Datasets:
ArXiv:
License:
Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code: DatasetGenerationCastError Exception: DatasetGenerationCastError Message: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 9 new columns ({'light source', 'Bi type in photocatalyst', 'Reaction medium', 'SBET (m2 /g)', 'loading (g/l)', 'CB edge(V)', 'irradiation time(h)', 'Main product', 'Yield (μmol/g/h)'}) and 10 missing columns ({'Preparation method', 'Reaction solution', 'Light intensity(W)', 'Ref', 'Calcination temperature(K)', 'Molecular formula', 'Photocatalyst dose(g L-1)', 'RH2(µmol h-1 g-1)', 'Calcination time(h)', 'Co-catalyst'}). This happened while the csv dataset builder was generating data using hf://datasets/kg4sci/CataTQA_Metadata/metadata/table_data/table10.csv (at revision 6f49b2b7b80c551a1c56830b9e567a7b32f38b46) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations) Traceback: Traceback (most recent call last): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1871, in _prepare_split_single writer.write_table(table) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 643, in write_table pa_table = table_cast(pa_table, self._schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2293, in table_cast return cast_table_to_schema(table, schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2241, in cast_table_to_schema raise CastError( datasets.table.CastError: Couldn't cast Bi type in photocatalyst: string loading (g/l): double SBET (m2 /g): double Eg(eV): double CB edge(V): string light source: string irradiation time(h): double Reaction medium: string Main product: string Yield (μmol/g/h): double -- schema metadata -- pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 1554 to {'Molecular formula': Value(dtype='string', id=None), 'RH2(µmol h-1 g-1)': Value(dtype='float64', id=None), 'Eg(eV)': Value(dtype='float64', id=None), 'Preparation method': Value(dtype='string', id=None), 'Calcination temperature(K)': Value(dtype='float64', id=None), 'Calcination time(h)': Value(dtype='float64', id=None), 'Light intensity(W)': Value(dtype='string', id=None), 'Reaction solution': Value(dtype='string', id=None), 'Co-catalyst': Value(dtype='string', id=None), 'Photocatalyst dose(g L-1)': Value(dtype='float64', id=None), 'Ref': Value(dtype='string', id=None)} because column names don't match During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1428, in compute_config_parquet_and_info_response parquet_operations, partial, estimated_dataset_info = stream_convert_to_parquet( File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 989, in stream_convert_to_parquet builder._prepare_split( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1742, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1873, in _prepare_split_single raise DatasetGenerationCastError.from_cast_error( datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 9 new columns ({'light source', 'Bi type in photocatalyst', 'Reaction medium', 'SBET (m2 /g)', 'loading (g/l)', 'CB edge(V)', 'irradiation time(h)', 'Main product', 'Yield (μmol/g/h)'}) and 10 missing columns ({'Preparation method', 'Reaction solution', 'Light intensity(W)', 'Ref', 'Calcination temperature(K)', 'Molecular formula', 'Photocatalyst dose(g L-1)', 'RH2(µmol h-1 g-1)', 'Calcination time(h)', 'Co-catalyst'}). This happened while the csv dataset builder was generating data using hf://datasets/kg4sci/CataTQA_Metadata/metadata/table_data/table10.csv (at revision 6f49b2b7b80c551a1c56830b9e567a7b32f38b46) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
Molecular formula
string | RH2(µmol h-1 g-1)
float64 | Eg(eV)
float64 | Preparation method
string | Calcination temperature(K)
float64 | Calcination time(h)
float64 | Light intensity(W)
string | Reaction solution
string | Co-catalyst
string | Photocatalyst dose(g L-1)
float64 | Ref
string |
---|---|---|---|---|---|---|---|---|---|---|
null | null | null | null | null | null | null | null | null | null | null |
BaTiO3 | 35 | 3 | Solid state reaction | 1,423 | 5 | Xe lamp(300W),simulated sunlight | 20% v/v CH3OH | Pt(0.4 wt%) | 1.1 | [1] |
BaTi0.99Mo0.01O3 | 45 | 2.4 | Solid state reaction | 1,423 | 5 | Xe lamp(300W),simulated sunlight | 20% v/v CH3OH | Pt(0.4 wt%) | 1.1 | [1] |
BaTi0.98Mo0.02O3 | 63 | 2.2 | Solid state reaction | 1,423 | 5 | Xe lamp(300W),simulated sunlight | 20% v/v CH3OH | Pt(0.4 wt%) | 1.1 | [1] |
BaTi0.97Mo0.03O3 | 52 | 2.6 | Solid state reaction | 1,423 | 5 | Xe lamp(300W),simulated sunlight | 20% v/v CH3OH | Pt(0.4 wt%) | 1.1 | [1] |
LaFeO3 | 144.7 | null | Flux-growth | 1,273 | 10 | Xe lamp (300 W), λ > 420 nm | 10vol% CH3OH | Pt(0.5 wt%) | 1 | [2] |
LaFe0.85Ti0.15O3 | 309.3 | 2.1 | Flux-growth | 1,273 | 10 | Xe lamp (300 W), λ > 420 nm | 10vol% CH3OH | Pt(0.5 wt%) | 1 | [2] |
La0.85Sr0.15FeO3 | 30.7 | null | Flux-growth | 1,273 | 10 | Xe lamp (300 W), λ > 420 nm | 10vol% CH3OH | Pt(0.5 wt%) | 1 | [2] |
La0.9625Sr0.0375Fe0.8875Ti0.1125O3 | 62 | null | Flux-growth | 1,273 | 10 | Xe lamp (300 W), λ > 420 nm | 10vol% CH3OH | Pt(0.5 wt%) | 1 | [2] |
La0.8875Sr0.1125Fe0.9625Ti0.0375O3 | 422.7 | null | Flux-growth | 1,273 | 10 | Xe lamp (300 W), λ > 420 nm | 10vol% CH3OH | Pt(0.5 wt%) | 1 | [2] |
La0.925Sr0.075Fe0.925Ti0.075O3 | 554.7 | 2.1 | Flux-growth | 1,273 | 10 | Xe lamp (300 W), λ > 420 nm | 10vol% CH3OH | Pt(0.5 wt%) | 1 | [2] |
Bi0.5Na0.5TiO3 | 325.4 | 2.92 | Hydrothermal | 433 | 24 | Xe lamp(500W),346 nm±8.6 nm | 20vol% CH3OH | Pt(3 wt%) | 0.75 | [3] |
Sr0.9Bi0.1Ti0.9Fe0.1O3 | 47 | null | Hydrothermal | 473 | 48 | Hg lamp (500 W),λ ≥ 400 nm | 0.05M Na2SO3 | Pt(1 wt%) | 1 | [4] |
Sr0.8Bi0.2Ti0.8Fe0.2O3 | 45 | null | Hydrothermal | 473 | 48 | Hg lamp (500 W),λ ≥ 400 nm | 0.05M Na2SO3 | Pt(1 wt%) | 1 | [4] |
Sr0.7Bi0.3Ti0.7Fe0.3O3 | 25 | null | Hydrothermal | 473 | 48 | Hg lamp (500 W),λ ≥ 400 nm | 0.05M Na2SO3 | Pt(1 wt%) | 1 | [4] |
Sr0.6Bi0.4Ti0.6Fe0.4O3 | 50 | null | Hydrothermal | 473 | 48 | Hg lamp (500 W),λ ≥ 400 nm | 0.05M Na2SO3 | Pt(1 wt%) | 1 | [4] |
Sr0.5Bi0.5Ti0.5Fe0.5O3 | 20 | null | Hydrothermal | 473 | 48 | Hg lamp (500 W),λ ≥ 400 nm | 0.05M Na2SO3 | Pt(1 wt%) | 1 | [4] |
SrTiO3 | 202.6 | 3.25 | Hydrothermal | 423 | 10 | Xe lamp(300W),320 nm <λ<780 nm | 20% v/v CH3OH | Pt(1 wt%) | 0.2 | [5] |
SrTiO3 | 106.8 | 3.25 | Hydrothermal | 453 | 10 | Xe lamp(300W),320 nm <λ<780 nm | 20% v/v CH3OH | Pt(1 wt%) | 0.2 | [5] |
SrTiO3 | 38.4 | 3.25 | Solid state reaction | 1,173 | 12 | Xe lamp(300W),320 nm <λ<780 nm | 20% v/v CH3OH | Pt(1 wt%) | 0.2 | [5] |
SrTiO3 | null | 3.2 | Polymerized complex | 773 | null | null | null | null | null | [6] |
SrTi0.99Rh0.01O3 | 962 | null | Polymerized complex | 973 | null | Xe lamp (300 W), 420 nm<λ<800 nm | 20vol% CH3OH | Pt(0.5 wt%) | 1 | [6] |
AgTaO3 | null | 3.4 | Hydrothermal | 1,123 | 24 | null | null | null | null | [7] |
AgTa0.8Nb0.2O3 | null | 3.1 | Hydrothermal | 1,123 | 24 | null | null | null | null | [7] |
AgTa0.7Nb0.3O3 | null | 2.9 | Hydrothermal | 1,123 | 24 | null | null | null | null | [7] |
AgTa0.6Nb0.4O3 | null | 2.9 | Hydrothermal | 1,123 | 24 | null | null | null | null | [7] |
AgNbO3 | null | 2.8 | Hydrothermal | 1,123 | 24 | null | null | null | null | [7] |
CaTiO3 | null | 3.6 | Sol-gel | 1,123 | 10 | null | null | null | null | [8] |
Ca0.98Ag0.01La0.01TiO3 | 2.6 | null | Sol-gel | 1,123 | 10 | Xe lamp (350 W), λ > 400 nm | 5% v/v CH3OH | none | 0.24 | [8] |
Ca0.96Ag0.02La0.02TiO3 | 2.9 | null | Sol-gel | 1,123 | 10 | Xe lamp (350 W), λ > 400 nm | 5% v/v CH3OH | none | 0.24 | [8] |
Ca0.94Ag0.03La0.03TiO3 | 10.1 | null | Sol-gel | 1,123 | 10 | Xe lamp (350 W), λ > 400 nm | 5% v/v CH3OH | none | 0.24 | [8] |
Ca0.92Ag0.04La0.04TiO3 | 4.1 | null | Sol-gel | 1,123 | 10 | Xe lamp (350 W), λ > 400 nm | 5% v/v CH3OH | none | 0.24 | [8] |
BaTiO3 | 8 | 3 | Polymerized complex | 823 | 5 | Xe lamp (300 W), λ > 420 nm | 10vol% CH3OH | Pt(0.25 wt%) | 1 | [9] |
BaTi0.999Rh0.001O3 | 10 | null | Polymerized complex | 823 | 5 | Xe lamp (300 W), λ > 420 nm | 10vol% CH3OH | Pt(0.25 wt%) | 1 | [9] |
BaTi0.995Rh0.005O3 | 64 | null | Polymerized complex | 823 | 5 | Xe lamp (300 W), λ > 420 nm | 10vol% CH3OH | Pt(0.25 wt%) | 1 | [9] |
BaTi0.99Rh0.01O3 | 308 | null | Polymerized complex | 823 | 5 | Xe lamp (300 W), λ > 420 nm | 10vol% CH3OH | Pt(0.25 wt%) | 1 | [9] |
BaTi0.98Rh0.02O3 | 241 | null | Polymerized complex | 823 | 5 | Xe lamp (300 W), λ > 420 nm | 10vol% CH3OH | Pt(0.25 wt%) | 1 | [9] |
BaTi0.95Rh0.05O3 | 199 | null | Polymerized complex | 823 | 5 | Xe lamp (300 W), λ > 420 nm | 10vol% CH3OH | Pt(0.25 wt%) | 1 | [9] |
BaTi0.99Rh0.01O3 | 48 | null | Solid state reaction | 1,273 | 10 | Xe lamp (300 W), λ > 420 nm | 10vol% CH3OH | Pt(0.25 wt%) | 1 | [9] |
SrSnO3 | null | 4.01 | Solid state reaction | 1,373 | 6 | null | null | null | null | [10] |
SrSnO3 | null | 4.04 | Wet chemical reaction | 973 | 6 | null | null | null | null | [10] |
CaTi0.99Cu0.01O3 | 6.2 | null | Sol-gel | 1,123 | 7 | Xe lamp (350 W), λ > 400 nm | 5% v/v CH3OH | NiOx | 0.24 | [11] |
CaTi0.98Cu0.02O3 | 22.7 | null | Sol-gel | 1,123 | 7 | Xe lamp (350 W), λ > 400 nm | 5% v/v CH3OH | NiOx | 0.24 | [11] |
CaTi0.97Cu0.03O3 | 12.3 | null | Sol-gel | 1,123 | 7 | Xe lamp (350 W), λ > 400 nm | 5% v/v CH3OH | NiOx | 0.24 | [11] |
CaTi0.96Cu0.04O3 | 8.1 | null | Sol-gel | 1,123 | 7 | Xe lamp (350 W), λ > 400 nm | 5% v/v CH3OH | NiOx | 0.24 | [11] |
Sr2/3Zn1/3TiO3 | null | 3.15 | Sol-gel | 1,173 | 5 | null | null | null | null | [12] |
Ba5/6Zn1/6TiO3 | null | 3.2 | Polymerized complex Sol-gel method | 1,173 | 5 | null | null | null | null | [12] |
NaTaO3 | null | 3.94 | Solvo-combustion | 453 | 2 | null | null | null | null | [13] |
NaTaO3 | null | 3.98 | Solvo-combustion | 673 | 2 | null | null | null | null | [13] |
NaTaO3 | null | 4.01 | Solvo-combustion | 873 | 2 | null | null | null | null | [13] |
NaTaO3 | null | 4 | Solvo-combustion | 973 | 2 | null | null | null | null | [13] |
SrTiO3 | null | 3.22 | Sol-gel | 1,173 | 4 | null | null | null | null | [14] |
NaTaO3 | null | 3.97 | Molten salt method | 1,023 | 2 | null | null | null | null | [15] |
NaNb0.5Ta0.5O3 | null | 3.43 | Molten salt method | 1,023 | 2 | null | null | null | null | [15] |
Ca0.9La0.1Ti0.9Cr0.1O3 | null | 2.49 | Hydrothermal | 473 | 48 | null | null | null | null | [16] |
Sr0.9La0.1Ti0.9Cr0.1O3 | 28.8 | 2.31 | Hydrothermal | 473 | 48 | Xe lamp (300 W),λ ≥ 400 nm | 10%v/v CH3OH+4g NaOH | Pt(1 wt%) | 1 | [16] |
Ba0.9La0.1Ti0.9Cr0.1O3 | null | 2.52 | Hydrothermal | 473 | 48 | null | null | null | null | [16] |
c-NaNbO3 | 423.3 | 3.29 | Furfural alcohol derived polymerization-oxidation | 873 | 5 | Xe lamp (300 W), λ > 300 nm | 5/22 v/v CH3OH | Pt(1 wt%) | 1.1 | [17] |
o-NaNbO3 | 241 | 3.45 | Polymerized complex | 873 | 2 | Xe lamp (300 W), λ > 300 nm | 5/22 v/v CH3OH | Pt(1 wt%) | 1.1 | [17] |
NaTaO3 | null | 4.01 | Solid state reaction | 1,173 | 10 | null | null | null | null | [18] |
NaTa0.975Bi0.025O3 | null | 3.65 | Solid state reaction | 1,173 | 10 | null | null | null | null | [18] |
NaTa0.95Bi0.05O3 | null | 3.05 | Solid state reaction | 1,173 | 10 | null | null | null | null | [18] |
NaTa0.925Bi0.075O3 | null | 2.95 | Solid state reaction | 1,173 | 10 | null | null | null | null | [18] |
Na0.975Bi0.025TaO3 | null | 3.75 | Solid state reaction | 1,173 | 10 | null | null | null | null | [18] |
Na0.95Bi0.05TaO3 | null | 3.65 | Solid state reaction | 1,173 | 10 | null | null | null | null | [18] |
Na0.925Bi0.075TaO3 | null | 3.65 | Solid state reaction | 1,173 | 10 | null | null | null | null | [18] |
Sr0.95Cr0.05TiO3 | 84 | 2.3 | Solid state reaction | 1,373 | 24 | Xe lamp (300 W), λ≥420 nm | 5/22 v/v CH3OH | Pt(0.6 wt%) | 0.93 | [19] |
Sr0.95Cr0.05TiO3 | 26.8 | 2.3 | Sol-gel hydrothermal method | 353 | 24 | Xe lamp (300 W), λ≥420 nm | 5/22 v/v CH3OH | Pt(0.6 wt%) | 0.93 | [19] |
Sr0.95Cr0.05TiO3 | 101.6 | 2.3 | Sol-gel hydrothermal method | 393 | 24 | Xe lamp (300 W), λ≥420 nm | 5/22 v/v CH3OH | Pt(0.6 wt%) | 0.93 | [19] |
Sr0.95Cr0.05TiO3 | 137.2 | 2.3 | Sol-gel hydrothermal method | 433 | 24 | Xe lamp (300 W), λ≥420 nm | 5/22 v/v CH3OH | Pt(0.6 wt%) | 0.93 | [19] |
Sr0.95Cr0.05TiO3 | 160.4 | 2.3 | Sol-gel hydrothermal method | 473 | 24 | Xe lamp (300 W), λ≥420 nm | 5/22 v/v CH3OH | Pt(0.6 wt%) | 0.93 | [19] |
Sr0.95Cr0.05TiO3 | 330.4 | 2.3 | Sol-gel hydrothermal method | 473 | 24 | Xe lamp (300 W), λ≥420 nm | 5/22 v/v CH3OH | Pt(0.6 wt%) | 0.93 | [19] |
SrTiO3 | null | 3.23 | Sol-gel | 973 | 4 | null | null | null | null | [20] |
SrTiO3 | null | 3.1 | Polymerized complex | 773 | 5 | null | null | null | null | [21] |
SrTiO3 | null | 3.1 | Polymerized complex | 873 | 5 | null | null | null | null | [21] |
SrTiO3 | null | 3.1 | Polymerized complex | 973 | 5 | null | null | null | null | [21] |
SrTiO3 | null | 3.1 | Polymerized complex | 1,073 | 5 | null | null | null | null | [21] |
SrTiO3 | null | 3.1 | Polymerized complex | 1,273 | 5 | null | null | null | null | [21] |
SrTiO3 | null | 3.1 | Solid state reaction | 1,073 | 5 | null | null | null | null | [21] |
SrTiO3 | null | 2 | Milling assistant method | 1,073 | 2 | null | null | null | null | [21] |
SrTi0.99Al0.01O3 | 347 | 3.45 | Solid state reaction | 1,273 | 10 | Xe lamp (150 W), UV visible | 30%vol CH3CHOHCH3 | Au(0.25%) | 2.5 | [22] |
SrTiO3 | null | 3.3 | Solid state reaction | 1,273 | 10 | null | null | null | null | [22] |
SrTi0.995Al0.005O3 | null | 3.4 | Solid state reaction | 1,273 | 10 | null | null | null | null | [22] |
SrTi0.985Al0.015O3 | null | 3.45 | Solid state reaction | 1,273 | 10 | null | null | null | null | [22] |
SrTiO3 | 188 | 3.16 | Sol-gel | 973 | 4 | Xe lamp (300 W), λ≥400 nm | 50vol% CH3OH | Pt(0.5 wt%) | 1 | [23] |
SrTi0.9Cr0.1O3−δ | null | 2.31 | Solid state reaction | 1,573 | 20 | null | null | null | null | [24] |
La0.1Sr0.9Ti0.9Cr0.1O3 | null | 2.11 | Solid state reaction | 1,573 | 20 | null | null | null | null | [24] |
SrTiO3 | null | 3.25 | Solid state reaction | 1,573 | 20 | null | null | null | null | [24] |
LaFeO3 | 8,600 | 2.11 | Sol-gel auto-combustion | 773 | 2 | Hg visible lamp(120W),(λ >> 420 nm) | 10vol% CH3OH | null | 2.5 | [25] |
LaFeO3 | 7,866.7 | 2.1 | Sol-gel auto-combustion | 873 | 2 | Hg visible lamp(120W),(λ >> 420 nm) | 10vol% CH3OH | null | 2.5 | [25] |
LaFeO3 | 6,933.3 | 2.09 | Sol-gel auto-combustion | 973 | 2 | Hg visible lamp(120W),(λ >> 420 nm) | 10vol% CH3OH | null | 2.5 | [25] |
LaFeO3 | 6,066.7 | 2.08 | Sol-gel auto-combustion | 1,073 | 2 | Hg visible lamp(120W),(λ >> 420 nm) | 10vol% CH3OH | null | 2.5 | [25] |
LaFeO3 | 5,466.7 | 2.07 | Sol-gel auto-combustion | 1,173 | 2 | Hg visible lamp(120W),(λ >> 420 nm) | 10vol% CH3OH | null | 2.5 | [25] |
CaZrO3 | 12.4 | 4 | Polymerized complex | 923 | 6 | Xe lamp (300 W), λ > 420 nm | 12.5%v/v HCOOH | Pt(1 wt%) | 0.56 | [26] |
CaTiO3 | null | 3.52 | Template-free hydrothermal method | 453 | 15 | null | null | null | null | [27] |
Ca0.95La0.05Ti0.95Cr0.05O3 | 98 | 2.49 | Template-free hydrothermal method | 453 | 15 | Hg lamp (500 W),λ ≥ 400 nm | 0.05M Na2SO3 | Pt(1 wt%) | 1 | [27] |
Ca0.9La0.1Ti0.9Cr0.1O3 | 110 | 2.48 | Template-free hydrothermal method | 453 | 15 | Hg lamp (500 W),λ ≥ 400 nm | 0.05M Na2SO3 | Pt(1 wt%) | 1 | [27] |
Ca0.8La0.2Ti0.8Cr0.2O3 | 164 | 2.5 | Template-free hydrothermal method | 453 | 15 | Hg lamp (500 W),λ ≥ 400 nm | 0.05M Na2SO3 | Pt(1 wt%) | 1 | [27] |
NaTaO3 | null | 3.96 | Spray pyrolysis | 1,173 | null | null | null | null | null | [28] |
NaBi0.06Ta0.94O3 | null | 2.96 | Spray pyrolysis | 1,173 | null | null | null | null | null | [28] |
End of preview.
CataTQA metadata info
Domain | Dataset or Paper Name | Access URL | DOI | Rename in Our Dataset |
---|---|---|---|---|
photocatalysis | Machine learning aided design of perovskite oxide materials for photocatalytic water splitting | https://www.sciencedirect.com/science/article/pii/S2095495621000644#s0090 | 10.1016/j.jechem.2021.01.035 | table1 table2 table3 |
photocatalysis | Data mining in photocatalytic water splitting over perovskites literature for higher hydrogen production | https://www.sciencedirect.com/science/article/pii/S0926337318309470#sec0130 | 10.1016/j.apcatb.2018.09.104 | table4 table5 |
photocatalysis | An insight into tetracycline photocatalytic degradation by MOFs using the artificial intelligence technique | https://www.nature.com/articles/s41598-022-10563-8#Sec10 | 10.1038/s41598-022-10563-8 | table6 |
photocatalysis | Analysis of photocatalytic CO2 reduction over MOFs using machine learning | https://pubs.rsc.org/en/content/articlelanding/2024/ta/d3ta07001h | 10.1039/D3TA07001H | table7 |
photocatalysis | Data-driven for accelerated design strategy of photocatalytic degradation activity prediction of doped TiO2 photocatalyst | https://www.sciencedirect.com/science/article/pii/S2214714422005700#s0055 | 10.1016/j.jwpe.2022.103126 | table8 |
photocatalysis | A generalized predictive model for TiO2–Catalyzed photo-degradation rate constants of water contaminants through ANN | https://www.sciencedirect.com/science/article/pii/S0013935120305909 | 10.1016/j.envres.2020.109697 | table9 |
photocatalysis | Statistical information review of CO2 photocatalytic reduction via bismuth-based photocatalysts using ANN | https://www.sciencedirect.com/science/article/pii/S1110016824008640?via%3Dihub | 10.1016/j.aej.2024.07.120 | table10 |
photocatalysis | Accelerated Design for Perovskite-Oxide-Based Photocatalysts Using Machine Learning Techniques | https://www.mdpi.com/1996-1944/17/12/3026 | 10.3390/ma17123026 | table11 |
electrocatalysis | Building Blocks for High Performance in Electrocatalytic CO2 Reduction | https://acs.figshare.com/articles/dataset/Building_Blocks_for_High_Performance_in_Electrocatalytic_CO_sub_2_sub_Reduction/5293804 | 10.1021/acs.jpclett.7b01380 | table12 |
electrocatalysis | Unlocking New Insights for Electrocatalyst Design: A Unique Data Science Workflow | https://github.com/ruiding-uchicago/InCrEDible-MaT-GO | 10.1021/acscatal.3c01914 | table13 |
electrocatalysis | Perovskite-based electrocatalyst discovery and design using word embeddings from retrained SciBERT | https://github.com/arunm917/Perovskite-based-electrocatalyst-design-and-discovery | - | table14 |
electrocatalysis | Exploring the Composition Space of High-Entropy Alloy Nanoparticles with Bayesian Optimization | https://github.com/vamints/Scripts_BayesOpt_PtRuPdRhAu_paper | 10.1021/acscatal.2c02563 | table15 |
electrocatalysis | High Throughput Discovery of Complex Metal Oxide Electrocatalysts for Oxygen Reduction Reaction | https://data.caltech.edu/records/1km87-52j70 | 10.1007/s12678-021-00694-3 | table16 |
photoelectrocatalysis | High-thoughput OCM data | https://cads.eng.hokudai.ac.jp/datamanagement/datasources/21010bbe-0a5c-4d12-a5fa-84eea540e4be/ | 10.1021/acscatal.9b04293 | table17 |
photoelectrocatalysis | CatApp Data | https://cads.eng.hokudai.ac.jp/datamanagement/datasources/20de069b-53cf-4310-9090-1738f53231e2/ | 10.1002/anie.201107947 | table18 |
photoelectrocatalysis | Oxidative Coupling of Methane | https://cads.eng.hokudai.ac.jp/datamanagement/datasources/9436f770-a7e2-4e87-989b-c5a9ce2312bf/ | 10.1002/cctc.202001032 | table19 |
photoelectrocatalysis | ChemCatChem | https://cads.eng.hokudai.ac.jp/datamanagement/datasources/224dd7ad-7677-4161-b744-a0c796bf5347/ | 10.1002/cctc.201100186 | table20 |
photoelectrocatalysis | HTP OCM data obtained with catalysts designed on the basis of heuristics derived from random catalyst data | https://cads.eng.hokudai.ac.jp/datamanagement/datasources/92200ba4-7644-44ca-9801-ed3cc52fc32f/ | 10.1002/cctc.202100460 | table21 |
photoelectrocatalysis | Perovskite Data | https://cads.eng.hokudai.ac.jp/datamanagement/datasources/f1b42c58-a423-4ec2-8bcf-e66c6470ff7d/ | 10.1039/C2EE22341D | table22 |
photoelectrocatalysis | Random catalyst OCM data by HTE | https://cads.eng.hokudai.ac.jp/datamanagement/datasources/f7e30001-e440-4c1a-be64-ea866b2f77cb/ | 10.1021/acscatal.0c04629 | table23 |
photoelectrocatalysis | Synthesis of Heterogeneous Catalysts in Catalyst Informatics to Bridge Experiment and High-Throughput Calculation | https://cads.eng.hokudai.ac.jp/datamanagement/datasources/f2a6d4f2-91be-48ba-bf13-ffebbd90f6ee/ | 10.1021/jacs.2c06143 | table24 |
photoelectrocatalysis | Multi-component La2O3- based catalysts in OCM | https://cads.eng.hokudai.ac.jp/datamanagement/datasources/d6347fc1-e4d7-412e-aed5-a8ffa415a703/ | 10.1039/D1CY02206G | table25 |
photoelectrocatalysis | Catalyst Modification in OCM via Manganese Promoter | https://cads.eng.hokudai.ac.jp/datamanagement/datasources/32dbec2c-c3d5-43ec-962a-90dba719bb44/ | 10.1021/acs.iecr.1c05079 | table26 |
photoelectrocatalysis | Leveraging Machine Learning Engineering to Uncover Insights in Heterogeneous Catalyst Design for OCM | https://cads.eng.hokudai.ac.jp/datamanagement/datasources/d84c1e22-ceb9-488a-8d45-4c7cf1c603b5/ | 10.1039/D3CY00596H | table27 |
photoelectrocatalysis | Oxidative of Coupling Literature and Highthroughput Data | https://cads.eng.hokudai.ac.jp/datamanagement/datasources/adb27910-d0e5-4a22-9415-580bf597035a/ | 10.1021/acscatal.0c04629, 10.1002/cctc.201100186 | table28 |
photoelectrocatalysis | Catalytic Material Database | http://cmd.us.edu.pl/catalog/ | - | table29 |
photoelectrocatalysis | Catalyst Hub | http://www.catalysthub.net/ | - | table31 |
magnetic material | Magnetic Database | https://doi.org/10.15131/shef.data.24008055.v1 | 10.1063/9.0000657 | table32 |
magnetic material | Materials database of Curie and Néel magnetic phase transition temperatures | https://doi.org/10.6084/m9.figshare.5702740.v1 | 10.1038/sdata.2018.111 | table33 |
magnetic material | Data-driven design of molecular nanomagnets | https://go.uv.es/rosaleny/SIMDAVIS | 10.1038/s41467-022-35336-9 | table34 |
perovskite | Predicting the thermodynamic stability of perovskite oxides using machine learning models | https://doi.org/10.1016/j.dib.2018.05.007 | - | table35 table36 table37 |
others | Crystallography Open Database(COD) | http://www.crystallography.net/cod/ | - | table38 |
others | Alloy synthesis and processing by semi-supervised text mining | https://www.nature.com/articles/s41524-023-01138-w | 10.1038/s41524-023-01138-w | table39 |
others | A Machine Learning Approach to Zeolite Synthesis Enabled by Automatic Literature Data Extraction | https://github.com/olivettigroup/table_extractor | 10.1021/acscentsci.9b00193 | table40 |
others | ZeoSyn: A Comprehensive Zeolite Synthesis Dataset Enabling Machine-Learning Rationalization of Hydrothermal Parameters | https://github.com/eltonpan/zeosyn_dataset | 10.1021/acscentsci.3c01615 | table41 |
others | Unveiling the Potential of AI for Nanomaterial Morphology Prediction | https://github.com/acid-design-lab/Nanomaterial_Morphology_Prediction | 预印本:10.48550/arXiv.2406.02591 | table42 |
others | AFLOW-2 CFID dataset 400k | https://doi.org/10.1016/j.commatsci.2012.02.005 | 10.1016/j.commatsci.2012.02.005 | table43 |
others | Alexandria_DB PBE 3D all 5 million | https://alexandria.icams.rub.de/ | - | table44 |
others | arXiv dataset 1.8 million | https://www.kaggle.com/Cornell-University/arxiv | - | table45 |
others | CCCBDB dataset 1333 | https://cccbdb.nist.gov/ | - | table46 |
others | 3D dataset 55k | https://www.nature.com/articles/s41524-020-00440-1 | 10.1038/s41524-020-00440-1 | table47 |
others | 2D dataset 1.1k | https://www.nature.com/articles/s41524-020-00440-1 | 10.1038/s41524-020-00440-1 | table48 |
others | halide perovskite dataset229 | https://doi.org/10.1039/D1EE02971A | 10.1039/D1EE02971A | table49 |
others | hMOF dataset 137k | https://doi.org/10.1021/acs.jpcc.6b08729 | 10.1021/acs.jpcc.6b08729 | table50 |
others | HOPV15 dataset 4.5k | https://www.nature.com/articles/sdata201686 | 10.1038/sdata.2016.86 | table51 |
others | Surface property dataset 607 | https://doi.org/10.1039/D4DD00031E | 10.1039/D4DD00031E | table52 |
others | JARVIS-FF 2k | https://www.nature.com/articles/s41524-020-00440-1 | 10.1038/s41524-020-00440-1 | table53 |
others | MEGNET-3D CFID dataset 69k | - | - | table54 |
others | Materials Project-3D CFID dataset 127k | https://next-gen.materialsproject.org/ | 10.1063/1.4812323 | table55 |
others | Materials Project-3D CFID dataset 84k | - | - | table56 |
others | OQMD-3D dataset 800k | https://www.oqmd.org/download/ | 10.1038/npjcompumats.2015.10 | table57 |
others | Polymer genome 1k | https://datadryad.org/dataset/doi:10.5061/dryad.5ht3n | 10.1038/sdata.2016.12 | table58 |
others | QETB dataset 860k | https://arxiv.org/abs/2112.11585 | 预印本:10.48550/arXiv.2112.11585 | table59 |
others | QM9 dataset 130k, from DGL | https://www.nature.com/articles/sdata201422 | 10.1038/sdata.2014.22 | table60 |
others | QM9 standardized dataset 130k | - | - | table61 |
others | QMOF dataset 20k | https://www.cell.com/matter/fulltext/S2590-2385(21)00070-9 | 10.1016/j.matt.2021.02.015 | table62 |
others | SNUMAT Hybrid functional dataset 10k | https://www.nature.com/articles/s41597-020-00723-8 | 10.1038/s41597-020-00723-8 | table63 |
others | SSUB dataset 1726 | https://github.com/wolverton-research-group/qmpy | - | table64 |
others | chem dataset 16414 | https://www.nature.com/articles/s41524-018-0085-8 | 10.1038/s41524-018-0085-8 | table65 |
others | dataset 607 | https://doi.org/10.1039/D4DD00031E | 10.1039/D4DD00031E | table66 |
others | 2DMatPedia dataset 6k | http://www.2dmatpedia.org/ | 10.1038/s41597-019-0097-3 | table67 |
others | vacancy dataset 464 | https://doi.org/10.1063/5.0135382 | 10.1063/5.0135382 | table68 |
- Downloads last month
- 148