content
stringlengths
5
1.05M
import typing from PyQt5.Qt import QColor from PyQt5.QtChart import QChart, QValueAxis, QCandlestickSet, QCandlestickSeries from PyQt5.QtWidgets import QGroupBox, QLineEdit, QFormLayout, QLabel from FinChart.SeriesAbstract import SeriesAbstract class CandleSeries(SeriesAbstract): def __init__( self, _name: str, _x_list: typing.Sequence, _y_list: typing.Sequence, _inc_color: typing.Any = None, _dec_color: typing.Any = None, _show_value: bool = True, ): super().__init__(_name, _x_list, _y_list, None, _show_value) self.show_open_edit: QLineEdit = None self.show_high_edit: QLineEdit = None self.show_low_edit: QLineEdit = None self.show_close_edit: QLineEdit = None self.inc_color = _inc_color self.dec_color = _dec_color self.type = SeriesAbstract.CANDLE def calcRangeY(self, _begin_x=None, _end_x=None) -> typing.Tuple: tmp_y = self.y_list[self._find_begin_idx(_begin_x) : self._find_end_idx(_end_x)] min_value = min([min(d) for d in tmp_y]) max_value = max([max(d) for d in tmp_y]) return min_value, max_value def addSeries( self, _x2idx: typing.Dict, _idx2x: list, _chart: QChart, _axis_x: QValueAxis, _axis_y: QValueAxis, ): series = QCandlestickSeries() series.setName(self.name) for x, y in zip(self.x_list, self.y_list): series.append(QCandlestickSet(*y, _x2idx[x])) if self.inc_color is not None: series.setIncreasingColor(self.inc_color) else: series.setIncreasingColor(QColor("#c41919")) if self.dec_color is not None: series.setDecreasingColor(self.dec_color) else: series.setDecreasingColor(QColor("#009f9f")) _chart.addSeries(series) _chart.setAxisX(_axis_x, series) _chart.setAxisY(_axis_y, series) if self.show_value: self.createShow() def createShow(self): self.show_group = QGroupBox() self.show_group.setTitle(self.name) self.show_open_edit = QLineEdit() self.show_open_edit.setDisabled(True) self.show_high_edit = QLineEdit() self.show_high_edit.setDisabled(True) self.show_low_edit = QLineEdit() self.show_low_edit.setDisabled(True) self.show_close_edit = QLineEdit() self.show_close_edit.setDisabled(True) layout = QFormLayout() layout.addWidget(QLabel("open")) layout.addWidget(self.show_open_edit) layout.addWidget(QLabel("high")) layout.addWidget(self.show_high_edit) layout.addWidget(QLabel("low")) layout.addWidget(self.show_low_edit) layout.addWidget(QLabel("close")) layout.addWidget(self.show_close_edit) self.show_group.setLayout(layout) def updateValue(self, _x): idx = self._find_idx(_x) if idx is None: self.show_open_edit.setText("") self.show_high_edit.setText("") self.show_low_edit.setText("") self.show_close_edit.setText("") else: value = self.y_list[idx] self.show_open_edit.setText("{:.5f}".format(value[0])) self.show_high_edit.setText("{:.5f}".format(value[1])) self.show_low_edit.setText("{:.5f}".format(value[2])) self.show_close_edit.setText("{:.5f}".format(value[3]))
from typing import List import torch.nn as nn from regym.rl_algorithms.agents import Agent from regym.rl_algorithms.A2C import A2CAlgorithm from regym.networks.bodies import FCBody from regym.networks.heads import CategoricalActorCriticNet from regym.networks.preprocessing import turn_into_single_element_batch class A2CAgent(Agent): def __init__(self, name: str, samples_before_update: int, algorithm: A2CAlgorithm): ''' :param name: String identifier for the agent :param samples_before_update: Number of actions the agent will take before updating :param algorithm: Reinforcement Learning algorithm used to update the agent's policy. Contains the agent's policy, represented as a neural network. ''' super(A2CAgent, self).__init__(name=name) self.algorithm = algorithm self.state_preprocess_fn = turn_into_single_element_batch self.samples_before_update = samples_before_update self.samples = [] def handle_experience(self, s, a, r, succ_s, done=False): super(A2CAgent, self).handle_experience(s, a, r, succ_s, done) if not self.training: return self.samples.append((s, a, self.current_prediction['log_pi_a'], r, self.current_prediction['V'], succ_s, done)) if done or len(self.samples) >= self.samples_before_update: bootstrapped_reward = self.current_prediction['V'] if not done else 0 self.algorithm.train(self.samples, bootstrapped_reward) self.samples = [] def model_free_take_action(self, state, legal_actions: List[int], multi_action: bool = False): processed_s = self.state_preprocess_fn(state) self.current_prediction = self.algorithm.model(processed_s) return self.current_prediction['a'].item() def clone(self, training=None): raise NotImplementedError('Cloning A2CAgent not supported') def build_A2C_Agent(task, config, agent_name): ''' :param task: Environment specific configuration :param agent_name: String identifier for the agent :param config: Dictionary whose entries contain hyperparameters for the A2C agents: - 'discount_factor': Discount factor (gamma in standard RL equations) used as a -variance / +bias tradeoff. - 'n_steps': 'Forward view' timesteps used to compute the Q_values used to approximate the advantage function - 'samples_before_update': Number of actions the agent will take before updating - 'learning_rate': Learning rate for the Neural Network optimizer. Recommended: 1.0e-4 - 'adam_eps': Epsilon value used in denominator of Adam update computation. Recommended: 1.0e-5 :returns: Agent using A2C algorithm to act and learn in environments ''' body = FCBody(task.observation_dim, hidden_units=(256,)) # TODO: remove magic number model = CategoricalActorCriticNet(body=body, state_dim=task.observation_dim, action_dim=task.action_dim) algorithm = A2CAlgorithm(model=model, n_steps=config['n_steps'], discount_factor=config['discount_factor'], adam_eps=config['adam_eps'], learning_rate=config['learning_rate']) return A2CAgent(name=agent_name, algorithm=algorithm, samples_before_update=config['samples_before_update'])
import numpy as np import pandas as pd import warnings import xarray as xr import dask.dataframe as dd import dask.array as da class LCI(): """Defines a LCI class based on xr.DataArray.""" def __init__(self, name, type, iterations, UP, parameters): """Initialization with the phases and substances of the LCI.""" self.name = name self.type = type self.UP = UP self.substances = UP.Substances self.p = parameters self.data = None self.build(iterations) def __repr__(self): return f"{self.data}" def __getitem__(self, phase): return self.data[phase] def __setitem__(self, phase, other): self.data[phase] = other def build(self, iterations): """Builds the xr.DataArray for the LCI.""" if self.data == None: self.data = xr.Dataset(coords={'Substances': self.substances, 'i': np.arange(iterations)}, attrs={'Name':self.name}) self.data.coords['Units'] = self.substances.Units return self.data def substance(self, substance): """Locates the specified substance on the data.""" return self.data.loc[{'Substances': substance}] def iteration(self, iteration): """Locates the specified iteration on the data.""" return self.data.loc[{'i': iteration}] def find(self, phase, substance, iteration): """Locates the specified substance, phase and iteration on the data.""" return self.data[phase].loc[{'Substances': substance, 'i':iteration}] def mean(self, phase): """Returns the mean for all iterations of a certain phase.""" return self['Office'].mean('i').load() def median(self, phase): """Returns the median for all iterations of a certain phase.""" return self['Office'].median('i').load() def office(self): LCI_E_office = self.electricity(self.p["E_office"]) #per month LCI_E_office = LCI_E_office * self.p["devmonths"] #per development LCI_water_office = self.UP["Water"] * self.p["water_office"] \ + self.UP["Wastewater"] * self.p["wastewater_office"] #per month LCI_water_office = LCI_water_office * self.p["devmonths"] #per development self.p["travel"] = 18470 / 12 * self.p["developers"] * self.p["devmonths"] #in km LCI_travel = self.UP["Car"]*self.p["travel"]*0.1 \ + self.UP["Airplane"]*self.p["travel"]*0.9 #per development LCI_paper = self.UP["Paper"]*self.p["developers"]*self.p["paper_use"] #per year LCI_paper = LCI_paper * self.p["devmonths"] / 12 #per development LCI_office = (LCI_E_office + LCI_water_office + LCI_paper + LCI_travel) #per development LCI_office = LCI_office / self.p["pkm_fleet"] #per pkm self.data['Office'] = LCI_office def infrastructure(self): LCI_construction = (self.UP["Facilities"]*self.p["new_factory"]/2.74e5) / self.p["pkm_fleet"] self.data["Infrastructure"] = LCI_construction def capital(self): self.p["new_jigs"] = self.p["OEW"] * 500 # 50t of jigs per 100kg of product self.UP["Capital"] = self.UP["Steel"] + self.UP["Jigs"] # material plus transformation LCI_capital = (self.UP["Capital"]*self.p["new_jigs"] + self.UP["Machine"]*self.p["new_machine"])/self.p["pkm_fleet"] self.data["Capital"] = LCI_capital def dev(self): self.office() self.infrastructure() self.capital() def materials(self): try: reuse = self.p['reuse'] except: reuse = 1 self.p["Al"] = self.p['p_Al'] * self.p['b2f_Al'] * self.p['OEW'] * reuse self.p["steel"] = self.p['p_steel'] * self.p['b2f_steel'] * self.p['OEW'] * reuse self.p["Ti"] = self.p['p_Ti'] * self.p['b2f_Ti'] * self.p['OEW'] * reuse self.p["inconel"] = self.p['p_inconel'] * self.p['b2f_inconel'] * self.p['OEW'] * reuse self.p["GFRP"] = self.p['p_GFRP'] * self.p['b2f_GFRP'] * self.p['OEW'] * reuse self.p["CFRP"] = self.p['p_CFRP'] * self.p['b2f_CFRP'] * self.p['OEW'] * reuse LCI_Al = self.UP["Aluminium"] * self.p["Al"] LCI_steel = self.UP["Steel"] * self.p["steel"] LCI_Ti = self.UP["Titanium"] * self.p["Ti"] LCI_inconel = self.UP["Inconel"] * self.p["inconel"] LCI_GFRP = self.UP["GFRP"] * self.p["GFRP"] LCI_CFRP = self.UP["CFRP"] * self.p["CFRP"] #LCI Material Extraction and Transformation LCI_material = (LCI_Al + LCI_steel + LCI_Ti + LCI_inconel + LCI_GFRP + LCI_CFRP) / self.p["pkm_life"] self.data["Materials"] = LCI_material def factory(self): LCI_E_factory = self.electricity(self.p["E_factory"]) LCI_E_factory = LCI_E_factory * self.p["takt"] / 30 # per aircraft LCI_water_factory = self.UP["Water"]*self.p["water_factory"] \ + self.UP["Wastewater"]*self.p["wastewater_factory"] # per month LCI_water_factory = LCI_water_factory * self.p["takt"] / 30 # per aircraft LCI_lube = self.UP["Lubricant"] * self.p["lubricant"] # per month LCI_lube = LCI_lube * self.p["takt"] / 30 # per aircraft self.p["facilities_maint"] = self.p["OEW"] * 4.58e-10 # use per kg of product LCI_facilities_maint = self.UP["Facilities"] * self.p["facilities_maint"] * 0.02 # per year LCI_facilities_maint = LCI_facilities_maint * self.p["takt"] / 365 # per aircraft LCI_factory = (LCI_E_factory + LCI_water_factory + LCI_lube + LCI_facilities_maint)/self.p["pkm_life"] self.data["Factory"] = LCI_factory def logistics(self): lorry = self.p["d_lorry"] * self.p["m_lorry"] #tonne * km sea = self.p["d_sea"] * self.p["m_sea"] #tonne * km air = self.p["d_air"] * self.p["m_air"] #tonne * km LCI_logistics = (self.UP["Lorry"]*lorry + self.UP["Sea"]*sea \ + self.UP["Air"]*air) / self.p["pkm_life"] self.data['Logistics'] = LCI_logistics def sustaining(self): LCI_sustaining = self.data["Office"] * 0.01 / 30 #per day LCI_sustaining = (LCI_sustaining * self.p["takt"])/self.p["pkm_life"] self.data["Sustaining"] = LCI_sustaining def mfg(self): self.materials() self.factory() self.logistics() self.sustaining() def flights(self): try: self.p["t_ccd"] = self.p["FH"]*60 - (self.p["t_app"] + self.p["t_to"] + self.p["t_climb"]) # minutes except: self.p["t_ccd"] = self.p['FH']*60 - self.p['ff_lto'] self.p["fuel_ccd"] = self.p["ff_ccd"] * self.p["t_ccd"] * 60 # kg self.data["LTO"] = self.UP["LTO"] / self.p["pkm_flight"] self.data["CCD"] = self.UP["CCD"] * self.p["fuel_ccd"] / self.p["pkm_flight"] def maintenance(self): LCI_maint = self.UP["Aluminium"]*self.p["maint_Al"] + self.UP["Steel"]*self.p["maint_steel"] \ + self.UP["Polymer"]*self.p["maint_pol"] + self.UP["Battery"]*self.p['maint_battery'] #por ano LCI_maint = (LCI_maint / self.p["flights_year"]) / self.p["pkm_flight"] self.data['Maintenance'] = LCI_maint def airport(self): if self.type == "cargo": ap_impact = 0.132 # 13,2% of airport impacts are due to cargo elif self.type == "pax": ap_impact = 0.868 else: ap_impact = 1 self.p["f_pax_ap"] = self.p["pax_ap"] / 22500000 # fraction of pax relative to zurich in 2000 LCI_ap = self.UP["Airport"] * self.p["f_pax_ap"]/100 / self.p["flights_ap"] # 100 life years for building LCI_ap = LCI_ap * ap_impact / self.p["pkm_flight"] self.data["Airport"] = LCI_ap def fuel(self): try: self.p["fuel_lto"] = self.p['ff_lto'] * self.p['t_lto'] * 60 except: self.p["fuel_lto"] = self.p['t_app']*60*self.p['ff_app'] + self.p['t_idle']*60*self.p['ff_idle'] \ + self.p['t_to']*60*self.p['ff_to'] + self.p['t_climb']*60*self.p['ff_climb'] LCI_fuel = (self.UP['Kerosene']*(self.p["fuel_ccd"]+self.p["fuel_lto"]))/ self.p["pkm_flight"] self.data["Fuel"] = LCI_fuel def ope(self): self.flights() self.maintenance() self.airport() self.fuel() def eol(self): try: reuse_factor = (2 - p['reuse']) except: reuse_factor = 1 E_sort_constant = 0.4645 / 3.6 # kWh/kg of material, on average self.p["E_sort"] = E_sort_constant * self.p['OEW'] * reuse_factor LCI_sort = self.electricity(self.p["E_sort"]) materials = ['Al','steel','Ti','inconel','GFRP','CFRP'] scenarios = ['ldf', 'incin','recycl'] chunks = self.data.chunks['i'][0] iterations = self.data.i.size iterations UP_eol = self.UP.rename_vars({'Landfill':'ldf','Incineration':'incin','Aluminium':'Al', 'Titanium':'Ti', 'Inconel':'inconel','Steel':'steel'}) eol = xr.Dataset({scenario: (['Substances','i'],da.empty((1835,iterations), chunks=(1835,chunks))) for scenario in scenarios}, coords=self.data.coords) for scenario in scenarios: for material in materials: self.p[scenario+"_"+material] = self.p["p_"+scenario+"_"+material]*self.p[material]*reuse_factor if scenario == 'recycl': eol[scenario] += UP_eol[material] * self.p[scenario + "_" + material] else: eol[scenario] += UP_eol[scenario] * self.p[scenario + "_" + material] self.data["Recycling"] = (LCI_sort - eol['recycl']) / self.p["pkm_life"] self.data["Incineration"] = eol["incin"] / self.p["pkm_life"] self.data["Landfill"] = eol["ldf"] / self.p["pkm_life"] def run(self): self.dev() self.mfg() self.ope() self.eol() MFG = self.data["Logistics"]+self.data["Sustaining"]+self.data["Factory"]+self.data["Materials"] LCI_prot = (MFG*self.p["prototypes"] + MFG*self.p["ironbirds"]*0.3)/self.p["pkm_fleet"] self.data["Prototypes"] = LCI_prot self.p["cert_flights"] = self.p["test_FH"] / self.p["FH"] self.data["Certification"] = (self.data["LTO"]+self.data["CCD"])*self.p["cert_flights"]/self.p["pkm_fleet"] return self.data def electricity(self, E): """Calculates the LCI of electricity consumption based on a gas-wind-hydropower electricity grid.""" E_wind = E * self.p['grid_wind'] E_gas = E * self.p['grid_gas'] E_hydro = E * self.p['grid_hydro'] LCI_E = self.UP['Elec_wind']*E_wind \ + self.UP['Elec_gas']*E_gas + self.UP['Elec_hydro']*E_hydro return LCI_E
# coding=utf-8 ''' same ''' import torch from torch.nn import Module from abc import abstractmethod import Putil.base.logger as plog from Putil.data.io_convertor import IOConvertor class IOConvertorModule(IOConvertor, Module): def __init__(self, io): Module.__init__(self) IOConvertor.__init__(self, io) pass def __call__(self, *args): return self.forward(*args) @abstractmethod def forward(self, *args): pass
#!/usr/bin/env python """ reverse_comp.py <filename> Prints the reverse complement of a DNA string (in Fasta format). """ import sys import Fasta import Sequence if len(sys.argv)!=2 or '-h' in sys.argv or '--help' in sys.argv: sys.exit(__doc__) iFilename = sys.argv[1] header, seq = Fasta.load(iFilename) seq = Sequence.reverse_complement(seq.upper()) print '>%s' % header for i in xrange(0, len(seq), 80): print seq[i:i+80]
from django.conf.urls import url from ..views import asset_views asset_urlpatterns = [ # ex: /portfolio/assets url( regex=r'^assets/$', view=asset_views.AssetView.as_view(), name='assets' ), # ex: /portfolio/4/asset/ url( regex=r'^(?P<pk>\w+)/asset/$', view=asset_views.AssetDetail.as_view(), name='asset' ), # ex: /portfolio/5/asset/edit/ url( regex=r'^(?P<pk>[0-9]+)/asset/edit/$', view=asset_views.AssetUpdate.as_view(), name='edit_asset' ), # ex: /portfolio/asset/add/ url( regex=r'^asset/add/$', view=asset_views.AssetCreate.as_view(), name='add_asset' ) ]
# Copyright 2013-2020 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class PyNeuroc(PythonPackage): """Python library neuron morphology analysis""" homepage = "https://bbpgitlab.epfl.ch/nse/neuroc" git = "git@bbpgitlab.epfl.ch:nse/neuroc.git" version('develop') version('0.2.8', tag='neuroc-v0.2.8') depends_on('py-setuptools', type=('build', 'run')) depends_on('py-attrs@19.1.0:', type=('build', 'run')) depends_on('py-tqdm@4.23.4:', type=('build', 'run')) depends_on('py-morph-tool@2.9.0:2.999', type=('build', 'run')) depends_on('py-scikit-learn@0.21.3:', type=('build', 'run')) depends_on('py-morphio@3.0:3.999', type=('build', 'run')) depends_on('py-neurom@3:3.999', type=('build', 'run')) depends_on('py-pandas@1.0.3:', type=('build', 'run')) depends_on('py-click@6.7:', type=('build', 'run')) depends_on('py-numpy@1.15.1:', type=('build', 'run')) # plotly extra requirements # depends_on('py-dash', type=('build', 'run')) # depends_on('py-dash-html-components', type=('build', 'run')) # depends_on('py-dash-core-components', type=('build', 'run')) # depends_on('py-dash-table', type=('build', 'run')) def patch(self): filter_file(".*dash.*", "", "setup.py")
from marshmallow_sqlalchemy import ModelSchema from marshmallow import fields class TodoSchemaGenerator(): db = None model = None def __init__(self, db, model): self.db = db self.model = model def get_schema(self, many = False, only = None): class TodoSchema(ModelSchema): class Meta(ModelSchema.Meta): model = self.model.get_model() sqla_session = self.db.session id = fields.Number(dump_only=True) title = fields.String(required=True) todo_description = fields.String(required=True) return TodoSchema(many = many, only = only)
import numpy as np import math from typing import Optional, Tuple from agents.common import BoardPiece, PlayerAction, SavedState, PLAYER1, PLAYER2, NO_PLAYER, GameState from agents.common import connected_four, check_end_state, apply_player_action, check_open_columns #num_rows = board.shape[0] #num_columns = board.shape[1] def generate_move( board: np.ndarray, player: BoardPiece, saved_state: Optional[SavedState] ) -> Tuple[PlayerAction, Optional[SavedState]]: alpha = -math.inf beta = math.inf depth = 4 # Choose a valid, non-full column that maximizes score and return it as `action` PlayerAction = minimax(board, depth, alpha, beta, player, True)[0] return PlayerAction, saved_state def center_column_score(board: np.ndarray, player: BoardPiece) -> int: ''' Prefer playing pieces in center column of the board :param board: current state of board :param player: agent :return: increased score for column in the center of board ''' center_column = int(board.shape[1] / 2) center_column = list(board[:,center_column]) pieces_count = center_column.count(player) return pieces_count * 3 def even_odd_row_scores(board: np.ndarray, player: BoardPiece) -> int: ''' Prefer playing pieces in the odd or even rows depending on player :param board: current state of the board :param player: agent :return: increased score for even or odd rows of the board depending on player ''' score = 0 if (player == PLAYER1): # prefer odd rows start = 0 else: #player must be PLAYER2 #prefer even rows start = 1 #get even or odd rows depending on start for row in np.arange(start,board.shape[0], 2): even_odd_row = list(board[row,:]) row_score = even_odd_row.count(player) score += row_score * 2 return score def adjacent_score(adjacent_four: list, player: BoardPiece) -> int: """ Counts how many pieces of a specified player are adjacent in all directions and assigns score :param adjacent_four: four adjacent spots on the board in any direction (horizontal, vertial, diagonal) :param player: agent :return: score for playing piece at spot within adjacent_four """ score = 0 #check which player score to maximize and which player to block if player == PLAYER1: opponent_player = PLAYER2 else: opponent_player = PLAYER1 #check if agent (player) is close to getting a win by placing 4 adjacent pieces if adjacent_four.count(player) == 4: score += 10000 elif adjacent_four.count(player) == 3 and adjacent_four.count(NO_PLAYER) == 1: score += 100 elif adjacent_four.count(player) == 2 and adjacent_four.count(NO_PLAYER) == 2: score += 10 #block opponent from getting a win if adjacent_four.count(opponent_player) == 3 and adjacent_four.count(NO_PLAYER) == 1: score -= 70 if adjacent_four.count(opponent_player) == 2 and adjacent_four.count(NO_PLAYER) == 2: score -= 10 return score def heuristic(board: np.ndarray, player: BoardPiece) -> int: ''' Calculates score considering 4 adjacent spots of the board in each row, column, and diagonal (checks how many empty and filled spots there are in 4 adjacent spots in all directions) :param board: current state of board :param player: player who wants to maximize score :return: score that can be achieve by playing open position ''' num_rows = board.shape[0] num_columns = board.shape[1] score = 0 #Prefer moves in the center column score += center_column_score(board, player) #Prefer moves in even or odd rows depending on player score += even_odd_row_scores(board, player) # first check horizontal for row in range(num_rows): #loop through every row row = board[row,:] #now loop through each column and check 4 adjacent spots for col in range(num_columns-3): #only need to loop through first 4 cols, since adjacent_4 would touch (j+3) adjacent_four = list(row[col:col+4]) #convert to list to apply count() later #now count the number of pieces for each player score += adjacent_score(adjacent_four,player) # vertical for col in range(num_columns): col = board[:,col] for row in range(num_rows-3): adjacent_four = list(col[row:row+4]) score += adjacent_score(adjacent_four, player) #score positive sloped diagonal for row in range(num_rows-3): #rows for col in range(num_columns-3): # cols adjacent_four = [board[row+i,col+i] for i in range(4)] score += adjacent_score(adjacent_four,player) #score negative diagonal for row in range(num_rows-3): #rows for col in range(num_columns-3): # cols adjacent_four = [board[row + 3 - i, col + i] for i in range(4)] #col increases but row decreases score += adjacent_score(adjacent_four, player) return score def minimax(board: np.ndarray, depth: int, alpha: int, beta: int, player: BoardPiece, maximizing_player: bool) -> Tuple[int, int]: ''' Returns a column where action should be placed and the min and max score for GameState :param board: current state of board :param depth: depth of search tree :param maximizingPlayer: True if we want to max for player :return: min or max score for action of player ''' #check which player is the agent so that we don't max/min for wrong player if player == PLAYER1: opponent_player = PLAYER2 else: opponent_player = PLAYER1 #check which columns are currently open open_cols = np.asarray(check_open_columns(board)) #check if depth is 0 if depth == 0: score = heuristic(board, player) return None, score #check if we're at a leaf/terminal node if check_end_state(board,player) != GameState.STILL_PLAYING: if connected_four(board, player): #agent won return None, 100000 if connected_four(board, opponent_player): #opponent won return None, -100000 else: #must be a draw return None, 0 if maximizing_player: #get max score for agent score = -math.inf for column in open_cols: #now simulate making a move and check what score it would get, save the original board in board board, board_copy = apply_player_action(board, column, player, True) # recursive call to minimax with depth-1 with board_copy so board isn't modified next_score = minimax(board_copy, depth-1, alpha, beta, player, False)[1] #only get the score #if the score is better save score and column if next_score > score: score = next_score action_column = column #evaluate alpha for early stopping alpha = max(alpha, score) if alpha >= beta: #don't evaluate more options down this path of tree break return action_column, score else: score = math.inf for column in open_cols: board, action_board = apply_player_action(board, column, opponent_player, True) next_score = minimax(action_board, depth-1, alpha, beta, player, True)[1] if next_score < score: score = next_score action_column = column beta = min(beta, score) #here we want to minimize since we're opponent player if alpha >= beta: break return action_column, score
waypoints = [(8.12431812286377, 0.9884904026985168), (8.086380004882812, 1.2322419881820679), (8.048443078994751, 1.475993037223816), (8.010504007339478, 1.7197440266609192), (7.972568035125732, 1.963496446609497), (7.934642553329468, 2.2072595357894897), (7.89715838432312, 2.4510819911956787), (7.860599994659424, 2.694797992706299), (7.823238134384155, 2.9386719465255737), (7.785614728927612, 3.1826109886169434), (7.748008966445923, 3.426566004753113), (7.710411787033081, 3.6705124378204346), (7.66268253326416, 3.9129165410995483), (7.606831073760986, 4.123275518417358), (7.538827896118164, 4.330195426940918), (7.473352432250977, 4.504245042800903), (7.418391466140747, 4.615414142608643), (7.350448131561279, 4.7208147048950195), (7.271114349365234, 4.821835517883301), (7.171124458312988, 4.9144744873046875), (7.049574613571167, 5.004922389984131), (6.88931941986084, 5.094431400299072), (6.665685415267944, 5.200993061065674), (6.4503724575042725, 5.3212034702301025), (6.243717193603516, 5.455868482589722), (6.04146146774292, 5.599713563919067), (5.8312668800354, 5.729801416397095), (5.6059699058532715, 5.82970118522644), (5.4196555614471436, 5.8815460205078125), (5.254481077194214, 5.902042865753174), (5.092396974563599, 5.9034295082092285), (4.9177680015563965, 5.875003099441528), (4.7680675983428955, 5.821169853210449), (4.625657796859741, 5.747572422027588), (4.483626008033752, 5.6375555992126465), (4.372556090354919, 5.5129923820495605), (4.273463487625122, 5.367404937744141), (4.186340570449829, 5.175290584564209), (4.132157564163208, 4.970823049545288), (4.1032469272613525, 4.725077867507935), (4.104186415672302, 4.477489471435547), (4.133409023284912, 4.23215913772583), (4.185578465461731, 3.9907249212265015), (4.255492568016052, 3.75332248210907), (4.335228085517883, 3.519709587097168), (4.413285851478577, 3.285557508468628), (4.490407943725586, 3.051064968109131), (4.575141906738281, 2.8064310550689697), (4.665269613265991, 2.557635545730591), (4.761425971984863, 2.2958614826202393), (4.845442295074463, 2.049849033355713), (4.914431571960449, 1.8049694895744324), (4.9590840339660645, 1.5599904656410217), (4.968848943710327, 1.3767715096473694), (4.953732013702393, 1.225703477859497), (4.9243080615997314, 1.0923536717891693), (4.874530076980591, 0.9744531214237213), (4.811803817749023, 0.8670504242181778), (4.7310638427734375, 0.7757765799760818), (4.639754056930542, 0.6960672959685326), (4.53597092628479, 0.6351533643901348), (4.425333380699158, 0.5868358723819256), (4.31070601940155, 0.5462696515023708), (4.133717060089111, 0.5105358138680458), (3.9520061016082764, 0.4950168505311012), (3.7228105068206787, 0.4923985004425049), (3.481923460960388, 0.4975791871547699), (3.245776414871216, 0.501126155257225), (3.035504460334778, 0.50196872651577), (2.8252240419387817, 0.5016545429825783), (2.593984603881836, 0.5014481991529465), (2.3312524557113647, 0.5014559105038643), (2.3312524557113647, 0.5014559105038643), (2.0685290098190308, 0.5015483349561691), (1.821654498577118, 0.5012944936752319), (1.5748854875564575, 0.5017464235424995), (1.3278529644012451, 0.49889006465673447), (1.0805863738059998, 0.4953853487968445), (0.8922330141067505, 0.5015363693237305), (0.7341673970222473, 0.5192165374755859), (0.5884353518486023, 0.5470210313796997), (0.444983147084713, 0.5935898460447788), (0.2900082990527153, 0.6586092279758304), (0.13993845880031586, 0.7347002364695072), (-0.07424405217170715, 0.8577179685235023), (-0.2859680615365505, 0.9852865785360336), (-0.49984051287174225, 1.1095064878463745), (-0.7144187539815903, 1.231426864862442), (-0.9287944138050079, 1.3543725907802582), (-1.1432064771652222, 1.4824312031269073), (-1.358678787946701, 1.616392433643341), (-1.5730475187301636, 1.7552099823951721), (-1.7863735556602478, 1.8984400033950806), (-2.00101900100708, 2.041799545288086), (-2.2202319502830505, 2.177119493484497), (-2.4457980394363403, 2.302161931991577), (-2.6396130323410034, 2.393519937992096), (-2.841279983520508, 2.461174488067627), (-3.0088279247283936, 2.4887245297431946), (-3.159435987472534, 2.4883150458335876), (-3.301242470741272, 2.4654030203819275), (-3.438712000846863, 2.415762960910797), (-3.574346423149109, 2.340478003025055), (-3.708780884742737, 2.2319304943084717), (-3.8442704677581787, 2.0913585424423218), (-3.9776545763015747, 1.9165594577789307), (-4.128239035606384, 1.691877007484436), (-4.285765051841736, 1.4670869410037994), (-4.400313138961792, 1.3299558758735657), (-4.531231164932251, 1.211074411869049), (-4.66146993637085, 1.1303751021623611), (-4.794528007507324, 1.0796546787023544), (-4.928571701049805, 1.0485481023788452), (-5.067189455032349, 1.0454987287521362), (-5.209157705307007, 1.0622868537902832), (-5.3572704792022705, 1.1097516119480133), (-5.516993522644043, 1.182623952627182), (-5.698852062225342, 1.298611044883728), (-5.934061527252197, 1.4790048897266388), (-6.1242475509643555, 1.6191474497318268), (-6.298676490783691, 1.7270694971084595), (-6.4555253982543945, 1.8048919439315796), (-6.603607654571533, 1.8571669459342957), (-6.74675440788269, 1.8865530490875244), (-6.886257648468018, 1.8930449485778809), (-7.022120952606201, 1.8779180645942688), (-7.153216600418091, 1.8405635356903076), (-7.278866529464722, 1.7810590267181396), (-7.400071859359741, 1.7009375095367432), (-7.516464948654175, 1.5975424647331238), (-7.629418134689331, 1.4696255028247833), (-7.7278151512146, 1.3294013738632202), (-7.829723834991455, 1.1528145372867584), (-7.913762092590332, 0.9830333590507507), (-8.009573459625244, 0.7542399913072586), (-8.100673913955688, 0.5238058492541313), (-8.194724082946777, 0.2956051635555923), (-8.298619985580444, 0.07173889875411987), (-8.409120082855225, -0.14898010343313217), (-8.518901824951172, -0.37005828879773617), (-8.628087759017944, -0.5914282500743866), (-8.738917350769043, -0.8120833486318588), (-8.85364580154419, -1.030766874551773), (-8.974236488342285, -1.2464678883552551), (-9.095809936523438, -1.4617609977722168), (-9.19411325454712, -1.6873124837875366), (-9.260026454925537, -1.923838555812834), (-9.296059608459473, -2.1673964262008685), (-9.310271263122559, -2.3729485273361206), (-9.307019233703613, -2.5788949728012085), (-9.290980815887451, -2.7426079511642456), (-9.265025615692139, -2.8841819763183594), (-9.2300705909729, -3.0132004022598267), (-9.183152675628662, -3.133615493774414), (-9.124776363372803, -3.247638463973999), (-9.051392555236816, -3.3558889627456665), (-8.963252067565918, -3.4617279767990112), (-8.853052616119385, -3.568813443183899), (-8.713794708251953, -3.6908544301986694), (-8.531688451766968, -3.8569865226745605), (-8.372043132781982, -4.04205048084259), (-8.238671064376831, -4.246592402458191), (-8.132850885391235, -4.46875), (-8.050578594207764, -4.658127784729004), (-7.972878694534302, -4.8272175788879395), (-7.896465539932251, -4.974606990814209), (-7.814936876296997, -5.1023054122924805), (-7.726712942123413, -5.216485977172852), (-7.62753963470459, -5.320809602737427), (-7.519604921340942, -5.416505336761475), (-7.397137641906738, -5.513267993927002), (-7.2504494190216064, -5.617475509643555), (-7.048876523971558, -5.7599194049835205), (-6.850481033325195, -5.906782627105713), (-6.649286508560181, -6.049717426300049), (-6.435657024383545, -6.176938056945801), (-6.208886384963989, -6.273805379867554), (-6.029123067855835, -6.317962884902954), (-5.883344888687134, -6.333068609237671), (-5.736926555633545, -6.328474521636963), (-5.607994794845581, -6.307444095611572), (-5.4852294921875, -6.275675535202026), (-5.369054794311523, -6.229165315628052), (-5.259897470474243, -6.167568922042847), (-5.158555507659912, -6.093203544616699), (-5.06749701499939, -6.0031139850616455), (-4.98659610748291, -5.899354457855225), (-4.919483661651611, -5.778003454208374), (-4.865926027297974, -5.6392738819122314), (-4.831943511962891, -5.477758169174194), (-4.818969011306763, -5.292669057846069), (-4.83566951751709, -5.085668325424194), (-4.8848326206207275, -4.842398643493652), (-4.951838493347168, -4.603148460388184), (-5.025342702865601, -4.3662941455841064), (-5.088326930999756, -4.127242565155029), (-5.130080938339233, -3.8840184211730957), (-5.155987977981567, -3.6385674476623535), (-5.1728644371032715, -3.392338514328003), (-5.181535005569458, -3.145156502723694), (-5.182666540145874, -2.895782470703125), (-5.170444965362549, -2.64713454246521), (-5.141123056411743, -2.4016629457473755), (-5.096296548843384, -2.20236998796463), (-5.0260045528411865, -2.012779474258423), (-4.9460461139678955, -1.872079074382782), (-4.856797933578491, -1.7525565028190613), (-4.770139455795288, -1.6644110083580017), (-4.670130968093872, -1.594367653131485), (-4.556408405303955, -1.5389962196350098), (-4.431985139846802, -1.4982959032058716), (-4.2897820472717285, -1.479777216911316), (-4.132490396499634, -1.4801546037197113), (-3.9508520364761353, -1.5120134055614471), (-3.744681477546692, -1.5708953142166138), (-3.513489007949829, -1.6688810586929321), (-3.2873870134353638, -1.7803704738616943), (-3.0659879446029663, -1.8896265029907227), (-2.8428244590759277, -1.9949644804000854), (-2.619845986366272, -2.1009715795516968), (-2.404729962348938, -2.2159374952316284), (-2.1922755241394043, -2.333102524280548), (-1.982692539691925, -2.448066473007202), (-1.7868344187736511, -2.570488452911377), (-1.6202459931373596, -2.705993890762329), (-1.493972837924955, -2.8402489423751858), (-1.3763171434402466, -2.983103036880493), (-1.262414127588272, -3.129210948944092), (-1.1287773251533508, -3.2925894260406494), (-0.9973797798156754, -3.4333264827728254), (-0.8654543161392212, -3.549507975578308), (-0.7281691133975983, -3.6452596187591553), (-0.5785466134548187, -3.722331166267395), (-0.4112188443541527, -3.783251166343689), (-0.2231699451804161, -3.8259259462356567), (-0.031099549029022455, -3.849012613296509), (0.21535785496234894, -3.8624050617218018), (0.4619779586791992, -3.8575409650802612), (0.7058971971273422, -3.8195680379867554), (0.8649654388427734, -3.768284559249878), (1.0095209777355194, -3.70067298412323), (1.1387284696102142, -3.6170005798339844), (1.259017288684845, -3.5165555477142334), (1.3745339214801788, -3.38874351978302), (1.4733079373836517, -3.2470074892044067), (1.5934688746929169, -3.03063702583313), (1.714346468448639, -2.814239501953125), (1.8256549835205078, -2.6380715370178223), (1.9424825310707092, -2.492061972618103), (2.062934994697571, -2.374499499797821), (2.1918880343437195, -2.284302532672882), (2.333604574203491, -2.213764488697052), (2.4990124702453613, -2.1619025468826294), (2.7072635889053345, -2.129780948162079), (2.9189255237579346, -2.1197924613952637), (3.125335931777954, -2.119749963283539), (3.3301249742507935, -2.1389089822769165), (3.4910188913345337, -2.1746585369110107), (3.6277875900268555, -2.2239180207252502), (3.7511314153671265, -2.283437490463257), (3.866363048553467, -2.3557459712028503), (3.979614019393921, -2.439976453781128), (4.0961281061172485, -2.5432949662208557), (4.228511929512024, -2.6745409965515137), (4.399149060249329, -2.85362708568573), (4.571305990219116, -3.0310670137405396), (4.754154920578003, -3.1967769861221313), (4.921145915985107, -3.316844940185547), (5.083767414093018, -3.4044893980026245), (5.236791610717773, -3.4653135538101196), (5.381695032119751, -3.5020899772644043), (5.52078104019165, -3.5222115516662598), (5.661412477493286, -3.5291489362716675), (5.908102512359619, -3.5241494178771973), (6.154648065567017, -3.511675000190735), (6.401369094848633, -3.504562497138977), (6.648145914077759, -3.499761462211609), (6.894919157028198, -3.4936060905456543), (7.110523462295532, -3.4762868881225586), (7.307848691940308, -3.441709518432617), (7.4625279903411865, -3.3953850269317627), (7.5950775146484375, -3.342887043952942), (7.711983919143677, -3.2795250415802), (7.820120096206665, -3.2096660137176514), (7.918773174285889, -3.1298835277557373), (8.011921882629395, -3.043442964553833), (8.097152948379517, -2.9467190504074097), (8.178373098373413, -2.84033203125), (8.25303339958191, -2.717187523841858), (8.327041625976562, -2.570037007331848), (8.400359869003296, -2.3773900270462036), (8.454155683517456, -2.1782084703445435), (8.498638391494751, -1.9351195096969604), (8.513131380081177, -1.690551996231079), (8.500330924987793, -1.4454104900360107), (8.466455698013306, -1.2029719948768616), (8.427306413650513, -0.9607942402362823), (8.390488147735596, -0.7179563343524933), (8.352124691009521, -0.4740799069404602), (8.313992977142334, -0.23028354346752167), (8.276074409484863, 0.013493970036506653), (8.238128423690796, 0.2572329491376877), (8.200194120407104, 0.5009891092777252), (8.162255764007568, 0.7447387278079987), (8.12431812286377, 0.9884904026985168)]
import pandas as pd import numpy as np import networkx as nx import json, pytz, os from collections import Counter from tqdm import tqdm from .tennis_utils import * from .handler_utils import * TIMEZONE = { "rg17": pytz.timezone('Europe/Paris'), "uo17": pytz.timezone('America/New_York') } QUALIFIER_START = { "rg17": 1495576800, # 2017-05-24 0:00 Paris (2017-05-22 and 2017-05-23 is missing from data) "uo17": 1503374400 # 2017-08-22 0:00 New York } TOURNAMENT_START = { "rg17": 1495922400, # 2017-05-28 0:00 Paris "uo17": 1503892800 # 2017-08-28 0:00 New York } DATES_WITH_QUALIFIERS = { "rg17": ["2017-05-%.2i" % i for i in range(24,32)] + ["2017-06-%.2i" % i for i in range(1,12)], "uo17": ["2017-08-%.2i" % i for i in range(22,32)] + ["2017-09-%.2i" % i for i in range(1,11)] } DATES_WITHOUT_QUALIFIERS = { "rg17": ["2017-05-%.2i" % i for i in range(28,32)] + ["2017-06-%.2i" % i for i in range(1,12)], "uo17": ["2017-08-%.2i" % i for i in range(28,32)] + ["2017-09-%.2i" % i for i in range(1,11)] } DATES_WITH_NO_GAMES = { "rg17": ["2017-05-27"], "uo17": ["2017-08-26","2017-08-27"] } class TennisDataHandler(): def __init__(self, data_dir, data_id, include_qualifiers=True, verbose=False): self.verbose = verbose self.data_id = data_id self.data_dir = data_dir + "/" + data_id if not os.path.exists(self.data_dir): bashCommand = """mkdir -p %s; cd %s; wget https://dms.sztaki.hu/~fberes/tennis/%s.zip; unzip %s.zip""" % (data_dir, data_dir, data_id, data_id) print(bashCommand) print("Downloading data from 'https://dms.sztaki.hu/~fberes/tennis' STARTED...") os.system(bashCommand) print("Data was DOWNLOADED!") self.include_qualifiers = include_qualifiers self._load_files(self.data_id, self.data_dir) self._filter_data() self._extract_mappings() self.weighted_edges, self.weighted_edges_grouped, self.edges_grouped = prepare_edges(self.mentions, "date") #self._prepare_edges() self.daily_p_dict, self.daily_p_df = extract_daily_players(self.schedule, self.player_accounts) def _load_files(self, data_id, data_dir): mention_file_path = "%s/%s_mentions_with_names.csv" % (data_dir, data_id) tennis_match_file_path = "%s/%s_schedule.csv" % (data_dir, data_id) player_assigments_path = "%s/%s_player_accounts.json" % (data_dir, data_id) mentions = pd.read_csv(mention_file_path, sep="|") mentions = mentions[["epoch","src","trg","src_screen_str", "trg_screen_str"]].sort_values("epoch") self.mentions = mentions if self.verbose: print("\n### Load Twitter mentions ###") print(self.mentions.head(3)) sep = "|" if data_id == "rg17" else ";" self.schedule = pd.read_csv(tennis_match_file_path, sep=sep) if self.verbose: print("\n### Load event schedule ###") print(self.schedule.head(3)) with open(player_assigments_path) as f: self.player_accounts = json.load(f) if self.verbose: print("\n### Load player accounts ###") print("Rafael Nadal accounts:", self.player_accounts["Rafael Nadal"]) if self.verbose: print("Done") def _filter_data(self): if self.include_qualifiers: self.start_time = QUALIFIER_START[self.data_id] self.dates = DATES_WITH_QUALIFIERS[self.data_id] else: self.start_time = TOURNAMENT_START[self.data_id] self.dates = DATES_WITHOUT_QUALIFIERS[self.data_id] self.end_time = self.start_time + 86400 * len(self.dates) self.dates_with_no_games = DATES_WITH_NO_GAMES[self.data_id] if self.verbose: print("\n### Filter data ###") print("Start time:", self.start_time) print("End time:", self.end_time) print("Number of days:", len(self.dates)) print("Dates:", self.dates) print("Dates with no games:", self.dates_with_no_games) mentions = self.mentions mentions = mentions[(mentions["epoch"] >= self.start_time) & (mentions["epoch"] <= self.end_time)] mentions = mentions.assign(date=mentions["epoch"].apply(lambda x: epoch2date(x, TIMEZONE[self.data_id]))) self.number_of_edges = len(mentions) self.number_of_nodes = len(set(mentions["src"]).union(set(mentions["trg"]))) self.mentions = mentions if self.verbose: print("Number of mentions (edges):", self.number_of_edges) print("Number of accounts (nodes):", self.number_of_nodes) #print("Min epoch:", mentions["epoch"].min(), "Max epoch:", mentions["epoch"].max()) def _extract_mappings(self): # account to id mentions = self.mentions targets = list(zip(mentions["trg_screen_str"], mentions["trg"])) sources = list(zip(mentions["src_screen_str"], mentions["src"])) self.account_to_id = dict(sources+targets) #print(len(self.account_to_id)) #self.id_to_account = dict(zip(self.account_to_id.values(), self.account_to_id.keys())) rev_targets = list(zip(mentions["trg"],mentions["trg_screen_str"])) rev_sources = list(zip(mentions["src"],mentions["src_screen_str"])) self.id_to_account = dict(rev_sources+rev_targets) nodes = list(self.account_to_id.values()) # tennis account to player tennis_account_to_player = {} alternative_players = {} alternative_players["uo17"] = { "Carla Suarez Navarro":"Carla Suárez Navarro", "Coco Vandeweghe":"CoCo Vandeweghe", "Juan Martin Del Potro":"Juan Martin del Potro", "Diede De Groot":"Diede de Groot", "Mariana Duque-Marino":"Mariana Duque-Mariño", "Alex De Minaur":"Alex de Minaur", "Tracy Austin-Holt":"Tracy Austin" } # reverse alternative name mapping for rg17 alternative_players["rg17"] = dict(zip(alternative_players["uo17"].values(),alternative_players["uo17"].keys())) for p, account_names in self.player_accounts.items(): cleaned_p = alternative_players[self.data_id].get(p, p) for a_name in account_names: tennis_account_to_player[a_name] = cleaned_p self.tennis_account_to_player = tennis_account_to_player def summary(self): """Show the data summary""" return { "data_id":self.data_id, "include_qualifiers": self.include_qualifiers, "dates": self.dates, "dates_with_no_game": self.dates_with_no_games, "start_time": self.start_time, "end_time": self.end_time, "number_of_edges": self.number_of_edges, "number_of_nodes": self.number_of_nodes } def visualize(self, kind="graph", figsize=(12,8)): """Visualize the data. Choose from 'graph' and 'players' options for the 'kind' argument.""" fig = None if kind == "graph": fig = visu_graph(self, figsize) elif kind == "players": fig = visu_players(self, figsize) else: raise RuntimeError("Choose 'kind' parameter from 'players' or 'graph'!") return fig def get_daily_players(self, date_id): """Get daily tennis players""" if not date_id in self.dates: raise RuntimeError("Invalid date_id! Not present in collected dates:", self.dates) elif date_id in self.dates_with_no_games: raise RuntimeError("There was no game on this day!") else: return self.daily_p_dict[date_id] def show_daily_players(self): """Show daily information about tennis players""" return self.daily_p_df[self.daily_p_df["date"].isin(self.dates)] def get_daily_relevance_labels(self, binary=True): if binary: label_value_dict = {"current":1.0, "previous":0.0, "next":0.0} else: label_value_dict = {"current":2.0, "previous":1.0, "next":1.0} daily_found_player_dict = dict(zip(self.daily_p_df["date"], self.daily_p_df["found_players"])) for d in self.dates_with_no_games: daily_found_player_dict[d] = [] mapper_dicts = (self.tennis_account_to_player, self.account_to_id, daily_found_player_dict) daily_label_dicts = get_daily_label_dicts(label_value_dict, self.dates, self.mentions, mapper_dicts, self.verbose) return daily_label_dicts def export_relevance_labels(self, output_dir, binary=True, only_pos_label=False): """Export label files for each date. Use 'only_pos_label=True' if you want to export only the relevant nodes per day.""" daily_label_dicts = self.get_daily_relevance_labels(binary) if not os.path.exists(output_dir): os.makedirs(output_dir) print("%s folder was created." % output_dir) with open("%s/summary.json" % output_dir, 'w') as f: json.dump(self.summary(), f, indent=" ", sort_keys=False) #pd.DataFrame(list(self.account_to_id.items())).sort_values(0).to_csv("%s/account_to_id.csv" % output_dir, index=False) #pd.DataFrame(list(self.tennis_account_to_player.items())).sort_values(0).to_csv("%s/tennis_account_to_player.csv" % output_dir, index=False) print("Exporting files STARTED") for i, date in enumerate(self.dates): sorted_user_labels = [] for u in sorted(daily_label_dicts[date].keys()): label_value = daily_label_dicts[date][u] if only_pos_label: # export only positive user labels if label_value > 0.0: sorted_user_labels.append((u, label_value)) else: sorted_user_labels.append((u, label_value)) print(date, len(sorted_user_labels)) scores2file(sorted_user_labels,"%s/labels_%i.csv" % (output_dir, i)) print("Exporting files DONE") def export_edges(self, output_dir, sep="|"): """Export edges (mentions) into file. Only time and node identifiers will be expoerted!""" if not os.path.exists(output_dir): os.makedirs(output_dir) print("%s folder was created." % output_dir) with open("%s/summary.json" % output_dir, 'w') as f: json.dump(self.summary(), f, indent=" ", sort_keys=False) self.mentions[["epoch","src","trg"]].to_csv("%s/edges.csv" % output_dir, index=False, header=False, sep=sep) def get_account_recoder(self, k=None, src_col="src_screen_str", trg_col="trg_screen_str", exclude_final_day=True): mentions = self.mentions.copy() enabled_dates = self.dates.copy() if exclude_final_day: enabled_dates = enabled_dates[:-1] mentions = mentions[mentions["date"].isin(enabled_dates)] mention_activity = list(mentions[src_col]) + list(mentions[trg_col]) cnt = Counter(mention_activity) if k == None: accounts, counts = zip(*cnt.most_common()) else: accounts, counts = zip(*cnt.most_common(k)) node_mapping = dict(zip(accounts,range(len(accounts)))) return node_mapping def _get_snapshot_edges(self, snapshot_id, grouped_data, edge_type="temporal", account_to_index=None): edges_grouped, weighted_edges_grouped = grouped_data snap_edges = [] if edge_type == "temporal": df = edges_grouped[snapshot_id] src, trg = reindex_edges(df, self.id_to_account, account_to_index) weights = list(np.ones(len(df))) else: df = weighted_edges_grouped[snapshot_id] src, trg = reindex_edges(df, self.id_to_account, account_to_index) if edge_type == "weighted": weights = list(df["weight"]) else: weights = list(np.ones(len(df))) snap_edges = list(zip(src, trg)) weights = weights[:len(snap_edges)] G = nx.Graph() G.add_edges_from(snap_edges) if account_to_index == None: X = calculate_node_features(G, None) else: X = calculate_node_features(G, len(account_to_index)) return snap_edges, weights, X def extract_snapshots(self, delta_t): start_epoch = self.start_time days = len(self.dates) to_epoch = start_epoch+days*86400+delta_t splits=list(range(start_epoch,to_epoch,delta_t)) mentions = self.mentions.copy() mentions = mentions[mentions["date"].isin(self.dates)] epochs = np.array(mentions["epoch"]) snapshots_ids = pd.cut(epochs, splits, right=False, labels=range(len(splits)-1)) mentions["snapshot_id"] = snapshots_ids return mentions def get_data(self, binary_label=True, edge_type="weighted", max_snapshot_idx=None, top_k_nodes=None): snapshots = self.dates labels = self.get_daily_relevance_labels(binary=binary_label) grouped_data = (self.edges_grouped, self.weighted_edges_grouped) return self._prepare_json_data(snapshots, self.mentions, grouped_data, labels, edge_type, max_snapshot_idx, top_k_nodes) def get_regression_data(self, delta_t=3*3600, edge_type="weighted", max_snapshot_idx=None, top_k_nodes=None): mentions = self.extract_snapshots(delta_t) snapshots = sorted(list(mentions["snapshot_id"].unique())) labels = regression_labels(mentions, "snapshot_id") weighted_edges, weighted_edges_grouped, edges_grouped = prepare_edges(mentions, "snapshot_id") grouped_data = (edges_grouped, weighted_edges_grouped) return self._prepare_json_data(snapshots, mentions, grouped_data, labels, edge_type, max_snapshot_idx, top_k_nodes) def _prepare_json_data(self, snapshots, mentions, grouped_data, labels, edge_type, max_snapshot_idx, top_k_nodes): snaps = snapshots.copy() account_to_index = self.get_account_recoder(k=top_k_nodes) data = {} idx = 0 if max_snapshot_idx != None: snaps = snaps[:max_snapshot_idx] for idx, snapshot_id in tqdm(enumerate(snaps)): edges, weights, X = self._get_snapshot_edges(snapshot_id, grouped_data, edge_type, account_to_index) X = list([X[node] for node in range(len(account_to_index))]) X = X[:len(account_to_index)] y = reindex_labels(labels[snapshot_id], self.id_to_account, account_to_index) y = list([y.get(node,0) for node in range(len(account_to_index))]) y = y[:len(account_to_index)] data[str(idx)] = { "index":idx, #"date":date, "edges": edges, "weights": weights, "y": y, "X": X, } #if self.include_qualifiers: # data[str(idx)]["game_day"] = not date in self.dates_with_no_games idx += 1 data["time_periods"] = len(data) data["node_ids"] = account_to_index return data def to_json(self, path, task="classification", delta_t=3*3600, edge_type="weighted", max_snapshot_idx=None, top_k_nodes=None): if task == "classification": print("Preparing classification data...") data = self.get_data(True, edge_type, max_snapshot_idx, top_k_nodes) else: print("Preparing regression data...") data = self.get_regression_data(delta_t, edge_type, max_snapshot_idx, top_k_nodes) with open(path, 'w') as f: json.dump(data, f) print("done")
# This script solves Problem #1 of Section 3's exercises in the TFC book # Updated: 18 Mar 2021 #################################################################################################### # Differential Equation # yₓₓ + w^2 y = 0 where w is the period # # subject to: y(0) = 1, yₓ(0) = 0 #################################################################################################### from tfc import utfc from tfc.utils import LsClass, egrad, MakePlot from jax import jit import jax.numpy as np import numpy as onp import tqdm #################################################################################################### ## user defined parameters: ************************************************************************ N = 100 # number of discretization points per TFC step m = 40 # number of basis function terms basis = 'CP' # basis function type xspan = [0., 2.] # time range of problem Nstep = int(xspan[1]/2) # number of TFC steps y0 = 1. # y(x0) = 1 y0p = 0. # yₓ(x0) = 0 w = 2.*np.pi ## problem initial conditions: ********************************************************************* if basis == 'CP' or 'LeP': nC = 2 elif basis == 'FS': nC = 1 else: nC = 0 # number of constraints # length of time for one TFC step xstep = (xspan[1]-xspan[0])/Nstep # !!! since this differential equation is not a explicit function of position 'x', I can get # away with contructing the tfc class such that x = [0, xstep] an imposing a constant step so # that the mapping parameter c = (zf-z0)/(xf-x0) is also constant ## construct univariate tfc class: ***************************************************************** tfc = utfc(N+1, nC, int(m+1), basis = basis, x0=0, xf=xstep) x = tfc.x # !!! notice I am using N+1 for the number of points. this is because I will be using the last point # of a segment 'n' for the initial conditons of the 'n+1' segment H = tfc.H dH = tfc.dH H0 = H(x[0]) H0p = dH(x[0]) ## define tfc constrained expression and derivatives: ********************************************** # switching function phi1 = lambda x: np.ones_like(x) phi2 = lambda x: x # tfc constrained expression y = lambda x,xi,IC: np.dot(H(x),xi) + phi1(x)*(IC['y0'] - np.dot(H0,xi)) \ + phi2(x)*(IC['y0p'] - np.dot(H0p,xi)) # !!! notice here that the initial conditions are passed as a dictionary (i.e. IC['y0']) # this will be important so that the least-squares does not need to be re-JITed yp = egrad(y) ypp = egrad(yp) ## define the loss function: *********************************************************************** # yₓₓ + w^2 y = 0 L = jit(lambda xi,IC: ypp(x,xi,IC) + w**2*y(x,xi,IC)) ## construct the least-squares class: ************************************************************** xi0 = np.zeros(H(x).shape[1]) IC = {'y0': np.array([y0]), 'y0p': np.array([y0p])} ls = LsClass(xi0,L,timer=True) ## initialize dictionary to record solution: ******************************************************* xSol = onp.zeros((Nstep,N)) ySol = onp.zeros_like(xSol) res = onp.zeros_like(xSol) err = onp.zeros_like(xSol) time = onp.zeros(Nstep) xSol[0,:] = x[:-1] xFinal = x[-1] ## 'propagation' loop: ***************************************************************************** for i in tqdm.trange(Nstep): xi, time[i] = ls.run(xi0,IC) # print solution to dictionary if i > 0: xSol[i,:] = xFinal + x[:-1] xFinal += x[-1] # save solution to python dictionary ySol[i,:] = y(x,xi,IC)[:-1] res[i,:] = np.abs(L(xi,IC))[:-1] # update initial condtions IC['y0'] = y(x,xi,IC)[-1] IC['y0p'] = yp(x,xi,IC)[-1] ## compute the error: ****************************************************************************** A = np.sqrt(y0**2 + (y0p/w)**2) Phi = np.arctan(-y0p/w/y0) yTrue = A*np.cos(w*xSol+Phi) err = np.abs(ySol-yTrue) ## print status of run: **************************************************************************** print('TFC least-squares time[s]: ' +'\t'+ str((time.sum()))) print('Max residual:' +'\t'*3+ str(res.max())) print('Max error:' +'\t'*3+ str(err.max())) ## plotting: *************************************************************************************** # figure 1: solution p1 = MakePlot(r'$x$',r'$y(t)$') p1.ax[0].plot(xSol.flatten(),ySol.flatten()) p1.ax[0].grid(True) p1.PartScreen(7.,6.) p1.show() # figure 2: residual p2 = MakePlot(r'$t$',r'$|L(\xi)|$') p2.ax[0].plot(xSol.flatten(),res.flatten(),'*') p2.ax[0].grid(True) p2.ax[0].set_yscale('log') p2.PartScreen(7.,6.) p2.show() # figure 3: error p3 = MakePlot(r'$t$',r'$|y_{true} - y(t)|$') p3.ax[0].plot(xSol.flatten(),err.flatten(),'*') p3.ax[0].grid(True) p3.ax[0].set_yscale('log') p3.PartScreen(7.,6.) p3.show()
""" Module containing helper routines for using Keras and Tensorflow models """ from __future__ import annotations import functools import os from typing import TYPE_CHECKING import numpy as np import requests import grpc import tensorflow as tf from google.protobuf.json_format import MessageToDict from tensorflow_serving.apis import ( predict_pb2, get_model_metadata_pb2, prediction_service_pb2_grpc, ) from tensorflow.keras.metrics import top_k_categorical_accuracy from tensorflow.keras.models import load_model as load_keras_model from aizynthfinder.utils.logging import logger from aizynthfinder.utils.exceptions import ExternalModelAPIError if TYPE_CHECKING: from aizynthfinder.utils.type_utils import Any, Union, Callable, List _ModelInput = Union[np.ndarray, List[np.ndarray]] top10_acc = functools.partial(top_k_categorical_accuracy, k=10) top10_acc.__name__ = "top10_acc" # type: ignore top50_acc = functools.partial(top_k_categorical_accuracy, k=50) top50_acc.__name__ = "top50_acc" # type: ignore CUSTOM_OBJECTS = {"top10_acc": top10_acc, "top50_acc": top50_acc, "tf": tf} _logger = logger() TF_SERVING_HOST = os.environ.get("TF_SERVING_HOST") TF_SERVING_REST_PORT = os.environ.get("TF_SERVING_REST_PORT") TF_SERVING_GRPC_PORT = os.environ.get("TF_SERVING_GRPC_PORT") def load_model( source: str, key: str, use_remote_models: bool ) -> Union["LocalKerasModel", "ExternalModelViaGRPC", "ExternalModelViaREST"]: """ Load model from a configuration specification. If `use_remote_models` is True, tries to load: 1. A Tensorflow server through gRPC 2. A Tensorflow server through REST API 3. A local model otherwise it just loads the local model :param source: if fallbacks to a local model, this is the filename :param key: when connecting to Tensrflow server this is the model name :param use_remote_models: if True will try to connect to remote model server :return: a model object with a predict object """ if not use_remote_models: return LocalKerasModel(source) try: return ExternalModelViaGRPC(key) except ExternalModelAPIError: pass try: return ExternalModelViaREST(key) except ExternalModelAPIError: pass return LocalKerasModel(source) class LocalKerasModel: """ A keras policy model that is executed locally. The size of the input vector can be determined with the len() method. :ivar model: the compiled model :ivar output_size: the length of the output vector :param filename: the path to a Keras checkpoint file """ def __init__(self, filename: str) -> None: self.model = load_keras_model(filename, custom_objects=CUSTOM_OBJECTS) try: self._model_dimensions = int(self.model.input.shape[1]) except AttributeError: self._model_dimensions = int(self.model.input[0].shape[1]) self.output_size = int(self.model.output.shape[1]) def __len__(self) -> int: return self._model_dimensions def predict(self, *args: np.ndarray, **_: np.ndarray) -> np.ndarray: """ Perform a forward pass of the neural network. :param args: the input vectors :return: the vector of the output layer """ return self.model.predict(args) def _log_and_reraise_exceptions(method: Callable) -> Callable: @functools.wraps(method) def wrapper(*args, **kwargs): try: return method(*args, **kwargs) except Exception as err: msg = "Error when requesting from tensorflow model API" _logger.error("%s: %s", msg, err) raise ExternalModelAPIError(msg) return wrapper class ExternalModelViaREST: """ A neural network model implementation using TF Serving via REST API. :param name: the name of model """ def __init__(self, name: str) -> None: self._model_url = self._get_model_url(name) self._sig_def = self._get_sig_def() def __len__(self) -> int: first_input_name = list(self._sig_def["inputs"].keys())[0] return int( self._sig_def["inputs"][first_input_name]["tensor_shape"]["dim"][1]["size"] ) def predict(self, *args: np.ndarray, **kwargs: np.ndarray) -> np.ndarray: """ Get prediction from model. If the keys in `kwargs` agree with the model input names, they will be used in stead of `arg` :param args: the input vectors :param kwargs: the named input vectors :return: the vector of the output layer """ url = self._model_url + ":predict" res = self._handle_rest_api_request( "POST", url, json=self._make_payload(*args, **kwargs) ) return np.asarray(res["outputs"]) def _get_sig_def(self) -> dict: res = self._handle_rest_api_request("GET", self._model_url + "/metadata") return res["metadata"]["signature_def"]["signature_def"]["serving_default"] # pylint: disable=no-self-use @_log_and_reraise_exceptions def _handle_rest_api_request( self, method: str, url: str, *args: Any, **kwargs: Any ) -> dict: res = requests.request(method, url, *args, **kwargs) if res.status_code != 200 or ( res.headers["Content-Type"] != "application/json" ): raise ExternalModelAPIError( f"Unexpected response from REST API: {res.status_code}\n{res.text}" ) return res.json() def _make_payload(self, *args: np.ndarray, **kwargs: np.ndarray) -> dict: if all(key in kwargs for key in self._sig_def["inputs"].keys()): data = {key: kwargs[key].tolist() for key in self._sig_def["inputs"].keys()} else: data = { name: fp.tolist() for name, fp in zip(self._sig_def["inputs"].keys(), args) } return {"inputs": data} @staticmethod def _get_model_url(name: str) -> str: warning = f"Failed to get url of REST service for external model {name}" if not TF_SERVING_HOST: _logger.warning(warning) raise ExternalModelAPIError("Host not set for model {name}") if not TF_SERVING_REST_PORT: _logger.warning(warning) raise ExternalModelAPIError("REST port not set for model {name}") return f"http://{TF_SERVING_HOST}:{TF_SERVING_REST_PORT}/v1/models/{name}" class ExternalModelViaGRPC: """ A neural network model implementation using TF Serving via gRPC. :param name: the name of model """ def __init__(self, name: str) -> None: self._server = self._get_server(name) self._model_name = name self._sig_def = self._get_sig_def() def __len__(self) -> int: first_input_name = list(self._sig_def["inputs"].keys())[0] return int( self._sig_def["inputs"][first_input_name]["tensorShape"]["dim"][1]["size"] ) @_log_and_reraise_exceptions def predict(self, *args: np.ndarray, **kwargs: np.ndarray) -> np.ndarray: """ Get prediction from model. If the keys in `kwargs` agree with the model input names, they will be used in stead of `arg` :param args: the input vectors :param kwargs: the named input vectors :return: the vector of the output layer """ input_tensors = self._make_payload(*args, **kwargs) channel = grpc.insecure_channel(self._server) service = prediction_service_pb2_grpc.PredictionServiceStub(channel) request = predict_pb2.PredictRequest() request.model_spec.name = self._model_name for name, tensor in input_tensors.items(): request.inputs[name].CopyFrom(tensor) key = list(self._sig_def["outputs"].keys())[0] return tf.make_ndarray(service.Predict(request, 10.0).outputs[key]) @_log_and_reraise_exceptions def _get_sig_def(self) -> dict: channel = grpc.insecure_channel(self._server) service = prediction_service_pb2_grpc.PredictionServiceStub(channel) request = get_model_metadata_pb2.GetModelMetadataRequest() request.model_spec.name = self._model_name request.metadata_field.append("signature_def") result = MessageToDict(service.GetModelMetadata(request, 10.0)) # close the channel so that it won't be reused after fork and fail channel.close() return result["metadata"]["signature_def"]["signatureDef"]["serving_default"] def _make_payload(self, *args: np.ndarray, **kwargs: np.ndarray) -> dict: if all(key in kwargs for key in self._sig_def["inputs"].keys()): inputs = kwargs else: inputs = dict(zip(self._sig_def["inputs"].keys(), args)) tensors = {} for name, vec in inputs.items(): size = int(self._sig_def["inputs"][name]["tensorShape"]["dim"][1]["size"]) tensors[name] = tf.make_tensor_proto(vec, dtype=np.float32, shape=(1, size)) return tensors @staticmethod def _get_server(name: str) -> str: warning = f"Failed to get gRPC server for external model {name}" if not TF_SERVING_HOST: _logger.warning(warning) raise ExternalModelAPIError(f"Host not set for model {name}") if not TF_SERVING_GRPC_PORT: _logger.warning(warning) raise ExternalModelAPIError(f"GRPC port not set for model {name}") return f"{TF_SERVING_HOST}:{TF_SERVING_GRPC_PORT}"
import ply.lex as lex from .errors import LexicographicError def find_column(code, token): line_start = code.rfind('\n', 0, token.lexpos) + 1 return token.lexpos - line_start + 1 ###### TOKEN LISTS ###### reserved = [ 'CLASS', 'INHERITS', 'IF', 'THEN', 'ELSE', 'FI', 'WHILE', 'LOOP', 'POOL', 'LET', 'IN', 'CASE', 'OF', 'ESAC', 'NEW', 'ISVOID', ] tokens = [ # Literals 'LIT', # Identifiers 'TYPE', 'ID', # Primitive data types 'INTEGER', 'STRING', 'BOOL', # Special keywords 'ACTION', # Operators 'ASSIGN', 'LESS', 'LESSEQUAL', 'EQUAL', 'INT_COMPLEMENT', 'NOT', ] + reserved # Ignore rule for single line comments # t_ignore_SINGLE_LINE_COMMENT = r"\-\-[^\n]*" def t_SINGLE_LINE_COMMENT(token): r"\-\-[^\n]*" token.lexer.lineno += 1 token.lexer.skip(1) ###### TOKEN RULES ###### # Operators t_LIT = r"[\+\-\*\/\:\;\(\)\{\}\@\.\,]" t_ASSIGN = r'<-' t_LESS = r'<' t_LESSEQUAL = r'<=' t_EQUAL = r'=' t_INT_COMPLEMENT = r'~' # Special keywords t_ACTION = r'=>' # Primitive data types def t_INTEGER(t): r"[0-9]+" t.value = int(t.value) return t def t_BOOL(t): r"t[rR][uU][eE]|f[aA][lL][sS][eE]" t.value = True if t.value.lower() == 'true' else False return t # Other tokens with precedence before TYPE and ID def t_NOT(t): r"[nN][oO][tT]" return t # Identifiers def check_RESERVED(t): tupper = t.value.upper() if tupper in reserved: t.type = tupper def t_TYPE(t): r"[A-Z][A-Za-z0-9_]*" check_RESERVED(t) return t def t_ID(t): r"[a-z][A-Za-z0-9_]*" check_RESERVED(t) return t def t_newline(token): r"\n+" token.lexer.lineno += len(token.value) t_ignore = ' \t\r\f' # LEXER STATES states = ( ("STRING", "exclusive"), ("COMMENT", "exclusive") ) ### # THE STRING STATE def t_start_string(token): r"\"" token.lexer.push_state("STRING") token.lexer.string_backslashed = False token.lexer.stringbuf = "" def t_STRING_newline(token): r"\n" token.lexer.lineno += 1 if not token.lexer.string_backslashed: errors.append(LexicographicError((token.lineno, find_column(token.lexer.lexdata, token)), 'Unterminated string constant')) token.lexer.pop_state() else: token.lexer.string_backslashed = False def t_STRING_null(token): r"\0" errors.append(LexicographicError((token.lineno, find_column(token.lexer.lexdata, token)), 'Null character in string')) token.lexer.skip(1) def t_STRING_end(token): r"\"" if not token.lexer.string_backslashed: token.lexer.pop_state() token.value = token.lexer.stringbuf token.type = "STRING" return token else: token.lexer.stringbuf += '"' token.lexer.string_backslashed = False def t_STRING_anything(token): r"[^\n]" if token.lexer.string_backslashed: if token.value == 'b': token.lexer.stringbuf += '\b' elif token.value == 't': token.lexer.stringbuf += '\t' elif token.value == 'n': token.lexer.stringbuf += '\n' elif token.value == 'f': token.lexer.stringbuf += '\f' elif token.value == '\\': token.lexer.stringbuf += '\\' else: token.lexer.stringbuf += token.value token.lexer.string_backslashed = False else: if token.value != '\\': token.lexer.stringbuf += token.value else: token.lexer.string_backslashed = True # STRING ignored characters t_STRING_ignore = '' # STRING error handler def t_STRING_error(token): errors.append(LexicographicError((token.lineno, find_column(token.lexer.lexdata, token)), 'ERROR at or near ' + token.value[:10])) token.lexer.skip(1) def t_STRING_eof(token): errors.append(LexicographicError((token.lineno, find_column(token.lexer.lexdata, token)), 'EOF in string')) token.lexer.pop_state() ### # THE COMMENT STATE def t_start_comment(token): r"\(\*" token.lexer.push_state("COMMENT") token.lexer.comment_count = 0 def t_COMMENT_newline(token): r"\n+" token.lexer.lineno += len(token.value) def t_COMMENT_startanother(t): r"\(\*" t.lexer.comment_count += 1 def t_COMMENT_end(token): r"\*\)" if token.lexer.comment_count == 0: token.lexer.pop_state() else: token.lexer.comment_count -= 1 # COMMENT ignored characters t_COMMENT_ignore = '' # COMMENT error handler def t_COMMENT_error(token): token.lexer.skip(1) def t_COMMENT_eof(token): errors.append(LexicographicError((token.lineno, find_column(token.lexer.lexdata, token)), 'EOF in comment')) token.lexer.pop_state() ###### SPECIAL RULES ###### errors = [] def t_error(token): errors.append(LexicographicError((token.lineno, find_column(token.lexer.lexdata, token)), 'ERROR at ooooor near ' + token.value[:10])) token.lexer.skip(1) ###### CREATE LEXER ###### lex.lex() ###### TOKENIZER ###### def tokenizer(code): lex.input(code) token_list = [] while True: token = lex.token() if token is None: break token.lexpos = find_column(code, token) token_list.append(token) return errors, token_list
#!/usr/bin/python3 import os import pickle from sklearn.cluster import KMeans from scipy import sparse import pandas as pd import matplotlib.pyplot as plt from yellowbrick.cluster import KElbowVisualizer def main(): """ Using k-means for some data exploration and a potential solution for the license prediction problem """ os.chdir('../../../all_files_generated') current_dir = os.getcwd() data_pickles_dir = os.path.join(current_dir, 'data_pickles') elbow_method_files_dir = os.path.join(current_dir, 'elbow_method_files') x_train_path = os.path.join(data_pickles_dir, 'x_train.pickle') x_validation_path = os.path.join(data_pickles_dir, 'x_validation.pickle') x_test_path = os.path.join(data_pickles_dir, 'x_test.pickle') y_train_path = os.path.join(data_pickles_dir, 'y_train.pickle') y_validation_path = os.path.join(data_pickles_dir, 'y_validation.pickle') y_test_path = os.path.join(data_pickles_dir, 'y_test.pickle') # read in all pickle files that may be required with open(x_train_path, 'rb') as data: x_train = pickle.load(data) with open(x_validation_path, 'rb') as data: x_validation = pickle.load(data) with open(x_test_path, 'rb') as data: x_test = pickle.load(data) with open(y_train_path, 'rb') as data: y_train = pickle.load(data) with open(y_validation_path, 'rb') as data: y_validation = pickle.load(data) with open(y_test_path, 'rb') as data: y_test = pickle.load(data) # combine all datasets x_train = sparse.vstack((x_train, x_validation, x_test)) # scipy.sparse.csr matrix y_train = y_train.append(pd.Series(y_validation)) # pandas series y_train = y_train.append(pd.Series(y_test)) # pandas series use_yellowbrick = False if use_yellowbrick: license_classifier = KMeans() visualizer = KElbowVisualizer(license_classifier, k=(2, 100)) visualizer.fit(x_train) visualizer.show() else: inertia = [] k = range(2, 100) for i in k: license_classifier = KMeans(n_clusters=i) license_classifier.fit(x_train) inertia.append(license_classifier.inertia_) plt.plot(k, inertia) plt.xlabel('K') plt.ylabel('Inertia') plt.title('Elbow Method') elbow_method_path = os.path.join(elbow_method_files_dir, 'k_means_clustering_elbow_method.png') plt.savefig(elbow_method_path) plt.show() if __name__ == '__main__': main()
import collections import itertools import os import sqlite3 import typing from hydrus.core import HydrusConstants as HC from hydrus.core import HydrusData from hydrus.core import HydrusDBBase from hydrus.core import HydrusExceptions from hydrus.core.networking import HydrusNetwork from hydrus.client import ClientFiles from hydrus.client.db import ClientDBDefinitionsCache from hydrus.client.db import ClientDBFilesMaintenanceQueue from hydrus.client.db import ClientDBFilesMetadataBasic from hydrus.client.db import ClientDBFilesStorage from hydrus.client.db import ClientDBModule from hydrus.client.db import ClientDBServices REPOSITORY_HASH_ID_MAP_PREFIX = 'repository_hash_id_map_' REPOSITORY_TAG_ID_MAP_PREFIX = 'repository_tag_id_map_' REPOSITORY_UPDATES_PREFIX = 'repository_updates_' REPOSITORY_UNREGISTERED_UPDATES_PREFIX = 'repository_unregistered_updates_' REPOSITORY_UPDATES_PROCESSED_PREFIX = 'repository_updates_processed_' def GenerateRepositoryDefinitionTableNames( service_id: int ): suffix = str( service_id ) hash_id_map_table_name = 'external_master.{}{}'.format( REPOSITORY_HASH_ID_MAP_PREFIX, suffix ) tag_id_map_table_name = 'external_master.{}{}'.format( REPOSITORY_TAG_ID_MAP_PREFIX, suffix ) return ( hash_id_map_table_name, tag_id_map_table_name ) def GenerateRepositoryFileDefinitionTableName( service_id: int ): ( hash_id_map_table_name, tag_id_map_table_name ) = GenerateRepositoryDefinitionTableNames( service_id ) return hash_id_map_table_name def GenerateRepositoryTagDefinitionTableName( service_id: int ): ( hash_id_map_table_name, tag_id_map_table_name ) = GenerateRepositoryDefinitionTableNames( service_id ) return tag_id_map_table_name def GenerateRepositoryUpdatesTableNames( service_id: int ): repository_updates_table_name = '{}{}'.format( REPOSITORY_UPDATES_PREFIX, service_id ) repository_unregistered_updates_table_name = '{}{}'.format( REPOSITORY_UNREGISTERED_UPDATES_PREFIX, service_id ) repository_updates_processed_table_name = '{}{}'.format( REPOSITORY_UPDATES_PROCESSED_PREFIX, service_id ) return ( repository_updates_table_name, repository_unregistered_updates_table_name, repository_updates_processed_table_name ) class ClientDBRepositories( ClientDBModule.ClientDBModule ): def __init__( self, cursor: sqlite3.Cursor, cursor_transaction_wrapper: HydrusDBBase.DBCursorTransactionWrapper, modules_services: ClientDBServices.ClientDBMasterServices, modules_files_storage: ClientDBFilesStorage.ClientDBFilesStorage, modules_files_metadata_basic: ClientDBFilesMetadataBasic.ClientDBFilesMetadataBasic, modules_hashes_local_cache: ClientDBDefinitionsCache.ClientDBCacheLocalHashes, modules_tags_local_cache: ClientDBDefinitionsCache.ClientDBCacheLocalTags, modules_files_maintenance_queue: ClientDBFilesMaintenanceQueue.ClientDBFilesMaintenanceQueue ): # since we'll mostly be talking about hashes and tags we don't have locally, I think we shouldn't use the local caches ClientDBModule.ClientDBModule.__init__( self, 'client repositories', cursor ) self._cursor_transaction_wrapper = cursor_transaction_wrapper self.modules_services = modules_services self.modules_files_storage = modules_files_storage self.modules_files_metadata_basic = modules_files_metadata_basic self.modules_files_maintenance_queue = modules_files_maintenance_queue self.modules_hashes_local_cache = modules_hashes_local_cache self.modules_tags_local_cache = modules_tags_local_cache self._service_ids_to_content_types_to_outstanding_local_processing = collections.defaultdict( dict ) def _ClearOutstandingWorkCache( self, service_id, content_type = None ): if service_id not in self._service_ids_to_content_types_to_outstanding_local_processing: return if content_type is None: del self._service_ids_to_content_types_to_outstanding_local_processing[ service_id ] else: if content_type in self._service_ids_to_content_types_to_outstanding_local_processing[ service_id ]: del self._service_ids_to_content_types_to_outstanding_local_processing[ service_id ][ content_type ] def _GetServiceIndexGenerationDict( self, service_id ) -> dict: ( repository_updates_table_name, repository_unregistered_updates_table_name, repository_updates_processed_table_name ) = GenerateRepositoryUpdatesTableNames( service_id ) index_generation_dict = {} index_generation_dict[ repository_updates_table_name ] = [ ( [ 'hash_id' ], True, 449 ) ] index_generation_dict[ repository_updates_processed_table_name ] = [ ( [ 'content_type' ], False, 449 ) ] return index_generation_dict def _GetServiceTableGenerationDict( self, service_id ) -> dict: ( repository_updates_table_name, repository_unregistered_updates_table_name, repository_updates_processed_table_name ) = GenerateRepositoryUpdatesTableNames( service_id ) ( hash_id_map_table_name, tag_id_map_table_name ) = GenerateRepositoryDefinitionTableNames( service_id ) return { repository_updates_table_name : ( 'CREATE TABLE IF NOT EXISTS {} ( update_index INTEGER, hash_id INTEGER, PRIMARY KEY ( update_index, hash_id ) );', 449 ), repository_unregistered_updates_table_name : ( 'CREATE TABLE IF NOT EXISTS {} ( hash_id INTEGER PRIMARY KEY );', 449 ), repository_updates_processed_table_name : ( 'CREATE TABLE IF NOT EXISTS {} ( hash_id INTEGER, content_type INTEGER, processed INTEGER_BOOLEAN, PRIMARY KEY ( hash_id, content_type ) );', 449 ), hash_id_map_table_name : ( 'CREATE TABLE IF NOT EXISTS {} ( service_hash_id INTEGER PRIMARY KEY, hash_id INTEGER );', 400 ), tag_id_map_table_name : ( 'CREATE TABLE IF NOT EXISTS {} ( service_tag_id INTEGER PRIMARY KEY, tag_id INTEGER );', 400 ) } def _GetServiceTablePrefixes( self ): return { REPOSITORY_HASH_ID_MAP_PREFIX, REPOSITORY_TAG_ID_MAP_PREFIX, REPOSITORY_UPDATES_PREFIX, REPOSITORY_UNREGISTERED_UPDATES_PREFIX, REPOSITORY_UPDATES_PROCESSED_PREFIX } def _GetServiceIdsWeGenerateDynamicTablesFor( self ): return self.modules_services.GetServiceIds( HC.REPOSITORIES ) def _HandleCriticalRepositoryDefinitionError( self, service_id, name, bad_ids ): self._ReprocessRepository( service_id, ( HC.CONTENT_TYPE_DEFINITIONS, ) ) self._ScheduleRepositoryUpdateFileMaintenance( service_id, ClientFiles.REGENERATE_FILE_DATA_JOB_FILE_INTEGRITY_DATA ) self._ScheduleRepositoryUpdateFileMaintenance( service_id, ClientFiles.REGENERATE_FILE_DATA_JOB_FILE_METADATA ) self._cursor_transaction_wrapper.CommitAndBegin() message = 'A critical error was discovered with one of your repositories: its definition reference is in an invalid state. Your repository should now be paused, and all update files have been scheduled for an integrity and metadata check. Please permit file maintenance to check them, or tell it to do so manually, before unpausing your repository. Once unpaused, it will reprocess your definition files and attempt to fill the missing entries. If this error occurs again once that is complete, please inform hydrus dev.' message += os.linesep * 2 message += 'Error: {}: {}'.format( name, bad_ids ) raise Exception( message ) def _RegisterUpdates( self, service_id, hash_ids = None ): # it is ok if this guy gets hash ids that are already in the 'processed' table--it'll now resync them and correct if needed ( repository_updates_table_name, repository_unregistered_updates_table_name, repository_updates_processed_table_name ) = GenerateRepositoryUpdatesTableNames( service_id ) if hash_ids is None: hash_ids = self._STS( self._Execute( 'SELECT hash_id FROM {};'.format( repository_unregistered_updates_table_name ) ) ) else: with self._MakeTemporaryIntegerTable( hash_ids, 'hash_id' ) as temp_hash_ids_table_name: hash_ids = self._STS( self._Execute( 'SELECT hash_id FROM {} CROSS JOIN {} USING ( hash_id );'.format( temp_hash_ids_table_name, repository_unregistered_updates_table_name ) ) ) if len( hash_ids ) > 0: service_type = self.modules_services.GetService( service_id ).GetServiceType() with self._MakeTemporaryIntegerTable( hash_ids, 'hash_id' ) as temp_hash_ids_table_name: hash_ids_to_mimes = { hash_id : mime for ( hash_id, mime ) in self._Execute( 'SELECT hash_id, mime FROM {} CROSS JOIN files_info USING ( hash_id );'.format( temp_hash_ids_table_name ) ) } current_rows = set( self._Execute( 'SELECT hash_id, content_type FROM {} CROSS JOIN {} USING ( hash_id );'.format( temp_hash_ids_table_name, repository_updates_processed_table_name ) ) ) correct_rows = set() for ( hash_id, mime ) in hash_ids_to_mimes.items(): if mime == HC.APPLICATION_HYDRUS_UPDATE_DEFINITIONS: content_types = ( HC.CONTENT_TYPE_DEFINITIONS, ) else: content_types = tuple( HC.SERVICE_TYPES_TO_CONTENT_TYPES[ service_type ] ) correct_rows.update( ( ( hash_id, content_type ) for content_type in content_types ) ) deletee_rows = current_rows.difference( correct_rows ) if len( deletee_rows ) > 0: # these were registered wrong at some point self._ExecuteMany( 'DELETE FROM {} WHERE hash_id = ? AND content_type = ?;'.format( repository_updates_processed_table_name ), deletee_rows ) insert_rows = correct_rows.difference( current_rows ) if len( insert_rows ) > 0: processed = False self._ExecuteMany( 'INSERT OR IGNORE INTO {} ( hash_id, content_type, processed ) VALUES ( ?, ?, ? );'.format( repository_updates_processed_table_name ), ( ( hash_id, content_type, processed ) for ( hash_id, content_type ) in insert_rows ) ) if len( hash_ids_to_mimes ) > 0: self._ExecuteMany( 'DELETE FROM {} WHERE hash_id = ?;'.format( repository_unregistered_updates_table_name ), ( ( hash_id, ) for hash_id in hash_ids_to_mimes.keys() ) ) if len( deletee_rows ) + len( insert_rows ) > 0: content_types_that_changed = { content_type for ( hash_id, content_type ) in deletee_rows.union( insert_rows ) } for content_type in content_types_that_changed: self._ClearOutstandingWorkCache( service_id, content_type = content_type ) def _ReprocessRepository( self, service_id, content_types ): ( repository_updates_table_name, repository_unregistered_updates_table_name, repository_updates_processed_table_name ) = GenerateRepositoryUpdatesTableNames( service_id ) self._ExecuteMany( 'UPDATE {} SET processed = ? WHERE content_type = ?;'.format( repository_updates_processed_table_name ), ( ( False, content_type ) for content_type in content_types ) ) self._ClearOutstandingWorkCache( service_id ) def _ScheduleRepositoryUpdateFileMaintenance( self, service_id, job_type ): ( repository_updates_table_name, repository_unregistered_updates_table_name, repository_updates_processed_table_name ) = GenerateRepositoryUpdatesTableNames( service_id ) table_join = self.modules_files_storage.GetTableJoinLimitedByFileDomain( self.modules_services.local_update_service_id, repository_updates_table_name, HC.CONTENT_STATUS_CURRENT ) update_hash_ids = self._STL( self._Execute( 'SELECT hash_id FROM {};'.format( table_join ) ) ) self.modules_files_maintenance_queue.AddJobs( update_hash_ids, job_type ) def AssociateRepositoryUpdateHashes( self, service_key: bytes, metadata_slice: HydrusNetwork.Metadata ): service_id = self.modules_services.GetServiceId( service_key ) inserts = [] for ( update_index, update_hashes ) in metadata_slice.GetUpdateIndicesAndHashes(): hash_ids = self.modules_hashes_local_cache.GetHashIds( update_hashes ) inserts.extend( ( ( update_index, hash_id ) for hash_id in hash_ids ) ) if len( inserts ) > 0: ( repository_updates_table_name, repository_unregistered_updates_table_name, repository_updates_processed_table_name ) = GenerateRepositoryUpdatesTableNames( service_id ) self._ExecuteMany( 'INSERT OR IGNORE INTO {} ( update_index, hash_id ) VALUES ( ?, ? );'.format( repository_updates_table_name ), inserts ) self._ExecuteMany( 'INSERT OR IGNORE INTO {} ( hash_id ) VALUES ( ? );'.format( repository_unregistered_updates_table_name ), ( ( hash_id, ) for ( update_index, hash_id ) in inserts ) ) self._RegisterUpdates( service_id ) def DropRepositoryTables( self, service_id: int ): ( repository_updates_table_name, repository_unregistered_updates_table_name, repository_updates_processed_table_name ) = GenerateRepositoryUpdatesTableNames( service_id ) self._Execute( 'DROP TABLE IF EXISTS {};'.format( repository_updates_table_name ) ) self._Execute( 'DROP TABLE IF EXISTS {};'.format( repository_unregistered_updates_table_name ) ) self._Execute( 'DROP TABLE IF EXISTS {};'.format( repository_updates_processed_table_name ) ) ( hash_id_map_table_name, tag_id_map_table_name ) = GenerateRepositoryDefinitionTableNames( service_id ) self._Execute( 'DROP TABLE IF EXISTS {};'.format( hash_id_map_table_name ) ) self._Execute( 'DROP TABLE IF EXISTS {};'.format( tag_id_map_table_name ) ) self._ClearOutstandingWorkCache( service_id ) def DoOutstandingUpdateRegistration( self ): for service_id in self.modules_services.GetServiceIds( HC.REPOSITORIES ): self._RegisterUpdates( service_id ) def GenerateRepositoryTables( self, service_id: int ): table_generation_dict = self._GetServiceTableGenerationDict( service_id ) for ( table_name, ( create_query_without_name, version_added ) ) in table_generation_dict.items(): self._Execute( create_query_without_name.format( table_name ) ) index_generation_dict = self._GetServiceIndexGenerationDict( service_id ) for ( table_name, columns, unique, version_added ) in self._FlattenIndexGenerationDict( index_generation_dict ): self._CreateIndex( table_name, columns, unique = unique ) def GetRepositoryProgress( self, service_key: bytes ): service_id = self.modules_services.GetServiceId( service_key ) ( repository_updates_table_name, repository_unregistered_updates_table_name, repository_updates_processed_table_name ) = GenerateRepositoryUpdatesTableNames( service_id ) ( num_updates, ) = self._Execute( 'SELECT COUNT( * ) FROM {}'.format( repository_updates_table_name ) ).fetchone() table_join = self.modules_files_storage.GetTableJoinLimitedByFileDomain( self.modules_services.local_update_service_id, repository_updates_table_name, HC.CONTENT_STATUS_CURRENT ) ( num_local_updates, ) = self._Execute( 'SELECT COUNT( * ) FROM {};'.format( table_join ) ).fetchone() content_types_to_num_updates = collections.Counter( dict( self._Execute( 'SELECT content_type, COUNT( * ) FROM {} GROUP BY content_type;'.format( repository_updates_processed_table_name ) ) ) ) content_types_to_num_processed_updates = collections.Counter( dict( self._Execute( 'SELECT content_type, COUNT( * ) FROM {} WHERE processed = ? GROUP BY content_type;'.format( repository_updates_processed_table_name ), ( True, ) ) ) ) # little helpful thing that pays off later for content_type in content_types_to_num_updates: if content_type not in content_types_to_num_processed_updates: content_types_to_num_processed_updates[ content_type ] = 0 return ( num_local_updates, num_updates, content_types_to_num_processed_updates, content_types_to_num_updates ) def GetRepositoryUpdateHashesICanProcess( self, service_key: bytes, content_types_to_process ): # it is important that we use lists and sort by update index! # otherwise add/delete actions can occur in the wrong order service_id = self.modules_services.GetServiceId( service_key ) ( repository_updates_table_name, repository_unregistered_updates_table_name, repository_updates_processed_table_name ) = GenerateRepositoryUpdatesTableNames( service_id ) result = self._Execute( 'SELECT 1 FROM {} WHERE content_type = ? AND processed = ?;'.format( repository_updates_processed_table_name ), ( HC.CONTENT_TYPE_DEFINITIONS, True ) ).fetchone() this_is_first_definitions_work = result is None result = self._Execute( 'SELECT 1 FROM {} WHERE content_type != ? AND processed = ?;'.format( repository_updates_processed_table_name ), ( HC.CONTENT_TYPE_DEFINITIONS, True ) ).fetchone() this_is_first_content_work = result is None min_unregistered_update_index = None result = self._Execute( 'SELECT MIN( update_index ) FROM {} CROSS JOIN {} USING ( hash_id );'.format( repository_unregistered_updates_table_name, repository_updates_table_name ) ).fetchone() if result is not None: ( min_unregistered_update_index, ) = result predicate_phrase = 'processed = ? AND content_type IN {}'.format( HydrusData.SplayListForDB( content_types_to_process ) ) if min_unregistered_update_index is not None: # can't process an update if any of its files are as yet unregistered (these are both unprocessed and unavailable) # also, we mustn't skip any update indices, so if there is an invalid one, we won't do any after that! predicate_phrase = '{} AND update_index < {}'.format( predicate_phrase, min_unregistered_update_index ) query = 'SELECT update_index, hash_id, content_type FROM {} CROSS JOIN {} USING ( hash_id ) WHERE {};'.format( repository_updates_processed_table_name, repository_updates_table_name, predicate_phrase ) rows = self._Execute( query, ( False, ) ).fetchall() update_indices_to_unprocessed_hash_ids = HydrusData.BuildKeyToSetDict( ( ( update_index, hash_id ) for ( update_index, hash_id, content_type ) in rows ) ) hash_ids_to_content_types_to_process = HydrusData.BuildKeyToSetDict( ( ( hash_id, content_type ) for ( update_index, hash_id, content_type ) in rows ) ) all_hash_ids = set( hash_ids_to_content_types_to_process.keys() ) all_local_hash_ids = self.modules_files_storage.FilterCurrentHashIds( self.modules_services.local_update_service_id, all_hash_ids ) for sorted_update_index in sorted( update_indices_to_unprocessed_hash_ids.keys() ): unprocessed_hash_ids = update_indices_to_unprocessed_hash_ids[ sorted_update_index ] if not unprocessed_hash_ids.issubset( all_local_hash_ids ): # can't process an update if any of its unprocessed files are not local # normally they'll always be available if registered, but just in case a user deletes one manually etc... # also, we mustn't skip any update indices, so if there is an invalid one, we won't do any after that! update_indices_to_unprocessed_hash_ids = { update_index : unprocessed_hash_ids for ( update_index, unprocessed_hash_ids ) in update_indices_to_unprocessed_hash_ids.items() if update_index < sorted_update_index } break # all the hashes are now good to go all_hash_ids = set( itertools.chain.from_iterable( update_indices_to_unprocessed_hash_ids.values() ) ) hash_ids_to_hashes = self.modules_hashes_local_cache.GetHashIdsToHashes( hash_ids = all_hash_ids ) definition_hashes_and_content_types = [] content_hashes_and_content_types = [] if len( update_indices_to_unprocessed_hash_ids ) > 0: for update_index in sorted( update_indices_to_unprocessed_hash_ids.keys() ): unprocessed_hash_ids = update_indices_to_unprocessed_hash_ids[ update_index ] definition_hash_ids = { hash_id for hash_id in unprocessed_hash_ids if HC.CONTENT_TYPE_DEFINITIONS in hash_ids_to_content_types_to_process[ hash_id ] } content_hash_ids = { hash_id for hash_id in unprocessed_hash_ids if hash_id not in definition_hash_ids } for ( hash_ids, hashes_and_content_types ) in [ ( definition_hash_ids, definition_hashes_and_content_types ), ( content_hash_ids, content_hashes_and_content_types ) ]: hashes_and_content_types.extend( ( ( hash_ids_to_hashes[ hash_id ], hash_ids_to_content_types_to_process[ hash_id ] ) for hash_id in hash_ids ) ) return ( this_is_first_definitions_work, definition_hashes_and_content_types, this_is_first_content_work, content_hashes_and_content_types ) def GetRepositoryUpdateHashesIDoNotHave( self, service_key: bytes ): service_id = self.modules_services.GetServiceId( service_key ) ( repository_updates_table_name, repository_unregistered_updates_table_name, repository_updates_processed_table_name ) = GenerateRepositoryUpdatesTableNames( service_id ) all_hash_ids = self._STL( self._Execute( 'SELECT hash_id FROM {} ORDER BY update_index ASC;'.format( repository_updates_table_name ) ) ) table_join = self.modules_files_storage.GetTableJoinLimitedByFileDomain( self.modules_services.local_update_service_id, repository_updates_table_name, HC.CONTENT_STATUS_CURRENT ) existing_hash_ids = self._STS( self._Execute( 'SELECT hash_id FROM {};'.format( table_join ) ) ) needed_hash_ids = [ hash_id for hash_id in all_hash_ids if hash_id not in existing_hash_ids ] needed_hashes = self.modules_hashes_local_cache.GetHashes( needed_hash_ids ) return needed_hashes def GetTablesAndColumnsThatUseDefinitions( self, content_type: int ) -> typing.List[ typing.Tuple[ str, str ] ]: tables_and_columns = [] if HC.CONTENT_TYPE_HASH: for service_id in self.modules_services.GetServiceIds( HC.REPOSITORIES ): ( repository_updates_table_name, repository_unregistered_updates_table_name, repository_updates_processed_table_name ) = GenerateRepositoryUpdatesTableNames( service_id ) hash_id_map_table_name = GenerateRepositoryFileDefinitionTableName( service_id ) tables_and_columns.extend( [ ( repository_updates_table_name, 'hash_id' ), ( hash_id_map_table_name, 'hash_id' ) ] ) elif HC.CONTENT_TYPE_TAG: for service_id in self.modules_services.GetServiceIds( HC.REAL_TAG_SERVICES ): tag_id_map_table_name = GenerateRepositoryTagDefinitionTableName( service_id ) tables_and_columns.extend( [ ( tag_id_map_table_name, 'tag_id' ) ] ) return tables_and_columns def HasLotsOfOutstandingLocalProcessing( self, service_id, content_types ): ( repository_updates_table_name, repository_unregistered_updates_table_name, repository_updates_processed_table_name ) = GenerateRepositoryUpdatesTableNames( service_id ) content_types_to_outstanding_local_processing = self._service_ids_to_content_types_to_outstanding_local_processing[ service_id ] for content_type in content_types: if content_type not in content_types_to_outstanding_local_processing: result = self._STL( self._Execute( 'SELECT 1 FROM {} WHERE content_type = ? AND processed = ?;'.format( repository_updates_processed_table_name ), ( content_type, False ) ).fetchmany( 20 ) ) content_types_to_outstanding_local_processing[ content_type ] = len( result ) >= 20 if content_types_to_outstanding_local_processing[ content_type ]: return True return False def NormaliseServiceHashId( self, service_id: int, service_hash_id: int ) -> int: hash_id_map_table_name = GenerateRepositoryFileDefinitionTableName( service_id ) result = self._Execute( 'SELECT hash_id FROM {} WHERE service_hash_id = ?;'.format( hash_id_map_table_name ), ( service_hash_id, ) ).fetchone() if result is None: self._HandleCriticalRepositoryDefinitionError( service_id, 'hash_id', service_hash_id ) ( hash_id, ) = result return hash_id def NormaliseServiceHashIds( self, service_id: int, service_hash_ids: typing.Collection[ int ] ) -> typing.Set[ int ]: hash_id_map_table_name = GenerateRepositoryFileDefinitionTableName( service_id ) with self._MakeTemporaryIntegerTable( service_hash_ids, 'service_hash_id' ) as temp_table_name: # temp service hashes to lookup hash_ids_potentially_dupes = self._STL( self._Execute( 'SELECT hash_id FROM {} CROSS JOIN {} USING ( service_hash_id );'.format( temp_table_name, hash_id_map_table_name ) ) ) # every service_id can only exist once, but technically a hash_id could be mapped to two service_ids if len( hash_ids_potentially_dupes ) != len( service_hash_ids ): bad_service_hash_ids = [] for service_hash_id in service_hash_ids: result = self._Execute( 'SELECT hash_id FROM {} WHERE service_hash_id = ?;'.format( hash_id_map_table_name ), ( service_hash_id, ) ).fetchone() if result is None: bad_service_hash_ids.append( service_hash_id ) self._HandleCriticalRepositoryDefinitionError( service_id, 'hash_ids', bad_service_hash_ids ) hash_ids = set( hash_ids_potentially_dupes ) return hash_ids def NormaliseServiceTagId( self, service_id: int, service_tag_id: int ) -> int: tag_id_map_table_name = GenerateRepositoryTagDefinitionTableName( service_id ) result = self._Execute( 'SELECT tag_id FROM {} WHERE service_tag_id = ?;'.format( tag_id_map_table_name ), ( service_tag_id, ) ).fetchone() if result is None: self._HandleCriticalRepositoryDefinitionError( service_id, 'tag_id', service_tag_id ) ( tag_id, ) = result return tag_id def NotifyUpdatesChanged( self, hash_ids ): for service_id in self.modules_services.GetServiceIds( HC.REPOSITORIES ): ( repository_updates_table_name, repository_unregistered_updates_table_name, repository_updates_processed_table_name ) = GenerateRepositoryUpdatesTableNames( service_id ) self._ExecuteMany( 'INSERT OR IGNORE INTO {} ( hash_id ) VALUES ( ? );'.format( repository_unregistered_updates_table_name ), ( ( hash_id, ) for hash_id in hash_ids ) ) self._RegisterUpdates( service_id, hash_ids ) def NotifyUpdatesImported( self, hash_ids ): for service_id in self.modules_services.GetServiceIds( HC.REPOSITORIES ): self._RegisterUpdates( service_id, hash_ids ) def ProcessRepositoryDefinitions( self, service_key: bytes, definition_hash: bytes, definition_iterator_dict, content_types, job_key, work_time ): # ignore content_types for now service_id = self.modules_services.GetServiceId( service_key ) precise_time_to_stop = HydrusData.GetNowPrecise() + work_time ( hash_id_map_table_name, tag_id_map_table_name ) = GenerateRepositoryDefinitionTableNames( service_id ) num_rows_processed = 0 if 'service_hash_ids_to_hashes' in definition_iterator_dict: i = definition_iterator_dict[ 'service_hash_ids_to_hashes' ] for chunk in HydrusData.SplitIteratorIntoAutothrottledChunks( i, 50, precise_time_to_stop ): inserts = [] for ( service_hash_id, hash ) in chunk: hash_id = self.modules_hashes_local_cache.GetHashId( hash ) inserts.append( ( service_hash_id, hash_id ) ) self._ExecuteMany( 'REPLACE INTO {} ( service_hash_id, hash_id ) VALUES ( ?, ? );'.format( hash_id_map_table_name ), inserts ) num_rows_processed += len( inserts ) if HydrusData.TimeHasPassedPrecise( precise_time_to_stop ) or job_key.IsCancelled(): return num_rows_processed del definition_iterator_dict[ 'service_hash_ids_to_hashes' ] if 'service_tag_ids_to_tags' in definition_iterator_dict: i = definition_iterator_dict[ 'service_tag_ids_to_tags' ] for chunk in HydrusData.SplitIteratorIntoAutothrottledChunks( i, 50, precise_time_to_stop ): inserts = [] for ( service_tag_id, tag ) in chunk: try: tag_id = self.modules_tags_local_cache.GetTagId( tag ) except HydrusExceptions.TagSizeException: # in future what we'll do here is assign this id to the 'do not show' table, so we know it exists, but it is knowingly filtered out # _or something_. maybe a small 'invalid' table, so it isn't mixed up with potentially re-addable tags tag_id = self.modules_tags_local_cache.GetTagId( 'invalid repository tag' ) inserts.append( ( service_tag_id, tag_id ) ) self._ExecuteMany( 'REPLACE INTO {} ( service_tag_id, tag_id ) VALUES ( ?, ? );'.format( tag_id_map_table_name ), inserts ) num_rows_processed += len( inserts ) if HydrusData.TimeHasPassedPrecise( precise_time_to_stop ) or job_key.IsCancelled(): return num_rows_processed del definition_iterator_dict[ 'service_tag_ids_to_tags' ] self.SetUpdateProcessed( service_id, definition_hash, ( HC.CONTENT_TYPE_DEFINITIONS, ) ) return num_rows_processed def ReprocessRepository( self, service_key: bytes, content_types: typing.Collection[ int ] ): service_id = self.modules_services.GetServiceId( service_key ) self._ReprocessRepository( service_id, content_types ) def ScheduleRepositoryUpdateFileMaintenance( self, service_key, job_type ): service_id = self.modules_services.GetServiceId( service_key ) self._ScheduleRepositoryUpdateFileMaintenance( service_id, job_type ) def SetRepositoryUpdateHashes( self, service_key: bytes, metadata: HydrusNetwork.Metadata ): # this is a full metadata resync service_id = self.modules_services.GetServiceId( service_key ) all_future_update_hash_ids = self.modules_hashes_local_cache.GetHashIds( metadata.GetUpdateHashes() ) ( repository_updates_table_name, repository_unregistered_updates_table_name, repository_updates_processed_table_name ) = GenerateRepositoryUpdatesTableNames( service_id ) # current_update_hash_ids = self._STS( self._Execute( 'SELECT hash_id FROM {};'.format( repository_updates_table_name ) ) ) deletee_hash_ids = current_update_hash_ids.difference( all_future_update_hash_ids ) self._ExecuteMany( 'DELETE FROM {} WHERE hash_id = ?;'.format( repository_updates_table_name ), ( ( hash_id, ) for hash_id in deletee_hash_ids ) ) # self._Execute( 'DELETE FROM {};'.format( repository_unregistered_updates_table_name ) ) # good_current_hash_ids = current_update_hash_ids.intersection( all_future_update_hash_ids ) current_processed_table_update_hash_ids = self._STS( self._Execute( 'SELECT hash_id FROM {};'.format( repository_updates_processed_table_name ) ) ) deletee_processed_table_update_hash_ids = current_processed_table_update_hash_ids.difference( good_current_hash_ids ) self._ExecuteMany( 'DELETE FROM {} WHERE hash_id = ?;'.format( repository_updates_processed_table_name ), ( ( hash_id, ) for hash_id in deletee_processed_table_update_hash_ids ) ) # inserts = [] for ( update_index, update_hashes ) in metadata.GetUpdateIndicesAndHashes(): for update_hash in update_hashes: hash_id = self.modules_hashes_local_cache.GetHashId( update_hash ) if hash_id in current_update_hash_ids: self._Execute( 'UPDATE {} SET update_index = ? WHERE hash_id = ?;'.format( repository_updates_table_name ), ( update_index, hash_id ) ) else: inserts.append( ( update_index, hash_id ) ) self._ExecuteMany( 'INSERT OR IGNORE INTO {} ( update_index, hash_id ) VALUES ( ?, ? );'.format( repository_updates_table_name ), inserts ) self._ExecuteMany( 'INSERT OR IGNORE INTO {} ( hash_id ) VALUES ( ? );'.format( repository_unregistered_updates_table_name ), ( ( hash_id, ) for hash_id in all_future_update_hash_ids ) ) self._RegisterUpdates( service_id ) def SetUpdateProcessed( self, service_id: int, update_hash: bytes, content_types: typing.Collection[ int ] ): ( repository_updates_table_name, repository_unregistered_updates_table_name, repository_updates_processed_table_name ) = GenerateRepositoryUpdatesTableNames( service_id ) update_hash_id = self.modules_hashes_local_cache.GetHashId( update_hash ) self._ExecuteMany( 'UPDATE {} SET processed = ? WHERE hash_id = ? AND content_type = ?;'.format( repository_updates_processed_table_name ), ( ( True, update_hash_id, content_type ) for content_type in content_types ) ) for content_type in content_types: self._ClearOutstandingWorkCache( service_id, content_type )
from csbuilder.session.session import Session from csbuilder.session.manager import SessionManager from csbuilder.session.result import SessionResult
from ramp_utils.password import hash_password from ramp_utils.password import check_password def test_check_password(): password = "hjst3789ep;ocikaqjw" hashed_password = hash_password(password) assert check_password(password, hashed_password) assert not check_password("hjst3789ep;ocikaqji", hashed_password)
# -*- coding: utf-8 -*- # Copyright (c) 2021, omar jaber and contributors # For license information, please see license.txt from __future__ import unicode_literals import frappe from frappe.model.document import Document from frappe.utils import getdate, add_to_date, cstr class RosterDailyReport(Document): def autoname(self): self.name = add_to_date(cstr(self.date), days=1) + "|" + add_to_date(cstr(self.date), days=14)
from models.Batch_CNN_Model import Batch_CNN_Model from models.Basic_CNN_Model import Basic_CNN_Model from models.Improved_CNN_Model import Improved_CNN_Model from models.Transfer_ResNet_CNN_Model import Transfer_ResNet_CNN_Model from models.Transfer_InceptionV3_CNN_Model import Transfer_InceptionV3_CNN_Model class Model: """ Model factory class for deep learning network types. """ def __init__(self, type_name=None, name=None, metric='accuracy'): ''' Initialisation of the network model Params: - type_name: general network type - name: specific network that shall be created - metric: metric type depends on the task and the used optimiser, e.g. for classifiction the simplest one is 'accuracy' ''' self.model_class = None self.model = None self.name = name self.metric = metric self.type_name = type_name if self.type_name in ["Basic"]: self.model_class = Basic_CNN_Model(name=name, metric=metric) elif type_name in ["Batch"]: self.model_class = Batch_CNN_Model(name=name, metric=metric) elif type_name in ["Improved"]: self.model_class = Improved_CNN_Model(name=name, metric=metric) elif type_name in ["Transfer"]: if self.name in ["Transfer_ResNet_CNN_Model"]: self.model_class = Transfer_ResNet_CNN_Model(name=name, metric=metric) elif self.name in ["Transfer_InceptionV3_CNN_Model"]: self.model_class = Transfer_InceptionV3_CNN_Model(name=name, metric=metric) else: print("Wrong Model type - {} -, does not exist, therefore no model building possible.".format(type_name)) def get_model(self): # Can return None, if model type does not exist yet. self.model = self.model_class.get_model() return self.model def get_class(self): # Can return None, if model type does not exist yet. return self.model_class
# Copyright (c) 2018 Serguei Kalentchouk et al. All rights reserved. # Use of this source code is governed by an MIT license that can be found in the LICENSE file. from node_test_case import NodeTestCase class TestAdd(NodeTestCase): def test_add(self): self.create_node('Add', {'input1': 5.0, 'input2': -3.0}, 2.0) def test_add_int(self): self.create_node('AddInt', {'input1': 5, 'input2': -3}, 2) def test_add_angle(self): self.create_node('AddAngle', {'input1': 5.0, 'input2': -3.0}, 2.0) def test_add_vector(self): self.create_node('AddVector', {'input1': [1.0, 1.0, 1.0], 'input2': [1.0, -1.0, 0.5]}, [2.0, 0.0, 1.5])
import unittest from unittest.mock import patch from unittest.mock import mock_open from acscore import metrics class FunctionNameCaseTest(unittest.TestCase): def setUp(self): self.data = {'underscore': 100, 'camelcase': 10, 'other': 15} self.function_name_case = metrics.FunctionNameCase() self.files = [ 'def __no__Name__(): pass\ndef __mis(): pass\ndef testOk(): pass\n', 'def ke__(): pass\ndef under_score(): pass\ndef Very__Bad(): pass\n', # TODO: extract camel case with bit first letter to separate group 'def Very(): pass\ndef VeryVery(): pass\ndef not_camel_case(): pass\n', ] def test_count(self): with patch('acscore.metric.function_name_case.open', mock_open(read_data=self.files[0])): result1 = self.function_name_case.count('') expected1 = { 'other': 1, 'camelcase': 1, 'underscore': 0, } self.assertEqual(expected1, result1) with patch('acscore.metric.function_name_case.open', mock_open(read_data=self.files[1])): result2 = self.function_name_case.count('') expected2 = { 'other': 2, 'camelcase': 0, 'underscore': 1, } self.assertEqual(expected2, result2) with patch('acscore.metric.function_name_case.open', mock_open(read_data=self.files[2])): result3 = self.function_name_case.count('') expected3 = { 'other': 0, 'camelcase': 2, 'underscore': 1, } self.assertEqual(expected3, result3) def test_count_verbose(self): with patch('acscore.metric.function_name_case.open', mock_open(read_data=self.files[0])): result1 = self.function_name_case.count('', True) expected1 = { 'other': { 'count': 1, 'lines': [2], }, 'camelcase': { 'count': 1, 'lines': [3], }, 'underscore': { 'count': 0, 'lines': [], }, } self.assertEqual(expected1, result1) with patch('acscore.metric.function_name_case.open', mock_open(read_data=self.files[1])): result2 = self.function_name_case.count('', True) expected2 = { 'other': { 'count': 2, 'lines': [1, 3], }, 'camelcase': { 'count': 0, 'lines': [], }, 'underscore': { 'count': 1, 'lines': [2], }, } self.assertEqual(expected2, result2) with patch('acscore.metric.function_name_case.open', mock_open(read_data=self.files[2])): result3 = self.function_name_case.count('', True) expected3 = { 'other': { 'count': 0, 'lines': [], }, 'camelcase': { 'count': 2, 'lines': [1, 2], }, 'underscore': { 'count': 1, 'lines': [3], }, } self.assertEqual(expected3, result3) def test_discretize(self): result = self.function_name_case.discretize(self.data) self.assertEqual({'other': 0.12, 'underscore': 0.8, 'camelcase': 0.08}, result) def test_inspect(self): discrete = self.function_name_case.discretize(self.data) values = { 'underscore': { 'count': 3, 'lines': [1, 2, 3], }, 'camelcase': { 'count': 2, 'lines': [4, 5], }, 'other': { 'count': 1, 'lines': [6], }, } inspections = self.function_name_case.inspect(discrete, values) expected = { metrics.FunctionNameCase.NEED_TO_USE_UNDERSCORE: { 'message': metrics.FunctionNameCase.inspections[metrics.FunctionNameCase.NEED_TO_USE_UNDERSCORE], 'lines': [4, 5], }, metrics.FunctionNameCase.NO_STYLE: { 'message': metrics.FunctionNameCase.inspections[metrics.FunctionNameCase.NO_STYLE], 'lines': [6], } } self.assertEqual(expected, inspections)
from panda3d.core import * from direct.showbase import Pool from direct.showbase.DirectObject import DirectObject import re class PooledEffect(DirectObject, NodePath): pool = None poolLimit = 124 @classmethod def getEffect(cls, context=''): if cls.pool is None: cls.pool = Pool.Pool() if cls.pool.hasFree(): return cls.pool.checkout() else: free, used = cls.pool.getNumItems() if free + used < cls.poolLimit: cls.pool.add(cls()) return cls.pool.checkout() return return @classmethod def cleanup(cls): if cls.pool: cls.pool.cleanup(cls.destroy) cls.pool = None return def __init__(self): NodePath.__init__(self, self.__class__.__name__) self.accept('clientLogout', self.__class__.cleanup) def destroy(self, item=None): if item: self.pool.remove(item) self.ignore('clientLogout') self.removeNode()
import numpy as np from .basic import BasicProducer class NewFromFunction(BasicProducer): ''' Generic producer to calculate inputs from functions. The passed function needs to return a sequence. Can either be used directly, e.g. met_ht_ratio = NewFromFunction( 'met_ht_ratio', inputs=['MET', 'HT'], function=np.divide, ) or to implement specialisations as classes, see - alphatwirl_interface.functions.Divide - alphatwirl_interface.functions.TransverseMomentum ''' def __init__(self, outputName, inputs, function): super(NewFromFunction, self).__init__(outputName) self.inputs = inputs self.function = function def _value(self, obj): return self.function( *[np.array(getattr(obj, n)) for n in self.inputs] ) def __repr__(self): attributes = ['outputName', 'inputs', 'function'] formattedAttrs = super( NewFromFunction, self)._format_attributes(attributes) return '{}({})'.format( self.__class__.__name__, formattedAttrs, ) class Divide(NewFromFunction): ''' Divides two inputs by each other (can be vectors) ''' def __init__(self, outputName, inputs): super(self.__class__, self).__init__(outputName, inputs, np.divide) class TransverseMomentum(NewFromFunction): ''' Calculates the transverse momentum of particles given their momenta in the x- and y-plane, e.g. muon_pt = TransverseMomentum( outputName='muon_pt', inputs=['Muon_Px', 'Muon_Py'], ) ''' def __init__(self, outputName, inputs): super(self.__class__, self).__init__( outputName, inputs, function=lambda x, y: np.sqrt(np.square(x) + np.square(y)) )
from javax import swing class test189c(swing.ListCellRenderer): def getListCellRendererComponent(self): return "test189c" class test189c2(test189c): def getListCellRendererComponent(self): return "test189c2" print test189c().getListCellRendererComponent() print test189c2().getListCellRendererComponent()
from tensorflow.keras.layers import BatchNormalization, Conv2D, AveragePooling2D, MaxPooling2D from tensorflow.keras.layers import Activation, Dropout, Dense, Flatten, Input, concatenate from tensorflow.keras.models import Model from tensorflow.keras.regularizers import l2 from tensorflow.keras import backend as K class GoogLeNet: @staticmethod def conv_module(x, K, kX, kY, stride, chanDim, padding='same', reg=0.0002, name=None): (convName, bnName, actName) = (None, None, None) if name is not None: convName = name + "_conv" bnName = name + "_bn" actName = name + "_act" x = Conv2D(K, (kX, kY), strides=stride, padding=padding, kernel_regularizer=l2(reg), name=convName)(x) x = BatchNormalization(axis=chanDim, name=bnName)(x) x = Activation("elu", name=actName)(x) return x @staticmethod def inception_module(x, num1x1, num3x3Reduce, num3x3, num5x5Reduce, num5x5, num1x1Proj, chanDim, stage, reg=0.0005): # First Branch -> 1x1 CONV first = DeeperGoogLeNet.conv_module( x, num1x1, 1, 1, (1, 1), chanDim, reg=reg, name=stage + "_first") # Second Branch -> 1x1 CONV -> 3x3 CONV second = DeeperGoogLeNet.conv_module( x, num3x3Reduce, 1, 1, (1, 1), chanDim, reg=reg, name=stage + "_second1") second = DeeperGoogLeNet.conv_module( second, num3x3, 3, 3, (1, 1), chanDim, reg=reg, name=stage + "_second2") # Third Branch -> 1x1 CONV -> 5x5 CONV third = DeeperGoogLeNet.conv_module( x, num5x5Reduce, 1, 1, (1, 1), chanDim, reg=reg, name=stage + "_third1") third = DeeperGoogLeNet.conv_module( third, num5x5, 5, 5, (1, 1), chanDim, reg=reg, name=stage + "_third2") # Fourth Branch -> POOL -> 1x1 CONV fourth = MaxPooling2D((3, 3), strides=(1, 1), padding='same', name=stage + "_pool")(x) fourth = DeeperGoogLeNet.conv_module( fourth, num1x1Proj, 1, 1, (1, 1), chanDim, reg=reg, name=stage + "_fourth") # Concantenate x = concatenate([first, second, third, fourth], axis=chanDim, name=stage + "_mixed") return x @staticmethod def build(width, height, depth, classes, reg=0.0005): input_shape = (height, width, depth) chanDim = -1 if K.image_data_format() == "channels_first": input_shape = (depth, height, width) chanDim = 1 # CONV => POOL => (CONV * 2) => POOL inputs = Input(shape=input_shape) x = DeeperGoogLeNet.conv_module( inputs, 64, 5, 5, (1, 1), chanDim, reg=reg, name="block1") x = MaxPooling2D((3, 3), strides=( 2, 2), padding='same', name="pool1")(x) x = DeeperGoogLeNet.conv_module( x, 64, 1, 1, (1, 1), chanDim, reg=reg, name="block2") x = DeeperGoogLeNet.conv_module( x, 192, 3, 3, (1, 1), chanDim, reg=reg, name="block3") x = MaxPooling2D((3, 3), strides=( 2, 2), padding='same', name="pool2")(x) # (INCEP * 2) => POOL x = DeeperGoogLeNet.inception_module( x, 64, 96, 128, 16, 32, 32, chanDim, "3a", reg=reg) x = DeeperGoogLeNet.inception_module( x, 128, 128, 192, 32, 96, 64, chanDim, "3b", reg=reg) x = MaxPooling2D((3, 3), strides=( 2, 2), padding='same', name="pool3")(x) # (INCEP * 5) => POOL x = DeeperGoogLeNet.inception_module( x, 192, 96, 208, 16, 48, 64, chanDim, "4a", reg=reg) x = DeeperGoogLeNet.inception_module( x, 160, 112, 224, 24, 64, 64, chanDim, "4b", reg=reg) x = DeeperGoogLeNet.inception_module( x, 128, 128, 256, 24, 64, 64, chanDim, "4c", reg=reg) x = DeeperGoogLeNet.inception_module( x, 112, 144, 288, 32, 64, 64, chanDim, "4d", reg=reg) x = DeeperGoogLeNet.inception_module( x, 256, 160, 320, 32, 128, 128, chanDim, "4e", reg=reg) x = MaxPooling2D((3, 3), strides=( 2, 2), padding='same', name="pool4")(x) # POOL => Dropout x = AveragePooling2D((4, 4), name="pool5")(x) x = Dropout(0.4, name="do")(x) # Softmax x = Flatten(name="flatten")(x) x = Dense(classes, kernel_regularizer=l2(reg), name="labels")(x) x = Activation("softmax", name="softmax")(x) # create the model model = Model(inputs, x, name="googlenet") return model
# Generated by Django 2.1.15 on 2020-04-12 17:41 from django.db import migrations, models import django.utils.timezone class Migration(migrations.Migration): dependencies = [ ('users', '0011_auto_20200411_2030'), ] operations = [ migrations.AddField( model_name='customuser', name='user_Main_Img', field=models.ImageField(default=django.utils.timezone.now, upload_to='images/'), preserve_default=False, ), migrations.AlterField( model_name='customuser', name='description', field=models.CharField(blank=True, help_text='The detailed description of your post (will be shown on map)', max_length=255, null=True), ), ]
print('\033[1;31mDetector de Palíndromos\033[m') frase = str(input('Digite a frase sem os acentos: ')).strip().replace(' ', '') palindromo = frase == frase[::-1] print(frase) if palindromo == True: print('\033[1;32mA frase é um políndromo') else: print('\033[1;31mA frase não é um políndromo')
import unittest import json import sys, os.path from apiV1 import * class TestApiV1(unittest.TestCase): def setUp(self): app.testing = True self.app = app.test_client() def test_24h(self): response = self.app.get('/servicio/v1/prediccion/24horas') self.assertEqual(response.status_code, 200) def test_48h(self): response = self.app.get('/servicio/v1/prediccion/48horas') self.assertEqual(response.status_code, 200) def test_72h(self): response = self.app.get('/servicio/v1/prediccion/72horas') self.assertEqual(response.status_code, 200)
''' genarate graph Copyright (C) 2020 Yuto Watanabe ''' import datetime import os import matplotlib.pyplot as plt try: from database import read_today except ImportError: from .database import read_today def graph(data_file_path: str) -> str: ''' graph plot and save to image file. Args: data_file_path (str): database file path. Returns: str: generated image file path. ''' today_data = read_today(data_file_path) temps = [] hums = [] jst = datetime.timezone(datetime.timedelta(hours=+9), 'JST') now = datetime.datetime.now(jst) yestaday = now - datetime.timedelta(days=1) directory = 'graph_image' # if directory not found it create directory. if not os.path.isdir(directory): os.makedirs(directory) image_file_path = os.path.join(directory, 'graph.png') # Sort by date. sorted_data = sorted(today_data, key=lambda x: x['date']) for element in sorted_data: temps.append(element['temp']) hums.append(element['hum']) # graph plot fig = plt.figure(figsize=[7, 4.8]) ax1 = fig.add_subplot(111) ax2 = ax1.twinx() # line color ax1.plot(temps, color='blue') ax2.plot(hums, color='orange') # label of y ax1.set_ylabel('Temperature ($^\\circ$C)') ax2.set_ylabel('Humidity (%)') ax1.grid(True) ax1.set_xlabel('date') ax1.tick_params(labelbottom=False, bottom=False) ax2.tick_params(labelbottom=False, bottom=False) plt.title(f'Graph of changes in room temperature and humidity on {yestaday.strftime(r"%m/%d")}') plt.savefig(image_file_path) return image_file_path
import sys testCases = int(sys.stdin.readline().strip()) for i in range(testCases): n, index = tuple(map(int, sys.stdin.readline().strip().split())) queue = list(map(int, sys.stdin.readline().strip().split())) cnt = 0 while True: max_num = max(queue) item = queue[0] queue = queue[1:] if item == max_num and index == 0: cnt += 1 break elif item == max_num: cnt += 1 else: queue.append(item) index -= 1 if index < 0: index += len(queue) sys.stdout.write(str(cnt) + '\n')
# -*- coding: utf-8 -*- from plugin import plugin, require from azapi import AZlyrics @require(network=True) @plugin('lyrics') class lyrics(): """ finds lyrics the format is song-artist song and artist are separated by a - -- Example: lyrics wonderful tonight-eric clapton """ def __call__(self, jarvis, s): jarvis.say(self.find(s)) def find(self, s): info = s.split('-') artist = None song = None if info: song = info[0] info.pop(0) if info: artist = info[0] info.pop(0) if not song: # error if song does not exist return "The song name parameter was incomplete" if not artist: # error if the artist does not exist return "The artist name parameter was incomplete" response = get_lyric(artist, song) if response: return response else: return "Song or Singer does not exist or the API does not have lyrics" # makes api call to AZ lyrics and returns song result def get_lyric(singer, song): API = AZlyrics('google', accuracy=0.5) API.artist = singer API.title = song API.getLyrics() return API.lyrics
# # Copyright 2019 Gianluca Frison, Dimitris Kouzoupis, Robin Verschueren, # Andrea Zanelli, Niels van Duijkeren, Jonathan Frey, Tommaso Sartor, # Branimir Novoselnik, Rien Quirynen, Rezart Qelibari, Dang Doan, # Jonas Koenemann, Yutao Chen, Tobias Schöls, Jonas Schlagenhauf, Moritz Diehl # # This file is part of acados. # # The 2-Clause BSD License # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE.; # from acados_template import AcadosModel import numpy as np from casadi import SX, vertcat import matplotlib import matplotlib.pyplot as plt def export_linear_mass_model(): model_name = 'linear_mass' # set up states & controls qx = SX.sym('qx') qy = SX.sym('qy') vx = SX.sym('vx') vy = SX.sym('vy') x = vertcat(qx, qy, vx, vy) # u = SX.sym('u', 2) ux = SX.sym('ux') uy = SX.sym('uy') u = vertcat(ux, uy) f_expl = vertcat(vx, vy, u) model = AcadosModel() # model.f_impl_expr = f_impl model.f_expl_expr = f_expl # model.disc_dyn_expr model.x = x model.u = u # model.xdot = xdot # model.z = z model.p = [] model.name = model_name return model def plot_linear_mass_system_X_state_space(simX, latexify=False, circle=None, x_goal=None): """ Params: simX: x trajectory latexify: latex style plots """ # latexify plot if latexify: params = {'backend': 'ps', 'text.latex.preamble': r"\usepackage{gensymb} \usepackage{amsmath}", 'axes.labelsize': 10, 'axes.titlesize': 10, 'legend.fontsize': 10, 'xtick.labelsize': 10, 'ytick.labelsize': 10, 'text.usetex': True, 'font.family': 'serif' } matplotlib.rcParams.update(params) fig, axs = plt.subplots(1, 1) if x_goal is not None: plt.plot(x_goal[0], x_goal[1], 'rx') if circle is not None: obs_x, obs_y, obs_rad = circle ts = np.linspace(0,2*np.pi,100) plt.plot(obs_rad * np.cos(ts)+obs_x,obs_rad * np.sin(ts)-obs_y, 'r') plt.grid() plt.plot(simX[:,0], simX[:,1], '*-b') plt.title('state space plot') axs.axis('equal') plt.show() return def plot_linear_mass_system_U(shooting_nodes, simU, latexify=False): """ Params: simU: u trajectory latexify: latex style plots """ nu = simU.shape[1] for i in range(nu): plt.subplot(nu, 1, i+1) line, = plt.step(shooting_nodes, np.append([simU[0,i]], simU[:,i])) plt.grid() plt.show() return def plot_linear_mass_system_X(shooting_nodes, simX, latexify=False): """ Params: simX: x trajectory latexify: latex style plots """ nx = simX.shape[1] for i in range(nx): plt.subplot(nx, 1, i+1) line, = plt.plot(shooting_nodes, simX[:,i]) plt.grid() plt.show() return
import mock import requests from st2tests.base import BaseActionTestCase from lib.slack import SlackPoster, SlackNotifier class TestSlackPoster(BaseActionTestCase): action_cls = SlackPoster @mock.patch("lib.slack.SlackNotifier", autospec=True) def test_successful_post(self, notifier_mock): action = self.get_action_instance() action.config["slack_webhook_url"] = "this-is-the-webhook-url" exit_code, out = action.run("channel", "user", "message") self.assertTrue(exit_code) @mock.patch("lib.slack.SlackNotifier", autospec=True) def test_unsuccessful_post(self, notifier_mock): action = self.get_action_instance() action.config["slack_webhook_url"] = "this-is-the-webhook-url" notifier = notifier_mock.return_value notifier.post_message.side_effect = requests.exceptions.HTTPError("a mock HTTPError") exit_code, out = action.run("channel", "user", "message") self.assertFalse(exit_code)
''' Definition of the layer between the UI frontend and the database. 2019 Benjamin Kellenberger ''' from uuid import UUID from datetime import datetime import pytz import dateutil.parser import json from modules.Database.app import Database from .sql_string_builder import SQLStringBuilder from .annotation_sql_tokens import QueryStrings_annotation, AnnotationParser class DBMiddleware(): def __init__(self, config): self.config = config self.dbConnector = Database(config) self._fetchProjectSettings() self.sqlBuilder = SQLStringBuilder(config) self.annoParser = AnnotationParser(config) def _fetchProjectSettings(self): # AI controller URI aiControllerURI = self.config.getProperty('Server', 'aiController_uri') if aiControllerURI is None or aiControllerURI.strip() == '': # no AI backend configured aiControllerURI = None # LabelUI drawing styles with open(self.config.getProperty('LabelUI', 'styles_file', type=str, fallback='modules/LabelUI/static/json/styles.json'), 'r') as f: styles = json.load(f) # Image backdrops for index screen with open(self.config.getProperty('Project', 'backdrops_file', type=str, fallback='modules/LabelUI/static/json/backdrops.json'), 'r') as f: backdrops = json.load(f) # Welcome message for UI tutorial with open(self.config.getProperty('Project', 'welcome_message_file', type=str, fallback='modules/LabelUI/static/templates/welcome_message.html'), 'r') as f: welcomeMessage = f.readlines() self.projectSettings = { 'projectName': self.config.getProperty('Project', 'projectName'), 'projectDescription': self.config.getProperty('Project', 'projectDescription'), 'indexURI': self.config.getProperty('Server', 'index_uri', type=str, fallback='/'), 'dataServerURI': self.config.getProperty('Server', 'dataServer_uri'), 'aiControllerURI': aiControllerURI, 'dataType': self.config.getProperty('Project', 'dataType', fallback='images'), 'classes': self.getClassDefinitions(), 'enableEmptyClass': self.config.getProperty('Project', 'enableEmptyClass', fallback='no'), 'annotationType': self.config.getProperty('Project', 'annotationType'), 'predictionType': self.config.getProperty('Project', 'predictionType'), 'showPredictions': self.config.getProperty('LabelUI', 'showPredictions', fallback='yes'), 'showPredictions_minConf': self.config.getProperty('LabelUI', 'showPredictions_minConf', type=float, fallback=0.5), 'carryOverPredictions': self.config.getProperty('LabelUI', 'carryOverPredictions', fallback='no'), 'carryOverRule': self.config.getProperty('LabelUI', 'carryOverRule', fallback='maxConfidence'), 'carryOverPredictions_minConf': self.config.getProperty('LabelUI', 'carryOverPredictions_minConf', type=float, fallback=0.75), 'defaultBoxSize_w': self.config.getProperty('LabelUI', 'defaultBoxSize_w', type=int, fallback=10), 'defaultBoxSize_h': self.config.getProperty('LabelUI', 'defaultBoxSize_h', type=int, fallback=10), 'minBoxSize_w': self.config.getProperty('Project', 'box_minWidth', type=int, fallback=1), 'minBoxSize_h': self.config.getProperty('Project', 'box_minHeight', type=int, fallback=1), 'numImagesPerBatch': self.config.getProperty('LabelUI', 'numImagesPerBatch', type=int, fallback=1), 'minImageWidth': self.config.getProperty('LabelUI', 'minImageWidth', type=int, fallback=300), 'numImageColumns_max': self.config.getProperty('LabelUI', 'numImageColumns_max', type=int, fallback=1), 'defaultImage_w': self.config.getProperty('LabelUI', 'defaultImage_w', type=int, fallback=800), 'defaultImage_h': self.config.getProperty('LabelUI', 'defaultImage_h', type=int, fallback=600), 'styles': styles['styles'], 'backdrops': backdrops, 'welcomeMessage': welcomeMessage, 'demoMode': self.config.getProperty('Project', 'demoMode', type=bool, fallback=False) } def _assemble_annotations(self, cursor): response = {} while True: b = cursor.fetchone() if b is None: break imgID = str(b['image']) if not imgID in response: response[imgID] = { 'fileName': b['filename'], 'predictions': {}, 'annotations': {}, 'last_checked': None } viewcount = b['viewcount'] if viewcount is not None: response[imgID]['viewcount'] = viewcount last_checked = b['last_checked'] if last_checked is not None: if response[imgID]['last_checked'] is None: response[imgID]['last_checked'] = last_checked else: response[imgID]['last_checked'] = max(response[imgID]['last_checked'], last_checked) # parse annotations and predictions entryID = str(b['id']) if b['ctype'] is not None: colnames = self.sqlBuilder.getColnames(b['ctype']) entry = {} for c in colnames: value = b[c] if isinstance(value, datetime): value = value.timestamp() elif isinstance(value, UUID): value = str(value) entry[c] = value if b['ctype'] == 'annotation': response[imgID]['annotations'][entryID] = entry elif b['ctype'] == 'prediction': response[imgID]['predictions'][entryID] = entry return response def getProjectSettings(self): ''' Queries the database for general project-specific metadata, such as: - Classes: names, indices, default colors - Annotation type: one of {class labels, positions, bboxes} ''' return self.projectSettings def getProjectInfo(self): ''' Returns safe, shareable information about the project. ''' return { 'projectName' : self.projectSettings['projectName'], 'projectDescription' : self.projectSettings['projectDescription'], 'demoMode': self.config.getProperty('Project', 'demoMode', type=bool, fallback=False), 'backdrops': self.projectSettings['backdrops']['images'] } def getClassDefinitions(self): ''' Returns a dictionary with entries for all classes in the project. ''' classdef = { 'entries': { 'default': {} # default group for ungrouped label classes } } schema = self.config.getProperty('Database', 'schema') # query data sql = ''' SELECT 'group' AS type, id, NULL as idx, name, color, parent, NULL AS keystroke FROM {schema}.labelclassgroup UNION ALL SELECT 'class' AS type, id, idx, name, color, labelclassgroup, keystroke FROM {schema}.labelclass; '''.format(schema=schema) classData = self.dbConnector.execute(sql, None, 'all') # assemble entries first allEntries = {} numClasses = 0 for cl in classData: id = str(cl['id']) entry = { 'id': id, 'name': cl['name'], 'color': cl['color'], 'parent': str(cl['parent']) if cl['parent'] is not None else None, } if cl['type'] == 'group': entry['entries'] = {} else: entry['index'] = cl['idx'] entry['keystroke'] = cl['keystroke'] numClasses += 1 allEntries[id] = entry # transform into tree def _find_parent(tree, parentID): if parentID is None: return tree['entries']['default'] elif 'id' in tree and tree['id'] == parentID: return tree elif 'entries' in tree: for ek in tree['entries'].keys(): rv = _find_parent(tree['entries'][ek], parentID) if rv is not None: return rv return None else: return None allEntries['default'] = { 'name': '(other)', 'entries': {} } allEntries = { 'entries': allEntries } for key in list(allEntries['entries'].keys()): if key == 'default': continue if key in allEntries['entries']: entry = allEntries['entries'][key] parentID = entry['parent'] del entry['parent'] if 'entries' in entry and parentID is None: # group, but no parent: append to root directly allEntries['entries'][key] = entry else: # move item parent = _find_parent(allEntries, parentID) parent['entries'][key] = entry del allEntries['entries'][key] classdef = allEntries classdef['numClasses'] = numClasses return classdef def getBatch_fixed(self, username, data): ''' Returns entries from the database based on the list of data entry identifiers specified. ''' # query sql = self.sqlBuilder.getFixedImagesQueryString(self.projectSettings['demoMode']) # parse results queryVals = (tuple(UUID(d) for d in data), username, username,) if self.projectSettings['demoMode']: queryVals = (tuple(UUID(d) for d in data),) with self.dbConnector.execute_cursor(sql, queryVals) as cursor: try: response = self._assemble_annotations(cursor) # self.dbConnector.conn.commit() except Exception as e: print(e) # self.dbConnector.conn.rollback() finally: pass # cursor.close() return { 'entries': response } def getBatch_auto(self, username, order='unlabeled', subset='default', limit=None): ''' TODO: description ''' # query sql = self.sqlBuilder.getNextBatchQueryString(order, subset, self.projectSettings['demoMode']) # limit (TODO: make 128 a hyperparameter) if limit is None: limit = 128 else: limit = min(int(limit), 128) # parse results queryVals = (username,limit,username,) if self.projectSettings['demoMode']: queryVals = (limit,) with self.dbConnector.execute_cursor(sql, queryVals) as cursor: response = self._assemble_annotations(cursor) return { 'entries': response } def getBatch_timeRange(self, minTimestamp, maxTimestamp, userList, skipEmptyImages=False, limit=None): ''' Returns images that have been annotated within the given time range and/or by the given user(s). All arguments are optional. Useful for reviewing existing annotations. ''' # query string sql = self.sqlBuilder.getDateQueryString(minTimestamp, maxTimestamp, userList, skipEmptyImages) # check validity and provide arguments queryVals = [] if userList is not None: queryVals.append(tuple(userList)) if minTimestamp is not None: queryVals.append(minTimestamp) if maxTimestamp is not None: queryVals.append(maxTimestamp) if skipEmptyImages and userList is not None: queryVals.append(tuple(userList)) # limit (TODO: make 128 a hyperparameter) if limit is None: limit = 128 else: limit = min(int(limit), 128) queryVals.append(limit) if userList is not None: queryVals.append(tuple(userList)) # query and parse results with self.dbConnector.execute_cursor(sql, tuple(queryVals)) as cursor: try: response = self._assemble_annotations(cursor) # self.dbConnector.conn.commit() except Exception as e: print(e) # self.dbConnector.conn.rollback() finally: pass # cursor.close() return { 'entries': response } def get_timeRange(self, userList, skipEmptyImages=False): ''' Returns two timestamps denoting the temporal limits within which images have been viewed by the users provided in the userList. Arguments: - userList: string (single user name) or list of strings (multiple). Can also be None; in this case all annotations will be checked. - skipEmptyImages: if True, only images that contain at least one annotation will be considered. ''' # query string sql = self.sqlBuilder.getTimeRangeQueryString(userList, skipEmptyImages) arguments = (None if userList is None else tuple(userList)) result = self.dbConnector.execute(sql, (arguments,), numReturn=1) if result is not None and len(result): return { 'minTimestamp': result[0]['mintimestamp'], 'maxTimestamp': result[0]['maxtimestamp'], } else: return { 'error': 'no annotations made' } def submitAnnotations(self, username, submissions): ''' Sends user-provided annotations to the database. ''' if self.projectSettings['demoMode']: return 0 # assemble values colnames = getattr(QueryStrings_annotation, self.projectSettings['annotationType']).value values_insert = [] values_update = [] meta = (None if not 'meta' in submissions else json.dumps(submissions['meta'])) # for deletion: remove all annotations whose image ID matches but whose annotation ID is not among the submitted ones ids = [] viewcountValues = [] for imageKey in submissions['entries']: entry = submissions['entries'][imageKey] try: lastChecked = entry['timeCreated'] lastTimeRequired = entry['timeRequired'] if lastTimeRequired is None: lastTimeRequired = 0 except: lastChecked = datetime.now(tz=pytz.utc) lastTimeRequired = 0 if 'annotations' in entry and len(entry['annotations']): for annotation in entry['annotations']: # assemble annotation values annotationTokens = self.annoParser.parseAnnotation(annotation) annoValues = [] for cname in colnames: if cname == 'id': if cname in annotationTokens: # cast and only append id if the annotation is an existing one annoValues.append(UUID(annotationTokens[cname])) ids.append(UUID(annotationTokens[cname])) elif cname == 'image': annoValues.append(UUID(imageKey)) elif cname == 'label' and annotationTokens[cname] is not None: annoValues.append(UUID(annotationTokens[cname])) elif cname == 'timeCreated': try: annoValues.append(dateutil.parser.parse(annotationTokens[cname])) except: annoValues.append(datetime.now(tz=pytz.utc)) elif cname == 'timeRequired': timeReq = annotationTokens[cname] if timeReq is None: timeReq = 0 annoValues.append(timeReq) elif cname == 'username': annoValues.append(username) elif cname in annotationTokens: annoValues.append(annotationTokens[cname]) elif cname == 'unsure': if 'unsure' in annotationTokens and annotationTokens['unsure'] is not None: annoValues.append(annotationTokens[cname]) else: annoValues.append(False) elif cname == 'meta': annoValues.append(meta) else: annoValues.append(None) if 'id' in annotationTokens: # existing annotation; update values_update.append(tuple(annoValues)) else: # new annotation values_insert.append(tuple(annoValues)) viewcountValues.append((username, imageKey, 1, lastChecked, lastTimeRequired, meta)) schema = self.config.getProperty('Database', 'schema') # delete all annotations that are not in submitted batch imageKeys = list(UUID(k) for k in submissions['entries']) if len(imageKeys): if len(ids): sql = ''' DELETE FROM {schema}.annotation WHERE username = %s AND id IN ( SELECT idQuery.id FROM ( SELECT * FROM {schema}.annotation WHERE id NOT IN %s ) AS idQuery JOIN ( SELECT * FROM {schema}.annotation WHERE image IN %s ) AS imageQuery ON idQuery.id = imageQuery.id); '''.format(schema=schema) self.dbConnector.execute(sql, (username, tuple(ids), tuple(imageKeys),)) else: # no annotations submitted; delete all annotations submitted before sql = ''' DELETE FROM {schema}.annotation WHERE username = %s AND image IN %s; '''.format(schema=schema) self.dbConnector.execute(sql, (username, tuple(imageKeys),)) # insert new annotations if len(values_insert): sql = ''' INSERT INTO {}.annotation ({}) VALUES %s ; '''.format( schema, ', '.join(colnames[1:]) # skip 'id' column ) self.dbConnector.insert(sql, values_insert) # update existing annotations if len(values_update): updateCols = '' for col in colnames: if col == 'label': updateCols += '{col} = UUID(e.{col}),'.format(col=col) elif col == 'timeRequired': # we sum the required times together updateCols += '{col} = COALESCE(a.{col},0) + COALESCE(e.{col},0),'.format(col=col) else: updateCols += '{col} = e.{col},'.format(col=col) sql = ''' UPDATE {schema}.annotation AS a SET {updateCols} FROM (VALUES %s) AS e({colnames}) WHERE e.id = a.id; '''.format( schema=schema, updateCols=updateCols.strip(','), colnames=', '.join(colnames) ) self.dbConnector.insert(sql, values_update) # viewcount table sql = ''' INSERT INTO {}.image_user (username, image, viewcount, last_checked, last_time_required, meta) VALUES %s ON CONFLICT (username, image) DO UPDATE SET viewcount = image_user.viewcount + 1, last_checked = EXCLUDED.last_checked, last_time_required = EXCLUDED.last_time_required, meta = EXCLUDED.meta; '''.format(schema) self.dbConnector.insert(sql, viewcountValues) return 0
#!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = 'ipetrash' from PyQt5.QtWidgets import QLabel from PyQt5.QtGui import QPainter, QFontMetrics from PyQt5.QtCore import Qt class ElidedLabel(QLabel): def paintEvent(self, event): painter = QPainter(self) metrics = QFontMetrics(self.font()) elided_text = metrics.elidedText(self.text(), Qt.ElideRight, self.width()) painter.drawText(self.rect(), self.alignment(), elided_text) if __name__ == '__main__': from PyQt5.QtWidgets import QApplication from PyQt5.QtGui import QFont app = QApplication([]) mw = ElidedLabel('abc123' * 100) mw.setFont(QFont('Arial', 20)) mw.resize(100, 100) mw.show() app.exec()
from .dressing import DressingEnv from .agents import pr2, tiago_dualhand, baxter, sawyer, jaco, stretch, panda, human from .agents.pr2 import PR2 from .agents.tiago_dualhand import tiago_dualhand from .agents.baxter import Baxter from .agents.sawyer import Sawyer from .agents.jaco import Jaco from .agents.stretch import Stretch from .agents.panda import Panda from .agents.human import Human from ray.rllib.env.multi_agent_env import MultiAgentEnv from ray.tune.registry import register_env robot_arm = 'left' human_controllable_joint_indices = human.left_arm_joints class DressingPR2Env(DressingEnv): def __init__(self): super(DressingPR2Env, self).__init__(robot=PR2(robot_arm), human=Human(human_controllable_joint_indices, controllable=False)) class DressingTiagoDualhandEnv(DressingEnv): def __init__(self): super(DressingTiagoDualhandEnv, self).__init__(robot=tiago_dualhand(robot_arm), human=Human(human_controllable_joint_indices, controllable=False)) class DressingBaxterEnv(DressingEnv): def __init__(self): super(DressingBaxterEnv, self).__init__(robot=Baxter(robot_arm), human=Human(human_controllable_joint_indices, controllable=False)) class DressingSawyerEnv(DressingEnv): def __init__(self): super(DressingSawyerEnv, self).__init__(robot=Sawyer(robot_arm), human=Human(human_controllable_joint_indices, controllable=False)) class DressingJacoEnv(DressingEnv): def __init__(self): super(DressingJacoEnv, self).__init__(robot=Jaco(robot_arm), human=Human(human_controllable_joint_indices, controllable=False)) class DressingStretchEnv(DressingEnv): def __init__(self): super(DressingStretchEnv, self).__init__(robot=Stretch('wheel_'+robot_arm), human=Human(human_controllable_joint_indices, controllable=False)) class DressingPandaEnv(DressingEnv): def __init__(self): super(DressingPandaEnv, self).__init__(robot=Panda(robot_arm), human=Human(human_controllable_joint_indices, controllable=False)) class DressingPR2HumanEnv(DressingEnv, MultiAgentEnv): def __init__(self): super(DressingPR2HumanEnv, self).__init__(robot=PR2(robot_arm), human=Human(human_controllable_joint_indices, controllable=True)) register_env('assistive_gym:DressingPR2Human-v1', lambda config: DressingPR2HumanEnv()) class DressingTiagoDualhandHumanEnv(DressingEnv, MultiAgentEnv): def __init__(self): super(DressingTiagoDualhandHumanEnv, self).__init__(robot=tiago_dualhand(robot_arm), human=Human(human_controllable_joint_indices, controllable=True)) register_env('assistive_gym:DressingTiagoDualhandHuman-v1', lambda config: DressingTiagoDualhandHumanEnv()) class DressingBaxterHumanEnv(DressingEnv, MultiAgentEnv): def __init__(self): super(DressingBaxterHumanEnv, self).__init__(robot=Baxter(robot_arm), human=Human(human_controllable_joint_indices, controllable=True)) register_env('assistive_gym:DressingBaxterHuman-v1', lambda config: DressingBaxterHumanEnv()) class DressingSawyerHumanEnv(DressingEnv, MultiAgentEnv): def __init__(self): super(DressingSawyerHumanEnv, self).__init__(robot=Sawyer(robot_arm), human=Human(human_controllable_joint_indices, controllable=True)) register_env('assistive_gym:DressingSawyerHuman-v1', lambda config: DressingSawyerHumanEnv()) class DressingJacoHumanEnv(DressingEnv, MultiAgentEnv): def __init__(self): super(DressingJacoHumanEnv, self).__init__(robot=Jaco(robot_arm), human=Human(human_controllable_joint_indices, controllable=True)) register_env('assistive_gym:DressingJacoHuman-v1', lambda config: DressingJacoHumanEnv()) class DressingStretchHumanEnv(DressingEnv, MultiAgentEnv): def __init__(self): super(DressingStretchHumanEnv, self).__init__(robot=Stretch('wheel_'+robot_arm), human=Human(human_controllable_joint_indices, controllable=True)) register_env('assistive_gym:DressingStretchHuman-v1', lambda config: DressingStretchHumanEnv()) class DressingPandaHumanEnv(DressingEnv, MultiAgentEnv): def __init__(self): super(DressingPandaHumanEnv, self).__init__(robot=Panda(robot_arm), human=Human(human_controllable_joint_indices, controllable=True)) register_env('assistive_gym:DressingPandaHuman-v1', lambda config: DressingPandaHumanEnv())
#!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = "nagracks" __date__ = "18-07-2016" __license__ = "MIT" __copyright__ = "Copyright © 2016 nagracks" import argparse import json import os import sys import praw import requests import tqdm from bs4 import BeautifulSoup def get_top_submissions(subreddit, limit, period): """Get top submissions from selection time period with limit Parameters ---------- subreddit : str Name of the subreddit limit : int Max limit of getting submissions period : str A single character. Possible values are `[h]our`, `[d]ay`, `[w]eek`, `[m]onth`, `[y]ear` and `[a]ll`. Yields ------- str Subreddit submissions Examples -------- :: for submission in get_top_submissions('getmotivated', 15, 'h'): # This is submission title print(submission) # This is submission url print(submission.url) """ r = praw.Reddit(user_agent='nagracks') all_submissions = r.get_subreddit(subreddit, fetch=True) timeframe = { 'h': all_submissions.get_top_from_hour, 'd': all_submissions.get_top_from_day, 'w': all_submissions.get_top_from_week, 'm': all_submissions.get_top_from_month, 'y': all_submissions.get_top_from_year, 'a': all_submissions.get_top_from_all } return timeframe.get(period)(limit=limit) def image_urls(submissions): """Provides downloadable image urls. This works like this, if url simply ends with image extensions then it will yield it otherwise it will go on with other conditions. Other conditions are if url contain ``imgur`` and ``/a`` or ``/gallery/`` then it will yield urls with the help of ``BeautifulSoup``. And at the last if none of these two methods works it will try to get downloadable image url by making raw url by adding `.jpg` at the end of url and then checks its headers' content-type if it is compatible image then generate that url. Parameters ---------- submissions : generator Subreddit submissions Yields ------- str Downloadable image urls Examples -------- :: submissions = get_top_submissions( subreddit, args.limit, args.period ) for image_url in image_urls(submissions): # Downloadble image url print(image_url) """ for submission in submissions: url = submission.url img_ext = ('jpg', 'jpeg', 'png', 'gif') if url.endswith(img_ext): yield url elif 'imgur' in url and ('/a/' in url or '/gallery/' in url): r = requests.get(url).text soup_ob = BeautifulSoup(r, 'html.parser') for link in soup_ob.find_all('div', {'class': 'post-image'}): try: partial_url = link.img.get('src') # img_link comes as //imgur.com/id make it # https://imgur.com/id url = 'https:' + partial_url yield url except: pass else: raw_url = url + '.jpg' try: r = requests.get(raw_url) r.raise_for_status() extension = r.headers['content-type'].split('/')[-1] except Exception as e: extension = '' if extension in img_ext: link = '{url}.{ext}'.format(url=url, ext=extension) yield link def download_images(url, subreddit_name, destination): """Download images Parameters ---------- url : str Image url to download subreddit_name : str Subreddit name destination : str Destination path to save image Returns ------- Write data to file """ # `?` and `&` should not present in filename so replace them with # `X` table = str.maketrans('?&', 'XX') # Splits url to get last 10 `characters` from `in-url filename` # This helps to make random filename by joining `subreddit` name and # `in-url` filename characters url_chars = (url.split('/')[-1][-10:]).translate(table) # Make filename filename = "{name}_{chars}".format(name=subreddit_name, chars=url_chars) # Make full path to save destination of images if destination: path = os.path.expanduser(destination) else: path = os.path.expanduser('~') path = os.path.join(path, 'reddit_pics') os.makedirs(path, exist_ok=True) file_path = os.path.join(path, filename) if os.path.exists(file_path): print("{} is already downloaded".format(filename)) else: print("Download to {}".format(file_path)) r = requests.get(url, stream=True) with open(file_path, 'wb') as outfile: for chunk in ( tqdm.tqdm(r.iter_content(chunk_size=1024), total=(int(r.headers.get('content-length', 0)) // 1024), unit='KB') ): if chunk: outfile.write(chunk) else: return class ArgumentConfig(object): """ArgumentConfig class Parameters ---------- parser: argparse.ArgumentParser All the arguments Methods ------- parse_args """ def __init__(self, parser: argparse.ArgumentParser): self.parser = parser self.parser.add_argument( '--config', '-c', nargs='?', const='stdout', help= """ Read arguments from config file. The config can be generated with --write-config option """ ) self.parser.add_argument( '--write-config', '-wc', nargs='?', metavar='FILENAME', const='stdout', help= """ Print script options to screen in JSON format and if FILENAME is specified then write to that file """ ) def parse_args(self, *args, **kwargs): """Parse commandline args args Parameters ---------- *args **kwargs Returns ------- Argparse namespace """ # Parse an empty list to get the defaults defaults = vars(self.parser.parse_args([])) passed_args = vars(self.parser.parse_args(*args, **kwargs)) # Only keep the args that aren't the default passed_args = { key: value for (key, value) in passed_args.items() if (key in defaults and defaults[key] != value) } config_path = passed_args.pop('config', None) if config_path: with open(config_path, 'r') as config_file: config_args = json.load(config_file) else: config_args = dict() # Override defaults with config with passed args options = {**defaults, **config_args, **passed_args} # Remove the config options from options. They're not needed any # more and we don't want them serialized options.pop('config', None) options.pop('write_config', None) # Print the options (to file) if needed config_dst = passed_args.pop('write_config', None) if config_dst: print(json.dumps(options, sort_keys=True, indent=4)) if config_dst != 'stdout': with open(config_dst, 'w', encoding='utf-8') as config_file: print(json.dumps(options, sort_keys=True, indent=4), file=config_file) print("Current options saved to: {}".format(config_dst)) sys.exit(0) return argparse.Namespace(**options) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( '-s', '--subreddit', default=['earthporn', 'cityporn'], nargs='+', help=""" Name of the subreddits. Provide as many subreddits you want to download images from. """ ) parser.add_argument( '-p', '--period', default='w', choices=['h', 'd', 'w', 'm', 'y', 'a'], help=""" [h]our, [d]ay, [w]eek, [m]onth, [y]ear, or [a]ll. Period of time from which you want images. Default to 'get_top_from_[w]eek' """ ) parser.add_argument( '-l', '--limit', metavar='N', type=int, default=15, help=""" Maximum URL limit per subreddit. Defaults to 15 """ ) parser.add_argument( '--destination', '-d', help=""" Destination path. By default it saves to $HOME/reddit_pics """ ) argconfig = ArgumentConfig(parser) args = vars(argconfig.parse_args()) # Handle control+c nicely import signal def exit_(signum, frame): os.sys.exit(1) signal.signal(signal.SIGINT, exit_) # Download images for subreddit in args['subreddit']: submissions = get_top_submissions( subreddit, args['limit'], args['period'] ) for image_url in image_urls(submissions): download_images(image_url, subreddit, args['destination'])
''' Created on 7 juin 2016 @author: saldenisov ''' ''' Created on 7 oct. 2015 @author: saldenisov ''' from configobj import ConfigObj from validate import Validator class Configuration(object): """ Creates main configuration """ def __init__(self, path='C:\\Users\\saldenisov\\Dropbox\\Python\\QY\\Settings\\'): __configspec = ConfigObj(path + 'configspec.ini', encoding='UTF8', list_values=False, _inspec=True) self.__config = ConfigObj( path + 'config_main.ini', configspec=__configspec) val = Validator() if self.config.validate(val) == False: raise ValueError( 'Configuration file is corrupted. Check in settings config_main.ini and configspec.ini.') @property def config(self): return self.__config
import requests import xmltodict def buscar_cds(): response = requests.get('http://www.w3schools.com/xml/cd_catalog.xml') xml = response.text dct = xmltodict.parse(xml) cds = dct['CATALOG']['CD'] return [c['TITLE'] for c in cds] if __name__ == '__main__': print(buscar_cds())
descriptor=[ { "apis": ["GL", "GLES", "GLES2", "GL_CORE"], "params": [ [ "ALPHA_BITS", "BUFFER_INT(Visual.alphaBits), extra_new_buffers" ], [ "BLEND", "CONTEXT_BIT0(Color.BlendEnabled), NO_EXTRA" ], [ "BLEND_SRC", "CONTEXT_ENUM(Color.Blend[0].SrcRGB), NO_EXTRA" ], [ "BLUE_BITS", "BUFFER_INT(Visual.blueBits), extra_new_buffers" ], [ "COLOR_CLEAR_VALUE", "LOC_CUSTOM, TYPE_FLOATN_4, 0, extra_new_frag_clamp" ], [ "COLOR_WRITEMASK", "LOC_CUSTOM, TYPE_INT_4, 0, NO_EXTRA" ], [ "CULL_FACE", "CONTEXT_BOOL(Polygon.CullFlag), NO_EXTRA" ], [ "CULL_FACE_MODE", "CONTEXT_ENUM(Polygon.CullFaceMode), NO_EXTRA" ], [ "DEPTH_BITS", "BUFFER_INT(Visual.depthBits), extra_new_buffers" ], [ "DEPTH_CLEAR_VALUE", "CONTEXT_FIELD(Depth.Clear, TYPE_DOUBLEN), NO_EXTRA" ], [ "DEPTH_FUNC", "CONTEXT_ENUM(Depth.Func), NO_EXTRA" ], [ "DEPTH_RANGE", "LOC_CUSTOM, TYPE_DOUBLEN_2, 0, NO_EXTRA" ], [ "DEPTH_TEST", "CONTEXT_BOOL(Depth.Test), NO_EXTRA" ], [ "DEPTH_WRITEMASK", "CONTEXT_BOOL(Depth.Mask), NO_EXTRA" ], [ "DITHER", "CONTEXT_BOOL(Color.DitherFlag), NO_EXTRA" ], [ "FRONT_FACE", "CONTEXT_ENUM(Polygon.FrontFace), NO_EXTRA" ], [ "GREEN_BITS", "BUFFER_INT(Visual.greenBits), extra_new_buffers" ], [ "LINE_WIDTH", "CONTEXT_FLOAT(Line.Width), NO_EXTRA" ], [ "ALIASED_LINE_WIDTH_RANGE", "CONTEXT_FLOAT2(Const.MinLineWidth), NO_EXTRA" ], [ "MAX_ELEMENTS_VERTICES", "CONTEXT_INT(Const.MaxArrayLockSize), NO_EXTRA" ], [ "MAX_ELEMENTS_INDICES", "CONTEXT_INT(Const.MaxArrayLockSize), NO_EXTRA" ], [ "MAX_TEXTURE_SIZE", "LOC_CUSTOM, TYPE_INT, offsetof(struct gl_context, Const.MaxTextureLevels), NO_EXTRA" ], [ "MAX_VIEWPORT_DIMS", "CONTEXT_INT2(Const.MaxViewportWidth), NO_EXTRA" ], [ "PACK_ALIGNMENT", "CONTEXT_INT(Pack.Alignment), NO_EXTRA" ], [ "ALIASED_POINT_SIZE_RANGE", "CONTEXT_FLOAT2(Const.MinPointSize), NO_EXTRA" ], [ "POLYGON_OFFSET_FACTOR", "CONTEXT_FLOAT(Polygon.OffsetFactor ), NO_EXTRA" ], [ "POLYGON_OFFSET_UNITS", "CONTEXT_FLOAT(Polygon.OffsetUnits ), NO_EXTRA" ], [ "POLYGON_OFFSET_FILL", "CONTEXT_BOOL(Polygon.OffsetFill), NO_EXTRA" ], [ "RED_BITS", "BUFFER_INT(Visual.redBits), extra_new_buffers" ], [ "SCISSOR_BOX", "LOC_CUSTOM, TYPE_INT_4, 0, NO_EXTRA" ], [ "SCISSOR_TEST", "LOC_CUSTOM, TYPE_BOOLEAN, NO_OFFSET, NO_EXTRA" ], [ "STENCIL_BITS", "BUFFER_INT(Visual.stencilBits), extra_new_buffers" ], [ "STENCIL_CLEAR_VALUE", "CONTEXT_INT(Stencil.Clear), NO_EXTRA" ], [ "STENCIL_FAIL", "LOC_CUSTOM, TYPE_ENUM, NO_OFFSET, NO_EXTRA" ], [ "STENCIL_FUNC", "LOC_CUSTOM, TYPE_ENUM, NO_OFFSET, NO_EXTRA" ], [ "STENCIL_PASS_DEPTH_FAIL", "LOC_CUSTOM, TYPE_ENUM, NO_OFFSET, NO_EXTRA" ], [ "STENCIL_PASS_DEPTH_PASS", "LOC_CUSTOM, TYPE_ENUM, NO_OFFSET, NO_EXTRA" ], [ "STENCIL_REF", "LOC_CUSTOM, TYPE_UINT, NO_OFFSET, NO_EXTRA" ], [ "STENCIL_TEST", "CONTEXT_BOOL(Stencil.Enabled), NO_EXTRA" ], [ "STENCIL_VALUE_MASK", "LOC_CUSTOM, TYPE_UINT, NO_OFFSET, NO_EXTRA" ], [ "STENCIL_WRITEMASK", "LOC_CUSTOM, TYPE_UINT, NO_OFFSET, NO_EXTRA" ], [ "SUBPIXEL_BITS", "CONTEXT_INT(Const.SubPixelBits), NO_EXTRA" ], [ "TEXTURE_BINDING_2D", "LOC_CUSTOM, TYPE_INT, TEXTURE_2D_INDEX, NO_EXTRA" ], [ "UNPACK_ALIGNMENT", "CONTEXT_INT(Unpack.Alignment), NO_EXTRA" ], [ "VIEWPORT", "LOC_CUSTOM, TYPE_FLOAT_4, 0, NO_EXTRA" ], # GL_ARB_multitexture [ "ACTIVE_TEXTURE", "LOC_CUSTOM, TYPE_INT, 0, NO_EXTRA" ], # Note that all the OES_* extensions require that the Mesa "struct # gl_extensions" include a member with the name of the extension. # That structure does not yet include OES extensions (and we're # not sure whether it will). If it does, all the OES_* # extensions below should mark the dependency. # GL_ARB_texture_cube_map [ "TEXTURE_BINDING_CUBE_MAP_ARB", "LOC_CUSTOM, TYPE_INT, TEXTURE_CUBE_INDEX, extra_ARB_texture_cube_map" ], # XXX: OES_texture_cube_map [ "MAX_CUBE_MAP_TEXTURE_SIZE_ARB", "LOC_CUSTOM, TYPE_INT, offsetof(struct gl_context, Const.MaxCubeTextureLevels), extra_ARB_texture_cube_map" ], # XXX: OES_blend_subtract [ "BLEND_SRC_RGB", "CONTEXT_ENUM(Color.Blend[0].SrcRGB), NO_EXTRA" ], [ "BLEND_DST_RGB", "CONTEXT_ENUM(Color.Blend[0].DstRGB), NO_EXTRA" ], [ "BLEND_SRC_ALPHA", "CONTEXT_ENUM(Color.Blend[0].SrcA), NO_EXTRA" ], [ "BLEND_DST_ALPHA", "CONTEXT_ENUM(Color.Blend[0].DstA), NO_EXTRA" ], # GL_BLEND_EQUATION_RGB, which is what we're really after, is # defined identically to GL_BLEND_EQUATION. [ "BLEND_EQUATION", "CONTEXT_ENUM(Color.Blend[0].EquationRGB), NO_EXTRA" ], [ "BLEND_EQUATION_ALPHA_EXT", "CONTEXT_ENUM(Color.Blend[0].EquationA), NO_EXTRA" ], # GL_ARB_texture_compression [ "NUM_COMPRESSED_TEXTURE_FORMATS_ARB", "LOC_CUSTOM, TYPE_INT, 0, NO_EXTRA" ], [ "COMPRESSED_TEXTURE_FORMATS", "LOC_CUSTOM, TYPE_INT_N, 0, NO_EXTRA" ], # GL_ARB_multisample [ "SAMPLE_ALPHA_TO_COVERAGE_ARB", "CONTEXT_BOOL(Multisample.SampleAlphaToCoverage), NO_EXTRA" ], [ "SAMPLE_COVERAGE_ARB", "CONTEXT_BOOL(Multisample.SampleCoverage), NO_EXTRA" ], [ "SAMPLE_COVERAGE_VALUE_ARB", "CONTEXT_FLOAT(Multisample.SampleCoverageValue), NO_EXTRA" ], [ "SAMPLE_COVERAGE_INVERT_ARB", "CONTEXT_BOOL(Multisample.SampleCoverageInvert), NO_EXTRA" ], [ "SAMPLE_BUFFERS_ARB", "LOC_CUSTOM, TYPE_INT, 0, extra_new_buffers" ], [ "SAMPLES_ARB", "LOC_CUSTOM, TYPE_INT, 0, extra_new_buffers" ], # GL_ARB_sample_shading [ "SAMPLE_SHADING_ARB", "CONTEXT_BOOL(Multisample.SampleShading), extra_gl40_ARB_sample_shading" ], [ "MIN_SAMPLE_SHADING_VALUE_ARB", "CONTEXT_FLOAT(Multisample.MinSampleShadingValue), extra_gl40_ARB_sample_shading" ], # GL_SGIS_generate_mipmap [ "GENERATE_MIPMAP_HINT_SGIS", "CONTEXT_ENUM(Hint.GenerateMipmap), NO_EXTRA" ], # GL_ARB_vertex_buffer_object [ "ARRAY_BUFFER_BINDING_ARB", "LOC_CUSTOM, TYPE_INT, 0, NO_EXTRA" ], # GL_ARB_vertex_buffer_object # GL_WEIGHT_ARRAY_BUFFER_BINDING_ARB - not supported [ "ELEMENT_ARRAY_BUFFER_BINDING_ARB", "LOC_CUSTOM, TYPE_INT, 0, NO_EXTRA" ], # GL_ARB_color_buffer_float [ "CLAMP_VERTEX_COLOR", "CONTEXT_ENUM(Light.ClampVertexColor), extra_ARB_color_buffer_float" ], [ "CLAMP_FRAGMENT_COLOR", "CONTEXT_ENUM(Color.ClampFragmentColor), extra_ARB_color_buffer_float" ], [ "CLAMP_READ_COLOR", "CONTEXT_ENUM(Color.ClampReadColor), extra_ARB_color_buffer_float_or_glcore" ], # GL_ARB_copy_buffer [ "COPY_READ_BUFFER", "LOC_CUSTOM, TYPE_INT, 0, NO_EXTRA" ], [ "COPY_WRITE_BUFFER", "LOC_CUSTOM, TYPE_INT, 0, NO_EXTRA" ], # GL_OES_read_format [ "IMPLEMENTATION_COLOR_READ_TYPE_OES", "LOC_CUSTOM, TYPE_INT, 0, extra_new_buffers" ], [ "IMPLEMENTATION_COLOR_READ_FORMAT_OES", "LOC_CUSTOM, TYPE_INT, 0, extra_new_buffers" ], # GL_EXT_framebuffer_object [ "FRAMEBUFFER_BINDING_EXT", "BUFFER_INT(Name), NO_EXTRA" ], [ "RENDERBUFFER_BINDING_EXT", "LOC_CUSTOM, TYPE_INT, 0, NO_EXTRA" ], [ "MAX_RENDERBUFFER_SIZE_EXT", "CONTEXT_INT(Const.MaxRenderbufferSize), NO_EXTRA" ], # This entry isn't spec'ed for GLES 2, but is needed for Mesa's # GLSL: [ "MAX_CLIP_PLANES", "CONTEXT_INT(Const.MaxClipPlanes), NO_EXTRA" ], # GL_{ARB,OES}_vertex_array_object [ "VERTEX_ARRAY_BINDING", "ARRAY_INT(Name), NO_EXTRA" ], # GL_EXT_texture_filter_anisotropic [ "MAX_TEXTURE_MAX_ANISOTROPY_EXT", "CONTEXT_FLOAT(Const.MaxTextureMaxAnisotropy), extra_EXT_texture_filter_anisotropic" ], # GL_KHR_debug (GL 4.3)/ GL_ARB_debug_output [ "DEBUG_OUTPUT", "LOC_CUSTOM, TYPE_BOOLEAN, 0, NO_EXTRA" ], [ "DEBUG_OUTPUT_SYNCHRONOUS", "LOC_CUSTOM, TYPE_BOOLEAN, 0, NO_EXTRA" ], [ "DEBUG_LOGGED_MESSAGES", "LOC_CUSTOM, TYPE_INT, 0, NO_EXTRA" ], [ "DEBUG_NEXT_LOGGED_MESSAGE_LENGTH", "LOC_CUSTOM, TYPE_INT, 0, NO_EXTRA" ], [ "MAX_DEBUG_LOGGED_MESSAGES", "CONST(MAX_DEBUG_LOGGED_MESSAGES), NO_EXTRA" ], [ "MAX_DEBUG_MESSAGE_LENGTH", "CONST(MAX_DEBUG_MESSAGE_LENGTH), NO_EXTRA" ], [ "MAX_LABEL_LENGTH", "CONST(MAX_LABEL_LENGTH), NO_EXTRA" ], [ "MAX_DEBUG_GROUP_STACK_DEPTH", "CONST(MAX_DEBUG_GROUP_STACK_DEPTH), NO_EXTRA" ], [ "DEBUG_GROUP_STACK_DEPTH", "LOC_CUSTOM, TYPE_INT, 0, NO_EXTRA" ], # GL_ARB_polygon_offset_clamp / GL_EXT_polygon_offset_clamp [ "POLYGON_OFFSET_CLAMP_EXT", "CONTEXT_FLOAT(Polygon.OffsetClamp), extra_ARB_polygon_offset_clamp" ], ]}, # Enums in OpenGL and GLES1 { "apis": ["GL", "GLES", "GL_CORE"], "params": [ [ "MAX_LIGHTS", "CONTEXT_INT(Const.MaxLights), NO_EXTRA" ], [ "LIGHT0", "CONTEXT_BOOL(Light.Light[0].Enabled), NO_EXTRA" ], [ "LIGHT1", "CONTEXT_BOOL(Light.Light[1].Enabled), NO_EXTRA" ], [ "LIGHT2", "CONTEXT_BOOL(Light.Light[2].Enabled), NO_EXTRA" ], [ "LIGHT3", "CONTEXT_BOOL(Light.Light[3].Enabled), NO_EXTRA" ], [ "LIGHT4", "CONTEXT_BOOL(Light.Light[4].Enabled), NO_EXTRA" ], [ "LIGHT5", "CONTEXT_BOOL(Light.Light[5].Enabled), NO_EXTRA" ], [ "LIGHT6", "CONTEXT_BOOL(Light.Light[6].Enabled), NO_EXTRA" ], [ "LIGHT7", "CONTEXT_BOOL(Light.Light[7].Enabled), NO_EXTRA" ], [ "LIGHTING", "CONTEXT_BOOL(Light.Enabled), NO_EXTRA" ], [ "LIGHT_MODEL_AMBIENT", "CONTEXT_FIELD(Light.Model.Ambient[0], TYPE_FLOATN_4), NO_EXTRA" ], [ "LIGHT_MODEL_TWO_SIDE", "CONTEXT_BOOL(Light.Model.TwoSide), NO_EXTRA" ], [ "ALPHA_TEST", "CONTEXT_BOOL(Color.AlphaEnabled), NO_EXTRA" ], [ "ALPHA_TEST_FUNC", "CONTEXT_ENUM(Color.AlphaFunc), NO_EXTRA" ], [ "ALPHA_TEST_REF", "LOC_CUSTOM, TYPE_FLOATN, 0, extra_new_frag_clamp" ], [ "BLEND_DST", "CONTEXT_ENUM(Color.Blend[0].DstRGB), NO_EXTRA" ], [ "CLIP_DISTANCE0", "CONTEXT_BIT0(Transform.ClipPlanesEnabled), extra_valid_clip_distance" ], [ "CLIP_DISTANCE1", "CONTEXT_BIT1(Transform.ClipPlanesEnabled), extra_valid_clip_distance" ], [ "CLIP_DISTANCE2", "CONTEXT_BIT2(Transform.ClipPlanesEnabled), extra_valid_clip_distance" ], [ "CLIP_DISTANCE3", "CONTEXT_BIT3(Transform.ClipPlanesEnabled), extra_valid_clip_distance" ], [ "CLIP_DISTANCE4", "CONTEXT_BIT4(Transform.ClipPlanesEnabled), extra_valid_clip_distance" ], [ "CLIP_DISTANCE5", "CONTEXT_BIT5(Transform.ClipPlanesEnabled), extra_valid_clip_distance" ], [ "CLIP_DISTANCE6", "CONTEXT_BIT6(Transform.ClipPlanesEnabled), extra_valid_clip_distance" ], [ "CLIP_DISTANCE7", "CONTEXT_BIT7(Transform.ClipPlanesEnabled), extra_valid_clip_distance" ], [ "COLOR_MATERIAL", "CONTEXT_BOOL(Light.ColorMaterialEnabled), NO_EXTRA" ], [ "CURRENT_COLOR", "CONTEXT_FIELD(Current.Attrib[VERT_ATTRIB_COLOR0][0], TYPE_FLOATN_4), extra_flush_current" ], [ "CURRENT_NORMAL", "CONTEXT_FIELD(Current.Attrib[VERT_ATTRIB_NORMAL][0], TYPE_FLOATN_3), extra_flush_current" ], [ "CURRENT_TEXTURE_COORDS", "LOC_CUSTOM, TYPE_FLOAT_4, 0, extra_flush_current_valid_texture_unit" ], [ "POINT_DISTANCE_ATTENUATION", "CONTEXT_FLOAT3(Point.Params[0]), NO_EXTRA" ], [ "FOG", "CONTEXT_BOOL(Fog.Enabled), NO_EXTRA" ], [ "FOG_COLOR", "LOC_CUSTOM, TYPE_FLOATN_4, 0, extra_new_frag_clamp" ], [ "FOG_DENSITY", "CONTEXT_FLOAT(Fog.Density), NO_EXTRA" ], [ "FOG_END", "CONTEXT_FLOAT(Fog.End), NO_EXTRA" ], [ "FOG_HINT", "CONTEXT_ENUM(Hint.Fog), NO_EXTRA" ], [ "FOG_MODE", "CONTEXT_ENUM(Fog.Mode), NO_EXTRA" ], [ "FOG_START", "CONTEXT_FLOAT(Fog.Start), NO_EXTRA" ], [ "LINE_SMOOTH", "CONTEXT_BOOL(Line.SmoothFlag), NO_EXTRA" ], [ "LINE_SMOOTH_HINT", "CONTEXT_ENUM(Hint.LineSmooth), NO_EXTRA" ], [ "LINE_WIDTH_RANGE", "CONTEXT_FLOAT2(Const.MinLineWidthAA), NO_EXTRA" ], [ "COLOR_LOGIC_OP", "CONTEXT_BOOL(Color.ColorLogicOpEnabled), NO_EXTRA" ], [ "LOGIC_OP_MODE", "CONTEXT_ENUM(Color.LogicOp), NO_EXTRA" ], [ "MATRIX_MODE", "CONTEXT_ENUM(Transform.MatrixMode), NO_EXTRA" ], [ "MAX_MODELVIEW_STACK_DEPTH", "CONST(MAX_MODELVIEW_STACK_DEPTH), NO_EXTRA" ], [ "MAX_PROJECTION_STACK_DEPTH", "CONST(MAX_PROJECTION_STACK_DEPTH), NO_EXTRA" ], [ "MAX_TEXTURE_STACK_DEPTH", "CONST(MAX_TEXTURE_STACK_DEPTH), NO_EXTRA" ], [ "MODELVIEW_MATRIX", "CONTEXT_MATRIX(ModelviewMatrixStack.Top), NO_EXTRA" ], [ "MODELVIEW_STACK_DEPTH", "LOC_CUSTOM, TYPE_INT, offsetof(struct gl_context, ModelviewMatrixStack.Depth), NO_EXTRA" ], [ "NORMALIZE", "CONTEXT_BOOL(Transform.Normalize), NO_EXTRA" ], [ "PACK_SKIP_IMAGES", "CONTEXT_INT(Pack.SkipImages), NO_EXTRA" ], [ "PERSPECTIVE_CORRECTION_HINT", "CONTEXT_ENUM(Hint.PerspectiveCorrection), NO_EXTRA" ], [ "POINT_SIZE", "CONTEXT_FLOAT(Point.Size), NO_EXTRA" ], [ "POINT_SIZE_RANGE", "CONTEXT_FLOAT2(Const.MinPointSizeAA), NO_EXTRA" ], [ "POINT_SMOOTH", "CONTEXT_BOOL(Point.SmoothFlag), NO_EXTRA" ], [ "POINT_SMOOTH_HINT", "CONTEXT_ENUM(Hint.PointSmooth), NO_EXTRA" ], [ "POINT_SIZE_MIN_EXT", "CONTEXT_FLOAT(Point.MinSize), NO_EXTRA" ], [ "POINT_SIZE_MAX_EXT", "CONTEXT_FLOAT(Point.MaxSize), NO_EXTRA" ], [ "POINT_FADE_THRESHOLD_SIZE_EXT", "CONTEXT_FLOAT(Point.Threshold), NO_EXTRA" ], [ "PROJECTION_MATRIX", "CONTEXT_MATRIX(ProjectionMatrixStack.Top), NO_EXTRA" ], [ "PROJECTION_STACK_DEPTH", "LOC_CUSTOM, TYPE_INT, offsetof(struct gl_context, ProjectionMatrixStack.Depth), NO_EXTRA" ], [ "RESCALE_NORMAL", "CONTEXT_BOOL(Transform.RescaleNormals), NO_EXTRA" ], [ "SHADE_MODEL", "CONTEXT_ENUM(Light.ShadeModel), NO_EXTRA" ], [ "TEXTURE_2D", "LOC_CUSTOM, TYPE_BOOLEAN, 0, NO_EXTRA" ], [ "TEXTURE_MATRIX", "LOC_CUSTOM, TYPE_MATRIX, 0, extra_valid_texture_unit" ], [ "TEXTURE_STACK_DEPTH", "LOC_CUSTOM, TYPE_INT, 0, extra_valid_texture_unit" ], [ "VERTEX_ARRAY", "ARRAY_BOOL(VertexAttrib[VERT_ATTRIB_POS].Enabled), NO_EXTRA" ], [ "VERTEX_ARRAY_SIZE", "ARRAY_INT(VertexAttrib[VERT_ATTRIB_POS].Size), NO_EXTRA" ], [ "VERTEX_ARRAY_TYPE", "ARRAY_ENUM(VertexAttrib[VERT_ATTRIB_POS].Type), NO_EXTRA" ], [ "VERTEX_ARRAY_STRIDE", "ARRAY_INT(VertexAttrib[VERT_ATTRIB_POS].Stride), NO_EXTRA" ], [ "NORMAL_ARRAY", "ARRAY_BOOL(VertexAttrib[VERT_ATTRIB_NORMAL].Enabled), NO_EXTRA" ], [ "NORMAL_ARRAY_TYPE", "ARRAY_ENUM(VertexAttrib[VERT_ATTRIB_NORMAL].Type), NO_EXTRA" ], [ "NORMAL_ARRAY_STRIDE", "ARRAY_INT(VertexAttrib[VERT_ATTRIB_NORMAL].Stride), NO_EXTRA" ], [ "COLOR_ARRAY", "ARRAY_BOOL(VertexAttrib[VERT_ATTRIB_COLOR0].Enabled), NO_EXTRA" ], [ "COLOR_ARRAY_SIZE", "LOC_CUSTOM, TYPE_INT, 0, NO_EXTRA" ], [ "COLOR_ARRAY_TYPE", "ARRAY_ENUM(VertexAttrib[VERT_ATTRIB_COLOR0].Type), NO_EXTRA" ], [ "COLOR_ARRAY_STRIDE", "ARRAY_INT(VertexAttrib[VERT_ATTRIB_COLOR0].Stride), NO_EXTRA" ], [ "TEXTURE_COORD_ARRAY", "LOC_CUSTOM, TYPE_BOOLEAN, offsetof(struct gl_array_attributes, Enabled), NO_EXTRA" ], [ "TEXTURE_COORD_ARRAY_SIZE", "LOC_CUSTOM, TYPE_INT, offsetof(struct gl_array_attributes, Size), NO_EXTRA" ], [ "TEXTURE_COORD_ARRAY_TYPE", "LOC_CUSTOM, TYPE_ENUM, offsetof(struct gl_array_attributes, Type), NO_EXTRA" ], [ "TEXTURE_COORD_ARRAY_STRIDE", "LOC_CUSTOM, TYPE_INT, offsetof(struct gl_array_attributes, Stride), NO_EXTRA" ], # GL_ARB_multitexture [ "MAX_TEXTURE_UNITS", "CONTEXT_INT(Const.MaxTextureUnits), NO_EXTRA" ], [ "CLIENT_ACTIVE_TEXTURE", "LOC_CUSTOM, TYPE_INT, 0, NO_EXTRA" ], # GL_ARB_texture_cube_map [ "TEXTURE_CUBE_MAP_ARB", "LOC_CUSTOM, TYPE_BOOLEAN, 0, NO_EXTRA" ], # S, T, and R are always set at the same time [ "TEXTURE_GEN_STR_OES", "LOC_TEXUNIT, TYPE_BIT_0, offsetof(struct gl_texture_unit, TexGenEnabled), NO_EXTRA" ], # GL_ARB_multisample [ "MULTISAMPLE_ARB", "CONTEXT_BOOL(Multisample.Enabled), NO_EXTRA" ], [ "SAMPLE_ALPHA_TO_ONE_ARB", "CONTEXT_BOOL(Multisample.SampleAlphaToOne), NO_EXTRA" ], # GL_ARB_vertex_buffer_object [ "VERTEX_ARRAY_BUFFER_BINDING_ARB", "LOC_CUSTOM, TYPE_INT, offsetof(struct gl_vertex_array_object, BufferBinding[VERT_ATTRIB_POS].BufferObj), NO_EXTRA" ], [ "NORMAL_ARRAY_BUFFER_BINDING_ARB", "LOC_CUSTOM, TYPE_INT, offsetof(struct gl_vertex_array_object, BufferBinding[VERT_ATTRIB_NORMAL].BufferObj), NO_EXTRA" ], [ "COLOR_ARRAY_BUFFER_BINDING_ARB", "LOC_CUSTOM, TYPE_INT, offsetof(struct gl_vertex_array_object, BufferBinding[VERT_ATTRIB_COLOR0].BufferObj), NO_EXTRA" ], [ "TEXTURE_COORD_ARRAY_BUFFER_BINDING_ARB", "LOC_CUSTOM, TYPE_INT, NO_OFFSET, NO_EXTRA" ], # GL_OES_point_sprite [ "POINT_SPRITE_NV", "CONTEXT_BOOL(Point.PointSprite), extra_NV_point_sprite_ARB_point_sprite" ], ]}, { "apis": ["GLES"], "params": [ # OES_point_size_array [ "POINT_SIZE_ARRAY_OES", "ARRAY_FIELD(VertexAttrib[VERT_ATTRIB_POINT_SIZE].Enabled, TYPE_BOOLEAN), NO_EXTRA" ], [ "POINT_SIZE_ARRAY_TYPE_OES", "ARRAY_FIELD(VertexAttrib[VERT_ATTRIB_POINT_SIZE].Type, TYPE_ENUM), NO_EXTRA" ], [ "POINT_SIZE_ARRAY_STRIDE_OES", "ARRAY_FIELD(VertexAttrib[VERT_ATTRIB_POINT_SIZE].Stride, TYPE_INT), NO_EXTRA" ], [ "POINT_SIZE_ARRAY_BUFFER_BINDING_OES", "LOC_CUSTOM, TYPE_INT, 0, NO_EXTRA" ], ]}, # Enums in GLES2, GLES3 { "apis": ["GLES2", "GLES3"], "params": [ [ "GPU_DISJOINT_EXT", "LOC_CUSTOM, TYPE_INT, 0, extra_EXT_disjoint_timer_query" ], ]}, { "apis": ["GL", "GL_CORE", "GLES2"], "params": [ # == GL_MAX_TEXTURE_COORDS_NV [ "MAX_TEXTURE_COORDS_ARB", "CONTEXT_INT(Const.MaxTextureCoordUnits), extra_ARB_fragment_program" ], [ "PACK_IMAGE_HEIGHT", "CONTEXT_INT(Pack.ImageHeight), NO_EXTRA" ], [ "PACK_ROW_LENGTH", "CONTEXT_INT(Pack.RowLength), NO_EXTRA" ], [ "PACK_SKIP_PIXELS", "CONTEXT_INT(Pack.SkipPixels), NO_EXTRA" ], [ "PACK_SKIP_ROWS", "CONTEXT_INT(Pack.SkipRows), NO_EXTRA" ], [ "UNPACK_ROW_LENGTH", "CONTEXT_INT(Unpack.RowLength), NO_EXTRA" ], [ "UNPACK_SKIP_PIXELS", "CONTEXT_INT(Unpack.SkipPixels), NO_EXTRA" ], [ "UNPACK_SKIP_ROWS", "CONTEXT_INT(Unpack.SkipRows), NO_EXTRA" ], [ "UNPACK_SKIP_IMAGES", "CONTEXT_INT(Unpack.SkipImages), NO_EXTRA" ], [ "UNPACK_IMAGE_HEIGHT", "CONTEXT_INT(Unpack.ImageHeight), NO_EXTRA" ], # GL_ARB_draw_buffers [ "MAX_DRAW_BUFFERS_ARB", "CONTEXT_INT(Const.MaxDrawBuffers), NO_EXTRA" ], # GL_EXT_framebuffer_object / GL_NV_fbo_color_attachments [ "MAX_COLOR_ATTACHMENTS", "CONTEXT_INT(Const.MaxColorAttachments), NO_EXTRA" ], # GL_ARB_draw_buffers / GL_NV_draw_buffers (for ES 2.0) [ "DRAW_BUFFER0_ARB", "BUFFER_ENUM(ColorDrawBuffer[0]), NO_EXTRA" ], [ "DRAW_BUFFER1_ARB", "BUFFER_ENUM(ColorDrawBuffer[1]), extra_valid_draw_buffer" ], [ "DRAW_BUFFER2_ARB", "BUFFER_ENUM(ColorDrawBuffer[2]), extra_valid_draw_buffer" ], [ "DRAW_BUFFER3_ARB", "BUFFER_ENUM(ColorDrawBuffer[3]), extra_valid_draw_buffer" ], [ "DRAW_BUFFER4_ARB", "BUFFER_ENUM(ColorDrawBuffer[4]), extra_valid_draw_buffer" ], [ "DRAW_BUFFER5_ARB", "BUFFER_ENUM(ColorDrawBuffer[5]), extra_valid_draw_buffer" ], [ "DRAW_BUFFER6_ARB", "BUFFER_ENUM(ColorDrawBuffer[6]), extra_valid_draw_buffer" ], [ "DRAW_BUFFER7_ARB", "BUFFER_ENUM(ColorDrawBuffer[7]), extra_valid_draw_buffer" ], [ "BLEND_COLOR_EXT", "LOC_CUSTOM, TYPE_FLOATN_4, 0, extra_new_frag_clamp" ], # GL_ARB_fragment_program # == GL_MAX_TEXTURE_IMAGE_UNITS_NV [ "MAX_TEXTURE_IMAGE_UNITS_ARB", "CONTEXT_INT(Const.Program[MESA_SHADER_FRAGMENT].MaxTextureImageUnits), extra_ARB_fragment_program" ], [ "MAX_VERTEX_TEXTURE_IMAGE_UNITS_ARB", "CONTEXT_INT(Const.Program[MESA_SHADER_VERTEX].MaxTextureImageUnits), extra_ARB_vertex_shader" ], [ "MAX_COMBINED_TEXTURE_IMAGE_UNITS_ARB", "CONTEXT_INT(Const.MaxCombinedTextureImageUnits), extra_ARB_vertex_shader" ], # GL_ARB_shader_objects # Actually, this token isn't part of GL_ARB_shader_objects, but is # close enough for now. [ "CURRENT_PROGRAM", "LOC_CUSTOM, TYPE_INT, 0, NO_EXTRA" ], # OpenGL 2.0 [ "STENCIL_BACK_FUNC", "CONTEXT_ENUM(Stencil.Function[1]), NO_EXTRA" ], [ "STENCIL_BACK_VALUE_MASK", "CONTEXT_UINT(Stencil.ValueMask[1]), NO_EXTRA" ], [ "STENCIL_BACK_WRITEMASK", "CONTEXT_UINT(Stencil.WriteMask[1]), NO_EXTRA" ], [ "STENCIL_BACK_REF", "LOC_CUSTOM, TYPE_UINT, NO_OFFSET, NO_EXTRA" ], [ "STENCIL_BACK_FAIL", "CONTEXT_ENUM(Stencil.FailFunc[1]), NO_EXTRA" ], [ "STENCIL_BACK_PASS_DEPTH_FAIL", "CONTEXT_ENUM(Stencil.ZFailFunc[1]), NO_EXTRA" ], [ "STENCIL_BACK_PASS_DEPTH_PASS", "CONTEXT_ENUM(Stencil.ZPassFunc[1]), NO_EXTRA" ], [ "MAX_VERTEX_ATTRIBS_ARB", "CONTEXT_INT(Const.Program[MESA_SHADER_VERTEX].MaxAttribs), extra_ARB_vertex_program_api_es2" ], # OES_texture_3D [ "TEXTURE_BINDING_3D", "LOC_CUSTOM, TYPE_INT, TEXTURE_3D_INDEX, NO_EXTRA" ], [ "MAX_3D_TEXTURE_SIZE", "LOC_CUSTOM, TYPE_INT, offsetof(struct gl_context, Const.Max3DTextureLevels), NO_EXTRA" ], # GL_ARB_fragment_program/OES_standard_derivatives [ "FRAGMENT_SHADER_DERIVATIVE_HINT", "CONTEXT_ENUM(Hint.FragmentShaderDerivative), extra_ARB_fragment_shader" ], # GL_NV_read_buffer [ "READ_BUFFER", "LOC_CUSTOM, TYPE_ENUM, NO_OFFSET, extra_NV_read_buffer_api_gl" ], # GL_ARB_ES2_compatibility [ "SHADER_COMPILER", "CONST(1), extra_ARB_ES2_compatibility_api_es2" ], [ "MAX_VARYING_VECTORS", "CONTEXT_INT(Const.MaxVarying), extra_ARB_ES2_compatibility_api_es2" ], [ "MAX_VERTEX_UNIFORM_VECTORS", "LOC_CUSTOM, TYPE_INT, 0, extra_ARB_ES2_compatibility_api_es2" ], [ "MAX_FRAGMENT_UNIFORM_VECTORS", "LOC_CUSTOM, TYPE_INT, 0, extra_ARB_ES2_compatibility_api_es2" ], [ "NUM_SHADER_BINARY_FORMATS", "CONST(0), extra_ARB_ES2_compatibility_api_es2" ], [ "SHADER_BINARY_FORMATS", "LOC_CUSTOM, TYPE_INVALID, 0, extra_ARB_ES2_compatibility_api_es2" ], # GL_ARB_get_program_binary / GL_OES_get_program_binary [ "NUM_PROGRAM_BINARY_FORMATS", "CONTEXT_UINT(Const.NumProgramBinaryFormats), NO_EXTRA" ], [ "PROGRAM_BINARY_FORMATS", "LOC_CUSTOM, TYPE_INT_N, 0, NO_EXTRA" ], # GL_INTEL_performance_query [ "PERFQUERY_QUERY_NAME_LENGTH_MAX_INTEL", "CONST(MAX_PERFQUERY_QUERY_NAME_LENGTH), extra_INTEL_performance_query" ], [ "PERFQUERY_COUNTER_NAME_LENGTH_MAX_INTEL", "CONST(MAX_PERFQUERY_COUNTER_NAME_LENGTH), extra_INTEL_performance_query" ], [ "PERFQUERY_COUNTER_DESC_LENGTH_MAX_INTEL", "CONST(MAX_PERFQUERY_COUNTER_DESC_LENGTH), extra_INTEL_performance_query" ], [ "PERFQUERY_GPA_EXTENDED_COUNTERS_INTEL", "CONST(PERFQUERY_HAVE_GPA_EXTENDED_COUNTERS), extra_INTEL_performance_query" ], # GL_KHR_context_flush_control [ "CONTEXT_RELEASE_BEHAVIOR", "CONTEXT_ENUM(Const.ContextReleaseBehavior), NO_EXTRA" ], # blend_func_extended [ "MAX_DUAL_SOURCE_DRAW_BUFFERS", "CONTEXT_INT(Const.MaxDualSourceDrawBuffers), extra_ARB_blend_func_extended" ], # GL_KHR_blend_equation_advanced_coherent [ "BLEND_ADVANCED_COHERENT_KHR", "CONTEXT_BOOL(Color.BlendCoherent), extra_KHR_blend_equation_advanced_coherent" ], # GL_ARB_robustness / GL_KHR_robustness [ "CONTEXT_ROBUST_ACCESS", "CONTEXT_ENUM(Const.RobustAccess), extra_KHR_robustness" ], [ "RESET_NOTIFICATION_STRATEGY_ARB", "CONTEXT_ENUM(Const.ResetStrategy), extra_KHR_robustness_or_GL" ], ]}, # GLES3 is not a typo. { "apis": ["GL", "GLES", "GLES3", "GL_CORE"], "params": [ # GL_EXT_texture_lod_bias [ "MAX_TEXTURE_LOD_BIAS_EXT", "CONTEXT_FLOAT(Const.MaxTextureLodBias), NO_EXTRA" ], ]}, # Enums in OpenGL and ES 3.0 { "apis": ["GL", "GL_CORE", "GLES3"], "params": [ # GL 3.0 / GLES3 [ "NUM_EXTENSIONS", "LOC_CUSTOM, TYPE_INT, 0, extra_gl30_es3" ], [ "MAJOR_VERSION", "LOC_CUSTOM, TYPE_INT, 0, extra_gl30_es3" ], [ "MINOR_VERSION", "LOC_CUSTOM, TYPE_INT, 0, extra_gl30_es3" ], # GL 3.2 / GLES3 [ "MAX_VERTEX_OUTPUT_COMPONENTS", "CONTEXT_INT(Const.Program[MESA_SHADER_VERTEX].MaxOutputComponents), extra_gl32_es3" ], [ "MAX_FRAGMENT_INPUT_COMPONENTS", "CONTEXT_INT(Const.Program[MESA_SHADER_FRAGMENT].MaxInputComponents), extra_gl32_es3" ], # GL_ARB_ES3_compatibility [ "MAX_ELEMENT_INDEX", "CONTEXT_INT64(Const.MaxElementIndex), extra_ARB_ES3_compatibility_api_es3"], [ "PRIMITIVE_RESTART_FIXED_INDEX", "CONTEXT_BOOL(Array.PrimitiveRestartFixedIndex), extra_ARB_ES3_compatibility_api_es3" ], # GL_ARB_fragment_shader [ "MAX_FRAGMENT_UNIFORM_COMPONENTS_ARB", "CONTEXT_INT(Const.Program[MESA_SHADER_FRAGMENT].MaxUniformComponents), extra_ARB_fragment_shader" ], # GL_ARB_framebuffer_object [ "MAX_SAMPLES", "CONTEXT_INT(Const.MaxSamples), extra_ARB_framebuffer_object_EXT_framebuffer_multisample" ], # GL_ARB_sampler_objects / GL 3.3 / GLES 3.0 [ "SAMPLER_BINDING", "LOC_CUSTOM, TYPE_INT, GL_SAMPLER_BINDING, NO_EXTRA" ], # GL_ARB_sync [ "MAX_SERVER_WAIT_TIMEOUT", "CONTEXT_INT64(Const.MaxServerWaitTimeout), extra_ARB_sync" ], # GL_ARB_transform_feedback2 [ "TRANSFORM_FEEDBACK_BUFFER_PAUSED", "LOC_CUSTOM, TYPE_BOOLEAN, 0, extra_ARB_transform_feedback2_api_es3" ], [ "TRANSFORM_FEEDBACK_BUFFER_ACTIVE", "LOC_CUSTOM, TYPE_BOOLEAN, 0, extra_ARB_transform_feedback2_api_es3" ], [ "TRANSFORM_FEEDBACK_BINDING", "LOC_CUSTOM, TYPE_INT, 0, extra_ARB_transform_feedback2_api_es3" ], # GL_ARB_uniform_buffer_object [ "MAX_VERTEX_UNIFORM_BLOCKS", "CONTEXT_INT(Const.Program[MESA_SHADER_VERTEX].MaxUniformBlocks), extra_ARB_uniform_buffer_object" ], [ "MAX_FRAGMENT_UNIFORM_BLOCKS", "CONTEXT_INT(Const.Program[MESA_SHADER_FRAGMENT].MaxUniformBlocks), extra_ARB_uniform_buffer_object" ], [ "MAX_COMBINED_UNIFORM_BLOCKS", "CONTEXT_INT(Const.MaxCombinedUniformBlocks), extra_ARB_uniform_buffer_object" ], [ "MAX_UNIFORM_BLOCK_SIZE", "CONTEXT_INT(Const.MaxUniformBlockSize), extra_ARB_uniform_buffer_object" ], [ "MAX_UNIFORM_BUFFER_BINDINGS", "CONTEXT_INT(Const.MaxUniformBufferBindings), extra_ARB_uniform_buffer_object" ], [ "MAX_COMBINED_VERTEX_UNIFORM_COMPONENTS", "CONTEXT_INT(Const.Program[MESA_SHADER_VERTEX].MaxCombinedUniformComponents), extra_ARB_uniform_buffer_object" ], [ "MAX_COMBINED_FRAGMENT_UNIFORM_COMPONENTS", "CONTEXT_INT(Const.Program[MESA_SHADER_FRAGMENT].MaxCombinedUniformComponents), extra_ARB_uniform_buffer_object" ], [ "UNIFORM_BUFFER_OFFSET_ALIGNMENT", "CONTEXT_INT(Const.UniformBufferOffsetAlignment), extra_ARB_uniform_buffer_object" ], [ "UNIFORM_BUFFER_BINDING", "LOC_CUSTOM, TYPE_INT, 0, extra_ARB_uniform_buffer_object" ], # GL_ARB_vertex_shader [ "MAX_VERTEX_UNIFORM_COMPONENTS_ARB", "CONTEXT_INT(Const.Program[MESA_SHADER_VERTEX].MaxUniformComponents), extra_ARB_vertex_shader" ], [ "MAX_VARYING_FLOATS_ARB", "LOC_CUSTOM, TYPE_INT, 0, extra_ARB_vertex_shader" ], # GL_EXT_framebuffer_blit # NOTE: GL_DRAW_FRAMEBUFFER_BINDING_EXT == GL_FRAMEBUFFER_BINDING_EXT [ "READ_FRAMEBUFFER_BINDING_EXT", "LOC_CUSTOM, TYPE_INT, 0, NO_EXTRA" ], # GL_EXT_gpu_shader4 / GLSL 1.30 [ "MIN_PROGRAM_TEXEL_OFFSET", "CONTEXT_INT(Const.MinProgramTexelOffset), extra_GLSL_130_es3" ], [ "MAX_PROGRAM_TEXEL_OFFSET", "CONTEXT_INT(Const.MaxProgramTexelOffset), extra_GLSL_130_es3" ], # GL_EXT_pixel_buffer_object [ "PIXEL_PACK_BUFFER_BINDING_EXT", "LOC_CUSTOM, TYPE_INT, 0, extra_EXT_pixel_buffer_object" ], [ "PIXEL_UNPACK_BUFFER_BINDING_EXT", "LOC_CUSTOM, TYPE_INT, 0, extra_EXT_pixel_buffer_object" ], # GL_EXT_texture_array [ "TEXTURE_BINDING_2D_ARRAY", "LOC_CUSTOM, TYPE_INT, TEXTURE_2D_ARRAY_INDEX, extra_EXT_texture_array_es3" ], [ "MAX_ARRAY_TEXTURE_LAYERS_EXT", "CONTEXT_INT(Const.MaxArrayTextureLayers), extra_EXT_texture_array_es3" ], # GL_EXT_transform_feedback [ "TRANSFORM_FEEDBACK_BUFFER_BINDING", "LOC_CUSTOM, TYPE_INT, 0, extra_EXT_transform_feedback" ], [ "RASTERIZER_DISCARD", "CONTEXT_BOOL(RasterDiscard), extra_EXT_transform_feedback" ], [ "MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS", "CONTEXT_INT(Const.MaxTransformFeedbackInterleavedComponents), extra_EXT_transform_feedback" ], [ "MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS", "CONTEXT_INT(Const.MaxTransformFeedbackBuffers), extra_EXT_transform_feedback" ], [ "MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS", "CONTEXT_INT(Const.MaxTransformFeedbackSeparateComponents), extra_EXT_transform_feedback" ], # GL_EXT_window_rectangles [ "MAX_WINDOW_RECTANGLES_EXT", "CONTEXT_INT(Const.MaxWindowRectangles), extra_EXT_window_rectangles" ], [ "NUM_WINDOW_RECTANGLES_EXT", "CONTEXT_INT(Scissor.NumWindowRects), extra_EXT_window_rectangles" ], [ "WINDOW_RECTANGLE_MODE_EXT", "CONTEXT_ENUM(Scissor.WindowRectMode), extra_EXT_window_rectangles" ], ]}, { "apis": ["GLES", "GLES2"], "params": [ # GL_EXT_shader_framebuffer_fetch. Should be true if the MESA framebuffer # fetch extension is supported since the latter imposes no restrictions on # non-uniform per-sample discard. [ "FRAGMENT_SHADER_DISCARDS_SAMPLES_EXT", "CONTEXT_BOOL(Extensions.MESA_shader_framebuffer_fetch), extra_EXT_shader_framebuffer_fetch" ], # GL_OES_EGL_image_external [ "TEXTURE_BINDING_EXTERNAL_OES", "LOC_CUSTOM, TYPE_INT, TEXTURE_EXTERNAL_INDEX, extra_OES_EGL_image_external" ], [ "TEXTURE_EXTERNAL_OES", "LOC_CUSTOM, TYPE_BOOLEAN, 0, extra_OES_EGL_image_external" ], ]}, # Enums in OpenGL and ES 3.1 { "apis": ["GL", "GL_CORE", "GLES31"], "params": [ # GL_ARB_texture_buffer_object / GL_OES_texture_buffer [ "MAX_TEXTURE_BUFFER_SIZE_ARB", "CONTEXT_INT(Const.MaxTextureBufferSize), extra_texture_buffer_object" ], [ "TEXTURE_BINDING_BUFFER_ARB", "LOC_CUSTOM, TYPE_INT, 0, extra_texture_buffer_object" ], [ "TEXTURE_BUFFER_DATA_STORE_BINDING_ARB", "LOC_CUSTOM, TYPE_INT, TEXTURE_BUFFER_INDEX, extra_texture_buffer_object" ], [ "TEXTURE_BUFFER_FORMAT_ARB", "LOC_CUSTOM, TYPE_INT, 0, extra_texture_buffer_object" ], [ "TEXTURE_BUFFER_ARB", "LOC_CUSTOM, TYPE_INT, 0, extra_texture_buffer_object" ], # GL_ARB_texture_buffer_range [ "TEXTURE_BUFFER_OFFSET_ALIGNMENT", "CONTEXT_INT(Const.TextureBufferOffsetAlignment), extra_ARB_texture_buffer_range" ], # GL_ARB_shader_image_load_store / GLES 3.1 [ "MAX_IMAGE_UNITS", "CONTEXT_INT(Const.MaxImageUnits), extra_ARB_shader_image_load_store" ], [ "MAX_VERTEX_IMAGE_UNIFORMS", "CONTEXT_INT(Const.Program[MESA_SHADER_VERTEX].MaxImageUniforms), extra_ARB_shader_image_load_store" ], [ "MAX_FRAGMENT_IMAGE_UNIFORMS", "CONTEXT_INT(Const.Program[MESA_SHADER_FRAGMENT].MaxImageUniforms), extra_ARB_shader_image_load_store" ], [ "MAX_COMBINED_IMAGE_UNIFORMS", "CONTEXT_INT(Const.MaxCombinedImageUniforms), extra_ARB_shader_image_load_store" ], # GL_ARB_shader_atomic_counters / GLES 3.1 [ "ATOMIC_COUNTER_BUFFER_BINDING", "LOC_CUSTOM, TYPE_INT, 0, extra_ARB_shader_atomic_counters" ], [ "MAX_ATOMIC_COUNTER_BUFFER_BINDINGS", "CONTEXT_INT(Const.MaxAtomicBufferBindings), extra_ARB_shader_atomic_counters" ], [ "MAX_ATOMIC_COUNTER_BUFFER_SIZE", "CONTEXT_INT(Const.MaxAtomicBufferSize), extra_ARB_shader_atomic_counters" ], [ "MAX_VERTEX_ATOMIC_COUNTER_BUFFERS", "CONTEXT_INT(Const.Program[MESA_SHADER_VERTEX].MaxAtomicBuffers), extra_ARB_shader_atomic_counters" ], [ "MAX_VERTEX_ATOMIC_COUNTERS", "CONTEXT_INT(Const.Program[MESA_SHADER_VERTEX].MaxAtomicCounters), extra_ARB_shader_atomic_counters" ], [ "MAX_FRAGMENT_ATOMIC_COUNTER_BUFFERS", "CONTEXT_INT(Const.Program[MESA_SHADER_FRAGMENT].MaxAtomicBuffers), extra_ARB_shader_atomic_counters" ], [ "MAX_FRAGMENT_ATOMIC_COUNTERS", "CONTEXT_INT(Const.Program[MESA_SHADER_FRAGMENT].MaxAtomicCounters), extra_ARB_shader_atomic_counters" ], [ "MAX_COMBINED_ATOMIC_COUNTER_BUFFERS", "CONTEXT_INT(Const.MaxCombinedAtomicBuffers), extra_ARB_shader_atomic_counters" ], [ "MAX_COMBINED_ATOMIC_COUNTERS", "CONTEXT_INT(Const.MaxCombinedAtomicCounters), extra_ARB_shader_atomic_counters" ], # GL_ARB_texture_multisample / GLES 3.1 [ "TEXTURE_BINDING_2D_MULTISAMPLE", "LOC_CUSTOM, TYPE_INT, TEXTURE_2D_MULTISAMPLE_INDEX, extra_ARB_texture_multisample" ], [ "MAX_COLOR_TEXTURE_SAMPLES", "CONTEXT_INT(Const.MaxColorTextureSamples), extra_ARB_texture_multisample" ], [ "MAX_DEPTH_TEXTURE_SAMPLES", "CONTEXT_INT(Const.MaxDepthTextureSamples), extra_ARB_texture_multisample" ], [ "MAX_INTEGER_SAMPLES", "CONTEXT_INT(Const.MaxIntegerSamples), extra_ARB_texture_multisample" ], [ "SAMPLE_MASK", "CONTEXT_BOOL(Multisample.SampleMask), extra_ARB_texture_multisample" ], [ "MAX_SAMPLE_MASK_WORDS", "CONST(1), extra_ARB_texture_multisample" ], # GL_ARB_texture_multisample / ES 3.1 with GL_OES_texture_storage_multisample_2d_array [ "TEXTURE_BINDING_2D_MULTISAMPLE_ARRAY", "LOC_CUSTOM, TYPE_INT, TEXTURE_2D_MULTISAMPLE_ARRAY_INDEX, extra_ARB_texture_multisample" ], # GL_ARB_texture_gather / GLES 3.1 [ "MIN_PROGRAM_TEXTURE_GATHER_OFFSET", "CONTEXT_INT(Const.MinProgramTextureGatherOffset), extra_ARB_texture_gather"], [ "MAX_PROGRAM_TEXTURE_GATHER_OFFSET", "CONTEXT_INT(Const.MaxProgramTextureGatherOffset), extra_ARB_texture_gather"], # GL_ARB_compute_shader / GLES 3.1 [ "MAX_COMPUTE_WORK_GROUP_INVOCATIONS", "CONTEXT_INT(Const.MaxComputeWorkGroupInvocations), extra_ARB_compute_shader_es31" ], [ "MAX_COMPUTE_UNIFORM_BLOCKS", "CONTEXT_INT(Const.Program[MESA_SHADER_COMPUTE].MaxUniformBlocks), extra_ARB_compute_shader_es31" ], [ "MAX_COMPUTE_TEXTURE_IMAGE_UNITS", "CONTEXT_INT(Const.Program[MESA_SHADER_COMPUTE].MaxTextureImageUnits), extra_ARB_compute_shader_es31" ], [ "MAX_COMPUTE_ATOMIC_COUNTER_BUFFERS", "CONTEXT_INT(Const.Program[MESA_SHADER_COMPUTE].MaxAtomicBuffers), extra_ARB_compute_shader_es31" ], [ "MAX_COMPUTE_ATOMIC_COUNTERS", "CONTEXT_INT(Const.Program[MESA_SHADER_COMPUTE].MaxAtomicCounters), extra_ARB_compute_shader_es31" ], [ "MAX_COMPUTE_SHARED_MEMORY_SIZE", "CONTEXT_INT(Const.MaxComputeSharedMemorySize), extra_ARB_compute_shader_es31" ], [ "MAX_COMPUTE_UNIFORM_COMPONENTS", "CONTEXT_INT(Const.Program[MESA_SHADER_COMPUTE].MaxUniformComponents), extra_ARB_compute_shader_es31" ], [ "MAX_COMPUTE_IMAGE_UNIFORMS", "CONTEXT_INT(Const.Program[MESA_SHADER_COMPUTE].MaxImageUniforms), extra_ARB_compute_shader_es31" ], [ "DISPATCH_INDIRECT_BUFFER_BINDING", "LOC_CUSTOM, TYPE_INT, 0, extra_ARB_compute_shader_es31" ], [ "MAX_COMBINED_COMPUTE_UNIFORM_COMPONENTS", "CONTEXT_INT(Const.Program[MESA_SHADER_COMPUTE].MaxCombinedUniformComponents), extra_ARB_compute_shader_es31" ], # GL_ARB_framebuffer_no_attachments / GLES 3.1 ["MAX_FRAMEBUFFER_WIDTH", "CONTEXT_INT(Const.MaxFramebufferWidth), extra_ARB_framebuffer_no_attachments"], ["MAX_FRAMEBUFFER_HEIGHT", "CONTEXT_INT(Const.MaxFramebufferHeight), extra_ARB_framebuffer_no_attachments"], ["MAX_FRAMEBUFFER_SAMPLES", "CONTEXT_INT(Const.MaxFramebufferSamples), extra_ARB_framebuffer_no_attachments"], # GL_ARB_framebuffer_no_attachments / geometry shader [ "MAX_FRAMEBUFFER_LAYERS", "CONTEXT_INT(Const.MaxFramebufferLayers), extra_ARB_framebuffer_no_attachments_and_geometry_shader" ], # GL_ARB_explicit_uniform_location / GLES 3.1 [ "MAX_UNIFORM_LOCATIONS", "CONTEXT_INT(Const.MaxUserAssignableUniformLocations), extra_ARB_explicit_uniform_location" ], # GL_ARB_separate_shader_objects / GLES 3.1 [ "PROGRAM_PIPELINE_BINDING", "LOC_CUSTOM, TYPE_INT, GL_PROGRAM_PIPELINE_BINDING, NO_EXTRA" ], # GL_ARB_vertex_attrib_binding / GLES 3.1 [ "MAX_VERTEX_ATTRIB_RELATIVE_OFFSET", "CONTEXT_ENUM(Const.MaxVertexAttribRelativeOffset), NO_EXTRA" ], [ "MAX_VERTEX_ATTRIB_BINDINGS", "CONTEXT_ENUM(Const.MaxVertexAttribBindings), NO_EXTRA" ], # GL 4.4 / GLES 3.1 [ "MAX_VERTEX_ATTRIB_STRIDE", "CONTEXT_ENUM(Const.MaxVertexAttribStride), NO_EXTRA" ], # GL_ARB_shader_storage_buffer_object / GLES 3.1 [ "MAX_VERTEX_SHADER_STORAGE_BLOCKS", "CONTEXT_INT(Const.Program[MESA_SHADER_VERTEX].MaxShaderStorageBlocks), extra_ARB_shader_storage_buffer_object_es31" ], [ "MAX_FRAGMENT_SHADER_STORAGE_BLOCKS", "CONTEXT_INT(Const.Program[MESA_SHADER_FRAGMENT].MaxShaderStorageBlocks), extra_ARB_shader_storage_buffer_object_es31" ], [ "MAX_COMPUTE_SHADER_STORAGE_BLOCKS", "CONTEXT_INT(Const.Program[MESA_SHADER_COMPUTE].MaxShaderStorageBlocks), extra_ARB_shader_storage_buffer_object_es31" ], [ "MAX_COMBINED_SHADER_STORAGE_BLOCKS", "CONTEXT_INT(Const.MaxCombinedShaderStorageBlocks), extra_ARB_shader_storage_buffer_object_es31" ], [ "MAX_SHADER_STORAGE_BLOCK_SIZE", "CONTEXT_INT(Const.MaxShaderStorageBlockSize), extra_ARB_shader_storage_buffer_object_es31" ], [ "MAX_SHADER_STORAGE_BUFFER_BINDINGS", "CONTEXT_INT(Const.MaxShaderStorageBufferBindings), extra_ARB_shader_storage_buffer_object_es31" ], [ "SHADER_STORAGE_BUFFER_OFFSET_ALIGNMENT", "CONTEXT_INT(Const.ShaderStorageBufferOffsetAlignment), extra_ARB_shader_storage_buffer_object_es31" ], [ "SHADER_STORAGE_BUFFER_BINDING", "LOC_CUSTOM, TYPE_INT, 0, extra_ARB_shader_storage_buffer_object_es31" ], # GL_ARB_shader_image_load_store / GL_ARB_shader_storage_buffer_object / GLES 3.1 # (MAX_COMBINED_IMAGE_UNITS_AND_FRAGMENT_OUTPUTS in GL_ARB_shader_image_load_store) [ "MAX_COMBINED_SHADER_OUTPUT_RESOURCES", "CONTEXT_INT(Const.MaxCombinedShaderOutputResources), extra_ARB_shader_image_load_store_shader_storage_buffer_object_es31" ], # GL_ARB_texture_cube_map_array [ "TEXTURE_BINDING_CUBE_MAP_ARRAY_ARB", "LOC_CUSTOM, TYPE_INT, TEXTURE_CUBE_ARRAY_INDEX, extra_ARB_texture_cube_map_array_OES_texture_cube_map_array" ], # GL_NUM_SHADING_LANGUAGE_VERSIONS [ "NUM_SHADING_LANGUAGE_VERSIONS", "LOC_CUSTOM, TYPE_INT, 0, extra_version_43" ], ]}, # Enums in OpenGL Core profile and ES 3.0 { "apis": ["GL_CORE", "GLES3"], "params": [ # GL_ARB_gpu_shader5 / GL_OES_shader_multisample_interpolation [ "MIN_FRAGMENT_INTERPOLATION_OFFSET", "CONTEXT_FLOAT(Const.MinFragmentInterpolationOffset), extra_ARB_gpu_shader5_or_OES_sample_variables" ], [ "MAX_FRAGMENT_INTERPOLATION_OFFSET", "CONTEXT_FLOAT(Const.MaxFragmentInterpolationOffset), extra_ARB_gpu_shader5_or_OES_sample_variables" ], [ "FRAGMENT_INTERPOLATION_OFFSET_BITS", "CONST(FRAGMENT_INTERPOLATION_OFFSET_BITS), extra_ARB_gpu_shader5_or_OES_sample_variables" ], ]}, # Enums in OpenGL Core profile and ES 3.1 { "apis": ["GL_CORE", "GLES31"], "params": [ # GL_ARB_draw_indirect / GLES 3.1 [ "DRAW_INDIRECT_BUFFER_BINDING", "LOC_CUSTOM, TYPE_INT, 0, extra_ARB_draw_indirect" ], # GL 3.2 / GL OES_geometry_shader [ "MAX_GEOMETRY_INPUT_COMPONENTS", "CONTEXT_INT(Const.Program[MESA_SHADER_GEOMETRY].MaxInputComponents), extra_version_32_OES_geometry_shader" ], [ "MAX_GEOMETRY_OUTPUT_COMPONENTS", "CONTEXT_INT(Const.Program[MESA_SHADER_GEOMETRY].MaxOutputComponents), extra_version_32_OES_geometry_shader" ], [ "MAX_GEOMETRY_TEXTURE_IMAGE_UNITS", "CONTEXT_INT(Const.Program[MESA_SHADER_GEOMETRY].MaxTextureImageUnits), extra_version_32_OES_geometry_shader" ], [ "MAX_GEOMETRY_OUTPUT_VERTICES", "CONTEXT_INT(Const.MaxGeometryOutputVertices), extra_version_32_OES_geometry_shader" ], [ "MAX_GEOMETRY_TOTAL_OUTPUT_COMPONENTS", "CONTEXT_INT(Const.MaxGeometryTotalOutputComponents), extra_version_32_OES_geometry_shader" ], [ "MAX_GEOMETRY_UNIFORM_COMPONENTS", "CONTEXT_INT(Const.Program[MESA_SHADER_GEOMETRY].MaxUniformComponents), extra_version_32_OES_geometry_shader" ], # GL_ARB_tessellation_shader / also OES and EXT [ "PATCH_VERTICES", "CONTEXT_INT(TessCtrlProgram.patch_vertices), extra_ARB_tessellation_shader" ], [ "PATCH_DEFAULT_OUTER_LEVEL", "CONTEXT_FLOAT4(TessCtrlProgram.patch_default_outer_level), extra_ARB_tessellation_shader" ], [ "PATCH_DEFAULT_INNER_LEVEL", "CONTEXT_FLOAT2(TessCtrlProgram.patch_default_inner_level), extra_ARB_tessellation_shader" ], [ "MAX_TESS_GEN_LEVEL", "CONTEXT_INT(Const.MaxTessGenLevel), extra_ARB_tessellation_shader" ], [ "MAX_PATCH_VERTICES", "CONTEXT_INT(Const.MaxPatchVertices), extra_ARB_tessellation_shader" ], [ "MAX_TESS_CONTROL_UNIFORM_COMPONENTS", "CONTEXT_INT(Const.Program[MESA_SHADER_TESS_CTRL].MaxUniformComponents), extra_ARB_tessellation_shader" ], [ "MAX_TESS_EVALUATION_UNIFORM_COMPONENTS", "CONTEXT_INT(Const.Program[MESA_SHADER_TESS_EVAL].MaxUniformComponents), extra_ARB_tessellation_shader" ], [ "MAX_TESS_CONTROL_TEXTURE_IMAGE_UNITS", "CONTEXT_INT(Const.Program[MESA_SHADER_TESS_CTRL].MaxTextureImageUnits), extra_ARB_tessellation_shader" ], [ "MAX_TESS_EVALUATION_TEXTURE_IMAGE_UNITS", "CONTEXT_INT(Const.Program[MESA_SHADER_TESS_EVAL].MaxTextureImageUnits), extra_ARB_tessellation_shader" ], [ "MAX_TESS_CONTROL_OUTPUT_COMPONENTS", "CONTEXT_INT(Const.Program[MESA_SHADER_TESS_CTRL].MaxOutputComponents), extra_ARB_tessellation_shader" ], [ "MAX_TESS_PATCH_COMPONENTS", "CONTEXT_INT(Const.MaxTessPatchComponents), extra_ARB_tessellation_shader" ], [ "MAX_TESS_CONTROL_TOTAL_OUTPUT_COMPONENTS", "CONTEXT_INT(Const.MaxTessControlTotalOutputComponents), extra_ARB_tessellation_shader" ], [ "MAX_TESS_EVALUATION_OUTPUT_COMPONENTS", "CONTEXT_INT(Const.Program[MESA_SHADER_TESS_EVAL].MaxOutputComponents), extra_ARB_tessellation_shader" ], [ "MAX_TESS_CONTROL_INPUT_COMPONENTS", "CONTEXT_INT(Const.Program[MESA_SHADER_TESS_CTRL].MaxInputComponents), extra_ARB_tessellation_shader" ], [ "MAX_TESS_EVALUATION_INPUT_COMPONENTS", "CONTEXT_INT(Const.Program[MESA_SHADER_TESS_EVAL].MaxInputComponents), extra_ARB_tessellation_shader" ], [ "MAX_TESS_CONTROL_UNIFORM_BLOCKS", "CONTEXT_INT(Const.Program[MESA_SHADER_TESS_CTRL].MaxUniformBlocks), extra_ARB_tessellation_shader" ], [ "MAX_TESS_EVALUATION_UNIFORM_BLOCKS", "CONTEXT_INT(Const.Program[MESA_SHADER_TESS_EVAL].MaxUniformBlocks), extra_ARB_tessellation_shader" ], [ "MAX_COMBINED_TESS_CONTROL_UNIFORM_COMPONENTS", "CONTEXT_INT(Const.Program[MESA_SHADER_TESS_CTRL].MaxCombinedUniformComponents), extra_ARB_tessellation_shader" ], [ "MAX_COMBINED_TESS_EVALUATION_UNIFORM_COMPONENTS", "CONTEXT_INT(Const.Program[MESA_SHADER_TESS_EVAL].MaxCombinedUniformComponents), extra_ARB_tessellation_shader" ], [ "PRIMITIVE_RESTART_FOR_PATCHES_SUPPORTED", "CONTEXT_BOOL(Const.PrimitiveRestartForPatches), extra_ARB_tessellation_shader" ], # GL_ARB_shader_image_load_store / geometry shader [ "MAX_GEOMETRY_IMAGE_UNIFORMS", "CONTEXT_INT(Const.Program[MESA_SHADER_GEOMETRY].MaxImageUniforms), extra_ARB_shader_image_load_store_and_geometry_shader" ], # GL_ARB_shader_image_load_store / tessellation shader [ "MAX_TESS_CONTROL_IMAGE_UNIFORMS", "CONTEXT_INT(Const.Program[MESA_SHADER_TESS_CTRL].MaxImageUniforms), extra_ARB_shader_image_load_store_and_tessellation"], [ "MAX_TESS_EVALUATION_IMAGE_UNIFORMS", "CONTEXT_INT(Const.Program[MESA_SHADER_TESS_EVAL].MaxImageUniforms), extra_ARB_shader_image_load_store_and_tessellation"], # GL_ARB_shader_atomic_counters / geometry shader [ "MAX_GEOMETRY_ATOMIC_COUNTER_BUFFERS", "CONTEXT_INT(Const.Program[MESA_SHADER_GEOMETRY].MaxAtomicBuffers), extra_ARB_shader_atomic_counters_and_geometry_shader " ], [ "MAX_GEOMETRY_ATOMIC_COUNTERS", "CONTEXT_INT(Const.Program[MESA_SHADER_GEOMETRY].MaxAtomicCounters), extra_ARB_shader_atomic_counters_and_geometry_shader" ], # GL_ARB_shader_atomic_counters / tessellation shader [ "MAX_TESS_CONTROL_ATOMIC_COUNTER_BUFFERS", "CONTEXT_INT(Const.Program[MESA_SHADER_TESS_CTRL].MaxAtomicBuffers), extra_ARB_shader_atomic_counters_and_tessellation" ], [ "MAX_TESS_CONTROL_ATOMIC_COUNTERS", "CONTEXT_INT(Const.Program[MESA_SHADER_TESS_CTRL].MaxAtomicCounters), extra_ARB_shader_atomic_counters_and_tessellation" ], [ "MAX_TESS_EVALUATION_ATOMIC_COUNTER_BUFFERS", "CONTEXT_INT(Const.Program[MESA_SHADER_TESS_EVAL].MaxAtomicBuffers), extra_ARB_shader_atomic_counters_and_tessellation" ], [ "MAX_TESS_EVALUATION_ATOMIC_COUNTERS", "CONTEXT_INT(Const.Program[MESA_SHADER_TESS_EVAL].MaxAtomicCounters), extra_ARB_shader_atomic_counters_and_tessellation" ], # GL_ARB_shader_storage_buffer_object / geometry shader [ "MAX_GEOMETRY_SHADER_STORAGE_BLOCKS", "CONTEXT_INT(Const.Program[MESA_SHADER_GEOMETRY].MaxShaderStorageBlocks), extra_ARB_shader_storage_buffer_object_and_geometry_shader" ], # GL_ARB_shader_storage_buffer_object / tessellation shader [ "MAX_TESS_CONTROL_SHADER_STORAGE_BLOCKS", "CONTEXT_INT(Const.Program[MESA_SHADER_TESS_CTRL].MaxShaderStorageBlocks), extra_ARB_shader_storage_buffer_object" ], [ "MAX_TESS_EVALUATION_SHADER_STORAGE_BLOCKS", "CONTEXT_INT(Const.Program[MESA_SHADER_TESS_EVAL].MaxShaderStorageBlocks), extra_ARB_shader_storage_buffer_object" ], # GL_ARB_uniform_buffer_object / geometry shader [ "MAX_GEOMETRY_UNIFORM_BLOCKS", "CONTEXT_INT(Const.Program[MESA_SHADER_GEOMETRY].MaxUniformBlocks), extra_ARB_uniform_buffer_object_and_geometry_shader" ], [ "MAX_COMBINED_GEOMETRY_UNIFORM_COMPONENTS", "CONTEXT_INT(Const.Program[MESA_SHADER_GEOMETRY].MaxCombinedUniformComponents), extra_ARB_uniform_buffer_object_and_geometry_shader" ], # GL_ARB_viewport_array / GL_OES_geometry_shader [ "LAYER_PROVOKING_VERTEX", "CONTEXT_ENUM(Const.LayerAndVPIndexProvokingVertex), extra_ARB_viewport_array_or_oes_geometry_shader" ], # GL_ARB_gpu_shader5 / GL_OES_geometry_shader [ "MAX_GEOMETRY_SHADER_INVOCATIONS", "CONST(MAX_GEOMETRY_SHADER_INVOCATIONS), extra_ARB_gpu_shader5_or_oes_geometry_shader" ], # GL_OES_primitive_bounding_box [ "PRIMITIVE_BOUNDING_BOX_ARB", "CONTEXT_FLOAT8(PrimitiveBoundingBox), extra_OES_primitive_bounding_box" ], # GL_ARB_viewport_array / GL_OES_viewport_array [ "MAX_VIEWPORTS", "CONTEXT_INT(Const.MaxViewports), extra_ARB_viewport_array_or_oes_viewport_array" ], [ "VIEWPORT_SUBPIXEL_BITS", "CONTEXT_INT(Const.ViewportSubpixelBits), extra_ARB_viewport_array_or_oes_viewport_array" ], [ "VIEWPORT_BOUNDS_RANGE", "CONTEXT_FLOAT2(Const.ViewportBounds), extra_ARB_viewport_array_or_oes_viewport_array" ], [ "VIEWPORT_INDEX_PROVOKING_VERTEX", "CONTEXT_ENUM(Const.LayerAndVPIndexProvokingVertex), extra_ARB_viewport_array_or_oes_viewport_array" ], # INTEL_conservative_rasterization [ "CONSERVATIVE_RASTERIZATION_INTEL", "CONTEXT_BOOL(IntelConservativeRasterization), extra_INTEL_conservative_rasterization" ], ]}, { "apis": ["GL_CORE", "GLES32"], "params": [ [ "MULTISAMPLE_LINE_WIDTH_RANGE_ARB", "CONTEXT_FLOAT2(Const.MinLineWidthAA), extra_ES32" ], [ "MULTISAMPLE_LINE_WIDTH_GRANULARITY_ARB", "CONTEXT_FLOAT(Const.LineWidthGranularity), extra_ES32" ], ]}, { "apis": ["GL", "GL_CORE", "GLES32"], "params": [ # GL 3.0 or ES 3.2 [ "CONTEXT_FLAGS", "CONTEXT_INT(Const.ContextFlags), extra_version_30" ], ]}, # Remaining enums are only in OpenGL { "apis": ["GL", "GL_CORE"], "params": [ [ "ACCUM_RED_BITS", "BUFFER_INT(Visual.accumRedBits), NO_EXTRA" ], [ "ACCUM_GREEN_BITS", "BUFFER_INT(Visual.accumGreenBits), NO_EXTRA" ], [ "ACCUM_BLUE_BITS", "BUFFER_INT(Visual.accumBlueBits), NO_EXTRA" ], [ "ACCUM_ALPHA_BITS", "BUFFER_INT(Visual.accumAlphaBits), NO_EXTRA" ], [ "ACCUM_CLEAR_VALUE", "CONTEXT_FIELD(Accum.ClearColor[0], TYPE_FLOATN_4), NO_EXTRA" ], [ "ALPHA_BIAS", "CONTEXT_FLOAT(Pixel.AlphaBias), NO_EXTRA" ], [ "ALPHA_SCALE", "CONTEXT_FLOAT(Pixel.AlphaScale), NO_EXTRA" ], [ "ATTRIB_STACK_DEPTH", "CONTEXT_INT(AttribStackDepth), NO_EXTRA" ], [ "AUTO_NORMAL", "CONTEXT_BOOL(Eval.AutoNormal), NO_EXTRA" ], [ "AUX_BUFFERS", "BUFFER_INT(Visual.numAuxBuffers), NO_EXTRA" ], [ "BLUE_BIAS", "CONTEXT_FLOAT(Pixel.BlueBias), NO_EXTRA" ], [ "BLUE_SCALE", "CONTEXT_FLOAT(Pixel.BlueScale), NO_EXTRA" ], [ "CLIP_DEPTH_MODE", "CONTEXT_ENUM(Transform.ClipDepthMode), extra_ARB_clip_control" ], [ "CLIP_ORIGIN", "CONTEXT_ENUM(Transform.ClipOrigin), extra_ARB_clip_control" ], [ "CLIENT_ATTRIB_STACK_DEPTH", "CONTEXT_INT(ClientAttribStackDepth), NO_EXTRA" ], [ "COLOR_MATERIAL_FACE", "CONTEXT_ENUM(Light.ColorMaterialFace), NO_EXTRA" ], [ "COLOR_MATERIAL_PARAMETER", "CONTEXT_ENUM(Light.ColorMaterialMode), NO_EXTRA" ], [ "CURRENT_INDEX", "CONTEXT_FLOAT(Current.Attrib[VERT_ATTRIB_COLOR_INDEX][0]), extra_flush_current" ], [ "CURRENT_RASTER_COLOR", "CONTEXT_FIELD(Current.RasterColor[0], TYPE_FLOATN_4), NO_EXTRA" ], [ "CURRENT_RASTER_DISTANCE", "CONTEXT_FLOAT(Current.RasterDistance), NO_EXTRA" ], [ "CURRENT_RASTER_INDEX", "CONST(1), NO_EXTRA" ], [ "CURRENT_RASTER_POSITION", "CONTEXT_FLOAT4(Current.RasterPos[0]), NO_EXTRA" ], [ "CURRENT_RASTER_SECONDARY_COLOR", "CONTEXT_FIELD(Current.RasterSecondaryColor[0], TYPE_FLOATN_4), NO_EXTRA" ], [ "CURRENT_RASTER_TEXTURE_COORDS", "LOC_CUSTOM, TYPE_FLOAT_4, 0, extra_valid_texture_unit" ], [ "CURRENT_RASTER_POSITION_VALID", "CONTEXT_BOOL(Current.RasterPosValid), NO_EXTRA" ], [ "DEPTH_BIAS", "CONTEXT_FLOAT(Pixel.DepthBias), NO_EXTRA" ], [ "DEPTH_SCALE", "CONTEXT_FLOAT(Pixel.DepthScale), NO_EXTRA" ], [ "DOUBLEBUFFER", "BUFFER_INT(Visual.doubleBufferMode), NO_EXTRA" ], [ "DRAW_BUFFER", "BUFFER_ENUM(ColorDrawBuffer[0]), NO_EXTRA" ], [ "EDGE_FLAG", "LOC_CUSTOM, TYPE_BOOLEAN, 0, extra_flush_current" ], [ "FEEDBACK_BUFFER_SIZE", "CONTEXT_INT(Feedback.BufferSize), NO_EXTRA" ], [ "FEEDBACK_BUFFER_TYPE", "CONTEXT_ENUM(Feedback.Type), NO_EXTRA" ], [ "FOG_INDEX", "CONTEXT_FLOAT(Fog.Index), NO_EXTRA" ], [ "GREEN_BIAS", "CONTEXT_FLOAT(Pixel.GreenBias), NO_EXTRA" ], [ "GREEN_SCALE", "CONTEXT_FLOAT(Pixel.GreenScale), NO_EXTRA" ], [ "INDEX_BITS", "BUFFER_INT(Visual.indexBits), extra_new_buffers" ], [ "INDEX_CLEAR_VALUE", "CONTEXT_INT(Color.ClearIndex), NO_EXTRA" ], [ "INDEX_MODE", "CONST(0) , NO_EXTRA" ], [ "INDEX_OFFSET", "CONTEXT_INT(Pixel.IndexOffset), NO_EXTRA" ], [ "INDEX_SHIFT", "CONTEXT_INT(Pixel.IndexShift), NO_EXTRA" ], [ "INDEX_WRITEMASK", "CONTEXT_INT(Color.IndexMask), NO_EXTRA" ], [ "LIGHT_MODEL_COLOR_CONTROL", "CONTEXT_ENUM(Light.Model.ColorControl), NO_EXTRA" ], [ "LIGHT_MODEL_LOCAL_VIEWER", "CONTEXT_BOOL(Light.Model.LocalViewer), NO_EXTRA" ], [ "LINE_STIPPLE", "CONTEXT_BOOL(Line.StippleFlag), NO_EXTRA" ], [ "LINE_STIPPLE_PATTERN", "LOC_CUSTOM, TYPE_INT, 0, NO_EXTRA" ], [ "LINE_STIPPLE_REPEAT", "CONTEXT_INT(Line.StippleFactor), NO_EXTRA" ], [ "LINE_WIDTH_GRANULARITY", "CONTEXT_FLOAT(Const.LineWidthGranularity), NO_EXTRA" ], [ "LIST_BASE", "CONTEXT_INT(List.ListBase), NO_EXTRA" ], [ "LIST_INDEX", "LOC_CUSTOM, TYPE_INT, 0, NO_EXTRA" ], [ "LIST_MODE", "LOC_CUSTOM, TYPE_ENUM, 0, NO_EXTRA" ], [ "INDEX_LOGIC_OP", "CONTEXT_BOOL(Color.IndexLogicOpEnabled), NO_EXTRA" ], [ "MAP1_COLOR_4", "CONTEXT_BOOL(Eval.Map1Color4), NO_EXTRA" ], [ "MAP1_GRID_DOMAIN", "CONTEXT_FLOAT2(Eval.MapGrid1u1), NO_EXTRA" ], [ "MAP1_GRID_SEGMENTS", "CONTEXT_INT(Eval.MapGrid1un), NO_EXTRA" ], [ "MAP1_INDEX", "CONTEXT_BOOL(Eval.Map1Index), NO_EXTRA" ], [ "MAP1_NORMAL", "CONTEXT_BOOL(Eval.Map1Normal), NO_EXTRA" ], [ "MAP1_TEXTURE_COORD_1", "CONTEXT_BOOL(Eval.Map1TextureCoord1), NO_EXTRA" ], [ "MAP1_TEXTURE_COORD_2", "CONTEXT_BOOL(Eval.Map1TextureCoord2), NO_EXTRA" ], [ "MAP1_TEXTURE_COORD_3", "CONTEXT_BOOL(Eval.Map1TextureCoord3), NO_EXTRA" ], [ "MAP1_TEXTURE_COORD_4", "CONTEXT_BOOL(Eval.Map1TextureCoord4), NO_EXTRA" ], [ "MAP1_VERTEX_3", "CONTEXT_BOOL(Eval.Map1Vertex3), NO_EXTRA" ], [ "MAP1_VERTEX_4", "CONTEXT_BOOL(Eval.Map1Vertex4), NO_EXTRA" ], [ "MAP2_COLOR_4", "CONTEXT_BOOL(Eval.Map2Color4), NO_EXTRA" ], [ "MAP2_GRID_DOMAIN", "LOC_CUSTOM, TYPE_FLOAT_4, 0, NO_EXTRA" ], [ "MAP2_GRID_SEGMENTS", "CONTEXT_INT2(Eval.MapGrid2un), NO_EXTRA" ], [ "MAP2_INDEX", "CONTEXT_BOOL(Eval.Map2Index), NO_EXTRA" ], [ "MAP2_NORMAL", "CONTEXT_BOOL(Eval.Map2Normal), NO_EXTRA" ], [ "MAP2_TEXTURE_COORD_1", "CONTEXT_BOOL(Eval.Map2TextureCoord1), NO_EXTRA" ], [ "MAP2_TEXTURE_COORD_2", "CONTEXT_BOOL(Eval.Map2TextureCoord2), NO_EXTRA" ], [ "MAP2_TEXTURE_COORD_3", "CONTEXT_BOOL(Eval.Map2TextureCoord3), NO_EXTRA" ], [ "MAP2_TEXTURE_COORD_4", "CONTEXT_BOOL(Eval.Map2TextureCoord4), NO_EXTRA" ], [ "MAP2_VERTEX_3", "CONTEXT_BOOL(Eval.Map2Vertex3), NO_EXTRA" ], [ "MAP2_VERTEX_4", "CONTEXT_BOOL(Eval.Map2Vertex4), NO_EXTRA" ], [ "MAP_COLOR", "CONTEXT_BOOL(Pixel.MapColorFlag), NO_EXTRA" ], [ "MAP_STENCIL", "CONTEXT_BOOL(Pixel.MapStencilFlag), NO_EXTRA" ], [ "MAX_ATTRIB_STACK_DEPTH", "CONST(MAX_ATTRIB_STACK_DEPTH), NO_EXTRA" ], [ "MAX_CLIENT_ATTRIB_STACK_DEPTH", "CONST(MAX_CLIENT_ATTRIB_STACK_DEPTH), NO_EXTRA" ], [ "MAX_EVAL_ORDER", "CONST(MAX_EVAL_ORDER), NO_EXTRA" ], [ "MAX_LIST_NESTING", "CONST(MAX_LIST_NESTING), NO_EXTRA" ], [ "MAX_NAME_STACK_DEPTH", "CONST(MAX_NAME_STACK_DEPTH), NO_EXTRA" ], [ "MAX_PIXEL_MAP_TABLE", "CONST(MAX_PIXEL_MAP_TABLE), NO_EXTRA" ], [ "NAME_STACK_DEPTH", "CONTEXT_INT(Select.NameStackDepth), NO_EXTRA" ], [ "PACK_LSB_FIRST", "CONTEXT_BOOL(Pack.LsbFirst), NO_EXTRA" ], [ "PACK_SWAP_BYTES", "CONTEXT_BOOL(Pack.SwapBytes), NO_EXTRA" ], [ "PACK_INVERT_MESA", "CONTEXT_BOOL(Pack.Invert), NO_EXTRA" ], [ "PIXEL_MAP_A_TO_A_SIZE", "CONTEXT_INT(PixelMaps.AtoA.Size), NO_EXTRA" ], [ "PIXEL_MAP_B_TO_B_SIZE", "CONTEXT_INT(PixelMaps.BtoB.Size), NO_EXTRA" ], [ "PIXEL_MAP_G_TO_G_SIZE", "CONTEXT_INT(PixelMaps.GtoG.Size), NO_EXTRA" ], [ "PIXEL_MAP_I_TO_A_SIZE", "CONTEXT_INT(PixelMaps.ItoA.Size), NO_EXTRA" ], [ "PIXEL_MAP_I_TO_B_SIZE", "CONTEXT_INT(PixelMaps.ItoB.Size), NO_EXTRA" ], [ "PIXEL_MAP_I_TO_G_SIZE", "CONTEXT_INT(PixelMaps.ItoG.Size), NO_EXTRA" ], [ "PIXEL_MAP_I_TO_I_SIZE", "CONTEXT_INT(PixelMaps.ItoI.Size), NO_EXTRA" ], [ "PIXEL_MAP_I_TO_R_SIZE", "CONTEXT_INT(PixelMaps.ItoR.Size), NO_EXTRA" ], [ "PIXEL_MAP_R_TO_R_SIZE", "CONTEXT_INT(PixelMaps.RtoR.Size), NO_EXTRA" ], [ "PIXEL_MAP_S_TO_S_SIZE", "CONTEXT_INT(PixelMaps.StoS.Size), NO_EXTRA" ], [ "POINT_SIZE_GRANULARITY", "CONTEXT_FLOAT(Const.PointSizeGranularity), NO_EXTRA" ], [ "POLYGON_MODE", "CONTEXT_ENUM2(Polygon.FrontMode), NO_EXTRA" ], [ "POLYGON_OFFSET_BIAS_EXT", "CONTEXT_FLOAT(Polygon.OffsetUnits), NO_EXTRA" ], [ "POLYGON_OFFSET_POINT", "CONTEXT_BOOL(Polygon.OffsetPoint), NO_EXTRA" ], [ "POLYGON_OFFSET_LINE", "CONTEXT_BOOL(Polygon.OffsetLine), NO_EXTRA" ], [ "POLYGON_SMOOTH", "CONTEXT_BOOL(Polygon.SmoothFlag), NO_EXTRA" ], [ "POLYGON_SMOOTH_HINT", "CONTEXT_ENUM(Hint.PolygonSmooth), NO_EXTRA" ], [ "POLYGON_STIPPLE", "CONTEXT_BOOL(Polygon.StippleFlag), NO_EXTRA" ], [ "RED_BIAS", "CONTEXT_FLOAT(Pixel.RedBias), NO_EXTRA" ], [ "RED_SCALE", "CONTEXT_FLOAT(Pixel.RedScale), NO_EXTRA" ], [ "RENDER_MODE", "CONTEXT_ENUM(RenderMode), NO_EXTRA" ], [ "RGBA_MODE", "CONST(1), NO_EXTRA" ], [ "SELECTION_BUFFER_SIZE", "CONTEXT_INT(Select.BufferSize), NO_EXTRA" ], [ "STEREO", "BUFFER_INT(Visual.stereoMode), NO_EXTRA" ], [ "TEXTURE_1D", "LOC_CUSTOM, TYPE_BOOLEAN, NO_OFFSET, NO_EXTRA" ], [ "TEXTURE_3D", "LOC_CUSTOM, TYPE_BOOLEAN, NO_OFFSET, NO_EXTRA" ], [ "TEXTURE_BINDING_1D", "LOC_CUSTOM, TYPE_INT, TEXTURE_1D_INDEX, NO_EXTRA" ], [ "TEXTURE_BINDING_1D_ARRAY", "LOC_CUSTOM, TYPE_INT, TEXTURE_1D_ARRAY_INDEX, extra_EXT_texture_array" ], [ "TEXTURE_GEN_S", "LOC_TEXUNIT, TYPE_BIT_0, offsetof(struct gl_texture_unit, TexGenEnabled), NO_EXTRA" ], [ "TEXTURE_GEN_T", "LOC_TEXUNIT, TYPE_BIT_1, offsetof(struct gl_texture_unit, TexGenEnabled), NO_EXTRA" ], [ "TEXTURE_GEN_R", "LOC_TEXUNIT, TYPE_BIT_2, offsetof(struct gl_texture_unit, TexGenEnabled), NO_EXTRA" ], [ "TEXTURE_GEN_Q", "LOC_TEXUNIT, TYPE_BIT_3, offsetof(struct gl_texture_unit, TexGenEnabled), NO_EXTRA" ], [ "UNPACK_LSB_FIRST", "CONTEXT_BOOL(Unpack.LsbFirst), NO_EXTRA" ], [ "UNPACK_SWAP_BYTES", "CONTEXT_BOOL(Unpack.SwapBytes), NO_EXTRA" ], [ "ZOOM_X", "CONTEXT_FLOAT(Pixel.ZoomX), NO_EXTRA" ], [ "ZOOM_Y", "CONTEXT_FLOAT(Pixel.ZoomY), NO_EXTRA" ], # Vertex arrays [ "VERTEX_ARRAY_COUNT_EXT", "CONST(0), NO_EXTRA" ], [ "NORMAL_ARRAY_COUNT_EXT", "CONST(0), NO_EXTRA" ], [ "COLOR_ARRAY_COUNT_EXT", "CONST(0), NO_EXTRA" ], [ "INDEX_ARRAY", "ARRAY_BOOL(VertexAttrib[VERT_ATTRIB_COLOR_INDEX].Enabled), NO_EXTRA" ], [ "INDEX_ARRAY_TYPE", "ARRAY_ENUM(VertexAttrib[VERT_ATTRIB_COLOR_INDEX].Type), NO_EXTRA" ], [ "INDEX_ARRAY_STRIDE", "ARRAY_INT(VertexAttrib[VERT_ATTRIB_COLOR_INDEX].Stride), NO_EXTRA" ], [ "INDEX_ARRAY_COUNT_EXT", "CONST(0), NO_EXTRA" ], [ "TEXTURE_COORD_ARRAY_COUNT_EXT", "CONST(0), NO_EXTRA" ], [ "EDGE_FLAG_ARRAY", "ARRAY_BOOL(VertexAttrib[VERT_ATTRIB_EDGEFLAG].Enabled), NO_EXTRA" ], [ "EDGE_FLAG_ARRAY_STRIDE", "ARRAY_INT(VertexAttrib[VERT_ATTRIB_EDGEFLAG].Stride), NO_EXTRA" ], [ "EDGE_FLAG_ARRAY_COUNT_EXT", "CONST(0), NO_EXTRA" ], # GL_ARB_texture_compression [ "TEXTURE_COMPRESSION_HINT_ARB", "CONTEXT_INT(Hint.TextureCompression), NO_EXTRA" ], # GL_EXT_compiled_vertex_array [ "ARRAY_ELEMENT_LOCK_FIRST_EXT", "CONTEXT_INT(Array.LockFirst), NO_EXTRA" ], [ "ARRAY_ELEMENT_LOCK_COUNT_EXT", "CONTEXT_INT(Array.LockCount), NO_EXTRA" ], # GL_ARB_compressed_texture_pixel_storage [ "UNPACK_COMPRESSED_BLOCK_WIDTH", "CONTEXT_INT(Unpack.CompressedBlockWidth), NO_EXTRA" ], [ "UNPACK_COMPRESSED_BLOCK_HEIGHT", "CONTEXT_INT(Unpack.CompressedBlockHeight), NO_EXTRA" ], [ "UNPACK_COMPRESSED_BLOCK_DEPTH", "CONTEXT_INT(Unpack.CompressedBlockDepth), NO_EXTRA" ], [ "UNPACK_COMPRESSED_BLOCK_SIZE", "CONTEXT_INT(Unpack.CompressedBlockSize), NO_EXTRA" ], [ "PACK_COMPRESSED_BLOCK_WIDTH", "CONTEXT_INT(Pack.CompressedBlockWidth), NO_EXTRA" ], [ "PACK_COMPRESSED_BLOCK_HEIGHT", "CONTEXT_INT(Pack.CompressedBlockHeight), NO_EXTRA" ], [ "PACK_COMPRESSED_BLOCK_DEPTH", "CONTEXT_INT(Pack.CompressedBlockDepth), NO_EXTRA" ], [ "PACK_COMPRESSED_BLOCK_SIZE", "CONTEXT_INT(Pack.CompressedBlockSize), NO_EXTRA" ], # GL_ARB_transpose_matrix [ "TRANSPOSE_MODELVIEW_MATRIX_ARB", "CONTEXT_MATRIX_T(ModelviewMatrixStack), NO_EXTRA" ], [ "TRANSPOSE_PROJECTION_MATRIX_ARB", "CONTEXT_MATRIX_T(ProjectionMatrixStack.Top), NO_EXTRA" ], [ "TRANSPOSE_TEXTURE_MATRIX_ARB", "CONTEXT_MATRIX_T(TextureMatrixStack), NO_EXTRA" ], # GL_EXT_secondary_color [ "COLOR_SUM", "CONTEXT_BOOL(Fog.ColorSumEnabled), NO_EXTRA" ], [ "CURRENT_SECONDARY_COLOR", "CONTEXT_FIELD(Current.Attrib[VERT_ATTRIB_COLOR1][0], TYPE_FLOATN_4), extra_flush_current" ], [ "SECONDARY_COLOR_ARRAY", "ARRAY_BOOL(VertexAttrib[VERT_ATTRIB_COLOR1].Enabled), NO_EXTRA" ], [ "SECONDARY_COLOR_ARRAY_TYPE", "ARRAY_ENUM(VertexAttrib[VERT_ATTRIB_COLOR1].Type), NO_EXTRA" ], [ "SECONDARY_COLOR_ARRAY_STRIDE", "ARRAY_INT(VertexAttrib[VERT_ATTRIB_COLOR1].Stride), NO_EXTRA" ], [ "SECONDARY_COLOR_ARRAY_SIZE", "LOC_CUSTOM, TYPE_INT, 0, NO_EXTRA" ], # GL_EXT_fog_coord [ "CURRENT_FOG_COORDINATE", "CONTEXT_FLOAT(Current.Attrib[VERT_ATTRIB_FOG][0]), extra_flush_current" ], [ "FOG_COORDINATE_ARRAY", "ARRAY_BOOL(VertexAttrib[VERT_ATTRIB_FOG].Enabled), NO_EXTRA" ], [ "FOG_COORDINATE_ARRAY_TYPE", "ARRAY_ENUM(VertexAttrib[VERT_ATTRIB_FOG].Type), NO_EXTRA" ], [ "FOG_COORDINATE_ARRAY_STRIDE", "ARRAY_INT(VertexAttrib[VERT_ATTRIB_FOG].Stride), NO_EXTRA" ], [ "FOG_COORDINATE_SOURCE", "CONTEXT_ENUM(Fog.FogCoordinateSource), NO_EXTRA" ], # GL_NV_fog_distance [ "FOG_DISTANCE_MODE_NV", "CONTEXT_ENUM(Fog.FogDistanceMode), extra_NV_fog_distance" ], # GL_IBM_rasterpos_clip [ "RASTER_POSITION_UNCLIPPED_IBM", "CONTEXT_BOOL(Transform.RasterPositionUnclipped), NO_EXTRA" ], # GL_NV_point_sprite [ "POINT_SPRITE_R_MODE_NV", "CONTEXT_ENUM(Point.SpriteRMode), extra_NV_point_sprite" ], [ "POINT_SPRITE_COORD_ORIGIN", "CONTEXT_ENUM(Point.SpriteOrigin), extra_NV_point_sprite_ARB_point_sprite" ], # GL_NV_texture_rectangle [ "TEXTURE_RECTANGLE_NV", "LOC_CUSTOM, TYPE_BOOLEAN, 0, extra_NV_texture_rectangle" ], [ "TEXTURE_BINDING_RECTANGLE_NV", "LOC_CUSTOM, TYPE_INT, TEXTURE_RECT_INDEX, extra_NV_texture_rectangle" ], [ "MAX_RECTANGLE_TEXTURE_SIZE_NV", "CONTEXT_INT(Const.MaxTextureRectSize), extra_NV_texture_rectangle" ], # GL_EXT_stencil_two_side [ "STENCIL_TEST_TWO_SIDE_EXT", "CONTEXT_BOOL(Stencil.TestTwoSide), extra_EXT_stencil_two_side" ], [ "ACTIVE_STENCIL_FACE_EXT", "LOC_CUSTOM, TYPE_ENUM, NO_OFFSET, NO_EXTRA" ], # GL_NV_light_max_exponent [ "MAX_SHININESS_NV", "CONTEXT_FLOAT(Const.MaxShininess), NO_EXTRA" ], [ "MAX_SPOT_EXPONENT_NV", "CONTEXT_FLOAT(Const.MaxSpotExponent), NO_EXTRA" ], # GL_NV_primitive_restart [ "PRIMITIVE_RESTART_NV", "CONTEXT_BOOL(Array.PrimitiveRestart), extra_NV_primitive_restart" ], [ "PRIMITIVE_RESTART_INDEX_NV", "CONTEXT_INT(Array.RestartIndex), extra_NV_primitive_restart" ], # GL_ARB_vertex_buffer_object [ "INDEX_ARRAY_BUFFER_BINDING_ARB", "LOC_CUSTOM, TYPE_INT, offsetof(struct gl_vertex_array_object, BufferBinding[VERT_ATTRIB_COLOR_INDEX].BufferObj), NO_EXTRA" ], [ "EDGE_FLAG_ARRAY_BUFFER_BINDING_ARB", "LOC_CUSTOM, TYPE_INT, offsetof(struct gl_vertex_array_object, BufferBinding[VERT_ATTRIB_EDGEFLAG].BufferObj), NO_EXTRA" ], [ "SECONDARY_COLOR_ARRAY_BUFFER_BINDING_ARB", "LOC_CUSTOM, TYPE_INT, offsetof(struct gl_vertex_array_object, BufferBinding[VERT_ATTRIB_COLOR1].BufferObj), NO_EXTRA" ], [ "FOG_COORDINATE_ARRAY_BUFFER_BINDING_ARB", "LOC_CUSTOM, TYPE_INT, offsetof(struct gl_vertex_array_object, BufferBinding[VERT_ATTRIB_FOG].BufferObj), NO_EXTRA" ], # GL_ARB_vertex_program # == GL_VERTEX_PROGRAM_NV [ "VERTEX_PROGRAM_ARB", "CONTEXT_BOOL(VertexProgram.Enabled), extra_ARB_vertex_program" ], # == GL_VERTEX_PROGRAM_POINT_SIZE_NV [ "VERTEX_PROGRAM_POINT_SIZE_ARB", "CONTEXT_BOOL(VertexProgram.PointSizeEnabled), extra_ARB_vertex_program" ], # == GL_VERTEX_PROGRAM_TWO_SIDE_NV [ "VERTEX_PROGRAM_TWO_SIDE_ARB", "CONTEXT_BOOL(VertexProgram.TwoSideEnabled), extra_ARB_vertex_program" ], # == GL_MAX_TRACK_MATRIX_STACK_DEPTH_NV [ "MAX_PROGRAM_MATRIX_STACK_DEPTH_ARB", "CONTEXT_INT(Const.MaxProgramMatrixStackDepth), extra_ARB_vertex_program_ARB_fragment_program" ], # == GL_MAX_TRACK_MATRICES_NV [ "MAX_PROGRAM_MATRICES_ARB", "CONTEXT_INT(Const.MaxProgramMatrices), extra_ARB_vertex_program_ARB_fragment_program" ], # == GL_CURRENT_MATRIX_STACK_DEPTH_NV [ "CURRENT_MATRIX_STACK_DEPTH_ARB", "LOC_CUSTOM, TYPE_INT, 0, extra_ARB_vertex_program_ARB_fragment_program" ], # == GL_CURRENT_MATRIX_NV [ "CURRENT_MATRIX_ARB", "LOC_CUSTOM, TYPE_MATRIX, 0, extra_ARB_vertex_program_ARB_fragment_program" ], # == GL_CURRENT_MATRIX_NV [ "TRANSPOSE_CURRENT_MATRIX_ARB", "LOC_CUSTOM, TYPE_MATRIX_T, 0, extra_ARB_vertex_program_ARB_fragment_program" ], # == GL_PROGRAM_ERROR_POSITION_NV [ "PROGRAM_ERROR_POSITION_ARB", "CONTEXT_INT(Program.ErrorPos), extra_ARB_vertex_program_ARB_fragment_program" ], # GL_ARB_fragment_program [ "FRAGMENT_PROGRAM_ARB", "CONTEXT_BOOL(FragmentProgram.Enabled), extra_ARB_fragment_program" ], # GL_EXT_packed_float [ "RGBA_SIGNED_COMPONENTS_EXT", "LOC_CUSTOM, TYPE_INT_4, 0, extra_EXT_packed_float" ], # GL_EXT_depth_bounds_test [ "DEPTH_BOUNDS_TEST_EXT", "CONTEXT_BOOL(Depth.BoundsTest), extra_EXT_depth_bounds_test" ], [ "DEPTH_BOUNDS_EXT", "CONTEXT_FLOAT2(Depth.BoundsMin), extra_EXT_depth_bounds_test" ], # GL_ARB_depth_clamp [ "DEPTH_CLAMP", "CONTEXT_BOOL(Transform.DepthClamp), extra_ARB_depth_clamp" ], # GL_ATI_fragment_shader [ "FRAGMENT_SHADER_ATI", "CONTEXT_BOOL(ATIFragmentShader.Enabled), extra_ATI_fragment_shader" ], [ "NUM_FRAGMENT_REGISTERS_ATI", "CONST(6), extra_ATI_fragment_shader" ], [ "NUM_FRAGMENT_CONSTANTS_ATI", "CONST(8), extra_ATI_fragment_shader" ], [ "NUM_PASSES_ATI", "CONST(2), extra_ATI_fragment_shader" ], [ "NUM_INSTRUCTIONS_PER_PASS_ATI", "CONST(8), extra_ATI_fragment_shader" ], [ "NUM_INSTRUCTIONS_TOTAL_ATI", "CONST(16), extra_ATI_fragment_shader" ], [ "COLOR_ALPHA_PAIRING_ATI", "CONST(GL_TRUE), extra_ATI_fragment_shader" ], [ "NUM_LOOPBACK_COMPONENTS_ATI", "CONST(3), extra_ATI_fragment_shader" ], [ "NUM_INPUT_INTERPOLATOR_COMPONENTS_ATI", "CONST(3), extra_ATI_fragment_shader" ], # GL_EXT_provoking_vertex [ "PROVOKING_VERTEX_EXT", "CONTEXT_ENUM(Light.ProvokingVertex), extra_EXT_provoking_vertex" ], [ "QUADS_FOLLOW_PROVOKING_VERTEX_CONVENTION_EXT", "CONTEXT_BOOL(Const.QuadsFollowProvokingVertexConvention), extra_EXT_provoking_vertex_32" ], # GL_ARB_seamless_cube_map [ "TEXTURE_CUBE_MAP_SEAMLESS", "CONTEXT_BOOL(Texture.CubeMapSeamless), extra_ARB_seamless_cube_map" ], # GL_EXT_texture_integer [ "RGBA_INTEGER_MODE_EXT", "LOC_CUSTOM, TYPE_INT, 0, extra_EXT_texture_integer_and_new_buffers" ], # GL_ARB_transform_feedback3 [ "MAX_TRANSFORM_FEEDBACK_BUFFERS", "CONTEXT_INT(Const.MaxTransformFeedbackBuffers), extra_ARB_transform_feedback3" ], [ "MAX_VERTEX_STREAMS", "CONTEXT_INT(Const.MaxVertexStreams), extra_ARB_transform_feedback3_ARB_gpu_shader5" ], # GL_ARB_color_buffer_float [ "RGBA_FLOAT_MODE_ARB", "BUFFER_FIELD(Visual.floatMode, TYPE_BOOLEAN), extra_core_ARB_color_buffer_float_and_new_buffers" ], # GL3.0 / GL_EXT_framebuffer_sRGB [ "FRAMEBUFFER_SRGB_EXT", "CONTEXT_BOOL(Color.sRGBEnabled), extra_EXT_framebuffer_sRGB" ], [ "FRAMEBUFFER_SRGB_CAPABLE_EXT", "BUFFER_INT(Visual.sRGBCapable), extra_EXT_framebuffer_sRGB_and_new_buffers" ], # GL 3.1 # NOTE: different enum values for GL_PRIMITIVE_RESTART_NV # vs. GL_PRIMITIVE_RESTART! [ "PRIMITIVE_RESTART", "CONTEXT_BOOL(Array.PrimitiveRestart), extra_version_31" ], [ "PRIMITIVE_RESTART_INDEX", "CONTEXT_INT(Array.RestartIndex), extra_version_31" ], # GL 3.2 [ "CONTEXT_PROFILE_MASK", "CONTEXT_INT(Const.ProfileMask), extra_version_32" ], # GL_ARB_timer_query [ "TIMESTAMP", "LOC_CUSTOM, TYPE_INT64, 0, extra_ARB_timer_query" ], # GL_ARB_map_buffer_alignment [ "MIN_MAP_BUFFER_ALIGNMENT", "CONTEXT_INT(Const.MinMapBufferAlignment), NO_EXTRA" ], # GL_ARB_texture_gather [ "MAX_PROGRAM_TEXTURE_GATHER_COMPONENTS_ARB", "CONTEXT_INT(Const.MaxProgramTextureGatherComponents), extra_ARB_texture_gather"], # GL_ARB_shader_image_load_store [ "MAX_IMAGE_SAMPLES", "CONTEXT_INT(Const.MaxImageSamples), extra_ARB_shader_image_load_store" ], # GL_ARB_query_buffer_object [ "QUERY_BUFFER_BINDING", "LOC_CUSTOM, TYPE_INT, 0, extra_ARB_query_buffer_object" ], # GL_ATI_meminfo [ "VBO_FREE_MEMORY_ATI", "LOC_CUSTOM, TYPE_INT_4, NO_OFFSET, extra_ATI_meminfo" ], [ "TEXTURE_FREE_MEMORY_ATI", "LOC_CUSTOM, TYPE_INT_4, NO_OFFSET, extra_ATI_meminfo" ], [ "RENDERBUFFER_FREE_MEMORY_ATI", "LOC_CUSTOM, TYPE_INT_4, NO_OFFSET, extra_ATI_meminfo" ], # GL_NVX_gpu_memory_info [ "GPU_MEMORY_INFO_DEDICATED_VIDMEM_NVX", "LOC_CUSTOM, TYPE_INT, NO_OFFSET, extra_NVX_gpu_memory_info" ], [ "GPU_MEMORY_INFO_TOTAL_AVAILABLE_MEMORY_NVX", "LOC_CUSTOM, TYPE_INT, NO_OFFSET, extra_NVX_gpu_memory_info" ], [ "GPU_MEMORY_INFO_CURRENT_AVAILABLE_VIDMEM_NVX", "LOC_CUSTOM, TYPE_INT, NO_OFFSET, extra_NVX_gpu_memory_info" ], [ "GPU_MEMORY_INFO_EVICTION_COUNT_NVX", "LOC_CUSTOM, TYPE_INT, NO_OFFSET, extra_NVX_gpu_memory_info" ], [ "GPU_MEMORY_INFO_EVICTED_MEMORY_NVX", "LOC_CUSTOM, TYPE_INT, NO_OFFSET, extra_NVX_gpu_memory_info" ], # GL_ARB_cull_distance [ "MAX_CULL_DISTANCES", "CONTEXT_INT(Const.MaxClipPlanes), extra_ARB_cull_distance" ], [ "MAX_COMBINED_CLIP_AND_CULL_DISTANCES", "CONTEXT_INT(Const.MaxClipPlanes), extra_ARB_cull_distance" ], # GL_ARB_compute_variable_group_size [ "MAX_COMPUTE_VARIABLE_GROUP_INVOCATIONS_ARB", "CONTEXT_INT(Const.MaxComputeVariableGroupInvocations), extra_ARB_compute_variable_group_size" ], # GL_ARB_sparse_buffer [ "SPARSE_BUFFER_PAGE_SIZE_ARB", "CONTEXT_INT(Const.SparseBufferPageSize), extra_ARB_sparse_buffer" ], ]}, # Enums restricted to OpenGL Core profile { "apis": ["GL_CORE"], "params": [ # GL_ARB_shader_subroutine [ "MAX_SUBROUTINES", "CONST(MAX_SUBROUTINES), NO_EXTRA" ], [ "MAX_SUBROUTINE_UNIFORM_LOCATIONS", "CONST(MAX_SUBROUTINE_UNIFORM_LOCATIONS), NO_EXTRA" ], # GL_ARB_indirect_parameters [ "PARAMETER_BUFFER_BINDING_ARB", "LOC_CUSTOM, TYPE_INT, 0, extra_ARB_indirect_parameters" ], ]} ]
import string import pandas as pd import numpy as np import sklearn import os from sklearn import preprocessing from sklearn.neighbors import KNeighborsClassifier from random import randint import random import decimal import requests def predictKnn(): print('\n - Lendo o arquivo com o dataset sobre diabetes') data = pd.read_csv('diabetes_test.csv') print(' - Criando X e y para o algoritmo de aprendizagem a partir do arquivo diabetes_dataset') feature_cols = ['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI', 'DiabetesPedigreeFunction', 'Age'] X = data[feature_cols] y = data.Outcome print(' - Criando modelo preditivo') neigh = KNeighborsClassifier(n_neighbors=3) neigh.fit(X, y) print(' - Aplicando modelo e enviando para o servidor') data_app = pd.read_csv('diabetes_sample_test.csv') y_pred = neigh.predict(data_app) URL = "https://aydanomachado.com/MachineLearning/PreProcessing.php" DEV_KEY = "Café com leite" data = {'dev_key': DEV_KEY, 'predictions': pd.Series(y_pred).to_json(orient='values')} r = requests.post(url=URL, data=data) pastebin_url = r.text print(" - Resposta do servidor:\n", r.text, "\n") def generate_norm_data(data): data = data.dropna(thresh=5) data = data.interpolate() data = data.fillna(data.median()) data = data.astype(np.float64) min_max_scaler = preprocessing.MinMaxScaler() np_scaled = min_max_scaler.fit_transform(data) data_norm = pd.DataFrame(np_scaled) return data_norm def multiply_features(data_norm, sample, scalars): pregnancies = scalars[0] glucose = scalars[1] blood_pressure = scalars[2] skin_thickness = scalars[3] insulin = scalars[4] bmi = scalars[5] diabetes_pedigree_function = scalars[6] age = scalars[7] if sample == 0: data_norm.columns = ['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI', 'DiabetesPedigreeFunction', 'Age', 'Outcome'] else: data_norm.columns = ['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI', 'DiabetesPedigreeFunction', 'Age'] data_norm.loc[:, 'Pregnancies'] *= pregnancies data_norm.loc[:, 'Glucose'] *= glucose data_norm.loc[:, 'BloodPressure'] *= blood_pressure data_norm.loc[:, 'SkinThickness'] *= skin_thickness data_norm.loc[:, 'Insulin'] *= insulin data_norm.loc[:, 'BMI'] *= bmi data_norm.loc[:, 'DiabetesPedigreeFunction'] *= diabetes_pedigree_function data_norm.loc[:, 'Age'] *= age data_norm = data_norm.round(6) return data_norm def random_with_range(begin, end): begin *= 10 end *= 10 return float(random.randrange(begin, end))/10 def id_generator(size=10, chars=string.ascii_uppercase + string.digits): return ''.join(random.choice(chars) for _ in range(size)) def neighbors(scalar): constant = 0.5 size = len(scalar) list_of_neighbors = [] for i in range(size): temp1 = scalar.copy() temp2 = scalar.copy() temp1[i] += constant temp2[i] -= constant list_of_neighbors.append(temp1) list_of_neighbors.append(temp2) return list_of_neighbors def predict(best_accuracy, scalars, data, data_sample): accuracy = predictKnn() if accuracy > best_accuracy: best_accuracy = accuracy temp = "best_guesses/accuracy" + str(accuracy) + "KEY" + id_generator() os.mkdir(temp) f = open(temp + "/scalars.txt", "w") file_content = "pregnancies= " + str(scalars[0]) + '\n' file_content += "glucose= " + str(scalars[1]) + '\n' file_content += "blood_pressure= " + str(scalars[2]) + '\n' file_content += "skin_thickness= " + str(scalars[3]) + '\n' file_content += "insulin= " + str(scalars[4]) + '\n' file_content += "bmi= " + str(scalars[5]) + '\n' file_content += "diabetes_pedigree_function= " + str(scalars[6]) + '\n' file_content += "age= " + str(scalars[7]) + '\n' file_content += "accuracy= " + str(accuracy) f.write(file_content) f.close() print(file_content) print("------------------------------------") data.to_csv(temp + "/data_train", index=False) data_sample.to_csv(temp + "/data_test", index=False) return accuracy def test_accuracy(data, data_sample, guess, best_accuracy_global, flag): data_sample = multiply_features(data_sample, 1, guess) data = multiply_features(data, 0, guess) data_sample.to_csv("diabetes_sample_test.csv", index=False) data.to_csv("diabetes_test.csv", index=False) if flag is True: best_accuracy = predict(best_accuracy_global, guess, data, data_sample) else: best_accuracy = predictKnn() return best_accuracy def simulated_annealing(data, data_sample, start, best_accuracy_global): current = start while True: neigh = neighbors(start) best_accuracy = 0 best_neighbor = None for i in neigh: current_accuracy = test_accuracy(data, data_sample, i, best_accuracy_global, False) print(" GUESS", i, " ACCURACY: ", current_accuracy) if current_accuracy > best_accuracy: best_neighbor = i best_accuracy = current_accuracy if best_accuracy <= test_accuracy(data, data_sample, current, best_accuracy_global, False): return current current = best_neighbor def generate_random(i): return random_with_range(0, 5) def scalar(): best_accuracy = 0 count = 0 data_sample = pd.read_csv('diabetes_app.csv') data = pd.read_csv('diabetes_dataset.csv') data_sample = generate_norm_data(data_sample) data = generate_norm_data(data) data_sample.to_csv("diabetes_sample_norm.csv", index=False) data.to_csv("diabetes_norm.csv", index=False) scalars = [1, 1, 1, 1, 1, 1, 1, 1] while True: data_sample = pd.read_csv('diabetes_sample_norm.csv') data = pd.read_csv('diabetes_norm.csv') ans = simulated_annealing(data, data_sample, scalars, best_accuracy) best_accuracy = test_accuracy(data, data_sample, ans, best_accuracy, True) scalars = list(map(generate_random, scalars)) count += 1 def main(): scalar() main()
# coding: utf-8 """ Hydrogen Proton API Financial engineering module of Hydrogen Atom # noqa: E501 OpenAPI spec version: 1.7.18 Contact: info@hydrogenplatform.com Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class BacktestRequest(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'start_date': 'date', 'end_date': 'date', 'model_id': 'str', 'asset_size': 'float', 'initial_weights': 'object', 'settings': 'object', 'trades': 'bool', 'stats': 'bool', 'holdings': 'bool', 'asset_sizes': 'bool' } attribute_map = { 'start_date': 'start_date', 'end_date': 'end_date', 'model_id': 'model_id', 'asset_size': 'asset_size', 'initial_weights': 'initial_weights', 'settings': 'settings', 'trades': 'trades', 'stats': 'stats', 'holdings': 'holdings', 'asset_sizes': 'asset_sizes' } def __init__(self, start_date=None, end_date=None, model_id=None, asset_size=None, initial_weights=None, settings=None, trades=True, stats=True, holdings=True, asset_sizes=True): # noqa: E501 """BacktestRequest - a model defined in Swagger""" # noqa: E501 self._start_date = None self._end_date = None self._model_id = None self._asset_size = None self._initial_weights = None self._settings = None self._trades = None self._stats = None self._holdings = None self._asset_sizes = None self.discriminator = None self.start_date = start_date self.end_date = end_date if model_id is not None: self.model_id = model_id if asset_size is not None: self.asset_size = asset_size if initial_weights is not None: self.initial_weights = initial_weights if settings is not None: self.settings = settings if trades is not None: self.trades = trades if stats is not None: self.stats = stats if holdings is not None: self.holdings = holdings if asset_sizes is not None: self.asset_sizes = asset_sizes @property def start_date(self): """Gets the start_date of this BacktestRequest. # noqa: E501 :return: The start_date of this BacktestRequest. # noqa: E501 :rtype: date """ return self._start_date @start_date.setter def start_date(self, start_date): """Sets the start_date of this BacktestRequest. :param start_date: The start_date of this BacktestRequest. # noqa: E501 :type: date """ if start_date is None: raise ValueError("Invalid value for `start_date`, must not be `None`") # noqa: E501 self._start_date = start_date @property def end_date(self): """Gets the end_date of this BacktestRequest. # noqa: E501 :return: The end_date of this BacktestRequest. # noqa: E501 :rtype: date """ return self._end_date @end_date.setter def end_date(self, end_date): """Sets the end_date of this BacktestRequest. :param end_date: The end_date of this BacktestRequest. # noqa: E501 :type: date """ if end_date is None: raise ValueError("Invalid value for `end_date`, must not be `None`") # noqa: E501 self._end_date = end_date @property def model_id(self): """Gets the model_id of this BacktestRequest. # noqa: E501 :return: The model_id of this BacktestRequest. # noqa: E501 :rtype: str """ return self._model_id @model_id.setter def model_id(self, model_id): """Sets the model_id of this BacktestRequest. :param model_id: The model_id of this BacktestRequest. # noqa: E501 :type: str """ self._model_id = model_id @property def asset_size(self): """Gets the asset_size of this BacktestRequest. # noqa: E501 :return: The asset_size of this BacktestRequest. # noqa: E501 :rtype: float """ return self._asset_size @asset_size.setter def asset_size(self, asset_size): """Sets the asset_size of this BacktestRequest. :param asset_size: The asset_size of this BacktestRequest. # noqa: E501 :type: float """ if asset_size is not None and asset_size < 0: # noqa: E501 raise ValueError("Invalid value for `asset_size`, must be a value greater than or equal to `0`") # noqa: E501 self._asset_size = asset_size @property def initial_weights(self): """Gets the initial_weights of this BacktestRequest. # noqa: E501 :return: The initial_weights of this BacktestRequest. # noqa: E501 :rtype: object """ return self._initial_weights @initial_weights.setter def initial_weights(self, initial_weights): """Sets the initial_weights of this BacktestRequest. :param initial_weights: The initial_weights of this BacktestRequest. # noqa: E501 :type: object """ self._initial_weights = initial_weights @property def settings(self): """Gets the settings of this BacktestRequest. # noqa: E501 :return: The settings of this BacktestRequest. # noqa: E501 :rtype: object """ return self._settings @settings.setter def settings(self, settings): """Sets the settings of this BacktestRequest. :param settings: The settings of this BacktestRequest. # noqa: E501 :type: object """ self._settings = settings @property def trades(self): """Gets the trades of this BacktestRequest. # noqa: E501 :return: The trades of this BacktestRequest. # noqa: E501 :rtype: bool """ return self._trades @trades.setter def trades(self, trades): """Sets the trades of this BacktestRequest. :param trades: The trades of this BacktestRequest. # noqa: E501 :type: bool """ self._trades = trades @property def stats(self): """Gets the stats of this BacktestRequest. # noqa: E501 :return: The stats of this BacktestRequest. # noqa: E501 :rtype: bool """ return self._stats @stats.setter def stats(self, stats): """Sets the stats of this BacktestRequest. :param stats: The stats of this BacktestRequest. # noqa: E501 :type: bool """ self._stats = stats @property def holdings(self): """Gets the holdings of this BacktestRequest. # noqa: E501 :return: The holdings of this BacktestRequest. # noqa: E501 :rtype: bool """ return self._holdings @holdings.setter def holdings(self, holdings): """Sets the holdings of this BacktestRequest. :param holdings: The holdings of this BacktestRequest. # noqa: E501 :type: bool """ self._holdings = holdings @property def asset_sizes(self): """Gets the asset_sizes of this BacktestRequest. # noqa: E501 :return: The asset_sizes of this BacktestRequest. # noqa: E501 :rtype: bool """ return self._asset_sizes @asset_sizes.setter def asset_sizes(self, asset_sizes): """Sets the asset_sizes of this BacktestRequest. :param asset_sizes: The asset_sizes of this BacktestRequest. # noqa: E501 :type: bool """ self._asset_sizes = asset_sizes def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(BacktestRequest, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, BacktestRequest): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
import math import numpy as np import torch import torch.nn as nn import pl_bolts.models.vision.unet as plt_unet import PyGenBrix.dist_layers.common_layers as dl base_slice = (slice(0, None, 1), slice(0, None, 1)) ground_slice = (slice(0, None, 2), slice(0, None, 2)) upsampling_slices = [(slice(1, None, 2), slice(1, None, 2)), (slice(0, None, 2), slice(1, None, 2)), (slice( 1, None, 2), slice(0, None, 2))] def delete_batch_norm_unet(unet): del unet.layers[0].net[1] del unet.layers[0].net[3] for l in range(1, len(unet.layers)//2): del unet.layers[l].net[1].net[1] del unet.layers[l].net[1].net[3] for l in range((len( unet.layers)+1)//2, len(unet.layers)-1 ): del unet.layers[l].conv.net[1] del unet.layers[l].conv.net[3] class _ParallelCNNDistribution(nn.Module): def __init__(self, event_shape, output_distribution_layer, num_upsampling_stages, max_unet_layers=3, num_conditional_channels=None): super(_ParallelCNNDistribution, self).__init__() self.output_distribution_layer = output_distribution_layer num_output_distribution_params = output_distribution_layer.params_size(1) input_channels = event_shape[0] if num_conditional_channels is not None: input_channels += num_conditional_channels base_width = event_shape[1]/2**num_upsampling_stages unet_num_layers = int(min( math.log( base_width )+1, max_unet_layers)) self.base_nets = nn.ModuleList([ plt_unet.UNet(num_classes=num_output_distribution_params, input_channels=input_channels, num_layers=unet_num_layers) for c in range(event_shape[0])]) upsampler_nets = [] for l in range(num_upsampling_stages): output_width = base_width * 2**(l+1) unet_num_layers = int(min(math.log(output_width)+1, max_unet_layers)) upsampler_nets.append( nn.ModuleList([ nn.ModuleList([plt_unet.UNet(num_output_distribution_params, input_channels=input_channels, num_layers=unet_num_layers) for c in range(event_shape[0])]) for s in range(3)])) self.num_upsampling_stages = len(upsampler_nets) self.upsampler_nets = nn.ModuleList(upsampler_nets) self.event_shape = event_shape self.num_conditional_channels = num_conditional_channels #Note this will alter masked_value def log_prob_block(self, upsampled_images, distribution_params, masked_value, block_parallel_cnns, slice): block_log_prob = 0.0 for channel in range(len(block_parallel_cnns)): if distribution_params is not None: network_input = torch.cat((masked_value, distribution_params), dim=1 ) else: network_input = torch.cat([masked_value], dim=1) output_distribution_params = block_parallel_cnns[channel](network_input) block_log_prob += self.output_distribution_layer(output_distribution_params[:,:,slice[0],slice[1]]).log_prob(upsampled_images[:,channel:channel+1,slice[0],slice[1]])["log_prob"] masked_value[:,channel,slice[0],slice[1]] = upsampled_images[:,channel,slice[0],slice[1]] return block_log_prob #Note, alters samples def sample_block(self, samples, distribution_params, block_parallel_cnns, slice, temperature=1.0): for channel in range(len(block_parallel_cnns)): if distribution_params is not None: network_input = torch.cat((samples, distribution_params), dim=1 ) else: network_input = torch.cat([samples], dim=1) output_distribution_params = block_parallel_cnns[channel](network_input) if temperature > .01: samples[:,channel,slice[0],slice[1]] = self.output_distribution_layer(output_distribution_params).sample(temperature)[:,0,slice[0],slice[1]] else: samples[:,channel,slice[0],slice[1]] = self.output_distribution_layer(output_distribution_params).mode()[:,0,slice[0],slice[1]] #Note, alters samples def mode_block(self, samples, distribution_params, block_parallel_cnns, slice): sample_block(samples, distribution_params, block_parallel_cnns, slice, 0.0) def upsampler_log_prob(self, value, distribution_params, parallel_cnns): logging_dict = {} masked_value = torch.zeros_like(value) masked_value[:,:,ground_slice[0],ground_slice[1]] = value[:,:,ground_slice[0],ground_slice[1]] log_prob = 0.0 for s in range(3): block_log_prob = self.log_prob_block(value, distribution_params, masked_value, parallel_cnns[s], upsampling_slices[s]) logging_dict["block"+str(s)+"_log_prob"] = block_log_prob log_prob += block_log_prob logging_dict["log_prob"] = log_prob return logging_dict def upsampler_sample(self, downsampled_images, distribution_params, parallel_nets, temperature=1.0): samples = torch.zeros([downsampled_images.shape[0], downsampled_images.shape[1], downsampled_images.shape[2]*2, downsampled_images.shape[3]*2], device=downsampled_images.device) samples[:,:,ground_slice[0],ground_slice[1]] = downsampled_images for s in range(3): self.sample_block(samples, distribution_params, parallel_nets[s], upsampling_slices[s], temperature) return samples def upsampler_mode(self, downsampled_images, distribution_params, parallel_nets): return upsampler_sample(downsampled_images, distribution_params, parallel_nets, 0.0) def log_prob(self, value, conditionals=None): if self.num_conditional_channels is not None: if value.size()[0] != conditionals.size()[0]: raise RuntimeError("value batch size {}, but conditionals has batch size {}" .format(value.shape[0], conditionals.shape[0])) if value.size()[1:4] != torch.Size( self.event_shape): raise RuntimeError("value shape {}, but event_shape has shape {}" .format(value.shape[1:4], self.event_shape)) base_samples = value[:,:,::2**self.num_upsampling_stages,::2**self.num_upsampling_stages] if conditionals is not None: base_distribution_params = conditionals[:,:,::2**self.num_upsampling_stages,::2**self.num_upsampling_stages] else: base_distribution_params = None logging_dict = {} log_prob = 0.0 masked_value = torch.zeros_like(base_samples) #predict all base pixels log_prob = self.log_prob_block(base_samples, base_distribution_params, masked_value, self.base_nets, base_slice) logging_dict["base_log_prob"] = log_prob.clone() for level in range( self.num_upsampling_stages ): level_subsample_rate = 2**(self.num_upsampling_stages-level-1) if conditionals is not None: upsample_distribution_params = conditionals[:,:,::level_subsample_rate,::level_subsample_rate] else: upsample_distribution_params = None upsample_log_prob_dict = self.upsampler_log_prob( value[:,:,::level_subsample_rate,::level_subsample_rate], upsample_distribution_params, self.upsampler_nets[ level ] ) for k, v in upsample_log_prob_dict.items(): logging_dict["upsample_level_"+str(level)+"/"+k] = upsample_log_prob_dict[k] log_prob += upsample_log_prob_dict["log_prob"] logging_dict["log_prob"] = log_prob return logging_dict def sample(self, conditionals=None, temperature=1.0): with torch.no_grad(): sample = torch.zeros([1, self.event_shape[0], self.event_shape[1]//2**self.num_upsampling_stages, self.event_shape[2]//2**self.num_upsampling_stages ], device=next(self.parameters()).device) base_conditionals = conditionals[:,:,::2**self.num_upsampling_stages,::2**self.num_upsampling_stages] if conditionals is not None else None self.sample_block(sample, base_conditionals, self.base_nets, base_slice, temperature) for level in range(self.num_upsampling_stages): level_subsample_rate = 2**(self.num_upsampling_stages-level-1) upsample_conditionals = conditionals[:,:,::level_subsample_rate,::level_subsample_rate] if conditionals is not None else None sample = self.upsampler_sample( sample, upsample_conditionals, self.upsampler_nets[ level ], temperature) return sample def mode(self, conditionals=None): return self.sample(conditionals, temperature=0.0) class ParallelCNNDistribution(dl.Distribution): def __init__(self, event_shape, output_distribution_layer, num_upsampling_stages, max_unet_layers=3): super(ParallelCNNDistribution, self).__init__() self.distribution = _ParallelCNNDistribution(event_shape, output_distribution_layer, num_upsampling_stages, max_unet_layers=3) class ParallelCNNLayer(dl.Layer): def __init__(self, event_shape, output_distribution_layer, num_upsampling_stages, max_unet_layers, num_conditional_channels): super(ParallelCNNLayer, self).__init__(_ParallelCNNDistribution(event_shape, output_distribution_layer, num_upsampling_stages, max_unet_layers=3, num_conditional_channels=num_conditional_channels))
import json import os from paver.easy import pushd import numpy as np import matplotlib matplotlib.use('Agg') # in the case of perform on server import matplotlib.pyplot as plt import pickle import csv from sklearn import metrics def main(): import argparse parser = argparse.ArgumentParser() parser.add_argument('directory') # opts = parser.parse_args() summary = Summary() figs_dir = 'summary_figs' os.path.exists(figs_dir) or os.mkdir(figs_dir) with pushd(figs_dir): summary.a_rand_index(summary.sample_letters,summary.input_data,'l') summary.a_rand_index(summary.sample_states,summary.input_data2,'s') with open('word_list.txt',"w") as f: for num, key in enumerate(summary.word_list): f.write("iter%d:: " % num) for num2, key2 in enumerate(key): f.write("%d:" % num2 + str(key2) + " ") f.write("\n") # plot sample states and letters for idx in range(summary.data_size): summary.plot_states(idx) plt.savefig('sample_states_%d.png' % idx) summary.plot_state_boundaries(idx) plt.savefig('state_boundary_%d.png' % idx) summary.plot_letters(idx) plt.savefig('sample_letters_%d.png' % idx) plt.clf() class Summary(object): def __init__(self, dirpath = '.'): with open('parameter.json') as f: params = self.params = json.load(f) with open('fig_title.json') as f2: fig_title = self.fig_title = json.load(f2) with open('sample_word_list.txt') as f3: self.word_list = pickle.load(f3) self.data_size = params['DATA_N'] self.input_data=[] self.input_data2=[] for i in fig_title: data_l = np.loadtxt(i + ".txt") data_l2 = np.loadtxt(i + ".lab") self.input_data.append(data_l[0]) self.input_data2.append(data_l2) self.sample_states = [np.loadtxt('sample_states_%d.txt' % i)for i in range(params['DATA_N'])] self.sample_letters = [np.loadtxt('sample_letters_%d.txt' % i)for i in range(params['DATA_N'])] self.state_ranges = [] for i in range(params['DATA_N']): with open('state_ranges_%d.txt' % i) as f: self.state_ranges.append(pickle.load(f)) llist = np.loadtxt("loglikelihood.txt").tolist() self.maxlikelihood = (max(llist), llist.index(max(llist))) def a_rand_index(self,sample_data,true_data,char): RIs=[] for idx in range(len(sample_data[0])): true=[] sample=[] for key,key2 in zip(sample_data,true_data): sample.extend(key[idx]) true.extend(key2) ris=metrics.adjusted_rand_score(true, sample) RIs.append(ris) np.savetxt("aRIs_"+char+".txt",RIs) true=[] sample=[] for key,key2 in zip(sample_data,true_data): sample.extend(key[99]) true.extend(key2) ri=metrics.adjusted_rand_score(true, sample) str="max_adjusted_rand_index_"+char+".txt" f = open(str,'w') writer = csv.writer(f) writer.writerow(["adjusted_rand_score",ri]) def _plot_discreate_sequence(self, true_data, title, sample_data, label = u'', plotopts = {}): ax = plt.subplot2grid((10, 1), (1, 0)) plt.sca(ax) ax.matshow([true_data], aspect = 'auto') plt.ylabel('Truth Label') # label matrix ax = plt.subplot2grid((10, 1), (2, 0), rowspan = 8) plt.suptitle(title) plt.sca(ax) ax.matshow(sample_data, aspect = 'auto', **plotopts) plt.xlabel('Frame') plt.ylabel('Iteration') plt.xticks(()) def _plot_label_boundary(self, true_data, title, sample_data, label = u''): boundaries = [[stop for state, (start, stop) in r] for r in sample_data] size = boundaries[0][-1] data = np.zeros((len(sample_data), size)) for i, b in enumerate(boundaries): for x in b[:-1]: data[i, x] = 1.0 self._plot_discreate_sequence(true_data, title, data, label, plotopts = {'cmap': 'Greys'}) def plot_letters(self, idx): self._plot_discreate_sequence( self.input_data[idx], self.fig_title[idx], self.sample_letters[idx], label=self.sample_letters[idx] ) def plot_states(self, idx): self._plot_discreate_sequence( self.input_data2[idx], self.fig_title[idx], self.sample_states[idx], label=self.sample_states[idx] ) def plot_state_boundaries(self, idx): self._plot_label_boundary( self.input_data2[idx], self.fig_title[idx], self.state_ranges[idx], label=self.sample_states[idx] ) if __name__ == '__main__': main()
from django.urls import path from rest_framework import routers from .views import UniversityViewSet, StudentViewSet, index, students router = routers.DefaultRouter() router.register("university", UniversityViewSet, basename='uni') router.register("students", StudentViewSet) urlpatterns = [ path('index/', index, name='index'), path('show_students/', students, name='show_students') ] urlpatterns += router.urls
import os import sys import cv2 import numpy as np import random def augment_image(input_img, mode): input_img = cv2.imread(input_img) if mode == 2: bright = np.ones(input_img.shape, dtype="uint8") * 70 return cv2.subtract(input_img, bright) elif mode == 3: sharpening = np.array([[-1, -1, -1, [-1, 10, -1], [-1, -1, -1]]]) return cv2.filter2D(image, -1, sharpening) else: bright = np.ones(input_img.shape, dtype="uint8") * 70 return cv2.add(input_img, bright) if __name__ == "__main__": in_dir = "./dataset/" + sys.argv[1] out_dir = "./dataset_new/" + sys.argv[1] augment_mode = sys.argv[2] for data_inner_dir in os.listdir(in_dir): try: for filename in os.listdir(os.path.join(in_dir, data_inner_dir)): if str(filename).endswith(".png"): in_file = os.path.join( os.path.join(in_dir, data_inner_dir), filename ) out_file = os.path.join( os.path.join(out_dir, data_inner_dir), filename ) try: os.remove(out_file) except FileNotFoundError: pass image = augment_image(in_file, augment_mode) cv2.imwrite(out_file, image) except NotADirectoryError: pass
#!/usr/bin/env python #coding:utf-8 """ Author: LICFACE --<licface@yahoo.com> Purpose: Download from Androidfilehost helper Created: 7/18/2018 """ import sys import os import requests from bs4 import BeautifulSoup as bs from urlparse import urlparse from debug import * import re #import cfscrape import argparse import json import idm import wget import traceback class AFH(object): def __init__(self): super(AFH, self) self.URL = 'https://androidfilehost.com/' self.Sess = requests.Session() self.STATUS_CODE = '' def setCookies(self, url = None, cookies = None): ''' ``params:`` * cookies => dict ''' if not cookies: cookies = self.getCookies(url) if not cookies: return {}, '', {} debug(cookies = cookies) cookies_dict = {} cookies_str = '' if cookies.keys(): for i in cookies.keys(): cookies_dict.update({str(i): cookies.get(i),}) cookies_str = cookies_str + str(i) + "=" + str(cookies.get(i)) + ";" debug(cookies_str = cookies_str) debug(cookies_dict = cookies_dict) return cookies, cookies_str, cookies_dict def getCookies(self, url = None, cookies = None): if not url: return False debug(url = url) req = self.Sess.get(url) if not cookies: cookies = req.cookies return cookies def setHeaders(self, accept = 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', connection = '', content_length = '', cache_control = '', upgrade_insecure_requests = '', referer = '', x_mod_sbb_ctype = '', x_requested_with = '', headers_response = None, url = None, cookies = None): if not url: url = self.URL debug(url = url) debug(cookies0 = cookies) cookies, cookies_str, cookies_dict = self.setCookies(url, cookies) host = urlparse(self.URL).netloc headers = {} headers.update({'Accept': accept,}) headers.update({'Accept-Encoding': 'gzip, deflate, br',}) headers.update({'Accept-Language': 'en-US,en;q=0.5',}) if connection: headers.update({'Connection': connection,}) if content_length: headers.update({'Content-Length': content_length,}) #62 if cache_control: headers.update({'Cache-Control': cache_control,}) #max-age=3600 headers.update({'Cookie': cookies_str,}) headers.update({'Host': host,}) if referer: headers.update({'Referer': referer,}) if upgrade_insecure_requests: headers.update({'Upgrade-Insecure-Requests': upgrade_insecure_requests,}) headers.update({'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:62.0) Gecko/20100101 Firefox/62.0',}) if x_mod_sbb_ctype: headers.update({'X_MOD_SBB_CTYPE': x_mod_sbb_ctype,}) if x_requested_with: headers.update({'X-Requested-With': x_requested_with,}) if headers_response: cookies_add_for_header = headers_response.get('Set-Cookie') debug(cookies_add_for_header = cookies_add_for_header) cookies_add_for_header_list = re.split(", |; |", cookies_add_for_header) debug(cookies_add_for_header_list = cookies_add_for_header_list) cookies_add_for_header_dict = {} for i in cookies_add_for_header_list: data = re.split("=", str(i), 1) if len(data) == 2: key, value = data cookies_add_for_header_dict.update({key: value,}) debug(cookies_add_for_header_dict = cookies_add_for_header_dict) if cookies_add_for_header_dict.get('UTGv2'): cookies_dict.update({'UTGv2': cookies_add_for_header_dict.get('UTGv2'),}) if cookies_add_for_header_dict.get('SPSI'): cookies_dict.update({'SPSI': cookies_add_for_header_dict.get('SPSI'),}) if cookies_add_for_header_dict.get('spcsrf'): cookies_dict.update({'spcsrf': cookies_add_for_header_dict.get('spcsrf'),}) if cookies_add_for_header_dict.get('sp_lit'): cookies_dict.update({'sp_lit': cookies_add_for_header_dict.get('sp_lit'),}) debug(cookies_dict = cookies_dict) cookies, cookies_str, cookies_dict = self.setCookies(cookies = cookies) headers.update({'Cookie': cookies_str,}) debug(headers = headers) debug(cookies_str = cookies_str) debug(cookies_dict = cookies_dict) return headers, cookies, cookies_str, cookies_dict def getContent(self, url, headers = None): if '/' in url[0]: url = url[1:] url = self.URL + url debug(url = url) if not headers: headers, cookies, cookies_str, cookies_dict = self.setHeaders(cache_control= 'max-age=3600', upgrade_insecure_requests = '1') debug(headers = headers) req = self.Sess.get(url, cookies = cookies_dict, headers = headers) #print "Content:" #print req.content print "STATUS: {0}[{1}]".format(str(req.status_code), str(req.ok)) return req.cookies, req.headers def getDownloadLink(self, url = 'https://androidfilehost.com/?fid=890129502657592740'): cookies, headers = self.getContent(url) #example: https://androidfilehost.com/?fid=890129502657592740 debug(cookies0= cookies) debug(headers0 = headers) cookies, cookies_str, cookies_dict = self.setCookies(cookies= cookies) debug(cookies_0 = cookies) debug(cookies_str_0 = cookies_str) debug(cookies_dict_0 = cookies_dict) headers, cookies, cookies_str, cookies_dict = self.setHeaders(accept= '*/*', connection= 'keep-alive', content_length= '62', cookies = cookies, headers_response= headers) debug(headers1 = headers) debug(cookies_1 = cookies) debug(cookies_str_1 = cookies_str) debug(cookies_dict_1 = cookies_dict) url1 = self.URL + "libs/otf/mirrors.otf.php" headers.update({'X-MOD-SBB-CTYPE': 'xhr',}) headers.update({'X-Requested-With': 'XMLHttpRequest',}) debug(headers_x = headers) data = { 'action': 'getdownloadmirrors', 'fid': re.split("=", str(urlparse(url).query), 1)[1], 'submit': 'submit', } debug(data = data) debug(url1 = url1) req = self.Sess.post(url1, cookies = cookies, headers = headers, data = data) #cf = cfscrape.create_scraper() #req = cf.get(url1, cookies = cookies, headers = headers, data = data) contents = req.content debug(STATUS_CODE = req.status_code) debug(OK = req.ok) debug(req_content = contents) if req.status_code < 350: self.STATUS_CODE = req.status_code return json.loads(contents) else: self.STATUS_CODE = req.status_code return {} def usage(self): parser = argparse.ArgumentParser(formatter_class= argparse.RawTextHelpFormatter) parser.add_argument('URL', action = 'store', help = 'androidfilehost url, example: https://androidfilehost.com/?fid=890129502657592740') parser.add_argument('-c', '--clip', action = 'store_true', help = "Download url from clipboard") parser.add_argument('-d', '--download', action = 'store_true', help = 'it will download directly, for windows default using IDM if installed and wget (build in) if not exists and for *nix') parser.add_argument('-p', '--path', action = 'store', help =\ 'directory of downloaded', default = os.path.abspath( os.getcwd())) parser.add_argument('-n', '--name', action = 'store', help = 'Option name it') parser.add_argument('-i', '--wget', action = 'store_true', help = 'Use wget (build in) download manager instead') parser.add_argument('-D', '--debug', action = 'store_true', help = 'Debugging Process') if len(sys.argv) == 1: parser.print_help() else: args = parser.parse_args() if args.debug: os.environ.update({'DEBUG': '1',}) else: os.environ.update({'DEBUG': '',}) if args.clip: try: import clipboard except ImportError: print "Module Clipboard not installed, please install before or don't use clip arguments" sys.exit(0) data = self.getDownloadLink(args.URL) if not data: print "Error [%s]: Can't download, please contact support <licface@yahoo.com>" % (str(self.STATUS_CODE)) sys.exit(0) debug(data_message = data.get('MESSAGE')) if 'success' in data.get('MESSAGE'): mirrors = data.get('MIRRORS') if len(mirrors) > 1: n = 1 for i in mirrors: print str(n) + ". " + str(i.get('name')) q = raw_input('Select Server downloading: ') if str(q).isdigit() and not int(q) > len(mirrors): URL = mirrors[int(q)-1].get('url').replace('\\', '') debug(URL_SELECTED = URL) if args.download: if args.wget: if args.name: OUT = os.path.join(args.path, args.name) else: OUT = args.path name = wget.download(str(URL), OUT) print "FILE DOWNLOADED (WGET):", str(name) else: try: #download(self, link, path_to_save=None, output=None, referrer=None, cookie=None, postData=None, user=None, password=None, confirm = False, lflag = None, clip=False) dm = idm.IDMan() dm.download(str(URL), args.path, args.name) print "FILE DOWNLOADING (IDM):",\ os.path.join( args.path,\ os.path.basename(url)) except: if os.getenv('DEBUG') == 1: traceback.format_exc() if args.name: OUT = os.path.join(args.path, args.name) else: OUT = args.path debug(URL = URL) name = wget.download(str(URL), OUT) print "FILE DOWNLOADED (WGET ~ Exception):", str(name) else: URL = mirrors[0].get('url').replace('\\', '') debug(URL_SELECTED = URL) if args.download: if args.wget: if args.name: OUT = os.path.join(args.path, args.name) else: OUT = args.path name = wget.download(URL, OUT) print "FILE DOWNLOADED (WGET):", str(name) else: try: #download(self, link, path_to_save=None, output=None, referrer=None, cookie=None, postData=None, user=None, password=None, confirm = False, lflag = None, clip=False) dm = idm.IDMan() dm.download(str(URL), args.path, args.name) print "FILE DOWNLOADING (IDM):",\ os.path.join( args.path,\ os.path.basename(url)) except: if args.name: OUT = os.path.join(args.path, args.name) else: OUT = args.path name = wget.download(URL, OUT) print "FILE DOWNLOADED (WGET ~ Exception):", str(name) else: print "Can't downloading ... !, please contact support (licface@yahoo.com)" if __name__ == '__main__': c = AFH() c.usage() #url = c.URL #cookies, cookies_str, cookies_dict = c.setCookies(url) #import pprint #pprint.pprint(cookies) #headers = c.setHeaders() #pprint.pprint(headers) #url_content = '?fid=890129502657592740' #cookies1, headers1 = c.getContent(url_content) #print "cookies1 =", cookies1 #print "headers1 =", headers1 #c.getDownloadLink()
sal = float(input('\033[1;37mQual é o salário do funcionário?\033[m')) nsal = sal + (sal * 15/100) print('\033[1;34mUm funcionário que ganhava R${}, com 15% de aumento, passa a receber R${:.2f}'.format(sal, nsal))
# -*- encoding: utf-8 -*- """ License: MIT Copyright (c) 2019 - present AppSeed.us """ from datetime import date from django.contrib.auth.decorators import login_required from django.shortcuts import render, get_object_or_404, redirect from django.template import loader from django.http import HttpResponse from django import template from app import Populate from app.models import personel , complain , crew , task , infrastructure from .forms import NewCrew , NewTask from django.core import serializers import math from numpy import linalg #from app.Populate import * @login_required(login_url="/login/") def index(request): context = {} populating = Populate.Populate("index") taskform = NewTask(request.POST or None) if 'newtask' in request.POST: if taskform.is_valid(): title = taskform.cleaned_data.get("title") text = taskform.cleaned_data.get("text") try: task.objects.create(title = title, text = text ) msgproblem = 'New Task added' except Exception as e: msgproblem = 'No task added' + e else: msgproblem = 'No task added' # data send it lastweekdays = populating.lastweek().get('days') lastweek = populating.lastweek().get('count') sumlastweek = populating.lastweek().get('sum') total = populating.count_incid() resolved = populating.lastweek_resolved().get('count') sumresolved = populating.lastweek_resolved().get('sum') un_complain_table = complain.objects.filter(resolved=False) task_table = task.objects.all() perMonthCosts = populating.perMonthCosts() perTypeIncidents = populating.perTypeIncidents() perTypeFailPos = populating.perTypeFailPos() perMonthIncidents = populating.perMonthIncidents() context = {"lastweek" : lastweek , "lastdays" : lastweekdays , "total" : total, "resolved" : resolved , "unresolved" : un_complain_table , "task_table" : task_table , "NewTask" : taskform , "sumlastweek" : sumlastweek , "sumresolved" : sumresolved, "perMonthCosts" : perMonthCosts , "perTypeIncidents" : perTypeIncidents, "perTypeFailPos" : perTypeFailPos, "perMonthIncidents" : perMonthIncidents} return render(request, "index.html" ,context) @login_required(login_url="/login/") def pages(request): context = {} msg = None msgproblem = None crewform = NewCrew(request.POST or None) # All resource paths end in .html. # Pick out the html file name from the url. And load that template. if 'newcrew' in request.POST: if crewform.is_valid(): name = crewform.cleaned_data.get("name") working_hours = crewform.cleaned_data.get("working_hours") crew_members = crewform.cleaned_data.get("crew_members") complains_id = crewform.cleaned_data.get("complains_id") total = complains_id.count(",") + 1 48 try: crew.objects.create(name = name, working_hours = working_hours, crew_members = crew_members,complains_id=complains_id,total_assigments = total ) msgproblem = 'New crew added' except Exception as e: msgproblem = 'No new crew' + e else: msgproblem = 'No new crew' try: load_template = request.path.split('/')[-1] html_template = loader.get_template( load_template ) if "ui-tables.html" in request.path: crew_table = crew.objects.all() personel_table = personel.objects.all() context = { "table" : personel_table , "crewtable" : crew_table } elif "crew_add.html" in request.path: complain_table = complain.objects.filter(resolved=False) personel_table = personel.objects.all() context = { "comptable" : complain_table , "crewform" : crewform ,"msgproblem" : msgproblem, "pertable" : personel_table } elif "ui-maps.html" in request.path: infrastructure_table = infrastructure.objects.all() data = serializers.serialize("json", infrastructure_table , ensure_ascii=False , fields=('google_location','type' ) ) context = { "infrastructure" : data , "infrastructure_table" : infrastructure_table } elif "ui-notifications.html" in request.path: populating = Populate.Populate("index") perTypeAlerts1 = populating.perTypeAlerts1() perTypeAlerts2 = populating.perTypeAlerts2() perTypeAlerts3 = populating.perTypeAlerts3() perTypeAlerts4 = populating.perTypeAlerts4() perTypeAlerts5 = populating.perTypeAlerts5() perTypeAlerts6 = populating.perTypeAlerts6() curMonthIncidents = populating.curMonthIncidents() curMonthType = populating.curMonthType() curMonthCost = populating.curMonthCost() successfulRepairs = populating.successfulRepairs() context = {"perTypeAlerts1" : perTypeAlerts1 , "perTypeAlerts2" : perTypeAlerts2 , "perTypeAlerts3" : perTypeAlerts3 , "perTypeAlerts4" : perTypeAlerts4 , "perTypeAlerts5" : perTypeAlerts5 , "perTypeAlerts6" : perTypeAlerts6 , "curMonthIncidents" : curMonthIncidents , "curMonthType" : curMonthType, "curMonthCost" : curMonthCost, "successfulRepairs": successfulRepairs} return HttpResponse(html_template.render(context, request)) except template.TemplateDoesNotExist: html_template = loader.get_template( 'error-404.html' ) return HttpResponse(html_template.render(context, request)) except Exception as e: html_template = loader.get_template( 'error-500.html' ) return HttpResponse(e) def forms(request): try: load_template = request.path.split('/')[-1] html_template = loader.get_template( load_template ) return HttpResponse(html_template.render(context, request)) except template.TemplateDoesNotExist: html_template = loader.get_template( 'error-404.html' ) return HttpResponse(html_template.render(context, request)) except: html_template = loader.get_template( 'error-500.html' ) return HttpResponse(html_template.render(context, request)) @login_required(login_url="/login/") def delete(request): if "task" in request.GET: context = {} task.objects.filter(id = request.GET.get('task', '')).delete() return redirect('/') else: context = {} crew.objects.filter(UUID = request.GET.get('crew', '')).delete() return redirect('/ui-tables.html') def crewLogin(theuuid): theuuid.replace(' ','') crewUUID = list(crew.objects.all()) finalUUID = 'crew object (' + theuuid + ')' #return HttpResponse(str(crewUUID)) if str(finalUUID) in str(crewUUID): return True else: return False def euclidianDistance(x1,x2,y1,y2): x = float(sqrt((float(x2)-float(x1)) + (float(y2)-float(y1))**2)) return x def smartPath(): firstTime = True allComplains = complain.objects.all().filter(resolved = False) google_locations = [] startX, startY = 37.9415179, 23.6506794 counter = 0 for entry in allComplains: counter += 1 infID = str(entry.infrastructure_id).replace('infrastructure object (' , '').replace(')', '') findinf = infrastructure.objects.all().filter(UUID = infID) type = '' for result in findinf: type = str(result.google_location).split(',') google_locations.append([float(type[0]),float(type[1])]) answer = float(10000000000000000000000.0) answerX, answerY = 0.0, 0.0 done = [] for k in range(counter): answer = float(10000000000000000000000.0) for coords in google_locations: if([coords[0], coords[1]] not in done): x = math.pow(startX + float(coords[0]) , 2) y = math.pow(startY + float(coords[1]) , 2) final = math.pow(x+y , 0.5) if final < answer: answer = final answerX, answerY = coords[0], coords[1] done.append([startX, startY]) google_locations.remove([answerX, answerY]) startX, startY = float(answerX), float(answerY) done.append([startX, startY]) bigString = '' i = 1 for coords in done: if firstTime: bigString += "You are at " + str(coords) + "\n" firstTime = False else: bigString += "Stop No " + str(i) + " at " + str(coords) + "\n" i += 1 for entry in allComplains: entry.resolved = True entry.save() return bigString def givePreviousComplains(userAFM): userComplains = complain.objects.all().filter(made_afm = userAFM) answer = "" complainResolved= '' counter = 0 for entry in userComplains: counter += 1 if entry.resolved == True: complainResolved = 'Yes' else: complainResolved = 'False' answer += "Complain No " + str(entry.slug) + "\nMade in " + str(entry.created) + "\nNoted: " + str(entry.notes) + "\nResolved: " + complainResolved + "\n\n" if counter > 0: return str(answer) else: return "No complains found with given AFM!" def returnOptions(): toreturn = infrastructure.objects.all() answer = [] for entry in toreturn: answer.append(entry.UUID) answer.append(',') return answer def dbOnCreateResponse(afm, infID, dmgtype): infrIdent = 'infrastructure object (' + infID + ')' infr = infrastructure.objects.all().filter(UUID = infID) for entry in infr: infID = entry try: complain.objects.create(made_afm = afm, infrastructure_id = infID, notes = dmgtype) return 'New complain added' except Exception as e: return e def api(request): if request.method == 'GET': type = request.GET.get('action') #arg = request.GET.get('uuid', '') if type == 'login': theuuid = request.GET.get('uuid') if crewLogin(theuuid): return HttpResponse("crew") else: return HttpResponse("notACrew") elif type == 'ontofix': return HttpResponse(str(smartPath())) elif type == 'previous': userAFM = request.GET.get('afm') return HttpResponse(str(givePreviousComplains(userAFM))) elif type == 'icomplain': afm = request.GET.get('afm') infID = request.GET.get('infID') dmgtype = request.GET.get('type') return HttpResponse(str(dbOnCreateResponse(afm, infID, dmgtype))) elif type == 'givemeoptions': return HttpResponse(returnOptions())
# make sure to install dependencies in 'conversion.requirements.txt' import os import os.path as osp import shutil import sqlite3 import numpy as np import pandas as pd import tables as pytables import mdtraj as mdj from wepy.util.mdtraj import mdtraj_to_json_topology from wepy.util.json_top import json_top_chain_df, json_top_residue_df, json_top_atom_df traj = mdj.load('../lysozyme_pxylene.pdb') if osp.exists("outputs"): shutil.rmtree("outputs") os.makedirs("outputs") # the JSON format json_top = mdtraj_to_json_topology(traj.top) with open('outputs/lysozyme_pxylene.top.json', 'w') as wf: wf.write(json_top) # FASTA residue sequence fasta_str = traj.top.to_fasta(chain=0) with open('outputs/lysozyme_pxylene.res.fasta', 'w') as wf: wf.write(fasta_str) ## topology tables # Bonds # you can get a table using mdtraj, but we just use the bonds here mdj_atoms_df, bonds = traj.top.to_dataframe() # just the first two columns (atom indices) for our purposes bonds = bonds[:,0:2] # we can just write this multiple ways with numpy np.savetxt('outputs/lysozyme_pxylene.bonds.npy_txt', bonds) np.save('outputs/lysozyme_pxylene.bonds.npy', bonds) # make a pandas data frame bond_df = pd.DataFrame(bonds) # but wepy provides the ability to get normalized versions for each # level chain_df = json_top_chain_df(json_top) residue_df = json_top_residue_df(json_top) atom_df = json_top_atom_df(json_top) bond_df.to_csv('outputs/lysozyme_pxylene.bond.csv', index=False) chain_df.to_csv('outputs/lysozyme_pxylene.chain.csv', index=False) residue_df.to_csv('outputs/lysozyme_pxylene.residue.csv', index=False) atom_df.to_csv('outputs/lysozyme_pxylene.atom.csv', index=False) # to an SQLite3 database db = sqlite3.Connection("outputs/lysozyme_pxylene.sqlite3") bond_df.to_sql('bonds', db) chain_df.to_sql('chains', db) residue_df.to_sql('residues', db) atom_df.to_sql('atoms', db) # to an HDF5 file bond_df.to_hdf('outputs/lysozyme_pxylene.top.h5', 'bonds') chain_df.to_hdf('outputs/lysozyme_pxylene.top.h5', 'chains') residue_df.to_hdf('outputs/lysozyme_pxylene.top.h5', 'residues') atom_df.to_hdf('outputs/lysozyme_pxylene.top.h5', 'atoms') # to an excel spreadsheet with pd.ExcelWriter('outputs/lysozyme_pxylene.top.xlsx', mode='r+') as writer: bond_df.to_excel(writer, sheet_name='bonds') chain_df.to_excel(writer, sheet_name='chains') residue_df.to_excel(writer, sheet_name='residues') atom_df.to_excel(writer, sheet_name='atoms') ## coordinates # separately, in binary format coords = traj.xyz np.savez('outputs/lysozyme_pxylene_reference.npz', coords)
from __future__ import print_function import os import shutil import re import hashlib try: from urllib.request import urlretrieve except ImportError: from urllib import urlretrieve from setuptools import setup from distutils.core import Extension def download_url(url): package = os.path.basename(url) if not os.path.isfile(package): print('Downloading', url) urlretrieve(url, package+'.download') os.rename(package+'.download', package) return package ASF_URL = 'https://archive.apache.org/dist/' APR_VERSION = '1.7.0' APR_UTIL_VERSION = '1.6.1' HTTPD_VERSION = '2.4.48' APR_URL = ASF_URL + 'apr/apr-%s.tar.gz' % APR_VERSION APR_UTIL_URL = ASF_URL + 'apr/apr-util-%s.tar.gz' % APR_UTIL_VERSION HTTPD_URL = ASF_URL + 'httpd/httpd-%s.tar.gz' % HTTPD_VERSION download_url(APR_URL) download_url(APR_UTIL_URL) download_url(HTTPD_URL) PCRE_VERSION = '8.45' PCRE_URL = 'https://ftp.pcre.org/pub/pcre/pcre-%s.tar.gz' % PCRE_VERSION download_url(PCRE_URL) VERSIONS_HASH = ':'.join([APR_VERSION, APR_UTIL_VERSION, PCRE_VERSION, HTTPD_VERSION]) if not isinstance(VERSIONS_HASH, bytes): VERSIONS_HASH = VERSIONS_HASH.encode('UTF-8') VERSIONS_HASH = hashlib.md5(VERSIONS_HASH).hexdigest() VERSION_HASH_FILE = os.path.join('build', VERSIONS_HASH) if not os.path.isfile(VERSION_HASH_FILE): if not os.path.isdir('build'): os.mkdir('build') shutil.rmtree('build/httpd', ignore_errors=True) builddir = os.path.join(os.getcwd(), 'build/httpd') shutil.rmtree('src/httpd', ignore_errors=True) destdir = os.path.join(os.getcwd(), 'src/httpd') res = os.system('rm -rf build/apr-%(version)s && ' 'tar -x -v -C build -f apr-%(version)s.tar.gz && ' 'cd build/apr-%(version)s && ' './configure --prefix=%(builddir)s && ' 'make && make install' % dict(builddir=builddir, version=APR_VERSION)) if res: raise RuntimeError('Failed to build APR.') res = os.system('rm -rf build/apr-util-%(version)s && ' 'tar -x -v -C build -f apr-util-%(version)s.tar.gz && ' 'cd build/apr-util-%(version)s && ' './configure --prefix=%(builddir)s ' '--with-apr=%(builddir)s/bin/apr-1-config && ' 'make && make install' % dict(builddir=builddir, version=APR_UTIL_VERSION)) if res: raise RuntimeError('Failed to build APR-UTIL.') res = os.system('rm -rf build/pcre-%(version)s && ' 'tar -x -v -C build -f pcre-%(version)s.tar.gz && ' 'cd build/pcre-%(version)s && ' './configure --prefix=%(builddir)s ' '--disable-cpp && ' 'make && make install' % dict(builddir=builddir, version=PCRE_VERSION)) if res: raise RuntimeError('Failed to build PCRE.') res = os.system('rm -rf build/httpd-%(version)s && ' 'tar -x -v -C build -f httpd-%(version)s.tar.gz && ' 'cd build/httpd-%(version)s && ' './configure --prefix=%(builddir)s ' '--enable-mpms-shared=all --enable-so --enable-rewrite ' '--with-apr=%(builddir)s/bin/apr-1-config ' '--with-apr-util=%(builddir)s/bin/apu-1-config ' '--with-pcre=%(builddir)s/bin/pcre-config && ' 'make && make install' % dict(builddir=builddir, version=HTTPD_VERSION)) if res: raise RuntimeError('Failed to build HTTPD.') shutil.rmtree('build/httpd/build-1', ignore_errors=True) shutil.rmtree('build/httpd/cgi-bin', ignore_errors=True) shutil.rmtree('build/httpd/error', ignore_errors=True) shutil.rmtree('build/httpd/htdocs', ignore_errors=True) shutil.rmtree('build/httpd/icons', ignore_errors=True) shutil.rmtree('build/httpd/logs', ignore_errors=True) shutil.rmtree('build/httpd/man', ignore_errors=True) shutil.rmtree('build/httpd/manual', ignore_errors=True) shutil.rmtree('build/httpd/share', ignore_errors=True) with open('build/httpd/build/config_vars.mk') as fpin: config_vars = fpin.readlines() with open('build/httpd/build/config_vars.mk', 'w') as fpout: prefix = re.escape(os.path.join(os.getcwd(), 'build/httpd')) for line in config_vars: line = re.sub(prefix, '${mod_wsgi_httpd_prefix}', line) print(line, end='', file=fpout) shutil.move(builddir, destdir) open('src/httpd/__init__.py', 'a').close() open(VERSION_HASH_FILE, 'a').close() package_files = [] for root, dirs, files in os.walk('src/httpd', topdown=False): for name in files: path = os.path.join(root, name).split('/', 1)[1] package_files.append(path) print('adding ', path) long_description = open('README.rst').read() setup(name = 'mod_wsgi-httpd', version = '%s.1' % HTTPD_VERSION, description = 'Installer for Apache httpd server.', long_description = long_description, author = 'Graham Dumpleton', author_email = 'Graham.Dumpleton@gmail.com', maintainer = 'Graham Dumpleton', maintainer_email = 'Graham.Dumpleton@gmail.com', url = 'http://www.modwsgi.org/', bugtrack_url = 'https://github.com/GrahamDumpleton/mod_wsgi-httpd/issues', license = 'Apache License, Version 2.0', platforms = [], download_url = None, classifiers= [ 'Development Status :: 6 - Mature', 'License :: OSI Approved :: Apache Software License', 'Operating System :: MacOS :: MacOS X', 'Operating System :: POSIX', 'Operating System :: POSIX :: BSD', 'Operating System :: POSIX :: Linux', 'Operating System :: POSIX :: SunOS/Solaris', 'Programming Language :: Python', 'Programming Language :: Python :: Implementation :: CPython', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Topic :: Internet :: WWW/HTTP :: WSGI', 'Topic :: Internet :: WWW/HTTP :: WSGI :: Server' ], packages = ['mod_wsgi_packages', 'mod_wsgi_packages.httpd', 'mod_wsgi_packages.apxs'], package_dir = {'mod_wsgi_packages': 'src'}, package_data = {'mod_wsgi_packages': package_files}, ext_modules = [Extension("mod_wsgi_packages.apxs._dummy", ["_module.c"])], entry_points = { 'console_scripts': ['mod_wsgi-apxs = mod_wsgi_packages.apxs.__main__:main'],}, )
from graphene import ObjectType, Schema from api.schema import ArticleListQuery class Query(ArticleListQuery, ObjectType): pass schema = Schema(query=Query)
#!/usr/bin/env python3 # ============================================================== # author: Lars Gabriel # # eval_exp1.py: Evaluate a set of partitions from a genome for: # BRAKER1, BRAKER2, TSEBRA_default # ============================================================== import argparse import subprocess as sp import os import csv import sys class EvalError(Exception): pass species_dir = '' modes = ['cds', 'trans', 'gene'] measures = ['F1', 'Sn', 'Sp'] methods = ['BRAKER1', 'BRAKER2', 'TSEBRA_default'] methods_files = ['braker1/braker.gtf', 'braker2/{}/braker.gtf', 'tsebra_default/{}/tsebra_default.gtf'] test_level = '' def main(): global species_dir, test_level args = parseCmd() species_dir = os.path.abspath(args.species_dir) test_level = args.test_level methods_files[1] = methods_files[1].format(args.test_level) methods_files[2] = methods_files[2].format(args.test_level) eval = {} for method, gene_pred in zip(methods, methods_files): eval.update({method : evaluation('{}/{}'.format(species_dir, gene_pred))}) for mea in measures: single_eval(eval, mea) sys.stderr.write('### Finished, results are located in ' \ + '{}/tsebra_default/{}/\n'.format(species_dir, test_level)) def single_eval(eval, mea): # prints a table for one measure (row = species, col = mode_method) # header tab = [] line = [] for mo in modes: line += [' ', mo, ' '] tab.append(line) tab.append([] + methods*3) # body line = [] for mo in modes: for meth in methods: line.append(round(eval[meth][mo][mea],2)) tab.append(line) csv_writer(tab, '{}/tsebra_default/{}/{}.eval.tab'.format(species_dir, test_level, mea)) def csv_writer(tab, out_path): with open(out_path, 'w+') as file: table = csv.writer(file, delimiter='\t') for line in tab: table.writerow(line) def evaluation(gene_pred): # compute for all measures (F1, Sn, Sp) on all eval_level (gene, transcript and CDS) # returns dict eval[eval_level][measure] = value eval = {} # run evaluation script cmd = "compute_accuracies.sh {}/annot/annot.gtf {}/annot/pseudo.gff3 {} gene trans cds".\ format(species_dir, species_dir, gene_pred) p = sp.Popen(cmd, shell=True, stdout=sp.PIPE, stderr=sp.PIPE) stdout, stderr = p.communicate() if stderr.decode(): raise EvalError(stderr.decode()) stdout = stdout.decode() stdout = [s.split('\t') for s in stdout.split('\n') if s] # read result into eval for line in stdout: eval_level, measure = line[0].split('_') if eval_level not in eval: eval.update({eval_level : {}}) eval[eval_level].update({measure : float(line[1])}) # add F1 score for key in eval: eval[key].update({'F1' : (2 * eval[key]['Sn'] * eval[key]['Sp']) / \ (eval[key]['Sn'] + eval[key]['Sp'])}) return eval def parseCmd(): """Parse command line arguments Returns: dictionary: Dictionary with arguments """ parser = argparse.ArgumentParser(description='Evaluate predictions ' \ + 'from: BRAKER1, BRAKER2, TSEBRA_default ') parser.add_argument('--test_level', type=str, help='One of "species_excluded", "family_excluded" or "order_excluded"') parser.add_argument('--species_dir', type=str, help='Directory containing the results of TSEBRA-experiment 1 for one species') return parser.parse_args() if __name__ == '__main__': main()
from sprocket.lib import * from sprocket.run import BLUEPRINT, prepare
#!/usr/bin/env python3 """Calculates the Frechet Inception Distance (FID) to evalulate GANs The FID metric calculates the distance between two distributions of images. Typically, we have summary statistics (mean & covariance matrix) of one of these distributions, while the 2nd distribution is given by a GAN. When run as a stand-alone program, it compares the distribution of images that are stored as PNG/JPEG at a specified location with a distribution given by summary statistics (in pickle format). The FID is calculated by assuming that X_1 and X_2 are the activations of the pool_3 layer of the inception net for generated samples and real world samples respectivly. See --help to see further details. Code apapted from https://github.com/bioinf-jku/TTUR to use PyTorch instead of Tensorflow Copyright 2018 Institute of Bioinformatics, JKU Linz Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import os import torch.backends.cudnn as cudnn import pathlib import cv2 from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter import torch import numpy as np from scipy.misc import imread from scipy import linalg from torch.autograd import Variable from torch.nn.functional import adaptive_avg_pool2d from inception import InceptionV3 import shutil import random from options.train_options import TrainOptions opt = TrainOptions().parse() # import option # from desnet import DenseNet # parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter) # parser.add_argument('--path0', type=str, default='/home/jingjie/xinzi/dataset/CelebA/img_align_celeba', help=('Path to the generated images or to .npz statistic files')) # parser.add_argument('--path1', type=str, default='/home/jingjie/xinzi/dataset/test_celeba', help=('Path to the generated images or to .npz statistic files')) # parser.add_argument('--batch-size', type=int, default=1, help='Batch size to use') # parser.add_argument('--dims', type=int, default=2048, choices=list(InceptionV3.BLOCK_INDEX_BY_DIM), help=('Dimensionality of Inception features to use.By default, uses pool3 features')) # parser.add_argument('-c', '--gpu', default='1', type=str, help='GPU to use (leave blank for CPU only)') def get_activations(images, model, batch_size=64, dims=2048, cuda=False, verbose=False):#dim=2048 """Calculates the activations of the pool_3 layer for all images. Params: -- images : Numpy array of dimension (n_images, 3, hi, wi). The values must lie between 0 and 1. -- model : Instance of inception model -- batch_size : the images numpy array is split into batches with batch size batch_size. A reasonable batch size depends on the hardware. -- dims : Dimensionality of features returned by Inception -- cuda : If set to True, use GPU -- verbose : If set to True and parameter out_step is given, the number of calculated batches is reported. Returns: -- A numpy array of dimension (num images, dims) that contains the activations of the given tensor when feeding inception with the query tensor. """ model.eval() d0 = images.shape[0] if batch_size > d0: print(('Warning: batch size is bigger than the data size. ' 'Setting batch size to data size')) batch_size = d0 n_batches = d0 // batch_size n_used_imgs = n_batches * batch_size pred_arr = np.empty((n_used_imgs, dims)) for i in range(n_batches): # if verbose: # print('\rPropagating batch %d/%d' % (i + 1, n_batches), # end='', flush=True) start = i * batch_size end = start + batch_size batch = torch.from_numpy(images[start:end]).type(torch.FloatTensor) batch = Variable(batch, volatile=True) if cuda: batch = batch.cuda() # pred = model(batch)[0] # pred(bs*2048*1*1) pred = model(batch)[-1] # If model output is not scalar, apply global spatial average pooling. # This happens if you choose a dimensionality not equal 2048. # if pred.shape[2] != 1 or pred.shape[3] != 1: # pred = adaptive_avg_pool2d(pred, output_size=(1, 1)) pred_arr[start:end] = pred.cpu().data.numpy().reshape(batch_size, -1) if verbose: print(' done') return pred_arr def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6): """Numpy implementation of the Frechet Distance. The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1) and X_2 ~ N(mu_2, C_2) is d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)). Stable version by Dougal J. Sutherland. Params: -- mu1 : Numpy array containing the activations of a layer of the inception net (like returned by the function 'get_predictions') for generated samples. -- mu2 : The sample mean over activations, precalculated on an representive data set. -- sigma1: The covariance matrix over activations for generated samples. -- sigma2: The covariance matrix over activations, precalculated on an representive data set. Returns: -- : The Frechet Distance. """ mu1 = np.atleast_1d(mu1) mu2 = np.atleast_1d(mu2) sigma1 = np.atleast_2d(sigma1) sigma2 = np.atleast_2d(sigma2) assert mu1.shape == mu2.shape, \ 'Training and test mean vectors have different lengths' assert sigma1.shape == sigma2.shape, \ 'Training and test covariances have different dimensions' diff = mu1 - mu2 # Product might be almost singular covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False) if not np.isfinite(covmean).all(): msg = ('fid calculation produces singular product; ' 'adding %s to diagonal of cov estimates') % eps print(msg) offset = np.eye(sigma1.shape[0]) * eps covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset)) # Numerical error might give slight imaginary component if np.iscomplexobj(covmean): if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3): m = np.max(np.abs(covmean.imag)) raise ValueError('Imaginary component {}'.format(m)) covmean = covmean.real tr_covmean = np.trace(covmean) return (diff.dot(diff) + np.trace(sigma1) + np.trace(sigma2) - 2 * tr_covmean) def calculate_activation_statistics(images, model, batch_size=64, dims=2048, cuda=False, verbose=False): """Calculation of the statistics used by the FID. Params: -- images : Numpy array of dimension (n_images, 3, hi, wi). The values must lie between 0 and 1. -- model : Instance of inception model -- batch_size : The images numpy array is split into batches with batch size batch_size. A reasonable batch size depends on the hardware. -- dims : Dimensionality of features returned by Inception -- cuda : If set to True, use GPU -- verbose : If set to True and parameter out_step is given, the number of calculated batches is reported. Returns: -- mu : The mean over samples of the activations of the pool_3 layer of the inception model. -- sigma : The covariance matrix of the activations of the pool_3 layer of the inception model. """ act = get_activations(images, model, batch_size, dims, cuda, verbose)#(80,2048) mu = np.mean(act, axis=0)#(2048,) sigma = np.cov(act, rowvar=False)#(2048,2048) return mu, sigma def _compute_statistics_of_path(path, model, batch_size, dims, cuda): if path.endswith('.npz'): f = np.load(path) m, s = f['mu'][:], f['sigma'][:] f.close() else: path = pathlib.Path(path) files = list(path.glob('*.jpg')) + list(path.glob('*.png')) # print (files[0]) imgs = np.array([imread(str(fn),mode = 'RGB').astype(np.float32) for fn in files]) # imgs=imgs[:,:,:,np.newaxis] print(imgs.shape) ##the same size of every pic imgs = imgs.transpose((0, 3, 1, 2)) # Rescale images to be between 0 and 1 imgs /= 255 # #patch imgs = torch.from_numpy(imgs) imgs=torch.nn.functional.unfold(input=imgs,kernel_size=(128,128),stride=(128,128)).transpose(1,2) imgs=imgs.reshape(-1,3,128,128).numpy() print(imgs.shape,"3333333") m, s = calculate_activation_statistics(imgs, model, batch_size, dims, cuda) ## different size of every pic # for i in range(0,len(imgs)): # # Bring images to shape (B, 3, H, W) # img = imgs[i] # img = img[np.newaxis,:,:,:] # print (img.shape) # img = img.transpose((0, 3, 1, 2)) # # Rescale images to be between 0 and 1 # img /= 255 # m, s = calculate_activation_statistics(img, model, batch_size, dims, cuda) return m, s def calculate_fid_given_paths(paths0, paths1, batch_size, cuda, dims): """Calculates the FID of two paths""" ''' for p in paths: if not os.path.exists(p): raise RuntimeError('Invalid path: %s' % p) ''' block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims] # device = 'cuda' if torch.cuda.is_available() else 'cpu' model = InceptionV3([block_idx]) #class # model = DenseNet(growthRate=6, depth=10, reduction=0.5, bottleneck=True, nClasses=11) if cuda: model.cuda() ''' if device == 'cuda': model = torch.nn.DataParallel(model) cudnn.benchmark = True ''' m1, s1 = _compute_statistics_of_path(paths0, model, batch_size, dims, cuda)#[80,2018] m2, s2 = _compute_statistics_of_path(paths1, model, batch_size, dims, cuda) fid_value = calculate_frechet_distance(m1, s1, m2, s2) return fid_value def random_copyfile(srcPath, dstPath, numfiles): name_list = list(os.path.join(srcPath, name) for name in os.listdir(srcPath)) random_name_list = list(random.sample(name_list, numfiles)) if not os.path.exists(dstPath): os.mkdir(dstPath) for oldname in random_name_list: shutil.copyfile(oldname, oldname.replace(srcPath, dstPath)) # if __name__ == '__main__': # # path1 = './output/700' # # # path1 = '/home/lingna/dataset/cuhk_a' # # path2 = '/home/lingna/dataset/cuhk_a' # # fid_value = calculate_fid_given_paths(path1, path2, 8, 1, 2048) # # print(fid_value) # for i in range(1, 11): # path1 = '/home/lingna/dataset/HumanRankedDataset/version_10/'+ str(i) + '/rank0' # # path1 = '/home/lingna/dataset/cuhk_a' # path2 = '/home/lingna/dataset/HumanRankedDataset/version_10/'+ str(i) + '/rank1' # path3 = '/home/lingna/dataset/HumanRankedDataset/version_10/'+ str(i) + '/rank2' # # fid_value1 = calculate_fid_given_paths(path1, path2, 8, 1, 2048) # fid_value2 = calculate_fid_given_paths(path1, path3, 8, 1, 2048) # print('part:%d, rank0-rank1:%.4f, rank0-rank2:%.4f' % (i, fid_value1, fid_value2)) if __name__ == '__main__': # opt = option.init() # f = open(opt.FID, 'a') # device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu") # for i in range(200,801,20): # print(i) # fid_value = calculate_fid_given_paths('/home/lixiang/lx/pix2pix-pytorch-master/output/CUHK_CLASS/'+str(i),'/home/lixiang/dataset/photosketch/CUFS/test/sketch', 8, opt.gpuid != '', 2048) # print(fid_value) # str1 = str(i) + ':' + str(fid_value) + '\n' # f.write(str1) # f.close() os.environ["CUDA_VISIBLE_DEVICES"] = '1' fid_value = calculate_fid_given_paths("/home/meimei/mayme/code/sketch_parsing_m3/results/spade_test/pixHD_test_rename", "/home/meimei/mayme/code/sketch_parsing_m3/results/sketch_test_B/", 8, opt.gpu_ids != '', 2048) print(fid_value) # fid_value = calculate_fid_given_paths('/home/lixiang/lx/SAND-pytorvh-master/result/sand_pix_D/2.09/orggan/x', # '/home/lixiang/dataset/test/cufs_sketch', 8, opt.gpuid != '', 2048) # print(fid_value)
""" @file @brief Implements command line ``python -m onnxcustom <command> <args>``. """ import fire from onnxcustom import check if __name__ == "__main__": # pragma: no cover from onnxcustom.cli.profiling import nvprof2json fire.Fire({ 'check': check, 'nvprof2json': nvprof2json, })
TREE = "#" def hit_test(map_, y, x, width) -> bool: while x >= width: x -= width return map_[y][x] == TREE def hit_test_map(map_, vy, vx) -> int: height, width = len(map_), len(map_[0]) r = 0 for x, y in enumerate(range(0, height, vy)): r += hit_test(map_, y, x * vx, width) return r def convert_to_map(s: str) -> list: return [n.strip() for n in s.strip("\n").splitlines()] def hit_test_multi(s: str) -> int: map_ = convert_to_map(s) return hit_test_map(map_, 1, 1) * hit_test_map(map_, 1, 3) * hit_test_map(map_, 1, 5) * hit_test_map(map_, 1, 7) * hit_test_map(map_, 2, 1) def run_tests(): test_input = """..##....... #...#...#.. .#....#..#. ..#.#...#.# .#...##..#. ..#.##..... .#.#.#....# .#........# #.##...#... #...##....# .#..#...#.#""" test_output = 336 test_map = convert_to_map(test_input) assert hit_test_map(test_map, 1, 1) == 2 assert hit_test_map(test_map, 1, 3) == 7 assert hit_test_map(test_map, 1, 5) == 3 assert hit_test_map(test_map, 1, 7) == 4 assert hit_test_map(test_map, 2, 1) == 2 assert hit_test_multi(test_input) == test_output def run() -> int: with open("inputs/input_03.txt") as file: data = file.read() return hit_test_multi(data) if __name__ == "__main__": run_tests() print(run())
#!C:\Users\USER\PycharmProjects\project\venv\Scripts\python.exe print("Content-Type: text/html") print() import cgi print("<h1 style = \"text-align:center;\">Congratulations</h1>") print("<hr/>") print("<h1 style = \"text-align:center;\">Registration has been Successful</h1>") print("<h6 style = \"text-align:center; font-size:15px;\">Click Here to <a style = \"color:#EB5758; text-decoration:none\" href = \"log.html\">log in</a></h6>") print("<body bgcolor = '#e0e5ec'>") form = cgi.FieldStorage() firstName = form.getvalue("fname") lastName = form.getvalue("lname") userName = form.getvalue("uname") email = form.getvalue("email") passs = form.getvalue("passs") repass = form.getvalue("repass") import mysql.connector con = mysql.connector.connect(user = 'root', password = '', host = 'localhost', database = 'we4us') cur = con.cursor() cur.execute("insert into reginfo values(%s, %s, %s, %s, %s, %s)", (firstName, lastName, userName, email, passs, repass)) con.commit() cur.close() con.close()
class Solution: # @param A, a list of integers # @return an integer def firstMissingPositive(self, A): i = 0 length = len(A) while i < length: while A[i] != i+1 and 1<= A[i] <= length and A[A[i]-1] != A[i]: temp = A[i] A[i] = A[A[i]-1] A[temp-1] = temp i += 1 for i in range(len(A)): if A[i] != i+1: return i+1 return length+1
import json from mainengine import MainEngine import traceback settingFile = 'conf/kwargs.json' loggingConfigFile = 'conf/logconfig.json' # serverChanFile = 'conf/serverChan.json' if __debug__: settingFile = 'tmp/kwargs.json' loggingConfigFile = 'tmp/logconfig.json' # with open(serverChanFile, 'r') as f: # serverChanUrls = json.load(f)['serverChanSlaveUrls'] with open(settingFile, 'r') as f: kwargs = json.load(f) with open(loggingConfigFile, 'r') as f: logConfig = json.load(f) mainEngine = MainEngine(logconfig=logConfig, **kwargs) mainEngine.init() mainEngine.start()
#!/usr/bin/env python # -*- coding: utf-8 -*- import re from setuptools import setup, find_packages from codecs import open requires = [ 'click', 'cookiecutter', 'networkx', 'numpy', 'pandas', 'tornado >= 4.2, < 5.0.0', 'tqdm', ] extras_require = { 'dev': [ 'coverage', 'flake8', 'pytest >= 3.6', 'pytest-cov', 'sphinx', ], 'docs': [ 'sphinx', ] } version = '' with open('mesa/__init__.py', 'r') as fd: version = re.search(r'^__version__\s*=\s*[\'"]([^\'"]*)[\'"]', fd.read(), re.MULTILINE).group(1) with open('README.rst', 'rb', encoding='utf-8') as f: readme = f.read() setup( name='Mesa', version=version, description="Agent-based modeling (ABM) in Python 3+", long_description=readme, author='Project Mesa Team', author_email='projectmesa@googlegroups.com', url='https://github.com/projectmesa/mesa', packages=find_packages(), package_data={'mesa': ['visualization/templates/*.html', 'visualization/templates/css/*', 'visualization/templates/fonts/*', 'visualization/templates/js/*'], 'cookiecutter-mesa': ['cookiecutter-mesa/*']}, include_package_data=True, install_requires=requires, extras_require=extras_require, keywords='agent based modeling model ABM simulation multi-agent', license='Apache 2.0', zip_safe=False, classifiers=[ 'Topic :: Scientific/Engineering', 'Topic :: Scientific/Engineering :: Artificial Life', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'Intended Audience :: Science/Research', 'Programming Language :: Python :: 3 :: Only', 'License :: OSI Approved :: Apache Software License', 'Operating System :: OS Independent', 'Development Status :: 3 - Alpha', 'Natural Language :: English', ], entry_points=''' [console_scripts] mesa=mesa.main:cli ''', )
a = [] print('WELCOME TO MY SMARTNESS TEST') def q(qu, ae): qe = input(qu + '\n') if qe == ae: return True if qe != ae: return False c = '' # question d = '' # question (3 * 3) def q_idea(): from random import randint as r num = r(2, 3) nums = [] if num == 2: num_1 = r(10, 100) num_2 = r(50, 150) nums.append(num_1) nums.append(num_2) if num == 3: num_1 = r(10, 100) num_2 = r(50, 150) num_3 = r(100, 200) nums.append(num_1) nums.append(num_2) nums.append(num_3) def question_def(opr): if len(nums) == 2: questionr = ('What is ' + str(nums[0]) + opr + str(nums[1]) + '?') if len(nums) == 3: questionr = ('What is ' + str(nums[0]) + opr + str(nums[1]) + opr + str(nums[2]) + '?') return questionr op = r(1, 4) if op == 1: question = question_def(' + ') elif op == 2: question = question_def(' - ') elif op == 3: question = question_def(' * ') elif op == 4: question = question_def(' / ') global c global d c = question if len(nums) == 2: if op == 1: d = nums[0] + nums[1] if op == 2: d = nums[0] - nums[1] if op == 3: d = nums[0] * nums[1] if op == 4: d = nums[0] / nums[1] elif len(nums) == 3: if op == 1: d = nums[0] + nums[1] + nums[2] if op == 2: d = nums[0] - nums[1] - nums[2] if op == 3: d = nums[0] * nums[1] * nums[2] if op == 4: d = nums[0] / nums[1] / nums[2] for i in range(9): q_idea() a.append(q(c, d)) i = 0 for item in a: if item: i += 1 rank = 'terrible.' if i >= 1: rank = 'bad.' if i >= 3: rank = 'ok.' if i >= 5: rank = 'pretty good.' if i >= 7: rank = 'good.' if i >= 8: rank = 'great!' if i >= 9: rank = 'Outstanding!!' print('you ranked ' + rank)
import datetime from app.models.base.base import BaseModel from app import db class UserProfitModel(db.Model, BaseModel): __bind_key__ = "a_coffer" __tablename__ = "user_profit" id = db.Column(db.Integer, primary_key=True) user_id = db.Column(db.Integer, default=0) money = db.Column(db.Integer, default=0) consumer_money = db.Column(db.Integer, default=0) today_money = db.Column(db.Integer, default=0) created_time = db.Column(db.DateTime, default=datetime.datetime.now) updated_time = db.Column(db.DateTime, default=datetime.datetime.now, onupdate=datetime.datetime.now) @staticmethod def query_user_profit(user_id): result = UserProfitModel.query.filter_by(user_id=user_id).first() return result
import time import sys import pickle from ..fakepath import new_fakefolder , fakepath_abs from .filelock import FileLock import os.path as P import os class LockerClient: NAME = "YLocker" VALFILE = "val.pkl" EMPTY_FLAG = "_EMPTY" def __init__(self): pass def getfolder(self , foldername): # 给定目录名,返回其绝对路径 return new_fakefolder(P.join(self.NAME , foldername)) def ensurefile(self , foldername): # 给定目录名,返回值文件的绝对路径 filename = self.VALFILE path = P.join(self.getfolder(foldername) , filename) open(path , "ab").close() return path def encode(self , val): return pickle.dumps(val) def decode(self , content): if len(content) == 0: return None return pickle.loads(content) def get(self , key): path = self.ensurefile(key) with open(path , "rb") as fil: content = fil.read() return self.decode(content) def set(self , key , val): path = self.ensurefile(key) with FileLock(self.getfolder(key)): #锁定然后写入 with open(path , "wb") as fil: fil.write(self.encode(val)) return True def remove(self , key): path = self.ensurefile(key) with FileLock(self.getfolder(key)): #锁定然后写入 os.remove(path) return True def plus(self , key , val = 1): '''同步加一,返回加后的值''' path = self.ensurefile(key) with FileLock(self.getfolder(key)): #锁定然后加一 with open(path , "rb") as fil: store_val = self.decode(fil.read()) store_val = store_val + val with open(path , "wb") as fil: fil.write(self.encode(store_val)) return store_val def set_if(self , key , expect_val , set_val): '''如果当前值 = expect_val,则设为set_val''' path = self.ensurefile(key) with FileLock(self.getfolder(key)): with open(path , "rb") as fil: store_val = self.decode(fil.read()) if store_val == expect_val: with open(path , "wb") as fil: fil.write(self.encode(set_val)) return True def _list_folders(self , folder): '''列出所目标子文件夹''' ret = [] subfolers = os.listdir(folder) if self.VALFILE in subfolers: #存在值文件的是一个目标节点 ret.append(folder) for p in subfolers: p = P.join(folder,p) if P.isdir(p): ret = ret + self._list_folders(p) return ret def ask_prefix(self , prefix , return_abs = False , only_suffix = False , not_none = False): '''查询所有key的前缀是给定prfix的key not_none:只返回非None的元素 ''' path = self.getfolder(prefix) ret = self._list_folders(path) #询问前缀下面的所有文件夹 if not_none: ret = [x for x in ret if self.get(x) is not None] if return_abs: return ret if only_suffix: ret = [P.relpath(x , path) for x in ret] #求相对与前缀的相对路径 else: the_path = self.getfolder("") ret = [P.relpath(x , the_path) for x in ret] #求伪路径 return ret def clear(self): '''清除所有key''' all_dirs = self.ask_prefix("" , return_abs = True) for p in all_dirs: self.remove(p) if len( os.listdir(p) ) == 0: #为空才删除文件夹,否则就保留 os.removedirs( p ) self.clear_dir() return True def clear_dir(self , path = None): '''清除所有空文件夹''' if path is None: path = self.getfolder("") flag = True #自己是否能清除 all_dirs = [P.join(path,p) for p in os.listdir(path) ] for p in all_dirs: if P.isdir(p): flag = flag and self.clear_dir(p) else: flag = False if flag: #现在应该已经没有文件了 try: os.removedirs( path ) except Exception: flag = False #不让删就算了 return flag
from setuptools import find_packages, setup #from numpy.distutils.core import setup, Extension from json import load as json_load if __name__ == '__main__': with open('setup.json', 'r') as info: kwargs = json_load(info) setup( include_package_data=True, packages=find_packages(), **kwargs )
## # File: Connection.py # Author: J. Westbrook # Date: 1-Apr-2018 # # Connection methods for Crate DB. # # Updates: # ## """ Connection methods for Crate DB. """ __docformat__ = "restructuredtext en" __author__ = "John Westbrook" __email__ = "jwest@rcsb.rutgers.edu" __license__ = "Apache 2.0" import copy import logging from crate import client # from crate.client.exceptions import (DatabaseError, OperationalError, ProgrammingError, Warning) logger = logging.getLogger(__name__) class Connection(object): """Class to encapsulate Crate RDBMS DBI connection.""" def __init__(self, cfgOb=None, infoD=None, resourceName=None, sectionName="site_info_configuration", verbose=False): self.__verbose = verbose self.__db = None self.__dbcon = None self.__infoD = infoD self.__dbName = None self.__dbHost = None self.__dbUser = None self.__dbPw = None self.__dbSocket = None self.__dbPort = None self.__dbAdminDb = None self.__dbPort = None # self.__defaultPort = 4200 self.__dbServer = "crate" self.__resourceName = resourceName self.__cfgOb = cfgOb # if infoD: self.setPreferences(infoD) # if resourceName: self.assignResource(resourceName, sectionName) def getPreferences(self): return self.__infoD def setPreferences(self, infoD): try: self.__infoD = copy.deepcopy(infoD) self.__dbName = self.__infoD.get("DB_NAME", None) self.__dbHost = self.__infoD.get("DB_HOST", "localhost") self.__dbUser = self.__infoD.get("DB_USER", None) self.__dbPw = self.__infoD.get("DB_PW", None) self.__dbSocket = self.__infoD.get("DB_SOCKET", None) self.__dbServer = self.__infoD.get("DB_SERVER", "crate") # port = self.__infoD.get("DB_PORT", self.__defaultPort) if port and str(port): self.__dbPort = int(str(port)) except Exception as e: logger.exception("Failing with %s", str(e)) def assignResource(self, resourceName=None, sectionName=None): # defaultPort = 4200 defaultHost = "localhost" dbServer = "crate" self.__resourceName = resourceName infoD = {} if not self.__cfgOb: return infoD # if resourceName == "CRATE_DB": infoD["DB_NAME"] = self.__cfgOb.get("CRATE_DB_NAME", sectionName=sectionName) infoD["DB_HOST"] = self.__cfgOb.get("CRATE_DB_HOST", sectionName=sectionName) infoD["DB_SOCKET"] = self.__cfgOb.get("CRATE_DB_SOCKET", default=None, sectionName=sectionName) infoD["DB_PORT"] = int(str(self.__cfgOb.get("CRATE_DB_PORT", default=defaultPort, sectionName=sectionName))) infoD["DB_USER"] = self.__cfgOb.get("CRATE_DB_USER_NAME", sectionName=sectionName) infoD["DB_PW"] = self.__cfgOb.get("CRATE_DB_PASSWORD", sectionName=sectionName) else: infoD["DB_NAME"] = self.__cfgOb.get("DB_NAME", sectionName=sectionName) infoD["DB_HOST"] = self.__cfgOb.get("DB_HOST", default=defaultHost, sectionName=sectionName) infoD["DB_SOCKET"] = self.__cfgOb.get("DB_SOCKET", default=None, sectionName=sectionName) infoD["DB_PORT"] = int(str(self.__cfgOb.get("DB_PORT", default=defaultPort, sectionName=sectionName))) infoD["DB_USER"] = self.__cfgOb.get("DB_USER_NAME", sectionName=sectionName) infoD["DB_PW"] = self.__cfgOb.get("DB_PASSWORD", sectionName=sectionName) # infoD["DB_SERVER"] = dbServer self.setPreferences(infoD) # return copy.deepcopy(infoD) # def connect(self): """Create a database connection and return a connection object. Returns None on failure """ # crateHost = "{host}:{port}".format(host=self.__dbHost, port=self.__dbPort) crateUri = "http://%s" % crateHost logger.debug("Connection using uri %s", crateUri) # dbcon = client.connect(crateUri) # if self.__dbcon is not None: # Close an open connection - logger.info("Closing an existing connection.\n") self.close() try: dbcon = self.__dbcon = dbcon except Exception as e: logger.exception("Connection error to server %s host %s port %d %s", self.__dbServer, self.__dbHost, self.__dbPort, str(e)) self.__dbcon = None return self.__dbcon def close(self): """Close any open database connection.""" if self.__dbcon is not None: try: self.__dbcon.close() self.__dbcon = None return True except Exception as e: logger.exception("Connection close error %s", str(e)) return False def __enter__(self): return self.connect() def __exit__(self, *args): return self.close()
""" socket_server_credentials_template.py Template to store credentials, port numbers, and IP addresses. author: @justjoshtings created: 3/16/2022 """ PORT = int() HOST_IP = '' HOST_IP_alt = ''
""" molecool A Python package for reading .pdb and .xyz files """ # Add imports here from .functions import canvas, zen from .molecule import build_bond_list from .visualize import draw_molecule, bond_histogram from .measure import calculate_distance, calculate_angle from .atom_data import atomic_weights, atom_colors from .io import open_pdb, open_xyz, write_xyz #import molecool.functions # Handle versioneer from ._version import get_versions versions = get_versions() __version__ = versions['version'] __git_revision__ = versions['full-revisionid'] del get_versions, versions
# ---------------------------------------------------------------- # Copyright 2016 Cisco Systems # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ------------------------------------------------------------------ """ printer_context.py YANG model driven API, common definitions. """ class PrinterContext(object): """ Print Context. Used to encapsulate information needed by the printers. """ def __init__(self): self.fd = None self.lvl = 0 # internal self.all_classes = [] self.class_list = [] self.class_name = '' self.class_stack = [] self.comment = False self.contact = '' self.depth = 0 self.env = None self.first = True self.group_list = [] self.groupings = {} self.idx = 0 self.idx_stack = [] self.import_enum = [] self.imports = {} self.loader = None self.local_group_list = [] self.meta = True self.module = None self.module_name = '' self.namespace = '' self.ns = [] self.organization = '' self.prefix = '' self.printer = None self.revision = '' self.rpc = [] self.tab_size = 4 self.target = '' self.templates = None self.types = [] self.uses = [] def str(self, msg): self.fd.write(msg) def tab(self, lvl=None): if lvl is None: lvl = self.lvl if lvl > 0: fmt = '%%%ds' % (lvl * self.tab_size) else: return '' return fmt % ' ' def write(self, msg): if self.lvl > 0: fmt = '%%%ds' % (self.lvl * self.tab_size) self.fd.write(fmt % ' ') self.fd.write(msg) def writeln(self, msg, tab=0): if self.lvl + tab > 0: fmt = '%%%ds' % ((self.lvl + tab) * self.tab_size) self.fd.write(fmt % ' ') self.fd.write(msg) self.fd.write('\n') def writelns(self, lines, tab=0): indent = '' if self.lvl + tab > 0: indent = ' ' * ((self.lvl + tab) * self.tab_size) fmt = '\n%s' % indent lines = fmt.join(lines) self.fd.write('%s%s' % (indent, lines)) def get_indent(self): indent = '' if self.lvl > 0: indent = ' ' * (self.lvl * self.tab_size) return indent def bline(self): self.fd.write('\n') def lvl_inc(self, tab=1): self.lvl += tab def lvl_dec(self, tab=1): self.lvl -= tab def push_idx(self): self.idx_stack.append(self.idx) def pop_idx(self): self.idx = self.idx_stack.pop() def push_class(self): self.class_stack.append(self.class_list) self.class_list = [] def pop_class(self): self.class_list = self.class_stack.pop()
import pathlib APP_KEY = 'aiohttp_admin' PROJ_ROOT = pathlib.Path(__file__).parent
""" Discussion: Because we have a facilitatory synapses, as the input rate increases synaptic resources released per spike also increase. Therefore, we expect that the synaptic conductance will increase with input rate. However, total synaptic resources are finite. And they recover in a finite time. Therefore, at high frequency inputs synaptic resources are rapidly deleted at a higher rate than their recovery, so after first few spikes, only a small number of synaptic resources are left. This results in decrease in the steady-state synaptic conductance at high frequency inputs. """;
import numpy as np, math import matplotlib.pyplot as pp import roslib; roslib.load_manifest('sandbox_advait_darpa_m3') import hrl_lib.matplotlib_util as mpu # trying to see if it makes any difference if I choose R1 or R2 to be # the variable resistor in the voltage divider. # # Answer: NO. Something I should have realized without having to make # a plot. def which_variable(): r_static = 2e3 r_min = 800. r_max = 5e3 r_step = 10. r_var = np.arange(r_min, r_max, r_step) v_cc = 5. # case I - variable resistor is R2 v1 = r_var / (r_static + r_var) * v_cc # case II - variable resistor is R1 v2 = r_static / (r_static + r_var) * v_cc mpu.figure() pp.plot(r_var, v1, 'b', label='variable R2') pp.plot(r_var, v2, 'g', label='variable R1') pp.xlabel('Variable Resistance') pp.ylabel('Voltage') mpu.legend() pp.show() # what is the effect of the pull up resistance. Can I choose a value # that is good for our application? def pull_up_resistor_value(rmax, rmin): n_r = 200 n_pullups = 4 adc_counts = 1024 pullup_best = math.sqrt(rmax*rmin) pullup_max = 2 * pullup_best pullup_min = 0.5 * pullup_best pullup_max = 500 pullup_min = 50 pullup_step = (pullup_max - pullup_min) / n_pullups pullup_arr = np.arange(pullup_min, pullup_max, pullup_step) r_step = (rmax - rmin) / n_r r_var = np.arange(rmin, rmax, r_step) v_cc = 5. v_diff_list = [] mpu.figure() for r_static in pullup_arr: v = r_var / (r_static + r_var) * v_cc pp.plot(r_var, v, mpu.random_color(), label='R1: %.1f'%r_static) v_diff_list.append(v[-1] - v[0]) pp.xlabel('Variable Resistance') pp.ylabel('Voltage') mpu.legend() mpu.figure() pp.plot(pullup_arr, v_diff_list) pp.axvline(pullup_best, c='k', label='Analytically computed optimal value') pp.xlabel('Pull up resistance (ohms)') pp.ylabel('Difference in Voltage') mpu.legend() l1 = (r_static + rmin) / (r_static + rmax) * adc_counts l2 = rmin / rmax * (r_static + rmax) / (r_static + rmin) * adc_counts print 'ADC lost if piezo to GND:', l2 print 'ADC lost if piezo to Vcc:', l1 pp.show() if __name__ == '__main__': #which_variable() # Velostat rmax = 5e3 rmin = 100 # Eeonyx LTT-SL-PA-MM-1-58B #rmax = 15e3 #rmin = 1000 # Eeonyx LR-SL-PA-MM-1-54 #rmax = 15e3 #rmin = 1500 # Eeonyx LVY-SL-PA-10E6 RP-3-89-3 #rmax = 1.5e6 #rmin = 150e3 # Eeonyx NW170-SL-PA #rmax = 1.5e3 #rmin = 130 pull_up_resistor_value(rmax, rmin)
# Written by K. M. Knausgård 2021-09-23 import itertools import random import time import phue as hue max_number_of_exercises = 100 enable_hue = True hue_bridge_ip = '10.0.0.169' hue_light_name = 'Stue ved skyvedør høyre' def input_integer_number(message): while True: try: return int(input(message)) except: pass # Color space conversion from phue github https://github.com/studioimaginaire/phue/blob/master/examples/rgb_colors.py def rgb_to_xy(red, green, blue): """ conversion of RGB colors to CIE1931 XY colors Formulas implemented from: https://gist.github.com/popcorn245/30afa0f98eea1c2fd34d Args: red (float): a number between 0.0 and 1.0 representing red in the RGB space green (float): a number between 0.0 and 1.0 representing green in the RGB space blue (float): a number between 0.0 and 1.0 representing blue in the RGB space Returns: xy (list): x and y """ # gamma correction red = pow((red + 0.055) / (1.0 + 0.055), 2.4) if red > 0.04045 else (red / 12.92) green = pow((green + 0.055) / (1.0 + 0.055), 2.4) if green > 0.04045 else (green / 12.92) blue = pow((blue + 0.055) / (1.0 + 0.055), 2.4) if blue > 0.04045 else (blue / 12.92) # convert rgb to xyz x = red * 0.649926 + green * 0.103455 + blue * 0.197109 y = red * 0.234327 + green * 0.743075 + blue * 0.022598 z = green * 0.053077 + blue * 1.035763 # convert xyz to xy x = x / (x + y + z) y = y / (x + y + z) return [x, y] def connect_hue_bridge(): while True: try: hb = hue.Bridge(hue_bridge_ip) hb.connect() return hb except hue.PhueRegistrationException as pre: print("\nPlease connect to Philips Hue bridge before first use.") print("Set Hue Bridge IP address and light name for the light to be controlled.") print("Also put light in color-mode in your Hue-app.") print("\nIf this is OK, press the button on you Hue bridge now, and within 30 s hit ENTER.") print("\nNo Hue light available? Set enable_hue to False to get rid of this!") input("Press ENTER to continue...") print("\n") except Exception as e: print("Unknown error occurred..") print("\nNo Hue light available? Set enable_hue to False to get rid of this!") quit(0) def main(): print("Python Multiplication Table Learner 1.0\n") if enable_hue: hb = connect_hue_bridge() origxy = hb.get_light(hue_light_name, 'xy') message = "Select number of exercises, maximum {}: ".format(max_number_of_exercises) number_of_exercises = min(input_integer_number(message), max_number_of_exercises) print("\n Ready!") exercises = list(itertools.product(range(0, 10), repeat=2)) random.shuffle(exercises) for ii, exercise in enumerate(exercises[:number_of_exercises]): print("\n Exercise number {} of {}:".format(ii + 1, number_of_exercises)) answer = input_integer_number(" {} x {} = ".format(exercise[0], exercise[1])) while answer != (exercise[0] * exercise[1]): # command = {'bri': 254, 'hue': 8042, 'sat': 174} hb.set_light(hue_light_name, 'xy', rgb_to_xy(1.0, 0, 0), transitiontime=5) print(" Wrong!") time.sleep(1) hb.set_light(hue_light_name, 'xy', origxy, transitiontime=50) answer = input_integer_number(" {} x {} = ".format(exercise[0], exercise[1])) hb.set_light(hue_light_name, 'xy', rgb_to_xy(0.0, 1.0, 0), transitiontime=5) print(" CORRECT!") time.sleep(1) hb.set_light(hue_light_name, 'xy', origxy, transitiontime=50) if __name__ == "__main__": main()
def Websocket(url): return __new__(WebSocket(url))
""" Developer : Naveen Kambham Description: Based on the Battery sensor Data, charger plug in time and duration of plug in time are extracted on a daily basis. """ #Importing the required libraries. import collections as col import functools from collections import Counter import pandas as pd import FeatureExtraction.CommonFunctions.converters as converters from FeatureExtraction.CommonFunctions import dataprocessing_helper def TakeMostProbableTimeInStudy(study_values,day_values): """ Method to get most probable time based on give data. Sometimes it is possible that partcipant can charge the mobile multiple times in a day, in such cases we consider the most probable time of corresponding participant occurred in the entire study period. :param StudyValues: study charge time values :param DayValues: charge time values for a given day :return: """ #if total number of values in a day are one then return the only value i.e only one charger plugin time in a given day if day_values.count ==1 : return day_values #more than one time found, hence get the day values and the time values for entire study else: #get the study time and day values values count counter = Counter(study_values) return functools.reduce(lambda max_key,current_key: max_key if counter[max_key]>counter[current_key] else current_key, study_values) def get_charger_plugintime_daily(file): """ Method to compute the battery charger plug in time :param file: :return data frame: """ #read the data in to a dataframe df= pd.read_csv(file) #splitting datetime in to date and time columns df['Date'], df['Time'] = zip(*df['start_time'].map(lambda x: x.split(' '))) #removing rows with battery plugged status as o which is unplugged and converting the time to Integer for easy caliculations df= df[df.plugged !=0] df['Time'] =df['Time'].apply(converters.ConvertTime) df['Time'] =df['Time'].apply(converters.ConvertToInt) #getting the all plug in times for a particular participant in the entire study of 30 days. tempdf = df tempgrouping = tempdf.groupby(['user_id']) batterychargeTimePerStudy= [(key,col.Counter(converters.ConvertToIntList(value['Time']))) for (key, value) in tempgrouping.__iter__()] batterychargeTimePerStudydf= pd.DataFrame(batterychargeTimePerStudy,columns=['ID','Values']) #grouping by date and userid grouping = df.groupby(['user_id','Date']) #Get battery time for each day by taking the most probable time in the entire study if there are more than one recod batterychargeTime_perDay= [(key[0],key[1],TakeMostProbableTimeInStudy(batterychargeTimePerStudydf[batterychargeTimePerStudydf.ID ==key[0]],value['Time'])) for (key,value) in grouping.__iter__()] outputdf= pd.DataFrame(batterychargeTime_perDay,columns=['ID','Date','CharginTimeDaily']) return outputdf def max_battery_plugin_time_daily(file): """ computes the maximum plug in time of battery in a give day for all participants :param file: :return: """ #read the data in to data fram df= pd.read_csv(file) #create new df columns for start,end date and time columns and convert the values for math advantages df['StartDate'],df['StartTime'] = zip(*df['start_time'].map(lambda x:x.split(' '))) df['ConvertedStartTime'] = df['StartTime'].apply(converters.ConvertTime) df['ConvertedStartDate'] = df['StartDate'].apply(converters.ConvertDate) df['EndDate'],df['EndTime'] = zip(*df['end_time'].map(lambda x:x.split(' '))) df['ConvertedEndTime'] = df['EndTime'].apply(converters.ConvertTime) df['ConvertedEndDate'] = df['EndDate'].apply(converters.ConvertDate) userIds= df.user_id.unique() outputlist=[] # Since this depends on continous data records we need to iterate the records, smart aggregation doesn't help much #processing for corresponding participant for user in userIds: tempdf = df.loc[df.user_id == user] Dates = tempdf.StartDate.unique() #processing for each day for date in Dates: tmpdf = tempdf.loc[((df.StartDate == date))] tmpdf= tmpdf.sort_values(['ConvertedStartTime'],ascending=(True)) tmpdf= tmpdf[tmpdf.plugged.isin([1,2])] durations =[0] for index,value in tmpdf.iterrows(): if (tmpdf.loc[index,'StartDate'] == tmpdf.loc[index,'EndDate']): durations.append(tmpdf.loc[index,'ConvertedEndTime'] - tmpdf.loc[index,'ConvertedStartTime']) else: durations.append((24.0 - tmpdf.loc[index,'ConvertedStartTime']) + tmpdf.loc[index,'ConvertedEndTime']) output_dataFrame = pd.DataFrame(outputlist,columns=['ID','Date','Battery_Charging_Duration',]) return output_dataFrame def extract(path): """ Method to extract the features based on the csv path given """ #getting the daily charger plug in times in a day for each participants df_charge_plugin_times=get_charger_plugintime_daily(path) #getting the maximum charger plugin duration in a day for each participants df_max_plugin_duration=max_battery_plugin_time_daily(path) #merging the extracted features battery_df= dataprocessing_helper.merge([df_charge_plugin_times, df_max_plugin_duration], ['ID', 'Date']) return battery_df #Code to test the functionality independently # df_battery=extract(r"/home/naveen/Data/Shed10/Filtered/battery_events.csv") # print((df_battery))
import testutils, arc, unittest class JobSupervisorTest(testutils.ARCClientTestCase): def setUp(self): self.usercfg = arc.UserConfig(arc.initializeCredentialsType(arc.initializeCredentialsType.SkipCredentials)) def test_constructor(self): id1 = "http://test.nordugrid.org/1234567890test1" id2 = "http://test.nordugrid.org/1234567890test2" js = arc.JobSupervisor(self.usercfg, [ self.create_test_job(job_id = id1), self.create_test_job(job_id = id2) ]); self.expect(js.GetAllJobs()).not_to_be_empty() jobs = js.GetAllJobs() self.expect(jobs).to_have(2).jobs() self.expect(jobs[0].JobID).to_be(id1) self.expect(jobs[1].JobID).to_be(id2) def test_add_job(self): js = arc.JobSupervisor(self.usercfg, arc.JobList()) self.expect(js.GetAllJobs()).to_be_empty() job = self.create_test_job(job_id = "http://test.nordugrid.org/1234567890test1") self.expect(js.AddJob(job)).to_be(True, message = "AddJob was expected to return True") self.expect(js.GetAllJobs()).not_to_be_empty() job.JobManagementInterfaceName = "" self.expect(js.AddJob(job)).to_be(False, message = "AddJob was expected to return False") self.expect(js.GetAllJobs()).to_have(1).job() job.JobManagementInterfaceName = "non.existent.interface" self.expect(js.AddJob(job)).to_be(False, message = "AddJob was expected to return False") self.expect(js.GetAllJobs()).to_have(1).job() def test_resubmit(self): self.usercfg.Broker("TEST") arc.TargetInformationRetrieverPluginTESTControl.targets = [self.create_test_target("http://test2.nordugrid.org")] arc.TargetInformationRetrieverPluginTESTControl.status = arc.EndpointQueryingStatus(arc.EndpointQueryingStatus.SUCCESSFUL) js = arc.JobSupervisor(self.usercfg, [ self.create_test_job(job_id = "http://test.nordugrid.org/1234567890test1", state = arc.JobState.FAILED), self.create_test_job(job_id = "http://test.nordugrid.org/1234567890test2", state = arc.JobState.RUNNING) ]) self.expect(js.GetAllJobs()).to_have(2).jobs() endpoints = [arc.Endpoint("http://test2.nordugrid.org", arc.Endpoint.COMPUTINGINFO, "org.nordugrid.tirtest")] resubmitted = arc.JobList() result = js.Resubmit(0, endpoints, resubmitted) # TODO: When using the wrapped arc.TargetInformationRetrieverPluginTESTControl.targets static variable, the bindings sometimes segfaults. # Particular when accessing member of the arc.TargetInformationRetrieverPluginTESTControl.targets[].ComputingManager map, e.g. arc.TargetInformationRetrieverPluginTESTControl.targets[<some-existing-key>].ComputingManager["some-key"] #self.expect(result).to_be(True) #self.expect(resubmitted).to_have(2).jobs() def test_cancel(self): id1 = "http://test.nordugrid.org/1234567890test1" id2 = "http://test.nordugrid.org/1234567890test2" id3 = "http://test.nordugrid.org/1234567890test3" id4 = "http://test.nordugrid.org/1234567890test4" js = arc.JobSupervisor(self.usercfg, [ self.create_test_job(job_id = id1, state = arc.JobState.RUNNING), self.create_test_job(job_id = id2, state = arc.JobState.FINISHED), self.create_test_job(job_id = id3, state = arc.JobState.UNDEFINED) ]) arc.JobControllerPluginTestACCControl.cancelStatus = True self.expect(js.Cancel()).to_be(True, message = "Cancel was expected to return True") self.expect(js.GetIDsProcessed()).to_have(1).ID() self.expect(js.GetIDsProcessed()[0]).to_be(id1) self.expect(js.GetIDsNotProcessed()).to_have(2).IDs() self.expect(js.GetIDsNotProcessed()[0]).to_be(id2) self.expect(js.GetIDsNotProcessed()[1]).to_be(id3) js.ClearSelection() arc.JobControllerPluginTestACCControl.cancelStatus = False self.expect(js.Cancel()).to_be(False, message = "Cancel was expected to return False") self.expect(js.GetIDsProcessed()).to_have(0).IDs() self.expect(js.GetIDsNotProcessed()).to_have(3).IDs() self.expect(js.GetIDsNotProcessed()[0]).to_be(id1) self.expect(js.GetIDsNotProcessed()[1]).to_be(id2) self.expect(js.GetIDsNotProcessed()[2]).to_be(id3) js.ClearSelection() job = self.create_test_job(job_id = id4, state = arc.JobState.ACCEPTED, state_text = "Accepted") self.expect(js.AddJob(job)).to_be(True, message = "AddJob was expected to return True") arc.JobControllerPluginTestACCControl.cancelStatus = True js.SelectByStatus(["Accepted"]) self.expect(js.Cancel()).to_be(True, message = "Cancel was expected to return False") self.expect(js.GetIDsProcessed()).to_have(1).ID() self.expect(js.GetIDsProcessed()[0]).to_be(id4) self.expect(js.GetIDsNotProcessed()).to_have(0).IDs() js.ClearSelection() arc.JobControllerPluginTestACCControl.cancelStatus = False js.SelectByStatus(["Accepted"]) self.expect(js.Cancel()).to_be(False, message = "Cancel was expected to return False") self.expect(js.GetIDsProcessed()).to_have(0).IDs() self.expect(js.GetIDsNotProcessed()).to_have(1).ID() self.expect(js.GetIDsNotProcessed()[0]).to_be(id4) js.ClearSelection() def test_clean(self): id1 = "http://test.nordugrid.org/1234567890test1" id2 = "http://test.nordugrid.org/1234567890test2" js = arc.JobSupervisor(self.usercfg, [ self.create_test_job(job_id = id1, state = arc.JobState.FINISHED, state_text = "Finished"), self.create_test_job(job_id = id2, state = arc.JobState.UNDEFINED) ]) self.expect(js.GetAllJobs()).to_have(2).jobs() arc.JobControllerPluginTestACCControl.cleanStatus = True self.expect(js.Clean()).to_be(True, message = "Clean was expected to return True") self.expect(js.GetIDsProcessed()).to_have(1).ID() self.expect(js.GetIDsProcessed()[0]).to_be(id1) self.expect(js.GetIDsNotProcessed()).to_have(1).ID() self.expect(js.GetIDsNotProcessed()[0]).to_be(id2) js.ClearSelection() arc.JobControllerPluginTestACCControl.cleanStatus = False self.expect(js.Clean()).to_be(False, message = "Clean was expected to return False") self.expect(js.GetIDsProcessed()).to_have(0).IDs() self.expect(js.GetIDsNotProcessed()).to_have(2).IDs() self.expect(js.GetIDsNotProcessed()[0]).to_be(id1) self.expect(js.GetIDsNotProcessed()[1]).to_be(id2) js.ClearSelection() arc.JobControllerPluginTestACCControl.cleanStatus = True js.SelectByStatus(["Finished"]) self.expect(js.Clean()).to_be(True, message = "Clean was expected to return True") self.expect(js.GetIDsProcessed()).to_have(1).ID() self.expect(js.GetIDsProcessed()[0]).to_be(id1) self.expect(js.GetIDsNotProcessed()).to_have(0).IDs() js.ClearSelection() arc.JobControllerPluginTestACCControl.cleanStatus = False js.SelectByStatus(["Finished"]) self.expect(js.Clean()).to_be(False, message = "Clean was expected to return False") self.expect(js.GetIDsProcessed()).to_have(0).IDs() self.expect(js.GetIDsNotProcessed()).to_have(1).ID() self.expect(js.GetIDsNotProcessed()[0]).to_be(id1) js.ClearSelection() if __name__ == '__main__': unittest.main()
# Definition for a binary tree node. class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None class Solution: def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode': if not root: return None if root.val > p.val and root.val > q.val: # search left subtree if root is greater than both p, q return self.lowestCommonAncestor(root.left, p, q) if root.val < p.val and root.val < q.val: # search right subtree if root is smaller than both p, q return self.lowestCommonAncestor(root.right, p, q) # base case: root itself is the LCA return root
import requests from coord.exceptions import InvalidAPIKeyException, InvalidEmailFormatException class BaseAPI: BASE_URL = 'https://api.coord.co/v1' INVALID_KEY_MSG = "Forbidden: Coord API calls must include an access_key or an Authorization header" BIKE_ENDPOINT = f'{BASE_URL}/bike/' USER_ENDPOINT = f'{BASE_URL}/users/' CURB_ENDPOINT = f'{BASE_URL}/search/curbs/' BLANK = '' def __init__(self, secret_key, user=None): self.secret_key = 'access_key=' + secret_key if user is not None: path = f'{self.USER_ENDPOINT}testing/user_and_jwt?{self.secret_key}' headers = {'Content-Type': 'application/json'} body = {"user": {"email": user}} response = requests.post(path, headers=headers, json=body).json() if 601 in response.values(): raise InvalidEmailFormatException() else: self._jwt_token = response['jwt_token'] self.email = user self.AUTH_HEADER = {'Content-Type': 'application/json', 'Authorization': f'Bearer {self._jwt_token}'} self.link_account() def check_api_key(self, obj): """ Checks if the API Key that was entered is valid or not :param obj: dict """ if self.INVALID_KEY_MSG in obj.values(): raise InvalidAPIKeyException() def create_user_session(self, email): """ Creates a new user session with a new jwt token. If there is already an existing email and jwt token then they are overridden. :param email: str """ path = f'{self.USER_ENDPOINT}testing/user_and_jwt?{self.secret_key}' headers = {'Content-Type': 'application/json'} body = {"user": {"email": email}} response = requests.post(path, headers=headers, json=body).json() if 601 in response.values(): raise InvalidEmailFormatException() else: self._jwt_token = response['jwt_token'] self.email = email self.link_account() def link_account(self): path = f'{self.USER_ENDPOINT}testing/user/current/provisioned_systems?{self.secret_key}' body = {"system_id": ["CitiBike"]} response = requests.put(path, headers=self.AUTH_HEADER, json=body).json() return response
from flask_socketio import SocketIO from flask import current_app, request import os, uuid, json socketio = SocketIO() @socketio.on('connected') def connected(): print "%s connected" % (request.sid) @socketio.on('disconnect') def disconnect(): print "%s disconnected" % (request.sid) @socketio.on('start-transfer') def start_transfer(filename, size): """Process an upload request from the client.""" _, ext = os.path.splitext(filename) if ext in ['.exe', '.bin', '.js', '.sh', '.py', '.php']: return False # reject the upload id = uuid.uuid4().hex # server-side filename with open(current_app.config['FILEDIR'] + id + '.json', 'wt') as f: json.dump({'filename': filename, 'size': size}, f) with open(current_app.config['FILEDIR'] + id + ext, 'wb') as f: pass return id + ext # allow the upload @socketio.on('write-chunk') def write_chunk(filename, offset, data): """Write a chunk of data sent by the client.""" if not os.path.exists(current_app.config['FILEDIR'] + filename): return False try: with open(current_app.config['FILEDIR'] + filename, 'r+b') as f: f.seek(offset) f.write(data) except IOError: return False return True
import param import cartopy.crs as ccrs from holoviews.annotators import ( annotate, Annotator, PathAnnotator, PolyAnnotator, PointAnnotator, RectangleAnnotator # noqa ) from holoviews.plotting.links import DataLink, VertexTableLink as hvVertexTableLink from panel.util import param_name from .element import Path from .models.custom_tools import CheckpointTool, RestoreTool, ClearTool from .links import VertexTableLink, PointTableLink, HvRectanglesTableLink, RectanglesTableLink from .operation import project from .streams import PolyVertexDraw, PolyVertexEdit Annotator._tools = [CheckpointTool, RestoreTool, ClearTool] Annotator.table_transforms.append(project.instance(projection=ccrs.PlateCarree())) def get_point_table_link(self, source, target): if hasattr(source.callback.inputs[0], 'crs'): return PointTableLink(source, target) else: return DataLink(source, target) PointAnnotator._link_type = get_point_table_link def get_rectangles_table_link(self, source, target): if hasattr(source.callback.inputs[0], 'crs'): return RectanglesTableLink(source, target) else: return HvRectanglesTableLink(source, target) RectangleAnnotator._link_type = get_rectangles_table_link def get_vertex_table_link(self, source, target): if hasattr(source.callback.inputs[0], 'crs'): return VertexTableLink(source, target) else: return hvVertexTableLink(source, target) PathAnnotator._vertex_table_link = get_vertex_table_link PolyAnnotator._vertex_table_link = get_vertex_table_link def initialize_tools(plot, element): """ Initializes the Checkpoint and Restore tools. """ cds = plot.handles['source'] checkpoint = plot.state.select(type=CheckpointTool) restore = plot.state.select(type=RestoreTool) clear = plot.state.select(type=ClearTool) if checkpoint: checkpoint[0].sources.append(cds) if restore: restore[0].sources.append(cds) if clear: clear[0].sources.append(cds) Annotator._extra_opts['hooks'] = [initialize_tools] class PathBreakingAnnotator(PathAnnotator): feature_style = param.Dict(default={'fill_color': 'blue', 'size': 10}, doc=""" Styling to apply to the feature vertices.""") node_style = param.Dict(default={'fill_color': 'indianred', 'size': 6}, doc=""" Styling to apply to the node vertices.""") def _init_stream(self): name = param_name(self.name) style_kwargs = dict(node_style=self.node_style, feature_style=self.feature_style) self._stream = PolyVertexDraw( source=self.plot, data={}, num_objects=self.num_objects, show_vertices=self.show_vertices, tooltip='%s Tool' % name, **style_kwargs ) if self.edit_vertices: self._vertex_stream = PolyVertexEdit( source=self.plot, tooltip='%s Edit Tool' % name, **style_kwargs ) annotate._annotator_types[Path] = PathBreakingAnnotator
""" 3D potential field inversion by planting anomalous densities. Implements the method of Uieda and Barbosa (2012a) with improvements by Uieda and Barbosa (2012b). A "heuristic" inversion for compact 3D geologic bodies. Performs the inversion by iteratively growing the estimate around user-specified "seeds". Supports various kinds of data (gravity, gravity tensor). The inversion is performed by function :func:`~fatiando.gravmag.harvester.harvest`. The required information, such as observed data, seeds, and regularization, are passed to the function through classes :class:`~fatiando.gravmag.harvester.Seed` and :class:`~fatiando.gravmag.harvester.Potential`, :class:`~fatiando.gravmag.harvester.Gz`, :class:`~fatiando.gravmag.harvester.Gxx`, etc. See the :ref:`Cookbook <cookbook>` for some example applications to synthetic data. **Functions** * :func:`~fatiando.gravmag.harvester.harvest`: Performs the inversion * :func:`~fatiando.gravmag.harvester.iharvest`: Iterator to step through the inversion one accretion at a time * :func:`~fatiando.gravmag.harvester.sow`: Creates the seeds from a set of (x, y, z) points and physical properties * :func:`~fatiando.gravmag.harvester.loadseeds`: Loads from a JSON file a set of (x, y, z) points and physical properties that specify the seeds. Pass output to :func:`~fatiando.gravmag.harvester.sow` * :func:`~fatiando.gravmag.harvester.weights`: Computes data weights based on the distance to the seeds **Data types** * :class:`~fatiando.gravmag.harvester.Potential`: gravitational potential * :class:`~fatiando.gravmag.harvester.Gz`: vertical component of gravitational acceleration (i.e., gravity anomaly) * :class:`~fatiando.gravmag.harvester.Gxx`: North-North component of the gravity gradient tensor * :class:`~fatiando.gravmag.harvester.Gxy`: North-East component of the gravity gradient tensor * :class:`~fatiando.gravmag.harvester.Gxz`: North-vertical component of the gravity gradient tensor * :class:`~fatiando.gravmag.harvester.Gyy`: East-East component of the gravity gradient tensor * :class:`~fatiando.gravmag.harvester.Gyz`: East-vertical component of the gravity gradient tensor * :class:`~fatiando.gravmag.harvester.Gzz`: vertical-vertical component of the gravity gradient tensor **References** Uieda, L., and V. C. F. Barbosa (2012a), Robust 3D gravity gradient inversion by planting anomalous densities, Geophysics, 77(4), G55-G66, doi:10.1190/geo2011-0388.1 Uieda, L., and V. C. F. Barbosa (2012b), Use of the "shape-of-anomaly" data misfit in 3D inversion by planting anomalous densities, SEG Technical Program Expanded Abstracts, 1-6, doi:10.1190/segam2012-0383.1 ---- """ from __future__ import absolute_import, division from future.builtins import range import json import bisect from math import sqrt import numpy from fatiando.gravmag import prism as prism_engine from fatiando.gravmag import tesseroid as tesseroid_engine from fatiando import utils from fatiando.mesher import Prism, Tesseroid def loadseeds(fname): """ Load a set of seed locations and physical properties from a file. The output can then be used with the :func:`~fatiando.gravmag.harvester.sow` function. The seed file should be formatted as:: [ [x1, y1, z1, {"density":dens1}], [x2, y2, z2, {"density":dens2, "magnetization":mag2}], [x3, y3, z3, {"magnetization":mag3, "inclination":inc3, "declination":dec3}], ... ] x, y, z are the coordinates of the seed and the dict (``{'density':2670}``) are its physical properties. .. warning:: Must use ``"``, not ``'``, in the physical property names! Each seed can have different kinds of physical properties. If inclination and declination are not given, will use the inc and dec of the inducing field (i.e., no remanent magnetization). The techie among you will recognize that the seed file is in JSON format. Remember: the coordinate system is x->North, y->East, and z->Down Parameters: * fname : str or file Open file object or filename string Returns: * [[x1, y1, z1, props1], [x2, y2, z2, props2], ...] (x, y, z) are the points where the seeds will be placed and *props* is dict with the values of the physical properties of each, seed. Example: >>> from StringIO import StringIO >>> file = StringIO( ... '[[1, 2, 3, {"density":4, "magnetization":5}],' + ... ' [6, 7, 8, {"magnetization":-1}]]') >>> seeds = loadseeds(file) >>> for s in seeds: ... print s [1, 2, 3, {u'magnetization': 5, u'density': 4}] [6, 7, 8, {u'magnetization': -1}] """ openned = False if isinstance(fname, str): fname = open(fname) openned = True seeds = json.load(fname) if openned: fname.close() return seeds def sow(locations, mesh): """ Create the seeds given a list of (x,y,z) coordinates and physical properties. Removes seeds that would fall on the same location with overlapping physical properties. Parameters: * locations : list The locations and physical properties of the seeds. Should be a list like:: [ [x1, y1, z1, {"density":dens1}], [x2, y2, z2, {"density":dens2, "magnetization":mag2}], [x3, y3, z3, {"magnetization":mag3, "inclination":inc3, "declination":dec3}], ... ] * mesh : :class:`fatiando.mesher.PrismMesh` The mesh that will be used in the inversion. Returns: * seeds : list of seeds The seeds that can be passed to :func:`~fatiando.gravmag.harvester.harvest` """ seeds = [] if mesh.celltype == Tesseroid: seedtype = TesseroidSeed elif mesh.celltype == Prism: seedtype = PrismSeed for x, y, z, props in locations: index = _find_index((x, y, z), mesh) if index is None: raise ValueError( "Couldn't find seed at location (%g,%g,%g)" % (x, y, z)) # Check for duplicates if index not in (s.i for s in seeds): seeds.append(seedtype(index, (x, y, z), mesh[index], props)) return seeds def _find_index(point, mesh): """ Find the index of the cell that has point inside it. """ x1, x2, y1, y2, z1, z2 = mesh.bounds nz, ny, nx = mesh.shape xs = mesh.get_xs() ys = mesh.get_ys() zs = mesh.get_zs() x, y, z = point if (x <= x2 and x >= x1 and y <= y2 and y >= y1 and ((z <= z2 and z >= z1 and mesh.zdown) or (z >= z2 and z <= z1 and not mesh.zdown))): if mesh.zdown: # -1 because bisect gives the index z would have. I want to know # what index z comes after k = bisect.bisect_left(zs, z) - 1 else: # If z is not positive downward, zs will not be sorted k = len(zs) - bisect.bisect_left(zs[::-1], z) j = bisect.bisect_left(ys, y) - 1 i = bisect.bisect_left(xs, x) - 1 seed = i + j * nx + k * nx * ny # Check if the cell is not masked (topography) if mesh[seed] is not None: return seed return None def harvest(data, seeds, mesh, compactness, threshold, report=False, restrict=None): """ Run the inversion algorithm and produce an estimate physical property distribution (density and/or magnetization). Parameters: * data : list of data (e.g., :class:`~fatiando.gravmag.harvester.Gz`) The data that will be inverted. Data used must match the physical properties given to the seeds (e.g., gravity data requires seeds to have ``'density'`` prop) * seeds : list of :class:`~fatiando.gravmag.harvester.Seed` Lits of seeds used to start the growth process of the inversion. Use :func:`~fatiando.gravmag.harvester.sow` to generate seeds. * mesh : :class:`fatiando.mesher.PrismMesh` The mesh used in the inversion. Will estimate the physical property distribution on this mesh * compactness : float The compactness regularing parameter (i.e., how much should the estimate be consentrated around the seeds). Must be positive. To find a good value for this, start with a small value (like 0.001), run the inversion and increase the value until desired compactness is achieved. * threshold : float Control how much the solution can grow (usually downward). In order for estimate to grow by the accretion of 1 prism, this prism must decrease the data misfit measure by *threshold* decimal percent. Depends on the size of the cells in the *mesh* and the distance from a cell to the observations. Use values between 0.001 and 0.000001. If cells are small and *threshold* is large (0.001), the seeds won't grow. If cells are large and *threshold* is small (0.000001), the seeds will grow too much. * report : True or False If ``True``, also will return a dict as:: report = {'goal': goal_function_value, 'shape-of-anomaly': SOA_function_value, 'misfit': data_misfit_value, 'regularizer': regularizing_function_value, 'accretions': number_of_accretions} * restrict : list of str Restricts seed growth in given directions. Possible directions are ``'above'``, ``'below'``, ``'north'``, ``'south'``, ``'east'`` and ``'west'``. You can pass in one or directions as a list, e.g. ``['above']``. Default is ``None`` for unrestricted growth. Returns: * estimate, predicted_data : a dict and a list *estimate* is a dict like:: {'physical_property':array, ...} *estimate* contains the estimates physical properties. The properties present in *estimate* are the ones given to the seeds. Include the properties in the *mesh* using:: mesh.addprop('density', estimate['density']) This way you can plot the estimate using :mod:`fatiando.vis.myv`. *predicted_data* is a list of numpy arrays with the predicted (model) data. The list is in the same order as *data*. To plot a map of the fit for visual inspection and a histogram of the residuals:: from fatiando.vis import mpl mpl.figure() # Plot the observed and predicted data as contours for visual # inspection mpl.subplot(1, 2, 1) mpl.axis('scaled') mpl.title('Observed and predicted data') levels = mpl.contourf(x, y, gz, (ny, nx), 10) mpl.colorbar() # Assuming gz is the only data used mpl.contour(x, y, predicted[0], (ny, nx), levels) # Plot a histogram of the residuals residuals = gz - predicted[0] mpl.subplot(1, 2, 2) mpl.title('Residuals') mpl.hist(residuals, bins=10) mpl.show() # It's also good to see the mean and standard deviation of the # residuals print "Residuals mean:", residuals.mean() print "Residuals stddev:", residuals.std() """ restrict = _test_restriction(restrict) for accretions, update in enumerate(iharvest(data, seeds, mesh, compactness, threshold, restrict)): continue estimate, predicted = update[:2] output = [fmt_estimate(estimate, mesh.size), predicted] if report: goal, misfit, regul = update[4:] soa = goal - compactness*1/(sum(mesh.shape)/3)*regul output.append({'goal': goal, 'misfit': misfit, 'regularizer': regul, 'accretions': accretions, 'shape-of-anomaly': soa}) return output def iharvest(data, seeds, mesh, compactness, threshold, restrict): """ Same as the :func:`fatiando.gravmag.harvester.harvest` function but this one returns an iterator that yields the information of each accretion. Yields: * [estimate, predicted, new, neighbors, goal, misfit, regularizer] The unformated estimate, predicted data vectors, the new element added during this iteration, list of neighbors, goal function value, misfit, regularizing function value. The first yield contains the seeds. Thus ``new`` will be ``None``. To format the estimate in a way that can be added to a mesh, use function fmt_estimate of this module. """ nseeds = len(seeds) estimate = dict((s.i, s.props) for s in seeds) neighbors = [] for seed in seeds: neighbors.append(_get_neighbors(seed, neighbors, estimate, mesh, data, restrict)) predicted = _init_predicted(data, seeds, mesh) totalgoal = _shapefunc(data, predicted) totalmisfit = _misfitfunc(data, predicted) regularizer = 0. # Weight the regularizing function by the mean extent of the mesh mu = compactness*1/(sum(mesh.shape)/3) yield [estimate, predicted, None, neighbors, totalgoal, totalmisfit, regularizer] accretions = 0 for iteration in range(mesh.size - nseeds): grew = False # To check if at least one seed grew (stopping criterion) for s in range(nseeds): best, bestgoal, bestmisfit, bestregularizer = _grow( neighbors[s], data, predicted, totalmisfit, mu, regularizer, threshold) if best is not None: if best.i not in estimate: estimate[best.i] = {} estimate[best.i].update(best.props) totalgoal = bestgoal totalmisfit = bestmisfit regularizer = bestregularizer for p, e in zip(predicted, best.effect): p += e neighbors[s].pop(best.i) neighbors[s].update( _get_neighbors(best, neighbors, estimate, mesh, data, restrict)) grew = True accretions += 1 yield [estimate, predicted, best, neighbors, totalgoal, totalmisfit, regularizer] del best if not grew: break def _init_predicted(data, seeds, mesh): """ Make a list with the initial predicted data vectors (effect of seeds) """ predicted = [] for d in data: p = numpy.zeros(len(d.observed), dtype='f') for seed in seeds: p += d.effect(mesh[seed.i], seed.props) predicted.append(p) return predicted def fmt_estimate(estimate, size): """ Make a nice dict with the estimated physical properties in separate arrays """ output = {} for i in estimate: props = estimate[i] for p in props: if p not in output: output[p] = utils.SparseList(size) output[p][i] = props[p] return output def _grow(neighbors, data, predicted, totalmisfit, mu, regularizer, threshold): """ Find the neighbor with smallest goal function that also decreases the misfit """ best = None bestgoal = None bestmisfit = None bestregularizer = None for n in neighbors: pred = [p + e for p, e in zip(predicted, neighbors[n].effect)] misfit = _misfitfunc(data, pred) if (misfit < totalmisfit and abs(misfit - totalmisfit)/totalmisfit >= threshold): reg = regularizer + neighbors[n].distance goal = _shapefunc(data, pred) + mu * reg if bestgoal is None or goal < bestgoal: bestgoal = goal best = neighbors[n] bestmisfit = misfit bestregularizer = reg return best, bestgoal, bestmisfit, bestregularizer def _shapefunc(data, predicted): """ Calculate the total shape of anomaly function between the observed and predicted data. """ result = 0. for d, p in zip(data, predicted): alpha = numpy.sum(d.observed * p)/d.norm**2 result += numpy.linalg.norm(alpha * d.observed - p) return result def _misfitfunc(data, predicted): """ Calculate the total data misfit function between the observed and predicted data. """ result = 0. for d, p, in zip(data, predicted): residuals = d.observed - p result += sqrt(numpy.dot(d.weights*residuals, residuals))/d.norm return result def _get_neighbors(cell, neighborhood, estimate, mesh, data, restrict): """ Return a dict with the new neighbors of cell. keys are the index of the neighbors in the mesh. values are the Neighbor objects. """ indexes = [n for n in _neighbor_indexes(cell.i, mesh, restrict) if not _is_neighbor(n, cell.props, neighborhood) and not _in_estimate(n, cell.props, estimate)] neighbors = dict( (i, Neighbor( i, cell.props, cell.seed, _distance(i, cell.seed, mesh), _calc_effect(i, cell.props, mesh, data))) for i in indexes) return neighbors def _calc_effect(index, props, mesh, data): """ Calculate the effect of cell mesh[index] with physical properties prop for each data set. """ cell = mesh[index] return [d.effect(cell, props) for d in data] def _distance(n, m, mesh): """ Calculate the distance (in number of cells) between cells n and m in mesh. """ ni, nj, nk = _index2ijk(n, mesh) mi, mj, mk = _index2ijk(m, mesh) return sqrt((ni - mi) ** 2 + (nj - mj) ** 2 + (nk - mk) ** 2) def _index2ijk(index, mesh): """ Transform the index of a cell in mesh to a 3-dimensional (i,j,k) index. """ nz, ny, nx = mesh.shape k = index//(nx*ny) j = (index - k*(nx*ny))//nx i = (index - k*(nx*ny) - j*nx) return i, j, k def _in_estimate(index, props, estimate): """ Check is index is in estimate with props """ if index in estimate: for p in props: if p in estimate[index]: return True return False def _is_neighbor(index, props, neighborhood): """ Check if index is already in the neighborhood with props """ for neighbors in neighborhood: for n in neighbors: if index == neighbors[n].i: for p in props: if p in neighbors[n].props: return True return False def _neighbor_indexes(n, mesh, restrict): """Find the indexes of the neighbors of n""" nz, ny, nx = mesh.shape indexes = [] if 'above' not in restrict: # The guy above tmp = n - nx * ny if tmp > 0: indexes.append(tmp) if 'below' not in restrict: # The guy below tmp = n + nx * ny if tmp < mesh.size: indexes.append(tmp) if 'north' not in restrict: # The guy in front/north tmp = n + 1 if n % nx < nx - 1: indexes.append(tmp) if 'south' not in restrict: # The guy in the back/south tmp = n - 1 if n % nx != 0: indexes.append(tmp) if 'east' not in restrict: # The guy to the left/east tmp = n + nx if n % (nx * ny) < nx * (ny - 1): indexes.append(tmp) if 'west' not in restrict: # The guy to the right/west tmp = n - nx if n % (nx * ny) >= nx: indexes.append(tmp) # Filter out the ones that do not exist or are masked (topography) return [i for i in indexes if i is not None and mesh[i] is not None] def _test_restriction(restrict): """ Test for correct spelling of items in restrict list. """ cases = ['above', 'below', 'north', 'south', 'east', 'west'] if restrict is None: return [] else: for case in restrict: if not(case in cases): raise ValueError("Unrecognized item in restrict: %s" % case) return restrict class PrismSeed(Prism): """ A seed that is a right rectangular prism. """ def __init__(self, i, location, prism, props): Prism.__init__(self, prism.x1, prism.x2, prism.y1, prism.y2, prism.z1, prism.z2, props=props) self.i = i self.seed = i self.x, self.y, self.z = location class TesseroidSeed(Tesseroid): """ A seed that is a tesseroid (spherical prism). """ def __init__(self, i, location, tess, props): Tesseroid.__init__(self, tess.w, tess.e, tess.s, tess.n, tess.top, tess.bottom, props=props) self.i = i self.seed = i self.x, self.y, self.z = location class Neighbor(object): """ A neighbor. """ def __init__(self, i, props, seed, distance, effect): self.i = i self.props = props self.seed = seed self.distance = distance self.effect = effect def weights(x, y, seeds, influences, decay=2): """ Calculate weights for the data based on the distance to the seeds. Use weights to ignore regions of data outside of the target anomaly. Parameters: * x, y : 1d arrays The x and y coordinates of the observations * seeds : list List of seeds, as returned by :func:`~fatiando.gravmag.harvester.sow` * influences : list of floats The respective diameter of influence for each seed. Observations outside the influence will have very small weights. A recommended value is aproximately the diameter of the anomaly * decay : float The decay factor for the weights. Low decay factor makes the weights spread out more. High decay factor makes the transition from large weights to low weights more abrupt. Returns: * weights : 1d array The calculated weights """ distances = numpy.array([((x - s.x) ** 2 + (y - s.y) ** 2)/influence**2 for s, influence in zip(seeds, influences)]) # min along axis=0 gets the smallest value from each column weights = numpy.exp(-(distances.min(axis=0) ** decay)) return weights class Data(object): """ A container for some potential field data. Know about its data, observation positions, nature of the mesh, and how to calculate the effect of a single cell. """ def __init__(self, x, y, z, data, weights, meshtype): self.x = x self.y = y self.z = z self.observed = data self.size = len(data) self.norm = numpy.linalg.norm(data) self.meshtype = meshtype if self.meshtype not in ['prism', 'tesseroid']: raise AttributeError("Invalid mesh type '%s'" % (meshtype)) if self.meshtype == 'prism': self.engine = prism_engine if self.meshtype == 'tesseroid': self.engine = tesseroid_engine self.weights = weights class Potential(Data): """ A container for data of the gravitational potential. Coordinate system used: x->North y->East z->Down Parameters: * x, y, z : 1D arrays Arrays with the x, y, z coordinates of the data points * data : 1D array The values of the data at the observation points * weight : float or array The weight of this data set in the misfit function. Pass an array to give weights to each data points or a float to weight the entire misfit function. See function :func:`~fatiando.gravmag.harvester.weights` """ def __init__(self, x, y, z, data, weights=1., meshtype='prism'): Data.__init__(self, x, y, z, data, weights, meshtype) self.prop = 'density' self.effectfunc = self.engine.potential def effect(self, prism, props): if self.prop not in props: return numpy.zeros(self.size, dtype='f') return self.effectfunc(self.x, self.y, self.z, [prism], props[self.prop]) class Gz(Potential): """ A container for data of the gravity anomaly. Coordinate system used: x->North y->East z->Down Parameters: * x, y, z : 1D arrays Arrays with the x, y, z coordinates of the data points * data : 1D array The values of the data at the observation points * weight : float or array The weight of this data set in the misfit function. Pass an array to give weights to each data points or a float to weight the entire misfit function. See function :func:`~fatiando.gravmag.harvester.weights` """ def __init__(self, x, y, z, data, weights=1., meshtype='prism'): Potential.__init__(self, x, y, z, data, weights, meshtype) self.effectfunc = self.engine.gz class Gxx(Potential): """ A container for data of the xx (north-north) component of the gravity gradient tensor. Coordinate system used: x->North y->East z->Down Parameters: * x, y, z : 1D arrays Arrays with the x, y, z coordinates of the data points * data : 1D array The values of the data at the observation points * weight : float or array The weight of this data set in the misfit function. Pass an array to give weights to each data points or a float to weight the entire misfit function. See function :func:`~fatiando.gravmag.harvester.weights` """ def __init__(self, x, y, z, data, weights=1., meshtype='prism'): Potential.__init__(self, x, y, z, data, weights, meshtype) self.effectfunc = self.engine.gxx class Gxy(Potential): """ A container for data of the xy (north-east) component of the gravity gradient tensor. Coordinate system used: x->North y->East z->Down Parameters: * x, y, z : 1D arrays Arrays with the x, y, z coordinates of the data points * data : 1D array The values of the data at the observation points * weight : float or array The weight of this data set in the misfit function. Pass an array to give weights to each data points or a float to weight the entire misfit function. See function :func:`~fatiando.gravmag.harvester.weights` """ def __init__(self, x, y, z, data, weights=1., meshtype='prism'): Potential.__init__(self, x, y, z, data, weights, meshtype) self.effectfunc = self.engine.gxy class Gxz(Potential): """ A container for data of the xz (north-vertical) component of the gravity gradient tensor. Coordinate system used: x->North y->East z->Down Parameters: * x, y, z : 1D arrays Arrays with the x, y, z coordinates of the data points * data : 1D array The values of the data at the observation points * weight : float or array The weight of this data set in the misfit function. Pass an array to give weights to each data points or a float to weight the entire misfit function. See function :func:`~fatiando.gravmag.harvester.weights` """ def __init__(self, x, y, z, data, weights=1., meshtype='prism'): Potential.__init__(self, x, y, z, data, weights, meshtype) self.effectfunc = self.engine.gxz class Gyy(Potential): """ A container for data of the yy (east-east) component of the gravity gradient tensor. Coordinate system used: x->North y->East z->Down Parameters: * x, y, z : 1D arrays Arrays with the x, y, z coordinates of the data points * data : 1D array The values of the data at the observation points * weight : float or array The weight of this data set in the misfit function. Pass an array to give weights to each data points or a float to weight the entire misfit function. See function :func:`~fatiando.gravmag.harvester.weights` """ def __init__(self, x, y, z, data, weights=1., meshtype='prism'): Potential.__init__(self, x, y, z, data, weights, meshtype) self.effectfunc = self.engine.gyy class Gyz(Potential): """ A container for data of the yz (east-vertical) component of the gravity gradient tensor. Coordinate system used: x->North y->East z->Down Parameters: * x, y, z : 1D arrays Arrays with the x, y, z coordinates of the data points * data : 1D array The values of the data at the observation points * weight : float or array The weight of this data set in the misfit function. Pass an array to give weights to each data points or a float to weight the entire misfit function. See function :func:`~fatiando.gravmag.harvester.weights` """ def __init__(self, x, y, z, data, weights=1., meshtype='prism'): Potential.__init__(self, x, y, z, data, weights, meshtype) self.effectfunc = self.engine.gyz class Gzz(Potential): """ A container for data of the zz (vertical-vertical) component of the gravity gradient tensor. Coordinate system used: x->North y->East z->Down Parameters: * x, y, z : 1D arrays Arrays with the x, y, z coordinates of the data points * data : 1D array The values of the data at the observation points * weight : float or array The weight of this data set in the misfit function. Pass an array to give weights to each data points or a float to weight the entire misfit function. See function :func:`~fatiando.gravmag.harvester.weights` """ def __init__(self, x, y, z, data, weights=1., meshtype='prism'): Potential.__init__(self, x, y, z, data, weights, meshtype) self.effectfunc = self.engine.gzz class TotalField(Potential): """ A container for data of the total field magnetic anomaly. Coordinate system used: x->North y->East z->Down Parameters: * x, y, z : 1D arrays Arrays with the x, y, z coordinates of the data points * data : 1D array The values of the data at the observation points * inc, dec : floats The inclination and declination of the inducing field * weight : float or array The weight of this data set in the misfit function. Pass an array to give weights to each data points or a float to weight the entire misfit function. See function :func:`~fatiando.gravmag.harvester.weights` """ def __init__(self, x, y, z, data, inc, dec, weights=1., meshtype='prism'): if meshtype != 'prism': raise AttributeError( "Unsupported mesh type '%s' for total field anomaly." % (meshtype)) Potential.__init__(self, x, y, z, data, weights, meshtype) self.effectfunc = self.engine.tf self.prop = 'magnetization' self.inc = inc self.dec = dec def effect(self, prism, props): if self.prop not in props: return numpy.zeros(self.size, dtype='f') return self.effectfunc(self.x, self.y, self.z, [prism], self.inc, self.dec, pmag=props[self.prop])
"""Struct versions of Python's own AST nodes.""" __all__ = [ 'py33_nodes', 'py34_nodes', ] from ..asdl import python33_asdl, python34_asdl from ..node import nodes_from_asdl # Dictionary of all Struct classes for Python 3.3 and 3.4 node types. py33_nodes = {} py34_nodes = {} def initialize_nodetypes(): """Populate the Struct nodes dictionaries.""" assert len(py33_nodes) == len(py34_nodes) == 0 # If anyone asks, these are defined in python33.py and # python34.py since they are available on those module's # namespaces. home33 = __name__[:__name__.rfind('.')] + '.python33' home34 = __name__[:__name__.rfind('.')] + '.python34' py33_nodes.update(nodes_from_asdl( python33_asdl, module=home33, typed=True)) py34_nodes.update(nodes_from_asdl( python34_asdl, module=home34, typed=True)) initialize_nodetypes()
import os.path from pynwb.spec import ( NWBNamespaceBuilder, export_spec, NWBGroupSpec, NWBDatasetSpec, NWBAttributeSpec, ) # TODO: import the following spec classes as needed # from pynwb.spec import NWBDatasetSpec, NWBLinkSpec, NWBDtypeSpec, NWBRefSpec def main(): # these arguments were auto-generated from your cookiecutter inputs ns_builder = NWBNamespaceBuilder( doc="""An NWB extension for storing Near-Infrared Spectroscopy (NIRS) data""", name="""ndx-nirs""", version="""0.2.0""", author=list( map( str.strip, """Sumner L Norman,Darin Erat Sleiter,José Ribeiro""".split(","), ) ), contact=list( map( str.strip, """sumner@ae.studio,darin@ae.studio,jose@ae.studio""".split(","), ) ), ) # TODO: specify the neurodata_types that are used by the extension as well # as in which namespace they are found # this is similar to specifying the Python modules that need to be imported # to use your new data types # as of HDMF 1.6.1, the full ancestry of the neurodata_types that are used by # the extension should be included, i.e., the neurodata_type and its parent # type and its parent type and so on. this will be addressed in a future # release of HDMF. ns_builder.include_type("TimeSeries", namespace="core") ns_builder.include_type("NWBDataInterface", namespace="core") ns_builder.include_type("NWBContainer", namespace="core") ns_builder.include_type("Container", namespace="hdmf-common") ns_builder.include_type("DynamicTable", namespace="hdmf-common") ns_builder.include_type("DynamicTableRegion", namespace="hdmf-common") ns_builder.include_type("VectorData", namespace="hdmf-common") ns_builder.include_type("Data", namespace="hdmf-common") ns_builder.include_type("ElementIdentifiers", namespace="hdmf-common") ns_builder.include_type("Device", namespace="core") # TODO: define your new data types # see https://pynwb.readthedocs.io/en/latest/extensions.html#extending-nwb # for more information nirs_sources = NWBGroupSpec( neurodata_type_def="NIRSSourcesTable", neurodata_type_inc="DynamicTable", default_name="sources", doc="A table describing optical sources of a NIRS device", datasets=[ NWBDatasetSpec( name="label", doc="The label of the source", dtype="text", shape=(None,), neurodata_type_inc="VectorData", ), NWBDatasetSpec( name="x", doc="The x coordinate of the optical source", dtype="float", shape=(None,), neurodata_type_inc="VectorData", ), NWBDatasetSpec( name="y", doc="The y coordinate of the optical source", dtype="float", shape=(None,), neurodata_type_inc="VectorData", ), NWBDatasetSpec( name="z", doc="The z coordinate of the optical source", dtype="float", shape=(None,), neurodata_type_inc="VectorData", quantity="?", ), ], ) nirs_detectors = NWBGroupSpec( neurodata_type_def="NIRSDetectorsTable", neurodata_type_inc="DynamicTable", default_name="detectors", doc="A table describing optical detectors of a NIRS device", datasets=[ NWBDatasetSpec( name="label", doc="The label of the detector", dtype="text", shape=(None,), neurodata_type_inc="VectorData", ), NWBDatasetSpec( name="x", doc="The x coordinate of the optical detector", dtype="float", shape=(None,), neurodata_type_inc="VectorData", ), NWBDatasetSpec( name="y", doc="The y coordinate of the optical detector", dtype="float", shape=(None,), neurodata_type_inc="VectorData", ), NWBDatasetSpec( name="z", doc="The z coordinate of the optical detector", dtype="float", shape=(None,), neurodata_type_inc="VectorData", quantity="?", ), ], ) nirs_channels = NWBGroupSpec( neurodata_type_def="NIRSChannelsTable", neurodata_type_inc="DynamicTable", default_name="channels", doc="A table describing optical channels of a NIRS device", datasets=[ NWBDatasetSpec( name="label", doc="The label of the channel", dtype="text", shape=(None,), neurodata_type_inc="VectorData", ), NWBDatasetSpec( name="source", doc="A reference to the optical source for this channel in NIRSSourcesTable", shape=(None,), neurodata_type_inc="DynamicTableRegion", ), NWBDatasetSpec( name="detector", doc="A reference to the optical detector for this channel in NIRSDetectorsTable.", shape=(None,), neurodata_type_inc="DynamicTableRegion", ), NWBDatasetSpec( name="source_wavelength", doc="The wavelength of light in nm emitted by the source for this channel.", dtype="float", shape=(None,), neurodata_type_inc="VectorData", ), NWBDatasetSpec( name="emission_wavelength", doc=( "The wavelength of light in nm emitted by the fluorophore under " "fluorescent spectroscopy for this channel. Only used for fluorescent" " spectroscopy" ), dtype="float", shape=(None,), neurodata_type_inc="VectorData", quantity="?", ), NWBDatasetSpec( name="source_power", doc="The power of the source in mW used for this channel.", dtype="float", shape=(None,), neurodata_type_inc="VectorData", quantity="?", ), NWBDatasetSpec( name="detector_gain", doc="The gain applied to the detector for this channel.", dtype="float", shape=(None,), neurodata_type_inc="VectorData", quantity="?", ), ], ) nirs_device = NWBGroupSpec( neurodata_type_def="NIRSDevice", neurodata_type_inc="Device", doc="A NIRS Device", attributes=[ NWBAttributeSpec( name="nirs_mode", doc=( "The mode of NIRS measurement performed with this device." " Examples include (but are not limited to) continuous-wave," " frequency-domain, time-domain, time-domain-moments," " diffuse-correlation-spectroscopy, continuous-wave-fluorescence," " and diffuse-optical-tomography, as well as variants including" " fluorescence." ), dtype="text", ), NWBAttributeSpec( name="frequency", doc=( "The modulation frequency in Hz used for frequency domain NIRS." " if nirs_mode is a type of frequency domain spectroscopy." ), dtype="float", required=False, ), NWBAttributeSpec( name="time_delay", doc=( "The time delay in ns used for gated time domain NIRS. Only used" " if nirs_mode is a type of gated time domain spectroscopy." ), dtype="float", required=False, ), NWBAttributeSpec( name="time_delay_width", doc=( "The time delay width in ns used for gated time domain NIRS. Only" " used if nirs_mode is a type of gated time domain spectroscopy." ), dtype="float", required=False, ), NWBAttributeSpec( name="correlation_time_delay", doc=( "The correlation time delay in ns for diffuse correlation" " spectroscopy NIRS. Only used if nirs_mode is a type of diffuse" " correlation spectroscopy." ), dtype="float", required=False, ), NWBAttributeSpec( name="correlation_time_delay_width", doc=( "The correlation time delay width in ns for diffuse correlation" " spectroscopy NIRS. Only used if nirs_mode is a type of diffuse" " correlation spectroscopy." ), dtype="float", required=False, ), NWBAttributeSpec( name="additional_parameters", doc=( "Any additional parameters corresponding to the NIRS device and" " NIRS mode of operation that are useful for interpreting the" " data." ), dtype="text", required=False, ), ], groups=[ NWBGroupSpec( name="channels", doc="A table of the optical channels available on this device", neurodata_type_inc="NIRSChannelsTable", ), NWBGroupSpec( name="sources", doc="The optical sources of this device", neurodata_type_inc="NIRSSourcesTable", ), NWBGroupSpec( name="detectors", doc="The optical detectors of this device", neurodata_type_inc="NIRSDetectorsTable", ), ], ) nirs_series = NWBGroupSpec( neurodata_type_def="NIRSSeries", neurodata_type_inc="TimeSeries", doc="A timeseries of NIRS data", datasets=[ NWBDatasetSpec( name="channels", doc="DynamicTableRegion reference to the optical channels represented by this NIRSSeries", neurodata_type_inc="DynamicTableRegion", ) ], ) # TODO: add all of your new data types to this list new_data_types = [ nirs_sources, nirs_detectors, nirs_channels, nirs_device, nirs_series, ] # export the spec to yaml files in the spec folder output_dir = os.path.abspath( os.path.join(os.path.dirname(__file__), "..", "..", "spec") ) export_spec(ns_builder, new_data_types, output_dir) if __name__ == "__main__": # usage: python create_extension_spec.py main()
import os import re import socket import threading from librespot.audio.decoders import AudioQuality from librespot.core import Session from librespot.metadata import TrackId from librespot.player.codecs import VorbisOnlyAudioQuality session: Session sock: socket def handler(client: socket.socket, address: str): req_raw = client.recv(1024 * 1024) if len(req_raw) == 0: return req_arr = req_raw.split(b"\r\n") req_http_raw = req_arr[0] req_header_str = req_raw.split(b"\r\n\r\n")[0] req_body_str = req_raw.split(b"\r\n\r\n")[1] req_http_arr = req_http_raw.split(b" ") req_method = req_http_arr[0] req_uri = req_http_arr[1] req_http_version = req_http_arr[2] req_header = {} for header in req_header_str.split(b"\r\n"): try: key, value = header.split(b": ") except ValueError: continue else: req_header[key.decode().lower()] = value.decode() status, headers, content, manually = response(client, req_uri.decode(), req_header, req_body_str) if not manually: client.send(req_http_version + b" " + status.encode() + b"\r\n") client.send(b"Access-Control-Allow-Origin: *\r\n") for header in headers: client.send(header.encode() + "\r\n") client.send(b"\r\n") client.send(content) client.close() class HttpCode: http_200 = "200 OK" http_204 = "204 No Content" http_400 = "400 Bad Request" http_403 = "403 Forbidden" http_404 = "404 Not Found" http_500 = "500 Internal Server Error" def main(): global session, sock session = None if os.path.isfile("credentials.json"): try: session = Session.Builder().stored_file().create() except RuntimeError: pass if session is None or not session.is_valid(): username = input("Username: ") password = input("Password: ") session = Session.Builder().user_pass(username, password).create() if not session.is_valid(): return sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.bind(("127.0.0.1", 8080)) sock.listen(5) while True: threading.Thread(target=handler, args=sock.accept()).start() def response(client: socket.socket, uri: str, header: dict, body: bytes) -> tuple[str, list, bytes, bool]: if re.search(r"^/audio/track/([0-9a-zA-Z]{22})$", uri) is not None: track_id_search = re.search( r"^/audio/track/(?P<TrackID>[0-9a-zA-Z]{22})$", uri) track_id_str = track_id_search.group("TrackID") track_id = TrackId.from_base62(track_id_str) stream = session.content_feeder().load( track_id, VorbisOnlyAudioQuality(AudioQuality.VERY_HIGH), False, None) start = 0 end = stream.input_stream.stream().size() if header.get("range") is not None: range_search = re.search( "^bytes=(?P<start>[0-9]+?)-(?P<end>[0-9]+?)$", header.get("range")) if range_search is not None: start = int(range_search.group("start")) end = (int(range_search.group("end")) if int(range_search.group("end")) <= stream.input_stream.stream().size() else stream.input_stream.stream().size()) stream.input_stream.stream().skip(start) client.send(b"HTTP/1.0 200 OK\r\n") client.send(b"Access-Control-Allow-Origin: *\r\n") client.send(b"Content-Length: " + (str(stream.input_stream.stream().size()).encode() if stream.input_stream.stream().size() == end else "{}-{}/{}" .format(start, end, stream.input_stream.stream().size()).encode()) + b"\r\n") client.send(b"Content-Type: audio/ogg\r\n") client.send(b"\r\n") while True: if (stream.input_stream.stream().pos() >= stream.input_stream.stream().size()): break byte = stream.input_stream.stream().read() client.send(bytes([byte])) return "", [], b"", True else: return HttpCode.http_404, [], HttpCode.http_404.encode(), False if __name__ == "__main__": main()
import pytest from snowflake.sqlalchemy.snowdialect import SnowflakeDialect from panoramic.cli.datacol.tztools import now from panoramic.cli.husky.core.taxonomy.override_mapping.enums import MappingSourceType from panoramic.cli.husky.core.taxonomy.override_mapping.models import OverrideMapping from panoramic.cli.husky.service.blending.features.override_mapping.sql import ( OverrideMappingSql, ) from tests.panoramic.cli.husky.test.test_base import BaseTest @pytest.fixture def mapping_definition(): yield OverrideMapping( slug='slug-1', name='My mapping', company_id='company_id', definition=[['orig_1', 'changed_1'], ['orig_2', 'changed_2'], [None, 'changed_3'], ['orig_4', None]], source_type=MappingSourceType.DIRECT, created_by='user', created_at=now(), ) class TestRenderDirectMappingCte(BaseTest): @staticmethod def _prepare_sql(dialect): mapping_definition = OverrideMapping( slug='slug-1', name='My mapping', company_id='company_id', definition=[['orig_1', 'changed_1'], ['orig_2', 'changed_2'], [None, 'changed_3'], ['orig_4', None]], source_type=MappingSourceType.DIRECT, created_by='user', created_at=now(), ) query = OverrideMappingSql.render_direct_mapping(mapping_definition) return str(query.compile(compile_kwargs={"literal_binds": True}, dialect=dialect())) def test_snowflake_dialect(self): sql = self._prepare_sql(SnowflakeDialect) self.write_test_expectations('query.sql', str(sql)) expected_query = self.read_test_expectations('query.sql') self.assertEqual(expected_query, str(sql)) @pytest.mark.parametrize( 'include_unknown_values,expected', [(True, '__om_my_column_slug_1_true_a576d893f201e0e2'), (False, '__om_my_column_slug_1_false_5e6b4360696a348f')], ) def test_generate_identifier(mapping_definition, include_unknown_values, expected): identifier = OverrideMappingSql.generate_identifier('my_column', mapping_definition.slug, include_unknown_values) assert identifier == expected def test_generate_cte_name(mapping_definition): identifier = OverrideMappingSql.generate_cte_name(mapping_definition.slug) assert identifier == '__om_slug_1_609591aff3bc337e'
import numpy as np FEATURES_PATH = '../data/roi_features/' cocaines = ['cocaine173_rois.csv','cocaine174_rois.csv','cocaine175_rois.csv','cocaine177_rois.csv','cocaine178_rois.csv'] controls = ['control181_rois.csv','control182_rois.csv','control189_rois.csv','control239_rois.csv','control258_rois.csv'] fears = ['fear187_rois.csv','fear188_rois.csv','fear197_rois.csv','fear199_rois.csv','fear200_rois.csv'] # label, number, roi, x, y, z, mean, std, [1-12] features # 20 features = np.zeros(20, dtype=np.float32) roi_pos = np.genfromtxt(FEATURES_PATH+'roi_pos.csv', delimiter=",", dtype=np.float32) for fname in cocaines+controls+fears: label = fname[:-12] if label == 'cocaine': label = 0 elif label == 'control': label = 1 elif label == 'fear': label = 2 number = fname[-12:-9] data = np.genfromtxt(FEATURES_PATH+fname, delimiter=",", dtype=np.float32) nrow, ncol = data.shape for i in range(0, nrow): result = np.zeros(20, dtype=np.float32) row = data[i, :] result[-12:] = np.mean(np.reshape(row[:-3], (13, 12)), axis=0) result[0] = label result[1] = int(fname[-12:-9]) result[2] = row[-1] result[3:6] = roi_pos[i, 1:4] result[6:8] = row[-3:-1] features = np.vstack((features, result)) features = features[1:, :] np.savetxt(FEATURES_PATH+'features.csv', features, fmt='%10.5f', delimiter=',')
import functools import inspect import json import typing from django.db import transaction from django.http.response import ( Http404, HttpResponse, HttpResponseBadRequest, StreamingHttpResponse, ) from django.shortcuts import get_object_or_404 from django.utils.translation import gettext as _ from django.views.decorators.http import require_http_methods from .models import ( Clerk, Counter, Event, EventPermission, ) """ Utility functions for writing AJAX views. """ # Some HTTP Status codes that are used here. RET_ACCEPTED = 202 # Accepted, but not completed. RET_BAD_REQUEST = 400 # Bad request RET_UNAUTHORIZED = 401 # Unauthorized, though, not expecting Basic Auth... RET_FORBIDDEN = 403 # Forbidden RET_CONFLICT = 409 # Conflict RET_AUTH_FAILED = 419 # Authentication timeout RET_LOCKED = 423 # Locked resource class AjaxError(Exception): def __init__(self, status, message='AJAX request failed'): super(AjaxError, self).__init__(message) self.status = status self.message = message def render(self): return HttpResponse( self.message, content_type='text/plain', status=self.status, ) class AjaxFunc(object): def __init__(self, func, url, method): self.name = func.__name__ # name of the view function self.pkg = func.__module__ self.func = func self.url = url # url for url config self.view_name = 'api_' + self.name # view name for url config self.view = 'kirppu:' + self.view_name # view name for templates self.method = method # http method for templates # Registry for ajax functions. Maps function names to AjaxFuncs per scope. AJAX_SCOPES: typing.Dict[str, typing.Dict[str, AjaxFunc]] = {} def ajax_func(original, method='POST', params=None, defaults=None, staff_override=False, ignore_session=False): """ Create view function decorator. The decorated view will not be called if 1. the request is not an AJAX request, 2. the request method does not match the given method, OR 3. the parameters are not present in the request data. If the decorated view raises an AjaxError, it will be rendered. :param original: Original function being wrapped. :param method: Required HTTP method; either 'GET' or 'POST' :type method: str :param params: List of names of expected arguments. :type params: list[str] :param defaults: List of default values for arguments. Default values are applied to `params` tail. :type defaults: list :param staff_override: Whether this function can be called without checkout being active. :type staff_override: bool :param ignore_session: Whether Event stored in session data should be ignored for the call. :return: A decorator for a view function :rtype: callable """ params = params or [] # Default values are applied only to len(defaults) last parameters. defaults = defaults or [] defaults_start = len(params) - len(defaults) assert defaults_start >= 0, original.__name__ def decorator(func): # Decorate func. func = require_http_methods([method])(func) @functools.wraps(func) def wrapper(request, event_slug, **kwargs): # Prevent access if checkout is not active. event = get_object_or_404(Event, slug=event_slug) if not staff_override and not event.checkout_active: raise Http404() if not ignore_session: # Ensure the request hasn't changed Event. session_event = request.session.get("event") if session_event is not None and session_event != event.pk: return AjaxError( RET_CONFLICT, _("Event changed. Please refresh the page and re-login.")).render() # Pass request params to the view as keyword arguments. # The first argument is skipped since it is the request. request_data = request.GET if method == 'GET' else request.POST for i, param in enumerate(params): try: if i == 0 and param == "event": # Supply event from function arguments. kwargs[param] = event else: # Default: Supply argument value from request data. kwargs[param] = request_data[param] except KeyError: if i < defaults_start: return HttpResponseBadRequest("Incomplete request") kwargs[param] = defaults[i - defaults_start] try: result = func(request, **kwargs) except AjaxError as ae: return ae.render() if isinstance(result, (HttpResponse, StreamingHttpResponse)): return result else: return HttpResponse( json.dumps(result), status=200, content_type='application/json', ) return wrapper return decorator def get_counter(request): """ Get the Counter object associated with a request. Raise AjaxError if session is invalid or counter is not found. """ if "counter" not in request.session or "counter_key" not in request.session: raise AjaxError(RET_UNAUTHORIZED, _(u"Not logged in.")) counter_id = request.session["counter"] counter_key = request.session["counter_key"] try: counter_object = Counter.objects.get(pk=counter_id) except Counter.DoesNotExist: raise AjaxError( RET_UNAUTHORIZED, _(u"Counter has gone missing."), ) if counter_object.private_key != counter_key: raise AjaxError( RET_UNAUTHORIZED, _("Unauthorized") ) return counter_object def get_clerk(request): """ Get the Clerk object associated with a request. Raise AjaxError if session is invalid or clerk is not found. """ for key in ["clerk", "clerk_token", "counter"]: if key not in request.session: raise AjaxError(RET_UNAUTHORIZED, _(u"Not logged in.")) clerk_id = request.session["clerk"] clerk_token = request.session["clerk_token"] try: clerk_object = Clerk.objects.get(pk=clerk_id) except Clerk.DoesNotExist: raise AjaxError(RET_UNAUTHORIZED, _(u"Clerk not found.")) if clerk_object.access_key != clerk_token: raise AjaxError(RET_UNAUTHORIZED, _(u"Bye.")) return clerk_object def require_user_features(counter=True, clerk=True, overseer=False, staff_override=False): def out_w(func): @functools.wraps(func) def wrapper(request, *args, **kwargs): if staff_override and request.user.is_staff: return func(request, *args, **kwargs) if counter: # This call raises if counter is not found. get_counter(request) if clerk or overseer: # Thus call raises if clerk is not found. clerk_obj = get_clerk(request) if overseer and not EventPermission.get(clerk_obj.event, clerk_obj.user).can_perform_overseer_actions: raise AjaxError(RET_FORBIDDEN, _(u"Access denied.")) return func(request, *args, **kwargs) return wrapper return out_w def empty_as_none(value): return None if (value or "").strip() == "" else value def get_all_ajax_functions(): for v in AJAX_SCOPES.values(): yield from v.items() def ajax_func_factory(scope: str): scope_functions = AJAX_SCOPES.setdefault(scope, dict()) def wrapper(url: str, method='POST', counter=True, clerk=True, overseer=False, atomic=False, staff_override=False, ignore_session=False): """ Decorate a function with some common logic. The names of the function being decorated are required to be present in the JSON object that is passed to the function, and they are automatically decoded and passed to those arguments. :param url: URL RegEx this function is served in. :type url: str :param method: HTTP Method required. Default is POST. :type method: str :param counter: Is registered Counter required? Default: True. :type counter: bool :param clerk: Is logged in Clerk required? Default: True. :type clerk: bool :param overseer: Is overseer permission required for Clerk? Default: False. :type overseer: bool :param atomic: Should this function run in atomic transaction? Default: False. :type atomic: bool :param staff_override: Whether this function can be called without checkout being active. :type staff_override: bool :param ignore_session: Whether Event stored in session data should be ignored for the call. :return: Decorated function. """ def decorator(func): # Get argspec before any decoration. spec = inspect.getfullargspec(func) wrapped = require_user_features(counter, clerk, overseer, staff_override=staff_override)(func) fn = ajax_func( func, method, spec.args[1:], spec.defaults, staff_override=staff_override, ignore_session=ignore_session, )(wrapped) if atomic: fn = transaction.atomic(fn) # Copy name etc from original function to wrapping function. # The wrapper must be the one referred from urlconf. fn = functools.wraps(wrapped)(fn) scope_functions[func.__name__] = AjaxFunc(fn, url, method) return fn return decorator return wrapper
# DEC --> XS3-CODE FUNC. [1] def decxs(n): t = list(n) r = '' d = {'0':'0011', '1':'0100', '2':'0101', '3':'0110', '4':'0111', '5':'1000', '6':'1001', '7':'1010', '8':'1011', '9':'1100', '.':'.'} for i in t: r = r + d[i] return(r) # XS3-CODE --> DEC FUNC. [2] def xsdec(n,z): r = '' dd = {'0011':'0', '0100':'1', '0101':'2', '0110':'3', '0111':'4', '1000':'5', '1001':'6', '1010':'7', '1011':'8', '1100':'9', '.':'.'} if '.' not in n: for i in range (0,z,4): k = '' for ii in range(4): k = k + n[i+ii] r = r + dd[k] return(r) # FOR FRACTIONAL NUMBERS else: f = n.index('.') for i in range (0,f,4): k = '' for ii in range(4): k = k + n[i+ii] r = r + dd[k] r += '.' for i in range (f+1,z,4): k = '' for ii in range(4): k = k + n[i+ii] r = r + dd[k] return(r) # DRIVER FUNCTION def temp(): try: print("\n\n-----------------------------------------------------------------------------") print("PRESS '1' -- TO CONVERT DECIMAL TO EXCESS-3 CODE.") print("PRESS '2' -- TO CONVERT EXCESS-3 CODE TO DECIMAL.") print("-----------------------------------------------------------------------------") us = int(input()) if (us == 1): try: j = float(input("\nENTER THE DECIMAL [DEC] CODE -- \t")) if (j >= 0.0): n = str(j) print("\n------***------------***------") print("{} = {} [XS-3 FORMAT] ".format(j,decxs(n))) print("------***------------***------\n") else: n = str ( j * (- 1.0) ) print("\n------***------------***------") print("{} = -{} [XS-3 FORMAT] ".format(j,decxs(n))) print("------***------------***------\n") except: print("\n* INVALID CODE INPUT! PLEASE TRY AGAIN..!") temp() elif (us == 2): try: jk = input("\nENTER THE EXCESS-3 [XS-3] CODE -- \t") j = list(jk) z = len(j) if '-' not in j: print("\n------***------------***------") print("{} = {} [DEC FORMAT] ".format(jk,xsdec(j,z))) print("------***------------***------\n") else: j.remove('-') print("\n------***------------***------") print("{} = -{} [DEC FORMAT] ".format(jk,xsdec(j,z))) print("------***------------***------\n") except: print("\n* INVALID CODE INPUT [USE 4-DIGIT GROUP CODE]! PLEASE TRY AGAIN..!") temp() else: print("\n* INVALID INPUT! TRY AGAIN..!") temp() except: print("\n* ENTER THE [OPTION](1/2) CORRECTLY!!") temp() U = input("\nWANT TO TRY AGAIN? PLEASE TYPE -- [YES/Y OR NO/N] :--\t").lower() if (U == 'yes' or U == 'y'): temp() else: print("\n\n~THANK YOU! ") exit() print("\n *** [DEC] <---> [XS-3] CONVERTER ***\n ----------------------------------") temp() @ CODED BY TSG405, 2021
# Port of my Racket solution: # https://github.com/lojic/LearningRacket/blob/master/advent-of-code-2021/solutions/day15/day15-conspicio.rkt from advent import * # Represent a path with a 3-tuple (risk x y) to more easily work with the heap def solve(input, width): dim0 = 100 dim = width * dim0 vec = list(chain.from_iterable(input)) visited = [ False ] * (dim * dim) paths = [(0, 0, 0)] is_visited = lambda x, y: visited[y * dim + x] wrap = lambda n: (n - 9) if n > 9 else n def set_visited(x,y): visited[y * dim + x] = True def get(x, y): tile_x, x = divmod(x, dim0) tile_y, y = divmod(y, dim0) risk = vec[y * dim0 + x] return wrap(risk + tile_x + tile_y) while True: risk, x, y = heappop(paths) if is_visited(x, y): continue elif (x == dim-1) and (y == dim-1): return risk else: set_visited(x, y) for nx, ny in [(x - 1, y), (x + 1, y), (x, y - 1), (x, y + 1)]: if (0 <= nx < dim) and (0 <= ny < dim) and (not is_visited(nx, ny)): heappush(paths, (risk + get(nx,ny), nx, ny)) # Tests --------------------------------------------------------------------------------------- class TestDay15(unittest.TestCase): def test_solve(self): input = parse(15, digits) self.assertEqual(solve(input, 1), 687) self.assertEqual(solve(input, 5), 2957) unittest.main()
# Copyright (c) 2013 Rackspace, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. import datetime import json from unittest import mock import ddt import falcon from oslo_serialization import jsonutils from oslo_utils import timeutils from oslo_utils import uuidutils from testtools import matchers from zaqar import tests as testing from zaqar.tests.unit.transport.wsgi import base @ddt.ddt class TestClaimsMongoDB(base.V2Base): config_file = 'wsgi_mongodb.conf' @testing.requires_mongodb def setUp(self): super(TestClaimsMongoDB, self).setUp() self.default_claim_ttl = self.boot.transport._defaults.claim_ttl self.project_id = '737_abc8332832' self.headers = { 'Client-ID': uuidutils.generate_uuid(), 'X-Project-ID': self.project_id } self.queue_path = self.url_prefix + '/queues/fizbit' self.claims_path = self.queue_path + '/claims' self.messages_path = self.queue_path + '/messages' doc = json.dumps({"_ttl": 60}) self.simulate_put(self.queue_path, body=doc, headers=self.headers) self.assertEqual(falcon.HTTP_201, self.srmock.status) doc = json.dumps({'messages': [{'body': 239, 'ttl': 300}] * 10}) self.simulate_post(self.queue_path + '/messages', body=doc, headers=self.headers) self.assertEqual(falcon.HTTP_201, self.srmock.status) def tearDown(self): storage = self.boot.storage._storage control = self.boot.control connection = storage.connection connection.drop_database(control.queues_database) for db in storage.message_databases: connection.drop_database(db) self.simulate_delete(self.queue_path, headers=self.headers) super(TestClaimsMongoDB, self).tearDown() @ddt.data('[', '[]', '.', '"fail"') def test_bad_claim(self, doc): self.simulate_post(self.claims_path, body=doc, headers=self.headers) self.assertEqual(falcon.HTTP_400, self.srmock.status) href = self._get_a_claim() self.simulate_patch(href, body=doc, headers=self.headers) self.assertEqual(falcon.HTTP_400, self.srmock.status) def test_exceeded_claim(self): self.simulate_post(self.claims_path, body='{"ttl": 100, "grace": 60}', query_string='limit=21', headers=self.headers) self.assertEqual(falcon.HTTP_400, self.srmock.status) @ddt.data((-1, -1), (59, 60), (60, 59), (60, 43201), (43201, 60)) def test_unacceptable_ttl_or_grace(self, ttl_grace): ttl, grace = ttl_grace self.simulate_post(self.claims_path, body=json.dumps({'ttl': ttl, 'grace': grace}), headers=self.headers) self.assertEqual(falcon.HTTP_400, self.srmock.status) @ddt.data(-1, 59, 43201) def test_unacceptable_new_ttl(self, ttl): href = self._get_a_claim() self.simulate_patch(href, body=json.dumps({'ttl': ttl}), headers=self.headers) self.assertEqual(falcon.HTTP_400, self.srmock.status) def test_default_ttl_and_grace(self): self.simulate_post(self.claims_path, body='{}', headers=self.headers) self.assertEqual(falcon.HTTP_201, self.srmock.status) body = self.simulate_get(self.srmock.headers_dict['location'], headers=self.headers) claim = jsonutils.loads(body[0]) self.assertEqual(self.default_claim_ttl, claim['ttl']) def _get_a_claim(self): doc = '{"ttl": 100, "grace": 60}' self.simulate_post(self.claims_path, body=doc, headers=self.headers) return self.srmock.headers_dict['Location'] def test_lifecycle(self): doc = '{"ttl": 100, "grace": 60}' # First, claim some messages body = self.simulate_post(self.claims_path, body=doc, headers=self.headers) self.assertEqual(falcon.HTTP_201, self.srmock.status) claimed = jsonutils.loads(body[0])['messages'] claim_href = self.srmock.headers_dict['Location'] message_href, params = claimed[0]['href'].split('?') # No more messages to claim self.simulate_post(self.claims_path, body=doc, query_string='limit=3', headers=self.headers) self.assertEqual(falcon.HTTP_204, self.srmock.status) # Listing messages, by default, won't include claimed, will echo body = self.simulate_get(self.messages_path, headers=self.headers, query_string="echo=true") self.assertEqual(falcon.HTTP_200, self.srmock.status) self._empty_message_list(body) # Listing messages, by default, won't include claimed, won't echo body = self.simulate_get(self.messages_path, headers=self.headers, query_string="echo=false") self.assertEqual(falcon.HTTP_200, self.srmock.status) self._empty_message_list(body) # List messages, include_claimed, but don't echo body = self.simulate_get(self.messages_path, query_string='include_claimed=true' '&echo=false', headers=self.headers) self.assertEqual(falcon.HTTP_200, self.srmock.status) self._empty_message_list(body) # List messages with a different client-id and echo=false. # Should return some messages headers = self.headers.copy() headers["Client-ID"] = uuidutils.generate_uuid() body = self.simulate_get(self.messages_path, query_string='include_claimed=true' '&echo=false', headers=headers) self.assertEqual(falcon.HTTP_200, self.srmock.status) # Include claimed messages this time, and echo body = self.simulate_get(self.messages_path, query_string='include_claimed=true' '&echo=true', headers=self.headers) listed = jsonutils.loads(body[0]) self.assertEqual(falcon.HTTP_200, self.srmock.status) self.assertEqual(len(claimed), len(listed['messages'])) now = timeutils.utcnow() + datetime.timedelta(seconds=10) timeutils_utcnow = 'oslo_utils.timeutils.utcnow' with mock.patch(timeutils_utcnow) as mock_utcnow: mock_utcnow.return_value = now body = self.simulate_get(claim_href, headers=self.headers) claim = jsonutils.loads(body[0]) self.assertEqual(falcon.HTTP_200, self.srmock.status) self.assertEqual(100, claim['ttl']) # NOTE(cpp-cabrera): verify that claim age is non-negative self.assertThat(claim['age'], matchers.GreaterThan(-1)) # Try to delete the message without submitting a claim_id self.simulate_delete(message_href, headers=self.headers) self.assertEqual(falcon.HTTP_403, self.srmock.status) # Delete the message and its associated claim self.simulate_delete(message_href, query_string=params, headers=self.headers) self.assertEqual(falcon.HTTP_204, self.srmock.status) # Try to get it from the wrong project headers = { 'Client-ID': uuidutils.generate_uuid(), 'X-Project-ID': 'bogusproject' } self.simulate_get(message_href, query_string=params, headers=headers) self.assertEqual(falcon.HTTP_404, self.srmock.status) # Get the message self.simulate_get(message_href, query_string=params, headers=self.headers) self.assertEqual(falcon.HTTP_404, self.srmock.status) # Update the claim new_claim_ttl = '{"ttl": 60, "grace": 60}' creation = timeutils.utcnow() self.simulate_patch(claim_href, body=new_claim_ttl, headers=self.headers) self.assertEqual(falcon.HTTP_204, self.srmock.status) # Get the claimed messages (again) body = self.simulate_get(claim_href, headers=self.headers) query = timeutils.utcnow() claim = jsonutils.loads(body[0]) message_href, params = claim['messages'][0]['href'].split('?') self.assertEqual(60, claim['ttl']) estimated_age = timeutils.delta_seconds(creation, query) self.assertGreater(estimated_age, claim['age']) # Delete the claim self.simulate_delete(claim['href'], headers=self.headers) self.assertEqual(falcon.HTTP_204, self.srmock.status) # Try to delete a message with an invalid claim ID self.simulate_delete(message_href, query_string=params, headers=self.headers) self.assertEqual(falcon.HTTP_400, self.srmock.status) # Make sure it wasn't deleted! self.simulate_get(message_href, query_string=params, headers=self.headers) self.assertEqual(falcon.HTTP_200, self.srmock.status) # Try to get a claim that doesn't exist self.simulate_get(claim['href'], headers=self.headers) self.assertEqual(falcon.HTTP_404, self.srmock.status) # Try to update a claim that doesn't exist self.simulate_patch(claim['href'], body=doc, headers=self.headers) self.assertEqual(falcon.HTTP_404, self.srmock.status) def test_post_claim_nonexistent_queue(self): path = self.url_prefix + '/queues/nonexistent/claims' self.simulate_post(path, body='{"ttl": 100, "grace": 60}', headers=self.headers) self.assertEqual(falcon.HTTP_204, self.srmock.status) def test_get_claim_nonexistent_queue(self): path = self.url_prefix + '/queues/nonexistent/claims/aaabbbba' self.simulate_get(path, headers=self.headers) self.assertEqual(falcon.HTTP_404, self.srmock.status) # NOTE(cpp-cabrera): regression test against bug #1203842 def test_get_nonexistent_claim_404s(self): self.simulate_get(self.claims_path + '/a', headers=self.headers) self.assertEqual(falcon.HTTP_404, self.srmock.status) def test_delete_nonexistent_claim_204s(self): self.simulate_delete(self.claims_path + '/a', headers=self.headers) self.assertEqual(falcon.HTTP_204, self.srmock.status) def test_patch_nonexistent_claim_404s(self): patch_data = json.dumps({'ttl': 100}) self.simulate_patch(self.claims_path + '/a', body=patch_data, headers=self.headers) self.assertEqual(falcon.HTTP_404, self.srmock.status) class TestClaimsFaultyDriver(base.V2BaseFaulty): config_file = 'wsgi_faulty.conf' def test_simple(self): self.project_id = '480924abc_' self.headers = { 'Client-ID': uuidutils.generate_uuid(), 'X-Project-ID': self.project_id } claims_path = self.url_prefix + '/queues/fizbit/claims' doc = '{"ttl": 100, "grace": 60}' self.simulate_post(claims_path, body=doc, headers=self.headers) self.assertEqual(falcon.HTTP_503, self.srmock.status) self.simulate_get(claims_path + '/nichts', headers=self.headers) self.assertEqual(falcon.HTTP_503, self.srmock.status) self.simulate_patch(claims_path + '/nichts', body=doc, headers=self.headers) self.assertEqual(falcon.HTTP_503, self.srmock.status) self.simulate_delete(claims_path + '/foo', headers=self.headers) self.assertEqual(falcon.HTTP_503, self.srmock.status)
""" Longest Word Have the function LongestWord(sen) take the sen parameter being passed and return the largest word in the string. If there are two or more words that are the same length, return the first word from the string with that length. Ignore punctuation and assume sen will not be empty. Examples Input: "fun&!! time" Output: time Input: "I love dogs" Output: love """ import re def LongestWord(sen): res = '' for i in re.split('[^a-z|^A-Z|^0-9]', sen): if len(i) > len(res): res = i return res if __name__ == '__main__': input = "fun&!! time" print(LongestWord(input)) #Output: time input = "I love dogs" print(LongestWord(input)) #Output: love input = "0123456789 123456" print(LongestWord(input)) #Output: 0123456789
import PREFS if __name__ == "__main__": print(PREFS.read_prefs_file("folder/theme.prefs", verbose=True))
# -*- coding: <UTF-8> -*- import pickle as picklerick import lib.main_storage as ms from ._globals import base, index_base class PTrieNode: def __init__(self): self.key = None self.value = 0 self.hasNext = False # 26 pointers to None for a-z, plus 10 for 0-9 plus : and ' ' self.ptrs = [None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None] def next(self, char): self.hasNext = True index = char_to_index(char) if self.ptrs[index] is None: self.ptrs[index] = PTrieNode() return self.ptrs[index] def set(self, string, value): self.key = string self.value = value def _print(self, level): print('key=' + str(self.key) + ', value=' + str(self.value) + ', lvl=' + str(level)) for x in self.ptrs: if x is not None: x._print(level+1) def extract(self): out = [] if self.key is not None: out.append((self.key, self.value)) for node in self.ptrs: if node is not None: out += node.extract() return out class PatriciaTrie: def __init__(self): self.root = PTrieNode() self.root.value = 0 @staticmethod def propagate_to_branches(node_list): out = [] for node in node_list: out += node.extract() return out def _insert(self, string, value, node=None, start_ind=0): node = self.root if node is None else node for i in range(start_ind, len(string)): if node.key is None: if node.hasNext: node = node.next(string[i]) else: node.set(string, value) return else: if len(node.key) == i: node = node.next(string[i]) else: string2 = node.key value2 = node.value if string == string2: print('register with key=' + string2 + ' already exists') return else: node.key, node.value = None, 0 j = 0 for c1, c2 in zip(string, string2): if c1 == c2: j += 1 else: break if j == len(string2): string, string2 = string2, string value, value2 = value2, value if j == len(string): # in case one string is the prefix of the other for a in range(i, j): node = node.next(string[a]) self._insert(string, value, node, j-1) node = node.next(string2[j]) self._insert(string2, value2, node, j) else: for a in range(i, j): node = node.next(string[a]) self._insert(string, value, node.next(string[j]), j) self._insert(string2, value2, node.next(string2[j]), j) return node.set(string, value) # got to the end of the string, so it belongs to this node return def insert(self, movie, position=None, db_filepath='lpmdb.bin', λ=lambda x: x.title): position = ms.getMoviePositionByID(db_filepath, movie.lpmdb_id) if position is None else position self._insert(λ(movie), position) def save(self, filepath, is_filepath=False): """saves the patricia trie to the database. It assumes the filepath recieved is actually a field name and saves the file with a special name derived from it. If is_filepath=True, it doesn't do that conversion""" if not is_filepath: filepath += '_ptrie.bin' with open(index_base+filepath, 'wb') as file: file.write(picklerick.dumps(self)) @classmethod def load(cls, field, suffix=False): """given a field, converts it to the equivalent filename and opens it""" extra = '_suf' if suffix else '' return cls.read(field+extra+'_ptrie.bin') @staticmethod def read(filepath): try: with open(index_base+filepath, 'rb') as file: return picklerick.loads(file.read()) except FileNotFoundError: return None @staticmethod def create_patricia_trie(db_filename, λ=lambda mv: mv.title.lower()): pt = PatriciaTrie() pt._createPatriciaTrie(db_filename, λ) return pt def _createPatriciaTrie(self, db_filename, λ): with open(base+db_filename, 'rb') as file: position = file.tell() movie = ms.readNext(file) while movie is not None: self.insert(movie, position, db_filename, λ) position = file.tell() movie = ms.readNext(file) def print(self): self.root._print(0) def searchExactMatch(self, string): node = self.root for letter in string: if node.hasNext: node = node.next(letter) else: break return node.key,node.value if node is not None else None def prefixSearch(self, string): node = self.root for letter in string: if node is not None and node.hasNext: node = node.ptrs[char_to_index(letter)] else: break return [node] def _infixSearch(self, infix, _i, node): out = [] if node is None: return [] else: if _i == len(infix): return [node] elif node.hasNext: if node.key == "caacbo": print(node.key) print(_i) index = char_to_index(infix[_i]) index_str0 = char_to_index(infix[0]) for i, _node in enumerate(node.ptrs): if _node is not None: if i == index: out += self._infixSearch(infix, _i+1, _node) elif i == index_str0: out += self._infixSearch(infix, 1, _node) else: out += self._infixSearch(infix, 0, _node) return out elif infix in node.key: return [node] else: return [] def infixSearch(self, infix): return self._infixSearch(infix, 0, self.root) def testFill(self, lista): x = 0 for s in lista: ptrie._insert(s, x) x += 10 def char_to_index(char): if char >= 'a': index = ord(char) - ord('a') elif char >= '0' and char <= '9': index = ord(char) - ord('0') + 26 elif char == ':': index = -6 elif char == '.': index = -5 elif char == ',': index = -4 elif char == "'": index = -3 elif char == ' ': # char == ' ' index = -2 else: index = -1 print('unindentified char: ' + char) return index # @ test # ptrie = PatriciaTrie() # ptrie.createPatriciaTrie('db.bin') # x = 0 # lista = ['caca', 'macarroni', 'acbolado', 'acb', 'acd', 'caacbo', 'ccaa'] # lista = ['ar', 'args'] # ptrie.testFill(lista) # ptrie.print() # print(ptrie.root.ptrs[char_to_index('a')].ptrs[(char_to_index('g'))].ptrs[(char_to_index('o'))].key) # print(rt.ptrs[char_to_index('a')].ptrs[char_to_index('a')].ptrs[char_to_index('b')].key)#.ptrs[char_to_index('a')].key) # ptrie.print() # print(ptrie.searchExactMatch('agon')) # print(ptrie.prefixSearch('ab')[0].ptrs[char_to_index('b')].key) # l = ptrie.infixSearch('cb') # print(l) # print(l[0].ptrs[1].key) # print(l[0].ptrs[3].key) # print(l[0].key) # print(l[0].ptrs[char_to_index('o')].key) # print(l[1].key) # a = ptrie.genericSearch('wi', ptrie.infixSearch) # print(len(a))
# -*- coding: utf-8 -*- from classy.base import View from django.core.exceptions import ImproperlyConfigured from django.core.urlresolvers import reverse from django.http import HttpResponseRedirect class FormView(View): form = None redirect = None def get_form(self, request, **kwargs): if not self.form: raise ImproperlyConfigured("'%s' must provide a form." % self.__class__.__name__) return self.form(**kwargs) def get(self, request, **kwargs): form = self.get_form(request) return {'form':form} def get_redirect(self, request, form, **kwargs): if self.redirect: return HttpResponseRedirect(reverse(self.redirect, kwargs=kwargs)) def post(self, request, **kwargs): form = self.get_form(request, data=request.POST, files=request.FILES, **kwargs) if form.is_valid(): self.process_form(request, form, **kwargs) redirect = self.get_redirect(request, form, **kwargs) if redirect: return redirect return {'form':form} def process_form(self, request, form, **kwargs): form.save() if hasattr(form, 'save_m2m'): form.save_m2m()
import os import re import psycopg2 import psycopg2.extras import redis from dotenv import load_dotenv from lua_scripts import lua_1, lua_2 load_dotenv() class CockroachHandler: """ This class implements a handler for the CockroachDB database. """ def __init__(self): """ Initializes this handler. The initialization uses the DATABASE_URL env variable """ try: # Connect to cluster self.connection = psycopg2.connect( os.getenv('DATABASE_URL', ''), cursor_factory=psycopg2.extras.DictCursor) self.connection.set_session(autocommit=True) self.cur = self.connection.cursor() self.r = redis.Redis(host=os.getenv('REDIS_HOST', '155.207.19.237'), port=os.getenv('REDIS_PORT', 6379), db=os.getenv('REDIS_DB', 0), password=os.getenv('REDIS_PASSWORD', '')) self.update_running_values = self.r.register_script(lua_1) # Historical aggregates Lua script self.update_historical_aggregates = self.r.register_script(lua_2) except Exception as e: raise e def __del__(self): self.cur.close() self.connection.close() self.r.connection_pool.disconnect() def create_table(self, table_name, column_specs): """ Registers a new table at the database :param table_name: the name of the table :param column_specs: An array of objects, each containing the column specifications Example object: e.g.:{ "name": "name_of_column", "type": "type_of_column", "primary_key": "yes" } """ column_declarator = "(" for column in column_specs: column_declarator += '"' + column["name"] + '" ' + column["type"] if "primary_key" in column: column_declarator += " PRIMARY KEY" column_declarator += ', ' column_declarator = column_declarator[:-2] + ")" try: self.cur.execute( f"CREATE TABLE IF NOT EXISTS {table_name} {column_declarator}") self.cur.execute( f"CREATE INDEX IF NOT EXISTS timestamp_index ON {table_name} (cenote$timestamp)") except Exception as e: return {"response": 400, "exception": e} return {"response": 201} def alter_table(self, table_name, column_specs): """ Alters a pre-existing table in the database :param table_name: the name of the table :param column_specs: An array of objects, each containing the column specifications Example object: e.g.:{ "name": "name_of_column", "type": "type_of_column", "primary_key": "yes" } """ try: for column in column_specs: column_declarator = column["name"] + ' ' + column["type"] if "primary_key" in column: column_declarator += " PRIMARY KEY" self.cur.execute( f"ALTER TABLE IF EXISTS {table_name} ADD COLUMN IF NOT EXISTS {column_declarator}") except Exception as e: return {"response": 400, "exception": e} return {"response": 201} def describe_table(self, table_name): self.cur.execute(f"SELECT * FROM {table_name} LIMIT 1") return self.cur.fetchone() def write_data(self, table_name, data_instance_array): """ Writes data into a certain table :param table_name: the name of the table :param data_instance_array: array of data_instance data_instance: An array of objects that contain the values to be inserted in each column Example object: e.g.:{ "column": "name_of_column", "value": "the_value_to_be_inserted", "built_in_function": "current_timestamp()" } The data registration process supports two types: 1) value: Contains the raw value to be inserted into the table 2) built_in_function: Provides the name of the built-in function to be used for generating the value """ # Get info from first event only first_event = data_instance_array[0] column_list = "(" pattern = re.compile(r'\'') for value_descriptor in first_event: column_list += '"' + value_descriptor["column"] + '", ' column_list = column_list[:-2] + ")" all_values_to_write = [] all_column_names = [value_descriptor["column"] for value_descriptor in first_event] redis_fail = None for data_instance in data_instance_array: values_list = "(" for column_name in all_column_names: value_descriptor = [ x for x in data_instance if x["column"] == column_name] if len(value_descriptor) > 0: if 'value' in value_descriptor[0]: if type(value_descriptor[0]["value"]) is str: values_list += "'" + \ pattern.sub( "''", str(value_descriptor[0]["value"])) + "'" else: values_list += str(value_descriptor[0]["value"]) else: values_list += value_descriptor[0]["built_in_function"] else: values_list += 'NULL' values_list += ', ' values_list = values_list[:-2] + ")" all_values_to_write.append(values_list) redis_fail = None for vd in data_instance: if 'value' in vd and not vd["column"].startswith("cenote") and ( type(vd["value"]) is int or type(vd["value"]) is float): try: with self.r.pipeline() as pipe: while True: try: pipe.watch(f"{table_name}_{vd['column']}") self.update_running_values(keys=[f"{table_name}_{vd['column']}"], args=[ vd['value']], client=pipe) pipe.execute() break except redis.WatchError: continue except Exception as e: redis_fail = e # Historical aggregates if('installations' in table_name): for vd in data_instance: if vd["column"] == 'cenote$timestamp': split = vd['value'].split(':') date = split[0].split('T')[0] month = date[:7] hour = split[0].split('T')[1] redis_fail = None for vd in data_instance: if 'value' in vd and vd["column"] == "active" and (type(vd["value"]) is int or type(vd["value"]) is float): try: with self.r.pipeline() as pipe: while True: try: pipe.watch( f"{table_name}_{vd['column']}_hist") self.update_historical_aggregates( keys=[ f"{table_name}_{vd['column']}_hist"], args=[vd['value'], date, month, hour], client=pipe) pipe.execute() break except redis.WatchError: continue except Exception as e: redis_fail = e query = f"INSERT INTO {table_name} {column_list} VALUES {','.join(map(str, all_values_to_write))}" try: self.cur.execute(query) except Exception as e: return {"response": 400, "exception": e} return {"response": 400, "exception": repr(redis_fail)} if redis_fail else {"response": 201}
from .wolfram import Wolfram def setup(bot): bot.add_cog(Wolfram(bot))
import os import imp import configparser from pp_utils import Monitor class IOPluginManager(object): plugins=[] def __init__(self): self.mon=Monitor() def init(self,pp_dir,pp_profile,widget,callback,pp_home): self.pp_dir=pp_dir self.pp_profile=pp_profile self.pp_home=pp_home IOPluginManager.plugins=[] if os.path.exists(self.pp_profile+os.sep+'pp_io_config'): # read the .cfg files in /pp_io_config in profile registring the I/O plugin for cfgfile in os.listdir(self.pp_profile+os.sep+'pp_io_config'): if cfgfile in ('screen.cfg','osc.cfg'): continue cfgfilepath = self.pp_profile+os.sep+'pp_io_config'+os.sep+cfgfile status,message=self.init_config(cfgfile,cfgfilepath,widget,callback) if status == 'error': return status,message #read .cfg file in /pipresents/pp_io_config if file not present in profile then use this one for cfgfile in os.listdir(self.pp_dir+os.sep+'pp_io_config'): if cfgfile in ('screen.cfg','osc.cfg'): continue if not os.path.exists(self.pp_profile+os.sep+'pp_io_config'+os.sep+cfgfile): cfgfilepath=self.pp_dir+os.sep+'pp_io_config'+os.sep+cfgfile status,message=self.init_config(cfgfile,cfgfilepath,widget,callback) if status == 'error': return status,message # print IOPluginManager.plugins return 'normal','I/O Plugins registered' def init_config(self,cfgfile,cfgfilepath,widget,callback): # print cfgfile,cfgfilepath reason,message,config=self._read(cfgfile,cfgfilepath) if reason =='error': self.mon.err(self,'Failed to read '+cfgfile + ' ' + message) return 'error','Failed to read '+cfgfile + ' ' + message if config.has_section('DRIVER') is False: self.mon.err(self,'No DRIVER section in '+cfgfilepath) return 'error','No DRIVER section in '+cfgfilepath entry = dict() #read information from DRIVER section entry['title']=config.get('DRIVER','title') if config.get('DRIVER','enabled')=='yes': if config.has_option('DRIVER','driver-ref'): entry['driver-ref']=config.get('DRIVER','driver-ref') else: entry['driver-ref']='' driver_name=config.get('DRIVER','module') driver_path=self.pp_dir+os.sep+'pp_io_plugins'+os.sep+driver_name+'.py' if not os.path.exists(driver_path): self.mon.err(self,driver_name + ' Driver not found in ' + driver_path) return 'error',driver_name + ' Driver not found in ' + driver_path instance = self._load_plugin_file(driver_name,self.pp_dir+os.sep+'pp_io_plugins') reason,message=instance.init(cfgfile,cfgfilepath,widget,self.pp_dir,self.pp_home,self.pp_profile,callback) if reason=='warn': self.mon.warn(self,message) return 'error',message if reason=='error': self.mon.warn(self,message) return 'error',message entry['instance']=instance self.mon.log(self,message) IOPluginManager.plugins.append(entry) return 'normal','I/O Plugins registered' def start(self): for entry in IOPluginManager.plugins: plugin=entry['instance'] if plugin.is_active() is True: plugin.start() def terminate(self): for entry in IOPluginManager.plugins: plugin=entry['instance'] if plugin.is_active() is True: plugin.terminate() self.mon.log(self,'I/O plugin '+entry['title']+ ' terminated') def get_input(self,key,driver_ref=''): for entry in IOPluginManager.plugins: plugin=entry['instance'] # print ('trying ',entry['title'],plugin.is_active()) if plugin.is_active() is True and driver_ref == entry['driver-ref']: # need to test found in plugin to allow key to match if driver-ref not used found,value = plugin.get_input(key) if found is True: return found,value # key not found in any plugin return False,None def handle_output_event(self,name,param_type,param_values,req_time): for entry in IOPluginManager.plugins: plugin=entry['instance'] # print ('trying ',entry['title'],name,param_type,plugin.is_active()) if plugin.is_active() is True: # print (name,param_type,param_values,req_time) reason,message= plugin.handle_output_event(name,param_type,param_values,req_time) if reason == 'error': # self.mon.err(self,message) return 'error',message else: self.mon.log(self,message) return 'normal','output scan complete' def _load_plugin_file(self, name, driver_dir): fp, pathname,description = imp.find_module(name,[driver_dir]) module_id = imp.load_module(name,fp,pathname,description) plugin_class = getattr(module_id,name) return plugin_class() def _read(self,filename,filepath): if os.path.exists(filepath): config = configparser.ConfigParser(inline_comment_prefixes = (';',)) config.read(filepath) self.mon.log(self,filename+" read from "+ filepath) return 'normal',filename+' read',config else: return 'error',filename+' not found at: '+filepath,None
""" Selects recurrent neural network based on the name. Author: Mateusz Malinowski Email: mmalinow@mpi-inf.mpg.de """ from keras.layers.recurrent import GRU from keras.layers.recurrent import LSTM from keras.layers.recurrent import SimpleRNN #from keras.layers.recurrent import JZS1 #from keras.layers.recurrent import JZS2 #from keras.layers.recurrent import JZS3 select = { 'lstm':LSTM, 'gru':GRU, 'simpleRNN':SimpleRNN, #'mut1':JZS1, #'mut2':JZS2, #'mut3':JZS3, #'jzs1':JZS1, #'jzs2':JZS2, #'jzs3':JZS3 }
"""A simple example of how to access the Google Analytics API.""" import argparse import oauth2client from apiclient.discovery import build from oauth2client.service_account import ServiceAccountCredentials import httplib2 from oauth2client import client from oauth2client import file from oauth2client import tools import urllib2 def get_service(api_name, api_version, scope, key_file_location, service_account_email): """Get a service that communicates to a Google API. Args: api_name: The name of the api to connect to. api_version: The api version to connect to. scope: A list auth scopes to authorize for the application. key_file_location: The path to a valid service account p12 key file. service_account_email: The service account email address. Returns: A service that is connected to the specified API. """ f = open(key_file_location, 'rb') key = f.read() f.close() credentials = ServiceAccountCredentials.from_p12_keyfile(service_account_email,key_file_location, scopes=scope) http = credentials.authorize(httplib2.Http()) # Build the service object. service = build(api_name, api_version, http=http) return service # Insert user email here users = {'',''} # Insert list of GA account account = {'',''} def link_user(service): for u in users : for x in account : try: service.management().accountUserLinks().insert( accountId='%s' % x, body={ 'permissions': { 'local': [ 'MANAGE_USERS', 'EDIT', 'READ', 'COLLABORATE', 'ANALYZE' ]}, 'userRef': { 'email': '%s'% u } } ).execute() print "%s::%s::added" % (u, x) except TypeError, error: # Handle errors in constructing a query. print 'There was an error in constructing your query : %s' % error except urllib2.HTTPError, error: # Handle API errors. print ('There was an API error : %s : %s' % (error.resp.status, error.resp.reason)) # print "%s::added::user::%s" % (account[0], u) def main(): scope = ['https://www.googleapis.com/auth/analytics.manage.users'] # service account email and relative location of your key file. service_account_email = '' key_file_location = 'C:/users/trenouf/documents/mystuffpython/gap/client_secrets.p12' # Authenticate and construct service. service = get_service('analytics', 'v3', scope, key_file_location, service_account_email) link_user(service) if __name__ == '__main__': main()