Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
Languages:
Arabic
ArXiv:
Libraries:
Datasets
pandas
License:
Dataset Viewer
Auto-converted to Parquet
query-id
string
corpus-id
string
score
int64
test_query0
apositive_test_query0_00000
1
test_query0
negative_test_query0_00000
0
test_query0
negative_test_query0_00001
0
test_query0
negative_test_query0_00002
0
test_query0
negative_test_query0_00003
0
test_query1
apositive_test_query1_00000
1
test_query1
negative_test_query1_00000
0
test_query1
negative_test_query1_00001
0
test_query1
negative_test_query1_00002
0
test_query1
negative_test_query1_00003
0
test_query2
apositive_test_query2_00000
1
test_query2
negative_test_query2_00000
0
test_query2
negative_test_query2_00001
0
test_query2
negative_test_query2_00002
0
test_query2
negative_test_query2_00003
0
test_query3
apositive_test_query3_00000
1
test_query3
negative_test_query3_00000
0
test_query3
negative_test_query3_00001
0
test_query3
negative_test_query3_00002
0
test_query3
negative_test_query3_00003
0
test_query4
apositive_test_query4_00000
1
test_query4
negative_test_query4_00000
0
test_query4
negative_test_query4_00001
0
test_query4
negative_test_query4_00002
0
test_query4
negative_test_query4_00003
0
test_query5
apositive_test_query5_00000
1
test_query5
negative_test_query5_00000
0
test_query5
negative_test_query5_00001
0
test_query5
negative_test_query5_00002
0
test_query5
negative_test_query5_00003
0
test_query6
apositive_test_query6_00000
1
test_query6
negative_test_query6_00000
0
test_query6
negative_test_query6_00001
0
test_query6
negative_test_query6_00002
0
test_query6
negative_test_query6_00003
0
test_query7
apositive_test_query7_00000
1
test_query7
negative_test_query7_00000
0
test_query7
negative_test_query7_00001
0
test_query7
negative_test_query7_00002
0
test_query7
negative_test_query7_00003
0
test_query8
apositive_test_query8_00000
1
test_query8
negative_test_query8_00000
0
test_query8
negative_test_query8_00001
0
test_query8
negative_test_query8_00002
0
test_query8
negative_test_query8_00003
0
test_query9
apositive_test_query9_00000
1
test_query9
negative_test_query9_00000
0
test_query9
negative_test_query9_00001
0
test_query9
negative_test_query9_00002
0
test_query9
negative_test_query9_00003
0
test_query10
apositive_test_query10_00000
1
test_query10
negative_test_query10_00000
0
test_query10
negative_test_query10_00001
0
test_query10
negative_test_query10_00002
0
test_query10
negative_test_query10_00003
0
test_query11
apositive_test_query11_00000
1
test_query11
negative_test_query11_00000
0
test_query11
negative_test_query11_00001
0
test_query11
negative_test_query11_00002
0
test_query11
negative_test_query11_00003
0
test_query12
apositive_test_query12_00000
1
test_query12
negative_test_query12_00000
0
test_query12
negative_test_query12_00001
0
test_query12
negative_test_query12_00002
0
test_query12
negative_test_query12_00003
0
test_query13
apositive_test_query13_00000
1
test_query13
negative_test_query13_00000
0
test_query13
negative_test_query13_00001
0
test_query13
negative_test_query13_00002
0
test_query13
negative_test_query13_00003
0
test_query14
apositive_test_query14_00000
1
test_query14
negative_test_query14_00000
0
test_query14
negative_test_query14_00001
0
test_query14
negative_test_query14_00002
0
test_query14
negative_test_query14_00003
0
test_query15
apositive_test_query15_00000
1
test_query15
negative_test_query15_00000
0
test_query15
negative_test_query15_00001
0
test_query15
negative_test_query15_00002
0
test_query15
negative_test_query15_00003
0
test_query16
apositive_test_query16_00000
1
test_query16
negative_test_query16_00000
0
test_query16
negative_test_query16_00001
0
test_query16
negative_test_query16_00002
0
test_query16
negative_test_query16_00003
0
test_query17
apositive_test_query17_00000
1
test_query17
negative_test_query17_00000
0
test_query17
negative_test_query17_00001
0
test_query17
negative_test_query17_00002
0
test_query17
negative_test_query17_00003
0
test_query18
apositive_test_query18_00000
1
test_query18
negative_test_query18_00000
0
test_query18
negative_test_query18_00001
0
test_query18
negative_test_query18_00002
0
test_query18
negative_test_query18_00003
0
test_query19
apositive_test_query19_00000
1
test_query19
negative_test_query19_00000
0
test_query19
negative_test_query19_00001
0
test_query19
negative_test_query19_00002
0
test_query19
negative_test_query19_00003
0
End of preview. Expand in Data Studio

NamaaMrTydiReranking

An MTEB dataset
Massive Text Embedding Benchmark

Mr. TyDi is a multi-lingual benchmark dataset built on TyDi, covering eleven typologically diverse languages. It is designed for monolingual retrieval, specifically to evaluate ranking with learned dense representations. This dataset adapts the arabic test split for Reranking evaluation purposes by the addition of multiple (Hard) Negatives to each query and positive

Task category t2t
Domains Encyclopaedic, Written
Reference https://huggingface.co/NAMAA-Space

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_tasks(["NamaaMrTydiReranking"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repitory.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\\i}c and Reimers, Nils},
  doi = {10.48550/ARXIV.2210.07316},
  journal = {arXiv preprint arXiv:2210.07316},
  publisher = {arXiv},
  title = {MTEB: Massive Text Embedding Benchmark},
  url = {https://arxiv.org/abs/2210.07316},
  year = {2022},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("NamaaMrTydiReranking")

desc_stats = task.metadata.descriptive_stats
{
    "test": {
        "num_samples": 5504,
        "number_of_characters": 1293166,
        "num_documents": 4586,
        "min_document_length": 0,
        "average_document_length": 275.8353685128652,
        "max_document_length": 4158,
        "unique_documents": 4586,
        "num_queries": 918,
        "min_query_length": 13,
        "average_query_length": 30.702614379084967,
        "max_query_length": 93,
        "unique_queries": 918,
        "none_queries": 0,
        "num_relevant_docs": 4586,
        "min_relevant_docs_per_query": 2,
        "average_relevant_docs_per_query": 1.0,
        "max_relevant_docs_per_query": 6,
        "unique_relevant_docs": 4586,
        "num_instructions": null,
        "min_instruction_length": null,
        "average_instruction_length": null,
        "max_instruction_length": null,
        "unique_instructions": null,
        "num_top_ranked": 918,
        "min_top_ranked_per_query": 2,
        "average_top_ranked_per_query": 4.995642701525054,
        "max_top_ranked_per_query": 6
    }
}

This dataset card was automatically generated using MTEB

Downloads last month
18