Dataset Viewer
Auto-converted to Parquet
problem_idx
int64
problem
string
answer
string
id
string
1
Suppose $P(x)$ is a cubic polynomial with integer coefficients such that $P(\sqrt{5})=5$ and $P(\sqrt[3]{5})=5 \sqrt[3]{5}$. Compute $P(5)$.
-95
2023_1
2
Compute the number of positive integers $n \leq 1000$ such that $\operatorname{lcm}(n, 9)$ is a perfect square. (Recall that lcm denotes the least common multiple.)
43
2023_2
3
Suppose $x$ is a real number such that $\sin \left(1+\cos ^{2} x+\sin ^{4} x\right)=\frac{13}{14}$. Compute $\cos \left(1+\sin ^{2} x+\cos ^{4} x\right)$.
-\frac{3\sqrt{3}}{14}
2023_3
4
Suppose $P(x)$ is a polynomial with real coefficients such that $P(t)=P(1) t^{2}+P(P(1)) t+P(P(P(1)))$ for all real numbers $t$. Compute the largest possible value of $P(P(P(P(1))))$.
\frac{1}{9}
2023_4
5
Suppose $E, I, L, V$ are (not necessarily distinct) nonzero digits in base ten for which \begin{itemize} \item the four-digit number $\underline{E} \underline{V} \underline{I} \underline{L}$ is divisible by $73$, and \item the four-digit number $\underline{V} \underline{I} \underline{L} \underline{E}$ is divisible by $74$. \end{itemize} Compute the four-digit number $\underline{L} \underline{I} \underline{V} \underline{E}$.
9954
2023_5
6
Suppose $a_{1}, a_{2}, \ldots, a_{100}$ are positive real numbers such that $$ a_{k}=\frac{k a_{k-1}}{a_{k-1}-(k-1)} $$ for $k=2,3, \ldots, 100$. Given that $a_{20}=a_{23}$, compute $a_{100}$.
215
2023_6
7
If $a, b, c$, and $d$ are pairwise distinct positive integers that satisfy $\operatorname{lcm}(a, b, c, d)<1000$ and $a+b=c+d$, compute the largest possible value of $a+b$.
581
2023_7
8
Let $S$ be the set of ordered pairs $(a, b)$ of positive integers such that $\operatorname{gcd}(a, b)=1$. Compute $$ \sum_{(a, b) \in S}\left\lfloor\frac{300}{2 a+3 b}\right\rfloor $$
7400
2023_8
9
For any positive integers $a$ and $b$ with $b>1$, let $s_{b}(a)$ be the sum of the digits of $a$ when it is written in base $b$. Suppose $n$ is a positive integer such that $$ \sum_{i=1}^{\left\lfloor\log _{23} n\right\rfloor} s_{20}\left(\left\lfloor\frac{n}{23^{i}}\right\rfloor\right)=103 \quad \text { and } \quad \sum_{i=1}^{\left\lfloor\log _{20} n\right\rfloor} s_{23}\left(\left\lfloor\frac{n}{20^{i}}\right\rfloor\right)=115 $$ Compute $s_{20}(n)-s_{23}(n)$.
81
2023_9
10
Let $\zeta=e^{2 \pi i / 99}$ and $\omega=e^{2 \pi i / 101}$. The polynomial $$ x^{9999}+a_{9998} x^{9998}+\cdots+a_{1} x+a_{0} $$ has roots $\zeta^{m}+\omega^{n}$ for all pairs of integers $(m, n)$ with $0 \leq m<99$ and $0 \leq n<101$. Compute $a_{9799}+a_{9800}+\cdots+a_{9998}$.
14849-\frac{9999}{200}\binom{200}{99}
2023_10
11
There are $800$ marbles in a bag. Each marble is colored with one of $100$ colors, and there are eight marbles of each color. Anna draws one marble at a time from the bag, without replacement, until she gets eight marbles of the same color, and then she immediately stops. Suppose Anna has not stopped after drawing $699$ marbles. Compute the probability that she stops immediately after drawing the 700th marble.
\frac{99}{101}
2023_11
12
Compute the number of ways to tile a $3 \times 5$ rectangle with one $1 \times 1$ tile, one $1 \times 2$ tile, one $1 \times 3$ tile, one $1 \times 4$ tile, and one $1 \times 5$ tile. (The tiles can be rotated, and tilings that differ by rotation or reflection are considered distinct.)
40
2023_12
13
Richard starts with the string HHMMMMTT. A move consists of replacing an instance of HM with MH, replacing an instance of MT with TM, or replacing an instance of TH with HT. Compute the number of possible strings he can end up with after performing zero or more moves.
70
2023_13
14
The cells of a $5 \times 5$ grid are each colored red, white, or blue. Sam starts at the bottom-left cell of the grid and walks to the top-right cell by taking steps one cell either up or to the right. Thus, he passes through $9$ cells on his path, including the start and end cells. Compute the number of colorings for which Sam is guaranteed to pass through a total of exactly $3$ red cells, exactly $3$ white cells, and exactly $3$ blue cells no matter which route he takes.
1680
2023_14
15
Elbert and Yaiza each draw $10$ cards from a $20$-card deck with cards numbered $1,2,3, \ldots, 20$. Then, starting with the player with the card numbered 1, the players take turns placing down the lowestnumbered card from their hand that is greater than every card previously placed. When a player cannot place a card, they lose and the game ends. Given that Yaiza lost and $5$ cards were placed in total, compute the number of ways the cards could have been initially distributed. (The order of cards in a player's hand does not matter.)
324
2023_15
16
Each cell of a $3 \times 3$ grid is labeled with a digit in the set $\{1,2,3,4,5\}$. Then, the maximum entry in each row and each column is recorded. Compute the number of labelings for which every digit from $1$ to $5$ is recorded at least once.
2664
2023_16
17
Svitlana writes the number $147$ on a blackboard. Then, at any point, if the number on the blackboard is $n$, she can perform one of the following three operations: \begin{itemize} \item if $n$ is even, she can replace $n$ with $\frac{n}{2}$; \item if $n$ is odd, she can replace $n$ with $\frac{n+255}{2}$; and \item if $n \geq 64$, she can replace $n$ with $n-64$. \end{itemize} Compute the number of possible values that Svitlana can obtain by doing zero or more operations.
163
2023_17
18
A random permutation $a=\left(a_{1}, a_{2}, \ldots, a_{40}\right)$ of $(1,2, \ldots, 40)$ is chosen, with all permutations being equally likely. William writes down a $20 \times 20$ grid of numbers $b_{i j}$ such that $b_{i j}=\max \left(a_{i}, a_{j+20}\right)$ for all $1 \leq i, j \leq 20$, but then forgets the original permutation $a$. Compute the probability that, given the values of $b_{i j}$ alone, there are exactly $2$ permutations $a$ consistent with the grid.
\frac{10}{13}
2023_18
19
There are $100$ people standing in a line from left to right. Half of them are randomly chosen to face right (with all $\binom{100}{50}$ possible choices being equally likely), and the others face left. Then, while there is a pair of people who are facing each other and have no one between them, the leftmost such pair leaves the line. Compute the expected number of people remaining once this process terminates.
\frac{2^{100}}{\binom{100}{50}}-1
2023_19
20
Let $x_{0}=x_{101}=0$. The numbers $x_{1}, x_{2}, \ldots, x_{100}$ are chosen at random from the interval $[0,1]$ uniformly and independently. Compute the probability that $2 x_{i} \geq x_{i-1}+x_{i+1}$ for all $i=1,2, \ldots$, $100$.
\frac{1}{100 \cdot 100!^{2}}\binom{200}{99}
2023_20
21
Let $A B C D E F$ be a regular hexagon, and let $P$ be a point inside quadrilateral $A B C D$. If the area of triangle $P B C$ is $20$, and the area of triangle $P A D$ is $23$, compute the area of hexagon $A B C D E F$.
189
2023_21
22
Points $X, Y$, and $Z$ lie on a circle with center $O$ such that $X Y=12$. Points $A$ and $B$ lie on segment $X Y$ such that $O A=A Z=Z B=B O=5$. Compute $A B$.
2\sqrt{13}
2023_22
23
Suppose $A B C D$ is a rectangle whose diagonals meet at $E$. The perimeter of triangle $A B E$ is $10 \pi$ and the perimeter of triangle $A D E$ is $n$. Compute the number of possible integer values of $n$.
47
2023_23
24
Let $A B C D$ be a square, and let $M$ be the midpoint of side $B C$. Points $P$ and $Q$ lie on segment $A M$ such that $\angle B P D=\angle B Q D=135^{\circ}$. Given that $A P<A Q$, compute $\frac{A Q}{A P}$.
\sqrt{5}
2023_24
25
Let $A B C$ be a triangle with $A B=13, B C=14$, and $C A=15$. Suppose $P Q R S$ is a square such that $P$ and $R$ lie on line $B C, Q$ lies on line $C A$, and $S$ lies on line $A B$. Compute the side length of this square.
42 \sqrt{2}
2023_25
26
Convex quadrilateral $A B C D$ satisfies $\angle C A B=\angle A D B=30^{\circ}, \angle A B D=77^{\circ}, B C=C D$, and $\angle B C D=n^{\circ}$ for some positive integer $n$. Compute $n$.
68
2023_26
27
Quadrilateral $A B C D$ is inscribed in circle $\Gamma$. Segments $A C$ and $B D$ intersect at $E$. Circle $\gamma$ passes through $E$ and is tangent to $\Gamma$ at $A$. Suppose that the circumcircle of triangle $B C E$ is tangent to $\gamma$ at $E$ and is tangent to line $C D$ at $C$. Suppose that $\Gamma$ has radius $3$ and $\gamma$ has radius 2. Compute $B D$.
\frac{9 \sqrt{21}}{7}
2023_27
28
Triangle $A B C$ with $\angle B A C>90^{\circ}$ has $A B=5$ and $A C=7$. Points $D$ and $E$ lie on segment $B C$ such that $B D=D E=E C$. If $\angle B A C+\angle D A E=180^{\circ}$, compute $B C$.
\sqrt{111}
2023_28
29
Point $Y$ lies on line segment $X Z$ such that $X Y=5$ and $Y Z=3$. Point $G$ lies on line $X Z$ such that there exists a triangle $A B C$ with centroid $G$ such that $X$ lies on line $B C, Y$ lies on line $A C$, and $Z$ lies on line $A B$. Compute the largest possible value of $X G$.
\frac{20}{3}
2023_29
30
Triangle $A B C$ has incenter $I$. Let $D$ be the foot of the perpendicular from $A$ to side $B C$. Let $X$ be a point such that segment $A X$ is a diameter of the circumcircle of triangle $A B C$. Given that $I D=2$, $I A=3$, and $I X=4$, compute the inradius of triangle $A B C$.
\frac{11}{12}
2023_30
1
Suppose $r, s$, and $t$ are nonzero reals such that the polynomial $x^{2}+r x+s$ has $s$ and $t$ as roots, and the polynomial $x^{2}+t x+r$ has $5$ as a root. Compute $s$.
29
2024_1
2
Suppose $a$ and $b$ are positive integers. Isabella and Vidur both fill up an $a \times b$ table. Isabella fills it up with numbers $1,2, \ldots, a b$, putting the numbers $1,2, \ldots, b$ in the first row, $b+1, b+2, \ldots, 2 b$ in the second row, and so on. Vidur fills it up like a multiplication table, putting $i j$ in the cell in row $i$ and column $j$. (Examples are shown for a $3 \times 4$ table below.) $$ \begin{array}{cccc} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{array} $$ Isabella's Grid $$ \begin{array}{cccc} 1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \\ 3 & 6 & 9 & 12 \end{array} $$ Vidur's Grid Isabella sums up the numbers in her grid, and Vidur sums up the numbers in his grid; the difference between these two quantities is $1200$. Compute $a+b$.
21
2024_2
3
Compute the sum of all two-digit positive integers $x$ such that for all three-digit (base 10) positive integers $\underline{a} \underline{b} \underline{c}$, if $\underline{a} \underline{b} \underline{c}$ is a multiple of $x$, then the three-digit (base 10) number $\underline{b} \underline{c} \underline{a}$ is also a multiple of $x$.
64
2024_3
4
Let $f(x)$ be a quotient of two quadratic polynomials. Given that $f(n)=n^{3}$ for all $n \in\{1,2,3,4,5\}$, compute $f(0)$.
\dfrac{24}{17}
2024_4
5
Compute the unique ordered pair $(x, y)$ of real numbers satisfying the system of equations $$ \frac{x}{\sqrt{x^{2}+y^{2}}}-\frac{1}{x}=7 \quad \text { and } \quad \frac{y}{\sqrt{x^{2}+y^{2}}}+\frac{1}{y}=4 $$
-\dfrac{13}{96}, \dfrac{13}{40}
2024_5
6
Compute the sum of all positive integers $n$ such that $50 \leq n \leq 100$ and $2 n+3$ does not divide $2^{n!}-1$.
222
2024_6
7
Let $P(n)=\left(n-1^{3}\right)\left(n-2^{3}\right) \ldots\left(n-40^{3}\right)$ for positive integers $n$. Suppose that $d$ is the largest positive integer that divides $P(n)$ for every integer $n>2023$. If $d$ is a product of $m$ (not necessarily distinct) prime numbers, compute $m$.
48
2024_7
8
Let $\zeta=\cos \frac{2 \pi}{13}+i \sin \frac{2 \pi}{13}$. Suppose $a>b>c>d$ are positive integers satisfying $$ \left|\zeta^{a}+\zeta^{b}+\zeta^{c}+\zeta^{d}\right|=\sqrt{3} $$ Compute the smallest possible value of $1000 a+100 b+10 c+d$.
7521
2024_8
9
Suppose $a, b$, and $c$ are complex numbers satisfying $$\begin{aligned} a^{2} \& =b-c <br> b^{2} \& =c-a, and <br> c^{2} \& =a-b \end{aligned}$$ Compute all possible values of $a+b+c$.
0,i\sqrt{6},-i\sqrt{6}
2024_9
10
A polynomial $f \in \mathbb{Z}[x]$ is called splitty if and only if for every prime $p$, there exist polynomials $g_{p}, h_{p} \in \mathbb{Z}[x]$ with $\operatorname{deg} g_{p}, \operatorname{deg} h_{p}<\operatorname{deg} f$ and all coefficients of $f-g_{p} h_{p}$ are divisible by $p$. Compute the sum of all positive integers $n \leq 100$ such that the polynomial $x^{4}+16 x^{2}+n$ is splitty.
693
2024_10
11
Compute the number of ways to divide a $20 \times 24$ rectangle into $4 \times 5$ rectangles. (Rotations and reflections are considered distinct.)
6
2024_11
12
A lame king is a chess piece that can move from a cell to any cell that shares at least one vertex with it, except for the cells in the same column as the current cell. A lame king is placed in the top-left cell of a $7 \times 7$ grid. Compute the maximum number of cells it can visit without visiting the same cell twice (including its starting cell).
43
2024_12
13
Compute the number of ways there are to assemble $2$ red unit cubes and $25$ white unit cubes into a $3 \times 3 \times 3$ cube such that red is visible on exactly $4$ faces of the larger cube. (Rotations and reflections are considered distinct.)
114
2024_13
14
Sally the snail sits on the $3 \times 24$ lattice of points $(i, j)$ for all $1 \leq i \leq 3$ and $1 \leq j \leq 24$. She wants to visit every point in the lattice exactly once. In a move, Sally can move to a point in the lattice exactly one unit away. Given that Sally starts at $(2,1)$, compute the number of possible paths Sally can take.
4096
2024_14
15
The country of HMMTLand has $8$ cities. Its government decides to construct several two-way roads between pairs of distinct cities. After they finish construction, it turns out that each city can reach exactly $3$ other cities via a single road, and from any pair of distinct cities, either exactly $0$ or $2$ other cities can be reached from both cities by a single road. Compute the number of ways HMMTLand could have constructed the roads.
875
2024_15
16
In each cell of a $4 \times 4$ grid, one of the two diagonals is drawn uniformly at random. Compute the probability that the resulting $32$ triangular regions can be colored red and blue so that any two regions sharing an edge have different colors.
\dfrac{1}{512}
2024_16
17
There is a grid of height $2$ stretching infinitely in one direction. Between any two edge-adjacent cells of the grid, there is a door that is locked with probability $\frac{1}{2}$ independent of all other doors. Philip starts in a corner of the grid (in the starred cell). Compute the expected number of cells that Philip can reach, assuming he can only travel between cells if the door between them is unlocked.
\dfrac{32}{7}
2024_17
18
Rishabh has $2024$ pairs of socks in a drawer. He draws socks from the drawer uniformly at random, without replacement, until he has drawn a pair of identical socks. Compute the expected number of unpaired socks he has drawn when he stops.
\dfrac{4^{2024}}{\binom{4048}{2024}}-2
2024_18
19
Compute the number of triples $(f, g, h)$ of permutations on $\{1,2,3,4,5\}$ such that $$\begin{aligned} \& f(g(h(x)))=h(g(f(x)))=g(x), <br> \& g(h(f(x)))=f(h(g(x)))=h(x), and <br> \& h(f(g(x)))=g(f(h(x)))=f(x) \end{aligned}$$ for all $x \in\{1,2,3,4,5\}$.
146
2024_19
20
A peacock is a ten-digit positive integer that uses each digit exactly once. Compute the number of peacocks that are exactly twice another peacock.
184320
2024_20
21
Inside an equilateral triangle of side length $6$, three congruent equilateral triangles of side length $x$ with sides parallel to the original equilateral triangle are arranged so that each has a vertex on a side of the larger triangle, and a vertex on another one of the three equilateral triangles, as shown below. A smaller equilateral triangle formed between the three congruent equilateral triangles has side length 1. Compute $x$.
\dfrac{5}{3}
2024_21
22
Let $A B C$ be a triangle with $\angle B A C=90^{\circ}$. Let $D, E$, and $F$ be the feet of altitude, angle bisector, and median from $A$ to $B C$, respectively. If $D E=3$ and $E F=5$, compute the length of $B C$.
20
2024_22
23
Let $\Omega$ and $\omega$ be circles with radii $123$ and $61$, respectively, such that the center of $\Omega$ lies on $\omega$. A chord of $\Omega$ is cut by $\omega$ into three segments, whose lengths are in the ratio $1: 2: 3$ in that order. Given that this chord is not a diameter of $\Omega$, compute the length of this chord.
42
2024_23
24
Let $A B C D$ be a square, and let $\ell$ be a line passing through the midpoint of segment $\overline{A B}$ that intersects segment $\overline{B C}$. Given that the distances from $A$ and $C$ to $\ell$ are $4$ and $7$, respectively, compute the area of $A B C D$.
185
2024_24
25
Let $A B C D$ be a convex trapezoid such that $\angle D A B=\angle A B C=90^{\circ}, D A=2, A B=3$, and $B C=8$. Let $\omega$ be a circle passing through $A$ and tangent to segment $\overline{C D}$ at point $T$. Suppose that the center of $\omega$ lies on line $B C$. Compute $C T$.
4\sqrt{5}-\sqrt{7}
2024_25
26
In triangle $A B C$, a circle $\omega$ with center $O$ passes through $B$ and $C$ and intersects segments $\overline{A B}$ and $\overline{A C}$ again at $B^{\prime}$ and $C^{\prime}$, respectively. Suppose that the circles with diameters $B B^{\prime}$ and $C C^{\prime}$ are externally tangent to each other at $T$. If $A B=18, A C=36$, and $A T=12$, compute $A O$.
\dfrac{65}{3}
2024_26
27
Let $A B C$ be an acute triangle. Let $D, E$, and $F$ be the feet of altitudes from $A, B$, and $C$ to sides $\overline{B C}$, $\overline{C A}$, and $\overline{A B}$, respectively, and let $Q$ be the foot of altitude from $A$ to line $E F$. Given that $A Q=20$, $B C=15$, and $A D=24$, compute the perimeter of triangle $D E F$.
8\sqrt{11}
2024_27
28
Let $A B T C D$ be a convex pentagon with area $22$ such that $A B=C D$ and the circumcircles of triangles $T A B$ and $T C D$ are internally tangent. Given that $\angle A T D=90^{\circ}, \angle B T C=120^{\circ}, B T=4$, and $C T=5$, compute the area of triangle $T A D$.
64(2-\sqrt{3})
2024_28
29
Let $A B C$ be a triangle. Let $X$ be the point on side $\overline{A B}$ such that $\angle B X C=60^{\circ}$. Let $P$ be the point on segment $\overline{C X}$ such that $B P \perp A C$. Given that $A B=6, A C=7$, and $B P=4$, compute $C P$.
\sqrt{38}-3
2024_29
30
Suppose point $P$ is inside quadrilateral $A B C D$ such that $$\begin{aligned} \& \angle P A B=\angle P D A <br> \& \angle P A D=\angle P D C <br> \& \angle P B A=\angle P C B, and <br> \& \angle P B C=\angle P C D \end{aligned}$$ If $P A=4, P B=5$, and $P C=10$, compute the perimeter of $A B C D$.
\dfrac{9\sqrt{410}}{5}
2024_30
1
Compute the sum of the positive divisors (including $1$) of $9!$ that have units digit $1$.
103
2025_1
2
Mark writes the expression $\sqrt{\underline{a b c d}}$ on the board, where $\underline{a b c d}$ is a four-digit number and $a \neq 0$. Derek, a toddler, decides to move the $a$, changing Mark's expression to $a \sqrt{\underline{b c d}}$. Surprisingly, these two expressions are equal. Compute the only possible four-digit number $\underline{a b c d}$.
3375
2025_2
3
Given that $x, y$, and $z$ are positive real numbers such that $$ x^{\log _{2}(y z)}=2^{8} \cdot 3^{4}, \quad y^{\log _{2}(z x)}=2^{9} \cdot 3^{6}, \quad \text { and } \quad z^{\log _{2}(x y)}=2^{5} \cdot 3^{10} $$ compute the smallest possible value of $x y z$.
\frac{1}{576}
2025_3
4
Let $\lfloor z\rfloor$ denote the greatest integer less than or equal to $z$. Compute $$ \sum_{j=-1000}^{1000}\left\lfloor\frac{2025}{j+0.5}\right\rfloor $$
-984
2025_4
5
Let $\mathcal{S}$ be the set of all nonconstant monic polynomials $P$ with integer coefficients satisfying $P(\sqrt{3}+\sqrt{2})=$ $P(\sqrt{3}-\sqrt{2})$. If $Q$ is an element of $\mathcal{S}$ with minimal degree, compute the only possible value of $Q(10)-Q(0)$.
890
2025_5
6
Let $r$ be the remainder when $2017^{2025!}-1$ is divided by 2025!. Compute $\frac{r}{2025!}$. (Note that $2017$ is prime.)
\frac{1311}{2017}
2025_6
7
There exists a unique triple $(a, b, c)$ of positive real numbers that satisfies the equations $$ 2\left(a^{2}+1\right)=3\left(b^{2}+1\right)=4\left(c^{2}+1\right) \quad \text { and } \quad a b+b c+c a=1 $$ Compute $a+b+c$.
\frac{9 \sqrt{23}}{23}
2025_7
8
Define $\operatorname{sgn}(x)$ to be $1$ when $x$ is positive, $-1$ when $x$ is negative, and $0$ when $x$ is $0$. Compute $$ \sum_{n=1}^{\infty} \frac{\operatorname{sgn}\left(\sin \left(2^{n}\right)\right)}{2^{n}} $$ (The arguments to sin are in radians.)
1-\frac{2}{\pi}
2025_8
9
Let $f$ be the unique polynomial of degree at most $2026$ such that for all $n \in\{1,2,3, \ldots, 2027\}$, $$ f(n)= \begin{cases}1 & \text { if } n \text { is a perfect square } \\ 0 & \text { otherwise }\end{cases} $$ Suppose that $\frac{a}{b}$ is the coefficient of $x^{2025}$ in $f$, where $a$ and $b$ are integers such that $\operatorname{gcd}(a, b)=1$. Compute the unique integer $r$ between $0$ and $2026$ (inclusive) such that $a-r b$ is divisible by $2027$. (Note that $2027$ is prime.)
1037
2025_9
10
Let $a, b$, and $c$ be pairwise distinct complex numbers such that $$ a^{2}=b+6, \quad b^{2}=c+6, \quad \text { and } \quad c^{2}=a+6 $$ Compute the two possible values of $a+b+c$. In your answer, list the two values in a comma-separated list of two valid \LaTeX expressions.
\frac{-1+\sqrt{17}}{2}, \frac{-1-\sqrt{17}}{2}
2025_10
11
Compute the number of ways to arrange the numbers $1,2,3,4,5,6$, and $7$ around a circle such that the product of every pair of adjacent numbers on the circle is at most 20. (Rotations and reflections count as different arrangements.)
56
2025_11
12
Kevin the frog in on the bottom-left lily pad of a $3 \times 3$ grid of lily pads, and his home is at the topright lily pad. He can only jump between two lily pads which are horizontally or vertically adjacent. Compute the number of ways to remove $4$ of the lily pads so that the bottom-left and top-right lily pads both remain, but Kelvin cannot get home.
29
2025_12
13
Ben has $16$ balls labeled $1,2,3, \ldots, 16$, as well as $4$ indistinguishable boxes. Two balls are \emph{neighbors} if their labels differ by $1$. Compute the number of ways for him to put $4$ balls in each box such that each ball is in the same box as at least one of its neighbors. (The order in which the balls are placed does not matter.)
105
2025_13
14
Sophie is at $(0,0)$ on a coordinate grid and would like to get to $(3,3)$. If Sophie is at $(x, y)$, in a single step she can move to one of $(x+1, y),(x, y+1),(x-1, y+1)$, or $(x+1, y-1)$. She cannot revisit any points along her path, and neither her $x$-coordinate nor her $y$-coordinate can ever be less than $0$ or greater than 3. Compute the number of ways for Sophie to reach $(3,3)$.
2304
2025_14
15
In an $11 \times 11$ grid of cells, each pair of edge-adjacent cells is connected by a door. Karthik wants to walk a path in this grid. He can start in any cell, but he must end in the same cell he started in, and he cannot go through any door more than once (not even in opposite directions). Compute the maximum number of doors he can go through in such a path.
200
2025_15
16
Compute the number of ways to pick two rectangles in a $5 \times 5$ grid of squares such that the edges of the rectangles lie on the lines of the grid and the rectangles do not overlap at their interiors, edges, or vertices. The order in which the rectangles are chosen does not matter.
6300
2025_16
17
Compute the number of ways to arrange $3$ copies of each of the $26$ lowercase letters of the English alphabet such that for any two distinct letters $x_{1}$ and $x_{2}$, the number of $x_{2}$ 's between the first and second occurrences of $x_{1}$ equals the number of $x_{2}$ 's between the second and third occurrences of $x_{1}$.
2^{25} \cdot 26!
2025_17
18
Albert writes $2025$ numbers $a_{1}, \ldots, a_{2025}$ in a circle on a blackboard. Initially, each of the numbers is uniformly and independently sampled at random from the interval $[0,1]$. Then, each second, he \emph{simultaneously} replaces $a_{i}$ with $\max \left(a_{i-1}, a_{i}, a_{i+1}\right)$ for all $i=1,2, \ldots, 2025$ (where $a_{0}=a_{2025}$ and $a_{2026}=a_{1}$ ). Compute the expected value of the number of distinct values remaining after $100$ seconds.
\frac{2025}{101}
2025_18
19
Two points are selected independently and uniformly at random inside a regular hexagon. Compute the probability that a line passing through both of the points intersects a pair of opposite edges of the hexagon.
\frac{4}{9}
2025_19
20
The circumference of a circle is divided into $45$ arcs, each of length $1$. Initially, there are $15$ snakes, each of length $1$, occupying every third arc. Every second, each snake independently moves either one arc left or one arc right, each with probability $\frac{1}{2}$. If two snakes ever touch, they merge to form a single snake occupying the arcs of both of the previous snakes, and the merged snake moves as one snake. Compute the expected number of seconds until there is only one snake left.
\frac{448}{3}
2025_20
21
Equilateral triangles $\triangle A B C$ and $\triangle D E F$ are drawn such that points $B, E, F$, and $C$ lie on a line in this order, and point $D$ lies inside triangle $\triangle A B C$. If $B E=14, E F=15$, and $F C=16$, compute $A D$.
26
2025_21
22
In a two-dimensional cave with a parallel floor and ceiling, two stalactites of lengths $16$ and $36$ hang perpendicularly from the ceiling, while two stalagmites of heights $25$ and $49$ grow perpendicularly from the ground. If the tips of these four structures form the vertices of a square in some order, compute the height of the cave.
63
2025_22
23
Point $P$ lies inside square $A B C D$ such that the areas of $\triangle P A B, \triangle P B C, \triangle P C D$, and $\triangle P D A$ are 1, $2,3$, and $4$, in some order. Compute $P A \cdot P B \cdot P C \cdot P D$.
8\sqrt{10}
2025_23
24
A semicircle is inscribed in another semicircle if the smaller semicircle's diameter is a chord of the larger semicircle, and the smaller semicircle's arc is tangent to the diameter of the larger semicircle. Semicircle $S_{1}$ is inscribed in a semicircle $S_{2}$, which is inscribed in another semicircle $S_{3}$. The radii of $S_{1}$ and $S_{3}$ are $1$ and 10, respectively, and the diameters of $S_{1}$ and $S_{3}$ are parallel. The endpoints of the diameter of $S_{3}$ are $A$ and $B$, and $S_{2}$ 's arc is tangent to $A B$ at $C$. Compute $A C \cdot C B$. \begin{tikzpicture} % S_1 \coordinate (S_1_1) at (6.57,0.45); \coordinate (S_1_2) at (9.65,0.45); \draw (S_1_1) -- (S_1_2); \draw (S_1_1) arc[start angle=180, end angle=0, radius=1.54] node[midway,above] {}; \node[above=0.5cm] at (7,1.2) {$S_1$}; % S_2 \coordinate (S_2_1) at (6.32,4.82); \coordinate (S_2_2) at (9.95,0.68); \draw (S_2_1) -- (S_2_2); \draw (S_2_1) arc[start angle=131, end angle=311, radius=2.75] node[midway,above] {}; \node[above=0.5cm] at (5,2) {$S_2$}; % S_3 \coordinate (A) at (0,0); \coordinate (B) at (10,0); \draw (A) -- (B); \fill (A) circle (2pt) node[below] {$A$}; \fill (B) circle (2pt) node[below] {$B$}; \draw (A) arc[start angle=180, end angle=0, radius=5] node[midway,above] {}; \node[above=0.5cm] at (1,3) {$S_3$}; \coordinate (C) at (8.3,0); \fill (C) circle (2pt) node[below] {$C$}; \end{tikzpicture}
20
2025_24
25
Let $\triangle A B C$ be an equilateral triangle with side length $6$. Let $P$ be a point inside triangle $\triangle A B C$ such that $\angle B P C=120^{\circ}$. The circle with diameter $\overline{A P}$ meets the circumcircle of $\triangle A B C$ again at $X \neq A$. Given that $A X=5$, compute $X P$.
\sqrt{23}-2 \sqrt{3}
2025_25
26
Trapezoid $A B C D$, with $A B \| C D$, has side lengths $A B=11, B C=8, C D=19$, and $D A=4$. Compute the area of the convex quadrilateral whose vertices are the circumcenters of $\triangle A B C, \triangle B C D$, $\triangle C D A$, and $\triangle D A B$.
9\sqrt{15}
2025_26
27
Point $P$ is inside triangle $\triangle A B C$ such that $\angle A B P=\angle A C P$. Given that $A B=6, A C=8, B C=7$, and $\frac{B P}{P C}=\frac{1}{2}$, compute $\frac{[B P C]}{[A B C]}$. (Here, $[X Y Z]$ denotes the area of $\triangle X Y Z$ ).
\frac{7}{18}
2025_27
28
Let $A B C D$ be an isosceles trapezoid such that $C D>A B=4$. Let $E$ be a point on line $C D$ such that $D E=2$ and $D$ lies between $E$ and $C$. Let $M$ be the midpoint of $\overline{A E}$. Given that points $A, B, C, D$, and $M$ lie on a circle with radius $5$, compute $M D$.
\sqrt{6}
2025_28
29
Let $A B C D$ be a rectangle with $B C=24$. Point $X$ lies inside the rectangle such that $\angle A X B=90^{\circ}$. Given that triangles $\triangle A X D$ and $\triangle B X C$ are both acute and have circumradii $13$ and $15$, respectively, compute $A B$.
14+4\sqrt{37}
2025_29
30
A plane $\mathcal{P}$ intersects a rectangular prism at a hexagon which has side lengths $45,66,63,55,54$, and 77, in that order. Compute the distance from the center of the rectangular prism to $\mathcal{P}$.
\sqrt{\frac{95}{24}}
2025_30
README.md exists but content is empty.
Downloads last month
51