Datasets:
metadata
license: apache-2.0
task_categories:
- text-to-audio
language:
- en
size_categories:
- 10K<n<100K
configs:
- config_name: default
data_files:
- split: train
path: train/*.tar
- split: valid
path: valid/*.tar
- split: test
path: test/*.tar
Clotho-Moment
This repository provides wav files used in Language-based audio moment retrieval.
Each sample includes long audio containing some audio events with the temporal and textual annotation.
Split
- Train
- train/train-{000..715}.tar
- 37930 audio samples
- Valid
- valid/valid-{000..108}.tar
- 5741 audio samples
- Test
- test/test-{000..142}.tar
- 7569 audio samples
Using Webdataset
import torch
import webdataset as wds
from huggingface_hub import get_token
from torch.utils.data import DataLoader
hf_token = get_token()
url = "https://huggingface.co/datasets/lighthouse-emnlp2024/Clotho-Moment/resolve/main/train/train-{{001..002}}.tar"
url = f"pipe:curl -s -L {url} -H 'Authorization:Bearer {hf_token}'"
dataset = wds.WebDataset(url, shardshuffle=None).decode(wds.torch_audio)
for sample in dataset:
print(sample.keys())
Citation
@inproceedings{munakata2025language,
title={Language-based Audio Moment Retrieval},
author={Munakata, Hokuto and Nishimura, Taichi and Nakada, Shota and Komatsu, Tatsuya},
booktitle={ICASSP 2025-2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
pages={1--5},
year={2025},
organization={IEEE}
}