|
记得把.gitigore补回来 |
|
|
|
**playground/data/** |
|
**/checkpoints/** |
|
**__pycache__** |
|
**/hf_models/** |
|
**/hf_datas/** |
|
|
|
|
|
1. 下载仓库 |
|
|
|
|
|
2. Install Package |
|
|
|
```Shell |
|
cd VoCo-LLaMA |
|
conda create -n voco python=3.10 -y |
|
conda activate voco |
|
pip install --upgrade pip # enable PEP 660 support |
|
pip install -e . |
|
``` |
|
|
|
|
|
3. Install additional packages for training cases |
|
|
|
``` |
|
pip install -e ".[train]" |
|
``` |
|
|
|
4. 找到conda环境里的hf代码:`miniconda3/envs/voco/lib/python3.10/site-packages/transformers/modeling_attn_mask_utils.py` |
|
把`VoCo-LLaMA/llava/model/language_model/cache_py/modeling_attn_mask_utils.py`文件复制过去(直接覆盖) |
|
``` |
|
cp VoCo-LLaMA/llava/model/language_model/cache_py/modeling_attn_mask_utils.py /data/miniconda3/envs/voco/lib/python3.10/site-packages/transformers/modeling_attn_mask_utils.py |
|
``` |
|
|
|
5. 重新安装deepspeed |
|
``` |
|
pip install deepspeed==0.15.4 |
|
``` |
|
|
|
6. 训练 |
|
``` |
|
bash scripts/finetune_voco_llama.sh |
|
``` |
|
|
|
7. 评估 |
|
``` |
|
pip install openpyxl |
|
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 bash scripts/eval/vqav2.sh |
|
CUDA_VISIBLE_DEVICES=1 bash scripts/eval/mmbench.sh |
|
CUDA_VISIBLE_DEVICES=2 bash scripts/eval/sqa.sh |
|
``` |
|
|
|
8. 提交结果(只有sqa可以直接出结果,其他两个应该是闭源评测) |
|
``` |
|
把VoCo-LLaMA/playground/data/eval/vqav2/answers_upload/llava_vqav2_mscoco_test-dev2015/voco_llava.json提交到https://eval.ai/web/challenges/challenge-page/830/my-submission |
|
|
|
|
|
把VoCo-LLaMA/playground/data/eval/mmbench/answers_upload/mmbench_dev_20230712/voco_llama.xlsx提交到https://mmbench.opencompass.org.cn/mmbench-submission |
|
``` |