Datasets:

ArXiv:
License:
Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 9 new columns ({'light source', 'Bi type in photocatalyst', 'Reaction medium', 'SBET (m2 /g)', 'loading (g/l)', 'CB edge(V)', 'irradiation time(h)', 'Main product', 'Yield (μmol/g/h)'}) and 10 missing columns ({'Preparation method', 'Reaction solution', 'Light  intensity(W)', 'Ref', 'Calcination temperature(K)', 'Molecular formula', 'Photocatalyst dose(g L-1)', 'RH2(µmol h-1 g-1)', 'Calcination time(h)', 'Co-catalyst'}).

This happened while the csv dataset builder was generating data using

hf://datasets/kg4sci/CataTQA_Metadata/metadata/table_data/table10.csv (at revision 6f49b2b7b80c551a1c56830b9e567a7b32f38b46)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1871, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 643, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2293, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2241, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              Bi type in photocatalyst: string
              loading (g/l): double
              SBET (m2 /g): double
              Eg(eV): double
              CB edge(V): string
              light source: string
              irradiation time(h): double
              Reaction medium: string
              Main product: string
              Yield (μmol/g/h): double
              -- schema metadata --
              pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 1554
              to
              {'Molecular formula': Value(dtype='string', id=None), 'RH2(µmol h-1 g-1)': Value(dtype='float64', id=None), 'Eg(eV)': Value(dtype='float64', id=None), 'Preparation method': Value(dtype='string', id=None), 'Calcination temperature(K)': Value(dtype='float64', id=None), 'Calcination time(h)': Value(dtype='float64', id=None), 'Light  intensity(W)': Value(dtype='string', id=None), 'Reaction solution': Value(dtype='string', id=None), 'Co-catalyst': Value(dtype='string', id=None), 'Photocatalyst dose(g L-1)': Value(dtype='float64', id=None), 'Ref': Value(dtype='string', id=None)}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1428, in compute_config_parquet_and_info_response
                  parquet_operations, partial, estimated_dataset_info = stream_convert_to_parquet(
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 989, in stream_convert_to_parquet
                  builder._prepare_split(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1742, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1873, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 9 new columns ({'light source', 'Bi type in photocatalyst', 'Reaction medium', 'SBET (m2 /g)', 'loading (g/l)', 'CB edge(V)', 'irradiation time(h)', 'Main product', 'Yield (μmol/g/h)'}) and 10 missing columns ({'Preparation method', 'Reaction solution', 'Light  intensity(W)', 'Ref', 'Calcination temperature(K)', 'Molecular formula', 'Photocatalyst dose(g L-1)', 'RH2(µmol h-1 g-1)', 'Calcination time(h)', 'Co-catalyst'}).
              
              This happened while the csv dataset builder was generating data using
              
              hf://datasets/kg4sci/CataTQA_Metadata/metadata/table_data/table10.csv (at revision 6f49b2b7b80c551a1c56830b9e567a7b32f38b46)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

Molecular formula
string
RH2(µmol h-1 g-1)
float64
Eg(eV)
float64
Preparation method
string
Calcination temperature(K)
float64
Calcination time(h)
float64
Light intensity(W)
string
Reaction solution
string
Co-catalyst
string
Photocatalyst dose(g L-1)
float64
Ref
string
null
null
null
null
null
null
null
null
null
null
null
BaTiO3
35
3
Solid state reaction
1,423
5
Xe lamp(300W),simulated sunlight
20% v/v CH3OH
Pt(0.4 wt%)
1.1
[1]
BaTi0.99Mo0.01O3
45
2.4
Solid state reaction
1,423
5
Xe lamp(300W),simulated sunlight
20% v/v CH3OH
Pt(0.4 wt%)
1.1
[1]
BaTi0.98Mo0.02O3
63
2.2
Solid state reaction
1,423
5
Xe lamp(300W),simulated sunlight
20% v/v CH3OH
Pt(0.4 wt%)
1.1
[1]
BaTi0.97Mo0.03O3
52
2.6
Solid state reaction
1,423
5
Xe lamp(300W),simulated sunlight
20% v/v CH3OH
Pt(0.4 wt%)
1.1
[1]
LaFeO3
144.7
null
Flux-growth
1,273
10
Xe lamp (300 W), λ > 420 nm
10vol% CH3OH
Pt(0.5 wt%)
1
[2]
LaFe0.85Ti0.15O3
309.3
2.1
Flux-growth
1,273
10
Xe lamp (300 W), λ > 420 nm
10vol% CH3OH
Pt(0.5 wt%)
1
[2]
La0.85Sr0.15FeO3
30.7
null
Flux-growth
1,273
10
Xe lamp (300 W), λ > 420 nm
10vol% CH3OH
Pt(0.5 wt%)
1
[2]
La0.9625Sr0.0375Fe0.8875Ti0.1125O3
62
null
Flux-growth
1,273
10
Xe lamp (300 W), λ > 420 nm
10vol% CH3OH
Pt(0.5 wt%)
1
[2]
La0.8875Sr0.1125Fe0.9625Ti0.0375O3
422.7
null
Flux-growth
1,273
10
Xe lamp (300 W), λ > 420 nm
10vol% CH3OH
Pt(0.5 wt%)
1
[2]
La0.925Sr0.075Fe0.925Ti0.075O3
554.7
2.1
Flux-growth
1,273
10
Xe lamp (300 W), λ > 420 nm
10vol% CH3OH
Pt(0.5 wt%)
1
[2]
Bi0.5Na0.5TiO3
325.4
2.92
Hydrothermal
433
24
Xe lamp(500W),346 nm±8.6 nm
20vol% CH3OH
Pt(3 wt%)
0.75
[3]
Sr0.9Bi0.1Ti0.9Fe0.1O3
47
null
Hydrothermal
473
48
Hg lamp (500 W),λ ≥ 400 nm
0.05M Na2SO3
Pt(1 wt%)
1
[4]
Sr0.8Bi0.2Ti0.8Fe0.2O3
45
null
Hydrothermal
473
48
Hg lamp (500 W),λ ≥ 400 nm
0.05M Na2SO3
Pt(1 wt%)
1
[4]
Sr0.7Bi0.3Ti0.7Fe0.3O3
25
null
Hydrothermal
473
48
Hg lamp (500 W),λ ≥ 400 nm
0.05M Na2SO3
Pt(1 wt%)
1
[4]
Sr0.6Bi0.4Ti0.6Fe0.4O3
50
null
Hydrothermal
473
48
Hg lamp (500 W),λ ≥ 400 nm
0.05M Na2SO3
Pt(1 wt%)
1
[4]
Sr0.5Bi0.5Ti0.5Fe0.5O3
20
null
Hydrothermal
473
48
Hg lamp (500 W),λ ≥ 400 nm
0.05M Na2SO3
Pt(1 wt%)
1
[4]
SrTiO3
202.6
3.25
Hydrothermal
423
10
Xe lamp(300W),320 nm <λ<780 nm
20% v/v CH3OH
Pt(1 wt%)
0.2
[5]
SrTiO3
106.8
3.25
Hydrothermal
453
10
Xe lamp(300W),320 nm <λ<780 nm
20% v/v CH3OH
Pt(1 wt%)
0.2
[5]
SrTiO3
38.4
3.25
Solid state reaction
1,173
12
Xe lamp(300W),320 nm <λ<780 nm
20% v/v CH3OH
Pt(1 wt%)
0.2
[5]
SrTiO3
null
3.2
Polymerized complex
773
null
null
null
null
null
[6]
SrTi0.99Rh0.01O3
962
null
Polymerized complex
973
null
Xe lamp (300 W), 420 nm<λ<800 nm
20vol% CH3OH
Pt(0.5 wt%)
1
[6]
AgTaO3
null
3.4
Hydrothermal
1,123
24
null
null
null
null
[7]
AgTa0.8Nb0.2O3
null
3.1
Hydrothermal
1,123
24
null
null
null
null
[7]
AgTa0.7Nb0.3O3
null
2.9
Hydrothermal
1,123
24
null
null
null
null
[7]
AgTa0.6Nb0.4O3
null
2.9
Hydrothermal
1,123
24
null
null
null
null
[7]
AgNbO3
null
2.8
Hydrothermal
1,123
24
null
null
null
null
[7]
CaTiO3
null
3.6
Sol-gel
1,123
10
null
null
null
null
[8]
Ca0.98Ag0.01La0.01TiO3
2.6
null
Sol-gel
1,123
10
Xe lamp (350 W), λ > 400 nm
5% v/v CH3OH
none
0.24
[8]
Ca0.96Ag0.02La0.02TiO3
2.9
null
Sol-gel
1,123
10
Xe lamp (350 W), λ > 400 nm
5% v/v CH3OH
none
0.24
[8]
Ca0.94Ag0.03La0.03TiO3
10.1
null
Sol-gel
1,123
10
Xe lamp (350 W), λ > 400 nm
5% v/v CH3OH
none
0.24
[8]
Ca0.92Ag0.04La0.04TiO3
4.1
null
Sol-gel
1,123
10
Xe lamp (350 W), λ > 400 nm
5% v/v CH3OH
none
0.24
[8]
BaTiO3
8
3
Polymerized complex
823
5
Xe lamp (300 W), λ > 420 nm
10vol% CH3OH
Pt(0.25 wt%)
1
[9]
BaTi0.999Rh0.001O3
10
null
Polymerized complex
823
5
Xe lamp (300 W), λ > 420 nm
10vol% CH3OH
Pt(0.25 wt%)
1
[9]
BaTi0.995Rh0.005O3
64
null
Polymerized complex
823
5
Xe lamp (300 W), λ > 420 nm
10vol% CH3OH
Pt(0.25 wt%)
1
[9]
BaTi0.99Rh0.01O3
308
null
Polymerized complex
823
5
Xe lamp (300 W), λ > 420 nm
10vol% CH3OH
Pt(0.25 wt%)
1
[9]
BaTi0.98Rh0.02O3
241
null
Polymerized complex
823
5
Xe lamp (300 W), λ > 420 nm
10vol% CH3OH
Pt(0.25 wt%)
1
[9]
BaTi0.95Rh0.05O3
199
null
Polymerized complex
823
5
Xe lamp (300 W), λ > 420 nm
10vol% CH3OH
Pt(0.25 wt%)
1
[9]
BaTi0.99Rh0.01O3
48
null
Solid state reaction
1,273
10
Xe lamp (300 W), λ > 420 nm
10vol% CH3OH
Pt(0.25 wt%)
1
[9]
SrSnO3
null
4.01
Solid state reaction
1,373
6
null
null
null
null
[10]
SrSnO3
null
4.04
Wet chemical reaction
973
6
null
null
null
null
[10]
CaTi0.99Cu0.01O3
6.2
null
Sol-gel
1,123
7
Xe lamp (350 W), λ > 400 nm
5% v/v CH3OH
NiOx
0.24
[11]
CaTi0.98Cu0.02O3
22.7
null
Sol-gel
1,123
7
Xe lamp (350 W), λ > 400 nm
5% v/v CH3OH
NiOx
0.24
[11]
CaTi0.97Cu0.03O3
12.3
null
Sol-gel
1,123
7
Xe lamp (350 W), λ > 400 nm
5% v/v CH3OH
NiOx
0.24
[11]
CaTi0.96Cu0.04O3
8.1
null
Sol-gel
1,123
7
Xe lamp (350 W), λ > 400 nm
5% v/v CH3OH
NiOx
0.24
[11]
Sr2/3Zn1/3TiO3
null
3.15
Sol-gel
1,173
5
null
null
null
null
[12]
Ba5/6Zn1/6TiO3
null
3.2
Polymerized complex Sol-gel method
1,173
5
null
null
null
null
[12]
NaTaO3
null
3.94
Solvo-combustion
453
2
null
null
null
null
[13]
NaTaO3
null
3.98
Solvo-combustion
673
2
null
null
null
null
[13]
NaTaO3
null
4.01
Solvo-combustion
873
2
null
null
null
null
[13]
NaTaO3
null
4
Solvo-combustion
973
2
null
null
null
null
[13]
SrTiO3
null
3.22
Sol-gel
1,173
4
null
null
null
null
[14]
NaTaO3
null
3.97
Molten salt method
1,023
2
null
null
null
null
[15]
NaNb0.5Ta0.5O3
null
3.43
Molten salt method
1,023
2
null
null
null
null
[15]
Ca0.9La0.1Ti0.9Cr0.1O3
null
2.49
Hydrothermal
473
48
null
null
null
null
[16]
Sr0.9La0.1Ti0.9Cr0.1O3
28.8
2.31
Hydrothermal
473
48
Xe lamp (300 W),λ ≥ 400 nm
10%v/v CH3OH+4g NaOH
Pt(1 wt%)
1
[16]
Ba0.9La0.1Ti0.9Cr0.1O3
null
2.52
Hydrothermal
473
48
null
null
null
null
[16]
c-NaNbO3
423.3
3.29
Furfural alcohol derived polymerization-oxidation
873
5
Xe lamp (300 W), λ > 300 nm
5/22 v/v CH3OH
Pt(1 wt%)
1.1
[17]
o-NaNbO3
241
3.45
Polymerized complex
873
2
Xe lamp (300 W), λ > 300 nm
5/22 v/v CH3OH
Pt(1 wt%)
1.1
[17]
NaTaO3
null
4.01
Solid state reaction
1,173
10
null
null
null
null
[18]
NaTa0.975Bi0.025O3
null
3.65
Solid state reaction
1,173
10
null
null
null
null
[18]
NaTa0.95Bi0.05O3
null
3.05
Solid state reaction
1,173
10
null
null
null
null
[18]
NaTa0.925Bi0.075O3
null
2.95
Solid state reaction
1,173
10
null
null
null
null
[18]
Na0.975Bi0.025TaO3
null
3.75
Solid state reaction
1,173
10
null
null
null
null
[18]
Na0.95Bi0.05TaO3
null
3.65
Solid state reaction
1,173
10
null
null
null
null
[18]
Na0.925Bi0.075TaO3
null
3.65
Solid state reaction
1,173
10
null
null
null
null
[18]
Sr0.95Cr0.05TiO3
84
2.3
Solid state reaction
1,373
24
Xe lamp (300 W), λ≥420 nm
5/22 v/v CH3OH
Pt(0.6 wt%)
0.93
[19]
Sr0.95Cr0.05TiO3
26.8
2.3
Sol-gel hydrothermal method
353
24
Xe lamp (300 W), λ≥420 nm
5/22 v/v CH3OH
Pt(0.6 wt%)
0.93
[19]
Sr0.95Cr0.05TiO3
101.6
2.3
Sol-gel hydrothermal method
393
24
Xe lamp (300 W), λ≥420 nm
5/22 v/v CH3OH
Pt(0.6 wt%)
0.93
[19]
Sr0.95Cr0.05TiO3
137.2
2.3
Sol-gel hydrothermal method
433
24
Xe lamp (300 W), λ≥420 nm
5/22 v/v CH3OH
Pt(0.6 wt%)
0.93
[19]
Sr0.95Cr0.05TiO3
160.4
2.3
Sol-gel hydrothermal method
473
24
Xe lamp (300 W), λ≥420 nm
5/22 v/v CH3OH
Pt(0.6 wt%)
0.93
[19]
Sr0.95Cr0.05TiO3
330.4
2.3
Sol-gel hydrothermal method
473
24
Xe lamp (300 W), λ≥420 nm
5/22 v/v CH3OH
Pt(0.6 wt%)
0.93
[19]
SrTiO3
null
3.23
Sol-gel
973
4
null
null
null
null
[20]
SrTiO3
null
3.1
Polymerized complex
773
5
null
null
null
null
[21]
SrTiO3
null
3.1
Polymerized complex
873
5
null
null
null
null
[21]
SrTiO3
null
3.1
Polymerized complex
973
5
null
null
null
null
[21]
SrTiO3
null
3.1
Polymerized complex
1,073
5
null
null
null
null
[21]
SrTiO3
null
3.1
Polymerized complex
1,273
5
null
null
null
null
[21]
SrTiO3
null
3.1
Solid state reaction
1,073
5
null
null
null
null
[21]
SrTiO3
null
2
Milling assistant method
1,073
2
null
null
null
null
[21]
SrTi0.99Al0.01O3
347
3.45
Solid state reaction
1,273
10
Xe lamp (150 W), UV visible
30%vol CH3CHOHCH3
Au(0.25%)
2.5
[22]
SrTiO3
null
3.3
Solid state reaction
1,273
10
null
null
null
null
[22]
SrTi0.995Al0.005O3
null
3.4
Solid state reaction
1,273
10
null
null
null
null
[22]
SrTi0.985Al0.015O3
null
3.45
Solid state reaction
1,273
10
null
null
null
null
[22]
SrTiO3
188
3.16
Sol-gel
973
4
Xe lamp (300 W), λ≥400 nm
50vol% CH3OH
Pt(0.5 wt%)
1
[23]
SrTi0.9Cr0.1O3−δ
null
2.31
Solid state reaction
1,573
20
null
null
null
null
[24]
La0.1Sr0.9Ti0.9Cr0.1O3
null
2.11
Solid state reaction
1,573
20
null
null
null
null
[24]
SrTiO3
null
3.25
Solid state reaction
1,573
20
null
null
null
null
[24]
LaFeO3
8,600
2.11
Sol-gel auto-combustion
773
2
Hg visible lamp(120W),(λ >> 420 nm)
10vol% CH3OH
null
2.5
[25]
LaFeO3
7,866.7
2.1
Sol-gel auto-combustion
873
2
Hg visible lamp(120W),(λ >> 420 nm)
10vol% CH3OH
null
2.5
[25]
LaFeO3
6,933.3
2.09
Sol-gel auto-combustion
973
2
Hg visible lamp(120W),(λ >> 420 nm)
10vol% CH3OH
null
2.5
[25]
LaFeO3
6,066.7
2.08
Sol-gel auto-combustion
1,073
2
Hg visible lamp(120W),(λ >> 420 nm)
10vol% CH3OH
null
2.5
[25]
LaFeO3
5,466.7
2.07
Sol-gel auto-combustion
1,173
2
Hg visible lamp(120W),(λ >> 420 nm)
10vol% CH3OH
null
2.5
[25]
CaZrO3
12.4
4
Polymerized complex
923
6
Xe lamp (300 W), λ > 420 nm
12.5%v/v HCOOH
Pt(1 wt%)
0.56
[26]
CaTiO3
null
3.52
Template-free hydrothermal method
453
15
null
null
null
null
[27]
Ca0.95La0.05Ti0.95Cr0.05O3
98
2.49
Template-free hydrothermal method
453
15
Hg lamp (500 W),λ ≥ 400 nm
0.05M Na2SO3
Pt(1 wt%)
1
[27]
Ca0.9La0.1Ti0.9Cr0.1O3
110
2.48
Template-free hydrothermal method
453
15
Hg lamp (500 W),λ ≥ 400 nm
0.05M Na2SO3
Pt(1 wt%)
1
[27]
Ca0.8La0.2Ti0.8Cr0.2O3
164
2.5
Template-free hydrothermal method
453
15
Hg lamp (500 W),λ ≥ 400 nm
0.05M Na2SO3
Pt(1 wt%)
1
[27]
NaTaO3
null
3.96
Spray pyrolysis
1,173
null
null
null
null
null
[28]
NaBi0.06Ta0.94O3
null
2.96
Spray pyrolysis
1,173
null
null
null
null
null
[28]
End of preview.

CataTQA metadata info

Domain Dataset or Paper Name Access URL DOI Rename in Our Dataset
photocatalysis Machine learning aided design of perovskite oxide materials for photocatalytic water splitting https://www.sciencedirect.com/science/article/pii/S2095495621000644#s0090 10.1016/j.jechem.2021.01.035 table1 table2 table3
photocatalysis Data mining in photocatalytic water splitting over perovskites literature for higher hydrogen production https://www.sciencedirect.com/science/article/pii/S0926337318309470#sec0130 10.1016/j.apcatb.2018.09.104 table4 table5
photocatalysis An insight into tetracycline photocatalytic degradation by MOFs using the artificial intelligence technique https://www.nature.com/articles/s41598-022-10563-8#Sec10 10.1038/s41598-022-10563-8 table6
photocatalysis Analysis of photocatalytic CO2 reduction over MOFs using machine learning https://pubs.rsc.org/en/content/articlelanding/2024/ta/d3ta07001h 10.1039/D3TA07001H table7
photocatalysis Data-driven for accelerated design strategy of photocatalytic degradation activity prediction of doped TiO2 photocatalyst https://www.sciencedirect.com/science/article/pii/S2214714422005700#s0055 10.1016/j.jwpe.2022.103126 table8
photocatalysis A generalized predictive model for TiO2–Catalyzed photo-degradation rate constants of water contaminants through ANN https://www.sciencedirect.com/science/article/pii/S0013935120305909 10.1016/j.envres.2020.109697 table9
photocatalysis Statistical information review of CO2 photocatalytic reduction via bismuth-based photocatalysts using ANN https://www.sciencedirect.com/science/article/pii/S1110016824008640?via%3Dihub 10.1016/j.aej.2024.07.120 table10
photocatalysis Accelerated Design for Perovskite-Oxide-Based Photocatalysts Using Machine Learning Techniques https://www.mdpi.com/1996-1944/17/12/3026 10.3390/ma17123026 table11
electrocatalysis Building Blocks for High Performance in Electrocatalytic CO2 Reduction https://acs.figshare.com/articles/dataset/Building_Blocks_for_High_Performance_in_Electrocatalytic_CO_sub_2_sub_Reduction/5293804 10.1021/acs.jpclett.7b01380 table12
electrocatalysis Unlocking New Insights for Electrocatalyst Design: A Unique Data Science Workflow https://github.com/ruiding-uchicago/InCrEDible-MaT-GO 10.1021/acscatal.3c01914 table13
electrocatalysis Perovskite-based electrocatalyst discovery and design using word embeddings from retrained SciBERT https://github.com/arunm917/Perovskite-based-electrocatalyst-design-and-discovery - table14
electrocatalysis Exploring the Composition Space of High-Entropy Alloy Nanoparticles with Bayesian Optimization https://github.com/vamints/Scripts_BayesOpt_PtRuPdRhAu_paper 10.1021/acscatal.2c02563 table15
electrocatalysis High Throughput Discovery of Complex Metal Oxide Electrocatalysts for Oxygen Reduction Reaction https://data.caltech.edu/records/1km87-52j70 10.1007/s12678-021-00694-3 table16
photoelectrocatalysis High-thoughput OCM data https://cads.eng.hokudai.ac.jp/datamanagement/datasources/21010bbe-0a5c-4d12-a5fa-84eea540e4be/ 10.1021/acscatal.9b04293 table17
photoelectrocatalysis CatApp Data https://cads.eng.hokudai.ac.jp/datamanagement/datasources/20de069b-53cf-4310-9090-1738f53231e2/ 10.1002/anie.201107947 table18
photoelectrocatalysis Oxidative Coupling of Methane https://cads.eng.hokudai.ac.jp/datamanagement/datasources/9436f770-a7e2-4e87-989b-c5a9ce2312bf/ 10.1002/cctc.202001032 table19
photoelectrocatalysis ChemCatChem https://cads.eng.hokudai.ac.jp/datamanagement/datasources/224dd7ad-7677-4161-b744-a0c796bf5347/ 10.1002/cctc.201100186 table20
photoelectrocatalysis HTP OCM data obtained with catalysts designed on the basis of heuristics derived from random catalyst data https://cads.eng.hokudai.ac.jp/datamanagement/datasources/92200ba4-7644-44ca-9801-ed3cc52fc32f/ 10.1002/cctc.202100460 table21
photoelectrocatalysis Perovskite Data https://cads.eng.hokudai.ac.jp/datamanagement/datasources/f1b42c58-a423-4ec2-8bcf-e66c6470ff7d/ 10.1039/C2EE22341D table22
photoelectrocatalysis Random catalyst OCM data by HTE https://cads.eng.hokudai.ac.jp/datamanagement/datasources/f7e30001-e440-4c1a-be64-ea866b2f77cb/ 10.1021/acscatal.0c04629 table23
photoelectrocatalysis Synthesis of Heterogeneous Catalysts in Catalyst Informatics to Bridge Experiment and High-Throughput Calculation https://cads.eng.hokudai.ac.jp/datamanagement/datasources/f2a6d4f2-91be-48ba-bf13-ffebbd90f6ee/ 10.1021/jacs.2c06143 table24
photoelectrocatalysis Multi-component La2O3- based catalysts in OCM https://cads.eng.hokudai.ac.jp/datamanagement/datasources/d6347fc1-e4d7-412e-aed5-a8ffa415a703/ 10.1039/D1CY02206G table25
photoelectrocatalysis Catalyst Modification in OCM via Manganese Promoter https://cads.eng.hokudai.ac.jp/datamanagement/datasources/32dbec2c-c3d5-43ec-962a-90dba719bb44/ 10.1021/acs.iecr.1c05079 table26
photoelectrocatalysis Leveraging Machine Learning Engineering to Uncover Insights in Heterogeneous Catalyst Design for OCM https://cads.eng.hokudai.ac.jp/datamanagement/datasources/d84c1e22-ceb9-488a-8d45-4c7cf1c603b5/ 10.1039/D3CY00596H table27
photoelectrocatalysis Oxidative of Coupling Literature and Highthroughput Data https://cads.eng.hokudai.ac.jp/datamanagement/datasources/adb27910-d0e5-4a22-9415-580bf597035a/ 10.1021/acscatal.0c04629, 10.1002/cctc.201100186 table28
photoelectrocatalysis Catalytic Material Database http://cmd.us.edu.pl/catalog/ - table29
photoelectrocatalysis Catalyst Hub http://www.catalysthub.net/ - table31
magnetic material Magnetic Database https://doi.org/10.15131/shef.data.24008055.v1 10.1063/9.0000657 table32
magnetic material Materials database of Curie and Néel magnetic phase transition temperatures https://doi.org/10.6084/m9.figshare.5702740.v1 10.1038/sdata.2018.111 table33
magnetic material Data-driven design of molecular nanomagnets https://go.uv.es/rosaleny/SIMDAVIS 10.1038/s41467-022-35336-9 table34
perovskite Predicting the thermodynamic stability of perovskite oxides using machine learning models https://doi.org/10.1016/j.dib.2018.05.007 - table35 table36 table37
others Crystallography Open Database(COD) http://www.crystallography.net/cod/ - table38
others Alloy synthesis and processing by semi-supervised text mining https://www.nature.com/articles/s41524-023-01138-w 10.1038/s41524-023-01138-w table39
others A Machine Learning Approach to Zeolite Synthesis Enabled by Automatic Literature Data Extraction https://github.com/olivettigroup/table_extractor 10.1021/acscentsci.9b00193 table40
others ZeoSyn: A Comprehensive Zeolite Synthesis Dataset Enabling Machine-Learning Rationalization of Hydrothermal Parameters https://github.com/eltonpan/zeosyn_dataset 10.1021/acscentsci.3c01615 table41
others Unveiling the Potential of AI for Nanomaterial Morphology Prediction https://github.com/acid-design-lab/Nanomaterial_Morphology_Prediction 预印本:10.48550/arXiv.2406.02591 table42
others AFLOW-2 CFID dataset 400k https://doi.org/10.1016/j.commatsci.2012.02.005 10.1016/j.commatsci.2012.02.005 table43
others Alexandria_DB PBE 3D all 5 million https://alexandria.icams.rub.de/ - table44
others arXiv dataset 1.8 million https://www.kaggle.com/Cornell-University/arxiv - table45
others CCCBDB dataset 1333 https://cccbdb.nist.gov/ - table46
others 3D dataset 55k https://www.nature.com/articles/s41524-020-00440-1 10.1038/s41524-020-00440-1 table47
others 2D dataset 1.1k https://www.nature.com/articles/s41524-020-00440-1 10.1038/s41524-020-00440-1 table48
others halide perovskite dataset229 https://doi.org/10.1039/D1EE02971A 10.1039/D1EE02971A table49
others hMOF dataset 137k https://doi.org/10.1021/acs.jpcc.6b08729 10.1021/acs.jpcc.6b08729 table50
others HOPV15 dataset 4.5k https://www.nature.com/articles/sdata201686 10.1038/sdata.2016.86 table51
others Surface property dataset 607 https://doi.org/10.1039/D4DD00031E 10.1039/D4DD00031E table52
others JARVIS-FF 2k https://www.nature.com/articles/s41524-020-00440-1 10.1038/s41524-020-00440-1 table53
others MEGNET-3D CFID dataset 69k - - table54
others Materials Project-3D CFID dataset 127k https://next-gen.materialsproject.org/ 10.1063/1.4812323 table55
others Materials Project-3D CFID dataset 84k - - table56
others OQMD-3D dataset 800k https://www.oqmd.org/download/ 10.1038/npjcompumats.2015.10 table57
others Polymer genome 1k https://datadryad.org/dataset/doi:10.5061/dryad.5ht3n 10.1038/sdata.2016.12 table58
others QETB dataset 860k https://arxiv.org/abs/2112.11585 预印本:10.48550/arXiv.2112.11585 table59
others QM9 dataset 130k, from DGL https://www.nature.com/articles/sdata201422 10.1038/sdata.2014.22 table60
others QM9 standardized dataset 130k - - table61
others QMOF dataset 20k https://www.cell.com/matter/fulltext/S2590-2385(21)00070-9 10.1016/j.matt.2021.02.015 table62
others SNUMAT Hybrid functional dataset 10k https://www.nature.com/articles/s41597-020-00723-8 10.1038/s41597-020-00723-8 table63
others SSUB dataset 1726 https://github.com/wolverton-research-group/qmpy - table64
others chem dataset 16414 https://www.nature.com/articles/s41524-018-0085-8 10.1038/s41524-018-0085-8 table65
others dataset 607 https://doi.org/10.1039/D4DD00031E 10.1039/D4DD00031E table66
others 2DMatPedia dataset 6k http://www.2dmatpedia.org/ 10.1038/s41597-019-0097-3 table67
others vacancy dataset 464 https://doi.org/10.1063/5.0135382 10.1063/5.0135382 table68
Downloads last month
148