Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
Dataset Viewer
Auto-converted to Parquet
query-id
stringclasses
60 values
corpus-id
stringlengths
3
8
score
float64
0
1.91
q_1
c_62797
1.166667
q_1
c_273946
1.111111
q_1
c_68364
1.111111
q_1
c_29841
1.055556
q_1
c_54489
1.055556
q_1
c_168762
1.055556
q_1
c_4421
1.055556
q_1
c_248216
1.055556
q_1
c_49115
1.055556
q_1
c_184406
1
q_1
c_32413
1
q_1
c_80557
1
q_1
c_147242
1
q_1
c_209233
1
q_1
c_155507
1
q_1
c_186247
1
q_1
c_18871
1
q_1
c_242402
0.944444
q_1
c_241906
0.944444
q_1
c_6469
0.944444
q_1
c_283126
0.944444
q_1
c_201483
0.888889
q_1
c_174972
0.888889
q_1
c_21392
0.888889
q_1
c_2965
0.888889
q_1
c_154231
0.833333
q_1
c_18196
0.833333
q_1
c_123785
0.833333
q_1
c_192405
0.833333
q_1
c_36476
0.777778
q_1
c_128190
0.777778
q_1
c_107776
0.777778
q_1
c_57663
0.777778
q_1
c_198503
0.777778
q_1
c_252312
0.777778
q_1
c_114599
0.777778
q_1
c_166455
0.722222
q_1
c_154688
0.722222
q_1
c_201282
0.722222
q_1
c_67795
0.722222
q_1
c_120045
0.722222
q_1
c_227271
0.722222
q_1
c_82513
0.666667
q_1
c_117881
0.666667
q_1
c_172698
0.666667
q_1
c_149198
0.666667
q_1
c_251632
0.666667
q_1
c_46329
0.666667
q_1
c_192875
0.666667
q_1
c_19396
0.666667
q_1
c_28133
0.666667
q_1
c_106196
0.611111
q_1
c_135921
0.611111
q_1
c_189260
0.611111
q_1
c_316961
0.555556
q_1
c_103483
0.555556
q_1
c_202383
0.555556
q_1
c_31484
0.555556
q_1
c_158215
0.5
q_1
c_230928
0.5
q_1
c_9234
0.5
q_1
c_121899
0.5
q_1
c_180352
0.5
q_1
c_36072
0.5
q_1
c_214766
0.5
q_1
c_40731
0.5
q_1
c_207742
0.5
q_1
c_357781
0.5
q_1
c_10799
0.444444
q_1
c_127603
0.444444
q_1
c_319696
0.444444
q_1
c_236298
0.444444
q_1
c_160526
0.444444
q_1
c_193311
0.444444
q_1
c_111989
0.444444
q_1
c_97694
0.444444
q_1
c_250302
0.444444
q_1
c_7178
0.388889
q_1
c_28716
0.388889
q_1
c_291946
0.388889
q_1
c_248431
0.333333
q_1
c_226506
0.333333
q_1
c_244011
0.333333
q_1
c_351738
0.333333
q_1
c_216063
0.333333
q_1
c_237218
0.277778
q_1
c_156881
0.277778
q_1
c_219618
0.277778
q_1
c_233468
0.277778
q_1
c_68225
0.222222
q_1
c_156911
0.222222
q_1
c_52486
0.222222
q_1
c_213344
0.222222
q_1
c_315258
0.222222
q_1
c_270743
0.222222
q_1
c_357922
0.166667
q_1
c_328305
0.166667
q_1
c_275272
0.166667
q_1
c_182677
0.166667
q_1
c_166518
0.111111
End of preview. Expand in Data Studio

BIRCO-DorisMae

An MTEB dataset
Massive Text Embedding Benchmark

Retrieval task using the DORIS-MAE dataset from BIRCO. This dataset contains 60 queries that are complex research questions from computer scientists. Each query has a candidate pool of approximately 110 abstracts. Relevance is graded from 0 to 2 (scores of 1 and 2 are considered relevant).

Task category t2t
Domains Academic
Reference https://github.com/BIRCO-benchmark/BIRCO

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_tasks(["BIRCO-DorisMae"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repitory.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@misc{wang2024bircobenchmarkinformationretrieval,
  archiveprefix = {arXiv},
  author = {Xiaoyue Wang and Jianyou Wang and Weili Cao and Kaicheng Wang and Ramamohan Paturi and Leon Bergen},
  eprint = {2402.14151},
  primaryclass = {cs.IR},
  title = {BIRCO: A Benchmark of Information Retrieval Tasks with Complex Objectives},
  url = {https://arxiv.org/abs/2402.14151},
  year = {2024},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("BIRCO-DorisMae")

desc_stats = task.metadata.descriptive_stats
{
    "test": {
        "num_samples": 5604,
        "number_of_characters": 6824930,
        "num_documents": 5544,
        "min_document_length": 34,
        "average_document_length": 1220.2736291486292,
        "max_document_length": 3440,
        "unique_documents": 5544,
        "num_queries": 60,
        "min_query_length": 720,
        "average_query_length": 995.55,
        "max_query_length": 1367,
        "unique_queries": 60,
        "none_queries": 0,
        "num_relevant_docs": 6634,
        "min_relevant_docs_per_query": 100,
        "average_relevant_docs_per_query": 18.233333333333334,
        "max_relevant_docs_per_query": 138,
        "unique_relevant_docs": 5544,
        "num_instructions": null,
        "min_instruction_length": null,
        "average_instruction_length": null,
        "max_instruction_length": null,
        "unique_instructions": null,
        "num_top_ranked": null,
        "min_top_ranked_per_query": null,
        "average_top_ranked_per_query": null,
        "max_top_ranked_per_query": null
    }
}

This dataset card was automatically generated using MTEB

Downloads last month
9