Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
Dataset Viewer
Auto-converted to Parquet
query-id
stringlengths
6
6
corpus-id
stringlengths
3
6
score
int64
1
1
200000
260
1
200001
779
1
200002
3109
1
200003
4836
1
200004
4911
1
200005
6371
1
200006
6892
1
200007
8159
1
200008
8741
1
200009
8922
1
200010
8951
1
200011
10925
1
200012
12033
1
200013
12277
1
200014
14142
1
200015
14901
1
200016
15129
1
200017
16731
1
200018
17311
1
200019
17811
1
200020
17859
1
200021
18697
1
200022
19049
1
200023
19440
1
200024
21362
1
200025
21582
1
200026
22069
1
200027
23225
1
200028
25061
1
200029
25595
1
200030
27101
1
200031
29984
1
200032
31462
1
200033
33471
1
200034
33640
1
200035
38097
1
200036
38136
1
200037
39954
1
200038
41700
1
200039
42731
1
200040
42862
1
200041
44803
1
200042
45782
1
200043
46030
1
200044
47254
1
200045
47410
1
200046
47783
1
200047
49553
1
200048
49762
1
200049
50700
1
200050
52712
1
200051
54231
1
200052
54721
1
200053
54850
1
200054
55012
1
200055
58131
1
200056
58487
1
200057
59079
1
200058
59492
1
200059
59726
1
200060
62638
1
200061
62964
1
200062
63606
1
200063
64222
1
200064
65312
1
200065
65327
1
200066
66445
1
200067
66787
1
200068
66870
1
200069
66924
1
200070
66962
1
200071
69447
1
200072
70836
1
200073
71347
1
200074
71724
1
200075
73896
1
200076
74739
1
200077
74865
1
200078
75292
1
200079
76941
1
200080
76995
1
200081
79288
1
200082
81338
1
200083
84900
1
200084
85179
1
200085
85221
1
200086
85751
1
200087
89146
1
200088
89624
1
200089
91365
1
200090
92256
1
200091
94452
1
200092
94550
1
200093
95275
1
200094
97915
1
200095
98865
1
200096
99610
1
200097
101386
1
200098
101465
1
200099
102090
1
End of preview. Expand in Data Studio

EcomRetrieval

An MTEB dataset
Massive Text Embedding Benchmark

EcomRetrieval

Task category t2t
Domains None
Reference https://arxiv.org/abs/2203.03367

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_tasks(["EcomRetrieval"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repitory.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@misc{long2022multicprmultidomainchinese,
  archiveprefix = {arXiv},
  author = {Dingkun Long and Qiong Gao and Kuan Zou and Guangwei Xu and Pengjun Xie and Ruijie Guo and Jian Xu and Guanjun Jiang and Luxi Xing and Ping Yang},
  eprint = {2203.03367},
  primaryclass = {cs.IR},
  title = {Multi-CPR: A Multi Domain Chinese Dataset for Passage Retrieval},
  url = {https://arxiv.org/abs/2203.03367},
  year = {2022},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("EcomRetrieval")

desc_stats = task.metadata.descriptive_stats
{
    "dev": {
        "num_samples": 101902,
        "number_of_characters": 3334588,
        "num_documents": 100902,
        "min_document_length": 2,
        "average_document_length": 32.98041664189015,
        "max_document_length": 121,
        "unique_documents": 100902,
        "num_queries": 1000,
        "min_query_length": 3,
        "average_query_length": 6.798,
        "max_query_length": 34,
        "unique_queries": 1000,
        "none_queries": 0,
        "num_relevant_docs": 1000,
        "min_relevant_docs_per_query": 1,
        "average_relevant_docs_per_query": 1.0,
        "max_relevant_docs_per_query": 1,
        "unique_relevant_docs": 1000,
        "num_instructions": null,
        "min_instruction_length": null,
        "average_instruction_length": null,
        "max_instruction_length": null,
        "unique_instructions": null,
        "num_top_ranked": null,
        "min_top_ranked_per_query": null,
        "average_top_ranked_per_query": null,
        "max_top_ranked_per_query": null
    }
}

This dataset card was automatically generated using MTEB

Downloads last month
32