trigger XMLCLIError""" if self.MOCK: self.assertRaises( XMLCLIError, self.device._execute_rpc, "<Get><Operational><ARP></ARP></Operational></Get>", ) else: # must create a multithreading and send a couple of simultaneous requests to the device pass def test_execute_show(self): """Testing private method _execute_show""" self.assertIsInstance(self.device._execute_show("show ntp ass"), str) def test_execute_invalid_show_raises_InvalidInputError(self): """Testing if invalid show command raises InvalidInputError""" self.assertRaises(InvalidInputError, self.device._execute_show, "sh fake") def test_execute_config_show(self): """Testing private method _execute_config_show""" self.assertIsInstance(self.device._execute_config_show("show run ntp"), str) def test_execute_invalid_config_show_raises_InvalidInputError(self): """Testing if invalid config show command raises InvalidInputError""" self.assertRaises( InvalidInputError, self.device._execute_config_show, "sh run fake" ) def test_lock_raises_LockError(self): """Tests if DB already locked raises LockError""" if self.MOCK: self.assertRaises(LockError, self.device.lock) self.assertFalse(self.device.locked) else: self.device.unlock() # make sure the config is not locked same_device = IOSXR( self.HOSTNAME, self.USERNAME, self.PASSWORD, port=self.PORT, lock=self.LOCK, logfile=self.LOG, timeout=self.TIMEOUT, ) same_device.open() same_device.lock() # the other instance locks the config DB try: # trying to acquire the config DB self.device.lock() except LockError: self.assertFalse(self.device.locked) else: self.assertTrue(self.device.locked) same_device.close() def test_unlock(self): """Testing unlock feature""" if self.MOCK: self.device.lock = True # make sure it is locked self.device.unlock() self.assertFalse(self.device.locked) else: # make sure this process acquires the config DB self.device.lock() try: self.device.unlock() except UnlockError: # still locked self.assertTrue(self.device.locked) else: # not locked anymore self.assertFalse(self.device.locked) def _load_dummy_config(self): """Helper that loads some dummy data before committing.""" config = """ ntp peer 172.17.17.1 """ return self.device.load_candidate_config(config=config) def test_load_invalid_config_raises_InvalidInputError(self): """Testing if loading config with mistakes raises InvalidInputError""" self.assertRaises( InvalidInputError, self.device.load_candidate_config, config="ntp beer 256.257.258.259", ) self.device.discard_config() def test_load_candidate_config_file(self): """Testing loading candidate config from file""" self.assertIsNone( self.device.load_candidate_config( filename=os.path.join( os.path.dirname(os.path.abspath(__file__)), "mock", "good.cfg" ) ) ) def test_load_invalid_candidate_config_file_raises_InvalidInputError(self): """Testing if loading invalid config from a file raises InvalidInputError""" self.assertRaises( InvalidInputError, self.device.load_candidate_config, filename=os.path.join( os.path.dirname(os.path.abspath(__file__)), "mock", "bad.cfg" ), ) def test_load_config(self): """Testing if able to load candidate config, then check commit diff and discard changes""" self._load_dummy_config() self.assertIsInstance( self.device.get_candidate_config(), str, msg="Unable to retrieve the candidate config", ) self.assertIsInstance( self.device.get_candidate_config(merge=True), str, msg="Unable to retrieve merge candidate config", ) self.assertIsInstance( self.device.get_candidate_config(formal=True), str, msg="Unable to retrieve formal candidate config", ) compare_result = self.device.compare_config() self.assertIsInstance( compare_result, str, msg="Unable to compare running and candidate config" ) # test if the result is string self.assertGreater(len(compare_result), 0, msg="No config changes applied.") # test if len > 0 # discarding config self.device.discard_config() if not self.MOCK: # will get the same mock file as above self.assertEqual( len(self.device.compare_config()), 0, msg="Unable to discard changes" ) def test_commit_config(self): """Testing commit config""" self._load_dummy_config() self.assertIsNone(self.device.commit_config()) self.device.rollback() def test_commit_config_message(self): """Testing commit config with comment message""" self._load_dummy_config() self.assertIsNone(self.device.commit_config(comment="good")) self.device.rollback() def test_commit_config_label(self): """Testing commit config with label""" self._load_dummy_config() self.assertIsNone(self.device.commit_config(label="test")) self.device.rollback() def test_commit_config_confirmed(self): """Testing commit confirmed""" self._load_dummy_config() self.assertIsNone(self.device.commit_config(confirmed=60)) self.device.rollback() def test_commit_config_confirmed_raise_InvalidInputError(self): """Testing if incorrect value for confirm time raises InvalidInputError""" self.assertRaises(InvalidInputError, self.device.commit_config, confirmed=1) def test_commit_empty_buffer_raises(self): """Testing if trying to commit empty changes raises CommitError""" self.assertRaises(CommitError, self.device.commit_config, comment="empty") def test_commit_after_other_session_commit(self): """Testing if trying to commit after another process commited does not raise CommitError""" if self.MOCK: # mock data contains the error message we are looking for self.assertIsNone(self.device.commit_config(comment="parallel")) else: # to test this will neet to apply changes to the same device # through a different SSH session same_device = IOSXR( self.HOSTNAME, self.USERNAME, self.PASSWORD, port=self.PORT, lock=self.LOCK, logfile=self.LOG, timeout=self.TIMEOUT, ) same_device.open() # loading something same_device.load_candidate_config( config="interface MgmtEth0/RP0/CPU0/0 description testing parallel commits" ) # committing same_device.commit_config(comment="pyIOSXR-test_parallel_commits") # trying to load something from the test instance self.device.load_candidate_config( config="interface MgmtEth0/RP0/CPU0/0 description this wont work" ) # and will fail because of the commit above self.assertIsNone(self.device.commit_config(comment="parallel")) # let's rollback the committed changes same_device.rollback() # and close the auxiliary connection same_device.close() # because this error was raised self.device.close() self.device.open() def _prefetch_running_config_and_append(self): """Helper method to be used in the config-replace tests below""" running_config = "".join(self.device.show_run().splitlines(1)[3:]) self.device.load_candidate_config(config=running_config) self.device.load_candidate_config(config="ntp server 8.8.8.8") def test_compare_replace_config(self): """Testing compare replace config""" self._prefetch_running_config_and_append() self.assertIsInstance(self.device.compare_replace_config(), str) def test_commit_replace_config(self): """Testing commit replace config""" self._prefetch_running_config_and_append() self.assertIsNone(self.device.commit_replace_config()) def test_commit_replace_config_message(self): """Testing commit replace config with comment message""" self._prefetch_running_config_and_append() self.assertIsNone(self.device.commit_replace_config(comment="good")) def test_commit_replace_config_label(self): """Testing commit replace config with label""" self._prefetch_running_config_and_append() self.assertIsNone(self.device.commit_replace_config(label="test")) def test_commit_replace_config_confirmed(self): """Testing commit replace confirmed""" self._prefetch_running_config_and_append() self.assertIsNone(self.device.commit_replace_config(confirmed=60)) def test_commit_replace_config_confirmed_raise_InvalidInputError(self): """Testing if incorrect value for confirmed replace commit time raises InvalidInputError""" self.assertRaises( InvalidInputError, self.device.commit_replace_config, confirmed=500 ) if __name__ == "__main__": unittest.main()
#!/usr/bin/env python # Copyright 2014 Red Hat, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import copy import os import sys # Parse MAINTAINERS file maintainers = {} module_template = {'maintainers': [], 'status': '', 'files': [], } with open('MAINTAINERS', 'r') as maintainers_file: for line in maintainers_file: if line.startswith('=='): module_name = line[3:-4] maintainers[module_name] = copy.deepcopy(module_template) elif line.startswith('M:'): maintainer_name = line[3:] maintainers[module_name]['maintainers'] = maintainer_name elif line.startswith('S:'): status = line[3:] maintainers[module_name]['status'] = status elif line.startswith('F:'): filename = line[3:-1] maintainers[module_name]['files'].append(filename) # Check that all files in the tree are covered in MAINTAINERS return_value = 0 def find_directory(directory): for module, values in maintainers.items(): if (directory + '/') in values['files']: return print('Directory %s not found in MAINTAINERS' % directory) global return_value return_value = 1 def find_file(filename): for module, values in maintainers.items(): if filename in values['files']: return print('File %s not found in MAINTAINERS' % filename) global return_value return_value = 1 def check_directory(path): skipped_entries = ['__init__.py', 'deprecated', '__pycache__'] for i in os.listdir(path): if i.endswith('.pyc') or i in skipped_entries: continue if os.path.isdir(os.path.join(path, i)): find_directory(i) elif os.path.isfile(os.path.join(path, i)): find_file(i) check_directory('openstack/common') sys.exit(return_value)
from typing import Dict, List import json def assert_properties_unset(metadata: Dict, must_not_be_set: Dict): for (key, must_not_value) in must_not_be_set.items(): if key in metadata: value = metadata[key] if isinstance(must_not_value, dict): assert_properties_unset(value, must_not_value) elif isinstance(must_not_value, list): raise Exception("Not configured to compare lists.") else: # It's a primitive. Shouldn't be set! raise Exception(f"Found key '{key}' with value '{value}'.") def assert_properties_set(metadata: Dict, must_be_set: Dict): for (key, must_value) in must_be_set.items(): if key not in metadata: raise Exception(f"Key '{key}' could not be found.") value = metadata[key] if isinstance(must_value, dict): assert_properties_set(value, must_value) elif isinstance(must_value, list): _assert_all_items_set_in_list(value, must_value, key) elif value != must_value: raise Exception(f"Key '{key}' value is '{value}' but must be '{must_value}'.") def _dict_item_set_in_list(must_item: Dict, values_list: List[Dict]) -> bool: for item in values_list: # noinspection PyBroadException try: assert_properties_set(item, must_item) return True except: pass return False def _assert_all_items_set_in_list(values_list: List, must_values_list: List, key): for must_item in must_values_list: if isinstance(must_item, dict): if _dict_item_set_in_list(must_item, values_list): continue else: raise Exception( f"Could not find matching item in Key '{key}' for expected item '{json.dumps(must_item)}'") elif must_item in values_list: continue else: raise Exception( f"Could not find matching item in Key '{key}' for expected item '{must_item}'")
from stack_and_queue import __version__ import pytest from stack_and_queue.stack_and_queue import Stack , Queue def test_version(): assert __version__ == '0.1.0' def test_push_onto_a_stack(): node = Stack() node.push(1) excepted =1 actual = node.top.data assert excepted == actual def test_push_multiple_values_onto_a_stack(): node = Stack() node.push(1) node.push(2) excepted =2 actual = node.top.data assert excepted == actual def test_pop_off_the_stack(): node = Stack() node.push(1) node.push(2) node.pop() excepted =1 actual = node.top.data assert excepted == actual def test_empty_a_stack_after_multiple_pops(): node = Stack() node.push(1) node.push(2) node.pop() node.pop() excepted =True actual = node.is_empty() assert excepted == actual def test_peek_the_next_item_on_the_stack(): node = Stack() node.push(1) node.push(2) excepted =2 actual = node.peek() assert excepted == actual def test_instantiate_an_empty_stack(): node = Stack() assert node.is_empty() def test_Calling_pop_or_peek_on_empty_stack_raises_exception(): node = Stack() try: node.pop() except Exception as e: assert str(e) == "empty stack" def test_enqueue_into_a_queue(): node = Queue() node.enqueue(1) excepted =1 , 1 actual = node.rear.data , node.front.data assert excepted == actual def test_enqueue_multiple_values_into_a_queue(): node = Queue() node.enqueue(1) node.enqueue(2) excepted =2 , 1 actual = node.rear.data , node.front.data assert excepted == actual def test_dequeue_out_of_a_queue_the_expected_value(): node = Queue() node.enqueue(1) node.enqueue(2) excepted =1 actual = node.dequeue() assert excepted == actual def test_peek_into_a_queue_seeing_the_expected_value(): node = Queue() node.enqueue(2) excepted =2 actual = node.peek() assert excepted == actual def test_empty_a_queue_after_multiple_dequeues(): node = Queue() node.enqueue(1) node.enqueue(2) node.dequeue() node.dequeue() excepted = True actual = node.is_empty() assert excepted == actual def test_instantiate_an_empty_queue(): node = Queue() assert node.is_empty() def test_Calling_dequeue_or_peek_on_empty_queue_raises_exception(): node = Queue() try: node.peek() except Exception as e: assert str(e) == 'empty queue'
"""SCons.Sig.MD5 The MD5 signature package for the SCons software construction utility. """ # # __COPYRIGHT__ # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # __revision__ = "__FILE__ __REVISION__ __DATE__ __DEVELOPER__" import imp import string # Force Python to load the builtin "md5" module. If we do this with a # normal import statement, then case-insensitive systems (Windows) get # confused and thinks there's a case mismatch with *this* MD5.py module. file, name, desc = imp.find_module('md5') try: md5 = imp.load_module('md5', file, name, desc) finally: if file: file.close() def current(new, old): """Return whether a new signature is up-to-date with respect to an old signature. """ return new == old try: md5.new('').hexdigest except AttributeError: # The md5 objects created by the module have no native hexdigest() # method (*cough* 1.5.2 *cough*) so provide an equivalent. class new_md5: def __init__(self, s): self.m = md5.new(str(s)) #def copy(self): # return self.m.copy() def digest(self): return self.m.digest() def hexdigest(self): h = string.hexdigits r = '' for c in self.m.digest(): i = ord(c) r = r + h[(i >> 4) & 0xF] + h[i & 0xF] return r def update(self, s): return self.m.update(s) else: new_md5 = lambda s: md5.new(str(s)) def collect(signatures): """ Collect a list of signatures into an aggregate signature. signatures - a list of signatures returns - the aggregate signature """ if len(signatures) == 1: return signatures[0] else: return new_md5(string.join(signatures, ', ')).hexdigest() def signature(obj): """Generate a signature for an object """ try: gc = obj.get_contents except AttributeError: raise AttributeError, "unable to fetch contents of '%s'" % str(obj) return new_md5(gc()).hexdigest() def to_string(signature): """Convert a signature to a string""" return signature def from_string(string): """Convert a string to a signature""" return string
# Generated by Django 2.0.5 on 2018-09-29 13:42 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('repository', '0006_auto_20180927_2213'), ] operations = [ migrations.AlterField( model_name='article', name='article_classification', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='classification', to='repository.Classification', verbose_name='个人博客文章分类'), ), migrations.AlterField( model_name='article', name='blog', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='article', to='repository.Blog', verbose_name='所属博客'), ), migrations.AlterField( model_name='article_like_dislike', name='article', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='likes', to='repository.Article'), ), migrations.AlterField( model_name='article_like_dislike', name='user', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='likes', to='repository.UserInfo'), ), migrations.AlterField( model_name='classification', name='blog', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='classification', to='repository.Blog', verbose_name='所属博客'), ), migrations.AlterField( model_name='comment', name='article', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='comment', to='repository.Article', verbose_name='评论文章'), ), migrations.AlterField( model_name='comment', name='parent_id', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='repository.Comment'), ), migrations.AlterField( model_name='userinfo', name='nickname', field=models.CharField(max_length=32, unique=True, verbose_name='昵称'), ), ]
from google_trans_new import google_translator from progressbar import progressbar from random import shuffle, randint LANGUAGES = ['af', 'sq', 'am', 'ar', 'hy', 'az', 'eu', 'be', 'bn', 'bs', 'bg', 'ca', 'ceb', 'ny', 'zh-cn', 'zh-tw', 'co', 'hr', 'cs', 'da', 'nl', 'en', 'eo', 'et', 'tl', 'fi', 'fr', 'fy', 'gl', 'ka', 'de', 'el', 'gu', 'ht', 'ha', 'haw', 'iw', 'he', 'hi', 'hmn', 'hu', 'is', 'ig', 'id', 'ga', 'it', 'ja', 'jw', 'kn', 'kk', 'km', 'ko', 'ku', 'ky', 'lo', 'la', 'lv', 'lt', 'lb', 'mk', 'mg', 'ms', 'ml', 'mt', 'mi', 'mr', 'mn', 'my', 'ne', 'no', 'or', 'ps', 'fa', 'pl', 'pt', 'pa', 'ro', 'ru', 'sm', 'gd', 'sr', 'st', 'sn', 'sd', 'si', 'sk', 'sl', 'so', 'es', 'su', 'sw', 'sv', 'tg', 'ta', 'te', 'th', 'tr', 'uk', 'ur', 'ug', 'uz', 'vi', 'cy', 'xh', 'yi', 'yo', 'zu'] with open('in.txt') as f: txt = f.read() lang_num = int(input(f'Enter the number of languages you would like to translate your text to before returning to your main language(there are up to {len(LANGUAGES)} languages): ')) translator = google_translator() src_lang = translator.detect(txt)[0] is_right_src = input(f'Detected source language is "{src_lang}". Is it true? [Y/n] ').lower() if is_right_src != 'y' and is_right_src != '': src_lang = input('Enter input lang in short format("en" for english): ').lower() langs = LANGUAGES.copy() shuffle(langs) langs = [src_lang, *langs[:lang_num], src_lang] lang_to_txt, src_txt = {}, txt for i in progressbar(range(len(langs) - 1)): txt = translator.translate(txt, lang_src=langs[i], lang_tgt=langs[i + 1]) lang_to_txt[langs[i + 1]] = txt print('The result is: ', end='\n\n') print(txt, end='\n\n') list_langs = lambda: print('Your text have made it through this: \n' + ' -> '.join(langs), end='\n\n') list_langs() lang = src_lang while True: print('Enter the language from the list above, you\'d like to view text in.') info_lang = input('(\'src\' to view the meaning in source language): ') if info_lang == 'src': txt = translator.translate(txt, lang_src=lang, lang_tgt=src_lang) print(f'\n{txt}', end='\n\n') elif (txt := lang_to_txt.get(info_lang)) is not None: print(f'\n{txt}', end='\n\n') else: print('\n!!!Ooops, there are no such language, try again!!!', end='\n\n') list_langs() lang = info_lang
from setuptools import setup setup( name="Flask-WTF", install_requires=["Flask", "WTForms", "itsdangerous"], extras_require={"email": ["email-validator"]}, )
#!/usr/bin/python3 from asyncore import write from fileinput import close import math import subprocess import pandas as pd import os import sys from optparse import OptionParser from bio_processing import bio_processing #option_parser optParser = OptionParser() print("check file path: ") print(os.path.dirname(os.path.abspath('__file__'))) #testsubprocess project_name="TEST" input_dir=os.path.dirname(os.path.abspath('__file__')) print(os.listdir(input_dir)) workdir_name=project_name + "_workdir" print(f"Checking the input directory:{input_dir}") subprocess.run(["cd", input_dir]) subprocess.run(["mkdir", workdir_name]) subprocess.run(["ls", "-l"]) #wright_nameList input_dir=os.path.dirname(os.path.abspath('__file__')) print(input_dir) print(os.listdir(input_dir)) with open(input_dir + "/test.list", "w") as f: for i in (os.listdir(input_dir)): name = str(i) f.write(name + "\n") a=bio_processing("TEST",12, '/Users/gaoyang/Documents/COMMENbT/python_learningNote', 3) a.process_test() a.fileRead() #run_PathoFact # def run_pathofact(self) # environment_PathoFact= # subprocess.run(["conda", "activate", environment_PathoFact]) # subprocess.run(["snakemake", "-s", "Snakefile", "--cores", "20", "--reason" "-p" "--use-conda"])
data['2012'].mean().plot(kind='bar')
# -*- coding: utf-8 -*- ''' ขอขอบคุณ คุณ Korakot Chaovavanich‎ สำหรับโค้ด word_frequency จาก https://www.facebook.com/photo.php?fbid=363640477387469&set=gm.434330506948445&type=3&permPage=1 ''' from __future__ import absolute_import,division,unicode_literals,print_function import re import requests import os import codecs def get_word_frequency_all(): ''' get_word_frequency_all() เป็นคำสั่งสำหรับดึงข้อมูล word frequency ของ TTC มาใช้งาน โดยแสดงผลเป็น [(word,frequency),...] ข้อมูลจาก https://raw.githubusercontent.com/korakot/thainlp/master/ttc_freq.txt ''' url="https://raw.githubusercontent.com/korakot/thainlp/master/ttc_freq.txt" path = os.path.join(os.path.expanduser("~"), 'pythainlp-data')#os.path.join(, 'pthainlp_trie.data') if not os.path.exists(path): os.makedirs(path) path = os.path.join(path, 'ttc_freq.txt') if not os.path.exists(path): response = requests.get(url) with open(path, 'wb') as f: f.write(response.content) f.close() with codecs.open(path, 'r',encoding='utf8') as f: lines = f.read().splitlines() f.close() listword=[] for x in lines: listindata=x.split(" ") listword.append((listindata[0],listindata[1])) return listword
# --------------------------------------------------------------------- # Vendor: GWD (GW Delight Technology Co., Ltd) http://www.gwdelight.com # OS: GFA # --------------------------------------------------------------------- # Copyright (C) 2007-2019 The NOC Project # See LICENSE for details # --------------------------------------------------------------------- # NOC modules from noc.core.profile.base import BaseProfile class Profile(BaseProfile): name = "GWD.GFA" pattern_more = [(rb"Press any key to continue", b" ")] pattern_syntax_error = rb"% Unknown command.|% Command incomplete." pattern_unprivileged_prompt = rb"^\S+?>" pattern_prompt = rb"^\S+\(config\)?#" command_super = b"enable" command_disable_pager = "screen lines 0" def convert_interface_name(self, interface): if interface.startswith("eth") or interface.startswith("pon"): interface = interface[3:] return interface
# Generated by Django 2.1.5 on 2019-03-27 18:47 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('gsndb', '0003_auto_20190326_2144'), ] operations = [ migrations.RenameField( model_name='student', old_name='birth_date', new_name='birthdate', ), migrations.RenameField( model_name='student', old_name='program', new_name='current_program', ), ]
from setuptools import setup, find_packages from glob import glob from distutils.extension import Extension # from Cython.Distutils import build_ext from os.path import pathsep import numpy as np try: from Cython.Build import cythonize except ImportError: cythonize = False # Cython extensions ext = '.pyx' if cythonize else '.c' ext_cpp = '.pyx' if cythonize else '.cpp' extensions = [ Extension('dstrf.opt', [f'dstrf/opt{ext}']), Extension('dstrf.dsyevh3C.dsyevh3py', [f'dstrf/dsyevh3C/dsyevh3py{ext_cpp}'], include_dirs=['dsyevh3C']), ] if cythonize: extensions = cythonize(extensions) setup( name="dstrf", description="MEG/EEG source localization tool", long_description='add-on module to eelbrain for neural TRF estimation' 'GitHub: https://github.com/proloyd/DstRF', version="0.3dev", python_requires='>=3.6', install_requires=[ 'eelbrain', ], # metadata for upload to PyPI author="Proloy DAS", author_email="proloy@umd.com", license="apache 2.0", # cmdclass={'build_ext': build_ext}, include_dirs=[np.get_include()], packages=find_packages(), ext_modules=extensions, url='https://github.com/proloyd/DstRF', project_urls={ "Source Code": "https://github.com/proloyd/DstRF/archive/0.2.tar.gz", } )
import sys sys.path.insert(1,"../../../") import h2o from tests import pyunit_utils from h2o.estimators.anovaglm import H2OANOVAGLMEstimator # Simple test to check correct NA handling skip. def testFrameTransform(): train = h2o.import_file(path=pyunit_utils.locate("smalldata/prostate/prostate_complete.csv.zip")) y = 'CAPSULE' x = ['AGE','VOL','DCAPS'] train[10,2] = None train[20,7] = None train[y] = train[y].asfactor() # build model choosing skip model1 = H2OANOVAGLMEstimator(family='binomial', lambda_=0, missing_values_handling="skip") model1.train(x=x, y=y, training_frame=train) # build model deleting the two rows with missing values train.drop([10, 20], axis=0) model2 = H2OANOVAGLMEstimator(family='binomial', lambda_=0, missing_values_handling="skip") model2.train(x=x, y=y, training_frame=train) # the two models should be the same, compare the model summaries summary1 = model1._model_json['output']['model_summary'] summary2 = model2._model_json['output']['model_summary'] pyunit_utils.assert_H2OTwoDimTable_equal_upto(summary1, summary2, summary1.col_header) if __name__ == "__main__": pyunit_utils.standalone_test(testFrameTransform) else: testFrameTransform()
from django.urls import path from .views import ProjectListView, ProjectDetailView app_name = 'upload' urlpatterns = [ path('', ProjectListView.as_view(), name='project-list'), path('projects/<slug:slug>/', ProjectDetailView.as_view(), name='project-detail'), ]
import maya.cmds as cmds from functools import partial # Creates a connection between the 2 selected objects with a reverse node to drive to values in opposite directions of each other based on one attr. # This is mostly used for having a single attr drive the 2 weights on a constraint with 2 sources in opposite of each other. # CRA FEATURE: going forward, add the ability to have 3 or even more inputs driven by the single output. # CRA FEATURE: Add check boxes and filters for filtering the attr lists better. # To use, select the driver, then the driven, then run the tool. textScrollList = None menuDriven0 = None menuDriven1 = None def ReverseAttrHookupUI(*args): print "UI" selection = cmds.ls(sl=True) if len(selection) != 2: cmds.confirmDialog(icon = "warning!!", title = "Reverse Attr Hookup Tool", message = "You must select only 2 objects. Driver then Driven.") return else: driver = selection[0] driven = selection[1] attrsListDriver = cmds.listAttr(driver, o=True, c=True, u=True, s=True, k=False) attrsListDriven = cmds.listAttr(driven, o=True, c=True, u=True, s=True, k=True) if cmds.window("ReverseAttrHookupWin", exists = True): cmds.deleteUI("ReverseAttrHookupWin") window = cmds.window("ReverseAttrHookupWin", w=4300, h=500, title="Reverse Attr Hookup Tool", mxb=True, mnb=True, sizeable=False, rtf=True) mainLayout = cmds.columnLayout(w = 300, h = 400, rs = 5, co = ["both", 5]) cmds.text(l=driver) textScrollList = cmds.textScrollList("artProjCharacterList", w = 290, h = 300, parent = mainLayout, ra=True, ann="This is the attribute that will drive the Driven attributes listed below.") cmds.textScrollList(textScrollList, e=True, a=attrsListDriver) menuDriven0 = cmds.optionMenuGrp(l=driven+" 0", cw=[1, 175], ann="This attribute will be driven as a direct connection from the driver. When the driver is 1, this input will be 1. When the driver is 0, this input will be 0.") for attr in attrsListDriven: cmds.menuItem(l=attr) menuDriven1 = cmds.optionMenuGrp(l=driven+" 1", cw=[1, 175], ann="This attribute will be driven by the driver through a reverse node. When the driver is 1, this input will be 0. When the driver is 0, this input will be 1.") for attr in attrsListDriven: cmds.menuItem(l=attr) buttonUpdate = cmds.button(w = 290, h = 40, label = "Update", c=ReverseAttrHookupUI, ann = "Refresh the UI.", parent = mainLayout) buttonConnect = cmds.button(w = 290, h = 40, label = "Connect", c=partial(ReverseAttrHookup, driver, driven, textScrollList, menuDriven0, menuDriven1), ann = "Connect the Selected Attrs.", parent = mainLayout) cmds.showWindow(window) # This script hooks up the attrs def ReverseAttrHookup(driver, driven, textScrollList, menuDriven0, menuDriven1, *args): print "SCRIPT" driverAttr = cmds.textScrollList(textScrollList, q=True, si=True)[0] drivenAttr0 = cmds.optionMenuGrp(menuDriven0, q=True, v=True) drivenAttr1 = cmds.optionMenuGrp(menuDriven1, q=True, v=True) print driverAttr print drivenAttr0 print drivenAttr1 reverseNode = cmds.shadingNode("reverse", asUtility=True, name=driver+"_reverse") cmds.connectAttr(driver+"."+driverAttr, driven+"."+drivenAttr0, f=True) cmds.connectAttr(driver+"."+driverAttr, reverseNode+".inputX", f=True) cmds.connectAttr(reverseNode+".outputX", driven+"."+drivenAttr1, f=True)
import unittest import pytest import numpy as np from pathlib import Path from rearrangement.datasets_cfg import SYNTHETIC_DATASETS, REAL_DATASETS, DS_DIR from rearrangement.dataset.lmdb import LMDBDataset from rearrangement.dataset.statedataset import StateDataset from rearrangement.dataset.real_scene_dataset import RealSceneDataset ROOT = Path('rearrangement/test') SAMPLE_ROOT = Path('rearrangement/test/datasets_samples/') SAMPLE_ROOT.mkdir(exist_ok=True) class TestDataset(unittest.TestCase): @pytest.mark.train def test_synthetic_datasets(self): for ds in SYNTHETIC_DATASETS: p = Path(DS_DIR) / ds scene_ds = LMDBDataset(p) ds = StateDataset(scene_ds) for _ in range(5): ds[next(iter(ds.make_sampler()))] @pytest.mark.eval def test_real_datasets(self): for ds in REAL_DATASETS[:1]: p = Path(DS_DIR) / ds scene_ds = RealSceneDataset(p) ds = StateDataset(scene_ds, epoch_size=len(scene_ds)) for _ in range(5): ds[np.random.randint(len(ds))]
import json def tojsonsingle(result, file_path="./data.json"): data = {} for i in range(len(result['text'])): data[i] = result['text'][i]['predicted_labels'] with open(file_path, 'w', encoding='utf-8') as outfile: json.dump(data, outfile, ensure_ascii=False) def tojsondual(result1, result2, file_path="./data.json"): data = {} for i in range(len(result1['text'])): if result1['text'][i]['confidence_score'] >= result2['text'][i]['confidence_score']: data[i] = result1['text'][i]['predicted_labels'] else: data[i] = result2['text'][i]['predicted_labels'] with open(file_path, 'w', encoding='utf-8') as outfile: json.dump(data, outfile, ensure_ascii=False) def tojsontrio(result1, result2, result3, file_path="./data.json"): data = {} for i in range(len(result1['text'])): if result1['text'][i]['confidence_score'] >= result2['text'][i]['confidence_score']: maxresult = result1 else: maxresult = result2 if maxresult['text'][i]['confidence_score'] >= result3['text'][i]['confidence_score']: data[i] = maxresult['text'][i]['predicted_labels'] else: data[i] = result3['text'][i]['predicted_labels'] with open(file_path, 'w', encoding='utf-8') as outfile: json.dump(data, outfile, ensure_ascii=False)
import twitter_mention_frequency, twitter_get_user_timeline import NLP_stats_repackaged, Doc_to_Vec_Refactored import network_analysis, network_crawler import Cluster_Analysis_NLP_with_Word_Clouds import twitter_make_geojson, twitter_make_map from nltk import FreqDist import sys from subprocess import call from os import path import time #Assuming you're starting with a profile that actually exists... first_handle = sys.argv[1] #Entering the Twitter handle of person you want to start with. network_neighbors = int(sys.argv[2]) #The number of people to compare with per node at each level levels = int(sys.argv[3]) #The degrees of separation of how far one would want to get def downloading_json(handle): #This function checks if the .jsonl file has been downloaded to the directory. file_name = 'user_timeline_' + handle + '.jsonl' #Converts the handle to the filename of the existing json file. for i in range(2): if path.exists(file_name) == False: time.sleep(6) #Sleep statements are necessary insertions here. If the program isn't given enough time to download a given json file, downloads will keep restarting until the end of the loop taking much longer. twitter_get_user_timeline.getting_timeline(handle) #Downloads the json file if it doesn't exist in the directory continue else: break return file_name #Gives the full username... def getting_file_names(most_mentioned_list): f_name_list = [] #List of json files in the closests neighbors... for i in range(network_neighbors): #The function checks for the most mentioned neighbors specified by network_neighbors parameter. try: f_name_list.append('user_timeline_' + most_mentioned_list[i][0] + '.jsonl') downloading_json(most_mentioned_list[i][0]) #Wait for program to verify that the requisite .jsonl files associated with the user has been downloaded first before proceeding except Exception as e: #Adding this exception in case any file does not end up downloading, prevents crashing of the program. print(e) continue return f_name_list if __name__ == '__main__': json_filenames = network_crawler.network_crawler(first_handle, levels) json_filenames = json_filenames[len(json_filenames)-1] doc_model = Doc_to_Vec_Refactored.doc_similarity(json_filenames) cluster_list, cluster_coordinates, graph_figure, ax = network_analysis.network_building(json_filenames, doc_model, first_handle) geo_list = Cluster_Analysis_NLP_with_Word_Clouds.frequency_analysis(cluster_list, cluster_coordinates, graph_figure, ax, first_handle) larger_coordinates_list, larger_text_list, larger_name_list, geo_list = twitter_make_geojson.main_geo_creator(geo_list) twitter_make_map.make_map(larger_coordinates_list, larger_text_list, larger_name_list, geo_list, first_handle) print(cluster_list)
import sys if len(sys.argv) != 4: print("must enter 3 values") exit(1) cost = float(sys.argv[1]) tip = float(sys.argv[2]) tax = float(sys.argv[3]) tipPercent = (cost * tip) / 100 taxPercent = (cost * tax) / 100 totalCost = cost + tipPercent + taxPercent l = totalCost m = (totalCost * 100) - (1 * 100) if m >= 50: l = l + 1 print(f'The total meal cost is {round(l,2)} dollars.')
from django.contrib import messages from django.contrib.auth.mixins import LoginRequiredMixin from django.contrib.postgres.search import SearchVector from django.shortcuts import redirect from django.urls import reverse_lazy from django.utils import timezone from django.utils.translation import ugettext as _ from django.views.generic import View from django.views.generic.detail import (DetailView, SingleObjectMixin, SingleObjectTemplateResponseMixin) from django.views.generic.edit import BaseUpdateView, CreateView, DeleteView from django.views.generic.list import ListView from timetracker.activities.forms import ActivityFilterForm, ActivityForm from timetracker.activities.models import Activity class ActivityQuerySetMixin: """ Constraint queryset to return activities only created by the current user. """ model = Activity def get_queryset(self): return super().get_queryset().filter(user=self.request.user) class ActivitySingleObjectMixin(ActivityQuerySetMixin, SingleObjectMixin): """ Get SingleObjectMixin with constraints of ActivityQuerysetMixin. """ pass class ActivityCreateView(LoginRequiredMixin, CreateView): """ Create a new activity. """ form_class = ActivityForm template_name = 'activities/activity_create.html' success_url = reverse_lazy('activities:list') def get_form_kwargs(self): kwargs = super().get_form_kwargs() kwargs.update({'user': self.request.user}) return kwargs def form_valid(self, form): response = super().form_valid(form) messages.success(self.request, _('Successfuly created an activity.')) return response class ActivityListView(LoginRequiredMixin, ActivityQuerySetMixin, ListView): """ List and serach the activities. """ def get_queryset(self): start_of_range = self.filter_form.cleaned_data.get('start_date') end_of_range = self.filter_form.cleaned_data.get('end_date') qs = super().get_queryset() if start_of_range and end_of_range: if start_of_range > end_of_range: start_of_range, end_of_range = end_of_range, start_of_range start_of_range = timezone.datetime.combine( start_of_range, timezone.datetime.min.time()) end_of_range = timezone.datetime.combine( end_of_range, timezone.datetime.max.time()) qs &= super().get_queryset().filter( start_datetime__gte=start_of_range, start_datetime__lte=end_of_range) search_query = self.filter_form.cleaned_data['search_query'] if search_query: # Search query using Postgres full-text search. qs &= super().get_queryset().annotate( search=SearchVector( 'activity', 'project', 'description'), ).filter(search=search_query) return qs def get_filter_form(self): """ Get a form object of the filters. """ filter_form_data = self.request.GET.copy() filter_form_data.setdefault( 'start_date', timezone.now().date() - timezone.timedelta(days=7)) filter_form_data.setdefault('end_date', timezone.now().date()) return ActivityFilterForm(filter_form_data) def get(self, request, *args, **kwargs): # Initialise filter form on the get request. self.filter_form = self.get_filter_form() self.filter_form.is_valid() return super().get(request, *args, **kwargs) def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) # Add filter form to the template context so it can be # rendered on the index template. context['filter_form'] = self.filter_form return context class ActivityDetailView(LoginRequiredMixin, ActivitySingleObjectMixin, DetailView): """ Display information about singular activity. """ pass class ActivityUpdateView(LoginRequiredMixin, ActivitySingleObjectMixin, SingleObjectTemplateResponseMixin, BaseUpdateView): """ Update an existing activity. """ form_class = ActivityForm template_name = 'activities/activity_update.html' def form_valid(self, form): response = super().form_valid(form) messages.success(self.request, _('Successfully updated an activity.')) return response class ActivityStopView(ActivitySingleObjectMixin, View): """ Stop an active activity. """ def post(self, *args, **kwargs): obj = self.get_object() obj.stop() messages.success(self.request, _('Successfully stopped an activity.')) return redirect('activities:list') class ActivityDeleteView(ActivitySingleObjectMixin, DeleteView): """ Delete an activity object. """ success_url = reverse_lazy('activities:list') def delete(self, request, *args, **kwargs): response = super().delete(request, *args, **kwargs) messages.success(self.request, _('Successfully deleted an activity')) return response
from pytest import fixture @fixture(scope="module") def add_end_user_advisory(context, api_test_client): api_test_client.parties.add_eua_query() context.end_user_advisory_id = api_test_client.context["end_user_advisory_id"] context.end_user_advisory_name = api_test_client.context["end_user_advisory_name"]
import numpy as np import os from random import Random import glob import sys import imageio import torch from torch.utils.data import Dataset from tqdm import tqdm """ This code is inspired from HW2 of https://cs330.stanford.edu/ """ def get_images(paths, labels, random, nb_samples=None, shuffle=True): """ Takes a set of character folders and labels and returns paths to image files paired with labels. Args: paths: A list of character folders labels: List or numpy array of same length as paths nb_samples: Number of images to retrieve per character Returns: List of (label, image_path) tuples """ if nb_samples is not None: sampler = lambda x: random.sample(x, nb_samples) else: sampler = lambda x: x images_labels = [ (i, os.path.join(path, image)) for i, path in zip(labels, paths) for image in sampler(os.listdir(path)) ] if shuffle: random.shuffle(images_labels) return images_labels def image_file_to_array(filename, dim_input): """ Takes an image path and returns numpy array Args: filename: Image filename dim_input: Flattened shape of image Returns: 1 channel image """ image = imageio.imread(filename) image = image.reshape([dim_input]) image = image.astype(np.float32) / 255.0 image = 1.0 - image return image class Datagenerator(Dataset): def __init__( self, num_classes, num_samples_per_class, data_folder, img_size, dataset_type ): """ Args: num_classes: Number of classes for classification num_samples_per_class: num samples per class data_folder: Data folder image_size: Image size """ self.num_classes = num_classes # Multiplied by 2 to get outer and inner inputs self.num_samples_per_class = 2 * num_samples_per_class self.dim_input = np.prod(img_size) self.dim_output = self.num_classes self.dataset_type = dataset_type self.random = Random(1) character_folders = sorted([ os.path.join(data_folder, family, character) for family in os.listdir(data_folder) if os.path.isdir(os.path.join(data_folder, family)) for character in os.listdir(os.path.join(data_folder, family)) if os.path.isdir(os.path.join(data_folder, family, character)) ]) np.random.seed(111) self.random.shuffle(character_folders) num_val = 100 num_train = 1100 if dataset_type == "train": self.character_folders = character_folders[:num_train] elif dataset_type == "val": self.character_folders = character_folders[num_train : num_train + num_val] elif dataset_type == "test": self.character_folders = character_folders[num_train + num_val :] else: raise ("Wrong dataset type: valid types are train, test and val") self.image_cache = self.load_images(self.character_folders, self.dim_input) def __getitem__(self, index): sampled_character_folders = self.random.sample( self.character_folders, self.num_classes ) labels_and_images = get_images( sampled_character_folders, range(self.num_classes), random=self.random, nb_samples=self.num_samples_per_class, shuffle=False, ) labels = [li[0] for li in labels_and_images] images = [self.image_cache[li[1]] for li in labels_and_images] ims = np.stack(images) labels = np.reshape(labels, (self.num_classes, self.num_samples_per_class)) # labels shape = (num_classes, num_samples_per_class) ims = np.reshape(ims, (self.num_classes, self.num_samples_per_class, -1)) # ims shape = (num_classes, num_samples_per_class, dim_input) inner_inputs, outer_inputs = ( ims[:, 0 : self.num_samples_per_class // 2, :], ims[:, self.num_samples_per_class // 2 :, :], ) inner_labels, outer_labels = ( labels[:, 0 : self.num_samples_per_class // 2], labels[:, self.num_samples_per_class // 2 :], ) # Shuffle the order of classes in both inner and outer inputs, so that the model does not memorize the order perm_inner = np.random.permutation(self.num_classes) perm_outer = np.random.permutation(self.num_classes) inner_inputs = inner_inputs[perm_inner, :] inner_labels = inner_labels[perm_inner, :] outer_inputs = outer_inputs[perm_outer, :] outer_labels = outer_labels[perm_outer, :] return { "inner_inputs": torch.FloatTensor(inner_inputs), "inner_labels": torch.LongTensor(inner_labels), "outer_inputs": torch.FloatTensor(outer_inputs), "outer_labels": torch.LongTensor(outer_labels), } def __len__(self): return int(1e6) def load_images(self, folders, dim_input): images = dict() for folder in tqdm(folders): files = glob.glob(folder + "/**/*.png", recursive=True) for f in files: images[f] = image_file_to_array(f, dim_input) return images
import pytest from weaverbird.backends.sql_translator.metadata import ColumnMetadata, SqlQueryMetadataManager from weaverbird.backends.sql_translator.steps import translate_dateextract from weaverbird.backends.sql_translator.steps.utils.query_transformation import ( get_query_for_date_extract, ) from weaverbird.backends.sql_translator.types import SQLQuery from weaverbird.pipeline.steps import DateExtractStep @pytest.fixture def query_date(): return SQLQuery( query_name='SELECT_STEP_0', transformed_query='WITH SELECT_STEP_0 AS (SELECT * FROM products)', selection_query='SELECT TOTO, RAICHU, FLORIZARRE FROM SELECT_STEP_0', metadata_manager=SqlQueryMetadataManager( tables_metadata={ 'TABLE1': {'TOTO': 'text', 'RAICHU': 'int', 'FLORIZARRE': 'text', 'DATE': 'date'} }, ), ) def test_translate_simple_date_extract(query_date): step = DateExtractStep(name='dateextract', column='DATE', date_info=['year']) query = translate_dateextract( step, query_date, index=1, ) expected_transformed_query = ( "WITH SELECT_STEP_0 AS (SELECT * FROM products), DATEEXTRACT_STEP_1 AS (SELECT TOTO, RAICHU, FLORIZARRE, " "DATE, EXTRACT(year from to_timestamp(DATE)) AS DATE_YEAR FROM SELECT_STEP_0)" ) assert query.transformed_query == expected_transformed_query assert ( query.selection_query == 'SELECT TOTO, RAICHU, FLORIZARRE, DATE, DATE_YEAR FROM DATEEXTRACT_STEP_1' ) assert query.query_name == 'DATEEXTRACT_STEP_1' # assert on metadatas assert query.metadata_manager.retrieve_query_metadata_columns() == { 'DATE': ColumnMetadata( name='DATE', original_name='DATE', type='DATE', original_type='date', alias=None, delete=False, ), 'DATE_YEAR': ColumnMetadata( name='DATE_YEAR', original_name='DATE_YEAR', type='DATE', original_type='date', alias=None, delete=False, ), 'FLORIZARRE': ColumnMetadata( name='FLORIZARRE', original_name='FLORIZARRE', type='TEXT', original_type='text', alias=None, delete=False, ), 'RAICHU': ColumnMetadata( name='RAICHU', original_name='RAICHU', type='INT', original_type='int', alias=None, delete=False, ), 'TOTO': ColumnMetadata( name='TOTO', original_name='TOTO', type='TEXT', original_type='text', alias=None, delete=False, ), } def test_translate_complex_date_extract(query_date): step = DateExtractStep( name='dateextract', column='DATE', date_info=[ 'year', 'previousDay', 'firstDayOfPreviousYear', 'firstDayOfPreviousMonth', 'firstDayOfPreviousWeek', 'dayOfYear', 'isoYear', 'isoWeek', 'isoDayOfWeek', 'day', 'week', ], ) query = translate_dateextract( step, query_date, index=1, ) expected_transformed_query = ( "WITH SELECT_STEP_0 AS (SELECT * FROM products), " "DATEEXTRACT_STEP_1 AS (SELECT TOTO, RAICHU, FLORIZARRE, DATE, EXTRACT(year from to_timestamp(DATE)) AS DATE_YEAR, " "(DATE_TRUNC(day, to_timestamp(DATE) - interval '1 day')) AS DATE_PREVIOUSDAY, " "(TO_TIMESTAMP_NTZ(DATE_TRUNC(year, to_timestamp(DATE))) - interval '1 year') AS DATE_FIRSTDAYOFPREVIOUSYEAR, " "(TO_TIMESTAMP_NTZ(DATE_TRUNC(month, to_timestamp(DATE))) - interval '1 month') AS DATE_FIRSTDAYOFPREVIOUSMONTH, " "(DATE_TRUNC(day, DATEADD(day, -(DAYOFWEEKISO(to_timestamp(DATE)) % 7 + 1)+1, to_timestamp(DATE))) - interval '1 week') AS DATE_FIRSTDAYOFPREVIOUSWEEK, " "EXTRACT(dayofyear from to_timestamp(DATE)) AS DATE_DAYOFYEAR, " "(YEAROFWEEKISO(to_timestamp(DATE))) AS DATE_ISOYEAR, " "(WEEKISO(to_timestamp(DATE))) AS DATE_ISOWEEK, " "(DAYOFWEEKISO(to_timestamp(DATE))) AS DATE_ISODAYOFWEEK, " "EXTRACT(day from to_timestamp(DATE)) AS DATE_DAY, " "EXTRACT(week from to_timestamp(DATE)) AS DATE_WEEK FROM SELECT_STEP_0)" ) assert query.transformed_query == expected_transformed_query assert ( query.selection_query == "SELECT TOTO, RAICHU, FLORIZARRE, DATE, DATE_YEAR, DATE_PREVIOUSDAY, DATE_FIRSTDAYOFPREVIOUSYEAR, " "DATE_FIRSTDAYOFPREVIOUSMONTH, DATE_FIRSTDAYOFPREVIOUSWEEK, DATE_DAYOFYEAR, DATE_ISOYEAR, DATE_ISOWEEK, " "DATE_ISODAYOFWEEK, DATE_DAY, DATE_WEEK FROM DATEEXTRACT_STEP_1" ) assert query.query_name == 'DATEEXTRACT_STEP_1' # assert on metadatas assert query.metadata_manager.retrieve_query_metadata_columns() == { 'DATE': ColumnMetadata( name='DATE', original_name='DATE', type='DATE', original_type='date', alias=None, delete=False, ), 'DATE_DAY': ColumnMetadata( name='DATE_DAY', original_name='DATE_DAY', type='DATE', original_type='date', alias=None, delete=False, ), 'DATE_DAYOFYEAR': ColumnMetadata( name='DATE_DAYOFYEAR', original_name='DATE_DAYOFYEAR', type='DATE', original_type='date', alias=None, delete=False, ), 'DATE_FIRSTDAYOFPREVIOUSMONTH': ColumnMetadata( name='DATE_FIRSTDAYOFPREVIOUSMONTH', original_name='DATE_FIRSTDAYOFPREVIOUSMONTH', type='DATE', original_type='date', alias=None, delete=False, ), 'DATE_FIRSTDAYOFPREVIOUSWEEK': ColumnMetadata( name='DATE_FIRSTDAYOFPREVIOUSWEEK', original_name='DATE_FIRSTDAYOFPREVIOUSWEEK', type='DATE', original_type='date', alias=None, delete=False, ), 'DATE_FIRSTDAYOFPREVIOUSYEAR': ColumnMetadata( name='DATE_FIRSTDAYOFPREVIOUSYEAR', original_name='DATE_FIRSTDAYOFPREVIOUSYEAR', type='DATE', original_type='date', alias=None, delete=False, ), 'DATE_ISODAYOFWEEK': ColumnMetadata( name='DATE_ISODAYOFWEEK', original_name='DATE_ISODAYOFWEEK', type='DATE', original_type='date', alias=None, delete=False, ), 'DATE_ISOWEEK': ColumnMetadata( name='DATE_ISOWEEK', original_name='DATE_ISOWEEK', type='DATE', original_type='date', alias=None, delete=False, ), 'DATE_ISOYEAR': ColumnMetadata( name='DATE_ISOYEAR', original_name='DATE_ISOYEAR', type='DATE', original_type='date', alias=None, delete=False, ), 'DATE_PREVIOUSDAY': ColumnMetadata( name='DATE_PREVIOUSDAY', original_name='DATE_PREVIOUSDAY', type='DATE', original_type='date', alias=None, delete=False, ), 'DATE_WEEK': ColumnMetadata( name='DATE_WEEK', original_name='DATE_WEEK', type='DATE', original_type='date', alias=None, delete=False, ), 'DATE_YEAR': ColumnMetadata( name='DATE_YEAR', original_name='DATE_YEAR', type='DATE', original_type='date', alias=None, delete=False, ), 'FLORIZARRE': ColumnMetadata( name='FLORIZARRE', original_name='FLORIZARRE', type='TEXT', original_type='text', alias=None, delete=False, ), 'RAICHU': ColumnMetadata( name='RAICHU', original_name='RAICHU', type='INT', original_type='int', alias=None, delete=False, ), 'TOTO': ColumnMetadata( name='TOTO', original_name='TOTO', type='TEXT', original_type='text', alias=None, delete=False, ), } def test_translate_with_new_columns_date_extract(query_date): step = DateExtractStep( name='dateextract', column='DATE', date_info=['year'], new_columns=['ZOZOR'] ) query = translate_dateextract( step, query_date, index=1, ) expected_transformed_query = ( "WITH SELECT_STEP_0 AS (SELECT * FROM products), DATEEXTRACT_STEP_1 AS (SELECT TOTO, RAICHU, FLORIZARRE, " "DATE, EXTRACT(year from to_timestamp(DATE)) AS ZOZOR FROM SELECT_STEP_0)" ) assert query.transformed_query == expected_transformed_query assert ( query.selection_query == 'SELECT TOTO, RAICHU, FLORIZARRE, DATE, ZOZOR FROM DATEEXTRACT_STEP_1' ) assert query.query_name == 'DATEEXTRACT_STEP_1' # assert on metadatas assert query.metadata_manager.retrieve_query_metadata_columns() == { 'DATE': ColumnMetadata( name='DATE', original_name='DATE', type='DATE', original_type='date', alias=None, delete=False, ), 'FLORIZARRE': ColumnMetadata( name='FLORIZARRE', original_name='FLORIZARRE', type='TEXT', original_type='text', alias=None, delete=False, ), 'RAICHU': ColumnMetadata( name='RAICHU', original_name='RAICHU', type='INT', original_type='int', alias=None, delete=False, ), 'TOTO': ColumnMetadata( name='TOTO', original_name='TOTO', type='TEXT', original_type='text', alias=None, delete=False, ), 'ZOZOR': ColumnMetadata( name='ZOZOR', original_name='ZOZOR', type='DATE', original_type='date', alias=None, delete=False, ), } def test_utils_query_for_date_extract(): date_infos__expected_sql = { 'year': "EXTRACT(year from to_timestamp(DATE)) AS NEW_COLUMN", 'month': "EXTRACT(month from to_timestamp(DATE)) AS NEW_COLUMN", 'day': "EXTRACT(day from to_timestamp(DATE)) AS NEW_COLUMN", 'week': "EXTRACT(week from to_timestamp(DATE)) AS NEW_COLUMN", 'quarter': "EXTRACT(quarter from to_timestamp(DATE)) AS NEW_COLUMN", 'dayOfWeek': "(DAYOFWEEKISO(to_timestamp(DATE)) % 7 + 1) AS NEW_COLUMN", 'dayOfYear': "EXTRACT(dayofyear from to_timestamp(DATE)) AS NEW_COLUMN", 'isoYear': "(YEAROFWEEKISO(to_timestamp(DATE))) AS NEW_COLUMN", 'isoWeek': "(WEEKISO(to_timestamp(DATE))) AS NEW_COLUMN", 'isoDayOfWeek': "(DAYOFWEEKISO(to_timestamp(DATE))) AS NEW_COLUMN", 'hour': "EXTRACT(hour from to_timestamp(DATE)) AS NEW_COLUMN", 'minutes': "EXTRACT(minute from to_timestamp(DATE)) AS NEW_COLUMN", 'seconds': "EXTRACT(second from to_timestamp(DATE)) AS NEW_COLUMN", 'milliseconds': "(ROUND(EXTRACT(nanosecond FROM to_timestamp(DATE))/1000000)) AS NEW_COLUMN", 'firstDayOfYear': "(TO_TIMESTAMP_NTZ(DATE_TRUNC(year, to_timestamp(DATE)))) AS NEW_COLUMN", 'firstDayOfMonth': "(TO_TIMESTAMP_NTZ(DATE_TRUNC(month, to_timestamp(DATE)))) AS NEW_COLUMN", 'firstDayOfWeek': "(DATE_TRUNC(day, DATEADD(day, -(DAYOFWEEKISO(to_timestamp(DATE)) % 7 + 1)+1, to_timestamp(DATE)))) AS NEW_COLUMN", 'firstDayOfIsoWeek': "(DATE_TRUNC(day, DATEADD(day, -DAYOFWEEKISO(to_timestamp(DATE))+1, to_timestamp(DATE)))) AS NEW_COLUMN", 'firstDayOfQuarter': "(TO_TIMESTAMP_NTZ(DATE_TRUNC(quarter, to_timestamp(DATE)))) AS NEW_COLUMN", 'previousDay': "(DATE_TRUNC(day, to_timestamp(DATE) - interval '1 day')) AS NEW_COLUMN", 'firstDayOfPreviousYear': "(TO_TIMESTAMP_NTZ(DATE_TRUNC(year, to_timestamp(DATE))) - interval '1 year') AS NEW_COLUMN", 'firstDayOfPreviousMonth': "(TO_TIMESTAMP_NTZ(DATE_TRUNC(month, to_timestamp(DATE))) - interval '1 month') AS NEW_COLUMN", 'firstDayOfPreviousWeek': "(DATE_TRUNC(day, DATEADD(day, -(DAYOFWEEKISO(to_timestamp(DATE)) % 7 + 1)+1, to_timestamp(DATE))) - interval '1 week') AS NEW_COLUMN", 'firstDayOfPreviousQuarter': "(TO_TIMESTAMP_NTZ(DATE_TRUNC(quarter, to_timestamp(DATE))) - interval '1 quarter') AS NEW_COLUMN", 'firstDayOfPreviousIsoWeek': "(DATE_TRUNC(day, DATEADD(day, -DAYOFWEEKISO(to_timestamp(DATE))+1, to_timestamp(DATE))) - interval '1 week') AS NEW_COLUMN", 'previousYear': "(YEAR(to_timestamp(DATE) - interval '1 year')) AS NEW_COLUMN", 'previousMonth': "(MONTH(to_timestamp(DATE) - interval '1 month')) AS NEW_COLUMN", 'previousWeek': "(WEEK(to_timestamp(DATE) - interval '1 week')) AS NEW_COLUMN", 'previousQuarter': "(QUARTER(to_timestamp(DATE) - interval '1 quarter')) AS NEW_COLUMN", 'previousIsoWeek': "(WEEKISO(to_timestamp(DATE) - interval '1 week')) AS NEW_COLUMN", } # a loop to evaluate all date-info and the sql output for dd in date_infos__expected_sql: assert ( get_query_for_date_extract( dd, "DATE", "NEW_COLUMN", ) == date_infos__expected_sql[dd] )
# encoding:utf-8 from app import app, db from flask import g, abort from app.submission.models import Submission from app.common.models import JudgementStatus from app.common.user import User from utils import success, get_day_zero_time from datetime import datetime, timedelta from sqlalchemy import and_ @app.route('/rank') def get_rank(): user_list = User.query.all() user_dict = {} user_ac_count = {} for user in user_list: user_dict[user.id] = user.to_public_dict() submissions = Submission.query.filter(and_( Submission.user_id == user.id, Submission.result == JudgementStatus.ACCEPTED )).all() user_ac_count[user.id] = len(submissions) items = sorted(user_ac_count.items(), key=lambda item: item[1], reverse=True) resp = [] for item in items: submissions = Submission.query.filter_by(user_id=item[0]).all() resp.append({ 'user': user_dict[item[0]], 'ac_count': item[1], 'submissions_count': len(submissions) }) return success(resp) @app.route('/rank/week') def get_week_rank(): now = datetime.now() zero_time = get_day_zero_time(now) start = zero_time - timedelta(days=zero_time.weekday()) # 本周起始时间 start_str = '{0:%Y-%m-%d %H:%M:%S}'.format(start) now_str = '{0:%Y-%m-%d %H:%M:%S}'.format(now) sql = """ select u.id, u.username, u.avatar_url, count(*) from submissions s left join users u on u.id = s.user_id where s.timestamp > '{}' and s.timestamp < '{}' and s.result = 0 group by s.user_id; """.format(start_str, now_str) cursor = db.session.execute(sql) result_set = cursor.fetchall() result = [] for row in result_set: result.append({ 'id': row[0], 'username': row[1], 'avatar_url': row[2], 'count': row[3] }) if len(result) < 3: for i in range(3 - len(result)): result.append({ 'id': None, 'username': '暂无人选', 'avatar_url': None, 'count': 0 }) return success(result)
from ... import config if config.get('qapp', False): from .consolepanel import MainThreadConsole, SubThreadConsole, ChildProcessConsole, ChildThreadConsole from .consoleproxy import ConsoleGuiProxy
""" pip-review lets you smoothly manage all available PyPI updates. """ from setuptools import setup setup( name='pip-review', version='1.1.0', url='https://github.com/jgonggrijp/pip-review', license='BSD', author='Julian Gonggrijp, Vincent Driessen', author_email='j.gonggrijp@gmail.com', description=__doc__.strip('\n'), long_description=open('README.rst').read(), long_description_content_type='text/x-rst', packages=[ 'pip_review', ], entry_points={ 'console_scripts': [ 'pip-review = pip_review.__main__:main', ], }, #include_package_data=True, zip_safe=False, platforms='any', install_requires=[ 'packaging', 'pip', ], python_requires='>=2.7, !=3.0, !=3.1, !=3.2', classifiers=[ # As from https://pypi.python.org/pypi?%3Aaction=list_classifiers #'Development Status :: 1 - Planning', #'Development Status :: 2 - Pre-Alpha', #'Development Status :: 3 - Alpha', #'Development Status :: 4 - Beta', 'Development Status :: 5 - Production/Stable', #'Development Status :: 6 - Mature', #'Development Status :: 7 - Inactive', 'Programming Language :: Python', 'Programming Language :: Python :: 2', #'Programming Language :: Python :: 2.3', #'Programming Language :: Python :: 2.4', #'Programming Language :: Python :: 2.5', #'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', #'Programming Language :: Python :: 3.0', #'Programming Language :: Python :: 3.1', #'Programming Language :: Python :: 3.2', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Intended Audience :: Developers', 'Intended Audience :: System Administrators', 'License :: OSI Approved :: BSD License', 'Operating System :: OS Independent', 'Topic :: System :: Systems Administration', ] )
# Generated by Django 3.1.3 on 2020-12-16 21:39 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('solver', '0003_parent_solve_attempt'), ] operations = [ migrations.AddField( model_name='parent', name='initialized', field=models.BooleanField(default=False), ), ]
#!/usr/bin/env python3 """ Load necessary values from the coursera sql extract into a sqlite3 database. """ import json import os import sys from csv import reader, field_size_limit from datetime import datetime from sqlite3 import connect, Error from bs4 import BeautifulSoup from gensim.parsing.preprocessing import preprocess_string DIR_PATH = os.path.dirname(os.path.realpath(__file__)) DB_NAME = "dump_coursera_partial.sqlite3" DB_FILE = os.path.join(DIR_PATH, DB_NAME) DATA_PATH = os.path.join(DIR_PATH, "data") COURSES = [ "agile_planning_for_software_products", "client_needs_and_software_requirements", "design_patterns", "introduction_to_software_product_management", "object_oriented_design", "reviews_and_metrics_for_software_improvements", "service_oriented_architecture", "software_architecture", "software_processes_and_agile_practices", "software_product_management_capstone" ] CSV_KWARGS = { "delimiter": ",", "quotechar": "\"", "escapechar": "\\" } def create_database(conn): """create necessary database tables""" sql_create_courses = """ CREATE TABLE IF NOT EXISTS courses ( course_id VARCHAR(50), course_slug VARCHAR(2000), course_name VARCHAR(2000), course_launch_ts DATETIME, course_update_ts DATETIME, course_deleted BOOLEAN, course_graded BOOLEAN, course_desc VARCHAR(10000), course_restricted BOOLEAN, course_verification_enabled_at_ts DATETIME, primary_translation_equivalent_course_id VARCHAR(50), course_preenrollment_ts DATETIME, course_workload VARCHAR(100), course_session_enabled_ts DATETIME, course_promo_photo_s3_bucket VARCHAR(255), course_promo_photo_s3_key VARCHAR(10000), course_level VARCHAR(50), course_planned_launch_date_text VARCHAR(255), course_header_image_s3_bucket VARCHAR(255), course_header_image_s3_key VARCHAR(10000), PRIMARY KEY (course_id) )""" sql_create_course_branches = """ CREATE TABLE IF NOT EXISTS course_branches ( course_id VARCHAR(50), course_branch_id VARCHAR(50), course_branch_changes_description VARCHAR(65535), authoring_course_branch_name VARCHAR(255), authoring_course_branch_created_ts DATETIME, PRIMARY KEY (course_id, course_branch_id) )""" sql_create_course_branch_modules = """ CREATE TABLE IF NOT EXISTS course_branch_modules ( course_branch_id VARCHAR(50), course_module_id VARCHAR(50), course_branch_module_order INT8, course_branch_module_name VARCHAR(2000), course_branch_module_desc VARCHAR(10000) )""" sql_create_course_branch_lessons = """ CREATE TABLE IF NOT EXISTS course_branch_lessons ( course_branch_id VARCHAR(50), course_lesson_id VARCHAR(50), course_module_id VARCHAR(50), course_branch_lesson_order INT8, course_branch_lesson_name VARCHAR(10000) ); """ sql_create_course_branch_items = """ CREATE TABLE IF NOT EXISTS course_branch_items ( course_branch_id VARCHAR(255), course_item_id VARCHAR(255), course_lesson_id VARCHAR(255), course_branch_item_order INT8, course_item_type_id INT8, course_branch_item_name VARCHAR(255), course_branch_item_optional BOOLEAN, atom_id VARCHAR(255), atom_version_id INT8, course_branch_atom_is_frozen BOOLEAN, PRIMARY KEY (course_branch_id, course_item_id) )""" sql_create_course_item_types = """ CREATE TABLE IF NOT EXISTS course_item_types ( course_item_type_id INT8, course_item_type_desc VARCHAR(255), course_item_type_category VARCHAR(255), course_item_type_graded BOOLEAN, atom_content_type_id INT8, PRIMARY KEY (course_item_type_id) )""" sql_create_discussion_course_forums = """ CREATE TABLE IF NOT EXISTS discussion_course_forums ( discussion_forum_id VARCHAR(50), course_branch_id VARCHAR(50), discussion_course_forum_title VARCHAR(20000), discussion_course_forum_description VARCHAR(20000), discussion_course_forum_order INT8 )""" sql_create_discussion_questions = """ CREATE TABLE IF NOT EXISTS discussion_questions ( discussion_question_id VARCHAR(50), ualberta_user_id VARCHAR(50) NOT NULL, discussion_question_title VARCHAR(20000), discussion_question_details VARCHAR(20000), discussion_question_context_type VARCHAR(50), course_id VARCHAR(50), course_module_id VARCHAR(50), course_item_id VARCHAR(50), discussion_forum_id VARCHAR(50), country_cd VARCHAR(2), group_id VARCHAR(50), discussion_question_created_ts DATETIME, discussion_question_updated_ts DATETIME )""" sql_create_discussion_answers = """ CREATE TABLE IF NOT EXISTS discussion_answers ( discussion_answer_id VARCHAR(50), ualberta_user_id VARCHAR(50) NOT NULL, course_id VARCHAR(50), discussion_answer_content VARCHAR(20000), discussion_question_id VARCHAR(50), discussion_answer_parent_discussion_answer_id VARCHAR(50), discussion_answer_created_ts DATETIME, discussion_answer_updated_ts DATETIME )""" c = conn.cursor() c.execute(sql_create_courses) c.execute(sql_create_course_branches) c.execute(sql_create_course_branch_modules) c.execute(sql_create_course_branch_lessons) c.execute(sql_create_course_item_types) c.execute(sql_create_course_branch_items) c.execute(sql_create_discussion_course_forums) c.execute(sql_create_discussion_questions) c.execute(sql_create_discussion_answers) conn.commit() def load_data_from_csv(csv_path, conn, tbl_name): c = conn.cursor() with open(csv_path) as csvfile: csv_reader = reader(csvfile, **CSV_KWARGS) headers = next(csv_reader) for line in csv_reader: q_s = ",".join(["?", ] * len(line)) c.execute( f"INSERT OR REPLACE INTO {tbl_name} VALUES ({q_s})", line) conn.commit() def load_course_data(course_data_path, conn): for course_file in sorted(os.listdir(course_data_path)): csv_path = os.path.join(course_data_path, course_file) if course_file == "courses.csv": load_data_from_csv(csv_path, conn, "courses") elif course_file == "course_branches.csv": load_data_from_csv(csv_path, conn, "course_branches") elif course_file == "course_branch_modules.csv": load_data_from_csv(csv_path, conn, "course_branch_modules") elif course_file == "course_branch_lessons.csv": load_data_from_csv(csv_path, conn, "course_branch_lessons") elif course_file == "course_branch_items.csv": load_data_from_csv(csv_path, conn, "course_branch_items") elif course_file == "course_item_types.csv": load_data_from_csv(csv_path, conn, "course_item_types") elif course_file == "discussion_course_forums.csv": load_data_from_csv(csv_path, conn, "discussion_course_forums") elif course_file == "discussion_questions.csv": load_data_from_csv(csv_path, conn, "discussion_questions") elif course_file == "discussion_answers.csv": load_data_from_csv(csv_path, conn, "discussion_answers") def parse_and_load_course_branch_item(course_data_path, conn, course_zip_name): """take all of the course branch item content and create vocabulary """ content_path = os.path.join(course_data_path, "course_branch_item_content") course_slug = course_zip_name.replace("_", "-") sql_select_course_id = ( "SELECT DISTINCT course_branch_items.course_branch_id, " + "course_item_id, course_branch_module_name, " + "course_branch_lesson_name, course_branch_item_name FROM " + "course_branch_modules, course_branch_lessons, course_branch_items, " + "course_branches, courses WHERE course_slug = (?) " + "AND courses.course_id == course_branches.course_id " + "AND course_branches.course_branch_id == course_branch_items.course_branch_id " + "AND course_branch_items.course_lesson_id == course_branch_lessons.course_lesson_id " + "AND course_branch_lessons.course_module_id == course_branch_modules.course_module_id" ) c = conn.cursor() c.execute(sql_select_course_id, (course_slug,)) # module name > lesson name > item name > to processed vocabulary (list of words) course_vocabulary = {} rows = c.fetchmany() while rows: for row in rows: (course_branch_id, course_item_id, course_branch_module_name, course_branch_lesson_name, course_branch_item_name,) = row # load the raw json file for branch item course_branch_item_path = os.path.join( content_path, "{}-{}.json".format(course_branch_id, course_item_id)) with open(course_branch_item_path, "r") as cbif: # attempt to load the json file, otherwise continue try: raw_cbi = json.load(cbif) except Exception as e: print(e) continue try: if raw_cbi["message"] == "" and raw_cbi["statusCode"] == 204 and raw_cbi["reason"] == "ignore assesments": continue except KeyError: pass try: if raw_cbi["message"] == "" and raw_cbi["statusCode"] == 404: continue except KeyError: pass try: if raw_cbi["message"] == None and raw_cbi["errorCode"] == "Not Authorized": continue except KeyError: pass try: if raw_cbi["message"].startswith("No item ItemId(") and raw_cbi["errorCode"] == None: continue except KeyError: pass normalized_processed_text = None try: # try to get the definition value of the item definition_raw_html = raw_cbi["linked"]["openCourseAssets.v1"][0]["definition"]["value"] definition_text = " ".join(BeautifulSoup( definition_raw_html, "html.parser").stripped_strings) normalized_processed_text = preprocess_string( definition_text) update_course_vocabulary( course_vocabulary, course_branch_module_name, course_branch_lesson_name, course_branch_item_name, normalized_processed_text) continue except KeyError: pass try: # check if the branch item is a video with subtitles, get subtitles subtitles_lookup = raw_cbi["linked"]["onDemandVideos.v1"][0]["subtitlesTxt"] if not subtitles_lookup.keys(): continue # no subtitles for the video subtitle_filepath = course_branch_item_path + ".subtitles.txt" with open(subtitle_filepath, "r") as subfp: subtitle_raw_text = "".join(subfp.readlines()) normalized_processed_text = preprocess_string( subtitle_raw_text) update_course_vocabulary( course_vocabulary, course_branch_module_name, course_branch_lesson_name, course_branch_item_name, normalized_processed_text) continue except KeyError: pass raise Error("unhandled cbi") rows = c.fetchmany() # save the course_vocabulary to disk vocab_filepath = os.path.join( course_data_path, "..", "vocabulary.{}.json".format(course_slug)) with open(vocab_filepath, "w") as vocab_file: json.dump(course_vocabulary, vocab_file) def update_course_vocabulary(course_vocabulary, course_branch_module_name, course_branch_lesson_name, course_branch_item_name, normalized_processed_text): course_branch_module = course_vocabulary.get(course_branch_module_name, {}) course_branch_lesson = course_branch_module.get( course_branch_lesson_name, {}) course_branch_item = course_branch_lesson.get(course_branch_item_name, []) course_branch_item.extend(normalized_processed_text) course_branch_lesson[course_branch_item_name] = course_branch_item course_branch_module[course_branch_lesson_name] = course_branch_lesson course_vocabulary[course_branch_module_name] = course_branch_module def parse_and_load_discussion_questions(course_data_path, conn, course_zip_name): """load, parse, process discussion questions """ course_slug = course_zip_name.replace("_", "-") sql_select_discussion_question = ( "SELECT discussion_question_id, discussion_question_title, " + "discussion_question_details " + "FROM discussion_questions, courses WHERE " + "discussion_questions.course_id == courses.course_id AND " + "courses.course_slug == (?)" ) c = conn.cursor() c.execute(sql_select_discussion_question, (course_slug,)) course_questions = {} rows = c.fetchmany() while rows: for row in rows: question_id, question_title, question_details = row course_questions[question_id] = ( preprocess_string(question_title) + preprocess_string(question_details) ) rows = c.fetchmany() # save the course_questions to disk questions_filepath = os.path.join( course_data_path, "..", "questions.{}.json".format(course_slug)) with open(questions_filepath, "w") as questions_file: json.dump(course_questions, questions_file) def parse_and_load_discussion_answers(course_data_path, conn, course_zip_name): """load, parse, process discussion answers """ course_slug = course_zip_name.replace("_", "-") sql_select_discussion_answer = ( "SELECT discussion_answer_id, discussion_answer_content " + "FROM discussion_answers, courses WHERE " + "discussion_answers.course_id == courses.course_id AND " + "courses.course_slug == (?)" ) c = conn.cursor() c.execute(sql_select_discussion_answer, (course_slug,)) course_answers = {} rows = c.fetchmany() while rows: for row in rows: answer_id, answer_content = row course_answers[answer_id] = preprocess_string(answer_content) rows = c.fetchmany() # save the course_answers to disk answers_filepath = os.path.join( course_data_path, "..", "answers.{}.json".format(course_slug)) with open(answers_filepath, "w") as answers_file: json.dump(course_answers, answers_file) def main(): conn = None try: field_size_limit(sys.maxsize) # GHMatches csv threw error conn = connect(DB_FILE) sc_start = datetime.now() print(f"Started {sc_start.now()}") create_database(conn) for course in COURSES: print(course) course_data_path = os.path.join(DATA_PATH, course) load_course_data(course_data_path, conn) parse_and_load_course_branch_item(course_data_path, conn, course) parse_and_load_discussion_questions(course_data_path, conn, course) parse_and_load_discussion_answers(course_data_path, conn, course) conn.commit() sc_end = datetime.now() print(f"Ended {sc_end}") print(f"Elapsed: {sc_end - sc_start}") except Error as e: print(e) finally: if conn: conn.close() if __name__ == "__main__": main()
"""Tests cac.models.dimensionality_reduction.DimensionalityReductionModel""" import os from os.path import dirname, join, exists from copy import deepcopy import torch import wandb import unittest from tqdm import tqdm from torch.nn import Conv2d, BatchNorm2d, LeakyReLU from cac.config import Config from cac.utils.logger import set_logger, color from cac.models.dimensionality_reduction import DimensionalityReductionModel from cac.models.utils import get_saved_checkpoint_path class DimensionalityReductionModelTestCase(unittest.TestCase): """Class to check the creation of DimensionalityReductionModel""" @classmethod def setUpClass(cls): version = 'defaults/unsupervised.yml' cls.cfg = Config(version) cls.cfg.data['dataset']['params'] = { 'all': { 'fraction': 0.01 } } cls.cfg.num_workers = 10 def test_pca_model_fitting(self): """Test model.fit()""" set_logger(join(self.cfg.log_dir, 'unsupervised.log')) tester_cfg = deepcopy(self.cfg) reduction_model = DimensionalityReductionModel(tester_cfg) data = reduction_model.fit(return_predictions=True) X, Z, Y = data['input'], data['latent'], data['labels'] self.assertEqual(Z.shape[-1], 2) self.assertEqual(X.shape[0], Z.shape[0]) self.assertEqual(Z.shape[0], len(Y)) self.assertTrue(Z.shape[-1] <= X.shape[-1]) def test_tsne_model_fitting(self): """Test model.fit()""" set_logger(join(self.cfg.log_dir, 'unsupervised.log')) tester_cfg = deepcopy(self.cfg) tester_cfg.__dict__['model']['method']['name'] = 'TSNE' reduction_model = DimensionalityReductionModel(tester_cfg) data = reduction_model.fit(return_predictions=True) X, Z, Y = data['input'], data['latent'], data['labels'] self.assertEqual(Z.shape[-1], 2) self.assertEqual(X.shape[0], Z.shape[0]) self.assertEqual(Z.shape[0], len(Y)) self.assertTrue(Z.shape[-1] <= X.shape[-1]) if __name__ == "__main__": unittest.main()
import os from . import config class MiscConfigError(Exception): pass class Misc(object): """Misc config object.""" __KEYS = ['testlib', 'desc', 'out'] def __init__(self, data): self.testliblib = None self.desc = None self.out = None self.update(data) def update(self, values): # Check that all provided values are known keys for unknown in set(values) - set(Misc.__KEYS): raise MiscConfigError('Unknown key "%s" in misc config.' % unknown) for (key, value) in values.items(): # check type if key == 'testlib': if not isinstance(value, str): raise MiscConfigError('testlib path must be a string but is %s' % type(value)) elif key == 'desc': if not isinstance(value, str): raise MiscConfigError('desc extension must be a string but is %s' % type(value)) elif key == 'out': if not isinstance(value, str): raise MiscConfigError('output extension path must be a string but is %s' % type(value)) self.__dict__[key] = value self.__check() @staticmethod def get_resource_path(res): if res is None: return [] return [ os.path.join(os.path.split(os.path.realpath(__file__))[0], 'res', res), os.path.join(os.getcwd(), res) ] def __check(self): testlib, self.testlib = self.testlib, None for res in Misc.get_resource_path(testlib): if os.path.isfile(res): self.testlib = res if self.testlib is None: raise MiscConfigError('testlib has not found.') if self.desc is None: raise MiscConfigError('desc extension has not found.') if self.out is None: raise MiscConfigError('output extension has not found.') def load_misc_config(): """Load misc configuration. Returns: Misc object for misc config. """ return Misc(config.load_config('misc.yaml'))
import Quandl import pandas as pd import pickle import matplotlib.pyplot as plt from matplotlib import style style.use('fivethirtyeight') api_key = open('quandlapikey.txt', 'r').read() def mortgage_30y(): df = Quandl.get('FMAC/MORTG', trim_start="1975-01-01", authtoken=api_key) df['Value'] = (df['Value'] - df['Value'][0]) / df['Value'][0] * 100.0 df.columns = ['M30'] df = df.resample('D').mean() df = df.resample('M').mean() return df def HPI_Benchmark(): df = Quandl.get('FMAC/HPI_USA', authtoken=api_key) # df['United States'] = (df['United States'] - df['United States'][0]) / df['United States'][0] * 100.0 df['Value'] = (df['Value'] - df['Value'][0]) / df['Value'][0] * 100.0 return df m30 = mortgage_30y() HPI_data = pd.read_pickle('fiddy_states3.pickle') HPI_bench = HPI_Benchmark() state_HPI_M30 = HPI_data.join(m30) # print(state_HPI_M30.corr()) print(state_HPI_M30.corr()['M30'].describe())
# -*- coding: utf-8 -*- from __future__ import unicode_literals, absolute_import from django.core.management.base import BaseCommand from django.db import transaction from django.utils import timezone from djanban.apps.recurrent_cards.models import WeeklyRecurrentCard # Create cards based on recurrent cards class Command(BaseCommand): help = u'Create real cards from the recurrent cards' def __init__(self, stdout=None, stderr=None, no_color=False): super(Command, self).__init__(stdout, stderr, no_color) # Handle de command action def handle(self, *args, **options): today = timezone.now().today() weekday = today.isoweekday() recurrent_cards_filter = { "is_active": True, "board__is_archived": False } if weekday == 1: recurrent_cards_filter["create_on_mondays"] = True elif weekday == 2: recurrent_cards_filter["create_on_tuesdays"] = True elif weekday == 3: recurrent_cards_filter["create_on_wednesdays"] = True elif weekday == 4: recurrent_cards_filter["create_on_thursdays"] = True elif weekday == 5: recurrent_cards_filter["create_on_fridays"] = True elif weekday == 6: recurrent_cards_filter["create_on_saturdays"] = True elif weekday == 7: recurrent_cards_filter["create_on_sundays"] = True recurrent_cards = WeeklyRecurrentCard.objects.filter(**recurrent_cards_filter) num_created_cards = 0 with transaction.atomic(): for recurrent_card in recurrent_cards: # Check if has already created a card today has_created_a_card_today = recurrent_card.has_created_a_card_today # In case a card has not been already created today for this recurrent card, # create it (also in its backend) if not has_created_a_card_today: card = recurrent_card.create_card() num_created_cards += 1 self.stdout.write( self.style.SUCCESS( u"{0} successfully created".format(card.name)) ) # In case a card has been already created for this recurrent card, show a warning else: self.stdout.write( self.style.WARNING( u"card {0} already created today".format(recurrent_card.name)) ) # If there has been at least one creation of card, show a message if num_created_cards > 0: self.stdout.write( self.style.SUCCESS( u"Creation of {0} card(s) from recurrent cards completed successfully".format(num_created_cards) ) ) # Otherwise, show another "less happy" message else: self.stdout.write( self.style.SUCCESS( u"No recurrent cards for this day, hence, no cards were created" ) )
#!/usr/bin/python # # Copyright 2018-2022 Polyaxon, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from typing import Dict from polyaxon.client.init import get_client_or_raise from traceml.artifacts import V1ArtifactKind def create_dockerfile_lineage(dockerfile_path: str, summary: Dict): if not dockerfile_path: return filename = os.path.basename(dockerfile_path) run_client = get_client_or_raise() if not run_client: return run_client.log_artifact_ref( path=dockerfile_path, kind=V1ArtifactKind.DOCKERFILE, name=filename, summary=summary, is_input=True, )
from .pointer_network import PointerNetwork
import pytest from django.urls import reverse from {{ cookiecutter.project_slug }}.users.models import User pytestmark = pytest.mark.django_db class TestUserAdmin: def test_changelist(self, admin_client): url = reverse("admin:users_user_changelist") response = admin_client.get(url) assert response.status_code == 200 def test_search(self, admin_client): url = reverse("admin:users_user_changelist") response = admin_client.get(url, data={"q": "test"}) assert response.status_code == 200 def test_add(self, admin_client): url = reverse("admin:users_user_add") response = admin_client.get(url) assert response.status_code == 200 data = { {% if cookiecutter.user.username_field == "username" -%} "username": "test", {% else -%} "email": "email@demo.com", {% endif -%} "password1": "My_R@ndom-P@ssw0rd", "password2": "My_R@ndom-P@ssw0rd", } response = admin_client.post( url, data=data, ) assert response.status_code == 302 assert User.objects.filter({{cookiecutter.user.username_field}}=data["{{cookiecutter.user.username_field}}"]).exists() def test_view_user(self, admin_client, user: User): url = reverse("admin:users_user_change", kwargs={"object_id": user.pk}) response = admin_client.get(url) assert response.status_code == 200
import sys import tempfile import re import subprocess def compile_krass_conditional(krass_conditional): """ Compile Krass conditional statements to Python conditional statements. """ # change true to True, && to and etc. changes = [ ("true", "True"), ("false", "False"), ("&&", " and "), ("||", " or "), # keep an eye on this one, for regex or non ("!", " not ") ] for change in changes: krass_conditional = krass_conditional.replace(change[0], change[1]) return krass_conditional def compile_krass(krass_file_contents): """ Compile a section of krass code. For any boolean operation not in a if/else if/while, Python formatting is required (as of now) """ tf = tempfile.NamedTemporaryFile(delete=False) original_path = tf.name # generate python file. writing to `tf` # since Krass needs proper formatting, line by line execution should be ok. # if a line fits a special requirement, such as imports, function declarations, # if statements or loops, appropriate action will take place. Indent level will be # controlled by curly braces ( '{' and '}' ), in the case of blocks of code. Indentation # in Krass code doesn't matter, so it will be stripped off, and added in post translation # Failure to format code properly will lead to broken Python translations, indent_level = 0 struct_mode = False # if defining a struct for line in krass_file_contents.split("\n"): line = line.strip() # remove whitespace output_line = "\t" * indent_level if struct_mode: if line == "}": struct_mode = False indent_level -= 2 if "=" in line: # default value output_line += line.replace(";", "") # remove the ; if it was added. else: # no default value output_line += line.replace(";", "") + " = None" output_line += "\n" tf.write(bytes(output_line, 'utf-8')) continue special_line = False # check for function block z = re.match("function\\s+(\\w+)\\(((\\w+){0,1}|((\\w+,\\s*)+(\\w+)))\\)\\s*\\{", line) if z: special_line = True # create function declaration. # isolate function signature function_signature = line[8:-1].strip() output_line += "def " + function_signature + ":" indent_level += 1 # If blocks z = re.match("if\\s*\\((.*)\\)\\s*{", line) if z: special_line = True # create if block declaration conditional = z.group(1) output_line += "if " + compile_krass_conditional(conditional) + ":" indent_level += 1 # Else if blocks z = re.match("}\\s*else\\s+if\\s*\\((.*)\\)\\s*{", line) if z: special_line = True conditional = z.group(1) # remove a tab and add in the elif block, don't change indentation. output_line = output_line[:-1] + "elif " + compile_krass_conditional(conditional) + ":" # Else blocks z = re.match("}\\s*else\\s*{", line) if z: special_line = True output_line = output_line[:-1] + "else:" # For Loops z = re.match("for\\s*\\((.*)\\s*:\\s*(.*)\\)\\s*{", line) if z: special_line = True item = z.group(1) iterator = z.group(2) output_line += "for " + item + " in " + iterator + ":" indent_level += 1 # While Loops z = re.match("while\\s*\\((.*)\\)\\s*{", line) if z: special_line = True conditional = z.group(1) output_line += "while " + compile_krass_conditional(conditional) + ":" indent_level += 1 # structs z = re.match("struct\\s+(.*)\\s*{", line) if z: special_line = True name = z.group(1) output_line += "class "+name+":\n\t"+("\t"*indent_level)+"def __init__(self):" struct_mode = True indent_level += 2 # End of blocks: i.e. '}' as a line. z = re.match("}", line) if z: special_line = True indent_level -= 1 # for now, no exception handling will be implementable. # not a special line, so treat it as pure python. if not special_line: output_line += line.replace(";", "") output_line += "\n" tf.write(bytes(output_line, 'utf-8')) # file needs to be closed first. tf.close() # create a subprocess with file generated cmd = subprocess.run(["python3", original_path], stdout=subprocess.PIPE) stdout = cmd.stdout.decode() # bytes => str return stdout # sys.argv should = [script name, raw file, compiled file] if len(sys.argv) != 3: # this should never happen, because this is called from a shell script. # If it does, theres an issue passing files along between Shell and Python exit(1) raw_file = sys.argv[1] compiled_file = sys.argv[2] compiled_file = open(compiled_file, 'w') contents = open(raw_file, 'r').read() for chunk in contents.split("?::"): if "::?" in chunk: # contains a krass chunk tex_chunk, krass_chunk = chunk.split("::?")[0], chunk.split("::?")[1] compiled_file.write(tex_chunk) compiled_file.write(compile_krass(krass_chunk)) else: # probably end, no krass chunk, or malformed. compiled_file.write(chunk)
from .trial_registry import Registry from .trial_bot import TrialBot, Events, State from .updater import Updater from .updaters.training_updater import TrainingUpdater from .updaters.testing_updater import TestingUpdater from . import extensions as bot_extensions
import math import numpy as np from .detail.timeindex import to_timestamp from .calibration import ForceCalibration class Slice: """A lazily evaluated slice of a timeline/HDF5 channel Users will only ever get these as a result of slicing a timeline/HDF5 channel or slicing another slice (via this class' `__getitem__`), i.e. the `__init__` method will never be invoked by users. Parameters ---------- data_source : Any A slice data source. Can be `Continuous`, `TimeSeries`, 'TimeTags', or any other source which conforms to the same interface. labels : Dict[str, str] Plot labels: "x", "y", "title". calibration: ForceCalibration """ def __init__(self, data_source, labels=None, calibration=None): self._src = data_source self.labels = labels or {} self._calibration = calibration def __len__(self): return len(self._src) def __getitem__(self, item): """All indexing is in timestamp units (ns)""" if not isinstance(item, slice): raise IndexError("Scalar indexing is not supported, only slicing") if item.step is not None: raise IndexError("Slice steps are not supported") if len(self) == 0: return self src_start = self._src.start src_stop = self._src.stop start = src_start if item.start is None else item.start stop = src_stop if item.stop is None else item.stop start, stop = (to_timestamp(v, src_start, src_stop) for v in (start, stop)) return self._with_data_source(self._src.slice(start, stop)) def _with_data_source(self, data_source): """Return a copy of this slice with a different data source, but keep other properties""" return self.__class__(data_source, self.labels, self._calibration) @property def data(self): """The primary values of this channel slice""" return self._src.data @property def timestamps(self): """Absolute timestamps (since epoch) which correspond to the channel data""" return self._src.timestamps @property def calibration(self) -> list: """Calibration data slicing is deferred until calibration is requested to avoid slicing values that may be needed.""" if self._calibration: try: return self._calibration.filter_calibration(self._src.start, self._src.stop) except IndexError: return [] else: return [] @property def sample_rate(self) -> int: """The data frequency for continuous data sources or `None` if it's variable""" try: return self._src.sample_rate except AttributeError: return None def downsampled_over(self, range_list, reduce=np.mean, where='center'): """Downsample channel data based on timestamp ranges. The downsampling function (e.g. np.mean) is evaluated for the time between a start and end time of each block. A list is returned that contains the data corresponding to each block. Parameters ---------- range_list : list of tuples A list of (start, stop) tuples indicating over which ranges to apply the function. Start and stop have to be specified in nanoseconds. reduce : callable The `numpy` function which is going to reduce multiple samples into one. The default is `np.mean`, but `np.sum` could also be appropriate for some cases, e.g. photon counts. where : str Where to put the final time point. 'center' time point is put at start + stop / 2 'left' time point is put at start Examples -------- :: from lumicks import pylake file = pylake.File("example.h5") stack = pylake.CorrelatedStack("example.tiff") file.force1x.downsampled_over(stack.timestamps) """ if not isinstance(range_list, list): raise TypeError("Did not pass timestamps to range_list.") assert len(range_list[0]) == 2, "Did not pass timestamps to range_list." assert self._src.start < range_list[-1][1], "No overlap between CorrelatedStack and selected channel." assert self._src.stop > range_list[0][0], "No overlap between CorrelatedStack and selected channel" if where != 'center' and where != 'left': raise ValueError("Invalid argument for where. Valid options are center and left") t = np.zeros(len(range_list)) d = np.zeros(len(range_list)) for i, time_range in enumerate(range_list): start, stop = time_range subset = self[start:stop] t[i] = (start + stop) // 2 if where == 'center' else start d[i] = reduce(subset.data) return Slice(TimeSeries(d, t), self.labels) def downsampled_by(self, factor, reduce=np.mean): """Return a copy of this slice which is downsampled by `factor` Parameters ---------- factor : int The size and sample rate of the data will be divided by this factor. reduce : callable The `numpy` function which is going to reduce multiple samples into one. The default is `np.mean`, but `np.sum` could also be appropriate for some cases, e.g. photon counts. """ return self._with_data_source(self._src.downsampled_by(factor, reduce)) def plot(self, **kwargs): """A simple line plot to visualize the data over time Parameters ---------- **kwargs Forwarded to :func:`matplotlib.pyplot.plot`. """ import matplotlib.pyplot as plt seconds = (self.timestamps - self.timestamps[0]) / 1e9 plt.plot(seconds, self.data, **kwargs) plt.xlabel(self.labels.get("x", "Time") + " (s)") plt.ylabel(self.labels.get("y", "y")) plt.title(self.labels.get("title", "title")) def _downsample(data, factor, reduce): def round_down(size, n): """Round down `size` to the nearest multiple of `n`""" return int(math.floor(size / n)) * n data = data[:round_down(data.size, factor)] return reduce(data.reshape(-1, factor), axis=1) class Continuous: """A source of continuous data for a timeline slice Parameters ---------- data : array_like Anything that's convertible to an `np.ndarray`. start : int Timestamp of the first data point. dt : int Delta between two timestamps. Constant for the entire data range. """ def __init__(self, data, start, dt): self._src_data = data self._cached_data = None self.start = start self.stop = start + len(data) * dt self.dt = dt def __len__(self): return len(self._src_data) @staticmethod def from_dataset(dset, y_label="y", calibration=None): start = dset.attrs["Start time (ns)"] dt = int(1e9 / dset.attrs["Sample rate (Hz)"]) return Slice(Continuous(dset[()], start, dt), labels={"title": dset.name.strip("/"), "y": y_label}, calibration=calibration) @property def data(self): if self._cached_data is None: self._cached_data = np.asarray(self._src_data) return self._cached_data @property def timestamps(self): return np.arange(self.start, self.stop, self.dt) @property def sample_rate(self): return int(1e9 / self.dt) def slice(self, start, stop): def to_index(t): """Convert a timestamp into a continuous channel index (assumes t >= self.start)""" return (t - self.start + self.dt - 1) // self.dt fraction = (start - self.start) % self.dt start = max(start if fraction == 0 else start + self.dt - fraction, self.start) start_idx = to_index(start) stop_idx = to_index(stop) return self.__class__(self.data[start_idx:stop_idx], start, self.dt) def downsampled_by(self, factor, reduce): return self.__class__(_downsample(self.data, factor, reduce), start=self.start + self.dt * (factor - 1) // 2, dt=self.dt * factor) class TimeSeries: """A source of time series data for a timeline slice Parameters ---------- data : array_like Anything that's convertible to an `np.ndarray`. timestamps : array_like An array of integer timestamps. """ def __init__(self, data, timestamps): assert len(data) == len(timestamps) # TODO: should be lazily evaluated self.data = np.asarray(data) self.timestamps = np.asarray(timestamps) def __len__(self): return len(self.data) @staticmethod def from_dataset(dset, y_label="y", calibration=None): return Slice(TimeSeries(dset["Value"], dset["Timestamp"]), labels={"title": dset.name.strip("/"), "y": y_label}, calibration=calibration) @property def start(self): if len(self.timestamps) > 0: return self.timestamps[0] else: raise IndexError("Start of empty time series is undefined") @property def stop(self): if len(self.timestamps) > 0: return self.timestamps[-1] + 1 else: raise IndexError("End of empty time series is undefined") def slice(self, start, stop): idx = np.logical_and(start <= self.timestamps, self.timestamps < stop) return self.__class__(self.data[idx], self.timestamps[idx]) def downsampled_by(self, factor, reduce): raise NotImplementedError("Downsampling is currently not available for time series data") class TimeTags: """A source of time tag data for a timeline slice Parameters ---------- data : array_like Anything that's convertible to an `np.ndarray` start : int Timestamp of the start of the channel slice stop : int Timestamp of the end of the channel slice """ def __init__(self, data, start=None, stop=None): self.data = np.asarray(data, dtype=np.int64) self.start = start if start is not None else \ (self.data[0] if self.data.size > 0 else 0) self.stop = stop if stop is not None else \ (self.data[-1]+1 if self.data.size > 0 else 0) def __len__(self): return self.data.size @staticmethod def from_dataset(dset, y_label="y"): return Slice(TimeTags(dset[()])) @property def timestamps(self): # For time tag data, the data is the timestamps! return self.data def slice(self, start, stop): idx = np.logical_and(start <= self.data, self.data < stop) return self.__class__(self.data[idx], min(start, stop), max(start, stop)) def downsampled_by(self, factor, reduce): raise NotImplementedError("Downsampling is not available for time tag data") class Empty: """A lightweight source of no data Both `Continuous` and `TimeSeries` can be empty, but this is a lighter class which can be returned an empty slice from properties. """ def __len__(self): return 0 @property def data(self): return np.empty(0) @property def timestamps(self): return np.empty(0) empty_slice = Slice(Empty()) def channel_class(dset): """Figure out the right channel source class given an HDF5 dataset""" if "Kind" in dset.attrs: # Bluelake HDF5 files >=v2 mark channels with a "Kind" attribute: kind = dset.attrs["Kind"] if isinstance(kind, bytes): kind = kind.decode() if kind == "TimeTags": return TimeTags elif kind == "TimeSeries": return TimeSeries elif kind == "Continuous": return Continuous else: raise RuntimeError("Unknown channel kind " + str(kind)) elif dset.dtype.fields is None: # For compatibility with Bluelake HDF5 files v1 return Continuous else: return TimeSeries
from typing import Optional from starlite import get from starlite.utils import create_function_signature_model def test_create_function_signature_model_parameter_parsing(): @get() def my_fn(a: int, b: str, c: Optional[bytes], d: bytes = b"123", e: Optional[dict] = None) -> None: pass model = create_function_signature_model(my_fn.fn, []) fields = model.__fields__ assert fields.get("a").type_ == int assert fields.get("a").required assert fields.get("b").type_ == str assert fields.get("b").required assert fields.get("c").type_ == bytes assert fields.get("c").allow_none assert fields.get("c").default is None assert fields.get("d").type_ == bytes assert fields.get("d").default == b"123" assert fields.get("e").type_ == dict assert fields.get("e").allow_none assert fields.get("e").default is None
import unittest from io import BytesIO from id3vx.frame import FrameHeader, Frame, TextFrame, Frames, PCNT from id3vx.frame import CHAP, MCDI, NCON, COMM, TALB, APIC, PRIV from id3vx.tag import TagHeader class FramesTests(unittest.TestCase): def test_reads_frames_from_file(self): # Arrange header_a = FrameHeader("TALB", 9, FrameHeader.Flags.Compression, False) frame_a = PRIV.read(BytesIO(bytes(header_a) + b'\x00thealbum')) header_b = FrameHeader("TIT2", 10, FrameHeader.Flags.Encryption, False) frame_b = PRIV.read(BytesIO(bytes(header_b) + b'\x00theartist')) tag_header = TagHeader('ID3', 3, 0, TagHeader.Flags(0), 39) byte_string = bytes(frame_a) + bytes(frame_b) stream = BytesIO(byte_string) # Act frames = Frames.read(stream, tag_header) # Assert self.assertEqual(len(frames), 2) self.assertEqual(frames[0].id(), 'TALB') self.assertEqual(frames[0].text, 'thealbum') self.assertEqual(frames[1].id(), 'TIT2') self.assertEqual(frames[1].text, 'theartist') def test_handles_padding(self): """Stops on first padding frame""" # Arrange header = FrameHeader("TALB", 9, FrameHeader.Flags.Compression, False) fields = b'\x00thealbum' stream = BytesIO(bytes(header) + fields) frame = PRIV.read(stream) padding = b'\x00' * 81 tag_header = TagHeader('ID3', 3, 0, TagHeader.Flags(0), 100) byte_string = bytes(frame) + padding # Act frames = Frames.read(BytesIO(byte_string), tag_header) # Assert self.assertEqual(len(frames), 1) self.assertEqual(frames[0].id(), 'TALB') self.assertEqual(frames[0].text, 'thealbum') class FrameHeaderTests(unittest.TestCase): def test_reads_header_from_stream(self): """Reads FrameHeader from a bytes stream""" # Arrange frame_id = b'PRIV' size = b'\x00\x00\x00\xFF' flags = b'\x00\x00' stream = BytesIO(frame_id + size + flags) # Act header = FrameHeader.read(stream) # Assert self.assertEqual(header.frame_size, 255) self.assertEqual(header.flags, FrameHeader.Flags(0)) self.assertEqual(header.identifier, "PRIV") def test_read_synchsafe_size(self): """Reads FrameHeader from a bytes stream""" # Arrange frame_id = b'PRIV' size = b'\x00\x00\x02\x01' # would be 513 in plain binary flags = b'\x00\x00' expected_size = 257 # ... but is 257 in synchsafe world stream = BytesIO(frame_id + size + flags) # Act header = FrameHeader.read(stream, synchsafe_size=True) # Assert self.assertEqual(header.frame_size, expected_size) def test_reads_all_flags(self): """Reads all flags correctly""" # Arrange frame_id = b'PRIV' size = b'\x00\x00\x00\xFF' flags = 0b1110000011100000.to_bytes(2, "big") stream = BytesIO(frame_id + size + flags) # Act header = FrameHeader.read(stream) # Assert self.assertIn(FrameHeader.Flags.Compression, header.flags) self.assertIn(FrameHeader.Flags.Encryption, header.flags) self.assertIn(FrameHeader.Flags.FileAlterPreservation, header.flags) self.assertIn(FrameHeader.Flags.GroupingIdentity, header.flags) self.assertIn(FrameHeader.Flags.ReadOnly, header.flags) self.assertIn(FrameHeader.Flags.TagAlterPreservation, header.flags) def test_reads_some_flags(self): """Reads some flags correctly""" # Arrange frame_id = b'PRIV' size = b'\x00\x00\x00\xFF' flags = 0b0000000011100000.to_bytes(2, "big") stream = BytesIO(frame_id + size + flags) # Act header = FrameHeader.read(stream) # Assert self.assertIn(FrameHeader.Flags.Compression, header.flags) self.assertIn(FrameHeader.Flags.Encryption, header.flags) self.assertIn(FrameHeader.Flags.GroupingIdentity, header.flags) def test_reads_header_if_size_bigger_than_zero(self): """Reads FrameHeader as long as size is present""" # Arrange frame_id = b'\x00\x00\x00\x00' frame_size = b'\x00\x00\x00\x01' flags = b'\x00\x00' stream = BytesIO(frame_id + frame_size + flags) # Act header = FrameHeader.read(stream) # Assert self.assertEqual(header.frame_size, 1) self.assertEqual(header.identifier, frame_id.decode("latin1")) self.assertEqual(header.flags, FrameHeader.Flags(0)) @unittest.SkipTest def test_no_header_from_too_short_stream(self): """Fails to read FrameHeader from a too short byte stream""" # Arrange frame_id = b'PRIV' size = b'\x00\x00\x00\xFF' stream = BytesIO(frame_id + size) # Act header = FrameHeader.read(stream) # Assert self.assertFalse(bool(header)) # TODO: fix this with proper None def test_reads_no_header_if_size_is_zero(self): """Fails to read FrameHeader if size is zero""" # Arrange frame_id = b'PRIV' size = b'\x00\x00\x00\x00' flags = b'\x00\x00' stream = BytesIO(frame_id + size + flags) # Act header = FrameHeader.read(stream) # Assert self.assertFalse(header) def test_converts_back_to_bytes(self): # Arrange frame_id = 'PRIV' size = 3333 flags = 0b1100_0000_0000_0000 expected_bytes = b'PRIV\x00\x00\r\x05\xc0\x00' # System under test header = FrameHeader(frame_id, size, flags, False) # Act header_bytes = bytes(header) # Assert self.assertEqual(header_bytes, expected_bytes) class FrameTests(unittest.TestCase): def test_exposes_fields(self): """Exposes relevant fields""" # Arrange frame_size = 100 header = FrameHeader('PRIV', frame_size, 0, False) fields = b'\x0a\x0f\x00\x0f\x0c' # System under test frame = Frame(header, fields) # Assert self.assertEqual(frame.header, header) self.assertEqual(frame.id(), "PRIV") self.assertEqual(frame.fields, fields) self.assertIn(str(fields), repr(frame)) self.assertEqual(len(frame), frame_size + len(header)) def test_serializes_to_bytes(self): """Serializes itself to bytes""" # Arrange header = FrameHeader('PRIV', 100, 0, False) header_bytes = bytes(header) fields = b'\x0a\x0f\x00\x0f\x0c' # System under test frame = Frame(header, fields) # Act byte_string = bytes(frame) # Assert self.assertEqual(byte_string, header_bytes + fields) def test_no_frame_if_header_invalid(self): """Defaults to Frame ID if name is unknown""" # Arrange broken_header = bytes(10) fields = bytes(100) stream = BytesIO(broken_header + fields) # System under test frame = Frame.read(stream) # Act - Assert self.assertIsNone(frame) def test_read_frame_from_stream(self): """Defaults to Frame ID if name is unknown""" # Arrange fields = b'\x00Album' size = len(fields) header = FrameHeader('TALB', size, 0, False) frame = TextFrame.read(BytesIO(bytes(header) + fields)) stream = BytesIO(bytes(frame)) # System under test frame = Frame.read(stream) # Act - Assert self.assertEqual(type(frame), TALB) self.assertEqual(frame.text, "Album") class APICTests(unittest.TestCase): def test_initialize_from_fields(self): # Arrange header = FrameHeader('APIC', 1000, 0, False) encoding = b'\x02' mime_type = b'image/paper\x00' picture_type = b'\x11' # bright colored fish description = "You can see a fish here" desc_bytes = description.encode("utf-16-be") + b'\x00\x00' data = b'\xFF\xD8\xFF\xE0\x00\x10\x4A\x46\x49\x46\x00\x01' fields = encoding + mime_type + picture_type + desc_bytes + data expected_pic_type = APIC.PictureType.BRIGHT_COLORED_FISH expected_mime_type = "image/paper" # System under test frame = APIC.read(BytesIO(bytes(header) + fields)) # Act - Assert self.assertEqual(type(frame), APIC) self.assertEqual(frame.description, description) self.assertEqual(frame.picture_type, expected_pic_type) self.assertEqual(frame.mime_type, "image/paper") self.assertEqual(frame.data, data) self.assertIn(description, repr(frame)) self.assertIn(str(data), repr(frame)) self.assertIn(str(expected_pic_type), repr(frame)) self.assertIn(expected_mime_type, repr(frame)) class CHAPTests(unittest.TestCase): def test_initialize_from_fields(self): # Arrange header = FrameHeader('CHAP', 1000, 0, False) element_id = 'chp' element_id_bytes = element_id.encode("latin1") t_start = b'\x00\xFF\xFF\xEE' t_end = b'\x00\x0A\x0F\xEE' o_start = b'\x00\xFF\xFF\xEE' o_end = b'\x00\x0A\x0F\xEE' offset_start = int.from_bytes(o_start, "big") offset_end = int.from_bytes(t_end, "big") fields = element_id_bytes + b'\x00' + t_start + t_end + o_start + o_end expected_bytes = bytes(header) + fields stream = BytesIO(bytes(header) + fields) # System under test frame = CHAP.read(stream) # Act - Assert self.assertEqual(type(frame), CHAP) self.assertEqual(frame.element_id, element_id) self.assertEqual(frame.start_time, 0xFFFFEE) self.assertEqual(frame.end_time, 0x0A0FEE) self.assertEqual(frame.start_offset, offset_start) self.assertEqual(frame.end_offset, offset_end) self.assertEqual(bytes(frame), expected_bytes) def test_subframes(self): """FIXME: this test sucks""" # Arrange sub_fields = b'\x00sometext\x00' sub_header = FrameHeader('TIT2', 1000, 0, False) sub_frame = TextFrame.read(BytesIO(bytes(sub_header) + sub_fields)) header = FrameHeader('CHAP', 1000, 0, False) element_id = 'chp' element_id_bytes = element_id.encode("latin1") t_start = b'\x00\xFF\xFF\xEE' t_end = b'\x00\x0A\x0F\xEE' o_start = b'\x00\xFF\xFF\xEE' o_end = b'\x00\x0A\x0F\xEE' fields = element_id_bytes + b'\x00' + t_start + t_end + o_start + o_end fields += bytes(sub_frame) # System under test frame = CHAP.read(BytesIO(bytes(header) + fields)) # Act sub_frames = list(frame.sub_frames()) # Act - Assert self.assertEqual(1, len(sub_frames)) self.assertEqual('TIT2', sub_frames[0].id()) self.assertEqual("sometext", sub_frames[0].text) class MCDITests(unittest.TestCase): def test_exposes_toc(self): # Arrange header = FrameHeader('MCDI', 1000, 0, False) fields = b'\xf0\xfa\xccsometocdata\xff' stream = BytesIO(bytes(header) + fields) # System under test frame = MCDI.read(stream) # Act - Assert self.assertEqual(type(frame), MCDI) self.assertEqual(fields, frame.toc) class NCONTests(unittest.TestCase): def test_recognizes_music_match_frames(self): # Arrange header = FrameHeader('NCON', 1000, 0, False) fields = b'\xf0\xfa\xccweirdbinaryblob\xff' stream = BytesIO(bytes(header) + fields) # System under test frame = NCON.read(stream) # Act - Assert self.assertEqual(type(frame), NCON) self.assertEqual(fields, frame.fields) class COMMTests(unittest.TestCase): def test_reads_from_file(self): # Arrange header = b'COMM\x00\x00\x00\x0a\x00\x00' fields = b'\x01\x65\x6e\x67\xff\xfe\x00\x00\xff\xfe' stream = BytesIO(header + fields) # Act frame = COMM.read(stream) # Assert self.assertEqual(type(frame), COMM) self.assertEqual(frame.id(), 'COMM') self.assertEqual(frame.language, 'eng') self.assertEqual(frame.description, '') self.assertEqual(frame.comment, '') class PCNTTests(unittest.TestCase): def test_reads_pcnt_frame_from_stream(self): """Counts all 18446744073709550304 plays of Old Time Road""" # Arrange header = b'PCNT\x00\x00\x00\x0a\x00\x00' fields = b'\xff\xff\xff\xff\xff\xff\xfa\xe0' expected_play_count = 0xfffffffffffffae0 stream = BytesIO(header + fields) # Act frame = PCNT.read(stream) # Assert self.assertEqual(type(frame), PCNT) self.assertEqual(frame.counter, expected_play_count)
import os import sys from .neural_net import * from .io import * # # train_autoencoder(8,3,8) test_predictions(pickle = False) # cross_validation() # vary_hidden_layer_size() # vary_iterations()
from data import AudioPipeline, NoisedAudPipeline, dataset, get_data_loader from torch.nn.parallel import DistributedDataParallel from torch.multiprocessing import spawn from torch.utils.tensorboard import SummaryWriter from data import get_distributed_loader from torch.utils.data import DataLoader from abc import ABC, abstractmethod from typing import Callable, Tuple from torch.optim import Optimizer import torch.distributed as dist from torch.nn import Module from functools import wraps from hprams import get_melkwargs, get_snr_params, hprams from utils import SNR, MinMax, load_model from model import Model from tqdm import tqdm import torch import os OPT = { 'adam': torch.optim.Adam } LOSS = { 'mae': torch.nn.L1Loss(), 'mse': torch.nn.MSELoss() } def save_checkpoint(func, *args, _counter=[0]) -> Callable: """Save a checkpoint after each iteration """ @wraps(func) def wrapper(obj, *args, **kwargs): _counter[0] += 1 result = func(obj, *args, **kwargs) if not os.path.exists(hprams.training.checkpoints_dir): os.mkdir(hprams.training.checkpoints_dir) if hprams.dist_configs.use_dist: if obj.rank != 0: return result model_path = os.path.join( hprams.training.checkpoints_dir, 'checkpoint_' + str(_counter[0]) + '.pt' ) state_dict = obj.model.state_dict() state_dict = { key.replace('module.', ''): value for key, value in state_dict.items() } torch.save(state_dict, model_path) print(f'checkpoint saved to {model_path}') return result return wrapper class ITrainer(ABC): @abstractmethod def fit(): pass @abstractmethod def train(): pass @abstractmethod def test(): pass class BaseTrainer(ITrainer): _train_loss_key = 'train_loss' _test_loss_key = 'test_loss' def __init__( self, criterion: Module, optimizer: Optimizer, model: Module, device: str, train_loader: DataLoader, test_loader: DataLoader, epochs: int, logdir: str ) -> None: self.criterion = criterion self.optimizer = optimizer self.model = model self.train_loader = train_loader self.test_loader = test_loader self.device = device self.epochs = epochs self.step_history = dict() self.history = dict() self.tensorboard = SummaryWriter(logdir) def log_results(self, epoch): """logs the results after each epoch """ result = '' for key, value in self.history.items(): self.tensorboard.add_scalar(key, value[-1], epoch) result += f'{key}: {str(value[-1])}, ' print(result[:-2]) def fit(self, *args, **kwargs): """The main training loop that train the model on the training data then test it on the test set and then log the results """ for epoch in range(self.epochs): self.train() self.test() self.log_results(epoch) def set_train_mode(self) -> None: """Set the models on the training mood """ self.model = self.model.train() def set_test_mode(self) -> None: """Set the models on the testing mood """ self.model = self.model.eval() class Trainer(BaseTrainer): def __init__( self, criterion: Module, optimizer: Optimizer, model: Module, device: str, train_loader: DataLoader, test_loader: DataLoader, epochs: int, logdir: str ) -> None: super().__init__( criterion, optimizer, model, device, train_loader, test_loader, epochs, logdir ) def test(self): """Iterate over the whole test data and test the models for a single epoch """ total_loss = 0 self.set_test_mode() for (x, y, lengths) in tqdm(self.test_loader): x = x.permute(0, 2, 1) x = x.to(self.device) y = y.to(self.device) preds = self.model(x, lengths) preds = preds.squeeze() y = y[:, :preds.shape[1]] loss = self.criterion(y, preds) total_loss += loss.item() total_loss /= len(self.train_loader) if self._test_loss_key in self.history: self.history[self._test_loss_key].append(total_loss) else: self.history[self._test_loss_key] = [total_loss] @save_checkpoint def train(self): """Iterates over the whole training data and train the models for a single epoch """ total_loss = 0 self.set_train_mode() for (x, y, lengths) in tqdm(self.train_loader): x = x.permute(0, 2, 1) x = x.to(self.device) y = y.to(self.device) self.optimizer.zero_grad() preds = self.model(x, lengths) preds = preds.squeeze() y = y[:, :preds.shape[1]] loss = self.criterion(y, preds) loss.backward() self.optimizer.step() total_loss += loss.item() total_loss /= len(self.train_loader) if self._train_loss_key in self.history: self.history[self._train_loss_key].append(total_loss) else: self.history[self._train_loss_key] = [total_loss] class DistTrainer(BaseTrainer): def __init__( self, criterion: Module, optimizer: Optimizer, model: Module, device: str, train_loader: DataLoader, test_loader: DataLoader, epochs: int, logdir: str, url: str, backend: str, world_size: int, rank: int ) -> None: super().__init__( criterion, optimizer, model, device, train_loader, test_loader, epochs, logdir ) self.url = url self.backend = backend self.world_size = world_size self.rank = rank self.init() def init(self): os.environ['MASTER_ADDR'] = 'localhot' os.environ['MASTER_PORT'] = '12345' dist.init_process_group( self.backend, init_method=self.url, world_size=self.world_size, rank=self.rank ) def fit(self, *args, **kwargs): """The main training loop that train the model on the training data then test it on the test set and then log the results """ for epoch in range(self.epochs): self.train() if self.rank == 0: self.test() self.log_results(epoch) dist.destroy_process_group() def test(self): """Iterate over the whole test data and test the models for a single epoch """ total_loss = 0 self.set_test_mode() for (x, y, lengths) in tqdm(self.test_loader): x = x.permute(0, 2, 1) x = x.cuda(self.rank) y = y.cuda(self.rank) preds = self.model(x, lengths) preds = preds.squeeze() y = y[:, :preds.shape[1]] loss = self.criterion(y, preds) total_loss += loss.item() total_loss /= len(self.train_loader) if self._test_loss_key in self.history: self.history[self._test_loss_key].append(total_loss) else: self.history[self._test_loss_key] = [total_loss] @save_checkpoint def train(self): """Iterates over the whole training data and train the models for a single epoch """ total_loss = 0 self.set_train_mode() self.model.cuda(self.rank) self.model = DistributedDataParallel( self.model, device_ids=[self.rank] ) total = torch.tensor([0]).cuda(self.rank) for (x, y, lengths) in tqdm(self.train_loader): x = x.permute(0, 2, 1) x = x.cuda(self.rank) y = y.cuda(self.rank) self.optimizer.zero_grad() preds = self.model(x, lengths) preds = preds.squeeze() y = y[:, :preds.shape[1]] loss = self.criterion(y, preds) loss.backward() total = torch.tensor([loss.item()]).cuda(self.rank) self.optimizer.step() dist.all_reduce(total, op=dist.ReduceOp.SUM) if self.rank == 0: total_loss += (total.item() / self.world_size) total_loss /= len(self.train_loader) if self._train_loss_key in self.history: self.history[self._train_loss_key].append(total_loss) else: self.history[self._train_loss_key] = [total_loss] def get_scalers() -> dict: return { 'chunk_length': MinMax( hprams.data.lengths.min_val, hprams.data.lengths.max_val ), 'signal_scaler': MinMax( hprams.data.signal_scaler.min_val, hprams.data.signal_scaler.max_val ), 'noise_scaler': MinMax( hprams.data.noise_scaler.min_val, hprams.data.noise_scaler.max_val ) } def get_pipelines() -> dict: return { 'aud_pipeline': AudioPipeline( hprams.data.sampling_rate ), 'noisy_pipeline': NoisedAudPipeline( sample_rate=hprams.data.sampling_rate, n_mfcc=hprams.data.n_mfcc, melkwargs=get_melkwargs() ) } def get_dataset_params(data_dir: str, seed=None) -> dict: return dict( **get_pipelines(), **get_scalers(), snr_calc=SNR(**get_snr_params()), noise_dir=hprams.data.noise_dir, audio_dir=data_dir, seed=seed ) def get_train_test_loaders() -> Tuple[DataLoader, DataLoader]: train_loader = get_data_loader( batch_size=hprams.training.batch_size, dataset=dataset( **get_dataset_params( data_dir=hprams.data.training_dir, seed=hprams.data.train_seed ) ) ) test_loader = get_data_loader( batch_size=hprams.training.batch_size, dataset=dataset( **get_dataset_params( data_dir=hprams.data.testing_dir, seed=hprams.data.test_seed ) ) ) return ( train_loader, test_loader ) def get_train_test_dist_loaders(rank: int) -> Tuple[DataLoader, DataLoader]: train_loader = get_distributed_loader( batch_size=hprams.training.batch_size, dataset=dataset( **get_dataset_params( data_dir=hprams.data.training_dir, seed=hprams.data.train_seed ) ), world_size=hprams.dist_configs.n_gpus, rank=rank ) test_loader = get_data_loader( batch_size=hprams.training.batch_size, dataset=dataset( **get_dataset_params( data_dir=hprams.data.testing_dir, seed=hprams.data.test_seed ) ) ) return ( train_loader, test_loader ) def get_trainer() -> Trainer: device = hprams.device criterion = LOSS[hprams.training.loss_func] model = load_model(hprams.model, hprams.checkpoint) optimizer = OPT[hprams.training.optimizer]( model.parameters(), lr=hprams.training.learning_rate ) train_loader, test_loader = get_train_test_loaders() return Trainer( criterion=criterion, optimizer=optimizer, model=model, device=device, train_loader=train_loader, test_loader=test_loader, epochs=hprams.training.epochs, logdir=hprams.training.logdir ) def get_distributed_trainer(rank: int): criterion = LOSS[hprams.training.loss_func] model = model = load_model(hprams.model, hprams.checkpoint) optimizer = OPT[hprams.training.optimizer]( model.parameters(), lr=hprams.training.learning_rate ) train_loader, test_loader = get_train_test_dist_loaders(rank) return DistTrainer( criterion=criterion, optimizer=optimizer, model=model, device=hprams.device, train_loader=train_loader, test_loader=test_loader, epochs=hprams.training.epochs, logdir=hprams.training.logdir, url=hprams.dist_configs.url, backend=hprams.dist_configs.backend, world_size=hprams.dist_configs.n_gpus, rank=rank ) def run_dist(rank: int): trainer = get_distributed_trainer(rank) trainer.fit() def main(): if hprams.dist_configs.use_dist: spawn( run_dist, nprocs=hprams.dist_configs.n_gpus ) else: trainer = get_trainer() trainer.fit() if __name__ == '__main__': main()
import streamlit as st import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import praw # email = "samuellawrenceJSE@gmail.com" # password = "JSEStocksGoUp" #Praw API login username = "SamTheIceCreamMan" password = "Samernator1" id = "U9EagV0j3qUSbw" secret = "Su_o5xTzvs4RKygGOBakQFutxw49-A" user_agent = "scrapermaster" reddit = praw.Reddit(client_id = id, client_secret = secret, password = password, user_agent = user_agent, username = username) # subred = reddit.subreddit("investing") # top = subred.top(limit = 10) # for i in top: # print(i.title, i.url) def app(): selection = ["r/wallstreetbets", "r/stocks","r/investing","r/CyptoCurrency","r/StockMarket","r/pennystocks","r/WallStreetbetsELITE","Multi-select"] # Selections choice = st.sidebar.selectbox("Dashboard Selection", selection) if choice == 'r/wallstreetbets': st.title("r/Wallstreetbets") subred = reddit.subreddit("Wallstreetbets") st.write(subred.title) all_comments = subred.comments.list() #About subreddit #Collect top 25 posts from x days #Take all comments from posts and put into list # - top stocks listed # - ideas / themes if choice == 'r/stocks': st.title("r/Stocks subreddit") subred = reddit.subreddit("investing") st.write(subred.title) if choice == 'r/investing': st.title("r/investing subreddit") subred = reddit.subreddit("investing") st.write(subred.description) if choice == 'r/CyptoCurrency': st.title("r/CyptoCurrency subreddit") subred = reddit.subreddit("CyptoCurrency") st.write(subred.description) if choice == 'r/StockMarket': st.title("r/StockMarket subreddit") subred = reddit.subreddit("StockMarket") st.write(subred.description) if choice == 'r/pennystocks': st.title("r/pennystocks subreddit") subred = reddit.subreddit("pennystocks") st.write(subred.description) if choice == 'r/WallStreetbetsELITE': st.title("r/WallStreetbetsELITE subreddit") subred = reddit.subreddit("WallStreetbetsELITE") st.write(subred.description) # if choice == '"Multi-select"': # st.title("r/Multi-select subreddit") # subred = reddit.subreddit("investing") # st.write(subred.description) if __name__ == "__main__": app()
#!/usr/bin/python -u # ./gen_mlp_init.py # script generateing NN initialization # # author: Karel Vesely # import math, random import sys from optparse import OptionParser parser = OptionParser() parser.add_option('--dim', dest='dim', help='d1:d2:d3 layer dimensions in the network') parser.add_option('--gauss', dest='gauss', help='use gaussian noise for weights', action='store_true', default=False) parser.add_option('--negbias', dest='negbias', help='use uniform [-4.1,-3.9] for bias (defaultall 0.0)', action='store_true', default=False) parser.add_option('--inputscale', dest='inputscale', help='scale the weights by 3/sqrt(Ninputs)', action='store_true', default=False) parser.add_option('--normalized', dest='normalized', help='Generate normalized weights according to X.Glorot paper, U[-x,x] x=sqrt(6)/(sqrt(dim_in+dim_out))', action='store_true', default=False) parser.add_option('--activation', dest='activation', help='activation type tag (def. <sigmoid>)', default='<sigmoid>') parser.add_option('--activationOutput', dest='outputactivation', help='activation type tag (def. <softmax>)', default='<softmax>') parser.add_option('--linBNdim', dest='linBNdim', help='dim of linear bottleneck (sigmoids will be omitted, bias will be zero)',default=0) parser.add_option('--linOutput', dest='linOutput', help='generate MLP with linear output', action='store_true', default=False) parser.add_option('--seed', dest='seedval', help='seed for random generator',default=0) (options, args) = parser.parse_args() if(options.dim == None): parser.print_help() sys.exit(1) #seeding seedval=int(options.seedval) if(seedval != 0): random.seed(seedval) dimStrL = options.dim.split(':') dimL = [] for i in range(len(dimStrL)): dimL.append(int(dimStrL[i])) #print dimL,'linBN',options.linBNdim for layer in range(len(dimL)-1): print '<affinetransform>', dimL[layer+1], dimL[layer] #precompute... nomalized_interval = math.sqrt(6.0) / math.sqrt(dimL[layer+1]+dimL[layer]) #weight matrix print '[' for row in range(dimL[layer+1]): for col in range(dimL[layer]): if(options.normalized): print random.random()*2.0*nomalized_interval - nomalized_interval, elif(options.gauss): if(options.inputscale): print 3/math.sqrt(dimL[layer])*random.gauss(0.0,1.0), else: print 0.1*random.gauss(0.0,1.0), else: if(options.inputscale): print (random.random()-0.5)*2*3/math.sqrt(dimL[layer]), else: print random.random()/5.0-0.1, print #newline for each row print ']' #bias vector print '[', for idx in range(dimL[layer+1]): if(int(options.linBNdim) == dimL[layer+1]): print '0.0', elif(layer == len(dimL)-2):#last layer (softmax) print '0.0', elif(options.negbias): print random.random()/5.0-4.1, else: print '0.0', print ']' if (int(options.linBNdim) != dimL[layer+1]): if (layer == len(dimL)-2): #if last layer if (not(options.linOutput)): print options.outputactivation, dimL[layer+1], dimL[layer+1] #print '<softmax>', dimL[layer+1], dimL[layer+1] else: #print '<sigmoid>', dimL[layer+1], dimL[layer+1] print options.activation, dimL[layer+1], dimL[layer+1]
import setuptools with open("README.md", "r", encoding="utf-8") as fh: long_description = fh.read() setuptools.setup( name="populate_secrets_gitlab", version="0.2.0", author="Joe Niland", author_email="joe@deploymode.com", description="Populate Gitlab CI/CD Variables from .env file", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/deploymode/populate-secrets-gitlab", project_urls={ "Bug Tracker": "https://github.com/deploymode/populate-secrets-gitlab/issues", }, classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], package_dir={"": "src"}, packages=setuptools.find_packages(where="src"), python_requires=">=3.6", install_requires=["python-gitlab==2.10.0", "python-dotenv==0.19.0"], setup_requires=["flake8"], entry_points={ "console_scripts": [ "populate-gitlab = populate_secrets_gitlab.__main__:main", ], }, )
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2012 United States Government as represented by the # Administrator of the National Aeronautics and Space Administration. # All Rights Reserved. # # Copyright 2012 Nebula, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import json import logging from django.utils.translation import ugettext_lazy as _ from horizon import exceptions from horizon import forms from horizon import workflows from horizon.utils import validators from openstack_dashboard import api from openstack_dashboard.api import glance from openstack_dashboard.usage import quotas from ..util import CLOUDLET_TYPE from ..util import find_basevm_by_sha256 from ..util import find_matching_flavor from ..util import get_resource_size import requests from django.core.validators import URLValidator from django.core.exceptions import ValidationError from .. import cloudlet_api from xml.etree import ElementTree import urllib2 try: from elijah.provisioning import msgpack except ImportError as e: import msgpack from elijah.provisioning.configuration import Const as Cloudlet_Const LOG = logging.getLogger(__name__) class SelectProjectUserAction(workflows.Action): project_id = forms.ChoiceField(label=_("Project")) user_id = forms.ChoiceField(label=_("User")) def __init__(self, request, *args, **kwargs): super(SelectProjectUserAction, self).__init__(request, *args, **kwargs) # Set our project choices projects = [(tenant.id, tenant.name) for tenant in request.user.authorized_tenants] self.fields['project_id'].choices = projects # Set our user options users = [(request.user.id, request.user.username)] self.fields['user_id'].choices = users class Meta: name = _("Project & User") # Unusable permission so this is always hidden. However, we # keep this step in the workflow for validation/verification purposes. permissions = ("!",) class SelectProjectUser(workflows.Step): action_class = SelectProjectUserAction contributes = ("project_id", "user_id") KEYPAIR_IMPORT_URL = "horizon:project:access_and_security:keypairs:import" class SetResumeDetailAction(workflows.Action): image_id = forms.ChoiceField(label=_("Image"), required=True) name = forms.CharField(max_length=80, label=_("Instance Name"), initial="resumed_vm") security_group_ids = forms.MultipleChoiceField(label=_("Security Groups"), required=True, initial=["default"], widget=forms.CheckboxSelectMultiple(), help_text=_("Launch instance in these " "security groups.")) flavor = forms.ChoiceField(label=_("Flavor"), required=True, help_text=_("Size of image to launch.")) #keypair_id = forms.DynamicChoiceField(label=_("Keypair"), # required=False, # help_text=_("Which keypair to use for " # "authentication."), # add_item_link=KEYPAIR_IMPORT_URL) class Meta: name = _("Base VM Info") help_text_template = ("project/cloudlet/instance/" "_resume_details_help.html") def clean(self): cleaned_data = super(SetResumeDetailAction, self).clean() return cleaned_data def _get_available_images(self, request, context): project_id = context.get('project_id', None) if not hasattr(self, "_public_images"): public = {"is_public": True, "status": "active"} try: image_detail = api.glance.image_list_detailed( request, filters=public ) if len(image_detail) == 2: # icehouse public_images, _more = image_detail elif len(image_detail) == 3: # kilo public_images, _more , has_prev_data = image_detail except: public_images = [] exceptions.handle(request, _("Unable to retrieve public images.")) self._public_images = public_images # Preempt if we don't have a project_id yet. if project_id is None: setattr(self, "_images_for_%s" % project_id, []) if not hasattr(self, "_images_for_%s" % project_id): owner = {"property-owner_id": project_id, "status": "active"} try: image_detail = api.glance.image_list_detailed( request, filters=owner ) if len(image_detail) == 2: # icehouse owned_images, _more = image_detail elif len(image_detail) == 3: # kilo owned_images, _more , has_prev_data = image_detail except: owned_images = [] exceptions.handle(request, _("Unable to retrieve images for " "the current project.")) setattr(self, "_images_for_%s" % project_id, owned_images) owned_images = getattr(self, "_images_for_%s" % project_id) images = owned_images + self._public_images base_vms = list() for image in images: if hasattr(image, 'properties') == True: properties = getattr(image, 'properties') cloudlet_type = properties.get('cloudlet_type', None) if cloudlet_type == CLOUDLET_TYPE.IMAGE_TYPE_BASE_DISK: base_vms.append(image) # Remove duplicate images image_ids = [] final_images = [] for image in base_vms: if image.id not in image_ids: image_ids.append(image.id) final_images.append(image) return [image for image in final_images if image.container_format not in ('aki', 'ari')] def populate_image_id_choices(self, request, context): images = self._get_available_images(request, context) choices = [(image.id, image.name) for image in images if image.properties.get("image_type", '') == "snapshot"] if choices: choices.insert(0, ("", _("Select Base VM"))) else: choices.insert(0, ("", _("No Base VM is available."))) return choices def get_help_text(self): extra = {} try: extra['usages'] = quotas.tenant_quota_usages(self.request) extra['usages_json'] = json.dumps(extra['usages']) flavors = json.dumps([f._info for f in api.nova.flavor_list(self.request)]) extra['flavors'] = flavors except: exceptions.handle(self.request, _("Unable to retrieve quota information.")) return super(SetResumeDetailAction, self).get_help_text(extra) def populate_keypair_id_choices(self, request, context): try: keypairs = api.nova.keypair_list(request) keypair_list = [(kp.name, kp.name) for kp in keypairs] except: keypair_list = [] exceptions.handle(request, _('Unable to retrieve keypairs.')) if keypair_list: if len(keypair_list) == 1: self.fields['keypair_id'].initial = keypair_list[0][0] #keypair_list.insert(0, ("", _("Select a keypair"))) else: keypair_list = (("", _("No keypairs available.")),) return keypair_list def populate_security_group_ids_choices(self, request, context): try: groups = api.network.security_group_list(request) #groups = api.nova.SecurityGroupManager.list(request) security_group_list = [(sg.name, sg.name) for sg in groups] except: exceptions.handle(request, _('Unable to retrieve list of security groups')) security_group_list = [] return security_group_list def populate_flavor_choices(self, request, context): # return all flavors of Base VM image try: matching_flavors = set() flavors = api.nova.flavor_list(request) basevm_images = self._get_available_images(request, context) for basevm_image in basevm_images: if basevm_image.properties is None or\ len(basevm_image.properties) == 0: continue libvirt_xml_str = basevm_image.properties.get( 'base_resource_xml_str', None) if libvirt_xml_str is None: continue cpu_count, memory_mb = get_resource_size(libvirt_xml_str) disk_gb = basevm_image.min_disk ret_flavors = find_matching_flavor(flavors, cpu_count, memory_mb, disk_gb) matching_flavors.update(ret_flavors) if len(matching_flavors) > 0: self.fields['flavor'].initial = list(matching_flavors)[0] else: self.fields['flavor'].initial = (0, "No valid flavor") except Exception as e: matching_flavors= set() exceptions.handle(request, _('Unable to retrieve instance flavors.')) return sorted(list(matching_flavors)) class SetSynthesizeDetailsAction(workflows.Action): overlay_url = forms.CharField(max_length=200, required=True, label=_("URL for VM overlay"), initial="http://") name = forms.CharField(max_length=80, label=_("Instance Name"), initial="synthesized_vm") security_group_ids = forms.MultipleChoiceField( label=_("Security Groups"), required=True, initial=["default"], widget=forms.CheckboxSelectMultiple(), help_text=_("Launch instance in these " "security groups.")) flavor = forms.ChoiceField(label=_("Flavor"), required=True, help_text=_("Size of image to launch.")) #keypair_id = forms.DynamicChoiceField(label=_("Keypair"), # required=False, # help_text=_("Which keypair to use for " # "authentication."), # add_item_link=KEYPAIR_IMPORT_URL) class Meta: name = _("VM overlay Info") help_text_template = ("project/cloudlet/instance/" "_synthesis_details_help.html") def clean(self): cleaned_data = super(SetSynthesizeDetailsAction, self).clean() overlay_url = cleaned_data.get('overlay_url', None) if overlay_url is None: raise forms.ValidationError(_("Need URL to fetch VM overlay")) # check url format val = URLValidator() try: val(overlay_url) except ValidationError, e: raise forms.ValidationError(_("Malformed URL for VM overlay")) # check url accessibility try: header_ret = requests.head(overlay_url) if header_ret.ok == False: raise except Exception as e: msg = "URL is not accessible : %s" % overlay_url raise forms.ValidationError(_(msg)) if cleaned_data.get('name', None) is None: raise forms.ValidationError(_("Need name for the synthesized VM")) # finally check the header file of VM overlay # to make sure that associated Base VM exists from elijah.provisioning.package import VMOverlayPackage matching_image = None requested_basevm_sha256 = '' try: overlay_package = VMOverlayPackage(overlay_url) metadata = overlay_package.read_meta() overlay_meta = msgpack.unpackb(metadata) requested_basevm_sha256 = overlay_meta.get(Cloudlet_Const.META_BASE_VM_SHA256, None) matching_image = find_basevm_by_sha256(self.request, requested_basevm_sha256) except Exception as e: msg = "Error while finding matching Base VM with %s" % (requested_basevm_sha256) raise forms.ValidationError(_(msg)) if matching_image == None: msg = "Cannot find matching base VM with UUID(%s)" % (requested_basevm_sha256) raise forms.ValidationError(_(msg)) else: # specify associated base VM from the metadata cleaned_data['image_id'] = str(matching_image.id) return cleaned_data def get_help_text(self): extra = {} try: extra['usages'] = quotas.tenant_quota_usages(self.request) extra['usages_json'] = json.dumps(extra['usages']) flavors = json.dumps([f._info for f in api.nova.flavor_list(self.request)]) extra['flavors'] = flavors except: exceptions.handle(self.request, _("Unable to retrieve quota information.")) return super(SetSynthesizeDetailsAction, self).get_help_text(extra) def populate_keypair_id_choices(self, request, context): try: keypairs = api.nova.keypair_list(request) keypair_list = [(kp.name, kp.name) for kp in keypairs] except: keypair_list = [] exceptions.handle(request, _('Unable to retrieve keypairs.')) if keypair_list: if len(keypair_list) == 1: self.fields['keypair_id'].initial = keypair_list[0][0] #keypair_list.insert(0, ("", _("Select a keypair"))) else: keypair_list = (("", _("No keypairs available.")),) return keypair_list def populate_security_group_ids_choices(self, request, context): try: groups = api.network.security_group_list(request) #groups = api.nova.SecurityGroupManager.list(request) security_group_list = [(sg.name, sg.name) for sg in groups] except: exceptions.handle(request, _('Unable to retrieve list of security groups')) security_group_list = [] return security_group_list def _get_available_images(self, request, context): project_id = context.get('project_id', None) public_images = [] owned_images = [] public = {"is_public": True, "status": "active"} try: image_detail = api.glance.image_list_detailed( request, filters=public ) if len(image_detail) == 2: # icehouse public_images, _more = image_detail elif len(image_detail) == 3: # kilo public_images, _more , has_prev_data = image_detail except: public_images = [] pass # Preempt if we don't have a project_id yet. if project_id is None: setattr(self, "_images_for_%s" % project_id, []) if not hasattr(self, "_images_for_%s" % project_id): owner = {"property-owner_id": project_id, "status": "active"} try: image_detail = api.glance.image_list_detailed( request, filters=owner ) if len(image_detail) == 2: # icehouse owned_images, _more = image_detail elif len(image_detail) == 3: # kilo owned_images, _more , has_prev_data = image_detail except: owned_images = [] pass images = owned_images + public_images base_vms = list() for image in images: if hasattr(image, 'properties') == True: properties = getattr(image, 'properties') cloudlet_type = properties.get('cloudlet_type', None) if cloudlet_type == CLOUDLET_TYPE.IMAGE_TYPE_BASE_DISK: base_vms.append(image) # Remove duplicate images image_ids = [] final_images = [] for image in base_vms: if image.id not in image_ids: image_ids.append(image.id) final_images.append(image) return [image for image in final_images if image.container_format not in ('aki', 'ari')] def populate_flavor_choices(self, request, context): # return all flavors of Base VM image try: matching_flavors = set() flavors = api.nova.flavor_list(request) basevm_images = self._get_available_images(request, context) for basevm_image in basevm_images: if basevm_image.properties is None or\ len(basevm_image.properties) == 0: continue libvirt_xml_str = basevm_image.properties.get( 'base_resource_xml_str', None) if libvirt_xml_str is None: continue cpu_count, memory_mb = get_resource_size(libvirt_xml_str) disk_gb = basevm_image.min_disk ret_flavors = find_matching_flavor(flavors, cpu_count, memory_mb, disk_gb) matching_flavors.update(ret_flavors) if len(matching_flavors) > 0: self.fields['flavor'].initial = list(matching_flavors)[0] except: matching_flavors= set() exceptions.handle(request, _('Unable to retrieve instance flavors.')) return sorted(list(matching_flavors)) class SetResumeAction(workflows.Step): action_class = SetResumeDetailAction contributes = ("image_id", "name", "security_group_ids", "flavor", "keypair_id") def prepare_action_context(self, request, context): source_type = request.GET.get("source_type", None) source_id = request.GET.get("source_id", None) if source_type != None and source_id != None: context[source_type] = source_id return context class SetSynthesizeAction(workflows.Step): action_class = SetSynthesizeDetailsAction contributes = ("image_id", "overlay_url", "name", "security_group_ids", "flavor", "keypair_id") class SetAccessControlsAction(workflows.Action): keypair = forms.DynamicChoiceField(label=_("Keypair"), required=False, help_text=_("Which keypair to use for " "authentication."), add_item_link=KEYPAIR_IMPORT_URL) groups = forms.MultipleChoiceField(label=_("Security Groups"), required=True, initial=["default"], widget=forms.CheckboxSelectMultiple(), help_text=_("Launch instance in these " "security groups.")) class Meta: name = _("Access & Security") help_text = _("Control access to your instance via keypairs, " "security groups, and other mechanisms.") def populate_keypair_choices(self, request, context): try: keypairs = api.nova.keypair_list(request) keypair_list = [(kp.name, kp.name) for kp in keypairs] except: keypair_list = [] exceptions.handle(request, _('Unable to retrieve keypairs.')) if keypair_list: if len(keypair_list) == 1: self.fields['keypair'].initial = keypair_list[0][0] #keypair_list.insert(0, ("", _("Select a keypair"))) else: keypair_list = (("", _("No keypairs available.")),) return keypair_list def populate_groups_choices(self, request, context): try: groups = api.network.security_group_list(request) #groups = api.nova.SecurityGroupManager.list(request) security_group_list = [(sg.name, sg.name) for sg in groups] except: exceptions.handle(request, _('Unable to retrieve list of security groups')) security_group_list = [] return security_group_list class ResumeInstance(workflows.Workflow): slug = "cloudlet resume base instance" name = _("Cloudlet Resume Base VM") finalize_button_name = _("Launch") success_message = _('Cloudlet launched %(count)s named "%(name)s".') failure_message = _('Cloudlet is unable to launch %(count)s named "%(name)s".') success_url = "horizon:project:cloudlet:index" default_steps = (SelectProjectUser, SetResumeAction, ) def format_status_message(self, message): name = self.context.get('name', 'unknown instance') count = self.context.get('count', 1) if int(count) > 1: return message % {"count": _("%s instances") % count, "name": name} else: return message % {"count": _("instance"), "name": name} def handle(self, request, context): dev_mapping = None user_script = None try: api.nova.server_create(request, context['name'], context['image_id'], context['flavor'], context['keypair_id'], user_script, context['security_group_ids'], dev_mapping, nics=None, instance_count=1, ) return True except: exceptions.handle(request) return False class SynthesisInstance(workflows.Workflow): slug = "cloudlet syntehsize VM" name = _("Cloudlet Synthesize VM") finalize_button_name = _("Synthesize") success_message = _('Cloudlet synthesized %(count)s named "%(name)s".') failure_message = _('Cloudlet is unable to synthesize %(count)s named "%(name)s".') success_url = "horizon:project:cloudlet:index" default_steps = (SelectProjectUser, SetSynthesizeAction,) def format_status_message(self, message): name = self.context.get('name', 'unknown instance') count = self.context.get('count', 1) if int(count) > 1: return message % {"count": _("%s instances") % count, "name": name} else: return message % {"count": _("instance"), "name": name} def handle(self, request, context): try: ret_json = cloudlet_api.request_synthesis( request, context['name'], context['image_id'], context['flavor'], context['keypair_id'], context['security_group_ids'], context['overlay_url'], ) error_msg = ret_json.get("badRequest", None) if error_msg is not None: msg = error_msg.get("message", "Failed to request VM synthesis") raise Exception(msg) return True except: exceptions.handle(request) return False
from collections import OrderedDict from ceci.sites.cori import parse_int_set from ceci.pipeline import override_config from ceci.utils import embolden from ceci.config import cast_value, cast_to_streamable def test_parse_ints(): assert parse_int_set("1,2,3") == set([1, 2, 3]) assert parse_int_set("10-12") == set([10, 11, 12]) assert parse_int_set("10-12,15,19-21") == set([10, 11, 12, 15, 19, 20, 21]) def test_override_config(): config = { "a": "b", "c": {"d": "e"}, "h": True, "i": 8, "j": 17.5, } override_config(config, ["a=a", "c.d=e", "f.x.y.z=g", "h=False", "i=9", "j=19.5"]) assert config["a"] == "a" assert config["c"] == {"d": "e"} assert config["f"] == {"x": {"y": {"z": "g"}}} assert config["h"] is False assert config["i"] == 9 assert config["j"] == 19.5 def test_embolden(): x = 'hj6_9xx0' y = embolden(x) assert x in embolden(x) assert y[4:-4] == x def test_cast_value(): # dtype is None should allow any value assert cast_value(None, 5) == 5 assert cast_value(None, "dog") == "dog" # value is None is always allowed assert cast_value(float, None) is None assert cast_value(str, None) is None # if isinstance(value, dtype) return value assert cast_value(float, 5.) == 5. assert cast_value(str, "dog") == "dog" # if isinstance(value, Mapping) return dtype(**value) odict = cast_value(dict, dict(key1='dog', key2=5)) assert odict['key1'] == 'dog' assert odict['key2'] == 5 # if dtype(value) works return that assert cast_value(float, 5) == 5. # catch errors try: cast_value(float, "dog") except TypeError: pass else: raise TypeError("Failed to catch type error") try: cast_value(int, []) except TypeError: pass else: raise TypeError("Failed to catch type error") def test_cast_streamable(): assert cast_to_streamable(dict(key='dog'))['key'] == 'dog' assert cast_to_streamable(OrderedDict([('key', 'dog')]))['key'] == 'dog'
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: """ Generic algorithms such as registration, statistics, simulation, etc. """ from __future__ import absolute_import __docformat__ = 'restructuredtext' from . import statistics from . import fwhm, interpolation, kernel_smooth, diagnostics from nipy.testing import Tester test = Tester().test bench = Tester().bench
""" @Author: NguyenKhacThanh """ __all__ = ["init_app"] def _after_request(response): """Add headers to after request """ # allowed_origins = [ # re.compile("http?://(.*\.)?i2g\.vn"), # ] # origin = flask.request.headers.get("Origin") # if origin: # for allowed_origin in allowed_origins: # if allowed_origin.match(origin): # response.headers["Access-Control-Allow-Origin"] = origin # response.headers["Access-Control-Allow-Credentials"] = "true" response.headers["Access-Control-Allow-Origin"] = "*" response.headers["Access-Control-Allow-Methods"] = \ "GET, POST, PUT, DELETE, OPTIONS" response.headers["Access-Control-Allow-Headers"] = \ "Origin, X-Requested-With, Content-Type, Accept, Authorization" return response def init_app(app): """Fixed error CORS :param app Flask object :rtype None """ app.after_request(_after_request)
# Generated by Django 3.1.2 on 2020-12-18 20:17 import datetime from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('apis', '0019_auto_20201218_2012'), ] operations = [ migrations.AlterField( model_name='commentapimodel', name='created_at', field=models.DateField(default=datetime.date.today), ), migrations.AlterField( model_name='postapimodel', name='published_at', field=models.DateField(default=datetime.date.today), ), ]
from app import cache from base26 import Base26Converter from database import urltable class ShortURL: def __init__(self): self.__cacheUrlExpireTimeout: int = 300 self.__base26 = Base26Converter() cache.setUrlTableObject(urltable=urltable) def getShortURL(self, longURL: str): longURL: str = longURL.strip() shortURL = urltable.getShortURL(long_url=longURL) if shortURL is None: uid: int = cache.getNewCounter() shortURL: str = self.__base26.encode(uid) longURL: str = longURL.strip() urltable.insertURL(uid=uid, long_url=longURL, short_url=shortURL) cache.storeURL( url=longURL, short_url=shortURL, expire=self.__cacheUrlExpireTimeout ) return shortURL def getLongURL(self, short_url: str): short_url = short_url.strip() longURL: str = cache.getLongUrl(short_url=short_url) if longURL is None: longURL = urltable.getLongURL(short_url=short_url) if longURL is None: return None cache.storeURL( url=longURL, short_url=short_url, expire=self.__cacheUrlExpireTimeout ) return longURL if __name__ == "__main__": print("Hello World")
from django.apps import AppConfig class ContractsConfig(AppConfig): default_auto_field = 'django.db.models.BigAutoField' name = 'contracts'
import argparse,os parser = argparse.ArgumentParser(description='sequencing saturation') parser.add_argument('--action', metavar='SELECT', default='mkref', choices=['mkref', 'mkgtf', 'stat'], help='Select the action for your program, include mkref,mkgtf,stat, default is mkref') parser.add_argument('--ingtf', metavar='FILE' ,help='Set ingtf in mkref,mkgtf or stat') parser.add_argument('--outgtf',metavar='FILE', help='Set outgtf in mkgtf') parser.add_argument('--attribute',metavar='DICT',default = ['gene_type=protein_coding'], nargs='+',help='Set the filter parameter in mkgtf, Key-value pair in attributes field to be kept in the GTF, \ default is gene_type:protein_coding, you can set up multiple groups separated by blankspace') parser.add_argument('--outstat',metavar='FILE', default = 'gtf_type.txt',help='Set the stats outfile in stat, default is "gtf_type.txt" in current dir') parser.add_argument('--type',metavar='STR', default = 'gene_type',help='Set the the type for stat, default is gene_type') parser.add_argument('--fasta',metavar='FASTA',help='Set the fasta in mkref') parser.add_argument('--star_dir',metavar='DIR',default=os.getcwd(), help='Set the star indexdir in mkref, default is current dir') parser.add_argument('--star',metavar='PROGRAM',help='Set the star program path in mkref') parser.add_argument('--threads',metavar='INT', help='Set the threads in mkref') args = parser.parse_args() from typing import List, Iterable from collections import Counter from subprocess import check_call def read(fp: str, feature: str) -> Iterable[List[str]]: lines = [] with open(fp) as f: for line in f: newline = line.strip() if newline.startswith('#'): lines.append(line) elif newline == '': continue else: lst = newline.split('\t') if lst[2] == feature: yield lines lines = [] lines.append(line) else: lines.append(line) yield lines def filtergtf(gtf,filtergtf,attribute): d = dict(i.split(":")[::-1] for i in attribute) gtfread = read(gtf,'gene') result = open(filtergtf,'w') for i in gtfread: if i[0].startswith('#'): result.writelines(i) else: lst = i[0].split('\t')[-1].replace('"', '').strip().strip(';') lstlist = lst.split('; ') aDict = {} for j in lstlist: aDict[j.split(' ')[0]] = j.split(' ')[-1] for key1,value1 in aDict.items(): for key2,value2 in d.items(): if key1 == value2 and key2 == value1: result.writelines(i) result.close() def statgtf(gtf,keyword,outfile): with open(gtf,'r') as fp: sumDict = [] for line in fp: line = line.strip() if line.startswith("#"): continue elif line == '': continue else: lst = line.split('\t') if lst[2] == 'gene': lstlist = lst[-1].replace('"', '').strip().strip(';') llstlist = lstlist.split('; ') aDict = dict(l.split(' ') for l in llstlist) sumDict.append(aDict[keyword]) result = Counter(sumDict) outfile = open(outfile,'w') outfile.write('Type'+'\t'+'Count'+'\n') for k,v in sorted(result.items(), key = lambda x:x[1], reverse=True): outfile.write(f'{k}\t{v}\n') outfile.close() def star_index(fasta,gtf,star_dir,star_program,threads): if not os.path.exists(star_dir): os.system('mkdir -p %s'%star_dir) star_cmd = '%s --runMode genomeGenerate --runThreadN %s --genomeDir %s --genomeFastaFiles %s --sjdbGTFfile %s --sjdbOverhang 99 --limitGenomeGenerateRAM 125000000000'\ %(star_program,threads,star_dir,fasta,gtf) print('STAR verison: 2.7.2b') print('runMode: genomeGenerate') print('runThreadN: %s'%threads) print('genomeDir: %s'%star_dir) print('fasta: %s'%fasta) print('gtf: %s'%gtf) check_call(star_cmd,shell=True) if __name__=='__main__': if args.action == 'stat': statgtf(args.ingtf,args.type,args.outstat) if args.action == 'mkgtf': filtergtf(args.ingtf,args.outgtf,args.attribute) if args.action == 'mkref': star_index(args.fasta,args.ingtf,args.star_dir,args.star,args.threads)
print("\n") texto = input(" Digite um texto: ") print("\n") print("Texto digitado: " + texto) print("\n")
# cssyacc/parsetab.py # This file is automatically generated. Do not edit. _tabversion = '3.2' _lr_method = 'LALR' _lr_signature = b'\xd5t\xfa\x19\xdba\xab\x8dqF\x98h\xbfOA\x9c' _lr_action_items = {'BRACES_L':([0,1,2,3,4,5,6,7,8,9,10,11,12,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,34,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,66,67,68,69,70,71,72,73,74,75,76,77,78,80,81,83,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,107,108,109,110,111,112,114,115,116,],[-63,-63,-1,-5,32,32,-63,-8,-7,-63,-63,-63,-63,-63,-63,-63,-33,-63,-63,-63,-63,-63,-63,-4,-63,-63,-63,-3,-2,-6,32,-63,32,-11,-10,-63,-63,-63,-63,-63,-63,-63,-63,-63,-53,-63,-63,-63,-63,-63,-63,-63,-63,-63,-63,-22,-17,-32,-21,-29,-18,-19,-24,-30,-16,-20,-26,-25,-28,-23,-27,-31,32,-63,-15,-61,-52,-40,-35,-50,-39,-47,-36,-37,-42,-48,-34,-38,-44,-43,-46,-51,-41,-45,-49,-56,-54,-14,32,-13,-12,-62,-57,-55,-9,]),'PARENTHESES_R':([4,6,7,8,9,10,11,12,14,15,16,17,18,19,20,21,22,23,25,26,27,31,33,34,35,36,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,66,67,68,69,70,71,72,73,74,75,76,77,78,79,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,106,107,112,113,114,115,116,],[-63,-63,-8,-7,-63,-63,-63,-63,-63,-63,-63,-33,-63,-63,-63,-63,-63,-63,-63,-63,-63,-63,-58,-63,83,-60,-63,-63,-63,-63,-63,-63,-63,-63,-63,-53,-63,-63,-63,-63,-63,-63,-63,-63,-63,-63,-22,-17,-32,-21,-29,-18,-19,-24,-30,-16,-20,-26,-25,-28,-23,-27,-31,-63,107,112,-61,-63,-52,-40,-35,-50,-39,-47,-36,-37,-42,-48,-34,-38,-44,-43,-46,-51,-41,-45,-49,-56,115,-54,-62,-59,-57,-55,-9,]),'NUMBER':([0,1,2,3,4,6,7,8,9,10,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,34,37,38,39,40,41,42,43,44,45,46,47,49,50,51,52,53,54,55,56,57,58,65,78,80,81,83,84,104,107,108,110,111,112,114,115,116,],[-63,6,-1,-5,6,40,-8,-7,40,40,40,40,6,40,40,40,40,40,40,40,40,40,-4,40,40,40,-3,-2,-6,6,-63,6,-11,-10,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,6,6,6,-15,-61,40,-56,-54,-14,-13,-12,-62,-57,-55,-9,]),'WS':([0,1,2,3,4,6,7,8,9,10,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,37,38,39,40,41,42,43,44,45,46,47,49,50,51,52,53,54,55,56,57,58,80,81,83,84,104,107,108,110,111,112,114,115,116,],[-63,7,-1,-5,7,7,-8,-7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,-4,7,7,7,-3,-2,-6,7,-63,-11,-10,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,-15,-61,7,-56,-54,-14,-13,-12,-62,-57,-55,-9,]),'BRACKETS_R':([6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,25,26,27,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,83,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,107,112,114,115,],[-63,-8,-7,-63,-63,-63,-63,-63,-63,-63,-63,-33,-63,-63,-63,-63,-63,-63,-63,-63,-63,-63,-63,-63,-63,-63,-63,-63,-63,-63,-53,-63,-63,-63,-63,-63,-63,-63,-63,-63,-63,-22,-17,-32,-21,-29,104,-63,-18,-19,-24,-30,-16,-20,-26,-25,-28,-23,-27,-31,-61,-52,-40,-35,-50,-39,-47,-36,-37,-42,-48,-34,-38,-44,-43,-46,-51,-41,-45,-49,-56,114,-54,-62,-57,-55,]),'BRACES_R':([6,7,8,9,10,11,12,14,15,16,17,18,19,20,21,22,23,25,26,27,32,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,66,67,68,69,70,71,72,73,74,75,76,77,80,81,83,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,107,108,109,110,111,112,114,115,116,],[-63,-8,-7,-63,-63,-63,-63,-63,-63,-63,-33,-63,-63,-63,-63,-63,-63,-63,-63,-63,-63,-11,-10,-63,-63,-63,-63,-63,-63,-63,-63,-63,-53,-63,-63,-63,-63,-63,-63,-63,-63,-63,-63,-22,-17,-32,-21,-29,-18,-19,-24,-30,-16,-20,-26,-25,-28,-23,-27,-31,-63,-15,-61,-52,-40,-35,-50,-39,-47,-36,-37,-42,-48,-34,-38,-44,-43,-46,-51,-41,-45,-49,-56,-54,-14,116,-13,-12,-62,-57,-55,-9,]),'COMMENT':([0,1,2,3,6,7,8,9,10,11,12,14,15,16,18,19,20,21,22,23,24,25,26,27,28,29,30,32,37,38,39,40,41,42,43,44,45,46,47,49,50,51,52,53,54,55,56,57,58,80,81,83,84,104,107,108,110,111,112,114,115,116,],[-63,8,-1,-5,8,-8,-7,8,8,8,8,8,8,8,8,8,8,8,8,8,-4,8,8,8,-3,-2,-6,-63,-11,-10,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,-15,-61,8,-56,-54,-14,-13,-12,-62,-57,-55,-9,]),'ATKEYWORD':([0,1,2,3,4,6,7,8,9,10,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,34,37,38,39,40,41,42,43,44,45,46,47,49,50,51,52,53,54,55,56,57,58,65,78,80,81,83,84,104,107,108,110,111,112,114,115,116,],[-63,9,-1,-5,9,41,-8,-7,41,41,41,41,9,41,41,41,41,41,41,41,41,41,-4,41,41,41,-3,-2,-6,9,-63,9,-11,-10,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,9,9,9,-15,-61,41,-56,-54,-14,-13,-12,-62,-57,-55,-9,]),'SEMICOLON':([0,1,2,3,4,5,6,7,8,9,10,11,12,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,106,107,108,109,110,111,112,113,114,115,116,],[-63,-63,-1,-5,-63,37,-63,-8,-7,-63,-63,-63,-63,-63,-63,-63,-33,-63,-63,-63,-63,-63,-63,-4,-63,-63,-63,-3,-2,-6,-63,-63,-58,-63,84,-60,-11,-10,-63,-63,-63,-63,-63,-63,-63,-63,-63,-53,-63,-63,-63,-63,-63,-63,-63,-63,-63,-63,-22,-17,-32,-21,-29,-18,-19,-24,-30,-16,-20,-26,-25,-28,-23,-27,-31,-63,84,-63,-15,84,-61,-63,-52,-40,-35,-50,-39,-47,-36,-37,-42,-48,-34,-38,-44,-43,-46,-51,-41,-45,-49,-56,84,-54,-14,37,-13,-12,-62,-59,-57,-55,-9,]),'DELIM':([0,1,2,3,4,6,7,8,9,10,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,34,37,38,39,40,41,42,43,44,45,46,47,49,50,51,52,53,54,55,56,57,58,65,78,80,81,83,84,104,107,108,110,111,112,114,115,116,],[-63,11,-1,-5,11,43,-8,-7,43,43,43,43,11,43,43,43,43,43,43,43,43,43,-4,43,43,43,-3,-2,-6,11,-63,11,-11,-10,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,11,11,11,-15,-61,43,-56,-54,-14,-13,-12,-62,-57,-55,-9,]),'DASHMATCH':([0,1,2,3,4,6,7,8,9,10,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,34,37,38,39,40,41,42,43,44,45,46,47,49,50,51,52,53,54,55,56,57,58,65,78,80,81,83,84,104,107,108,110,111,112,114,115,116,],[-63,12,-1,-5,12,44,-8,-7,44,44,44,44,12,44,44,44,44,44,44,44,44,44,-4,44,44,44,-3,-2,-6,12,-63,12,-11,-10,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,12,12,12,-15,-61,44,-56,-54,-14,-13,-12,-62,-57,-55,-9,]),'BRACKETS_L':([0,1,2,3,4,6,7,8,9,10,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,34,37,38,39,40,41,42,43,44,45,46,47,49,50,51,52,53,54,55,56,57,58,65,78,80,81,83,84,104,107,108,110,111,112,114,115,116,],[-63,13,-1,-5,13,13,-8,-7,13,13,13,13,13,13,13,13,13,13,13,13,13,13,-4,13,13,13,-3,-2,-6,13,-63,13,-11,-10,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,-15,-61,13,-56,-54,-14,-13,-12,-62,-57,-55,-9,]),'ATBRACES':([0,1,2,3,4,6,7,8,9,10,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,34,37,38,39,40,41,42,43,44,45,46,47,49,50,51,52,53,54,55,56,57,58,65,78,80,81,83,84,104,107,108,110,111,112,114,115,116,],[-63,14,-1,-5,14,45,-8,-7,45,45,45,45,14,45,45,45,45,45,45,45,45,45,-4,45,45,45,-3,-2,-6,14,-63,14,-11,-10,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,14,14,14,-15,-61,45,-56,-54,-14,-13,-12,-62,-57,-55,-9,]),'COLON':([0,1,2,3,4,6,7,8,9,10,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,34,37,38,39,40,41,42,43,44,45,46,47,49,50,51,52,53,54,55,56,57,58,65,78,80,81,83,84,104,107,108,110,111,112,114,115,116,],[-63,15,-1,-5,15,46,-8,-7,46,46,46,46,15,46,46,46,46,46,46,46,46,46,-4,46,46,46,-3,-2,-6,15,-63,15,-11,-10,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,15,15,15,-15,-61,46,-56,-54,-14,-13,-12,-62,-57,-55,-9,]),'PERCENTAGE':([0,1,2,3,4,6,7,8,9,10,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,34,37,38,39,40,41,42,43,44,45,46,47,49,50,51,52,53,54,55,56,57,58,65,78,80,81,83,84,104,107,108,110,111,112,114,115,116,],[-63,16,-1,-5,16,47,-8,-7,47,47,47,47,16,47,47,47,47,47,47,47,47,47,-4,47,47,47,-3,-2,-6,16,-63,16,-11,-10,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,16,16,16,-15,-61,47,-56,-54,-14,-13,-12,-62,-57,-55,-9,]),'$end':([0,1,2,3,7,8,24,28,29,30,37,38,116,],[-63,0,-1,-5,-8,-7,-4,-3,-2,-6,-11,-10,-9,]),'FUNCTION':([0,1,2,3,4,6,7,8,9,10,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,34,37,38,39,40,41,42,43,44,45,46,47,49,50,51,52,53,54,55,56,57,58,65,78,80,81,83,84,104,107,108,110,111,112,114,115,116,],[-63,4,-1,-5,4,4,-8,-7,4,4,4,4,4,4,4,4,4,4,4,4,4,4,-4,4,4,4,-3,-2,-6,4,-63,4,-11,-10,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,-15,-61,4,-56,-54,-14,-13,-12,-62,-57,-55,-9,]),'IDENT':([0,1,2,3,4,6,7,8,9,10,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,34,37,38,39,40,41,42,43,44,45,46,47,49,50,51,52,53,54,55,56,57,58,65,78,80,81,83,84,104,107,108,110,111,112,114,115,116,],[-63,19,-1,-5,19,50,-8,-7,50,50,50,50,19,50,50,50,50,50,50,50,50,50,-4,50,50,50,-3,-2,-6,19,-63,19,-11,-10,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,19,19,19,-15,-61,50,-56,-54,-14,-13,-12,-62,-57,-55,-9,]),'HASH':([0,1,2,3,4,6,7,8,9,10,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,34,37,38,39,40,41,42,43,44,45,46,47,49,50,51,52,53,54,55,56,57,58,65,78,80,81,83,84,104,107,108,110,111,112,114,115,116,],[-63,20,-1,-5,20,51,-8,-7,51,51,51,51,20,51,51,51,51,51,51,51,51,51,-4,51,51,51,-3,-2,-6,20,-63,20,-11,-10,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,20,20,20,-15,-61,51,-56,-54,-14,-13,-12,-62,-57,-55,-9,]),'STRING':([0,1,2,3,4,6,7,8,9,10,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,34,37,38,39,40,41,42,43,44,45,46,47,49,50,51,52,53,54,55,56,57,58,65,78,80,81,83,84,104,107,108,110,111,112,114,115,116,],[-63,21,-1,-5,21,52,-8,-7,52,52,52,52,21,52,52,52,52,52,52,52,52,52,-4,52,52,52,-3,-2,-6,21,-63,21,-11,-10,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,21,21,21,-15,-61,52,-56,-54,-14,-13,-12,-62,-57,-55,-9,]),'URI':([0,1,2,3,4,6,7,8,9,10,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,34,37,38,39,40,41,42,43,44,45,46,47,49,50,51,52,53,54,55,56,57,58,65,78,80,81,83,84,104,107,108,110,111,112,114,115,116,],[-63,22,-1,-5,22,53,-8,-7,53,53,53,53,22,53,53,53,53,53,53,53,53,53,-4,53,53,53,-3,-2,-6,22,-63,22,-11,-10,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,22,22,22,-15,-61,53,-56,-54,-14,-13,-12,-62,-57,-55,-9,]),'INCLUDES':([0,1,2,3,4,6,7,8,9,10,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,34,37,38,39,40,41,42,43,44,45,46,47,49,50,51,52,53,54,55,56,57,58,65,78,80,81,83,84,104,107,108,110,111,112,114,115,116,],[-63,23,-1,-5,23,54,-8,-7,54,54,54,54,23,54,54,54,54,54,54,54,54,54,-4,54,54,54,-3,-2,-6,23,-63,23,-11,-10,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,23,23,23,-15,-61,54,-56,-54,-14,-13,-12,-62,-57,-55,-9,]),'DIMENSION':([0,1,2,3,4,6,7,8,9,10,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,34,37,38,39,40,41,42,43,44,45,46,47,49,50,51,52,53,54,55,56,57,58,65,78,80,81,83,84,104,107,108,110,111,112,114,115,116,],[-63,25,-1,-5,25,56,-8,-7,56,56,56,56,25,56,56,56,56,56,56,56,56,56,-4,56,56,56,-3,-2,-6,25,-63,25,-11,-10,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,25,25,25,-15,-61,56,-56,-54,-14,-13,-12,-62,-57,-55,-9,]),'UNICODE_RANGE':([0,1,2,3,4,6,7,8,9,10,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,34,37,38,39,40,41,42,43,44,45,46,47,49,50,51,52,53,54,55,56,57,58,65,78,80,81,83,84,104,107,108,110,111,112,114,115,116,],[-63,26,-1,-5,26,57,-8,-7,57,57,57,57,26,57,57,57,57,57,57,57,57,57,-4,57,57,57,-3,-2,-6,26,-63,26,-11,-10,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,26,26,26,-15,-61,57,-56,-54,-14,-13,-12,-62,-57,-55,-9,]),'CDC':([0,1,2,3,7,8,24,28,29,30,37,38,116,],[-63,28,-1,-5,-8,-7,-4,-3,-2,-6,-11,-10,-9,]),'CDO':([0,1,2,3,7,8,24,28,29,30,37,38,116,],[-63,29,-1,-5,-8,-7,-4,-3,-2,-6,-11,-10,-9,]),'PARENTHESES_L':([0,1,2,3,4,6,7,8,9,10,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,34,37,38,39,40,41,42,43,44,45,46,47,49,50,51,52,53,54,55,56,57,58,65,78,80,81,83,84,104,107,108,110,111,112,114,115,116,],[-63,31,-1,-5,31,31,-8,-7,31,31,31,31,31,31,31,31,31,31,31,31,31,31,-4,31,31,31,-3,-2,-6,31,-63,31,-11,-10,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,-15,-61,31,-56,-54,-14,-13,-12,-62,-57,-55,-9,]),} _lr_action = { } for _k, _v in _lr_action_items.items(): for _x,_y in zip(_v[0],_v[1]): if not _x in _lr_action: _lr_action[_x] = { } _lr_action[_x][_k] = _y del _lr_action_items _lr_goto_items = {'comment':([1,6,9,10,11,12,14,15,16,18,19,20,21,22,23,25,26,27,39,40,41,42,43,44,45,46,47,49,50,51,52,53,54,55,56,57,58,80,84,],[3,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,108,39,]),'function':([1,4,6,9,10,11,12,13,14,15,16,18,19,20,21,22,23,25,26,27,31,34,39,40,41,42,43,44,45,46,47,49,50,51,52,53,54,55,56,57,58,65,78,80,84,],[18,18,49,49,49,49,49,18,49,49,49,49,49,49,49,49,49,49,49,49,18,18,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,18,18,18,49,]),'parentheses':([1,4,6,9,10,11,12,13,14,15,16,18,19,20,21,22,23,25,26,27,31,34,39,40,41,42,43,44,45,46,47,49,50,51,52,53,54,55,56,57,58,65,78,80,84,],[27,27,58,58,58,58,58,27,58,58,58,58,58,58,58,58,58,58,58,58,27,27,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,27,27,27,58,]),'brackets':([1,4,6,9,10,11,12,13,14,15,16,18,19,20,21,22,23,25,26,27,31,34,39,40,41,42,43,44,45,46,47,49,50,51,52,53,54,55,56,57,58,65,78,80,84,],[10,10,42,42,42,42,42,10,42,42,42,42,42,42,42,42,42,42,42,42,10,10,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,10,10,10,42,]),'text':([1,4,13,31,34,65,78,80,],[5,33,64,33,33,105,33,109,]),'element':([1,80,],[30,111,]),'stylesheet':([0,],[1,]),'elements':([32,],[80,]),'ws':([1,4,6,9,10,11,12,13,14,15,16,18,19,20,21,22,23,25,26,27,31,39,40,41,42,43,44,45,46,47,49,50,51,52,53,54,55,56,57,58,80,84,],[24,34,55,55,55,55,55,65,55,55,55,55,55,55,55,55,55,55,55,55,78,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,110,55,]),'block':([4,5,31,34,78,109,],[36,38,36,36,36,38,]),'ptext':([4,31,34,78,],[35,79,82,106,]),'textsuffix':([6,9,10,11,12,14,15,16,18,19,20,21,22,23,25,26,27,39,40,41,42,43,44,45,46,47,49,50,51,52,53,54,55,56,57,58,84,],[59,60,61,62,63,66,67,68,69,70,71,72,73,74,75,76,77,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,113,]),'empty':([0,1,4,6,9,10,11,12,13,14,15,16,18,19,20,21,22,23,25,26,27,31,32,34,39,40,41,42,43,44,45,46,47,49,50,51,52,53,54,55,56,57,58,65,78,80,84,],[2,17,17,48,48,48,48,48,17,48,48,48,48,48,48,48,48,48,48,48,48,17,81,17,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,17,17,17,48,]),} _lr_goto = { } for _k, _v in _lr_goto_items.items(): for _x,_y in zip(_v[0],_v[1]): if not _x in _lr_goto: _lr_goto[_x] = { } _lr_goto[_x][_k] = _y del _lr_goto_items _lr_productions = [ ("S' -> stylesheet","S'",1,None,None,None), ('stylesheet -> empty','stylesheet',1,'p_stylesheet','/home/domen/CSSQC/cssyacc/__init__.py',27), ('stylesheet -> stylesheet CDO','stylesheet',2,'p_stylesheet','/home/domen/CSSQC/cssyacc/__init__.py',28), ('stylesheet -> stylesheet CDC','stylesheet',2,'p_stylesheet','/home/domen/CSSQC/cssyacc/__init__.py',29), ('stylesheet -> stylesheet ws','stylesheet',2,'p_stylesheet','/home/domen/CSSQC/cssyacc/__init__.py',30), ('stylesheet -> stylesheet comment','stylesheet',2,'p_stylesheet','/home/domen/CSSQC/cssyacc/__init__.py',31), ('stylesheet -> stylesheet element','stylesheet',2,'p_stylesheet','/home/domen/CSSQC/cssyacc/__init__.py',32), ('comment -> COMMENT','comment',1,'p_comment','/home/domen/CSSQC/cssyacc/__init__.py',39), ('ws -> WS','ws',1,'p_ws','/home/domen/CSSQC/cssyacc/__init__.py',43), ('block -> BRACES_L elements text BRACES_R','block',4,'p_block','/home/domen/CSSQC/cssyacc/__init__.py',47), ('element -> text block','element',2,'p_element','/home/domen/CSSQC/cssyacc/__init__.py',51), ('element -> text SEMICOLON','element',2,'p_element','/home/domen/CSSQC/cssyacc/__init__.py',52), ('elements -> elements element','elements',2,'p_elements','/home/domen/CSSQC/cssyacc/__init__.py',59), ('elements -> elements ws','elements',2,'p_elements','/home/domen/CSSQC/cssyacc/__init__.py',60), ('elements -> elements comment','elements',2,'p_elements','/home/domen/CSSQC/cssyacc/__init__.py',61), ('elements -> empty','elements',1,'p_elements','/home/domen/CSSQC/cssyacc/__init__.py',62), ('text -> IDENT textsuffix','text',2,'p_text','/home/domen/CSSQC/cssyacc/__init__.py',69), ('text -> ATKEYWORD textsuffix','text',2,'p_text','/home/domen/CSSQC/cssyacc/__init__.py',70), ('text -> ATBRACES textsuffix','text',2,'p_text','/home/domen/CSSQC/cssyacc/__init__.py',71), ('text -> COLON textsuffix','text',2,'p_text','/home/domen/CSSQC/cssyacc/__init__.py',72), ('text -> HASH textsuffix','text',2,'p_text','/home/domen/CSSQC/cssyacc/__init__.py',73), ('text -> DELIM textsuffix','text',2,'p_text','/home/domen/CSSQC/cssyacc/__init__.py',74), ('text -> NUMBER textsuffix','text',2,'p_text','/home/domen/CSSQC/cssyacc/__init__.py',75), ('text -> DIMENSION textsuffix','text',2,'p_text','/home/domen/CSSQC/cssyacc/__init__.py',76), ('text -> PERCENTAGE textsuffix','text',2,'p_text','/home/domen/CSSQC/cssyacc/__init__.py',77), ('text -> URI textsuffix','text',2,'p_text','/home/domen/CSSQC/cssyacc/__init__.py',78), ('text -> STRING textsuffix','text',2,'p_text','/home/domen/CSSQC/cssyacc/__init__.py',79), ('text -> UNICODE_RANGE textsuffix','text',2,'p_text','/home/domen/CSSQC/cssyacc/__init__.py',80), ('text -> INCLUDES textsuffix','text',2,'p_text','/home/domen/CSSQC/cssyacc/__init__.py',81), ('text -> DASHMATCH textsuffix','text',2,'p_text','/home/domen/CSSQC/cssyacc/__init__.py',82), ('text -> function textsuffix','text',2,'p_text','/home/domen/CSSQC/cssyacc/__init__.py',83), ('text -> parentheses textsuffix','text',2,'p_text','/home/domen/CSSQC/cssyacc/__init__.py',84), ('text -> brackets textsuffix','text',2,'p_text','/home/domen/CSSQC/cssyacc/__init__.py',85), ('text -> empty','text',1,'p_text','/home/domen/CSSQC/cssyacc/__init__.py',86), ('textsuffix -> IDENT textsuffix','textsuffix',2,'p_textsuffix','/home/domen/CSSQC/cssyacc/__init__.py',96), ('textsuffix -> ATKEYWORD textsuffix','textsuffix',2,'p_textsuffix','/home/domen/CSSQC/cssyacc/__init__.py',97), ('textsuffix -> ATBRACES textsuffix','textsuffix',2,'p_textsuffix','/home/domen/CSSQC/cssyacc/__init__.py',98), ('textsuffix -> COLON textsuffix','textsuffix',2,'p_textsuffix','/home/domen/CSSQC/cssyacc/__init__.py',99), ('textsuffix -> HASH textsuffix','textsuffix',2,'p_textsuffix','/home/domen/CSSQC/cssyacc/__init__.py',100), ('textsuffix -> DELIM textsuffix','textsuffix',2,'p_textsuffix','/home/domen/CSSQC/cssyacc/__init__.py',101), ('textsuffix -> NUMBER textsuffix','textsuffix',2,'p_textsuffix','/home/domen/CSSQC/cssyacc/__init__.py',102), ('textsuffix -> DIMENSION textsuffix','textsuffix',2,'p_textsuffix','/home/domen/CSSQC/cssyacc/__init__.py',103), ('textsuffix -> PERCENTAGE textsuffix','textsuffix',2,'p_textsuffix','/home/domen/CSSQC/cssyacc/__init__.py',104), ('textsuffix -> URI textsuffix','textsuffix',2,'p_textsuffix','/home/domen/CSSQC/cssyacc/__init__.py',105), ('textsuffix -> STRING textsuffix','textsuffix',2,'p_textsuffix','/home/domen/CSSQC/cssyacc/__init__.py',106), ('textsuffix -> UNICODE_RANGE textsuffix','textsuffix',2,'p_textsuffix','/home/domen/CSSQC/cssyacc/__init__.py',107), ('textsuffix -> INCLUDES textsuffix','textsuffix',2,'p_textsuffix','/home/domen/CSSQC/cssyacc/__init__.py',108), ('textsuffix -> DASHMATCH textsuffix','textsuffix',2,'p_textsuffix','/home/domen/CSSQC/cssyacc/__init__.py',109), ('textsuffix -> function textsuffix','textsuffix',2,'p_textsuffix','/home/domen/CSSQC/cssyacc/__init__.py',110), ('textsuffix -> parentheses textsuffix','textsuffix',2,'p_textsuffix','/home/domen/CSSQC/cssyacc/__init__.py',111), ('textsuffix -> brackets textsuffix','textsuffix',2,'p_textsuffix','/home/domen/CSSQC/cssyacc/__init__.py',112), ('textsuffix -> ws textsuffix','textsuffix',2,'p_textsuffix','/home/domen/CSSQC/cssyacc/__init__.py',113), ('textsuffix -> comment textsuffix','textsuffix',2,'p_textsuffix','/home/domen/CSSQC/cssyacc/__init__.py',114), ('textsuffix -> empty','textsuffix',1,'p_textsuffix','/home/domen/CSSQC/cssyacc/__init__.py',115), ('parentheses -> PARENTHESES_L ptext PARENTHESES_R','parentheses',3,'p_parentheses','/home/domen/CSSQC/cssyacc/__init__.py',125), ('parentheses -> PARENTHESES_L ws ptext PARENTHESES_R','parentheses',4,'p_parentheses','/home/domen/CSSQC/cssyacc/__init__.py',126), ('brackets -> BRACKETS_L text BRACKETS_R','brackets',3,'p_brackets','/home/domen/CSSQC/cssyacc/__init__.py',133), ('brackets -> BRACKETS_L ws text BRACKETS_R','brackets',4,'p_brackets','/home/domen/CSSQC/cssyacc/__init__.py',134), ('ptext -> text','ptext',1,'p_ptext','/home/domen/CSSQC/cssyacc/__init__.py',141), ('ptext -> ptext SEMICOLON textsuffix','ptext',3,'p_ptext','/home/domen/CSSQC/cssyacc/__init__.py',142), ('ptext -> block','ptext',1,'p_ptext','/home/domen/CSSQC/cssyacc/__init__.py',143), ('function -> FUNCTION ptext PARENTHESES_R','function',3,'p_function','/home/domen/CSSQC/cssyacc/__init__.py',154), ('function -> FUNCTION ws ptext PARENTHESES_R','function',4,'p_function','/home/domen/CSSQC/cssyacc/__init__.py',155), ('empty -> <empty>','empty',0,'p_empty','/home/domen/CSSQC/cssyacc/__init__.py',162), ]
# -*- coding: utf-8 -*- # ------------- Cantidad de segundos que has vivido ------------- # Definición de variables anios = 30 dias_por_anio = 365 horas_por_dia = 24 segundos_por_hora = 60 # Operación print (anios * dias_por_anio * horas_por_dia * segundos_por_hora)
from .draw import plot
# System modules. from datetime import datetime # 3rd party modules. from flask import make_response, abort import requests # Personal modules. from config import db from models import Master, MasterSchema, Detail, DetailSchema # Get current time as a timestamp string. def _get_timestamp(): return datetime.now().strftime(("%Y-%m-%d %H:%M:%S")) # From postal code to city name (Spain only). def _get_cityname(postalcode): try: r = requests.get( "http://api.geonames.org/postalCodeLookupJSON?postalcode=" + postalcode + "&country=ES&username=jperezvisaires" ) cityname = r.json()["postalcodes"][-1]["placeName"] except: cityname = None return cityname # CREATE operations. def create(user): """ This function creates a new user in the database based on the passed-in user data. :param user: User to create in database :return: 201 on success, 400 on bad postal code, 406 on user exists """ username = user.get("username", None) postalcode = user.get("postalcode", None) cityname = _get_cityname(postalcode) # Does the user already exist? existing_master = Master.query.filter(Master.username == username).one_or_none() if existing_master is None and cityname is not None: # Create a user instance using the schema and the passed-in user. user_master = Master(username=username) db.session.add(user_master) user_detail = Detail(postalcode=postalcode, cityname=cityname) db.session.add(user_detail) # Save changes to database. db.session.commit() return make_response( "{username} successfully created".format(username=username), 201, ) # If the Postal Code doesn't return any hits in Geonames elif cityname is None: abort( 400, "Postal code {postalcode} is invalid".format(postalcode=postalcode), ) # Otherwise, they exist, and that's an error else: abort( 406, "User with username {username} already exists".format(username=username), ) # READ operations. def read_all(): """ This function responds to a request for /api/users with the complete lists of users. :return: JSON string of list of users """ # Create the list of people from our data master = Master.query.all() # Serialize the data for the response master_schema = MasterSchema(many=True) return master_schema.dump(master) def read_one(username): """ This function responds to a request for /api/users/{username} with one matching user from the database. :param username: Username of user to find :return: User matching username """ # Get the user requested master = Master.query.filter(Master.username == username).one_or_none() # Did we find a user? if master is not None: # Serialize the data for the response master_schema = MasterSchema() return master_schema.dump(master) # Otherwise, not found. else: abort(404, "User with username {username} not found".format(username=username)) def read_one_details(username): """ This function responds to a request for /api/users/{username} with one matching user from the database. :param username: Username of user to find :return: User matching username """ # Get the user requested master = Master.query.filter(Master.username == username).one_or_none() detail = Detail.query.filter(Detail.user_id == master.user_id).one_or_none() # Did we find a user? if detail is not None: # Serialize the data for the response detail_schema = DetailSchema() return detail_schema.dump(detail) # Otherwise, not found. else: abort(404, "User with username {username} not found".format(username=username)) # UPDATE operations. def update(username, user): """ This function updates an existing user in the database. :param username: Username of user to update in the database :param user: User to update :return: Updated user structure """ cityname = _get_cityname(user.get("postalcode")) # Get the user requested from the db into session master = Master.query.filter(Master.username == username).one_or_none() detail = Master.query.filter(Master.username == username).one_or_none() # Does the user already exist? if username is not None and cityname is not None: # turn the passed in person into a db object master_user = {"username": user["username"]} master_schema = MasterSchema() master_update = master_schema.load(master_user, session=db.session) detail_user = {"postalcode": user["postalcode"], "cityname": cityname} detail_schema = DetailSchema() detail_update = detail_schema.load(detail_user, session=db.session) # Set the id to the person we want to update master_update.user_id = master.user_id detail_update.user_id = detail.user_id # merge the new object into the old and commit it to the db db.session.merge(master_update) db.session.merge(detail_update) db.session.commit() # return updated person in the response data = master_schema.dump(master_update) return data, 200 # If the Postal Code doesn't return any hits in Geonames elif cityname is None: abort( 400, "Postal code {postalcode} is invalid".format( postalcode=user.get("postalcode") ), ) # Otherwise, that's an error else: abort( 404, "User with username {username} not found".format(username=username), ) # DELETE operations. def delete(username): """ This function deletes a user from the users structure :param username: Username of user to delete :return: 200 on successful delete, 404 if not found """ # Get the person requested master = Master.query.filter(Master.username == username).one_or_none() detail = Detail.query.filter(Detail.user_id == master.user_id).one_or_none() # Does the person to delete exist? if master is not None: db.session.delete(master) db.session.delete(detail) db.session.commit() return make_response( "{username} successfully deleted".format(username=username), 200 ) # Otherwise, user to delete not found else: abort(404, "User with username {username} not found".format(username=username))
from django.db import models from django.utils.safestring import mark_safe from django.utils.translation import ugettext_lazy as _ DEFAULT_UPLOAD_TO = 'product_images' class ImageProduct(models.ForeignKey): def __init__( self, to='products.Product', verbose_name=_("Product"), related_name='images', on_delete=models.CASCADE, *args, **kwargs): super(ImageProduct, self).__init__( to, verbose_name=verbose_name, related_name=related_name, on_delete=on_delete, *args, **kwargs) class ImageFile(models.ImageField): def __init__( self, verbose_name=_("File"), upload_to=DEFAULT_UPLOAD_TO, max_length=255, *args, **kwargs): super(ImageFile, self).__init__( verbose_name=verbose_name, upload_to=upload_to, max_length=max_length, *args, **kwargs) class ProductImageNotFoundError(IOError): pass def get_product_image_class(upload_to=DEFAULT_UPLOAD_TO): class ProductImage(models.Model): product = ImageProduct() file = ImageFile(upload_to=upload_to) def get_preview(self, size): from sorl.thumbnail import get_thumbnail if not self.file: return None try: return get_thumbnail(self.file.file, size) except IOError: raise ProductImageNotFoundError() def get_preview_tag(self, width=100, empty_label='-----'): if not self.file: return empty_label try: url = self.get_preview(str(width)).url except ProductImageNotFoundError: return _('Image not found') return mark_safe( '<img src="{}" width: {}px; title="{}" />'.format( url, width, self.file.url)) @property def preview_tag(self): return self.get_preview_tag() preview_tag.fget.short_description = _('Preview') def __str__(self): return str(self.product) class Meta: abstract = True ordering = ['id'] verbose_name = _('Product image') verbose_name_plural = _('Product images') return ProductImage def get_ordered_product_image_class(upload_to=DEFAULT_UPLOAD_TO): from ordered_model.models import OrderedModelBase ProductImage = get_product_image_class(upload_to) class OrderedProductImage(OrderedModelBase, ProductImage): order = models.PositiveIntegerField(_('Ordering'), default=0) order_field_name = 'order' order_with_respect_to = 'product' class Meta(ProductImage.Meta): abstract = True ordering = ['order', 'id'] return OrderedProductImage
# # This file is part of GreatFET # from .base import GlitchKitModule from ..protocol import vendor_requests from ..peripherals.gpio import GPIOPin class GlitchKitSimple(GlitchKitModule): """ Simple trigger module for GlitchKit. Provides simple trigger conditions (e.g. "the SPI clock ticks 25 times while CE is high and WP is low") for quick construction of simple glitch conditions. This is suprisingly useful for how simple it is. :) """ SHORT_NAME = 'simple' # Event flags. COUNT_REACHED = 0x001 # Store the max number of each type of condition we can have. MAX_EDGE_CONDITIONS = 8 MAX_LEVEL_CONDITIONS = 8 # The types of conditions we support. # These must match the enumeration in firmware/coimmon/gpio_int.h. CONDITION_TYPES = { 'DISABLED' : -1, # for convenience, we'll ignore these : ) 'LEVEL_HIGH' : 0, 'LEVEL_LOW' : 1, 'EDGE_RISING' : 2, 'EDGE_FALLING' : 3, 'EDGE_BOTH' : 4 } def __init__(self, board): """ Create a new GlitchKit module allowing triggering on simple events. Args: board -- A representation of the GreatFET that will perform the actual triggering. """ # Store a reference to the parent board. self.board = board def prime_trigger_on_event_count(self, count, conditions): # TODO: get rid of this alias self.watch_for_event(condition, count) def watch_for_event(self, count, conditions): """ Sets up the GreatFET to issue an event when a given number of events have passed. Args: count -- The count to reach. conditions -- A list of 2-tuples, which should each contain a value a key from self.CONDITION_TYPES, and a GPIOPin or GPIOPin name. """ # Build a packet that describes each of the conditions to be described. # This is the bulk of the communication. packet = self._build_condition_packet(conditions) # Split the target count into two, so we can wedge it into the setup # fields. count_high = count >> 16 count_low = count & 0xFFFF # Finally, issue the raw request that should generate the relevant count. self.board.comms._vendor_request_out(vendor_requests.GLITCHKIT_SIMPLE_START_EVENT_COUNT, value=count_high, index=count_low, data=packet, timeout=3000) def _build_condition_packet(self, conditions, ensure_input=True): """ Builds a packet that can communicate a list of conditions to the GreatFET. Args: conditions -- A list of 2-tuples, which should each contain a _key_ from self.CONDITION_TYPES, and a GPIOPin or GPIOPin name. ensure_input -- If set, this will ensure that all relevant GPIOPins are set to input mode before using them for glitching. Returns: A list of bytes that will represent the given command. """ packet = [] # Keep track of the number of each type of conditions obeserved num_edge = 0 num_level = 0 # Convert each condition to a set of bytes, and add it to the packet. for condition in conditions: # Skip any DISABLED conditions. if condition[0] == 'DISABLED': continue elif condition[0] in ['LEVEL_HIGH', 'LEVEL_LOW']: num_level += 1 elif condition[0] in ['EDGE_RISING', 'EDGE_FALLING', 'EDGE_BOTH']: num_edge += 1 else: raise ValueError("Invalid condition type {}!".format(condition[0])) # Check to ensure we're not going to genete more packets that the device can handle. if (num_level > self.MAX_LEVEL_CONDITIONS) or (num_edge > self.MAX_EDGE_CONDITIONS): raise ValueError('Too many conditions!') command = self._build_condition_triple(condition, ensure_input) packet.extend(command) return packet def _build_condition_triple(self, condition, ensure_input=True): """ Converts a condition into a format that the GreatFET simple glitching module will accept. Args: condition-- A single 2-tuple, which should contain a _key_ from self.CONDITION_TYPES, and a GPIOPin or GPIOPin name. ensure_input -- If set, this will ensure that the relevant GPIOPins is set to input mode before using them for glitching. Returns: A list of bytes that will represent the given command. """ raw_mode, pin_or_name = condition # Resolve the arguments to the types we'll need to communicate to the GreatFET. mode = self.CONDITION_TYPES[raw_mode] gpio_pin = pin_or_name if isinstance(pin_or_name, GPIOPin) else self.board.gpio.get_pin(pin_or_name) port_number = gpio_pin.get_port() pin_number = gpio_pin.get_pin() # If we're ensuring the relevant pin is an input, configure it accordingly. if ensure_input: gpio_pin.set_direction(self.board.gpio.DIRECTION_IN) # Finally, return the configuration list. return [mode, port_number, pin_number]
#!/usr/bin/env python3 # Copyright 2004-present Facebook. All Rights Reserved. import labgraph as lg from typing import Dict, Tuple # Make the imports work when running from LabGraph root directory import sys sys.path.append("./") # LabGraph WebSockets Components from labgraph.websockets.ws_server.ws_api_node_server import ( WSAPIServerConfig, WSAPIServerNode, ) # LabGraph Monitor Components from extensions.yaml_support.labgraph_monitor.server.enums.enums import ENUMS from extensions.yaml_support.labgraph_monitor.aliases.aliases import SerializedGraph from extensions.yaml_support.labgraph_monitor.server.serializer_node import SerializerConfig, Serializer from extensions.yaml_support.labgraph_monitor.generate_lg_monitor.generate_lg_monitor import set_graph_topology # Graph Components from extensions.graphviz_support.graphviz_support.tests.demo_graph.noise_generator import NoiseGeneratorConfig, NoiseGenerator from extensions.graphviz_support.graphviz_support.tests.demo_graph.amplifier import AmplifierConfig, Amplifier from extensions.graphviz_support.graphviz_support.tests.demo_graph.attenuator import AttenuatorConfig, Attenuator from extensions.graphviz_support.graphviz_support.tests.demo_graph.rolling_averager import RollingConfig, RollingAverager # LabGraph WebSockets Configurations APP_ID = 'LABGRAPH.MONITOR' WS_SERVER = ENUMS.WS_SERVER STREAM = ENUMS.STREAM DEFAULT_IP = WS_SERVER.DEFAULT_IP DEFAULT_PORT = WS_SERVER.DEFAULT_PORT DEFAULT_API_VERSION = WS_SERVER.DEFAULT_API_VERSION SAMPLE_RATE = 5 # Graph Configurations NUM_FEATURES = 100 WINDOW = 2.0 REFRESH_RATE = 2.0 OUT_IN_RATIO = 1.2 ATTENUATION = 5.0 class Demo(lg.Graph): # LabGraph WebSockets Component WS_SERVER_NODE: WSAPIServerNode # LabGraph Monitor Component SERIALIZER: Serializer # Graph Components NOISE_GENERATOR: NoiseGenerator ROLLING_AVERAGER: RollingAverager AMPLIFIER: Amplifier ATTENUATOR: Attenuator # Used when running `generate_labgraph_monitor(graph)` def set_topology(self, topology: SerializedGraph, sub_pub_map: Dict) -> None: self._topology = topology self._sub_pub_match = sub_pub_map def setup(self) -> None: self.WS_SERVER_NODE.configure( WSAPIServerConfig( app_id=APP_ID, ip=WS_SERVER.DEFAULT_IP, port=ENUMS.WS_SERVER.DEFAULT_PORT, api_version=ENUMS.WS_SERVER.DEFAULT_API_VERSION, num_messages=-1, enums=ENUMS(), sample_rate=SAMPLE_RATE, ) ) self.SERIALIZER.configure( SerializerConfig( data=self._topology, sub_pub_match=self._sub_pub_match, sample_rate=SAMPLE_RATE, stream_name=STREAM.LABGRAPH_MONITOR, stream_id=STREAM.LABGRAPH_MONITOR_ID, ) ) self.NOISE_GENERATOR.configure( NoiseGeneratorConfig( sample_rate=float(SAMPLE_RATE), num_features=NUM_FEATURES, ) ) self.ROLLING_AVERAGER.configure( RollingConfig( window=WINDOW, ) ) self.AMPLIFIER.configure( AmplifierConfig( out_in_ratio=OUT_IN_RATIO, ) ) self.ATTENUATOR.configure( AttenuatorConfig( attenuation=ATTENUATION, ) ) def connections(self) -> lg.Connections: return ( (self.NOISE_GENERATOR.NOISE_GENERATOR_OUTPUT, self.ROLLING_AVERAGER.ROLLING_AVERAGER_INPUT), (self.NOISE_GENERATOR.NOISE_GENERATOR_OUTPUT, self.AMPLIFIER.AMPLIFIER_INPUT), (self.NOISE_GENERATOR.NOISE_GENERATOR_OUTPUT, self.ATTENUATOR.ATTENUATOR_INPUT), (self.NOISE_GENERATOR.NOISE_GENERATOR_OUTPUT, self.SERIALIZER.SERIALIZER_INPUT_1), (self.ROLLING_AVERAGER.ROLLING_AVERAGER_OUTPUT, self.SERIALIZER.SERIALIZER_INPUT_2), (self.AMPLIFIER.AMPLIFIER_OUTPUT, self.SERIALIZER.SERIALIZER_INPUT_3), (self.ATTENUATOR.ATTENUATOR_OUTPUT, self.SERIALIZER.SERIALIZER_INPUT_4), (self.SERIALIZER.SERIALIZER_OUTPUT, self.WS_SERVER_NODE.topic), ) def process_modules(self) -> Tuple[lg.Module, ...]: return ( self.NOISE_GENERATOR, self.ROLLING_AVERAGER, self.AMPLIFIER, self.ATTENUATOR, self.SERIALIZER, self.WS_SERVER_NODE, ) if __name__ == "__main__": graph = Demo() set_graph_topology(graph=graph) runner = lg.ParallelRunner(graph=graph) runner.run()
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import matplotlib.pyplot as plt import numpy as np from gnpy.core.utils import (load_json, itufs, freq2wavelength, lin2db, db2lin) from gnpy.core import network topology = load_json('edfa_example_network.json') nw = network.network_from_json(topology) pch2d_legend_data = np.loadtxt('Pchan2DLegend.txt') pch2d = np.loadtxt('Pchan2D.txt') ch_spacing = 0.05 fc = itufs(ch_spacing) lc = freq2wavelength(fc) / 1000 nchan = np.arange(len(lc)) df = np.ones(len(lc)) * ch_spacing edfa1 = [n for n in nw.nodes() if n.uid == 'Edfa1'][0] edfa1.gain_target = 20.0 edfa1.tilt_target = -0.7 edfa1.calc_nf() results = [] for Pin in pch2d: chgain = edfa1.gain_profile(Pin) pase = edfa1.noise_profile(chgain, fc, df) pout = lin2db(db2lin(Pin + chgain) + db2lin(pase)) results.append(pout) # Generate legend text pch2d_legend = [] for ea in pch2d_legend_data: s = ''.join([chr(xx) for xx in ea.astype(dtype=int)]).strip() pch2d_legend.append(s) # Plot axis_font = {'fontname': 'Arial', 'size': '16', 'fontweight': 'bold'} title_font = {'fontname': 'Arial', 'size': '17', 'fontweight': 'bold'} tic_font = {'fontname': 'Arial', 'size': '12'} plt.rcParams["font.family"] = "Arial" plt.figure() plt.plot(nchan, pch2d.T, '.-', lw=2) plt.xlabel('Channel Number', **axis_font) plt.ylabel('Channel Power [dBm]', **axis_font) plt.title('Input Power Profiles for Different Channel Loading', **title_font) plt.legend(pch2d_legend, loc=5) plt.grid() plt.ylim((-100, -10)) plt.xlim((0, 110)) plt.xticks(np.arange(0, 100, 10), **tic_font) plt.yticks(np.arange(-110, -10, 10), **tic_font) plt.figure() for result in results: plt.plot(nchan, result, '.-', lw=2) plt.title('Output Power w/ ASE for Different Channel Loading', **title_font) plt.xlabel('Channel Number', **axis_font) plt.ylabel('Channel Power [dBm]', **axis_font) plt.grid() plt.ylim((-50, 10)) plt.xlim((0, 100)) plt.xticks(np.arange(0, 100, 10), **tic_font) plt.yticks(np.arange(-50, 10, 10), **tic_font) plt.legend(pch2d_legend, loc=5) plt.show()
from __future__ import print_function import h5py import sys import numpy as np class NanoporeModel(object): def __init__(self, fast5File): self.fastFive = h5py.File(fast5File, "r") self.stay_prob = 0 self.skip_prob_bins = [] self.model_name = '' self.model = None def export_model(self, destination_path): """Exports the model to a file. Format: line 1: [correlation coefficient] [level_mean] [level_sd] [noise_mean] [noise_sd] [noise_lambda ] (.../kmer) \n line 2: skip bins \n line 3: [correlation coefficient] [level_mean] [level_sd, scaled] [noise_mean] [noise_sd] [noise_lambda ] (.../kmer) \n """ def calculate_lambda(noise_mean, noise_stdev): return (np.power(noise_mean, 3)) / (np.power(noise_stdev, 2)) if self.model is None: print("This method is meant to be used as part of the child class TemplateModel or ComplementModel", file=sys.stderr) # output the model for cPecan to a file model_path = destination_path + self.model_name out_file = open(model_path, 'w') # line 1 print("0", end=' ', file=out_file) # placeholder for correlation parameter for kmer, level_mean, level_stdev, sd_mean, sd_stdev, weight in self.model: lam = calculate_lambda(sd_mean, sd_stdev) print(level_mean, level_stdev, sd_mean, sd_stdev, lam, end=' ', file=out_file) print("", end="\n", file=out_file) # line 2 for _ in self.skip_prob_bins: print(_, end=' ', file=out_file) print("", end="\n", file=out_file) # line 3 print("0", end=' ', file=out_file) # placeholder for correlation parameter for kmer, level_mean, level_stdev, sd_mean, sd_stdev, weight in self.model: lam = calculate_lambda(sd_mean, sd_stdev) print(level_mean, (level_stdev*1.75), sd_mean, sd_stdev, lam, end=' ', file=out_file) print("", end="\n", file=out_file) return def get_model_dict(self): # check if self.model is None: print("This method is meant to be used as part of the child class TemplateModel or ComplementModel", file=sys.stderr) # go through the model and build a lookup table model_dict = {} for kmer, level_mean, level_stdev, sd_mean, sd_stdev, weight in self.model: model_dict[kmer] = [level_mean, level_stdev, sd_mean, sd_stdev] return model_dict def close(self): self.fastFive.close() class TemplateModel(NanoporeModel): def __init__(self, fast5File): super(TemplateModel, self).__init__(fast5File=fast5File) self.model = self.fastFive['/Analyses/Basecall_2D_000/BaseCalled_template/Model'] self.stay_prob = np.log2( self.fastFive["/Analyses/Basecall_2D_000/BaseCalled_template/Model"].attrs["stay_prob"]) self.skip_prob_bins = [0.487, 0.412, 0.311, 0.229, 0.174, 0.134, 0.115, 0.103, 0.096, 0.092, 0.088, 0.087, 0.084, 0.085, 0.083, 0.082, 0.085, 0.083, 0.084, 0.082, 0.080, 0.085, 0.088, 0.086, 0.087, 0.089, 0.085, 0.090, 0.087, 0.096] self.parse_model_name() def parse_model_name(self): model_name = self.fastFive["/Analyses/Basecall_2D_000/Summary/basecall_1d_template"].attrs["model_file"] model_name = model_name.split('/')[-1] self.model_name = model_name return class ComplementModel(NanoporeModel): def __init__(self, fast5File): super(ComplementModel, self).__init__(fast5File=fast5File) self.model = self.fastFive['/Analyses/Basecall_2D_000/BaseCalled_complement/Model'] self.stay_prob = np.log2( self.fastFive["/Analyses/Basecall_2D_000/BaseCalled_complement/Model"].attrs["stay_prob"]) self.skip_prob_bins = [0.531, 0.478, 0.405, 0.327, 0.257, 0.207, 0.172, 0.154, 0.138, 0.132, 0.127, 0.123, 0.117, 0.115, 0.113, 0.113, 0.115, 0.109, 0.109, 0.107, 0.104, 0.105, 0.108, 0.106, 0.111, 0.114, 0.118, 0.119, 0.110, 0.119] self.parse_model_name() def parse_model_name(self): model_name = self.fastFive["/Analyses/Basecall_2D_000/Summary/basecall_1d_complement"].attrs["model_file"] model_name = model_name.split('/')[-1] self.model_name = model_name return
# -*- coding: iso-8859-1 -*- # # http://en.wikipedia.org/wiki/Fourier_series # """ http://rosettacode.org/wiki/Fast_Fourier_transform http://en.wikipedia.org/wiki/Cooley–Tukey_FFT_algorithm http://en.wikipedia.org/wiki/Discrete_Fourier_transform http://es.wikipedia.org/wiki/Transformada_de_Fourier_discreta """ from __future__ import print_function, division import sys if( sys.version_info[0] == 2 ): range = xrange import math import qm3.maths.integration import qm3.maths.interpolation class series( object ): def __init__( self, size, x, y, interpolant = qm3.maths.interpolation.hermite_spline ): self.size = size self.base = 0.0 self.bcof = [] self.acof = [] self.x = x[:] self.y = y[:] self.peri = 0.5 * ( self.x[-1] - self.x[0] ) self.inte = interpolant( x, y ) def integrate( self ): self.base = 0.5 * qm3.maths.integration.Simpson_f( lambda r: self.inte.calc( r )[0], self.x[0], self.x[-1], n = 1000 )[0] for i in range( self.size ): f = float( i + 1 ) * math.pi / self.peri self.acof.append( qm3.maths.integration.Simpson_f( lambda r: self.inte.calc( r )[0] * math.cos( r * f ), self.x[0], self.x[-1], n = 1000 )[0] ) self.bcof.append( qm3.maths.integration.Simpson_f( lambda r: self.inte.calc( r )[0] * math.sin( r * f ), self.x[0], self.x[-1], n = 1000 )[0] ) def calc( self, r, items = -1 ): o = self.base n = self.size if( items > 0 and items <= self.size ): n = items for i in range( n ): f = float( i + 1 ) * math.pi / self.peri o += self.acof[i] * math.cos( f * r ) + self.bcof[i] * math.sin( f * r ) return( o / self.peri )
# coding=utf-8 from terminaltables import AsciiTable import numpy as np from random import randint from mygrid.rnp import Arvore, Aresta from mygrid.util import Fasor, Base class Setor(Arvore): def __init__(self, nome, vizinhos, nos_de_carga, prioridade=0): assert isinstance(nome, str), 'O parâmetro nome da classe' \ 'Setor deve ser do tipo string' assert isinstance(vizinhos, list), 'O parâmetro vizinhos da classe' \ ' Setor deve ser do tipo list' assert isinstance(nos_de_carga, list), 'O parâmetro nos_de_carga da classe' \ 'Setor deve ser do tipo list' assert (prioridade >= 0 and prioridade <= 10), 'O valo de prioridade' \ 'deve estar entre 0-10' # assert isinstance(prioridade, int), 'O parâmetro Prioridade da classe' \ # 'Setor deve ser do tipo int' self.nome = nome self.prioridade = prioridade self.vizinhos = vizinhos self.rnp_associadas = {i: None for i in self.vizinhos} self.nos_de_carga = dict() for no in nos_de_carga: no.setor = self.nome self.nos_de_carga[no.nome] = no self.no_de_ligacao = None arvore_de_setor = self._gera_arvore_do_setor() super(Setor, self).__init__(arvore_de_setor, str) def _gera_arvore_do_setor(self): arvore_do_setor = dict() # for percorre os nós de carga do setor for i, j in self.nos_de_carga.items(): # print '%-12s vizinhos %s' % (str(j), j.vizinhos) vizinhos = list() # for percorre os vizinhos do nó de carga for k in j.vizinhos: # condição só considera vizinho o nó de carga que está # no mesmo setor que o nó de carga analisado if k in self.nos_de_carga.keys(): vizinhos.append(k) arvore_do_setor[i] = vizinhos return arvore_do_setor def calcular_potencia(self): potencia = Fasor(real=0.0, imag=0.0, tipo=Fasor.Potencia) for no in self.nos_de_carga.values(): potencia = potencia + no.potencia return potencia def __str__(self): return 'Setor: ' + self.nome class NoDeCarga(object): def __init__(self, nome, vizinhos, potencia=Fasor(real=0.0, imag=0.0, tipo=Fasor.Potencia), tensao=Fasor(real=0.0, imag=0.0, tipo=Fasor.Tensao), chaves=None): assert isinstance(nome, str), 'O parâmetro nome da classe NoDeCarga' \ ' deve ser do tipo string' assert isinstance(vizinhos, list), 'O parâmetro vizinhos da classe' \ ' Barra deve ser do tipo string' self.nome = nome self.vizinhos = vizinhos self.potencia = potencia self.potencia_eq = Fasor(real=0.0, imag=0.0, tipo=Fasor.Potencia) self.tensao = tensao if chaves is not None: assert isinstance(chaves, list), 'O parâmetro chaves da classe NoDeCarga' \ ' deve ser do tipo list' self.chaves = chaves else: self.chaves = list() self.setor = None def __str__(self): return 'No de Carga: ' + self.nome class Barramento(NoDeCarga): def __init__(self, nome, vizinhos, potencia=Fasor(real=0.0, imag=0.0, tipo=Fasor.Potencia), tensao=Fasor(real=0.0, imag=0.0, tipo=Fasor.Tensao), chaves=None): super(Barramento, self).__init__(nome, vizinhos, potencia=Fasor(real=0.0, imag=0.0, tipo=Fasor.Potencia), tensao=Fasor(real=0.0, imag=0.0, tipo=Fasor.Tensao), chaves=None) class Subestacao(object): def __init__(self, nome, alimentadores, transformadores, impedancia_equivalente_positiva=0.0+0.0j, impedancia_equivalente_zero=0.0+0.0j): assert isinstance(nome, str), 'O parâmetro nome da classe Subestacao ' \ 'deve ser do tipo str' assert isinstance(alimentadores, list), 'O parâmetro alimentadores da classe ' \ 'deve ser do tipo list' assert isinstance(transformadores, list), 'O parâmetro alimentadores da classe ' \ 'deve ser do tipo list' self.nome = nome self.alimentadores = dict() for alimentador in alimentadores: self.alimentadores[alimentador.nome] = alimentador self.transformadores = dict() for transformador in transformadores: self.transformadores[transformador.nome] = transformador self.impedancia_equivalente_positiva = impedancia_equivalente_positiva self.impedancia_equivalente_zero = impedancia_equivalente_zero self.impedancia_positiva = impedancia_equivalente_positiva self.impedancia_zero = impedancia_equivalente_zero class Trecho(Aresta): def __init__(self, nome, n1, n2, condutor=None, comprimento=None): assert isinstance(nome, str), 'O parâmetro nome da classe Trecho ' \ 'deve ser do tipo str' assert isinstance(n1, NoDeCarga) or isinstance(n1, Chave), 'O parâmetro n1 da classe Trecho ' \ 'deve ser do tipo No de carga ' \ 'ou do tipo Chave' assert isinstance(n2, NoDeCarga) or isinstance(n2, Chave), 'O parâmetro n2 da classe Trecho ' \ 'deve ser do tipo No de carga ' \ 'ou do tipo Chave' super(Trecho, self).__init__(nome) self.n1 = n1 self.n2 = n2 self.no_montante = None self.no_jusante = None self.condutor = condutor self.comprimento = comprimento def calcula_impedancia(self): return (self.comprimento * self.condutor.rp * 1e-3, self.comprimento * self.condutor.xp * 1e-3) def __repr__(self): return 'Trecho: %s' % self.nome class Alimentador(Arvore): def __init__(self, nome, setores, trechos, chaves): assert isinstance(nome, str), 'O parâmetro nome da classe Alimentador' \ 'deve ser do tipo string' assert isinstance(setores, list), 'O parâmetro setores da classe' \ 'Alimentador deve ser do tipo list' assert isinstance(chaves, list), 'O parâmetro chaves da classe' \ 'Alimentador deve ser do tipo list' self.nome = nome self.setores = dict() for setor in setores: self.setores[setor.nome] = setor self.chaves = dict() for chave in chaves: self.chaves[chave.nome] = chave self.nos_de_carga = dict() for setor in setores: for no in setor.nos_de_carga.values(): self.nos_de_carga[no.nome] = no self.trechos = dict() for trecho in trechos: self.trechos[trecho.nome] = trecho for setor in self.setores.values(): # print 'Setor: ', setor.nome setores_vizinhos = list() for chave in self.chaves.values(): if chave.n2 and chave.n1 is setor: setores_vizinhos.append(chave.n2) elif chave.n1 and chave.n2 is setor: setores_vizinhos.append(chave.n1) for setor_vizinho in setores_vizinhos: # print 'Setor Vizinho: ', setor_vizinho.nome nos_de_ligacao = list() for i in setor.nos_de_carga.values(): for j in setor_vizinho.nos_de_carga.values(): if i.nome in j.vizinhos: nos_de_ligacao.append((j, i)) for no in nos_de_ligacao: setor.ordenar(no[1].nome) setor.rnp_associadas[setor_vizinho.nome] = (no[0], setor.rnp) # print 'RNP: ', setor.rnp _arvore_da_rede = self._gera_arvore_da_rede() super(Alimentador, self).__init__(_arvore_da_rede, str) def ordenar(self, raiz): super(Alimentador, self).ordenar(raiz) for setor in self.setores.values(): caminho = self.caminho_no_para_raiz(setor.nome) if setor.nome != raiz: setor_jusante = caminho[1, 1] setor.rnp = setor.rnp_associadas[setor_jusante][1] def _gera_arvore_da_rede(self): arvore_da_rede = {i: list() for i in self.setores.keys()} for chave in self.chaves.values(): if chave.estado == 1 and chave.n1.nome in self.setores.keys(): arvore_da_rede[chave.n1.nome].append(chave.n2.nome) if chave.estado == 1 and chave.n2.nome in self.setores.keys(): arvore_da_rede[chave.n2.nome].append(chave.n1.nome) return arvore_da_rede def gerar_arvore_nos_de_carga(self): # define os nós de carga do setor raiz da subestação como os primeiros # nós de carga a povoarem a arvore nós de carga e a rnp nós de carga setor_raiz = self.setores[self.rnp[1][0]] self.arvore_nos_de_carga = Arvore(arvore=setor_raiz._gera_arvore_do_setor(), dtype=str) self.arvore_nos_de_carga.ordenar(raiz=setor_raiz.rnp[1][0]) # define as listas visitados e pilha, necessárias ao # processo recursivo de visita # dos setores da subestação visitados = [] pilha = [] # inicia o processo iterativo de visita dos setores # em busca de seus respectivos nós de carga self._gerar_arvore_nos_de_carga(setor_raiz, visitados, pilha) def _gerar_arvore_nos_de_carga(self, setor, visitados, pilha): # atualiza as listas de recursão visitados.append(setor.nome) pilha.append(setor.nome) # for percorre os setores vizinhos ao setor atual # que ainda não tenham sido visitados vizinhos = setor.vizinhos for i in vizinhos: # esta condição testa se existe uma ligação # entre os setores de uma mesma subestação, mas # que possuem uma chave normalmente aberta entre eles. # caso isto seja constatado o laço for é interrompido. if i not in visitados and i in self.setores.keys(): for c in self.chaves.values(): if (c.n1 and c.n2) and c.n1.nome == setor.nome and c.n2.nome == i: if c.estado == 1: break else: pass elif (c.n1 and c.n2) and c.n2.nome == setor.nome and c.n1.nome == i: if c.estado == 1: break else: pass else: continue prox = i setor_vizinho = self.setores[i] no_insersao, rnp_insersao = setor_vizinho.rnp_associadas[setor.nome] arvore_insersao = setor_vizinho._gera_arvore_do_setor() setor_vizinho.no_de_ligacao = no_insersao setor_vizinho.rnp = rnp_insersao self.arvore_nos_de_carga.inserir_ramo(no_insersao.nome, (rnp_insersao, arvore_insersao), no_raiz=rnp_insersao[1, 0] ) break else: continue else: pilha.pop() if pilha: anter = pilha.pop() return self._gerar_arvore_nos_de_carga(self.setores[anter], visitados, pilha) else: return return self._gerar_arvore_nos_de_carga(self.setores[prox], visitados, pilha) def atualizar_arvore_da_rede(self): _arvore_da_rede = self._gera_arvore_da_rede() self.arvore = _arvore_da_rede def gerar_trechos_da_rede(self): self.trechos = dict() j = 0 for i in range(1, np.size(self.arvore_nos_de_carga.rnp, axis=1)): prof_1 = int(self.arvore_nos_de_carga.rnp[0, i]) prof_2 = int(self.arvore_nos_de_carga.rnp[0, j]) while abs(prof_1 - prof_2) is not 1: if abs(prof_1 - prof_2) == 0: j -= 1 elif abs(prof_1 - prof_2) == 2: j = i - 1 prof_2 = int(self.arvore_nos_de_carga.rnp[0, j]) else: n_1 = str(self.arvore_nos_de_carga.rnp[1, j]) n_2 = str(self.arvore_nos_de_carga.rnp[1, i]) setor_1 = None setor_2 = None # print 'Trecho: ' + n_1 + '-' + n_2 # verifica quais os nós de carga existentes nas extremidades do trecho # e se existe uma chave no trecho for setor in self.setores.values(): if n_1 in setor.nos_de_carga.keys(): setor_1 = setor if n_2 in setor.nos_de_carga.keys(): setor_2 = setor if setor_1 is not None and setor_2 is not None: break else: if setor_1 is None: n = n_1 else: n = n_2 for setor in self.setores.values(): if n in setor.nos_de_carga.keys() and np.size(setor.rnp, axis=1) == 1: if setor_1 is None: setor_1 = setor else: setor_2 = setor break if setor_1 != setor_2: for chave in self.chaves.values(): if chave.n1 in (setor_1, setor_2) and chave.n2 in (setor_1, setor_2): self.trechos[n_1 + n_2] = Trecho(nome=n_1 + n_2, n1=self.nos_de_carga[n_1], n2=self.nos_de_carga[n_2], chave=chave) else: self.trechos[n_1 + n_2] = Trecho(nome=n_1 + n_2, n1=self.nos_de_carga[n_1], n2=self.nos_de_carga[n_2]) def calcular_potencia(self): potencia = Fasor(real=0.0, imag=0.0, tipo=Fasor.Potencia) for no in self.nos_de_carga.values(): potencia = potencia + no.potencia return potencia def podar(self, no, alterar_rnp=False): poda = super(Alimentador, self).podar(no, alterar_rnp) rnp_setores = poda[0] arvore_setores = poda[1] if alterar_rnp: # for povoa dicionario com setores podados setores = dict() for i in rnp_setores[1, :]: setor = self.setores.pop(i) setores[setor.nome] = setor # for povoa dicionario com nos de carga podados nos_de_carga = dict() for setor in setores.values(): for j in setor.nos_de_carga.values(): if j.nome in self.nos_de_carga.keys(): no_de_carga = self.nos_de_carga.pop(j.nome) nos_de_carga[no_de_carga.nome] = no_de_carga # for atualiza a lista de nós de carga da subestação # excluindo os nós de carga podados for setor in self.setores.values(): for no_de_carga in setor.nos_de_carga.values(): self.nos_de_carga[no_de_carga.nome] = no_de_carga if no_de_carga.nome in nos_de_carga.keys(): nos_de_carga.pop(no_de_carga.nome) # poda o ramo na arvore da subetação poda = self.arvore_nos_de_carga.podar(setores[no].rnp[1, 0], alterar_rnp=alterar_rnp) rnp_nos_de_carga = poda[0] arvore_nos_de_carga = poda[1] # for povoa dicionario de chaves que estao nos trechos podados # e retira do dicionario de chaves da arvore que esta sofrendo a poda # as chaves que não fazem fronteira com os trechos remanescentes chaves = dict() chaves_a_remover = list() for chave in self.chaves.values(): if chave.n1 and chave.n1.nome in setores.keys(): if not chave.n2 or not chave.n2.nome in self.setores.keys(): chaves[chave.nome] = self.chaves[chave.nome] chaves_a_remover.append(chave.nome) else: chave.estado = 0 chaves[chave.nome] = chave elif chave.n2 and chave.n2.nome in setores.keys(): if not chave.n1 or not chave.n1.nome in self.setores.keys(): chaves[chave.nome] = self.chaves[chave.nome] chaves_a_remover.append(chave.nome) else: chave.estado = 0 chaves[chave.nome] = chave for chave in chaves_a_remover: self.chaves.pop(chave) # BRESSAN END # for poda os trechos dos setores podados e povoa o dicionario trechos # para que possa ser repassado juntamente com os outros dados da poda trechos = dict() trechos_a_remover = list() # BRESSAN START for no in rnp_nos_de_carga[1, :]: for trecho in self.trechos.values(): if trecho.n1.nome == no or trecho.n2.nome == no: trechos[trecho.nome] = self.trechos[trecho.nome] trechos_a_remover.append(trecho.nome) for trecho in trechos_a_remover: self.trechos.pop(trecho) # BRESSAN END return ( setores, arvore_setores, rnp_setores, nos_de_carga, arvore_nos_de_carga, rnp_nos_de_carga, chaves, trechos ) else: return rnp_setores def inserir_ramo(self, no, poda, no_raiz=None): (setores, arvore_setores, rnp_setores, nos_de_carga, arvore_nos_de_carga, rnp_nos_de_carga, chaves, trechos) = poda # atualiza setores do alimentador self.setores.update(setores) # atualiza os nos de carga do alimentador self.nos_de_carga.update(nos_de_carga) # atualiza as chaves do alimentador self.chaves.update(chaves) # atualiza os trechos do alimentador self.trechos.update(trechos) if no_raiz is None: setor_inserir = setores[rnp_setores[1, 0]] else: setor_inserir = setores[no_raiz] setor_insersao = self.setores[no] # for identifica se existe alguma chave que permita a inserção do ramo na arvore # da subestação que ira receber a inserção. chaves_de_lig = dict() # for percorre os nos de carga do setor de insersão for i in self.setores[setor_insersao.nome].nos_de_carga.values(): # for percorre as chaves associadas ao no de carga for j in i.chaves: # for percorre os nos de carga do setor raiz do ramo a ser inserido for w in setores[setor_inserir.nome].nos_de_carga.values(): # se a chave pertence aos nos de carga i e w então é uma chave de ligação if j in w.chaves: chaves_de_lig[j] = (i, w) if not chaves_de_lig: # print 'A insersao não foi possível pois nenhuma chave de fronteira foi encontrada!' return i = randint(0, len(chaves_de_lig) - 1) n1, n2 = chaves_de_lig[list(chaves_de_lig.keys())[i]] self.chaves[list(chaves_de_lig.keys())[i]].estado = 1 if not no_raiz and setor_inserir.nome == setores[rnp_setores[1, 0]].nome: super(Alimentador, self).inserir_ramo(no, (rnp_setores, arvore_setores)) else: super(Alimentador, self).inserir_ramo(no, (rnp_setores, arvore_setores), no_raiz) # atualiza a arvore de setores do alimentador self.atualizar_arvore_da_rede() # atualiza a arvore de nos de carga do alimentador self.gerar_arvore_nos_de_carga() class Chave(Aresta): def __init__(self, nome, estado=1): assert estado == 1 or estado == 0, 'O parâmetro estado deve ser um inteiro de valor 1 ou 0' super(Chave, self).__init__(nome) self.estado = estado def __str__(self): if self.n1 is not None and self.n2 is not None: return 'Chave: %s - n1: %s, n2: %s' % (self.nome, self.n1.nome, self.n2.nome) else: return 'Chave: %s' % self.nome class IED(object): def __init__(self,nome): self.nome = nome class Transformador(object): def __init__(self, nome, tensao_primario, tensao_secundario, potencia, impedancia): assert isinstance(nome, str), 'O parâmetro nome deve ser do tipo str' assert isinstance(tensao_secundario, Fasor), 'O parâmetro tensao_secundario deve ser do tipo Fasor' assert isinstance(tensao_primario, Fasor), 'O parâmetro tensao_primario deve ser do tipo Fasor' assert isinstance(potencia, Fasor), 'O parâmetro potencia deve ser do tipo Fasor' assert isinstance(impedancia, Fasor), 'O parâmetro impedancia deve ser do tipo Fasor' self.nome = nome self.tensao_primario = tensao_primario self.tensao_secundario = tensao_secundario self.potencia = potencia self.impedancia = impedancia class Condutor(object): def __init__(self, nome, rp, xp, rz, xz, ampacidade): self.nome = nome self.rp = float(rp) self.xp = float(xp) self.rz = float(rz) self.xz = float(xz) self.ampacidade = float(ampacidade) if __name__ == '__main__': pass