question_id
stringlengths 7
12
| nl
stringlengths 4
200
| cmd
stringlengths 2
232
| oracle_man
list | canonical_cmd
stringlengths 2
228
| cmd_name
stringclasses 1
value |
---|---|---|---|---|---|
7741878-15
|
apply `numpy.linalg.norm` to each row of a matrix `a`
|
numpy.apply_along_axis(numpy.linalg.norm, 1, a)
|
[
"numpy.reference.generated.numpy.apply_along_axis"
] |
numpy.apply_along_axis(numpy.linalg.norm, 1, VAR_STR)
|
conala
|
10895028-20
|
append dict `{'f': var6, 'g': var7, 'h': var8}` to value of key `e` in dict `jsobj['a']['b']`
|
jsobj['a']['b']['e'].append({'f': var6, 'g': var7, 'h': var8})
|
[
"numpy.reference.generated.numpy.append"
] |
jsobj['a']['b']['VAR_STR'].append({VAR_STR})
|
conala
|
21104592-91
|
read json `elevations` to pandas dataframe `df`
|
pd.read_json(elevations)
|
[
"pandas.reference.api.pandas.read_json"
] |
pd.read_json(VAR_STR)
|
conala
|
12324456-53
|
keep a list `dataList` of lists sorted as it is created by second element
|
dataList.sort(key=lambda x: x[1])
|
[
"python.library.stdtypes#list.sort"
] |
VAR_STR.sort(key=lambda x: x[1])
|
conala
|
10213994-42
|
sorting a list of tuples `list_of_tuples` where each tuple is reversed
|
sorted(list_of_tuples, key=lambda tup: tup[::-1])
|
[
"python.library.functions#sorted"
] |
sorted(VAR_STR, key=lambda tup: tup[::-1])
|
conala
|
10213994-17
|
sorting a list of tuples `list_of_tuples` by second key
|
sorted(list_of_tuples, key=lambda tup: tup[1])
|
[
"python.library.functions#sorted"
] |
sorted(VAR_STR, key=lambda tup: tup[1])
|
conala
|
5251663-9
|
check if any values in a list `input_list` is a list
|
any(isinstance(el, list) for el in input_list)
|
[
"python.library.functions#isinstance",
"python.library.functions#any"
] |
any(isinstance(el, list) for el in VAR_STR)
|
conala
|
4877844-81
|
check if string 'x' is in list `['x', 'd', 'a', 's', 'd', 's']`
|
'x' in ['x', 'd', 'a', 's', 'd', 's']
|
[] |
'VAR_STR' in ['VAR_STR', 'd', 'a', 's', 'd', 's']
|
conala
|
40016359-9
|
Get the first and last 3 elements of list `l`
|
l[:3] + l[-3:]
|
[] |
VAR_STR[:3] + VAR_STR[-3:]
|
conala
|
1038824-12
|
remove a substring ".com" from the end of string `url`
|
if url.endswith('.com'):
url = url[:(-4)]
|
[
"python.library.stdtypes#str.endswith"
] |
if VAR_STR.endswith('VAR_STR'):
VAR_STR = VAR_STR[:-4]
|
conala
|
1038824-99
|
remove a substring ".com" from the end of string `url`
|
url = re.sub('\\.com$', '', url)
|
[
"python.library.re#re.sub"
] |
VAR_STR = re.sub('\\.com$', '', VAR_STR)
|
conala
|
1038824-76
|
remove a substring ".com" from the end of string `url`
|
print(url.replace('.com', ''))
|
[
"python.library.stdtypes#str.replace"
] |
print(VAR_STR.replace('VAR_STR', ''))
|
conala
|
1038824-70
|
remove a substring `suffix` from the end of string `text`
|
if (not text.endswith(suffix)):
return text
return text[:(len(text) - len(suffix))]
|
[
"python.library.functions#len"
] |
if not VAR_STR.endswith(VAR_STR):
return VAR_STR
return VAR_STR[:len(VAR_STR) - len(VAR_STR)]
|
conala
|
40319433-71
|
find the euclidean distance between two 3-d arrays `A` and `B`
|
np.sqrt(((A - B) ** 2).sum(-1))
|
[
"numpy.reference.generated.numpy.sqrt",
"python.library.functions#sum"
] |
np.sqrt(((VAR_STR - VAR_STR) ** 2).sum(-1))
|
conala
|
2094176-57
|
split string `a` using new-line character '\n' as separator
|
a.rstrip().split('\n')
|
[
"python.library.stdtypes#str.rstrip",
"python.library.stdtypes#str.split"
] |
VAR_STR.rstrip().split('VAR_STR')
|
conala
|
2094176-44
|
split a string `a` with new line character
|
a.split('\n')[:-1]
|
[
"python.library.stdtypes#str.split"
] |
VAR_STR.split('\n')[:-1]
|
conala
|
4979542-63
|
unpack the arguments out of list `params` to function `some_func`
|
some_func(*params)
|
[] |
VAR_STR(*VAR_STR)
|
conala
|
8383213-96
|
python regex for hyphenated words in `text`
|
re.findall('\\w+(?:-\\w+)+', text)
|
[
"python.library.re#re.findall"
] |
re.findall('\\w+(?:-\\w+)+', VAR_STR)
|
conala
|
31029560-17
|
plot a bar graph from the column 'color' in the DataFrame 'df'
|
df.colour.value_counts().plot(kind='bar')
|
[
"pandas.reference.api.pandas.dataframe.value_counts",
"pandas.reference.api.pandas.dataframe.plot"
] |
VAR_STR.colour.value_counts().plot(kind='bar')
|
conala
|
31029560-68
|
plot categorical data in series `df` with kind `bar` using pandas and matplotlib
|
df.groupby('colour').size().plot(kind='bar')
|
[
"pandas.reference.api.pandas.dataframe.groupby",
"pandas.reference.api.pandas.dataframe.plot",
"pandas.reference.api.pandas.dataframe.size"
] |
VAR_STR.groupby('colour').size().plot(kind='VAR_STR')
|
conala
|
18319101-1
|
generate random upper-case ascii string of 12 characters length
|
print(''.join(choice(ascii_uppercase) for i in range(12)))
|
[
"python.library.functions#range",
"python.library.random#random.choice",
"python.library.stdtypes#str.join"
] |
print(''.join(choice(ascii_uppercase) for i in range(12)))
|
conala
|
7934620-36
|
python: dots in the name of variable in a format string
|
"""Name: {0[person.name]}""".format({'person.name': 'Joe'})
|
[
"python.library.functions#format"
] |
"""Name: {0[person.name]}""".format({'person.name': 'Joe'})
|
conala
|
13954840-33
|
open the file 'words.txt' in 'rU' mode
|
f = open('words.txt', 'rU')
|
[
"python.library.urllib.request#open"
] |
f = open('VAR_STR', 'VAR_STR')
|
conala
|
39602824-29
|
Replace each value in column 'prod_type' of dataframe `df` with string 'responsive'
|
df['prod_type'] = 'responsive'
|
[] |
VAR_STR['VAR_STR'] = 'VAR_STR'
|
conala
|
16994696-65
|
python get time stamp on file `file` in '%m/%d/%Y' format
|
time.strftime('%m/%d/%Y', time.gmtime(os.path.getmtime(file)))
|
[
"python.library.time#time.gmtime",
"python.library.time#time.strftime",
"python.library.os.path#os.path.getmtime"
] |
time.strftime('VAR_STR', time.gmtime(os.path.getmtime(VAR_STR)))
|
conala
|
23887881-8
|
duplicate data in pandas dataframe `x` for 5 times
|
pd.concat([x] * 5, ignore_index=True)
|
[
"pandas.reference.api.pandas.concat"
] |
pd.concat([VAR_STR] * 5, ignore_index=True)
|
conala
|
23887881-70
|
Get a repeated pandas data frame object `x` by `5` times
|
pd.concat([x] * 5)
|
[
"pandas.reference.api.pandas.concat"
] |
pd.concat([VAR_STR] * 5)
|
conala
|
6278847-2
|
kill a process `make.exe` from python script on windows
|
os.system('taskkill /im make.exe')
|
[
"python.library.os#os.system"
] |
os.system('taskkill /im make.exe')
|
conala
|
22240602-20
|
check if all elements in list `mylist` are the same
|
len(set(mylist)) == 1
|
[
"python.library.functions#len",
"python.library.stdtypes#set"
] |
len(set(VAR_STR)) == 1
|
conala
|
8209568-32
|
draw a grid line on every tick of plot `plt`
|
plt.grid(True)
|
[
"matplotlib._as_gen.mpl_toolkits.axisartist.axislines.axes#mpl_toolkits.axisartist.axislines.Axes.grid"
] |
VAR_STR.grid(True)
|
conala
|
11303238-52
|
find recurring patterns in a string '42344343434'
|
re.findall('^(.+?)((.+)\\3+)$', '42344343434')[0][:-1]
|
[
"python.library.re#re.findall"
] |
re.findall('^(.+?)((.+)\\3+)$', 'VAR_STR')[0][:-1]
|
conala
|
6294179-66
|
How to find all occurrences of an element in a list?
|
indices = [i for i, x in enumerate(my_list) if x == 'whatever']
|
[
"python.library.functions#enumerate"
] |
indices = [i for i, x in enumerate(my_list) if x == 'whatever']
|
conala
|
15183084-19
|
create a dictionary using two lists`x` and `y`
|
dict(zip(x, y))
|
[
"python.library.functions#zip",
"python.library.stdtypes#dict"
] |
dict(zip(VAR_STR, VAR_STR))
|
conala
|
3430372-86
|
get full path of current directory
|
os.path.dirname(os.path.abspath(__file__))
|
[
"python.library.os.path#os.path.dirname",
"python.library.os.path#os.path.abspath"
] |
os.path.dirname(os.path.abspath(__file__))
|
conala
|
11811392-43
|
generate a list from a pandas dataframe `df` with the column name and column values
|
df.values.tolist()
|
[
"pandas.reference.api.pandas.series.tolist"
] |
VAR_STR.values.tolist()
|
conala
|
12310141-33
|
check if all lists in list `L` have three elements of integer 1
|
all(x.count(1) == 3 for x in L)
|
[
"python.library.functions#all",
"python.library.stdtypes#str.count"
] |
all(x.count(1) == 3 for x in VAR_STR)
|
conala
|
5048841-98
|
Sort list `my_list` in alphabetical order based on the values associated with key 'name' of each dictionary in the list
|
my_list.sort(key=operator.itemgetter('name'))
|
[
"python.library.operator#operator.itemgetter",
"python.library.stdtypes#list.sort"
] |
VAR_STR.sort(key=operator.itemgetter('VAR_STR'))
|
conala
|
24076297-68
|
display first 5 characters of string 'aaabbbccc'
|
"""{:.5}""".format('aaabbbccc')
|
[
"python.library.functions#format"
] |
"""{:.5}""".format('VAR_STR')
|
conala
|
16374540-19
|
Convert a list `['A:1', 'B:2', 'C:3', 'D:4']` to dictionary
|
dict(map(lambda s: s.split(':'), ['A:1', 'B:2', 'C:3', 'D:4']))
|
[
"python.library.functions#map",
"python.library.stdtypes#dict",
"python.library.stdtypes#str.split"
] |
dict(map(lambda s: s.split(':'), [VAR_STR]))
|
conala
|
13571134-46
|
recursively go through all subdirectories and files in `rootdir`
|
for (root, subFolders, files) in os.walk(rootdir):
pass
|
[
"python.library.os#os.walk"
] |
for root, subFolders, files in os.walk(VAR_STR):
pass
|
conala
|
6618515-54
|
sort list `X` based on values from another list `Y`
|
[x for y, x in sorted(zip(Y, X))]
|
[
"python.library.functions#zip",
"python.library.functions#sorted"
] |
[x for y, x in sorted(zip(VAR_STR, VAR_STR))]
|
conala
|
6618515-6
|
sorting list 'X' based on values from another list 'Y'
|
[x for y, x in sorted(zip(Y, X))]
|
[
"python.library.functions#zip",
"python.library.functions#sorted"
] |
[x for y, x in sorted(zip(VAR_STR, VAR_STR))]
|
conala
|
640001-87
|
remove parentheses and text within it in string `filename`
|
re.sub('\\([^)]*\\)', '', filename)
|
[
"python.library.re#re.sub"
] |
re.sub('\\([^)]*\\)', '', VAR_STR)
|
conala
|
14853243-64
|
find all `owl:Class` tags by parsing xml with namespace
|
root.findall('{http://www.w3.org/2002/07/owl#}Class')
|
[
"python.library.re#re.findall"
] |
root.findall('{http://www.w3.org/2002/07/owl#}Class')
|
conala
|
6740865-68
|
print a unicode string `text`
|
print(text.encode('windows-1252'))
|
[
"python.library.stdtypes#str.encode"
] |
print(VAR_STR.encode('windows-1252'))
|
conala
|
41192805-11
|
Concatenate dataframe `df_1` to dataframe `df_2` sorted by values of the column 'y'
|
pd.concat([df_1, df_2.sort_values('y')])
|
[
"pandas.reference.api.pandas.concat",
"pandas.reference.api.pandas.dataframe.sort_values"
] |
pd.concat([VAR_STR, VAR_STR.sort_values('VAR_STR')])
|
conala
|
15014276-86
|
sum values greater than 0 in dictionary `d`
|
sum(v for v in list(d.values()) if v > 0)
|
[
"python.library.functions#sum",
"python.library.functions#list",
"python.library.stdtypes#dict.values"
] |
sum(v for v in list(VAR_STR.values()) if v > 0)
|
conala
|
18131367-54
|
Get all the items from a list of tuple 'l' where second item in tuple is '1'.
|
[x for x in l if x[1] == 1]
|
[] |
[x for x in VAR_STR if x[1] == 1]
|
conala
|
12030074-25
|
generate list of numbers in specific format using string formatting precision.
|
[('%.2d' % i) for i in range(16)]
|
[
"python.library.functions#range"
] |
[('%.2d' % i) for i in range(16)]
|
conala
|
41133414-48
|
strip everything up to and including the character `&` from url `url`, strip the character `=` from the remaining string and concatenate `.html` to the end
|
url.split('&')[-1].replace('=', '') + '.html'
|
[
"python.library.stdtypes#str.replace",
"python.library.stdtypes#str.split"
] |
VAR_STR.split('VAR_STR')[-1].replace('VAR_STR', '') + 'VAR_STR'
|
conala
|
1058712-18
|
select a random element from array `[1, 2, 3]`
|
random.choice([1, 2, 3])
|
[
"python.library.random#random.choice"
] |
random.choice([VAR_STR])
|
conala
|
22520932-13
|
remove all non-alphabet chars from string `s`
|
"""""".join([i for i in s if i.isalpha()])
|
[
"python.library.stdtypes#str.isalpha",
"python.library.stdtypes#str.join"
] |
"""""".join([i for i in VAR_STR if i.isalpha()])
|
conala
|
23797491-57
|
convert date strings in pandas dataframe column`df['date']` to pandas timestamps using the format '%d%b%Y'
|
df['date'] = pd.to_datetime(df['date'], format='%d%b%Y')
|
[
"pandas.reference.api.pandas.to_datetime"
] |
df['date'] = pd.to_datetime(df['date'], format='VAR_STR')
|
conala
|
21822054-79
|
force bash interpreter '/bin/bash' to be used instead of shell
|
os.system('GREPDB="echo 123"; /bin/bash -c "$GREPDB"')
|
[
"python.library.os#os.system"
] |
os.system('GREPDB="echo 123"; /bin/bash -c "$GREPDB"')
|
conala
|
21822054-28
|
Run a command `echo hello world` in bash instead of shell
|
os.system('/bin/bash -c "echo hello world"')
|
[
"python.library.os#os.system"
] |
os.system('/bin/bash -c "echo hello world"')
|
conala
|
18358938-63
|
get index values of pandas dataframe `df` as list
|
df.index.values.tolist()
|
[
"pandas.reference.api.pandas.index.tolist"
] |
VAR_STR.index.values.tolist()
|
conala
|
30241279-15
|
run app `app` on host '192.168.0.58' and port 9000 in Flask
|
app.run(host='192.168.0.58', port=9000, debug=False)
|
[
"python.library.pdb#pdb.run"
] |
VAR_STR.run(host='VAR_STR', port=9000, debug=False)
|
conala
|
727507-53
|
print unicode string `ex\xe1mple` in uppercase
|
print('ex\xe1mple'.upper())
|
[
"python.library.stdtypes#str.upper"
] |
print('VAR_STR'.upper())
|
conala
|
40639071-13
|
Get the sum of values to the power of their indices in a list `l`
|
sum(j ** i for i, j in enumerate(l, 1))
|
[
"python.library.functions#enumerate",
"python.library.functions#sum"
] |
sum(j ** i for i, j in enumerate(VAR_STR, 1))
|
conala
|
14162026-97
|
get the first row, second column; second row, first column, and first row third column values of numpy array `arr`
|
arr[[0, 1, 1], [1, 0, 2]]
|
[] |
VAR_STR[[0, 1, 1], [1, 0, 2]]
|
conala
|
28538536-94
|
Delete mulitple columns `columnheading1`, `columnheading2` in pandas data frame `yourdf`
|
yourdf.drop(['columnheading1', 'columnheading2'], axis=1, inplace=True)
|
[
"pandas.reference.api.pandas.dataframe.drop"
] |
VAR_STR.drop(['VAR_STR', 'VAR_STR'], axis=1, inplace=True)
|
conala
|
40079728-79
|
Django get first 10 records of model `User` ordered by criteria 'age' of model 'pet'
|
User.objects.order_by('-pet__age')[:10]
|
[] |
VAR_STR.objects.order_by('-pet__age')[:10]
|
conala
|
8924173-17
|
print bold text 'Hello'
|
print('\x1b[1m' + 'Hello')
|
[] |
print('\x1b[1m' + 'VAR_STR')
|
conala
|
3781851-15
|
run python script 'script2.py' from another python script, passing in 1 as an argument
|
os.system('script2.py 1')
|
[
"python.library.os#os.system"
] |
os.system('script2.py 1')
|
conala
|
18504967-17
|
create new column `A_perc` in dataframe `df` with row values equal to the value in column `A` divided by the value in column `sum`
|
df['A_perc'] = df['A'] / df['sum']
|
[] |
VAR_STR['VAR_STR'] = VAR_STR['VAR_STR'] / VAR_STR['VAR_STR']
|
conala
|
11697709-100
|
list duplicated elements in two lists `listA` and `listB`
|
list(set(listA) & set(listB))
|
[
"python.library.stdtypes#set",
"python.library.functions#list"
] |
list(set(VAR_STR) & set(VAR_STR))
|
conala
|
10365225-64
|
extract digits in a simple way from a python string
|
map(int, re.findall('\\d+', s))
|
[
"python.library.re#re.findall",
"python.library.functions#map"
] |
map(int, re.findall('\\d+', s))
|
conala
|
11430863-98
|
find overlapping matches from a string `hello` using regex
|
re.findall('(?=(\\w\\w))', 'hello')
|
[
"python.library.re#re.findall"
] |
re.findall('(?=(\\w\\w))', 'VAR_STR')
|
conala
|
25991612-67
|
Python / Remove special character from string
|
re.sub('[^a-zA-Z0-9-_*.]', '', my_string)
|
[
"python.library.re#re.sub"
] |
re.sub('[^a-zA-Z0-9-_*.]', '', my_string)
|
conala
|
2597099-85
|
Sort list `keys` based on its elements' dot-seperated numbers
|
keys.sort(key=lambda x: map(int, x.split('.')))
|
[
"python.library.functions#map",
"python.library.stdtypes#list.sort",
"python.library.stdtypes#str.split"
] |
VAR_STR.sort(key=lambda x: map(int, x.split('.')))
|
conala
|
2597099-42
|
Sort a list of integers `keys` where each value is in string format
|
keys.sort(key=lambda x: [int(y) for y in x.split('.')])
|
[
"python.library.functions#int",
"python.library.stdtypes#list.sort",
"python.library.stdtypes#str.split"
] |
VAR_STR.sort(key=lambda x: [int(y) for y in x.split('.')])
|
conala
|
1874194-65
|
get the tuple in list `a_list` that has the largest item in the second index
|
max_item = max(a_list, key=operator.itemgetter(1))
|
[
"python.library.operator#operator.itemgetter",
"python.library.functions#max"
] |
max_item = max(VAR_STR, key=operator.itemgetter(1))
|
conala
|
1874194-25
|
find tuple in list of tuples `a_list` with the largest second element
|
max(a_list, key=operator.itemgetter(1))
|
[
"python.library.operator#operator.itemgetter",
"python.library.functions#max"
] |
max(VAR_STR, key=operator.itemgetter(1))
|
conala
|
16196712-48
|
wait for shell command `p` evoked by subprocess.Popen to complete
|
p.wait()
|
[
"python.library.os#os.wait"
] |
VAR_STR.wait()
|
conala
|
42462530-4
|
replace white spaces in dataframe `df` with '_'
|
df.replace(' ', '_', regex=True)
|
[
"pandas.reference.api.pandas.dataframe.replace"
] |
VAR_STR.replace(' ', 'VAR_STR', regex=True)
|
conala
|
30628176-5
|
switch positions of each two adjacent characters in string `a`
|
print(''.join(''.join(i) for i in zip(a2, a1)) + a[-1] if len(a) % 2 else '')
|
[
"python.library.functions#zip",
"python.library.functions#len",
"python.library.stdtypes#str.join"
] |
print(''.join(''.join(i) for i in zip(a2, a1)) + VAR_STR[-1] if len(VAR_STR) %
2 else '')
|
conala
|
4289331-11
|
Python: Extract numbers from a string
|
[int(s) for s in re.findall('\\b\\d+\\b', "he33llo 42 I'm a 32 string 30")]
|
[
"python.library.re#re.findall",
"python.library.functions#int"
] |
[int(s) for s in re.findall('\\b\\d+\\b', "he33llo 42 I'm a 32 string 30")]
|
conala
|
4241757-59
|
remove extra white spaces & tabs from a string `s`
|
""" """.join(s.split())
|
[
"python.library.stdtypes#str.join",
"python.library.stdtypes#str.split"
] |
""" """.join(VAR_STR.split())
|
conala
|
4810537-49
|
clear terminal screen on windows
|
os.system('cls')
|
[
"python.library.os#os.system"
] |
os.system('cls')
|
conala
|
4810537-55
|
clear the terminal screen in Linux
|
os.system('clear')
|
[
"python.library.os#os.system"
] |
os.system('clear')
|
conala
|
23306653-53
|
get value of key `post code` associated with first index of key `places` of dictionary `data`
|
print(data['places'][0]['post code'])
|
[] |
print(VAR_STR['VAR_STR'][0]['VAR_STR'])
|
conala
|
4111412-34
|
get a list of indices of non zero elements in a list `a`
|
[i for i, e in enumerate(a) if e != 0]
|
[
"python.library.functions#enumerate"
] |
[i for i, e in enumerate(VAR_STR) if e != 0]
|
conala
|
17589590-99
|
Define a list with string values `['a', 'c', 'b', 'obj']`
|
['a', 'c', 'b', 'obj']
|
[] |
[VAR_STR]
|
conala
|
38273353-74
|
repeat every character for 7 times in string 'map'
|
"""""".join(map(lambda x: x * 7, 'map'))
|
[
"python.library.functions#map",
"python.library.stdtypes#str.join"
] |
"""""".join(VAR_STR(lambda x: x * 7, 'VAR_STR'))
|
conala
|
817087-38
|
call a function with argument list `args`
|
func(*args)
|
[
"python.library.functools#functools.partial.func"
] |
func(*VAR_STR)
|
conala
|
14764126-22
|
restart a computer after `900` seconds using subprocess
|
subprocess.call(['shutdown', '/r', '/t', '900'])
|
[
"python.library.subprocess#subprocess.call"
] |
subprocess.call(['shutdown', '/r', '/t', 'VAR_STR'])
|
conala
|
14764126-20
|
shutdown a computer using subprocess
|
subprocess.call(['shutdown', '/s'])
|
[
"python.library.subprocess#subprocess.call"
] |
subprocess.call(['shutdown', '/s'])
|
conala
|
14764126-37
|
abort a computer shutdown using subprocess
|
subprocess.call(['shutdown', '/a '])
|
[
"python.library.subprocess#subprocess.call"
] |
subprocess.call(['shutdown', '/a '])
|
conala
|
14764126-39
|
logoff computer having windows operating system using python
|
subprocess.call(['shutdown', '/l '])
|
[
"python.library.subprocess#subprocess.call"
] |
subprocess.call(['shutdown', '/l '])
|
conala
|
14764126-27
|
shutdown and restart a computer running windows from script
|
subprocess.call(['shutdown', '/r'])
|
[
"python.library.subprocess#subprocess.call"
] |
subprocess.call(['shutdown', '/r'])
|
conala
|
6996603-67
|
delete an empty directory
|
os.rmdir()
|
[
"python.library.os#os.rmdir"
] |
os.rmdir()
|
conala
|
6996603-65
|
recursively delete all contents in directory `path`
|
shutil.rmtree(path, ignore_errors=False, onerror=None)
|
[
"python.library.shutil#shutil.rmtree"
] |
shutil.rmtree(VAR_STR, ignore_errors=False, onerror=None)
|
conala
|
6996603-99
|
recursively remove folder `name`
|
os.removedirs(name)
|
[
"python.library.os#os.removedirs"
] |
os.removedirs(VAR_STR)
|
conala
|
18695605-99
|
convert pandas DataFrame `df` to a dictionary using `id` field as the key
|
df.set_index('id').to_dict()
|
[
"pandas.reference.api.pandas.dataframe.set_index",
"pandas.reference.api.pandas.dataframe.to_dict"
] |
VAR_STR.set_index('VAR_STR').to_dict()
|
conala
|
18695605-31
|
convert pandas dataframe `df` with fields 'id', 'value' to dictionary
|
df.set_index('id')['value'].to_dict()
|
[
"pandas.reference.api.pandas.dataframe.set_index",
"pandas.reference.api.pandas.dataframe.to_dict"
] |
VAR_STR.set_index('VAR_STR')['VAR_STR'].to_dict()
|
conala
|
8556076-78
|
create list `new_list` containing the last 10 elements of list `my_list`
|
new_list = my_list[-10:]
|
[] |
VAR_STR = VAR_STR[-10:]
|
conala
|
8556076-43
|
get the last 10 elements from a list `my_list`
|
my_list[-10:]
|
[] |
VAR_STR[-10:]
|
conala
|
33218968-14
|
Run 'test2.py' file with python location 'path/to/python' and arguments 'neededArgumetGoHere' as a subprocess
|
call(['path/to/python', 'test2.py', 'neededArgumetGoHere'])
|
[
"python.library.subprocess#subprocess.call"
] |
call(['VAR_STR', 'VAR_STR', 'VAR_STR'])
|
conala
|
1101508-32
|
parse date string '2009/05/13 19:19:30 -0400' using format '%Y/%m/%d %H:%M:%S %z'
|
datetime.strptime('2009/05/13 19:19:30 -0400', '%Y/%m/%d %H:%M:%S %z')
|
[
"python.library.datetime#datetime.datetime.strptime"
] |
datetime.strptime('VAR_STR', 'VAR_STR')
|
conala
|
34023918-59
|
make new column 'C' in panda dataframe by adding values from other columns 'A' and 'B'
|
df['C'] = df['A'] + df['B']
|
[] |
df['VAR_STR'] = df['VAR_STR'] + df['VAR_STR']
|
conala
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.