The Dataset Viewer has been disabled on this dataset.

๐ŸŒฑ PhysGaia: A Physics-Aware Dataset of Multi-Body Interactions for Dynamic Novel View Synthesis

PhysGaia is a pioneering physics-aware dataset for dynamic novel view synthesis aiming beyond photorealism toward physical realism!

[ Project Page | arXiv | Github]

โญ๏ธ Key Highlights


  • ๐Ÿ’ฅ Multi-body interaction
  • ๐Ÿ’Ž Various materials across all modalities: Liquid, Gas, Viscoelastic substance, and Textile
  • โœ๏ธ Physical evaluation: physics parameters & ground-truth 3D trajectories
  • ๐Ÿ˜€ Research friendly!!
    • Providing codes for recent Dynamic Novel View Synthesis (DyNVS) models
    • Supporting diverse training setting: both monocular & multiview reconstruction

๐Ÿ“‚ Dataset Structure


Each folder is corresponding to each scene, containing the following files:
{material_type}_{scene_name}.zip
โ”‚
โ”œโ”€โ”€ render/                              # Generated images (e.g., avatar renderings)
โ”‚   โ”œโ”€โ”€ train/                           # Images for training
โ”‚   โ””โ”€โ”€ test/                            # Images for evaluation
โ”‚
โ”œโ”€โ”€ point_cloud.ply                      # COLMAP initialization (PatchMatch & downsampling)
โ”œโ”€โ”€ camera_info_test.json                # Monocular camera info for test
โ”œโ”€โ”€ camera_info_train_mono.json          # Monocular camera info for training
โ”œโ”€โ”€ camera_info_train_multi.json         # Multi-view camera info for training
โ”‚
โ”œโ”€โ”€ {scene_name}.hipnc                   # Houdini source file (simulation or scene setup)
โ”œโ”€โ”€ particles/                           # Ground-truth trajectories

๐Ÿ‘ฉ๐Ÿปโ€๐Ÿ’ป Code implementation

Please check each branch for integrated code for recent DyNVS methods.

๐Ÿ”ฅ Ideal for โ€œNextโ€ Research


  • ๐Ÿง  Physical reasoning in dynamic scenes
  • ๐Ÿค Multi-body physical interaction modeling
  • ๐Ÿงช Material-specific physics solver integration
  • ๐Ÿงฌ Compatibility with existing DyNVS models

๐Ÿ’ณ Citation

TBD

๐Ÿค Contributing


We welcome contributions to expand the dataset (additional modality for new downstream tasks, , implementation for other models, etc.) Reach out via opening an issue/discussion in the repo.

๐Ÿ“ฌ Contact


Author: Mijeong Kim & Gunhee Kim
๐Ÿ“ง Email: mijeong.kim@snu.ac.kr & gunhee2001@snu.ac.kr
๐ŸŒ LinkedIn: Mijeong Kim & Gunhee Kim

๐Ÿ› ๏ธ Future Plans


  • Update fidelity of the generated scenes
  • Add more easier scenes: providing more accessible starting points
  • Add guidelines using Houdini source files: ex) How to obtain a flow field?

๐Ÿ’ณ License


This project is released under the Creative Commons Attribution-NonCommercial 4.0 license. โœ… Free to use, share, and adapt for non-commercial research

Downloads last month
234