idx
int64 0
36.9k
| graph
stringlengths 16
26
| train_metric
float64 0
6.24
| valid_metric
float64 0
3.87
| test_metric
float64 0
4.42
| params
int64 624k
9.68M
| train_time
float64 0.15
63.8
| valid_time
float64 0.01
13.7
| test_time
float64 0.01
26.4
| dataset
stringclasses 5
values | task
stringclasses 12
values | seed
int64 0
14
|
---|---|---|---|---|---|---|---|---|---|---|---|
0 | graph_00000000000010 | 0.035823 | 0.039779 | 0.042986 | 628,993 | 0.210919 | 0.025742 | 0.03171 | rel-avito | ad-ctr | 0 |
1 | graph_00000000000011 | 0.036002 | 0.039706 | 0.043119 | 1,027,841 | 0.254637 | 0.029615 | 0.029301 | rel-avito | ad-ctr | 0 |
2 | graph_00000000001000 | 0.039915 | 0.036456 | 0.04133 | 728,065 | 0.672801 | 0.16009 | 0.173957 | rel-avito | ad-ctr | 0 |
3 | graph_00000000001010 | 0.0399 | 0.037344 | 0.041532 | 1,084,417 | 0.733425 | 0.165524 | 0.180053 | rel-avito | ad-ctr | 0 |
4 | graph_00000000001011 | 0.038993 | 0.035612 | 0.040271 | 1,483,265 | 0.81711 | 0.175551 | 0.189251 | rel-avito | ad-ctr | 0 |
5 | graph_00000000001100 | 0.041841 | 0.035659 | 0.040572 | 1,188,737 | 1.932393 | 0.56621 | 0.605406 | rel-avito | ad-ctr | 0 |
6 | graph_00000000001110 | 0.041286 | 0.034738 | 0.039456 | 1,545,089 | 1.988815 | 0.584179 | 0.804443 | rel-avito | ad-ctr | 0 |
7 | graph_00000000001111 | 0.044402 | 0.03436 | 0.039518 | 1,943,937 | 2.095881 | 0.55576 | 0.631059 | rel-avito | ad-ctr | 0 |
8 | graph_00000100000000 | 0.035966 | 0.039638 | 0.042867 | 628,993 | 0.200169 | 0.024553 | 0.024427 | rel-avito | ad-ctr | 0 |
9 | graph_00000100000010 | 0.035962 | 0.03974 | 0.04313 | 985,345 | 0.29331 | 0.035347 | 0.034868 | rel-avito | ad-ctr | 0 |
10 | graph_00000100000011 | 0.035802 | 0.039859 | 0.043081 | 1,384,193 | 0.351324 | 0.039897 | 0.039931 | rel-avito | ad-ctr | 0 |
11 | graph_00000100001000 | 0.040708 | 0.034019 | 0.039461 | 1,084,417 | 0.820937 | 0.17568 | 0.188549 | rel-avito | ad-ctr | 0 |
12 | graph_00000100001010 | 0.039808 | 0.035301 | 0.039766 | 1,440,769 | 0.874714 | 0.181539 | 0.194999 | rel-avito | ad-ctr | 0 |
13 | graph_00000100001011 | 0.03944 | 0.036057 | 0.040749 | 1,839,617 | 0.948828 | 0.18597 | 0.196249 | rel-avito | ad-ctr | 0 |
14 | graph_00000100001100 | 0.040747 | 0.034944 | 0.040183 | 1,545,089 | 2.130979 | 0.579949 | 0.799121 | rel-avito | ad-ctr | 0 |
15 | graph_00000100001110 | 0.040452 | 0.035803 | 0.040419 | 1,901,441 | 2.097236 | 0.553075 | 0.72543 | rel-avito | ad-ctr | 0 |
16 | graph_00000100001111 | 0.04304 | 0.035601 | 0.040197 | 2,300,289 | 2.144066 | 0.554447 | 0.779459 | rel-avito | ad-ctr | 0 |
17 | graph_00000110000000 | 0.035928 | 0.039725 | 0.043099 | 1,027,841 | 0.260536 | 0.031721 | 0.031286 | rel-avito | ad-ctr | 0 |
18 | graph_00000110000010 | 0.035793 | 0.039842 | 0.043044 | 1,384,193 | 0.350699 | 0.04022 | 0.040181 | rel-avito | ad-ctr | 0 |
19 | graph_00000110000011 | 0.035877 | 0.039805 | 0.042985 | 1,515,777 | 0.358853 | 0.042688 | 0.042111 | rel-avito | ad-ctr | 0 |
20 | graph_00000110001000 | 0.039618 | 0.036714 | 0.041503 | 1,483,265 | 0.869755 | 0.177817 | 0.190835 | rel-avito | ad-ctr | 0 |
21 | graph_00000110001010 | 0.038678 | 0.035598 | 0.040311 | 1,839,617 | 0.904719 | 0.180861 | 0.195724 | rel-avito | ad-ctr | 0 |
22 | graph_00000110001011 | 0.039011 | 0.036354 | 0.040882 | 1,971,201 | 0.929526 | 0.181044 | 0.196463 | rel-avito | ad-ctr | 0 |
23 | graph_00000110001100 | 0.040641 | 0.036916 | 0.041311 | 1,943,937 | 2.08604 | 0.559015 | 0.698279 | rel-avito | ad-ctr | 0 |
24 | graph_00000110001110 | 0.040185 | 0.035252 | 0.039931 | 2,300,289 | 2.15623 | 0.565756 | 0.706528 | rel-avito | ad-ctr | 0 |
25 | graph_00000110001111 | 0.041685 | 0.033279 | 0.038762 | 2,431,873 | 2.197426 | 0.575438 | 0.80322 | rel-avito | ad-ctr | 0 |
26 | graph_00001000000000 | 0.035816 | 0.039825 | 0.042999 | 638,465 | 0.16917 | 0.020283 | 0.023391 | rel-avito | ad-ctr | 0 |
27 | graph_00001000000010 | 0.0358 | 0.039819 | 0.04305 | 994,817 | 0.276993 | 0.031774 | 0.031105 | rel-avito | ad-ctr | 0 |
28 | graph_00001000000011 | 0.03584 | 0.039802 | 0.043003 | 1,393,665 | 0.34769 | 0.037461 | 0.035842 | rel-avito | ad-ctr | 0 |
29 | graph_00001000001000 | 0.039435 | 0.035774 | 0.040344 | 1,093,889 | 0.725951 | 0.16717 | 0.17922 | rel-avito | ad-ctr | 0 |
30 | graph_00001000001010 | 0.039809 | 0.036641 | 0.041039 | 1,450,241 | 0.812338 | 0.171729 | 0.18555 | rel-avito | ad-ctr | 0 |
31 | graph_00001000001011 | 0.04118 | 0.036262 | 0.040737 | 1,849,089 | 0.86434 | 0.175844 | 0.187847 | rel-avito | ad-ctr | 0 |
32 | graph_00001000001100 | 0.038943 | 0.036359 | 0.040842 | 1,554,561 | 2.062592 | 0.593586 | 0.809069 | rel-avito | ad-ctr | 0 |
33 | graph_00001000001110 | 0.040325 | 0.036234 | 0.040493 | 1,910,913 | 2.10282 | 0.631517 | 0.808126 | rel-avito | ad-ctr | 0 |
34 | graph_00001000001111 | 0.039272 | 0.036204 | 0.040664 | 2,309,761 | 2.15237 | 0.565386 | 0.764146 | rel-avito | ad-ctr | 0 |
35 | graph_00001000100000 | 0.035843 | 0.039778 | 0.043013 | 1,099,137 | 0.288774 | 0.030266 | 0.030651 | rel-avito | ad-ctr | 0 |
36 | graph_00001000100010 | 0.035921 | 0.039595 | 0.042895 | 1,455,489 | 0.357885 | 0.043935 | 0.045405 | rel-avito | ad-ctr | 0 |
37 | graph_00001000100011 | 0.035884 | 0.039753 | 0.043 | 1,854,337 | 0.42556 | 0.047875 | 0.048622 | rel-avito | ad-ctr | 0 |
38 | graph_00001000101000 | 0.038565 | 0.036676 | 0.040756 | 1,554,561 | 0.828625 | 0.186429 | 0.194505 | rel-avito | ad-ctr | 0 |
39 | graph_00001000101010 | 0.039984 | 0.034353 | 0.039242 | 1,910,913 | 0.874194 | 0.183512 | 0.201732 | rel-avito | ad-ctr | 0 |
40 | graph_00001000101011 | 0.040197 | 0.036679 | 0.041217 | 2,309,761 | 0.972205 | 0.192358 | 0.20789 | rel-avito | ad-ctr | 0 |
41 | graph_00001000101100 | 0.040846 | 0.035404 | 0.039803 | 1,686,145 | 2.031447 | 0.60194 | 0.809144 | rel-avito | ad-ctr | 0 |
42 | graph_00001000101110 | 0.039917 | 0.035079 | 0.040123 | 2,042,497 | 2.126108 | 0.570338 | 0.791435 | rel-avito | ad-ctr | 0 |
43 | graph_00001000101111 | 0.040658 | 0.036653 | 0.041033 | 2,441,345 | 2.182818 | 0.575254 | 0.80347 | rel-avito | ad-ctr | 0 |
44 | graph_00001100000000 | 0.035853 | 0.039754 | 0.043074 | 994,817 | 0.280005 | 0.033009 | 0.031691 | rel-avito | ad-ctr | 0 |
45 | graph_00001100000010 | 0.03581 | 0.039773 | 0.042992 | 1,351,169 | 0.350156 | 0.040944 | 0.040268 | rel-avito | ad-ctr | 0 |
46 | graph_00001100000011 | 0.035854 | 0.039796 | 0.043064 | 1,750,017 | 0.434726 | 0.046476 | 0.053777 | rel-avito | ad-ctr | 0 |
47 | graph_00001100001000 | 0.043236 | 0.03476 | 0.039542 | 1,450,241 | 0.80935 | 0.177595 | 0.1916 | rel-avito | ad-ctr | 0 |
48 | graph_00001100001010 | 0.038239 | 0.035874 | 0.040288 | 1,806,593 | 0.86773 | 0.179485 | 0.19234 | rel-avito | ad-ctr | 0 |
49 | graph_00001100001011 | 0.039137 | 0.035956 | 0.040639 | 2,205,441 | 0.93438 | 0.187182 | 0.198946 | rel-avito | ad-ctr | 0 |
50 | graph_00001100001100 | 0.041851 | 0.035694 | 0.040234 | 1,910,913 | 1.809326 | 0.545424 | 0.606809 | rel-avito | ad-ctr | 0 |
51 | graph_00001100001110 | 0.042298 | 0.033677 | 0.039224 | 2,267,265 | 2.158633 | 0.589871 | 0.805735 | rel-avito | ad-ctr | 0 |
52 | graph_00001100001111 | 0.041478 | 0.035071 | 0.040219 | 2,666,113 | 2.196044 | 0.573296 | 0.765745 | rel-avito | ad-ctr | 0 |
53 | graph_00001100100000 | 0.03588 | 0.039699 | 0.042991 | 1,455,489 | 0.359356 | 0.041013 | 0.041312 | rel-avito | ad-ctr | 0 |
54 | graph_00001100100010 | 0.035826 | 0.039833 | 0.042997 | 1,811,841 | 0.453558 | 0.049484 | 0.053228 | rel-avito | ad-ctr | 0 |
55 | graph_00001100100011 | 0.035834 | 0.039768 | 0.043012 | 2,210,689 | 0.481244 | 0.05568 | 0.059865 | rel-avito | ad-ctr | 0 |
56 | graph_00001100101000 | 0.03893 | 0.035976 | 0.040699 | 1,910,913 | 0.884634 | 0.180616 | 0.194571 | rel-avito | ad-ctr | 0 |
57 | graph_00001100101010 | 0.042406 | 0.034981 | 0.039811 | 2,267,265 | 0.965925 | 0.190422 | 0.205079 | rel-avito | ad-ctr | 0 |
58 | graph_00001100101011 | 0.041069 | 0.035663 | 0.040721 | 2,666,113 | 1.038822 | 0.194695 | 0.211388 | rel-avito | ad-ctr | 0 |
59 | graph_00001100101100 | 0.039927 | 0.035754 | 0.040578 | 2,042,497 | 2.070029 | 0.555493 | 0.694177 | rel-avito | ad-ctr | 0 |
60 | graph_00001100101110 | 0.040744 | 0.033691 | 0.038825 | 2,398,849 | 2.166118 | 0.565458 | 0.710919 | rel-avito | ad-ctr | 0 |
61 | graph_00001100101111 | 0.038608 | 0.036344 | 0.040722 | 2,797,697 | 2.218189 | 0.563985 | 0.708658 | rel-avito | ad-ctr | 0 |
62 | graph_00001110000000 | 0.035852 | 0.03975 | 0.04298 | 1,393,665 | 0.349066 | 0.036098 | 0.036292 | rel-avito | ad-ctr | 0 |
63 | graph_00001110000010 | 0.03582 | 0.03983 | 0.043105 | 1,750,017 | 0.417452 | 0.047366 | 0.046254 | rel-avito | ad-ctr | 0 |
64 | graph_00001110000011 | 0.035856 | 0.039821 | 0.042995 | 1,881,601 | 0.465061 | 0.055954 | 0.057775 | rel-avito | ad-ctr | 0 |
65 | graph_00001110001000 | 0.039851 | 0.034643 | 0.039243 | 1,849,089 | 0.853962 | 0.176837 | 0.19254 | rel-avito | ad-ctr | 0 |
66 | graph_00001110001010 | 0.040087 | 0.035739 | 0.040763 | 2,205,441 | 0.935229 | 0.205203 | 0.203244 | rel-avito | ad-ctr | 0 |
67 | graph_00001110001011 | 0.038986 | 0.036025 | 0.040884 | 2,337,025 | 0.971537 | 0.197551 | 0.204886 | rel-avito | ad-ctr | 0 |
68 | graph_00001110001100 | 0.040005 | 0.035811 | 0.040345 | 2,309,761 | 1.867262 | 0.550212 | 0.596466 | rel-avito | ad-ctr | 0 |
69 | graph_00001110001110 | 0.039197 | 0.035279 | 0.040157 | 2,666,113 | 2.189359 | 0.559185 | 0.693252 | rel-avito | ad-ctr | 0 |
70 | graph_00001110001111 | 0.042887 | 0.033159 | 0.038598 | 2,797,697 | 2.19271 | 0.556636 | 0.692915 | rel-avito | ad-ctr | 0 |
71 | graph_00001110100000 | 0.036256 | 0.040255 | 0.043296 | 1,854,337 | 0.423399 | 0.047142 | 0.047141 | rel-avito | ad-ctr | 0 |
72 | graph_00001110100010 | 0.035895 | 0.039718 | 0.043057 | 2,210,689 | 0.493486 | 0.05401 | 0.056023 | rel-avito | ad-ctr | 0 |
73 | graph_00001110100011 | 0.035814 | 0.039784 | 0.043027 | 2,342,273 | 0.505232 | 0.05909 | 0.059563 | rel-avito | ad-ctr | 0 |
74 | graph_00001110101000 | 0.040431 | 0.03488 | 0.039815 | 2,309,761 | 0.982937 | 0.18798 | 0.203773 | rel-avito | ad-ctr | 0 |
75 | graph_00001110101010 | 0.039842 | 0.035496 | 0.040741 | 2,666,113 | 1.067464 | 0.196002 | 0.21149 | rel-avito | ad-ctr | 0 |
76 | graph_00001110101011 | 0.042053 | 0.034084 | 0.038967 | 2,797,697 | 1.09198 | 0.215707 | 0.213687 | rel-avito | ad-ctr | 0 |
77 | graph_00001110101100 | 0.040248 | 0.036659 | 0.041363 | 2,441,345 | 2.164197 | 0.556663 | 0.74458 | rel-avito | ad-ctr | 0 |
78 | graph_00001110101110 | 0.039196 | 0.036785 | 0.041097 | 2,797,697 | 2.238606 | 0.55712 | 0.696161 | rel-avito | ad-ctr | 0 |
79 | graph_00001110101111 | 0.039863 | 0.034459 | 0.039384 | 2,929,281 | 2.262077 | 0.576839 | 0.813802 | rel-avito | ad-ctr | 0 |
80 | graph_00010000000000 | 0.03581 | 0.039825 | 0.043054 | 638,465 | 0.258905 | 0.039587 | 0.047234 | rel-avito | ad-ctr | 0 |
81 | graph_00010000000010 | 0.035799 | 0.039849 | 0.04305 | 994,817 | 0.992324 | 0.217075 | 0.225223 | rel-avito | ad-ctr | 0 |
82 | graph_00010000000011 | 0.035848 | 0.039836 | 0.043114 | 1,393,665 | 1.021449 | 0.221389 | 0.202421 | rel-avito | ad-ctr | 0 |
83 | graph_00010000001000 | 0.038724 | 0.03683 | 0.041147 | 1,093,889 | 1.430642 | 0.392786 | 0.369218 | rel-avito | ad-ctr | 0 |
84 | graph_00010000001010 | 0.041823 | 0.033707 | 0.039338 | 1,450,241 | 1.943074 | 0.440291 | 0.544832 | rel-avito | ad-ctr | 0 |
85 | graph_00010000001011 | 0.039762 | 0.035385 | 0.040298 | 1,849,089 | 1.888476 | 0.498979 | 0.460953 | rel-avito | ad-ctr | 0 |
86 | graph_00010000001100 | 0.038583 | 0.036744 | 0.041186 | 1,554,561 | 2.906339 | 0.763982 | 0.906312 | rel-avito | ad-ctr | 0 |
87 | graph_00010000001110 | 0.041127 | 0.034538 | 0.040161 | 1,910,913 | 2.883146 | 0.748113 | 1.034557 | rel-avito | ad-ctr | 0 |
88 | graph_00010000001111 | 0.039349 | 0.036959 | 0.041684 | 2,309,761 | 3.339369 | 0.873106 | 1.154876 | rel-avito | ad-ctr | 0 |
89 | graph_00010001000000 | 0.035813 | 0.039829 | 0.043008 | 1,099,137 | 2.187612 | 0.533397 | 0.601332 | rel-avito | ad-ctr | 0 |
90 | graph_00010001000010 | 0.035834 | 0.039854 | 0.043107 | 1,455,489 | 2.298829 | 0.551382 | 0.560044 | rel-avito | ad-ctr | 0 |
91 | graph_00010001000011 | 0.035811 | 0.03981 | 0.043061 | 1,854,337 | 2.423588 | 0.540422 | 0.597339 | rel-avito | ad-ctr | 0 |
92 | graph_00010001001000 | 0.038557 | 0.036054 | 0.040533 | 1,554,561 | 2.84488 | 0.709384 | 0.825397 | rel-avito | ad-ctr | 0 |
93 | graph_00010001001010 | 0.039999 | 0.036316 | 0.040908 | 1,910,913 | 2.979694 | 0.723546 | 0.823749 | rel-avito | ad-ctr | 0 |
94 | graph_00010001001011 | 0.03934 | 0.035329 | 0.040048 | 2,309,761 | 3.013724 | 0.715194 | 0.857164 | rel-avito | ad-ctr | 0 |
95 | graph_00010001001100 | 0.040726 | 0.035244 | 0.039911 | 1,686,145 | 4.225667 | 1.113276 | 1.416741 | rel-avito | ad-ctr | 0 |
96 | graph_00010001001110 | 0.039709 | 0.035395 | 0.040182 | 2,042,497 | 4.342244 | 1.161277 | 1.420779 | rel-avito | ad-ctr | 0 |
97 | graph_00010001001111 | 0.039554 | 0.034651 | 0.039383 | 2,441,345 | 4.375675 | 1.211109 | 1.520498 | rel-avito | ad-ctr | 0 |
98 | graph_00010100000000 | 0.035951 | 0.039756 | 0.043155 | 994,817 | 0.928731 | 0.195004 | 0.227634 | rel-avito | ad-ctr | 0 |
99 | graph_00010100000010 | 0.035828 | 0.039846 | 0.043013 | 1,351,169 | 1.304163 | 0.270146 | 0.277328 | rel-avito | ad-ctr | 0 |
RDB2G-Bench
This is an offical dataset of the paper RDB2G-Bench: A Comprehensive Benchmark for Automatic Graph Modeling of Relational Databases.
RDB2G-Bench is a toolkit for benchmarking graph-based analysis and prediction tasks by converting relational database data into graphs.
Our code is available at GitHub.
Overview
RDB2G-Bench provides comprehensive performance evaluation data for graph neural network models applied to relational database tasks. The dataset contains extensive experiments across multiple graph configurations and architectures.
Dataset Summary
Each CSV file contains experimental results with the following columns:
Column | Description |
---|---|
idx |
Unique identifier for each experimental configuration |
graph |
Binary-encoded string representing the graph structure configuration (e.g., "graph_00000000000010") |
train_metric |
Performance metric on the training set (e.g., AUC for classification, MSE for regression, MAP for recommendation) |
valid_metric |
Performance metric on the validation set |
test_metric |
Performance metric on the test set |
params |
Total number of trainable parameters in the model |
train_time |
Training time in seconds |
valid_time |
Validation time in seconds |
test_time |
Testing time in seconds |
dataset |
Name of the RDB dataset used (e.g., "rel-avito", "rel-f1") |
task |
Name of the prediction task (e.g., "ad-ctr", "user-clicks") |
seed |
Random seed for reproducibility |
Graph Column Specification
The graph
column uses binary encoding to represent different edge configurations in the graph structure. Each bit position corresponds to a specific edge type as defined in edge_info.json
:
- 1: Edge is connected
- 0: Edge is disconnected
Edge Types:
- f2p: Standard foreign key relationships that each table row is transformed into a node (Row2Node).
- r2e: Converted relationships that each table row is transformed into an edge (Row2N/E).
The complete edge mapping for each dataset can be found in the edge_info.json
file.
Reference
The dataset construction and implementation of RDB2G-Bench based on RelBench framework.
License
This project is distributed under the MIT License as specified in the LICENSE file.
- Downloads last month
- 186