Unnamed: 0
int64
0
40.3k
problem
stringlengths
10
5.15k
ground_truth
stringlengths
1
1.22k
solved_percentage
float64
0
100
2,700
In a certain sequence of numbers, the first number is $1$, and, for all $n\ge 2$, the product of the first $n$ numbers in the sequence is $n^2$. The sum of the third and the fifth numbers in the sequence is
\frac{61}{16}
89.0625
2,701
The product $(8)(888\dots8)$, where the second factor has $k$ digits, is an integer whose digits have a sum of $1000$. What is $k$?
991
55.46875
2,702
The symbol $|a|$ means $+a$ if $a$ is greater than or equal to zero, and $-a$ if a is less than or equal to zero; the symbol $<$ means "less than"; the symbol $>$ means "greater than." The set of values $x$ satisfying the inequality $|3-x|<4$ consists of all $x$ such that:
$-1<x<7$
0
2,703
Frieda the frog begins a sequence of hops on a $3 \times 3$ grid of squares, moving one square on each hop and choosing at random the direction of each hop-up, down, left, or right. She does not hop diagonally. When the direction of a hop would take Frieda off the grid, she "wraps around" and jumps to the opposite edge. For example if Frieda begins in the center square and makes two hops "up", the first hop would place her in the top row middle square, and the second hop would cause Frieda to jump to the opposite edge, landing in the bottom row middle square. Suppose Frieda starts from the center square, makes at most four hops at random, and stops hopping if she lands on a corner square. What is the probability that she reaches a corner square on one of the four hops?
\frac{13}{16}
0.78125
2,704
Parallelogram $ABCD$ has area $1,\!000,\!000$. Vertex $A$ is at $(0,0)$ and all other vertices are in the first quadrant. Vertices $B$ and $D$ are lattice points on the lines $y = x$ and $y = kx$ for some integer $k > 1$, respectively. How many such parallelograms are there? (A lattice point is any point whose coordinates are both integers.)
784
41.40625
2,705
In $\triangle ABC$, point $F$ divides side $AC$ in the ratio $1:2$. Let $E$ be the point of intersection of side $BC$ and $AG$ where $G$ is the midpoints of $BF$. The point $E$ divides side $BC$ in the ratio
1/3
0
2,706
All the numbers $1, 2, 3, 4, 5, 6, 7, 8, 9$ are written in a $3\times3$ array of squares, one number in each square, in such a way that if two numbers are consecutive then they occupy squares that share an edge. The numbers in the four corners add up to $18$. What is the number in the center?
7
59.375
2,707
$\frac{1}{1+\frac{1}{2+\frac{1}{3}}}=$
\frac{7}{10}
60.15625
2,708
The mean of three numbers is $10$ more than the least of the numbers and $15$ less than the greatest. The median of the three numbers is $5$. What is their sum?
30
82.8125
2,709
What is the radius of a circle inscribed in a rhombus with diagonals of length $10$ and $24$?
\frac{60}{13}
44.53125
2,710
A month with $31$ days has the same number of Mondays and Wednesdays. How many of the seven days of the week could be the first day of this month?
3
40.625
2,711
Ana and Bonita were born on the same date in different years, $n$ years apart. Last year Ana was $5$ times as old as Bonita. This year Ana's age is the square of Bonita's age. What is $n?$
12
91.40625
2,712
For any three real numbers $a$, $b$, and $c$, with $b\neq c$, the operation $\otimes$ is defined by: \[\otimes(a,b,c)=\frac{a}{b-c}\] What is $\otimes(\otimes(1,2,3),\otimes(2,3,1),\otimes(3,1,2))$?
-\frac{1}{4}
95.3125
2,713
If $m>0$ and the points $(m,3)$ and $(1,m)$ lie on a line with slope $m$, then $m=$
\sqrt{3}
93.75
2,714
The first AMC $8$ was given in $1985$ and it has been given annually since that time. Samantha turned $12$ years old the year that she took the seventh AMC $8$. In what year was Samantha born?
1979
98.4375
2,715
Let $ABCD$ be an isosceles trapezoid with $AD=BC$ and $AB<CD.$ Suppose that the distances from $A$ to the lines $BC,CD,$ and $BD$ are $15,18,$ and $10,$ respectively. Let $K$ be the area of $ABCD.$ Find $\sqrt2 \cdot K.$
270
0
2,716
What is $\frac{2+4+6}{1+3+5} - \frac{1+3+5}{2+4+6}$?
\frac{7}{12}
94.53125
2,717
Menkara has a $4 \times 6$ index card. If she shortens the length of one side of this card by $1$ inch, the card would have area $18$ square inches. What would the area of the card be in square inches if instead she shortens the length of the other side by $1$ inch?
20
81.25
2,718
Mr. Patrick teaches math to $15$ students. He was grading tests and found that when he graded everyone's test except Payton's, the average grade for the class was $80$. After he graded Payton's test, the test average became $81$. What was Payton's score on the test?
95
64.0625
2,719
A circle with area $A_1$ is contained in the interior of a larger circle with area $A_1+A_2$. If the radius of the larger circle is $3$, and if $A_1 , A_2, A_1 + A_2$ is an arithmetic progression, then the radius of the smaller circle is
\sqrt{3}
89.84375
2,720
Given square $ABCD$ with side $8$ feet. A circle is drawn through vertices $A$ and $D$ and tangent to side $BC$. The radius of the circle, in feet, is:
5
60.15625
2,721
The sum of three numbers is $20$. The first is four times the sum of the other two. The second is seven times the third. What is the product of all three?
28
93.75
2,722
On a trip from the United States to Canada, Isabella took $d$ U.S. dollars. At the border she exchanged them all, receiving $10$ Canadian dollars for every $7$ U.S. dollars. After spending $60$ Canadian dollars, she had $d$ Canadian dollars left. What is the sum of the digits of $d$?
5
85.15625
2,723
Ed and Ann both have lemonade with their lunch. Ed orders the regular size. Ann gets the large lemonade, which is 50% more than the regular. After both consume $\frac{3}{4}$ of their drinks, Ann gives Ed a third of what she has left, and 2 additional ounces. When they finish their lemonades they realize that they both drank the same amount. How many ounces of lemonade did they drink together?
40
31.25
2,724
For how many integers $x$ is the point $(x, -x)$ inside or on the circle of radius $10$ centered at $(5, 5)$?
11
96.875
2,725
The area of polygon $ABCDEF$, in square units, is
46
0
2,726
Suppose that on a parabola with vertex $V$ and a focus $F$ there exists a point $A$ such that $AF=20$ and $AV=21$. What is the sum of all possible values of the length $FV?$
\frac{40}{3}
16.40625
2,727
Two medians of a triangle with unequal sides are $3$ inches and $6$ inches. Its area is $3 \sqrt{15}$ square inches. The length of the third median in inches, is:
3\sqrt{6}
42.1875
2,728
A rectangular box measures $a \times b \times c$, where $a$, $b$, and $c$ are integers and $1\leq a \leq b \leq c$. The volume and the surface area of the box are numerically equal. How many ordered triples $(a,b,c)$ are possible?
10
85.15625
2,729
A sample consisting of five observations has an arithmetic mean of $10$ and a median of $12$. The smallest value that the range (largest observation minus smallest) can assume for such a sample is
5
7.8125
2,730
Let $ABC$ be an equilateral triangle. Extend side $\overline{AB}$ beyond $B$ to a point $B'$ so that $BB'=3 \cdot AB$. Similarly, extend side $\overline{BC}$ beyond $C$ to a point $C'$ so that $CC'=3 \cdot BC$, and extend side $\overline{CA}$ beyond $A$ to a point $A'$ so that $AA'=3 \cdot CA$. What is the ratio of the area of $\triangle A'B'C'$ to the area of $\triangle ABC$?
16:1
0
2,731
On a trip from the United States to Canada, Isabella took $d$ U.S. dollars. At the border she exchanged them all, receiving $10$ Canadian dollars for every $7$ U.S. dollars. After spending $60$ Canadian dollars, she had $d$ Canadian dollars left. What is the sum of the digits of $d$?
5
84.375
2,732
A bug travels from A to B along the segments in the hexagonal lattice pictured below. The segments marked with an arrow can be traveled only in the direction of the arrow, and the bug never travels the same segment more than once. How many different paths are there?
2400
0
2,733
Let $n$ be the number of pairs of values of $b$ and $c$ such that $3x+by+c=0$ and $cx-2y+12=0$ have the same graph. Then $n$ is:
2
96.09375
2,734
Sides $AB$, $BC$, $CD$ and $DA$ of convex quadrilateral $ABCD$ are extended past $B$, $C$, $D$ and $A$ to points $B'$, $C'$, $D'$ and $A'$, respectively. Also, $AB = BB' = 6$, $BC = CC' = 7$, $CD = DD' = 8$ and $DA = AA' = 9$. The area of $ABCD$ is $10$. The area of $A'B'C'D'$ is
114
0
2,735
Let $a$, $b$, and $c$ be positive integers with $a \ge b \ge c$ such that $a^2-b^2-c^2+ab=2011$ and $a^2+3b^2+3c^2-3ab-2ac-2bc=-1997$. What is $a$?
253
48.4375
2,736
Three distinct vertices of a cube are chosen at random. What is the probability that the plane determined by these three vertices contains points inside the cube?
\frac{4}{7}
51.5625
2,737
The figure is constructed from $11$ line segments, each of which has length $2$. The area of pentagon $ABCDE$ can be written as $\sqrt{m} + \sqrt{n}$, where $m$ and $n$ are positive integers. What is $m + n ?$
23
0
2,738
$A$ and $B$ together can do a job in $2$ days; $B$ and $C$ can do it in four days; and $A$ and $C$ in $2\frac{2}{5}$ days. The number of days required for A to do the job alone is:
3
94.53125
2,739
A wooden cube $n$ units on a side is painted red on all six faces and then cut into $n^3$ unit cubes. Exactly one-fourth of the total number of faces of the unit cubes are red. What is $n$?
4
82.8125
2,740
An isosceles right triangle with legs of length $8$ is partitioned into $16$ congruent triangles as shown. The shaded area is
20
21.09375
2,741
The least positive integer with exactly $2021$ distinct positive divisors can be written in the form $m \cdot 6^k$, where $m$ and $k$ are integers and $6$ is not a divisor of $m$. What is $m+k?$
58
14.0625
2,742
The stronger Goldbach conjecture states that any even integer greater than 7 can be written as the sum of two different prime numbers. For such representations of the even number 126, the largest possible difference between the two primes is
100
35.15625
2,743
Using only the paths and the directions shown, how many different routes are there from $\text{M}$ to $\text{N}$?
6
18.75
2,744
Find the area of the smallest region bounded by the graphs of $y=|x|$ and $x^2+y^2=4$.
\pi
3.90625
2,745
Cozy the Cat and Dash the Dog are going up a staircase with a certain number of steps. However, instead of walking up the steps one at a time, both Cozy and Dash jump. Cozy goes two steps up with each jump (though if necessary, he will just jump the last step). Dash goes five steps up with each jump (though if necessary, he will just jump the last steps if there are fewer than 5 steps left). Suppose that Dash takes 19 fewer jumps than Cozy to reach the top of the staircase. Let $s$ denote the sum of all possible numbers of steps this staircase can have. What is the sum of the digits of $s$?
13
68.75
2,746
Which triplet of numbers has a sum NOT equal to 1?
1.1 + (-2.1) + 1.0
0
2,747
A grocer stacks oranges in a pyramid-like stack whose rectangular base is $5$ oranges by $8$ oranges. Each orange above the first level rests in a pocket formed by four oranges below. The stack is completed by a single row of oranges. How many oranges are in the stack?
100
31.25
2,748
What is the product of $\frac{3}{2} \times \frac{4}{3} \times \frac{5}{4} \times \cdots \times \frac{2006}{2005}$?
1003
100
2,749
A regular hexagon has side length 6. Congruent arcs with radius 3 are drawn with the center at each of the vertices, creating circular sectors as shown. The region inside the hexagon but outside the sectors is shaded as shown What is the area of the shaded region?
54\sqrt{3}-18\pi
0
2,750
An $n$-digit positive integer is cute if its $n$ digits are an arrangement of the set $\{1,2,...,n\}$ and its first $k$ digits form an integer that is divisible by $k$, for $k = 1,2,...,n$. For example, $321$ is a cute $3$-digit integer because $1$ divides $3$, $2$ divides $32$, and $3$ divides $321$. How many cute $6$-digit integers are there?
4
0
2,751
The population of Nosuch Junction at one time was a perfect square. Later, with an increase of $100$, the population was one more than a perfect square. Now, with an additional increase of $100$, the population is again a perfect square. The original population is a multiple of:
7
36.71875
2,752
At the beginning of the school year, $50\%$ of all students in Mr. Well's class answered "Yes" to the question "Do you love math", and $50\%$ answered "No." At the end of the school year, $70\%$ answered "Yes" and $30\%$ answered "No." Altogether, $x\%$ of the students gave a different answer at the beginning and end of the school year. What is the difference between the maximum and the minimum possible values of $x$?
60
24.21875
2,753
The sum of six consecutive positive integers is 2013. What is the largest of these six integers?
338
89.84375
2,754
The fourth power of $\sqrt{1+\sqrt{1+\sqrt{1}}}$ is
3+2\sqrt{2}
65.625
2,755
A point $(x,y)$ in the plane is called a lattice point if both $x$ and $y$ are integers. The area of the largest square that contains exactly three lattice points in its interior is closest to
5.0
0.78125
2,756
What expression is never a prime number when $p$ is a prime number?
$p^2+26$
0
2,757
Given points $P(-1,-2)$ and $Q(4,2)$ in the $xy$-plane; point $R(1,m)$ is taken so that $PR+RQ$ is a minimum. Then $m$ equals:
-\frac{2}{5}
35.15625
2,758
The measure of angle $ABC$ is $50^\circ$, $\overline{AD}$ bisects angle $BAC$, and $\overline{DC}$ bisects angle $BCA$. The measure of angle $ADC$ is
115^\circ
85.15625
2,759
A set of teams held a round-robin tournament in which every team played every other team exactly once. Every team won $10$ games and lost $10$ games; there were no ties. How many sets of three teams $\{A, B, C\}$ were there in which $A$ beat $B$, $B$ beat $C$, and $C$ beat $A$?
385
40.625
2,760
In $\triangle ABC, AB = 13, BC = 14$ and $CA = 15$. Also, $M$ is the midpoint of side $AB$ and $H$ is the foot of the altitude from $A$ to $BC$. The length of $HM$ is
6.5
45.3125
2,761
Eight spheres of radius 1, one per octant, are each tangent to the coordinate planes. What is the radius of the smallest sphere, centered at the origin, that contains these eight spheres?
1+\sqrt{3}
11.71875
2,762
A circle of radius $r$ is concentric with and outside a regular hexagon of side length $2$. The probability that three entire sides of hexagon are visible from a randomly chosen point on the circle is $1/2$. What is $r$?
$3\sqrt{2}+\sqrt{6}$
0
2,763
Two numbers whose sum is $6$ and the absolute value of whose difference is $8$ are roots of the equation:
x^2-6x-7=0
92.1875
2,764
How many four-digit whole numbers are there such that the leftmost digit is odd, the second digit is even, and all four digits are different?
1400
97.65625
2,765
If $\frac{x^2-bx}{ax-c}=\frac{m-1}{m+1}$ has roots which are numerically equal but of opposite signs, the value of $m$ must be:
\frac{a-b}{a+b}
85.15625
2,766
In how many ways can $47$ be written as the sum of two primes?
0
78.90625
2,767
A right rectangular prism whose surface area and volume are numerically equal has edge lengths $\log_{2}x, \log_{3}x,$ and $\log_{4}x.$ What is $x?$
576
52.34375
2,768
If $2^a+2^b=3^c+3^d$, the number of integers $a,b,c,d$ which can possibly be negative, is, at most:
0
69.53125
2,769
In the $xy$-plane, the segment with endpoints $(-5,0)$ and $(25,0)$ is the diameter of a circle. If the point $(x,15)$ is on the circle, then $x=$
10
96.09375
2,770
How many sets of two or more consecutive positive integers have a sum of $15$?
2
3.125
2,771
Find the sum of the digits in the answer to $\underbrace{9999\cdots 99}_{94\text{ nines}} \times \underbrace{4444\cdots 44}_{94\text{ fours}}$ where a string of $94$ nines is multiplied by a string of $94$ fours.
846
100
2,772
There are $20$ students participating in an after-school program offering classes in yoga, bridge, and painting. Each student must take at least one of these three classes, but may take two or all three. There are $10$ students taking yoga, $13$ taking bridge, and $9$ taking painting. There are $9$ students taking at least two classes. How many students are taking all three classes?
3
91.40625
2,773
Sarah places four ounces of coffee into an eight-ounce cup and four ounces of cream into a second cup of the same size. She then pours half the coffee from the first cup to the second and, after stirring thoroughly, pours half the liquid in the second cup back to the first. What fraction of the liquid in the first cup is now cream?
\frac{2}{5}
52.34375
2,774
The sum of the digits of a two-digit number is subtracted from the number. The units digit of the result is $6$. How many two-digit numbers have this property?
10
73.4375
2,775
Let $M$ be the midpoint of side $AB$ of triangle $ABC$. Let $P$ be a point on $AB$ between $A$ and $M$, and let $MD$ be drawn parallel to $PC$ and intersecting $BC$ at $D$. If the ratio of the area of triangle $BPD$ to that of triangle $ABC$ is denoted by $r$, then
r=\frac{1}{2}
11.71875
2,776
While Steve and LeRoy are fishing 1 mile from shore, their boat springs a leak, and water comes in at a constant rate of 10 gallons per minute. The boat will sink if it takes in more than 30 gallons of water. Steve starts rowing towards the shore at a constant rate of 4 miles per hour while LeRoy bails water out of the boat. What is the slowest rate, in gallons per minute, at which LeRoy can bail if they are to reach the shore without sinking?
8
85.9375
2,777
In a circle with center $O$ and radius $r$, chord $AB$ is drawn with length equal to $r$ (units). From $O$, a perpendicular to $AB$ meets $AB$ at $M$. From $M$ a perpendicular to $OA$ meets $OA$ at $D$. In terms of $r$ the area of triangle $MDA$, in appropriate square units, is:
\frac{r^2\sqrt{3}}{32}
6.25
2,778
A parking lot has 16 spaces in a row. Twelve cars arrive, each of which requires one parking space, and their drivers chose spaces at random from among the available spaces. Auntie Em then arrives in her SUV, which requires 2 adjacent spaces. What is the probability that she is able to park?
\frac{17}{28}
5.46875
2,779
Triangle $ABC$ with $AB=50$ and $AC=10$ has area $120$. Let $D$ be the midpoint of $\overline{AB}$, and let $E$ be the midpoint of $\overline{AC}$. The angle bisector of $\angle BAC$ intersects $\overline{DE}$ and $\overline{BC}$ at $F$ and $G$, respectively. What is the area of quadrilateral $FDBG$?
75
8.59375
2,780
The Fibonacci sequence $1,1,2,3,5,8,13,21,\ldots$ starts with two 1s, and each term afterwards is the sum of its two predecessors. Which one of the ten digits is the last to appear in the units position of a number in the Fibonacci sequence?
6
94.53125
2,781
The difference between a $6.5\%$ sales tax and a $6\%$ sales tax on an item priced at $\$20$ before tax is
$0.10
0
2,782
If $\angle A = 60^\circ$, $\angle E = 40^\circ$ and $\angle C = 30^\circ$, then $\angle BDC =$
50^\circ
11.71875
2,783
In the complex plane, let $A$ be the set of solutions to $z^{3}-8=0$ and let $B$ be the set of solutions to $z^{3}-8z^{2}-8z+64=0.$ What is the greatest distance between a point of $A$ and a point of $B?$
$2\sqrt{21}$
0
2,784
\dfrac{1}{10} + \dfrac{9}{100} + \dfrac{9}{1000} + \dfrac{7}{10000} =
0.1997
67.96875
2,785
The rectangle shown has length $AC=32$, width $AE=20$, and $B$ and $F$ are midpoints of $\overline{AC}$ and $\overline{AE}$, respectively. The area of quadrilateral $ABDF$ is
320
66.40625
2,786
Find the least positive integer $n$ for which $\frac{n-13}{5n+6}$ is a non-zero reducible fraction.
84
51.5625
2,787
Let $ABCD$ be a trapezoid with $AB \parallel CD$, $AB=11$, $BC=5$, $CD=19$, and $DA=7$. Bisectors of $\angle A$ and $\angle D$ meet at $P$, and bisectors of $\angle B$ and $\angle C$ meet at $Q$. What is the area of hexagon $ABQCDP$?
$30\sqrt{3}$
0
2,788
The sum of two angles of a triangle is $\frac{6}{5}$ of a right angle, and one of these two angles is $30^{\circ}$ larger than the other. What is the degree measure of the largest angle in the triangle?
72
85.9375
2,789
Loki, Moe, Nick and Ott are good friends. Ott had no money, but the others did. Moe gave Ott one-fifth of his money, Loki gave Ott one-fourth of his money and Nick gave Ott one-third of his money. Each gave Ott the same amount of money. What fractional part of the group's money does Ott now have?
\frac{1}{4}
96.09375
2,790
$\frac{10^7}{5\times 10^4}=$
200
82.8125
2,791
If $y=x+\frac{1}{x}$, then $x^4+x^3-4x^2+x+1=0$ becomes:
$x^2(y^2+y-6)=0$
0
2,792
Two right circular cones with vertices facing down as shown in the figure below contain the same amount of liquid. The radii of the tops of the liquid surfaces are $3$ cm and $6$ cm. Into each cone is dropped a spherical marble of radius $1$ cm, which sinks to the bottom and is completely submerged without spilling any liquid. What is the ratio of the rise of the liquid level in the narrow cone to the rise of the liquid level in the wide cone?
4:1
0
2,793
What is equal to $\sqrt{9-6\sqrt{2}}+\sqrt{9+6\sqrt{2}}$?
$2\sqrt{6}$
0
2,794
A telephone number has the form \text{ABC-DEF-GHIJ}, where each letter represents a different digit. The digits in each part of the number are in decreasing order; that is, $A > B > C$, $D > E > F$, and $G > H > I > J$. Furthermore, $D$, $E$, and $F$ are consecutive even digits; $G$, $H$, $I$, and $J$ are consecutive odd digits; and $A + B + C = 9$. Find $A$.
8
57.8125
2,795
Some marbles in a bag are red and the rest are blue. If one red marble is removed, then one-seventh of the remaining marbles are red. If two blue marbles are removed instead of one red, then one-fifth of the remaining marbles are red. How many marbles were in the bag originally?
22
80.46875
2,796
Vertex $E$ of equilateral $\triangle{ABE}$ is in the interior of unit square $ABCD$. Let $R$ be the region consisting of all points inside $ABCD$ and outside $\triangle{ABE}$ whose distance from $AD$ is between $\frac{1}{3}$ and $\frac{2}{3}$. What is the area of $R$?
\frac{3-\sqrt{3}}{9}
0
2,797
Let $ABCD$ be a parallelogram with $\angle{ABC}=120^\circ$, $AB=16$ and $BC=10$. Extend $\overline{CD}$ through $D$ to $E$ so that $DE=4$. If $\overline{BE}$ intersects $\overline{AD}$ at $F$, then $FD$ is closest to
3
3.90625
2,798
Consider the set of all fractions $\frac{x}{y}$, where $x$ and $y$ are relatively prime positive integers. How many of these fractions have the property that if both numerator and denominator are increased by $1$, the value of the fraction is increased by $10\%$?
1
36.71875
2,799
Let points $A = (0,0)$, $B = (1,2)$, $C = (3,3)$, and $D = (4,0)$. Quadrilateral $ABCD$ is cut into equal area pieces by a line passing through $A$. This line intersects $\overline{CD}$ at point $\left (\frac{p}{q}, \frac{r}{s} \right )$, where these fractions are in lowest terms. What is $p + q + r + s$?
58
2.34375