Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
Dataset Viewer
Auto-converted to Parquet
query-id
stringlengths
32
32
corpus-id
stringlengths
32
32
score
int64
1
1
e6a90f19acc12055fb4c76a56d8a9f7e
48d8fad6a4196ed953efb5e71313d3e8
1
34c3d6861b63efeefabb8da28dcf06a6
c2c445e538b438840823eff21ae04761
1
34c3d6861b63efeefabb8da28dcf06a6
8d5998f7b0e1ce68ab1fa117dc224e15
1
fdfb964e3c440cf9a7f92c2921fbf922
d2d1217ce97f17d427a59cedcddb506f
1
dfe8de7e64c2c5f43fc32ceef586a86e
33dd4423b938700ff423d4eb50f7493d
1
dfe8de7e64c2c5f43fc32ceef586a86e
ecd1f50c3725f7e68665904b95cfb92b
1
b2f93e059f0f86836ef832f98c750204
6bfb159adc2239cc48e45f403d20f881
1
568cee72e3e1635e3deb614972d5df40
04b9410b72f7e02659f860d36df40777
1
2283a7449558ad66cfbc5f84b49e54ca
ec950192c94a208536ed88f916b8680e
1
bb69f15c506045a82f7e240f30d953b8
5f660c21b7fcc5eb3c6da5ccfa7a1baa
1
2c160bdb6d89a6c421532c477f5dcf2f
f0b5f54e9fcf7cd97b86cd4c8e5cf8e6
1
2c160bdb6d89a6c421532c477f5dcf2f
84537a24ff58cf9cea4d5376b630d4cd
1
2c160bdb6d89a6c421532c477f5dcf2f
c7b96636049f6225a6fad13021fdd9b2
1
2c160bdb6d89a6c421532c477f5dcf2f
34525298502c66dc1c3c2d9aece96caa
1
cad83e63c24a361131695f410c6bb055
a56875fde59a4cd67c1ca25bad124f1f
1
652ee7ab2cb51819e5e61ebfb1f4504c
8e21e7cac24760d26696f7dc59f28094
1
9841eb1bae3b5b421999272a0e269de0
00d1e0d440e5b3cffee315ba83c54880
1
0f9637faeab279d2553e1b2e29e82bfb
f50cbfb50eac2f2f7437c2ccd06c7346
1
9da82425d8e2e70e99456f366b56ceb1
0b54d3efbb4f6cd510d861218c089cd4
1
0dae915b00a689032ddbfc92fbd22651
569db13577496e621417be3e85141575
1
2a53cb964d2f50661bea5891b04b1513
e17399ef319cf568d53e21d8695a6fca
1
d2f6d53f566b76ea36f7347f300942a8
e18a20f2460f677e16cc1048bc8a217b
1
2ca18805c266d205c13854d4334b6915
433f95707096e809164d887a774af806
1
2ca18805c266d205c13854d4334b6915
006e73a5be7cb758c2758536c0c4b451
1
edbb899b28a70bc0143af2bc9e0d3ecd
e15f85da0d5ec8e1c1463bdd535f0230
1
01a9428dc0799e849eed2a9cefaf3262
63ee8dd042165a4793db4e3f0a0cf226
1
6c6a467644710ee37f0bbd8dea902679
f68ec57636230ccb65748e5f554d9d12
1
6c6a467644710ee37f0bbd8dea902679
ee06ae0bfd8f03bbf650fd5ddb7f55c9
1
f701e87c20896e43473ceba9935335ff
65bf77a17012078a21a731ab6e8af115
1
f701e87c20896e43473ceba9935335ff
a2abdad27c14e53d9eaac18c1ccdd627
1
f701e87c20896e43473ceba9935335ff
d6baf39d0f7c305a2dc537504ecca455
1
f701e87c20896e43473ceba9935335ff
4704d2a25616bdddaf7e92d64b1c075f
1
f701e87c20896e43473ceba9935335ff
e63aecea9971ee8096118d0756f19ca2
1
f701e87c20896e43473ceba9935335ff
a8f3cd88efacaeeb067125ead9eaaada
1
f701e87c20896e43473ceba9935335ff
5f769cb2cae24a2e50594d39a5b4689a
1
f701e87c20896e43473ceba9935335ff
13fc4c757e01a7010cd3a4b59074396b
1
f701e87c20896e43473ceba9935335ff
f1694478de3ab578dcc17367db58d978
1
7f1519210eb0d9957ae4c5fc07a16ed4
d5d4837ebb8b1cb7d5ca60ab164dd986
1
39703ea2ccc7ed1adc58d9b3bf41fddd
87f5dd04634f9e30afb3a204ad869542
1
0dacac82e9e9fb176b7726f9ab956af7
96b9af0806e4c0f2bb158404609d3a68
1
d6700bee7d89bd5eed4625fd6acac22b
28be29fec4ba9984d822459833255bd0
1
d6700bee7d89bd5eed4625fd6acac22b
dba990af46b0e759db2d23b19dd791f8
1
d6700bee7d89bd5eed4625fd6acac22b
1b53f35b10a4f3da2474a6cc6a3fbc37
1
d6700bee7d89bd5eed4625fd6acac22b
9046cc5a02c16b0fcc4513a7ec975a38
1
bb7294100d4f982d10d2ed9c3a238cd5
77eaab1043e137236a68d8942b0516f7
1
bb7294100d4f982d10d2ed9c3a238cd5
4149a317e3ccba75f4eb43dfa5dbbb5a
1
26d62eb0b0182e0ad188c39715ab4d90
83a5b68101d9f45ccfcf0b03548570ef
1
26d62eb0b0182e0ad188c39715ab4d90
9096cbb85f7c468cef0837600dddcadd
1
dd2ea405789ffb453aa613253eefb6ea
5473289f2b344e801571b930a8b9da6d
1
1e88ac4c5afc635e26417251d516ec28
2e89b15f91177b8f63bfb73fc432d2c2
1
1e88ac4c5afc635e26417251d516ec28
4cb9c762a0d84b7e26aa3c457a835ffd
1
1e88ac4c5afc635e26417251d516ec28
1dc36357e98cdf7d8879eb128e0f0282
1
1e88ac4c5afc635e26417251d516ec28
197bb0a3e2bdc883b8094aa03b05bc65
1
2f383377b553338ac3605c5933c38388
47d656a2e8ebe840430789b48681f199
1
2f383377b553338ac3605c5933c38388
4c05d89a929ce2af63b70903cb2c93be
1
2f383377b553338ac3605c5933c38388
edd8b8193c42c6e7b0f45ece8f000c34
1
9c2d59900a20bfd8fa54cf8ebbf974c2
9960d64de57a8c116644a6c0d466fa74
1
b68241dbe6a984b95b8d237a2c32fbfb
3f813414a75937d9932f9eb509bc9838
1
5e3b291cec6fc3744c4002e72bb74dbb
262ce10aae9ce4b8b5271b9e617a5a99
1
ac662fb9c33dfc3274cfe05dff72449a
0fdf0956b9f392056930cfa2cf6e80fe
1
6770279ccad10a3453dd84fe477befbf
4e8e0a81a24cbe0e2b5d8cbb664cc40d
1
6770279ccad10a3453dd84fe477befbf
026b9e7d3db37e8ece16b7be0d3ee29a
1
6770279ccad10a3453dd84fe477befbf
beb16c24a71522f118b886d70f00fa83
1
800bcf9cb2a67481d9e9497154ff460e
9c1e248c6e861e945ce5fe59b51038b0
1
121d8a0a18bd3c4bcb4f99f45f37cb9f
6853150eb7c50f2bec27bb7d10ac8874
1
52039e33c56bee09b9700feb2d78bcb6
b233a79b59485e84524014ef68f690b0
1
52039e33c56bee09b9700feb2d78bcb6
a773995fb1c0aabefdd61c37330c61bb
1
7dadf360f3a64559053d9ced382238f8
aba25ecf533ad2236203952259d0abd7
1
7dadf360f3a64559053d9ced382238f8
0f80d5f06f5103c36a4aee8f7a3190a8
1
d388e54edce454bd4ec3a8185adfe727
69240ad1c3002eddff66c99718085857
1
1da45f06875d1183445ae3a5f8df2778
fd42ff707debb8e1f9646bf22a2cafad
1
1da45f06875d1183445ae3a5f8df2778
08eb7b14f95ffcda57f7c641c4a0e948
1
695f67d4d2e1284141645c4db0ef5c39
b54be8ee512ade990ff625d50b1aa35d
1
695f67d4d2e1284141645c4db0ef5c39
74e0a710a7fbc4986bd00da49d093124
1
6b97914421a88cddb9823760f53421e3
a0c9f705f1098f45dc69c5b7ae749282
1
f3005fbb8f7339822abac2fb0c167b32
e1596c1f2450abac127b5b270e7ab13b
1
98b4489bc2bd97ba118776933fd3e152
95399655e075f50fd605602353607dea
1
5ebfd1da44cf74e761707c612f9553f5
72697861e6f283838028045a255e6bb6
1
b11e8ca2b26e8d3a56fb18ce077e615c
746f86ea7fabcb57f1adac1e39761a19
1
8586563542bbdedc9712363d197cee57
29b9ca98e00711101be7cab9f6a8886f
1
8586563542bbdedc9712363d197cee57
344b8901886516f7f862570b308d7b0b
1
f843608c83ee1c4c8a9a5374c7259fe9
73637647741ed591027dfef60d563d43
1
2ff1cc9129a37e5f5dd4da5a42d6bb4a
7705fa5e8bdda273d3b8e70a1778cd06
1
cafd4b43eeb7994f5d242633026e8d9b
64dcf82399acc515c156f4296b5d39c1
1
cafd4b43eeb7994f5d242633026e8d9b
1c07a69ba8689f87e38fa6fea99ae3a6
1
87846defce54add48011bbc02604be88
4c1ef765dc55dfed796af3b3f3422b40
1
0cdbf6a2d3e22da5015778ad1129d1b8
0f064fc7a65d1e228a786fad569492fe
1
0cdbf6a2d3e22da5015778ad1129d1b8
aaa6391f2739104cf5a74c2662d527eb
1
0cdbf6a2d3e22da5015778ad1129d1b8
c50ad794fb904a09c92237ecad29e692
1
0cdbf6a2d3e22da5015778ad1129d1b8
83d1fe016cbd0781116bbcecd044709c
1
4110e8108576fb7d48d1686d38556b14
c33849b8df3eb0f565524095b85b5cb3
1
4110e8108576fb7d48d1686d38556b14
638f5d792b46d4e37e997c58d0894f36
1
4110e8108576fb7d48d1686d38556b14
0b8e0defaf29e12f95380f4d16b007e2
1
4110e8108576fb7d48d1686d38556b14
2f5ab12b798a6830384e9014814e8a48
1
351da2f1fd2811bdeed22e2128dd6763
538076788881762ef875aae482809eb2
1
986267c3685456d5e198c29eda0cfa16
0e89ed320de263749ff6a706cad5ce73
1
7b66fdc7105ebb39522db65302108cba
cbe8efa537b18141fb8cbbce129a8ac3
1
9a815230dd95e6c0923bc2201922bd42
e532f179c74ae19d9fc26ec1903bea7c
1
9a815230dd95e6c0923bc2201922bd42
35461da365ef97e035cbf5bd20c994b6
1
81ddd8681329868ab6934f955e728252
6ed6af152ce0e938e7d902d09a087ed0
1
End of preview. Expand in Data Studio

CmedqaRetrieval

An MTEB dataset
Massive Text Embedding Benchmark

Online medical consultation text. Used the CMedQAv2 as its underlying dataset.

Task category t2t
Domains Medical, Written
Reference https://aclanthology.org/2022.emnlp-main.357.pdf

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_tasks(["CmedqaRetrieval"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repitory.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@misc{qiu2022dureaderretrievallargescalechinesebenchmark,
  archiveprefix = {arXiv},
  author = {Yifu Qiu and Hongyu Li and Yingqi Qu and Ying Chen and Qiaoqiao She and Jing Liu and Hua Wu and Haifeng Wang},
  eprint = {2203.10232},
  primaryclass = {cs.CL},
  title = {DuReader_retrieval: A Large-scale Chinese Benchmark for Passage Retrieval from Web Search Engine},
  url = {https://arxiv.org/abs/2203.10232},
  year = {2022},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("CmedqaRetrieval")

desc_stats = task.metadata.descriptive_stats
{
    "dev": {
        "num_samples": 104000,
        "number_of_characters": 30971243,
        "num_documents": 100001,
        "min_document_length": 1,
        "average_document_length": 307.7710222897771,
        "max_document_length": 60975,
        "unique_documents": 100001,
        "num_queries": 3999,
        "min_query_length": 11,
        "average_query_length": 48.470367591897976,
        "max_query_length": 153,
        "unique_queries": 3999,
        "none_queries": 0,
        "num_relevant_docs": 7449,
        "min_relevant_docs_per_query": 1,
        "average_relevant_docs_per_query": 1.86271567891973,
        "max_relevant_docs_per_query": 19,
        "unique_relevant_docs": 7321,
        "num_instructions": null,
        "min_instruction_length": null,
        "average_instruction_length": null,
        "max_instruction_length": null,
        "unique_instructions": null,
        "num_top_ranked": null,
        "min_top_ranked_per_query": null,
        "average_top_ranked_per_query": null,
        "max_top_ranked_per_query": null
    }
}

This dataset card was automatically generated using MTEB

Downloads last month
29