input
stringlengths
11
7.65k
target
stringlengths
22
8.26k
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def get_date(self, p_tag): """ Given a date tag, return a date object. """ string = self.tag_value(p_tag) result = None try: result = date_string_to_date(string) if string else None except ValueError: pass return result
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def start_date(self): """ Returns a date object of the todo's start date. """ return self.get_date(config().tag_start())
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def due_date(self): """ Returns a date object of the todo's due date. """ return self.get_date(config().tag_due())
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def is_active(self): """ Returns True when the start date is today or in the past and the task has not yet been completed. """ start = self.start_date() return not self.is_completed() and (not start or start <= date.today())
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def is_overdue(self): """ Returns True when the due date is in the past and the task has not yet been completed. """ return not self.is_completed() and self.days_till_due() < 0
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def days_till_due(self): """ Returns the number of days till the due date. Returns a negative number of days when the due date is in the past. Returns 0 when the task has no due date. """ due = self.due_date() if due: diff = due - date.today() return diff.days return 0
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def main(self): UI.OpenDialog( VBox( Heading("This Is a Heading."), Label("This is a Label."), PushButton("&OK") ) ) UI.UserInput() UI.CloseDialog()
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_impl(df): df2 = df[['A']] df2['A'] += 10 return df2.A, df.A
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_scheme(): # does not raise NotImplementedError UrlPath('/dev/null').touch()
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_impl(n): S1 = pd.Series(np.ones(n)) S2 = pd.Series(np.random.ranf(n)) df = pd.DataFrame({'A': S1, 'B': S2}) return df.A.sum()
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_scheme_not_supported(): with pytest.raises(NotImplementedError): UrlPath('http:///tmp/test').touch()
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_impl(df): return df['A'][df['B']].values
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_scheme_not_listed(): with pytest.raises(NotImplementedError): UrlPath('test:///tmp/test').touch()
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_impl(): A = np.array([1., 2., 3.]) A[0] = np.nan df = pd.DataFrame({'A': A}) B = df.A.fillna(5.0) return B.sum()
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_file_additional(): assert UrlPath('.').resolve() == UrlPath.cwd()
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_impl(): A = np.array([1., 2., 3.]) A[0] = np.nan df = pd.DataFrame({'A': A}) df.A.fillna(5.0, inplace=True) return df.A.sum()
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_impl(): A = np.array([1., 2., 3.]) A[0] = np.nan df = pd.DataFrame({'A': A}) return df.A.mean()
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_impl(): A = np.array([1., 2., 3.]) A[0] = 4.0 df = pd.DataFrame({'A': A}) return df.A.var()
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_impl(): A = np.array([1., 2., 3.]) A[0] = 4.0 df = pd.DataFrame({'A': A}) return df.A.std()
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_impl(n): df = pd.DataFrame({'A': np.arange(n)}) df['B'] = df.A.map(lambda a: 2 * a) return df.B.sum()
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_impl(df): df['B'] = df.A.map(lambda a: 2 * a) return
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_impl(n): df = pd.DataFrame({'A': np.ones(n), 'B': np.random.ranf(n)}) Ac = df.A.cumsum() return Ac.sum()
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_impl(n): df = pd.DataFrame({'A': np.ones(n), 'B': np.random.ranf(n)}) df.A.fillna(5.0, inplace=True) DF = df.A.fillna(5.0) s = DF.sum() m = df.A.mean() v = df.A.var() t = df.A.std() Ac = df.A.cumsum() return Ac.sum() + s + m + v + t
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_impl(n): df = pd.DataFrame({'A': np.arange(0, n, 1, np.float64)}) return df.A.quantile(.25)
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_impl(n): df = pd.DataFrame({'A': np.arange(0, n, 1, np.float32)}) df.A[0:100] = np.nan df.A[200:331] = np.nan return df.A.quantile(.25)
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_impl(n): df = pd.DataFrame({'A': np.arange(0, n, 1, np.int32)}) return df.A.quantile(.25)
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_impl(A): df = pd.DataFrame({'A': A}) return df.A.quantile(.25)
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_impl(n): df = pd.DataFrame({'A': np.arange(n)}) df.A[2] = 0 return df.A.nunique()
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_impl(): df = pq.read_table('example.parquet').to_pandas() return df.four.nunique()
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_impl(n): df = pd.DataFrame({'A': ['aa', 'bb', 'aa', 'cc', 'cc']}) return df.A.nunique()
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_impl(): df = pq.read_table('example.parquet').to_pandas() return df.two.nunique()
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_impl(): df = pq.read_table('example.parquet').to_pandas() return (df.four.unique() == 3.0).sum()
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_impl(): df = pq.read_table('example.parquet').to_pandas() return (df.two.unique() == 'foo').sum()
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_impl(n): df = pd.DataFrame({'A': np.arange(0, n, 1, np.float64)}) return df.A.describe()
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_impl(): A = StringArray(['ABC', 'BB', 'ADEF']) df = pd.DataFrame({'A': A}) B = df.A.str.contains('AB*', regex=True) return B.sum()
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_impl(): A = StringArray(['ABC', 'BB', 'ADEF']) df = pd.DataFrame({'A': A}) B = df.A.str.contains('BB', regex=False) return B.sum()
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_impl(df): return df.A.str.replace('AB*', 'EE', regex=True)
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_impl(df): return df.A.str.replace('AB', 'EE', regex=False)
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_impl(df): B = df.A.str.replace('AB*', 'EE', regex=True) return B
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_impl(df): return df.A.str.split()
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_impl(df): B = df.A.str.split(',') df2 = pd.DataFrame({'B': B}) return df2[df2.B.str.len() > 1]
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_impl(df): return df.A.iloc[0]
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_impl(df): B = df.A.str.split(',') C = pd.to_numeric(B.str.get(1), errors='coerce') return C
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_impl(df): A = df.A.str.split(',') return pd.Series(list(itertools.chain(*A)))
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_impl(df): A = df.A.str.split(',') B = pd.Series(list(itertools.chain(*A))) return B
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_impl(df): B = pd.to_numeric(df.A, errors='coerce') return B
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_impl(n): df = pd.DataFrame({'A': np.arange(n), 'B': np.arange(n) + 1.0}) df1 = df[df.A > 5] return len(df1.B)
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_impl(n): df = pd.DataFrame({'A': np.arange(n), 'B': np.random.ranf(n)}) Ac = df.A.rolling(3).sum() return Ac.sum()
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_impl_2(n): df = pd.DataFrame({'A': np.arange(n) + 1.0, 'B': np.random.ranf(n)}) Ac = df.A.rolling(7).sum() return Ac.sum()
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_impl(n): df = pd.DataFrame({'A': np.ones(n), 'B': np.random.ranf(n)}) df['moving average'] = df.A.rolling(window=5, center=True).mean() return df['moving average'].sum()
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_impl(n): df = pd.DataFrame({'A': np.ones(n), 'B': np.random.ranf(n)}) Ac = df.A.rolling(3, center=True).apply(lambda a: a[0] + 2 * a[1] + a[2]) return Ac.sum()
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_impl(n): df = pd.DataFrame({'A': np.arange(n) + 1.0, 'B': np.random.ranf(n)}) Ac = df.A.shift(1) return Ac.sum()
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_impl(n): df = pd.DataFrame({'A': np.arange(n) + 1.0, 'B': np.random.ranf(n)}) Ac = df.A.pct_change(1) return Ac.sum()
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_impl(df): return df.B.sum()
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_impl(df): C = df.B == 'two' return C.sum()
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_impl(df): return df.B.sum()
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_impl(n): df1 = pd.DataFrame({'key1': np.arange(n), 'A': np.arange(n) + 1.0}) df2 = pd.DataFrame({'key2': n - np.arange(n), 'A': n + np.arange(n) + 1.0}) df3 = pd.concat([df1, df2]) return df3.A.sum() + df3.key2.sum()
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_impl(): df1 = pq.read_table('example.parquet').to_pandas() df2 = pq.read_table('example.parquet').to_pandas() A3 = pd.concat([df1, df2]) return (A3.two == 'foo').sum()
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_impl(n): df1 = pd.DataFrame({'key1': np.arange(n), 'A': np.arange(n) + 1.0}) df2 = pd.DataFrame({'key2': n - np.arange(n), 'A': n + np.arange(n) + 1.0}) A3 = pd.concat([df1.A, df2.A]) return A3.sum()
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_impl(): df1 = pq.read_table('example.parquet').to_pandas() df2 = pq.read_table('example.parquet').to_pandas() A3 = pd.concat([df1.two, df2.two]) return (A3 == 'foo').sum()
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_impl(nsyms): max_num_days = 100 all_res = 0.0 for i in sdc.prange(nsyms): s_open = 20 * np.ones(max_num_days) s_low = 28 * np.ones(max_num_days) s_close = 19 * np.ones(max_num_days) df = pd.DataFrame({'Open': s_open, 'Low': s_low, 'Close': s_close}) df['Stdev'] = df['Close'].rolling(window=90).std() df['Moving Average'] = df['Close'].rolling(window=20).mean() df['Criteria1'] = (df['Open'] - df['Low'].shift(1)) < -df['Stdev'] df['Criteria2'] = df['Open'] > df['Moving Average'] df['BUY'] = df['Criteria1'] & df['Criteria2'] df['Pct Change'] = (df['Close'] - df['Open']) / df['Open'] df['Rets'] = df['Pct Change'][df['BUY']] all_res += df['Rets'].mean() return all_res
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_impl(A, B): df = pd.DataFrame({'A': A, 'B': B}) df2 = df.groupby('A', as_index=False)['B'].sum() # TODO: fix handling of df setitem to force match of array dists # probably with a new node that is appended to the end of basic block # df2['C'] = np.full(len(df2.B), 3, np.int8) # TODO: full_like for Series df2['C'] = np.full_like(df2.B.values, 3, np.int8) return df2
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_both(): """Both f and g.""" p = are.above(2) & are.below(4) ps = [p(x) for x in range(1, 6)] assert ps == [False, False, True, False, False]
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def AddResultsOptions(parser): group = optparse.OptionGroup(parser, 'Results options') group.add_option('--chartjson', action='store_true', help='Output Chart JSON. Ignores --output-format.') group.add_option('--output-format', action='append', dest='output_formats', choices=_OUTPUT_FORMAT_CHOICES, default=[], help='Output format. Defaults to "%%default". ' 'Can be %s.' % ', '.join(_OUTPUT_FORMAT_CHOICES)) group.add_option('-o', '--output', dest='output_file', default=None, help='Redirects output to a file. Defaults to stdout.') group.add_option('--output-dir', default=util.GetBaseDir(), help='Where to save output data after the run.') group.add_option('--output-trace-tag', default='', help='Append a tag to the key of each result trace. Use ' 'with html, buildbot, csv-pivot-table output formats.') group.add_option('--reset-results', action='store_true', help='Delete all stored results.') group.add_option('--upload-results', action='store_true', help='Upload the results to cloud storage.') group.add_option('--upload-bucket', default='internal', choices=['public', 'partner', 'internal'], help='Storage bucket to use for the uploaded results. ' 'Defaults to internal. Supported values are: ' 'public, partner, internal') group.add_option('--results-label', default=None, help='Optional label to use for the results of a run .') group.add_option('--suppress_gtest_report', default=False, help='Whether to suppress GTest progress report.') parser.add_option_group(group)
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_either(): """Either f or g.""" p = are.above(3) | are.below(2) ps = [p(x) for x in range(1, 6)] assert ps == [True, False, False, True, True]
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def ProcessCommandLineArgs(parser, args): # TODO(ariblue): Delete this flag entirely at some future data, when the # existence of such a flag has been long forgotten. if args.output_file: parser.error('This flag is deprecated. Please use --output-dir instead.') try: os.makedirs(args.output_dir) except OSError: # Do nothing if the output directory already exists. Existing files will # get overwritten. pass args.output_dir = os.path.expanduser(args.output_dir)
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_equal_to(): """Equal to y.""" p = are.equal_to(1) ps = [p(x) for x in range(1, 6)] assert ps == [True, False, False, False, False]
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def _GetOutputStream(output_format, output_dir): assert output_format in _OUTPUT_FORMAT_CHOICES, 'Must specify a valid format.' assert output_format not in ('gtest', 'none'), ( 'Cannot set stream for \'gtest\' or \'none\' output formats.') if output_format == 'buildbot': return sys.stdout assert output_format in _OUTPUT_FILENAME_LOOKUP, ( 'No known filename for the \'%s\' output format' % output_format) output_file = os.path.join(output_dir, _OUTPUT_FILENAME_LOOKUP[output_format]) open(output_file, 'a').close() # Create file if it doesn't exist. return open(output_file, 'r+')
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_above(): """Greater than y.""" p = are.above(3) ps = [p(x) for x in range(1, 6)] assert ps == [False, False, False, True, True]
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def _GetProgressReporter(output_skipped_tests_summary, suppress_gtest_report): if suppress_gtest_report: return progress_reporter.ProgressReporter() return gtest_progress_reporter.GTestProgressReporter( sys.stdout, output_skipped_tests_summary=output_skipped_tests_summary)
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_below(): """Less than y.""" p = are.not_below(4) ps = [p(x) for x in range(1, 6)] assert ps == [False, False, False, True, True]
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_above_or_equal_to(): """Greater than or equal to y.""" p = are.above_or_equal_to(4) ps = [p(x) for x in range(1, 6)] assert ps == [False, False, False, True, True]
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_below_or_equal_to(): """Less than or equal to y.""" p = are.not_below_or_equal_to(3) ps = [p(x) for x in range(1, 6)] assert ps == [False, False, False, True, True]
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_strictly_between(): """Greater than y and less than z.""" p = are.strictly_between(2, 4) ps = [p(x) for x in range(1, 6)] assert ps == [False, False, True, False, False]
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_between(): """Greater than or equal to y and less than z.""" p = are.between(3, 4) ps = [p(x) for x in range(1, 6)] assert ps == [False, False, True, False, False]
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def test_between_or_equal_to(): """Greater than or equal to y and less than or equal to z.""" p = are.between_or_equal_to(3, 3) ps = [p(x) for x in range(1, 6)] assert ps == [False, False, True, False, False]
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def _apply_mask(y_true, sample_weight, masked_tokens, dtype): if sample_weight is None: sample_weight = tf.ones_like(y_true, dtype) else: sample_weight = tf.cast(sample_weight, dtype) for token in masked_tokens: mask = tf.cast(tf.not_equal(y_true, token), dtype) sample_weight = sample_weight * mask return sample_weight
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def _copy_vars(v_list): """Copy variables in v_list.""" t_list = [] for v in v_list: t_list.append(tf.identity(v)) return t_list
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def __init__(self, masked_tokens=None, name='num_tokens', dtype=tf.int64): self._masked_tokens = masked_tokens or [] super().__init__(name, dtype)
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def _restore_vars(v_list, t_list): """Restore variables in v_list from t_list.""" ops = [] for v, t in zip(v_list, t_list): ops.append(v.assign(t)) return ops
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def update_state(self, y_true, y_pred, sample_weight=None): sample_weight = _apply_mask(y_true, sample_weight, self._masked_tokens, self._dtype) sample_weight = tf.reshape(sample_weight, [-1]) super().update_state(sample_weight)
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def _scale_vars(s, v_list): """Scale all variables in v_list by s.""" return [s * v for v in v_list]
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def get_config(self): config = super().get_config() config['masked_tokens'] = tuple(self._masked_tokens) return config
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def _acc_grads(g_sum, g_w, g): """Accumulate gradients in g, weighted by g_w.""" return [g_sum_i + g_w * g_i for g_sum_i, g_i in zip(g_sum, g)]
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def __init__(self, masked_tokens=None, name='accuracy', dtype=None): self._masked_tokens = masked_tokens or [] super().__init__(name, dtype=dtype)
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def _compute_reg_grads(gen_grads, disc_vars): """Compute gradients norm (this is an upper-bpund of the full-batch norm).""" gen_norm = tf.accumulate_n([tf.reduce_sum(u * u) for u in gen_grads]) disc_reg_grads = tf.gradients(gen_norm, disc_vars) return disc_reg_grads
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def update_state(self, y_true, y_pred, sample_weight=None): sample_weight = _apply_mask(y_true, sample_weight, self._masked_tokens, self._dtype) num_classes = tf.shape(y_pred)[-1] y_true = tf.reshape(y_true, [-1]) y_pred = tf.reshape(y_pred, [-1, num_classes]) sample_weight = tf.reshape(sample_weight, [-1]) super().update_state(y_true, y_pred, sample_weight)
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def run_model(prior, images, model, disc_reg_weight): """Run the model with new data and samples. Args: prior: the noise source as the generator input. images: images sampled from dataset. model: a GAN model defined in gan.py. disc_reg_weight: regularisation weight for discrmininator gradients. Returns: debug_ops: statistics from the model, see gan.py for more detials. disc_grads: discriminator gradients. gen_grads: generator gradients. """ generator_inputs = prior.sample(FLAGS.batch_size) model_output = model.connect(images, generator_inputs) optimization_components = model_output.optimization_components disc_grads = tf.gradients( optimization_components['disc'].loss, optimization_components['disc'].vars) gen_grads = tf.gradients( optimization_components['gen'].loss, optimization_components['gen'].vars) if disc_reg_weight > 0.0: reg_grads = _compute_reg_grads(gen_grads, optimization_components['disc'].vars) disc_grads = _acc_grads(disc_grads, disc_reg_weight, reg_grads) debug_ops = model_output.debug_ops return debug_ops, disc_grads, gen_grads
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def update_model(model, disc_grads, gen_grads, disc_opt, gen_opt, global_step, update_scale): """Update model with gradients.""" disc_vars, gen_vars = model.get_variables() with tf.control_dependencies(gen_grads + disc_grads): disc_update_op = disc_opt.apply_gradients( zip(_scale_vars(update_scale, disc_grads), disc_vars)) gen_update_op = gen_opt.apply_gradients( zip(_scale_vars(update_scale, gen_grads), gen_vars), global_step=global_step) update_op = tf.group([disc_update_op, gen_update_op]) return update_op
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def sample_fn(x): return utils.optimise_and_sample(x, module=model, data=None, is_training=False)[0]
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def setUp(self): super().setUp() self.project1 = self.env["project.project"].create({"name": "Project 1"}) self.task1 = self.env["project.task"].create( {"name": "name1", "project_id": self.project1.id} ) self.subtask1 = self.env["project.task"].create( {"name": "2", "project_id": self.project1.id, "parent_id": self.task1.id} ) self.subtask2 = self.env["project.task"].create( {"name": "3", "project_id": self.project1.id, "parent_id": self.task1.id} )
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def __init__(self, item_spacing=ITEM_SPACING, *args, **kwargs): super().__init__(*args, **kwargs)
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def __init__(self, nr, nc): self.nr = nr self.nc = nc
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def add_item(self, item): self._vbox_items.pack_start(item.widget, expand=False, fill=False)
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def inc_r(self, ind): r, c = self.row_col(ind) r += 1 if r == self.nr: r = 0 if r == (self.nr - 1) and c == (self.nc - 1): r = 0 return self.indx(r, c)
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def reorder_item(self, item, position): new_position = min(max(position, 0), len(self._items) - 1)
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def dec_r(self, ind): r, c = self.row_col(ind) r -= 1 if r < 0: r = self.nr - 1 if r == (self.nr - 1) and c == (self.nc - 1): r = self.nr - 2 return self.indx(r, c)
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def remove_item(self, item): item_position = self._get_item_position(item) if item_position < len(self._items) - 1: next_item_position = item_position + 1 self._items[next_item_position].item_widget.grab_focus()
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def inc_c(self, ind): r, c = self.row_col(ind) c += 1 if c == self.nc: c = 0 if r == (self.nr - 1) and c == (self.nc - 1): c = 0 return self.indx(r, c)
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def clear(self): for unused_ in range(len(self._items)): self.remove_item(self._items[0])