Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
Dataset Viewer
Auto-converted to Parquet
_id
stringlengths
7
10
text
stringlengths
0
2.78k
title
stringclasses
838 values
doc1678
An electron transport chain (ETC) is a series of complexes that transfer electrons from electron donors to electron acceptors via redox (both reduction and oxidation occurring simultaneously) reactions, and couples this electron transfer with the transfer of protons (H+ ions) across a membrane. This creates an electrochemical proton gradient that drives the synthesis of adenosine triphosphate (ATP), a molecule that stores energy chemically in the form of highly strained bonds. The molecules of the chain include peptides, enzymes (which are proteins or protein complexes), and others. The final acceptor of electrons in the electron transport chain during aerobic respiration is molecular oxygen although a variety of acceptors other than oxygen such as sulfate exist in anaerobic respiration.
Electron transport chain
doc1679
Electron transport chains are used for extracting energy via redox reactions from sunlight in photosynthesis or, such as in the case of the oxidation of sugars, cellular respiration. In eukaryotes, an important electron transport chain is found in the inner mitochondrial membrane where it serves as the site of oxidative phosphorylation through the use of ATP synthase. It is also found in the thylakoid membrane of the chloroplast in photosynthetic eukaryotes. In bacteria, the electron transport chain is located in their cell membrane.
Electron transport chain
doc1680
In chloroplasts, light drives the conversion of water to oxygen and NADP+ to NADPH with transfer of H+ ions across chloroplast membranes. In mitochondria, it is the conversion of oxygen to water, NADH to NAD+ and succinate to fumarate that are required to generate the proton gradient.
Electron transport chain
doc1681
Electron transport chains are major sites of premature electron leakage to oxygen, generating superoxide and potentially resulting in increased oxidative stress.
Electron transport chain
doc1682
The electron transport chain consists of a spatially separated series of redox reactions in which electrons are transferred from a donor molecule to an acceptor molecule. The underlying force driving these reactions is the Gibbs free energy of the reactants and products. The Gibbs free energy is the energy available ("free") to do work. Any reaction that decreases the overall Gibbs free energy of a system is thermodynamically spontaneous.
Electron transport chain
doc1683
The function of the electron transport chain is to produce a transmembrane proton electrochemical gradient as a result of the redox reactions.[1] If protons flow back through the membrane, they enable mechanical work, such as rotating bacterial flagella. ATP synthase, an enzyme highly conserved among all domains of life, converts this mechanical work into chemical energy by producing ATP,[2] which powers most cellular reactions. A small amount of ATP is available from substrate-level phosphorylation, for example, in glycolysis. In most organisms the majority of ATP is generated in electron transport chains, while only some obtain ATP by fermentation.[citation needed]
Electron transport chain
doc1684
Most eukaryotic cells have mitochondria, which produce ATP from products of the citric acid cycle, fatty acid oxidation, and amino acid oxidation. At the mitochondrial inner membrane, electrons from NADH and FADH2 pass through the electron transport chain to oxygen, which is reduced to water. The electron transport chain comprises an enzymatic series of electron donors and acceptors. Each electron donor will pass electrons to a more electronegative acceptor, which in turn donates these electrons to another acceptor, a process that continues down the series until electrons are passed to oxygen, the most electronegative and terminal electron acceptor in the chain. Passage of electrons between donor and acceptor releases energy, which is used to generate a proton gradient across the mitochondrial membrane by actively "pumping" protons into the intermembrane space, producing a thermodynamic state that has the potential to do work. The entire process is called oxidative phosphorylation, since ADP is phosphorylated to ATP using the energy of hydrogen oxidation in many steps.
Electron transport chain
doc1685
A small percentage of electrons do not complete the whole series and instead directly leak to oxygen, resulting in the formation of the free-radical superoxide, a highly reactive molecule that contributes to oxidative stress and has been implicated in a number of diseases and aging.
Electron transport chain
doc1686
Energy obtained through the transfer of electrons down the ETC is used to pump protons from the mitochondrial matrix into the intermembrane space, creating an electrochemical proton gradient (ΔpH) across the inner mitochondrial membrane (IMM). This proton gradient is largely but not exclusively responsible for the mitochondrial membrane potential (ΔΨM). It allows ATP synthase to use the flow of H+ through the enzyme back into the matrix to generate ATP from adenosine diphosphate (ADP) and inorganic phosphate. Complex I (NADH coenzyme Q reductase; labeled I) accepts electrons from the Krebs cycle electron carrier nicotinamide adenine dinucleotide (NADH), and passes them to coenzyme Q (ubiquinone; labeled Q), which also receives electrons from complex II (succinate dehydrogenase; labeled II). Q passes electrons to complex III (cytochrome bc1 complex; labeled III), which passes them to cytochrome c (cyt c). Cyt c passes electrons to Complex IV (cytochrome c oxidase; labeled IV), which uses the electrons and hydrogen ions to reduce molecular oxygen to water.
Electron transport chain
doc1687
Four membrane-bound complexes have been identified in mitochondria. Each is an extremely complex transmembrane structure that is embedded in the inner membrane. Three of them are proton pumps. The structures are electrically connected by lipid-soluble electron carriers and water-soluble electron carriers. The overall electron transport chain:
Electron transport chain
doc1688
In Complex I (NADH:ubiquinone oxidoreductase, NADH-CoQ reductase, or NADH dehydrogenase; EC 1.6.5.3), two electrons are removed from NADH and ultimately transferred to a lipid-soluble carrier, ubiquinone (UQ). The reduced product, ubiquinol (UQH2), freely diffuses within the membrane, and Complex I translocates four protons (H+) across the membrane, thus producing a proton gradient. Complex I is one of the main sites at which premature electron leakage to oxygen occurs, thus being one of the main sites of production of superoxide.[3]
Electron transport chain
doc1689
The pathway of electrons is as follows:
Electron transport chain
doc1690
NADH is oxidized to NAD+, by reducing Flavin mononucleotide to FMNH2 in one two-electron step. FMNH2 is then oxidized in two one-electron steps, through a semiquinone intermediate. Each electron thus transfers from the FMNH2 to an Fe-S cluster, from the Fe-S cluster to ubiquinone (Q). Transfer of the first electron results in the free-radical (semiquinone) form of Q, and transfer of the second electron reduces the semiquinone form to the ubiquinol form, QH2. During this process, four protons are translocated from the mitochondrial matrix to the intermembrane space. [4] As the electrons become continuously oxidized and reduced throughout the complex an electron current is produced along the 180 Angstrom width of the complex within the membrane. This current powers the active transport of four protons to the intermembrane space per two electrons from NADH.[5]
Electron transport chain
doc1691
In Complex II (succinate dehydrogenase or succinate-CoQ reductase; EC 1.3.5.1) additional electrons are delivered into the quinone pool (Q) originating from succinate and transferred (via flavin adenine dinucleotide (FAD)) to Q. Complex II consists of four protein subunits: succinate dehydrogenase, (SDHA); succinate dehydrogenase [ubiquinone] iron-sulfur subunit, mitochondrial, (SDHB); succinate dehydrogenase complex subunit C, (SDHC) and succinate dehydrogenase complex, subunit D, (SDHD). Other electron donors (e.g., fatty acids and glycerol 3-phosphate) also direct electrons into Q (via FAD). Complex 2 is a parallel electron transport pathway to complex 1, but unlike complex 1, no protons are transported to the intermembrane space in this pathway. Therefore, the pathway through complex 2 contributes less energy to the overall electron transport chain process.
Electron transport chain
doc1692
In Complex III (cytochrome bc1 complex or CoQH2-cytochrome c reductase; EC 1.10.2.2), the Q-cycle contributes to the proton gradient by an asymmetric absorption/release of protons. Two electrons are removed from QH2 at the QO site and sequentially transferred to two molecules of cytochrome c, a water-soluble electron carrier located within the intermembrane space. The two other electrons sequentially pass across the protein to the Qi site where the quinone part of ubiquinone is reduced to quinol. A proton gradient is formed by one quinol (2H+2e-) oxidations at the Qo site to form one quinone (2H+2e-) at the Qi site. (in total four protons are translocated: two protons reduce quinone to quinol and two protons are released from two ubiquinol molecules).
Electron transport chain
doc1693
When electron transfer is reduced (by a high membrane potential or respiratory inhibitors such as antimycin A), Complex III may leak electrons to molecular oxygen, resulting in superoxide formation.
Electron transport chain
doc1694
In Complex IV (cytochrome c oxidase; EC 1.9.3.1), sometimes called cytochrome AA3, four electrons are removed from four molecules of cytochrome c and transferred to molecular oxygen (O2), producing two molecules of water. At the same time, eight protons are removed from the mitochondrial matrix (although only four are translocated across the membrane), contributing to the proton gradient. The activity of cytochrome c oxidase is inhibited by cyanide.
Electron transport chain
doc1695
According to the chemiosmotic coupling hypothesis, proposed by Nobel Prize in Chemistry winner Peter D. Mitchell, the electron transport chain and oxidative phosphorylation are coupled by a proton gradient across the inner mitochondrial membrane. The efflux of protons from the mitochondrial matrix creates an electrochemical gradient (proton gradient). This gradient is used by the FOF1 ATP synthase complex to make ATP via oxidative phosphorylation. ATP synthase is sometimes described as Complex V of the electron transport chain.[6] The FO component of ATP synthase acts as an ion channel that provides for a proton flux back into the mitochondrial matrix. It is composed of a, b and c subunits. Protons in the inter-membranous space of mitochondria first enters the ATP synthase complex through a subunit channel. Then protons move to the c subunits.[7] The number of c subunits it has determines how many protons it will require to make the FO turn one full revolution. For example, in humans, there are 8 c subunits, thus 8 protons are required.[8] After c subunits, protons finally enters matrix using a subunit channel that opens into the mitochondrial matrix.[7] This reflux releases free energy produced during the generation of the oxidized forms of the electron carriers (NAD+ and Q). The free energy is used to drive ATP synthesis, catalyzed by the F1 component of the complex.[9] Coupling with oxidative phosphorylation is a key step for ATP production. However, in specific cases, uncoupling the two processes may be biologically useful. The uncoupling protein, thermogenin—present in the inner mitochondrial membrane of brown adipose tissue—provides for an alternative flow of protons back to the inner mitochondrial matrix. This alternative flow results in thermogenesis rather than ATP production.[10] Synthetic uncouplers (e.g., 2,4-dinitrophenol) also exist, and, at high doses, are lethal.[citation needed]
Electron transport chain
doc1696
In the mitochondrial electron transport chain electrons move from an electron donor (NADH or QH2) to a terminal electron acceptor (O2) via a series of redox reactions. These reactions are coupled to the creation of a proton gradient across the mitochondrial inner membrane. There are three proton pumps: I, III, and IV. The resulting transmembrane proton gradient is used to make ATP via ATP synthase.
Electron transport chain
doc1697
The reactions catalyzed by Complex I and Complex III work roughly at equilibrium. This means that these reactions are readily reversible, by increasing the concentration of the products relative to the concentration of the reactants (for example, by increasing the proton gradient). ATP synthase is also readily reversible. Thus ATP can be used to build a proton gradient, which in turn can be used to make NADH. This process of reverse electron transport is important in many prokaryotic electron transport chains.[11]
Electron transport chain
doc1698
In eukaryotes, NADH is the most important electron donor. The associated electron transport chain is
Electron transport chain
doc1699
NADH → Complex I → Q → Complex III → cytochrome c → Complex IV → O2 where Complexes I, III and IV are proton pumps, while Q and cytochrome c are mobile electron carriers. The electron acceptor is molecular oxygen.
Electron transport chain
doc1700
In prokaryotes (bacteria and archaea) the situation is more complicated, because there are several different electron donors and several different electron acceptors. The generalized electron transport chain in bacteria is:
Electron transport chain
doc1701
Note that electrons can enter the chain at three levels: at the level of a dehydrogenase, at the level of the quinone pool, or at the level of a mobile cytochrome electron carrier. These levels correspond to successively more positive redox potentials, or to successively decreased potential differences relative to the terminal electron acceptor. In other words, they correspond to successively smaller Gibbs free energy changes for the overall redox reaction Donor → Acceptor.
Electron transport chain
doc1702
Individual bacteria use multiple electron transport chains, often simultaneously. Bacteria can use a number of different electron donors, a number of different dehydrogenases, a number of different oxidases and reductases, and a number of different electron acceptors. For example, E. coli (when growing aerobically using glucose as an energy source) uses two different NADH dehydrogenases and two different quinol oxidases, for a total of four different electron transport chains operating simultaneously.
Electron transport chain
doc1703
A common feature of all electron transport chains is the presence of a proton pump to create a transmembrane proton gradient. Bacterial electron transport chains may contain as many as three proton pumps, like mitochondria, or they may contain only one or two. They always contain at least one proton pump.
Electron transport chain
doc1704
In the present day biosphere, the most common electron donors are organic molecules. Organisms that use organic molecules as an energy source are called organotrophs. Organotrophs (animals, fungi, protists) and phototrophs (plants and algae) constitute the vast majority of all familiar life forms.
Electron transport chain
doc1705
Some prokaryotes can use inorganic matter as an energy source. Such an organism is called a lithotroph ("rock-eater"). Inorganic electron donors include hydrogen, carbon monoxide, ammonia, nitrite, sulfur, sulfide, manganese oxide, and ferrous iron. Lithotrophs have been found growing in rock formations thousands of meters below the surface of Earth. Because of their volume of distribution, lithotrophs may actually outnumber organotrophs and phototrophs in our biosphere.
Electron transport chain
doc1706
The use of inorganic electron donors as an energy source is of particular interest in the study of evolution. This type of metabolism must logically have preceded the use of organic molecules as an energy source.
Electron transport chain
doc1707
Bacteria can use a number of different electron donors. When organic matter is the energy source, the donor may be NADH or succinate, in which case electrons enter the electron transport chain via NADH dehydrogenase (similar to Complex I in mitochondria) or succinate dehydrogenase (similar to Complex II). Other dehydrogenases may be used to process different energy sources: formate dehydrogenase, lactate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, H2 dehydrogenase (hydrogenase), etc. Some dehydrogenases are also proton pumps; others funnel electrons into the quinone pool. Most dehydrogenases show induced expression in the bacterial cell in response to metabolic needs triggered by the environment in which the cells grow.[citation needed]
Electron transport chain
doc1708
Quinones are mobile, lipid-soluble carriers that shuttle electrons (and protons) between large, relatively immobile macromolecular complexes embedded in the membrane. Bacteria use ubiquinone (the same quinone that mitochondria use) and related quinones such as menaquinone. Another name for ubiquinone is Coenzyme Q10.
Electron transport chain
doc1709
A proton pump is any process that creates a proton gradient across a membrane. Protons can be physically moved across a membrane; this is seen in mitochondrial Complexes I and IV. The same effect can be produced by moving electrons in the opposite direction. The result is the disappearance of a proton from the cytoplasm and the appearance of a proton in the periplasm. Mitochondrial Complex III uses this second type of proton pump, which is mediated by a quinone (the Q cycle).
Electron transport chain
doc1710
Some dehydrogenases are proton pumps; others are not. Most oxidases and reductases are proton pumps, but some are not. Cytochrome bc1 is a proton pump found in many, but not all, bacteria (it is not found in E. coli). As the name implies, bacterial bc1 is similar to mitochondrial bc1 (Complex III).
Electron transport chain
doc1711
Proton pumps are the heart of the electron transport process. They produce the transmembrane electrochemical gradient that enables ATP Synthase to synthesize ATP.
Electron transport chain
doc1712
Cytochromes are pigments that contain iron. They are found in two very different environments.
Electron transport chain
doc1713
Some cytochromes are water-soluble carriers that shuttle electrons to and from large, immobile macromolecular structures imbedded in the membrane. The mobile cytochrome electron carrier in mitochondria is cytochrome c. Bacteria use a number of different mobile cytochrome electron carriers.
Electron transport chain
doc1714
Other cytochromes are found within macromolecules such as Complex III and Complex IV. They also function as electron carriers, but in a very different, intramolecular, solid-state environment.
Electron transport chain
doc1715
Electrons may enter an electron transport chain at the level of a mobile cytochrome or quinone carrier. For example, electrons from inorganic electron donors (nitrite, ferrous iron, etc.) enter the electron transport chain at the cytochrome level. When electrons enter at a redox level greater than NADH, the electron transport chain must operate in reverse to produce this necessary, higher-energy molecule.
Electron transport chain
doc1716
When bacteria grow in aerobic environments, the terminal electron acceptor (O2) is reduced to water by an enzyme called an oxidase. When bacteria grow in anaerobic environments, the terminal electron acceptor is reduced by an enzyme called a reductase.
Electron transport chain
doc1717
In mitochondria the terminal membrane complex (Complex IV) is cytochrome oxidase. Aerobic bacteria use a number of different terminal oxidases. For example, E. coli does not have a cytochrome oxidase or a bc1 complex. Under aerobic conditions, it uses two different terminal quinol oxidases (both proton pumps) to reduce oxygen to water.
Electron transport chain
doc1718
Anaerobic bacteria, which do not use oxygen as a terminal electron acceptor, have terminal reductases individualized to their terminal acceptor. For example, E. coli can use fumarate reductase, nitrate reductase, nitrite reductase, DMSO reductase, or trimethylamine-N-oxide reductase, depending on the availability of these acceptors in the environment.
Electron transport chain
doc1719
Most terminal oxidases and reductases are inducible. They are synthesized by the organism as needed, in response to specific environmental conditions.
Electron transport chain
doc1720
Just as there are a number of different electron donors (organic matter in organotrophs, inorganic matter in lithotrophs), there are a number of different electron acceptors, both organic and inorganic. If oxygen is available, it is invariably used as the terminal electron acceptor, because it generates the greatest Gibbs free energy change and produces the most energy.[citation needed]
Electron transport chain
doc1721
In anaerobic environments, different electron acceptors are used, including nitrate, nitrite, ferric iron, sulfate, carbon dioxide, and small organic molecules such as fumarate.
Electron transport chain
doc1722
Since electron transport chains are redox processes, they can be described as the sum of two redox pairs. For example, the mitochondrial electron transport chain can be described as the sum of the NAD+/NADH redox pair and the O2/H2O redox pair. NADH is the electron donor and O2 is the electron acceptor.
Electron transport chain
doc1723
Not every donor-acceptor combination is thermodynamically possible. The redox potential of the acceptor must be more positive than the redox potential of the donor. Furthermore, actual environmental conditions may be far different from standard conditions (1 molar concentrations, 1 atm partial pressures, pH = 7), which apply to standard redox potentials. For example, hydrogen-evolving bacteria grow at an ambient partial pressure of hydrogen gas of 10−4 atm. The associated redox reaction, which is thermodynamically favorable in nature, is thermodynamic impossible under "standard" conditions.[citation needed]
Electron transport chain
doc1724
Bacterial electron transport pathways are, in general, inducible. Depending on their environment, bacteria can synthesize different transmembrane complexes and produce different electron transport chains in their cell membranes. Bacteria select their electron transport chains from a DNA library containing multiple possible dehydrogenases, terminal oxidases and terminal reductases. The situation is often summarized by saying that electron transport chains in bacteria are branched, modular, and inducible.
Electron transport chain
doc1725
In oxidative phosphorylation, electrons are transferred from a low-energy electron donor (e.g., NADH) to an acceptor (e.g., O2) through an electron transport chain. In photophosphorylation, the energy of sunlight is used to create a high-energy electron donor and an electron acceptor. Electrons are then transferred from the donor to the acceptor through another electron transport chain.
Electron transport chain
doc1726
Photosynthetic electron transport chains have many similarities to the oxidative chains discussed above. They use mobile, lipid-soluble carriers (quinones) and mobile, water-soluble carriers (cytochromes, etc.). They also contain a proton pump. It is remarkable that the proton pump in all photosynthetic chains resembles mitochondrial Complex III.
Electron transport chain
doc1727
Photosynthetic electron transport chains are discussed in greater detail in the articles Photophosphorylation, Photosynthesis, Photosynthetic reaction center and Light-dependent reaction.
Electron transport chain
doc1728
Electron transport chains are redox reactions that transfer electrons from an electron donor to an electron acceptor. The transfer of electrons is coupled to the translocation of protons across a membrane, producing a proton gradient. The proton gradient is used to produce useful work. About 30 work units are produced per electron transport.
Electron transport chain
doc7548
A block of the periodic table of elements is a set of adjacent groups. The term appears to have been first used by Charles Janet.[1] The respective highest-energy electrons in each element in a block belong to the same atomic orbital type. Each block is named after its characteristic orbital; thus, the blocks are:
Block (periodic table)
doc7549
The block names (s, p, d, f and g) are derived from the spectroscopic notation for the associated atomic orbitals: sharp, principal, diffuse and fundamental, and then g which follows f in the alphabet.
Block (periodic table)
doc7550
The following is the order for filling the "subshell" orbitals, according to the Aufbau principle, which also gives the linear order of the "blocks" (as atomic number increases) in the periodic table:
Block (periodic table)
doc7551
For discussion of the nature of why the energies of the blocks naturally appear in this order in complex atoms, see atomic orbital and electron configuration.
Block (periodic table)
doc7552
The "periodic" nature of the filling of orbitals, as well as emergence of the s, p, d and f "blocks" is more obvious, if this order of filling is given in matrix form, with increasing principal quantum numbers starting the new rows ("periods") in the matrix. Then, each subshell (composed of the first two quantum numbers) is repeated as many times as required for each pair of electrons it may contain. The result is a compressed periodic table, with each entry representing two successive elements:
Block (periodic table)
doc7553
There is an approximate correspondence between this nomenclature of blocks, based on electronic configuration, and groupings of elements based on chemical properties. The s-block and p-block together are usually considered as the main group elements, the d-block corresponds to the transition metals, and the f-block are the lanthanides and the actinides. However, not everyone agrees on the exact membership of each set of elements, so that for example the group 12 elements Zn, Cd and Hg are considered as main group by some scientists and transition metals by others, because they are chemically and physically more similar to the p-block elements than the other d-block elements. Furthermore, the group 3 elements and the f-block are sometimes also considered main group elements due to their similarities to the s-block elements. Groups (columns) in the f-block (between groups 3 and 4) are not numbered.
Block (periodic table)
doc7554
Helium is coloured differently from the p-block elements surrounding it because is in the s-block, with its outer (and only) electrons in the 1s atomic orbital, although its chemical properties are more similar to the p-block noble gases due to its full shell. In addition to the blocks listed in this table, there is a hypothetical g-block which is not pictured here. The g-block elements can be seen in the expanded extended periodic table. Also, lanthanum and actinium are placed under scandium and yttrium to reflect their status as d-block elements, as they have no electrons in the 4f and 5f orbitals, respectively, while lutetium and lawrencium do.[2]
Block (periodic table)
doc7555
The s-block is on the left side of the periodic table and includes elements from the first two columns, the alkali metals (group 1) and alkaline earth metals (group 2), plus helium. Helium is a controversial element for the scientists as it can be placed in the second group of s block as well as the 18th group of p-block, but most scientists consider it to rest at the top of group 18 i.e. above neon (atomic number 10) as it has many properties similar to the group 18 elements.
Block (periodic table)
doc7556
Most s-block elements are highly reactive metals due to the ease with which their outer s-orbital electrons interact to form compounds. The first period elements in this block, however, are nonmetals. Hydrogen is highly chemically reactive, like the other s-block elements, but helium is a virtually unreactive noble gas.
Block (periodic table)
doc7557
S-block elements are unified by the fact that their valence electrons (outermost electrons) are in the s orbital. The s-orbital is a single spherical cloud which can contain only one pair of electrons; hence, the s-block consists of only two columns in the periodic table. Elements in column 1, with a single s-orbital valence electron, are the most reactive of the block. Elements in the second column have two s-orbital valence electrons, and, except for helium, are only slightly less reactive.
Block (periodic table)
doc7558
The p-block is on the right side of the periodic table and includes elements from the six columns beginning with column 13 and ending with column 18. Helium, though being in the top of group 18, is not included in the p-block.
Block (periodic table)
doc7559
The p-block is home to the biggest variety of elements and is the only block that contains all three types of elements: metals, nonmetals, and metalloids. Generally, the p-block elements are best described in terms of element type or group.
Block (periodic table)
doc7560
P-block elements are unified by the fact that their valence electrons (outermost electrons) are in the p orbital. The p orbital consists of six lobed shapes coming off a central point at evenly spaced angles. The p orbital can hold a maximum of six electrons, hence there are six columns in the p-block. Elements in column 13, the first column of the p-block, have one p-orbital electron. Elements in column 14, the second column of the p-block, have two p-orbital electrons. The trend continues this way until we reach column 18, which has six p-orbital electrons.
Block (periodic table)
doc7561
P-block metals have classic metal characteristics: they are shiny, they are good conductors of heat and electricity, and they lose electrons easily. Generally, these metals have high melting points and readily react with nonmetals to form ionic compounds. Ionic compounds form when a positive metal ion bonds with a negative nonmetal ion.
Block (periodic table)
doc7562
Of the p-block metals, several have fascinating properties. Gallium, in the 3rd row of column 13, is a metal that can melt in the palm of a hand. Tin, in the fourth row of column 14, is an abundant, flexible, and extremely useful metal. It is an important component of many metal alloys like bronze, solder, and pewter.
Block (periodic table)
doc7563
Sitting right beneath tin is lead, a toxic metal. Ancient people used lead for a variety of things, from food sweeteners to pottery glazes to eating utensils. It has been suspected that lead poisoning is related to the fall of Roman civilization,[3] but further research has shown this to be unlikely.[4][5] For a long time, lead was used in the manufacturing of paints. It was only within the last century that lead paint use has been restricted due to its toxic nature.
Block (periodic table)
doc7564
Metalloids have properties of both metals and nonmetals, but the term 'metalloid' lacks a strict definition. All of the elements that are commonly recognized as metalloids are in the p-block: boron, silicon, germanium, arsenic, antimony, and tellurium. Metalloids tend to have lower electrical conductivity than metals, yet often higher than nonmetals. They tend to form chemical bonds similarly to nonmetals, but may dissolve in metallic alloys without covalent or ionic bonding. Metalloid additives can improve properties of metallic alloys, sometimes paradoxically to their own apparent properties. Some may give a better electrical conductivity, higher corrosion resistance, ductility, or fluidity in molten state, etc. to the alloy.
Block (periodic table)
doc7565
Boron has many carbon-like properties, but is very rare. It has many uses, for example a P type semiconductor dopant.
Block (periodic table)
doc7566
Silicon is perhaps the most famous metalloid. It is the second most abundant element in Earth's crust and one of the main ingredients in glass. It is used to make semiconductor circuits, from large power switches and high current diodes to microchips for computers and other electronic devices. It is also used in certain metallic alloys, e.g. to improve casting properties of alumimium. So valuable is silicon to the technology industry that Silicon Valley in California is named after it.
Block (periodic table)
doc7567
Germanium has properties very similar to silicon, yet this element is much more rare. It was once used for its semiconductor properties pretty much as silicon is now, and it has some superior properties at that, but is now a rare material in the industry.
Block (periodic table)
doc7568
Arsenic is a toxic metalloid that has been used throughout history as an additive to metal alloys, paints, and even makeup.
Block (periodic table)
doc7569
Antimony is used as a constituent in casting alloys such as printing metal.
Block (periodic table)
doc7570
Previously called inert gases, their name was changed as there are a few other gases that are inert but not noble gases, such as nitrogen. The noble gases are located in the far right column of the periodic table, also known as Group Zero or Group Eighteen. Noble gases are also called as aerogens but this nomenclature of the group is not officially accepted by the IUPAC.
Block (periodic table)
doc7571
All of the noble gases have full outer shells with eight electrons. However, at the top of the noble gases is helium, with a shell that is full with only two electrons. The fact that their outer shells are full means they rarely react with other elements, which led to their original title of "inert."
Block (periodic table)
doc7572
Because of their chemical properties, these gases are also used in the laboratory to help stabilize reactions that would usually proceed too quickly. As the atomic numbers increase, the elements become rarer. They are not just rare in nature, but rare as useful elements, too.
Block (periodic table)
doc7573
The second column from the right side of the periodic table, group 17, is the halogen family of elements. These elements are all just one electron shy of having full shells. Because they are so close to being full, they have the trait of combining with many different elements and are very reactive. They are often found bonding with metals and elements from Group One, as these elements in each have one electron.
Block (periodic table)
doc7574
Not all halogens react with the same intensity. Fluorine is the most reactive and combines with most elements from around the periodic table. As with other columns, reactivity decreases as the atomic number increases.
Block (periodic table)
doc7575
When a halogen combines with another element, the resulting compound is called a halide. One of the best examples of a halide is sodium chloride (NaCl).
Block (periodic table)
doc7576
The d-block is on the middle of the periodic table and includes elements from columns 3 through 12. These elements are also known as the transition metals because they show a transitivity in their properties i.e. they show a trend in their properties in simple incomplete d orbitals. Transition basically means d orbital lies between s and p orbitals and shows a transition from properties of s to p.
Block (periodic table)
doc7577
The d-block elements are all metals which exhibit two or more ways of forming chemical bonds. Because there is a relatively small difference in the energy of the different d-orbital electrons, the number of electrons participating in chemical bonding can vary. This results in the same element exhibiting two or more oxidation states, which determines the type and number of its nearest neighbors in chemical compounds.
Block (periodic table)
doc7578
D-block elements are unified by having in their outermost electrons one or more d-orbital electrons but no p-orbital electrons. The d-orbitals can contain up to five pairs of electrons; hence, the block includes ten columns in the periodic table.
Block (periodic table)
doc7579
The f-block is in the center-left of a 32-column periodic table but in the footnoted appendage of 18-column tables. These elements are not generally considered as part of any group. They are often called inner transition metals because they provide a transition between the s-block and d-block in the 6th and 7th row (period), in the same way that the d-block transition metals provide a transitional bridge between the s-block and p-block in the 4th and 5th rows.
Block (periodic table)
doc7580
The known f-block elements come in two series, the lanthanides of period 6 and the radioactive actinides of period 7. All are metals. Because the f-orbital electrons are less active in determining the chemistry of these elements, their chemical properties are mostly determined by outer s-orbital electrons. Consequently, there is much less chemical variability within the f-block than within the s-, p-, or d-blocks.
Block (periodic table)
doc7581
F-block elements are unified by having one or more of their outermost electrons in the f-orbital but none in the d-orbital or p-orbital. The f-orbitals can contain up to seven pairs of electrons; hence, the block includes fourteen columns in the periodic table.
Block (periodic table)
doc7582
The g-block is a hypothetical block of elements in the extended periodic table whose outermost electrons are posited to have one or more g-orbital electrons but no f-, d- or p-orbital electrons.
Block (periodic table)
doc20649
The alkali metals are a group (column) in the periodic table consisting of the chemical elements lithium (Li), sodium (Na), potassium (K),[note 1] rubidium (Rb), caesium (Cs),[note 2] and francium (Fr). This group lies in the s-block of the periodic table of elements as all alkali metals have their outermost electron in an s-orbital: this shared electron configuration results in their having very similar characteristic properties. Indeed, the alkali metals provide the best example of group trends in properties in the periodic table, with elements exhibiting well-characterised homologous behaviour.
Alkali metal
doc20650
The alkali metals are all shiny, soft, highly reactive metals at standard temperature and pressure and readily lose their outermost electron to form cations with charge +1. They can all be cut easily with a knife due to their softness, exposing a shiny surface that tarnishes rapidly in air due to oxidation by atmospheric moisture and oxygen (and in the case of lithium, nitrogen). Because of their high reactivity, they must be stored under oil to prevent reaction with air, and are found naturally only in salts and never as the free elements. Caesium, the fifth alkali metal, is the most reactive of all the metals. In the modern IUPAC nomenclature, the alkali metals comprise the group 1 elements,[note 3] excluding hydrogen (H), which is nominally a group 1 element but not normally considered to be an alkali metal as it rarely exhibits behaviour comparable to that of the alkali metals. All the alkali metals react with water, with the heavier alkali metals reacting more vigorously than the lighter ones.
Alkali metal
doc20651
All of the discovered alkali metals occur in nature as their compounds: in order of abundance, sodium is the most abundant, followed by potassium, lithium, rubidium, caesium, and finally francium, which is very rare due to its extremely high radioactivity; francium occurs only in the minutest traces in nature as an intermediate step in some obscure side branches of the natural decay chains. Experiments have been conducted to attempt the synthesis of ununennium (Uue), which is likely to be the next member of the group, but they have all met with failure. However, ununennium may not be an alkali metal due to relativistic effects, which are predicted to have a large influence on the chemical properties of superheavy elements; even if it does turn out to be an alkali metal, it is predicted to have some differences in physical and chemical properties from its lighter homologues.
Alkali metal
doc20652
Most alkali metals have many different applications. One of the best-known applications of the pure elements is the use of rubidium and caesium in atomic clocks, of which caesium atomic clocks are the most accurate and precise representation of time. A common application of the compounds of sodium is the sodium-vapour lamp, which emits light very efficiently. Table salt, or sodium chloride, has been used since antiquity. Sodium and potassium are also essential elements, having major biological roles as electrolytes, and although the other alkali metals are not essential, they also have various effects on the body, both beneficial and harmful.
Alkali metal
doc20653
The physical and chemical properties of the alkali metals can be readily explained by their having an ns1 valence electron configuration, which results in weak metallic bonding. Hence, all the alkali metals are soft and have low densities,[5] melting[5] and boiling points,[5] as well as heats of sublimation, vaporisation, and dissociation.[6]:74 They all crystallise in the body-centered cubic crystal structure,[6]:73 and have distinctive flame colours because their outer s electron is very easily excited.[6]:75 The ns1 configuration also results in the alkali metals having very large atomic and ionic radii, as well as very high thermal and electrical conductivity.[6]:75 Their chemistry is dominated by the loss of their lone valence electron in the outermost s-orbital to form the +1 oxidation state, due to the ease of ionising this electron and the very high second ionisation energy.[6]:76 Most of the chemistry has been observed only for the first five members of the group. The chemistry of francium is not well established due to its extreme radioactivity;[5] thus, the presentation of its properties here is limited. What little is known about francium shows that it is very close in behaviour to caesium, as expected. The physical properties of francium are even sketchier because the bulk element has never been observed; hence any data that may be found in the literature are certainly speculative extrapolations.[7]
Alkali metal
doc20654
The alkali metals are more similar to each other than the elements in any other group are to each other.[5] Indeed, the similarity is so great that it is quite difficult to separate potassium, rubidium, and caesium, due to their similar ionic radii; lithium and sodium are more distinct. For instance, when moving down the table, all known alkali metals show increasing atomic radius,[16] decreasing electronegativity,[16] increasing reactivity,[5] and decreasing melting and boiling points[16] as well as heats of fusion and vaporisation.[6]:75 In general, their densities increase when moving down the table, with the exception that potassium is less dense than sodium.[16] One of the very few properties of the alkali metals that does not display a very smooth trend is their reduction potentials: lithium's value is anomalous, being more negative than the others.[6]:75 This is because the Li+ ion has a very high hydration energy in the gas phase: though the lithium ion disrupts the structure of water significantly, causing a higher change in entropy, this high hydration energy is enough to make the reduction potentials indicate it as being the most electropositive alkali metal, despite the difficulty of ionising it in the gas phase.[6]:75
Alkali metal
doc20655
The stable alkali metals are all silver-coloured metals except for caesium, which has a pale golden tint:[17] it is one of only three metals that are clearly coloured (the other two being copper and gold).[6]:74 Additionally, the heavy alkaline earth metals calcium, strontium, and barium, as well as the divalent lanthanides europium and ytterbium, are pale yellow, though the colour is much less prominent than it is for caesium.[6]:74 Their lustre tarnishes rapidly in air due to oxidation.[5] They all crystallise in the body-centered cubic crystal structure,[6]:73 and have distinctive flame colours because their outer s electron is very easily excited. Indeed, these flame test colours are the most common way of identifying them since all their salts with common ions are soluble.[6]:75
Alkali metal
doc20656
All the alkali metals are highly reactive and are never found in elemental forms in nature.[18] Because of this, they are usually stored in mineral oil or kerosene (paraffin oil).[19] They react aggressively with the halogens to form the alkali metal halides, which are white ionic crystalline compounds that are all soluble in water except lithium fluoride (LiF).[5] The alkali metals also react with water to form strongly alkaline hydroxides and thus should be handled with great care. The heavier alkali metals react more vigorously than the lighter ones; for example, when dropped into water, caesium produces a larger explosion than potassium if the same number of moles of each metal is used.[5][20][21] The alkali metals have the lowest first ionisation energies in their respective periods of the periodic table[7] because of their low effective nuclear charge[5] and the ability to attain a noble gas configuration by losing just one electron.[5] Not only do the alkali metals react with water, but also with proton donors like alcohols and phenols, gaseous ammonia, and alkynes, the last demonstrating the phenomenal degree of their reactivity. Their great power as reducing agents makes them very useful in liberating other metals from their oxides or halides.[6]:76
Alkali metal
doc20657
The second ionisation energy of all of the alkali metals is very high[5][7] as it is in a full shell that is also closer to the nucleus;[5] thus, they almost always lose a single electron, forming cations.[6]:28 The alkalides are an exception: they are unstable compounds which contain alkali metals in a −1 oxidation state, which is very unusual as before the discovery of the alkalides, the alkali metals were not expected to be able to form anions and were thought to be able to appear in salts only as cations. The alkalide anions have filled s-subshells, which gives them enough stability to exist. All the stable alkali metals except lithium are known to be able to form alkalides,[22][23][24] and the alkalides have much theoretical interest due to their unusual stoichiometry and low ionisation potentials. Alkalides are chemically similar to the electrides, which are salts with trapped electrons acting as anions.[25] A particularly striking example of an alkalide is "inverse sodium hydride", H+Na− (both ions being complexed), as opposed to the usual sodium hydride, Na+H−:[26] it is unstable in isolation, due to its high energy resulting from the displacement of two electrons from hydrogen to sodium, although several derivatives are predicted to be metastable or stable.[26][27]
Alkali metal
doc20658
In aqueous solution, the alkali metal ions form aqua ions of the formula [M(H2O)n]+, where n is the solvation number. Their coordination numbers and shapes agree well with those expected from their ionic radii. In aqueous solution the water molecules directly attached to the metal ion are said to belong to the first coordination sphere, also known as the first, or primary, solvation shell. The bond between a water molecule and the metal ion is a dative covalent bond, with the oxygen atom donating both electrons to the bond. Each coordinated water molecule may be attached by hydrogen bonds to other water molecules. The latter are said to reside in the second coordination sphere. However, for the alkali metal cations, the second coordination sphere is not well-defined as the +1 charge on the cation is not high enough to polarise the water molecules in the primary solvation shell enough for them to form strong hydrogen bonds with those in the second coordination sphere, producing a more stable entity.[28][29]:25 The solvation number for Li+ has been experimentally determined to be 4, forming the tetrahedral [Li(H2O)4]+: while solvation numbers of 3 to 6 have been found for lithium aqua ions, solvation numbers less than 4 may be the result of the formation of contact ion pairs, and the higher solvation numbers may be interpreted in terms of water molecules that approach [Li(H2O)4]+ through a face of the tetrahedron, though molecular dynamic simulations may indicate the existence of an octahedral hexaaqua ion. There are also probably six water molecules in the primary solvation sphere of the sodium ion, forming the octahedral [Na(H2O)6]+ ion.[8][29]:126–127 While it was previously thought that the heavier alkali metals also formed octahedral hexaaqua ions, it has since been found that potassium and rubidium probably form the [K(H2O)8]+ and [Rb(H2O)8]+ ions, which have the square antiprismatic structure, and that caesium forms the 12-coordinate [Cs(H2O)12]+ ion.[30]
Alkali metal
doc20659
The chemistry of lithium shows several differences from that of the rest of the group as the small Li+ cation polarises anions and gives its compounds a more covalent character.[5] Lithium and magnesium have a diagonal relationship due to their similar atomic radii,[5] so that they show some similarities. For example, lithium forms a stable nitride, a property common among all the alkaline earth metals (magnesium's group) but unique among the alkali metals.[31] In addition, among their respective groups, only lithium and magnesium form organometallic compounds with significant covalent character (e.g. LiMe and MgMe2).[32]
Alkali metal
doc20660
Lithium fluoride is the only alkali metal halide that is poorly soluble in water,[5] and lithium hydroxide is the only alkali metal hydroxide that is not deliquescent.[5] Conversely, lithium perchlorate and other lithium salts with large anions that cannot be polarised are much more stable than the analogous compounds of the other alkali metals, probably because Li+ has a high solvation energy.[6]:76 This effect also means that most simple lithium salts are commonly encountered in hydrated form, because the anhydrous forms are extremely hygroscopic: this allows salts like lithium chloride and lithium bromide to be used in dehumidifiers and air-conditioners.[6]:76
Alkali metal
doc20661
Francium is also predicted to show some differences due to its high atomic weight, causing its electrons to travel at considerable fractions of the speed of light and thus making relativistic effects more prominent. In contrast to the trend of decreasing electronegativities and ionisation energies of the alkali metals, francium's electronegativity and ionisation energy are predicted to be higher than caesium's due to the relativistic stabilisation of the 7s electrons; also, its atomic radius is expected to be abnormally low. Thus, contrary to expectation, caesium is the most reactive of the alkali metals, not francium.[12][33]:1729[34] All known physical properties of francium also deviate from the clear trends going from lithium to caesium, such as the first ionisation energy, electron affinity, and anion polarisability, though due to the paucity of known data about francium many sources give extrapolated values, ignoring that relativistic effects make the trend from lithium to caesium become inapplicable at francium.[34] Some of the few properties of francium that have been predicted taking relativity into account are the electron affinity (47.2 kJ/mol)[35] and the enthalpy of dissociation of the Fr2 molecule (42.1 kJ/mol).[36] The CsFr molecule is polarised as Cs+Fr−, showing that the 7s subshell of francium is much more strongly affected by relativistic effects than the 6s subshell of caesium.[34] Additionally, francium superoxide (FrO2) is expected to have significant covalent character, unlike the other alkali metal superoxides, because of bonding contributions from the 6p electrons of francium.[34]
Alkali metal
doc20662
All the alkali metals have odd atomic numbers; hence, their isotopes must be either odd–odd (both proton and neutron number are odd) or odd–even (proton number is odd, but neutron number is even). Odd–odd nuclei have even mass numbers, whereas odd–even nuclei have odd mass numbers. Odd–odd primordial nuclides are rare because most odd–odd nuclei are highly unstable with respect to beta decay, because the decay products are even–even, and are therefore more strongly bound, due to nuclear pairing effects.[37]
Alkali metal
End of preview. Expand in Data Studio

ChemNQRetrieval

An MTEB dataset
Massive Text Embedding Benchmark

ChemTEB evaluates the performance of text embedding models on chemical domain data.

Task category t2t
Domains Chemistry
Reference https://arxiv.org/abs/2412.00532

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_tasks(["ChemNQRetrieval"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repitory.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@article{47761,
  author = {Tom Kwiatkowski and Jennimaria Palomaki and Olivia Redfield and Michael Collins and Ankur Parikh
and Chris Alberti and Danielle Epstein and Illia Polosukhin and Matthew Kelcey and Jacob Devlin and Kenton Lee
and Kristina N. Toutanova and Llion Jones and Ming-Wei Chang and Andrew Dai and Jakob Uszkoreit and Quoc Le
and Slav Petrov},
  journal = {Transactions of the Association of Computational Linguistics},
  title = {Natural Questions: a Benchmark for Question Answering Research},
  year = {2019},
}

@article{kasmaee2024chemteb,
  author = {Kasmaee, Ali Shiraee and Khodadad, Mohammad and Saloot, Mohammad Arshi and Sherck, Nick and Dokas, Stephen and Mahyar, Hamidreza and Samiee, Soheila},
  journal = {arXiv preprint arXiv:2412.00532},
  title = {ChemTEB: Chemical Text Embedding Benchmark, an Overview of Embedding Models Performance \& Efficiency on a Specific Domain},
  year = {2024},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("ChemNQRetrieval")

desc_stats = task.metadata.descriptive_stats
{
    "test": {
        "num_samples": 22960,
        "number_of_characters": 10651219,
        "num_documents": 22933,
        "min_document_length": 10,
        "average_document_length": 464.3858631666158,
        "max_document_length": 2801,
        "unique_documents": 22933,
        "num_queries": 27,
        "min_query_length": 33,
        "average_query_length": 54.0,
        "max_query_length": 87,
        "unique_queries": 27,
        "none_queries": 0,
        "num_relevant_docs": 35,
        "min_relevant_docs_per_query": 1,
        "average_relevant_docs_per_query": 1.2962962962962963,
        "max_relevant_docs_per_query": 3,
        "unique_relevant_docs": 35,
        "num_instructions": null,
        "min_instruction_length": null,
        "average_instruction_length": null,
        "max_instruction_length": null,
        "unique_instructions": null,
        "num_top_ranked": null,
        "min_top_ranked_per_query": null,
        "average_top_ranked_per_query": null,
        "max_top_ranked_per_query": null
    }
}

This dataset card was automatically generated using MTEB

Downloads last month
8