Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
tutorqa / README.md
ireneli1024's picture
Update README.md
5f91743 verified
metadata
license: mit
dataset_info:
  features:
    - name: question
      dtype: string
    - name: answer
      dtype: string
  splits:
    - name: task1
      num_bytes: 100788
      num_examples: 250
    - name: task2
      num_bytes: 42363
      num_examples: 250
    - name: task3
      num_bytes: 67642
      num_examples: 250
    - name: task4
      num_bytes: 146014
      num_examples: 250
    - name: task5
      num_bytes: 22327
      num_examples: 100
    - name: task6
      num_bytes: 27509
      num_examples: 100
  download_size: 55342
  dataset_size: 406643
configs:
  - config_name: default
    data_files:
      - split: task1
        path: data/task1-*
      - split: task2
        path: data/task2-*
      - split: task3
        path: data/task3-*
      - split: task4
        path: data/task4-*
      - split: task5
        path: data/task5-*
      - split: task6
        path: data/task6-*

TutorQA Benchmark

This dataset is part of the benchmark introduced in the paper Graphusion: Leveraging Large Language Models for Scientific Knowledge Graph Fusion and Construction in NLP Education. We also release more data in our GitHub page. It contains 6 tasks designed for evaluating various aspects of reasoning, graph understanding, and language generation.

Dataset Structure

Each task is a separate split:

  • task1: Relation Judgment
  • task2: Prerequisite Prediction
  • task3: Path Searching
  • task4: Subgraph Completion
  • task5: Clustering
  • task6: Idea Hamster (no answers, open ended)
Split Fields
task1 question, answer
task2 question, answer
task3 question, answer
task4 question, answer
task5 question, answer
task6 question

Usage Example

from datasets import load_dataset

dataset = load_dataset("li-lab/tutorqa")

# Access individual tasks
task1 = dataset["task1"]
task6 = dataset["task6"]

Citation

@inproceedings{yang2025graphusion,
  title={Graphusion: A RAG Framework for Knowledge Graph Construction with a Global Perspective},
  author={Yang, Rui and Yang, Boming and Feng, Aosong and Ouyang, Sixun and Blum, Moritz and She, Tianwei and Jiang, Yuang and Lecue, Freddy and Lu, Jinghui and Li, Irene},
  booktitle={Proceedings of the NLP4KGC Workshop at The Web Conference 2025 (WWW'25)},
  year={2025},
  url={https://arxiv.org/abs/2410.17600}
}