jackkuo commited on
Commit
7ac247d
·
verified ·
1 Parent(s): e2f0065

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +3 -0
  2. 29AyT4oBgHgl3EQfb_di/content/tmp_files/2301.00273v1.pdf.txt +1110 -0
  3. 29AyT4oBgHgl3EQfb_di/content/tmp_files/load_file.txt +0 -0
  4. 2dFAT4oBgHgl3EQfkh3i/content/tmp_files/2301.08612v1.pdf.txt +1544 -0
  5. 2dFAT4oBgHgl3EQfkh3i/content/tmp_files/load_file.txt +0 -0
  6. 6dFJT4oBgHgl3EQflizf/content/tmp_files/2301.11584v1.pdf.txt +1959 -0
  7. 6dFJT4oBgHgl3EQflizf/content/tmp_files/load_file.txt +0 -0
  8. 8tFJT4oBgHgl3EQfnyx6/content/tmp_files/2301.11593v1.pdf.txt +1890 -0
  9. 8tFJT4oBgHgl3EQfnyx6/content/tmp_files/load_file.txt +0 -0
  10. 99E4T4oBgHgl3EQfDgse/content/tmp_files/2301.04869v1.pdf.txt +1726 -0
  11. 99E4T4oBgHgl3EQfDgse/content/tmp_files/load_file.txt +0 -0
  12. 9tFLT4oBgHgl3EQfCC72/content/tmp_files/2301.11974v1.pdf.txt +2684 -0
  13. 9tFLT4oBgHgl3EQfCC72/content/tmp_files/load_file.txt +0 -0
  14. BNE3T4oBgHgl3EQfTwqq/content/tmp_files/2301.04445v1.pdf.txt +1153 -0
  15. BNE3T4oBgHgl3EQfTwqq/content/tmp_files/load_file.txt +0 -0
  16. ENFRT4oBgHgl3EQfAze2/content/tmp_files/2301.13463v1.pdf.txt +974 -0
  17. ENFRT4oBgHgl3EQfAze2/content/tmp_files/load_file.txt +0 -0
  18. JNFRT4oBgHgl3EQfCTcy/content/tmp_files/2301.13468v1.pdf.txt +593 -0
  19. JNFRT4oBgHgl3EQfCTcy/content/tmp_files/load_file.txt +0 -0
  20. MtAyT4oBgHgl3EQf6vrQ/content/tmp_files/2301.00828v1.pdf.txt +1347 -0
  21. MtAyT4oBgHgl3EQf6vrQ/content/tmp_files/load_file.txt +0 -0
  22. MtFJT4oBgHgl3EQfzS0r/vector_store/index.pkl +3 -0
  23. O9A0T4oBgHgl3EQfC_9-/content/tmp_files/2301.01997v1.pdf.txt +1322 -0
  24. O9A0T4oBgHgl3EQfC_9-/content/tmp_files/load_file.txt +0 -0
  25. PdE2T4oBgHgl3EQfrgiA/content/tmp_files/2301.04050v1.pdf.txt +1332 -0
  26. PdE2T4oBgHgl3EQfrgiA/content/tmp_files/load_file.txt +0 -0
  27. QdAyT4oBgHgl3EQf7vpN/content/tmp_files/2301.00843v1.pdf.txt +1564 -0
  28. QdAyT4oBgHgl3EQf7vpN/content/tmp_files/load_file.txt +0 -0
  29. SNE0T4oBgHgl3EQf1wKp/content/tmp_files/2301.02704v1.pdf.txt +704 -0
  30. SNE0T4oBgHgl3EQf1wKp/content/tmp_files/load_file.txt +382 -0
  31. TNAzT4oBgHgl3EQfXfzv/content/tmp_files/load_file.txt +0 -0
  32. TtE4T4oBgHgl3EQfLwyC/content/tmp_files/2301.04941v1.pdf.txt +491 -0
  33. TtE4T4oBgHgl3EQfLwyC/content/tmp_files/load_file.txt +326 -0
  34. U9E2T4oBgHgl3EQftwgF/content/tmp_files/2301.04072v1.pdf.txt +993 -0
  35. U9E2T4oBgHgl3EQftwgF/content/tmp_files/load_file.txt +0 -0
  36. UtAyT4oBgHgl3EQf8voh/content/tmp_files/2301.00860v1.pdf.txt +1105 -0
  37. UtAyT4oBgHgl3EQf8voh/content/tmp_files/load_file.txt +0 -0
  38. V9AzT4oBgHgl3EQfJ_vP/vector_store/index.faiss +3 -0
  39. WdE1T4oBgHgl3EQfJAOq/content/tmp_files/2301.02947v1.pdf.txt +1384 -0
  40. WdE1T4oBgHgl3EQfJAOq/content/tmp_files/load_file.txt +0 -0
  41. XNAyT4oBgHgl3EQf9PpX/content/2301.00870v1.pdf +3 -0
  42. XNAyT4oBgHgl3EQfWPfd/content/tmp_files/2301.00161v1.pdf.txt +1135 -0
  43. XNAyT4oBgHgl3EQfWPfd/content/tmp_files/load_file.txt +389 -0
  44. ZdE5T4oBgHgl3EQfeA8r/content/tmp_files/2301.05615v1.pdf.txt +475 -0
  45. ZdE5T4oBgHgl3EQfeA8r/content/tmp_files/load_file.txt +277 -0
  46. _9E5T4oBgHgl3EQfSQ7q/content/tmp_files/2301.05528v1.pdf.txt +725 -0
  47. _9E5T4oBgHgl3EQfSQ7q/content/tmp_files/load_file.txt +315 -0
  48. adE3T4oBgHgl3EQfdAqs/content/tmp_files/2301.04531v1.pdf.txt +925 -0
  49. adE3T4oBgHgl3EQfdAqs/content/tmp_files/load_file.txt +0 -0
  50. b9E_T4oBgHgl3EQfzxyC/content/tmp_files/2301.08325v1.pdf.txt +1411 -0
.gitattributes CHANGED
@@ -181,3 +181,6 @@ CtAyT4oBgHgl3EQfR_f1/content/2301.00079v1.pdf filter=lfs diff=lfs merge=lfs -tex
181
  mtE3T4oBgHgl3EQf6gu4/content/2301.04791v1.pdf filter=lfs diff=lfs merge=lfs -text
182
  JdAyT4oBgHgl3EQffviy/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
183
  tdAzT4oBgHgl3EQf6v4U/content/2301.01878v1.pdf filter=lfs diff=lfs merge=lfs -text
 
 
 
 
181
  mtE3T4oBgHgl3EQf6gu4/content/2301.04791v1.pdf filter=lfs diff=lfs merge=lfs -text
182
  JdAyT4oBgHgl3EQffviy/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
183
  tdAzT4oBgHgl3EQf6v4U/content/2301.01878v1.pdf filter=lfs diff=lfs merge=lfs -text
184
+ V9AzT4oBgHgl3EQfJ_vP/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
185
+ x9FJT4oBgHgl3EQfhSy6/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
186
+ XNAyT4oBgHgl3EQf9PpX/content/2301.00870v1.pdf filter=lfs diff=lfs merge=lfs -text
29AyT4oBgHgl3EQfb_di/content/tmp_files/2301.00273v1.pdf.txt ADDED
@@ -0,0 +1,1110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.00273v1 [math.PR] 31 Dec 2022
2
+ REAL ZEROS OF MIXED RANDOM FEWNOMIAL SYSTEMS
3
+ PETER B¨URGISSER
4
+ Abstract. Consider a system f1(x) = 0, . . . , fn(x) = 0 of n random real polynomials in n
5
+ variables, where each fi has a prescribed set of exponent vectors described by a set Ai ⊆ Zn
6
+ of cardinality ti, whose convex hull is denoted Pi. Assuming that the coefficients of the fi are
7
+ independent standard Gaussian, we prove that the expected number of zeros of the random
8
+ system in the positive orthant is at most (2π)− n
9
+ 2 f0 (t1 − 1) . . . (tn − 1). Here f0 denotes the
10
+ number of vertices of the Minkowski sum P1 + . . . + Pn. We also derive a better bound in
11
+ the unmixed case where all supports Ai are equal, improving upon [8]. All arguments equally
12
+ work for real exponent vectors.
13
+ 1. Introduction
14
+ In many applications, we want to understand or find the (positive) real solutions of a system
15
+ of multivariate polynomial equations, e.g., see [11, 16, 29]. Bezout’s theorem, which bounds
16
+ the number complex zeros in terms of degrees, usually highly overestimates the number of real
17
+ zeros. This can be already seen from Descartes’ rule of signs [10, p. 42], which implies that
18
+ a real univariate polynomial with t terms has at most t − 1 positive zeros. In 1980, Khovan-
19
+ skii [19] obtained a far reaching generalization of Descartes’ rule. He showed that the number
20
+ of nondegenerate1 positive solutions of a system f1(x) = 0, . . . , fn(x) = 0 of n real polynomial
21
+ equations in n variables is bounded only in terms of n and the number t of distinct exponent
22
+ vectors occurring in the system. This result in fact allows for any real exponents. Following
23
+ Kushnirenko, one speaks of fewnomial systems, with the idea that the number t of terms is small,
24
+ see [20].
25
+ Understanding the complex zeros of fewnomial systems is much simpler: the famous BKK-
26
+ Theorem [2, 24] states that for given finite supports A1, . . . , An ⊆ Zn and Laurent polynomials
27
+ fi(x) = �
28
+ a∈A ci(a)xa1
29
+ 1 · · · xan
30
+ n
31
+ with generic complex coefficients ci(a), the number of complex
32
+ solutions in (C×)n of a corresponding system f1(x) = 0, . . . , fn(x) = 0 is given by n! times the
33
+ mixed volume of the Newton polytopes P1, . . . , Pn, where Pi is defined as the convex hull of Ai.
34
+ Note that the number of real zeros has little to do with the metric properties of Pi: indeed,
35
+ replacing Ai by a multiple mAi amounts to substituting xi by xm
36
+ i (m > 0). Clearly, this does not
37
+ change the number of positive real zeros of a fewnomial system, however Pi has been replaced
38
+ by mPi.
39
+ The bound on the number of real zeros obtained by Khovanskii is exponential in the number t.
40
+ It is widely conjectured that this bound is far from optimal: in fact it is conjectured [27] that for
41
+ fixed n, the number of nondegenerate positive solutions of a fewnomial system with t exponent
42
+ vectors is bounded by a polynomial in t. Quite surprisingly, this question is open even for n = 2!
43
+ Date: January 3, 2023.
44
+ 2010 Mathematics Subject Classification. 60D05, 14P99.
45
+ Key words and phrases. fewnomials, random polynomials, real algebraic geometry, sparsity.
46
+ Supported by the ERC under the European Union’s Horizon 2020 research and innovation programme (grant
47
+ agreement no. 787840).
48
+ 1i.e., the Jacobian of the system does not vanish at the zero.
49
+ 1
50
+
51
+ 2
52
+ PETER B¨URGISSER
53
+ For results in special cases, we refer to [4, 1, 29, 22, 23, 3]. Moreover, there is a very interesting
54
+ connection to complexity theory [21, 5].
55
+ Given this state of affairs of real fewnomial theory, a possible way to advance is to ask
56
+ what happens in generic situations. This can be made formal by considering random fewnomial
57
+ systems. Fix supports A1, . . . , An ⊆ Zn of cardinality t1, . . . , tn, respectively, and consider a
58
+ system of n random polynomials fi(x) as above, but now the coefficients ci(a) are assumed
59
+ to be independent standard Gaussian. Let us denote by N(A1, . . . , An) the expectation of the
60
+ number of nondegenerate positive real zeros of such system. Actually, we work in more generality,
61
+ allowing any subsets Ai of Rn; see Section 4. There is a large literature on the real zeros of
62
+ random polynomials: we refer to [8] for references.
63
+ In [8] it was proven that N(A, . . . , A) ≤ 21−n�t
64
+ n
65
+
66
+ . The main result of the present paper is an
67
+ extension of this to the mixed case, where the fewnomials may have have different supports Ai.
68
+ Our bound depends on the combinatorial structure of the Minkowski sum P1 + . . .+ Pn through
69
+ the number of its vertices. We remark that our proof is quite different from the one in [8], which
70
+ was quite indirect.
71
+ Theorem 1.1. If Pi denotes the convex hull of the finite nonempty set Ai ⊆ Rn of cardinality ti,
72
+ for i = 1, . . . , n, then
73
+ N(A1, . . . , An) ≤ (2π)− n
74
+ 2 f0 (t1 − 1) . . . (tn − 1).
75
+ Here f0 denotes the number of vertices of the Minkowski sum P := P1 + . . . + Pn.
76
+ The bound in this theorem looks similarly to the one in a conjecture attributed to Kush-
77
+ nirenko, which states that the number of positive nondegenerate zeros is always bounded by
78
+ (t1 − 1) · · · (tn − 1). However, this was disproved in [15].2
79
+ In the unmixed situation, where all supports are equal to A, it is well known [12] that the
80
+ expected number of positive zeros can be expressed by the volume of the image of the Veronese
81
+ like map Rn
82
+ >0 → P(RA) sending x to [xa]a∈A. This is a consequence of the kinematic formula
83
+ for real projective spaces. In the mixed situation, there is no such simple characterization: one
84
+ has to work with the more complicated kinematic formula for products of projective spaces
85
+ (Theorem 3.2) that we derive from [17, 9]. After passing to exponential coordinates w = log x,
86
+ we bound the resulting integral over Rn with a strategy inspired by the theory of toric varieties.
87
+ The normal fan of the polytope P affords a decomposition of Rn into the normal cones C at
88
+ the vertices of P. The resulting integral over C can be bounded in terms of the characteristic
89
+ function of the dual cone of C. Finally, an explicit a priori bound on the characteristic function
90
+ (Proposition 2.4) completes the argument.
91
+ 1.1. The univariate case and a conjecture. The univariate case (n = 1) was settled by
92
+ Jindal et al. [18]. They showed that for any subset S ⊆ R of cardinality t, we have
93
+ (1.1)
94
+ N(S) ≤ 2
95
+ π
96
+ √t − 1.
97
+ Moreover, they constructed a sequence St ⊆ Z of supports of cardinality t with N(St) ≥ c
98
+
99
+ t for
100
+ some constant c > 0. Consider for t1, . . . , tn ≥ 1 the supports A1 := St1 × 0 . . . × 0, . . . , An :=
101
+ 0 × . . . × 0 × Stn. These supports describe a system of n equations, where the ith equation
102
+ depends on xi only. Therefore, N(A1, . . . , An) = N(St1) · · · N(Stn), which with the above leads
103
+ to the lower bound
104
+ (1.2)
105
+ N(A1, . . . , An) ≥ cn√t1 · · · tn.
106
+ 2This conjecture was never published by Kushnirenko and apparently, he did not believe in it.
107
+
108
+ REAL ZEROS OF MIXED RANDOM FEWNOMIAL SYSTEMS
109
+ 3
110
+ We complement this by showing that for any A = S1 ×. . .×Sn in product form, the expectation
111
+ N(A, . . . , A) can be expressed in terms of the N(Si) as follows.
112
+ Proposition 1.2. If A = S1 × . . . × Sn for finite Si ⊆ R, then
113
+ N(A, . . . , A) =
114
+ πn
115
+ vol(Pn) N(S1) · · · N(Sn).
116
+ We conjecture that the lower bound (1.2) is optimal in the following sense.
117
+ Conjecture 1. Let Ai ⊆ Rn be finite nonempty sets of cardinality ti with convex hull Pi, for
118
+ i = 1, . . . , n. We denote by f0 the number of vertices of P1 + . . . + Pn. Then
119
+ N(A1, . . . , An) ≤ κ(f0)√t1 · · · tn
120
+ for some function κ : N → N. In particular, N(A, . . . , A) ≤ κ(f0) t
121
+ n
122
+ 2 for A ⊆ Rn of cardinality t.
123
+ In the special case A = S1 × . . . × Sn, by combining (1.1) with Proposition 1.2, we obtain
124
+ N(A, . . . , A)vol(Pn) ≤ 2n√
125
+ t, which is much smaller than what Conjecture 1 predicts.
126
+ 1.2. Improvement in unmixed case. We can improve the dependence on n in the bound of
127
+ Theorem 1.1 in the case where all supports are equal.
128
+ Theorem 1.3. For A ⊆ Rn of cardinality t ≥ 1 with convex hull P and f0 vertices, we have
129
+ N(A, . . . , A) ≤
130
+ 1
131
+ vol(Pn) f0
132
+ �t−1
133
+ n
134
+
135
+ .
136
+ To compare this with the bound N(A, . . . , A) ≤ 21−n�t
137
+ n
138
+
139
+ from [8], note that vol(Pn)−1 =
140
+ Γ( n+1
141
+ 2 )π− n+1
142
+ 2 . Hence, for n → ∞, the new bound goes asymptotically faster to zero than the
143
+ old one. However, the bound in [8] also holds for nonstandard centered Gaussian coefficients
144
+ ci(a) ∼ N(0, σi(a)2).
145
+ 1.3. Location of zeros. We finish with a result on the typical location of the zeros. It is well
146
+ known that for random real polynomials, the positive reals zeros x tend to accumulate around 1:
147
+ see [12] for the dense and [18] for the sparse case. This means that w = log x accumulates
148
+ around 0. We generalize this to multivariate systems as follows.
149
+ Theorem 1.4. Fix a finite supports A1 . . . , An ⊆ Rn and consider a random system (4.3) with
150
+ independent standard Gaussian coefficients ci(a) for the stretched supports mAi, where m ∈ Z>0.
151
+ Fix ε > 0. Then the probability that the system has a zero w ∈ Rn with ∥w∥ > ε goes to zero, as
152
+ m → ∞.
153
+ 2. Preliminaries
154
+ 2.1. A metric property of charts of real projective space. Consider the real projective
155
+ space Pm. We shall identify the tangent space T[y]Pm at a point [y] := [y0 : . . . : ym] with Ry⊥.
156
+ The standard Riemannian metric on Pm is defined by ⟨v, w⟩[y] := ∥y∥−2⟨v, w⟩ for v, w ∈ Ry⊥.
157
+ We denote by Py the orthogonal projection onto Ry⊥.
158
+ Consider the affine chart (Pm)y0̸=0 → Rm, which maps [y0 : . . . : ym] to y−1
159
+ 0 (y1, . . . , ym). Its
160
+ inverse is given by
161
+ π: Rm → (Pm)y0̸=0, (y1, . . . , ym) �→ [1 : y1 : . . . : ym].
162
+ By [6, Lemma 14.8], the derivative of π at y′ := (y1, . . . , yn) satisfies Dy′π = ∥π(y′)∥−1Py. From
163
+ this we conclude for the spectral norm
164
+ (2.1)
165
+ ∥Dy′π∥ ≤ ∥π(y′)∥−1 ≤ 1.
166
+
167
+ 4
168
+ PETER B¨URGISSER
169
+ 2.2. On the quantity σ. The relative position of two subspaces of a Euclidean vector space E
170
+ can be quantified by a volume like quantity, which is crucial in the study of integral geometry
171
+ in homogeneous spaces; see [17] and [9, §3.3]. To define this quantity, note first that there is an
172
+ induced inner product on the exterior algebra Λ(E) given by (see [9, (2.1)])
173
+ ⟨v1 ∧ · · · ∧ vk, w1 ∧ · · · ∧ wk⟩ = det(⟨vi, wj⟩)1≤i,j≤k.
174
+ More concretely, ∥v1 ∧ . . . ∧ vn∥ = | det[v1, . . . , vn]|, where [v1, . . . , vn] denotes the matrix with
175
+ columns vi ∈ E = Rn
176
+ Let V, W be linear subspaces of E of complementary dimensions. We define (see [9, (3.3)])
177
+ (2.2)
178
+ σ(V, W) := ∥v1 ∧ . . . ∧ vk ∧ w1 ∧ . . . ∧ wm∥ ∈ [0, 1],
179
+ where v1, . . . , vk and w1, . . . , wm are orthonormal bases of V and W, respectively.
180
+ Clearly,
181
+ σ(V, W) = σ(W, V ). The extreme cases are: σ(V, W) = 0 iff V ∩ W ̸= 0 and σ(V, W) = 1 iff v
182
+ and W are orthogonal.
183
+ Proposition 2.1. We have σ(V ⊥, W ⊥) = | det p |, if p: V ⊥ → W denotes the restriction of the
184
+ orthogonal projection E → W to V ⊥. Moreover, σ(V, W) = σ(V ⊥, W ⊥).
185
+ Proof. Let ν1, . . . , νm be an orthonormal basis of V ⊥. We decompose νi = ν′
186
+ i + ν′′
187
+ i according
188
+ to E = W ⊕ W ⊥. Then p(νi) = ν′
189
+ i and | det p | = ∥ν′
190
+ 1 ∧ . . . ∧ ν′
191
+ m∥. If ω1, . . . , ωk denotes an
192
+ orthonormal basis of W ⊥, we have
193
+ σ(V ⊥, W ⊥) = ∥ν1 ∧ . . . ∧ νm ∧ ω1 ∧ . . . ∧ ωk∥ = ∥ν′
194
+ 1 ∧ . . . ∧ ν′
195
+ m ∧ ω1 ∧ . . . ∧ ωk∥ = ∥ν′
196
+ 1 ∧ . . . ∧ ν′
197
+ m∥,
198
+ the last equality holding since the span of the ν′
199
+ i equals W, which is orthogonal to the span of
200
+ the wj, which is W ⊥. This proves σ(V ⊥, W ⊥) = | det p |.
201
+ For the second assertion, we use that | det p | = | det q |, where q: W ⊥ → V denotes the
202
+ restriction of the orthogonal projection E → V to W ⊥, see [7, Lemma 5.4].
203
+
204
+ Clearly, the definition (2.2) can be extended to more than two subspaces; see [9, (3.5)]. But if
205
+ W = W1 ⊕. . .⊕Wn is an orthogonal decomposition, we can reduce to the case of two subspaces:
206
+ (2.3)
207
+ σ(V, W1, . . . , Wn) = σ(V, W1 + . . . + Wn).
208
+ This is a consequence of [9, Lemma A.6].
209
+ 2.3. Characteristic function of convex cones. We prove here an priori upper bound on the
210
+ characteristic function of a convex cone, which is a key ingredient in the proof of Theorem 1.1.
211
+ A convex cone C ⊆ Rn is called proper if it is n-dimensional and pointed, i.e., contained in a
212
+ halfspace. It is well known that a convex C ⊆ Rn is proper iff its dual cone
213
+ C∗ := {x ∈ Rn | ∀y ∈ C ⟨x, y⟩ ≥ 0}
214
+ is proper. Let g ∈ GL(n, R). Then K := g(C) is a proper cone and gT (K∗) = C∗. We denote
215
+ by int(C) the interior of C.
216
+ We assign to a proper cone C ⊆ Rn the function
217
+ (2.4)
218
+ vC : int(C∗) → R>0, vC(x) :=
219
+
220
+ C
221
+ e−⟨x,y⟩ dy.
222
+ One calls vC the characteristic function (or Koszul-Vinberg characteristic) of C∗. It is a useful
223
+ analytic tool for investigating convex cones, e.g., see [13, I.3] and [14]. E.g., Rn
224
+ >0 is self dual and
225
+ vRn
226
+ >0(x) = (x1 · . . . · xn)−1 for x ∈ Rn
227
+ >0.
228
+
229
+ REAL ZEROS OF MIXED RANDOM FEWNOMIAL SYSTEMS
230
+ 5
231
+ The homogeneity property vC(tx) = t−nvC(x) for t > 0, x ∈ int(C∗) is immediate to check.
232
+ Moreover, the transformation formula implies the following invariance property: if g ∈ GL(n, R)
233
+ and K := g(C), then gT (K∗) = C∗ and
234
+ (2.5)
235
+ vK(z) = | det g| vC(gT z)
236
+ for z ∈ int(K∗).
237
+ Remark 2.2. The function log vC is strictly convex and essentially equals Nesterov and Ne-
238
+ mirowski’s universal self-concordant barrier function [26, §2.5], see [14] for the proof.
239
+ The following result is well known, e.g., see [14, Thm. 4.1]. We provide the simple proof for
240
+ the sake of completeness.
241
+ Lemma 2.3. For x ∈ int(C∗) we have
242
+ vC(x) = n! vol
243
+
244
+ y ∈ C | ⟨x, y⟩ ≤ 1
245
+
246
+ .
247
+ Proof. We fix x ∈ int(C∗). For t ≥ 0 we define the n − 1-dimensional slice
248
+ Ct :=
249
+
250
+ y ∈ C | ⟨x, y⟩ = t∥x∥
251
+
252
+ .
253
+ By Fubini, we get
254
+ vC(x) =
255
+
256
+ C
257
+ e−⟨x,y⟩ dy =
258
+ � ∞
259
+ 0
260
+ voln−1(Ct)e−t∥x∥dt = voln−1(C1)
261
+ � ∞
262
+ 0
263
+ tn−1e−t∥x∥dt.
264
+ Note that
265
+ � ∞
266
+ 0
267
+ tn−1e−t∥x∥dt =
268
+ 1
269
+ ∥x∥n
270
+ � ∞
271
+ 0
272
+ sn−1e−sds =
273
+ 1
274
+ ∥x∥n Γ(n) = (n − 1)!
275
+ ∥x∥n .
276
+ Moreover, we have
277
+ voln−1(C1) = n voln
278
+
279
+ y ∈ C | ⟨x, y⟩ ≤ ∥x|
280
+
281
+ = n ∥x∥n voln
282
+
283
+ y ∈ C | ⟨x, y⟩ ≤ 1
284
+
285
+ .
286
+ It follows that
287
+ vC(x) = n ∥x∥n voln
288
+
289
+ y ∈ C | ⟨x, y⟩ ≤ 1
290
+ � (n − 1)!
291
+ ∥x∥n
292
+ = n! voln
293
+
294
+ y ∈ C | ⟨x, y⟩ ≤ 1
295
+
296
+ ,
297
+ completing the proof.
298
+
299
+ The following technical result is essential for the proof of Theorem 1.1.
300
+ Proposition 2.4. Let C ⊆ Rn be a proper cone and b1, . . . , bn ∈ C∗. Then we have
301
+ ∥b1 ∧ . . . ∧ bn∥ · vC(b1 + . . . + bn) ≤ 1.
302
+ This bound is optimal.
303
+ Proof. We denote by cone(b1, . . . , bn) ⊆ C∗ the convex cone generated by b1, . . . , bn. Without
304
+ loss of generality, we may assume that b1, . . . , bn ∈ C∗ is a basis of Rn. Let b∗
305
+ 1, . . . , b∗
306
+ n denote its
307
+ dual basis, that is ⟨b∗
308
+ i , bj⟩ = δij. In matrix terminology, [b∗
309
+ 1, . . . , b∗
310
+ n]T [b1, . . . , bn] = In, hence
311
+ (2.6)
312
+ det[b∗
313
+ 1, . . . , b∗
314
+ n] det[b1, . . . , bn] = ±1.
315
+ Moreover, the definition of the dual basis implies that cone(b∗
316
+ 1, . . . , b∗
317
+ n) is the dual cone of
318
+ cone(b1, . . . , bn). Therefore, by duality, we get
319
+ C ⊆ cone(b1, . . . , bn)∗ = cone(b∗
320
+ 1, . . . , b∗
321
+ n).
322
+ Put d := b1 + . . . + bn and let y ∈ C such that ⟨d, y⟩ ≤ 1. Since C ⊆ cone(b∗
323
+ 1, . . . , b∗
324
+ n), we can
325
+ write y = �
326
+ i tib∗
327
+ i with ti ≥ 0. Moreover �
328
+ i ti = ⟨d, y⟩ ≤ 1. Thus we have shown the inclusion
329
+ {y ∈ C | ⟨d, y⟩ ≤ 1} ⊆ conv{0, b∗
330
+ 1, . . . , b∗
331
+ n}.
332
+
333
+ 6
334
+ PETER B¨URGISSER
335
+ This implies the inequality of volumes
336
+ voln{y ∈ C | ⟨d, y⟩ ≤ 1} ≤ volnconv{0, b∗
337
+ 1, . . . , b∗
338
+ n} = 1
339
+ n!| det[b∗
340
+ 1, . . . , b∗
341
+ n]|.
342
+ Multiplying with n! | det[b1, . . . , bn]|, using (2.6) and taking into account Lemma 2.3, the assertion
343
+ follows.
344
+ The optimality is attained for C = Rn
345
+ + and bi = diei with di > 0. Indeed, we have
346
+ | det[b1, . . . , bn] |vC(d) = d1 · . . . · dn (d1 · . . . · dn)−1 = 1.
347
+
348
+ 2.4. Vertices and normal fan of sums of polytopes. We recall here some basic facts about
349
+ polytopes and their normal fans; see [30, §7.1] for more details.
350
+ Let P ⊆ Rn be a full-dimensional polytope and v be a vertex of P. The cone Pv of P at v is
351
+ defined as the convex cone generated by P − v. It is a proper cone. The dual cone of Pv, also
352
+ called the inner normal cone of P at v, is defined as
353
+ P ∗
354
+ v := {y ∈ Rn | ∀x ∈ P ⟨x, y⟩ ≥ 0}.
355
+ The cone P ∗
356
+ v is also proper. The union over all P ∗
357
+ v equals Rn. Moreover, for v1 ̸= v2, we have
358
+ dim(P ∗
359
+ v1 ∩ P ∗
360
+ v2) < n. In fact, the P ∗
361
+ v are the n-dimensional cones of the normal fan of P.
362
+ We will need the following result.
363
+ Lemma 2.5. Let P1, . . . , Pn be polytopes in Rn. There is an injective map
364
+ Vert(P1 + . . . + Pn) → Vert(P1) × . . . Vert(Pn), v �→ (v1, . . . , vn)
365
+ satisfying v = v1 + . . . + vn. Moreover, if we denote by Πi the cone of Pi at the vertex vi, then
366
+ Π := Π1 + . . . + Πn is the cone of P1 + . . . + Pn at the vertex v1 + . . . + vn. In particular,
367
+ Π∗ = Π∗
368
+ 1 ∩ . . . ∩ Π∗
369
+ n.
370
+ Proof. For the following, see [28, §1.7]. To a nonzero weight ω ∈ Rn we assign the face of Pi,
371
+ given by
372
+ F(Pi, ω) :=
373
+
374
+ w ∈ Rn | ⟨w, ω⟩ = min
375
+ w′∈Pi⟨w′, ω⟩
376
+
377
+ .
378
+ We have (see [28, Thm. 1.7.5])
379
+ F(P1 + . . . + Pn, ω) = F(P1, ω) + . . . + F(Pn, ω).
380
+ Suppose that F(P1 + . . . + Pn, ω) = {v} is a vertex. Then all F(Pi, ω) = {vi} are vertices
381
+ and v = v1 + . . . vn.
382
+ It is easy to see that the vi are uniquely determined by v.
383
+ The map
384
+ v �→ (v1, . . . , vn) is as required. The remaining assertions are clear.
385
+
386
+ 3. Random intersections in products of projective spaces
387
+ 3.1. The kinematic formula. We specialize here the general kinematic formula for homo-
388
+ geneous spaces from [9, Thm. A.2] to the case of products of real projective spaces (Theo-
389
+ rem 3.2). For this purpose, we define the average scaling factor and we explain how to bound it
390
+ in Lemma 3.5.
391
+ Consider the product Ω := Pm1 × · · · × Pmn of real projective spaces. The product G :=
392
+ O(m1 +1)×· · ·×O(mn +1) of orthogonal groups acts transitively on Ω. So Ω is a homogeneous
393
+ space and we have an induced transitive action of G on the tangent bundle of Ω. We focus on
394
+ the special hypersurfaces H1, . . . , Hn of Ω of the following shape
395
+ (3.1)
396
+ H1 := Pm1−1 × Pm2 × · · · × Pmn, . . . , Hn := Pm1 × Pm2 · · · × Pmn−1.
397
+ They are determined upon selecting hyperplanes Pmi−1 in Pmi. Our goal is to investigate the
398
+ average cardinality of the intersection Z ∩H1 ∩. . .∩Hn of an n-dimensional smooth submanifold
399
+
400
+ REAL ZEROS OF MIXED RANDOM FEWNOMIAL SYSTEMS
401
+ 7
402
+ Z ⊆ Ω with random Hi corresponding to independently chosen uniform random hyperplanes
403
+ in Pmi.
404
+ Fix a distinguished point ω ∈ Ω and denote by K the stabilizer group of ω.
405
+ E.g., take
406
+ ωi = [1 : 0 . . . : 0] for all i. Notice that we have an induced action of K on the tangent space
407
+ T := TωΩ, which we can identify with the standard action of K = O(m1) × · · · × O(mn) on
408
+ T = Rm1 × · · · × Rmn. This induces an action of K on the Grassmann manifold Gr(d, T ) of
409
+ linear subspaces of T with codimension d. Note that this action is transitive if n = 1, but not
410
+ for n ≥ 2.
411
+ We assign to an n-dimensional smooth submanifold Z ⊆ Ω a map
412
+ (3.2)
413
+ Z → Gr(n, T )/K, z �→ KgNpZ
414
+ as follows. For given p ∈ Z choose any g ∈ G such that gp = ω. The induced action of g maps
415
+ the tangent space TpΩ to TωΩ = T . This transports the normal subspace NpZ ⊆ TpΩ of Z at p
416
+ to gNpZ ⊆ T . Note that the K-orbit of the subspace gNpZ does not depend on the choice of g,
417
+ which shows that the map (3.2) is well defined.
418
+ We call the submanifold Z cohomogeneous if the map (3.2) is constant; see [9, A.5.1] and [25].
419
+ For instance, a product Z = L1 × . . . × Ln of lines Li in Pmi is cohomogeneous: indeed, the
420
+ map (3.2) sends any point p ∈ Z to the K-orbit of R × . . . × R.
421
+ Definition 3.1. The average scaling factor function of the n-dimensional submanifold Z of
422
+ Pm1 × · · · × Pmn is the function ¯σZ : Z → [0, 1] defined at p ∈ Z by
423
+ ¯σZ(p) := E Liσ(gNpZ, L1 × . . . × Ln),
424
+ where g ∈ G satisfies gp = ω0, and the expectation is taken over uniformly random lines Li in
425
+ T = Rm1 × · · · × Rmn (see (2.2) for the definition of σ).
426
+ Note that due to the averaging over the K-orbit, the choice of g is irrelevant. The above
427
+ definition is consistent with the one in [9, Def. A.1], since
428
+ (3.3)
429
+ σ(gNpZ, L1 × . . . × Ln) = σ(gNpZ, L1 × 0 × · · · × 0, . . . , 0 × · · · × 0 × Ln)
430
+ by (2.3); indeed note that the n lines L1 × 0 × · · · × 0, ... are pairwise orthogonal.
431
+ We introduce the notation
432
+ ρn := E ∥x∥ =
433
+
434
+ 2 Γ( n+1
435
+ 2 )
436
+ Γ( n
437
+ 2 )
438
+ ≤ √n
439
+ for standard Gaussian x ∈ Rn. We note that by [6, Lemma 2.25],
440
+ (3.4)
441
+ vol(Pmi−1)
442
+ vol(Pmi)
443
+ =
444
+ 1
445
+ √π
446
+ Γ( mi+1
447
+ 2
448
+ )
449
+ Γ( mi
450
+ 2 )
451
+ =
452
+ 1
453
+
454
+ 2π ρmi,
455
+ We can now explicitly state the kinematic formula for products of real projective spaces.
456
+ Theorem 3.2. For any n-dimensional submanifold Z of Pm1 × · · · × Pmn, we have
457
+ E g∈G#(Z ∩ g1H1 ∩ . . . ∩ gnHn) = (2π)− n
458
+ 2 ρm1 · · · ρmn
459
+
460
+ Z
461
+ ¯σZ dZ,
462
+ where the hypersurfaces Hi are defined in (3.1).
463
+ Proof. If σK : Z × H1 × . . . × Hn → [0, 1] denotes the average scaling function from [9, Def. A.1],
464
+ then [9, Thm. A.2] states that
465
+ E g∈G#(Z ∩ g1H1 ∩ . . . ∩ gnHn) =
466
+ 1
467
+ vol(Ω)n
468
+
469
+ Z×H1×...×Hn
470
+ σK d(Z × H1 × . . . × Hn).
471
+
472
+ 8
473
+ PETER B¨URGISSER
474
+ By K-invariance and (3.3), we have σK(z, y1, . . . , yn) = ¯σZ(z) for all z ∈ Z and yi ∈ Hi.
475
+ Therefore,
476
+ E g∈G#(Z ∩ g1H1 ∩ . . . ∩ gnHn) = vol(H1) · · · vol(Hn)
477
+ vol(Ω)n
478
+
479
+ Z
480
+ ¯σZ dZ.
481
+ Finally, (3.4) gives
482
+ vol(H1) · · · vol(Hn)
483
+ vol(Ω)n
484
+ =
485
+ n
486
+
487
+ i=1
488
+ vol(Pmi−1)
489
+ vol(Pmi)
490
+ = (2π)− n
491
+ 2 ρm1 · · · ρmn,
492
+ which completes the proof.
493
+
494
+ Example 3.3. A product Z = L1 × . . . × Ln of lines Li is cohomogeneous. Theorem 3.2 implies
495
+ that ¯σZ = (2/π)n/2(ρm1 · · · ρmn)−1.
496
+ We shall focus on submanifolds Z arising as the image of an injective smooth map
497
+ (3.5)
498
+ ψ: U → Pm1 × · · · × Pmn, ψ(x) := (ψ1(x), . . . , ψn(x)),
499
+ where the ψi : U → Pmi are smooth maps defined on an open subset U ⊆ Rn. Let us denote by
500
+ Jψ(x) :=
501
+
502
+ det((Dxψ)T Dxψ)
503
+ the absolute Jacobian of ψ at x. The transformation formula implies that
504
+ (3.6)
505
+
506
+ Z
507
+ ¯σZ dZ =
508
+
509
+ U
510
+ ¯σZ(ψ(x))Jψ(x) dx.
511
+ We next analyze the integrand on the right-hand side more closely.
512
+ Lemma 3.4. Let x ∈ U and put Ti := Tψi(x)Pmi.
513
+ Let λ1, . . . , λn be independent standard
514
+ Gaussian linear forms on Ti. This defines the random linear forms λi ◦ Dxψi on Rn. Then
515
+ ρm1 · · · ρmn ¯σZ(ψ(x))Jψ(x) = E λ1,...,λn ∥(λ1 ◦ Dxψ1) ∧ . . . ∧ (λn ◦ Dxψn)∥ .
516
+ Proof. To simplify notation, we assume w.l.o.g. that p = ψ(x) is the distinguished point ω.
517
+ We also identify Ti with Rmi. For ui ∈ Ti with ∥ui∥ = 1 consider the line Li = Rui and the
518
+ orthogonal projection pi : Ti → Li, which is is given by pi(w) = µi(w)ui with the linear form on Ti
519
+ defined by µi(w) := ⟨w, ui⟩. Thus the orthogonal projection pL : T1 × · · · × Tn → L1 × · · · × Ln
520
+ is described by µ1, . . . , µn. This implies that
521
+ (3.7)
522
+ | det(pL ◦ Dxψ)| = ∥(µ1 ◦ Dxψ1) ∧ . . . ∧ (µn ◦ Dxψn)∥ .
523
+ On the other hand, according to Proposition 2.1, we have
524
+ σ(L1 × · · · × Ln, NpZ) = | det p′
525
+ L|,
526
+ where p′
527
+ L : TpZ → L1 × · · · × Ln denotes the restriction of pL to TpZ. Applying the determinant
528
+ to the composition of Dxψ with p′
529
+ L, we get
530
+ Jψ(x) | det p′
531
+ L| = | det(pL ◦ Dxψ)|.
532
+ By averaging over random lines Li, we deduce from the definition of ¯σZ and the above that
533
+ Jψ(x)¯σZ(p) = Jψ(x) E Liσ(NpZ, L1 × · · · × Ln) = Jψ(x) E Li| det p′
534
+ L| = E Li| det(pL ◦ Dψ)|.
535
+ Finally, a standard Gaussian linear form on Ti is obtained as λi = riµi with independent random
536
+ variables ri and ui, where ui is uniformly random in the unit sphere of Ti and r2
537
+ i is χ2-distributed
538
+
539
+ REAL ZEROS OF MIXED RANDOM FEWNOMIAL SYSTEMS
540
+ 9
541
+ with mi degrees of freedom. Thus E ri = ρmi. Altogether, we obtain, using (3.7),
542
+ ρm1 · · · ρmnJψ(x)¯σZ(p) = ρm1 · · · ρmnE | det(pL ◦ Dψ)|
543
+ = ρm1 · · · ρmnE ∥(µ1 ◦ Dxψ1) ∧ . . . ∧ (µn ◦ Dxψn)∥
544
+ = E ∥(λ1 ◦ Dxψ1) ∧ . . . ∧ (λn ◦ Dxψn)∥ ,
545
+ which completes the proof.
546
+
547
+ 3.2. Bounding the average scaling factor. In order to bound the quantity in Lemma 3.4,
548
+ we use affine charts for the product of projective spaces. Denote by yi0, . . . , yimi coordinates
549
+ for Pmi. Fix 0 ≤ ri ≤ mi for i = 1, . . . , n, and consider the inverse of the affine chart πiri : Rmi →
550
+ (Pmi)yiri̸=0, see Subsection 2.1. We describe the maps ψi from (3.5) in these charts by smooth
551
+ functions defined on open subsets of Rn,
552
+ (3.8)
553
+ ϕiri : Rn ⊇ Uiri → Rmi,
554
+ satisfying ψi := πiri ◦ ϕiri. In order to simplify notation, we assume w.l.og. ri = 0 and write
555
+ πi := πi0, ϕi := ϕi0. In these charts, the combined map ψ of (3.5) is represented by a map
556
+ ϕ: U → Rm1 × · · · × Rmn, ϕ(x) = (ϕ1(x), . . . , ϕn(x))
557
+ defined on some open subset U ⊆ Rn. We view the derivative M(x) := Dxϕ as a matrix of
558
+ format (m1 + . . . + mn) × n with blocks Mi(x) := Dxϕi ∈ Rmi×n. For 1 ≤ ji ≤ mi, i = 1, . . . , n,
559
+ we denote by M(x)j1,...,jn the n × n submatrix of M(x) obtained by selecting in the ith block
560
+ the jith row.
561
+ Lemma 3.5. Let x ∈ U be such that [yi] := ψi(x) ∈ (Pmi)y0̸=0 for all i. Then
562
+ ρm1 · · · ρmn ¯σZ(ψ(x))Jψ(x) ≤
563
+
564
+ j1,...,jn
565
+ | det M(x)j1,...,jn|,
566
+ where the sum is over the n-tuples (j1, . . . , jn) ∈ [m1] × . . . × [mn].
567
+ Proof. From ψi = πi ◦ ϕi we get Dψi = Dπi ◦ Dϕi, where we drop arguments for notational
568
+ simplicity. Let λi : Ti → R be a linear form on Ti = Tψi(x)Pmi. Then, defining wi := λi ◦ Dπi,
569
+ λi ◦ Dψi = λi ◦ Dπi ◦ Dϕi = wi ◦ Dϕi.
570
+ If we identify λi ◦ Dxψi with a vector in Rn and wi with a vector in Rmi, then we have the
571
+ matrix product of formats n × �
572
+ i mi and �
573
+ i mi × n,
574
+ (3.9)
575
+ R(x) :=
576
+
577
+ 
578
+ (λ1 ◦ Dxψ1)T
579
+ ...
580
+ (λn ◦ Dxψ1)T
581
+
582
+  =
583
+
584
+ 
585
+ wT
586
+ 1
587
+ 0
588
+ . . . 0
589
+ 0
590
+ wT
591
+ 2
592
+ . . . 0
593
+ ...
594
+ ...
595
+ ...
596
+ 0
597
+ 0
598
+ wT
599
+ n
600
+
601
+  ·
602
+
603
+ 
604
+ M1(x)
605
+ ...
606
+ Mn(x)
607
+
608
+  .
609
+ Lemma 3.4 tells us that
610
+ ρm1 · · · ρmn ¯σZ(ψ(x))Jψ(x) = E λi| det R(x))|,
611
+ where the expectation is over independent standard Gaussian λi. Note that the resuling random
612
+ vector wi := λi ◦ Dπi is not standard Gaussian anymore. However ∥Dπi∥ ≤ 1 by (2.1) and
613
+ Lemma 3.6 below implies that E w2
614
+ ij ≤ 1 for the jth component wij of wi.
615
+ From Binet-Cauchy, we obtain from (3.9)
616
+ (det R(x))2 =
617
+
618
+ j1,...,jn
619
+ w2
620
+ 1j1 · · · w2
621
+ njn(det M(x)j1,...,jn)2,
622
+
623
+ 10
624
+ PETER B¨URGISSER
625
+ where the sum is over all (j1, . . . , jn) ∈ [m1] × . . . × [mn]. Taking expectations yields
626
+ E w(det R(x))2 ≤
627
+
628
+ j1,...,jn
629
+ (det M(x)j1,...,jn)2.
630
+ We conclude that
631
+ E w| det R(x))| ≤
632
+
633
+ E w(det R(x))2� 1
634
+ 2 ≤
635
+
636
+ j1,...,jn
637
+ | det M(x)j1,...,jn|,
638
+ which completes the proof.
639
+
640
+ Lemma 3.6. Let A ∈ Rp×m with ∥A∥ ≤ 1. If y ∈ Rp is standard Gaussian, then the random
641
+ variable z := yA satisfies E |zj|2 ≤ 1 for all j.
642
+ Proof. From zj = �
643
+ i yiaij we get z2
644
+ j = �
645
+ i,k yiykaijakj. Hence E z2
646
+ j = �
647
+ i a2
648
+ ij. Finally, �
649
+ i a2
650
+ ij =
651
+ ∥A(ej)∥2 ≤ ∥A∥2 ≤ 1.
652
+
653
+ 4. Mixed random fewnomial systems
654
+ The goal here is to provide the proofs of the assertions in the introduction.
655
+ Let us first
656
+ introduce some notation.
657
+ We assign to a real valued function c: A → R on a finite nonempty subset A ⊆ Rn the real
658
+ analytic function FA,c : Rn → R
659
+ (4.1)
660
+ FA,c(w) :=
661
+
662
+ a∈A
663
+ c(a)e⟨a,w⟩.
664
+ In the special case where A consists of integer vectors, FA,c arises from the Laurent polynomial
665
+ fA,c(x) = �
666
+ a∈A c(a)xa by a substitution: FA,c(w) = fA,c(ew). Generally, we have the following
667
+ equivariance property: for g ∈ GL(n, R) and b ∈ Rn,
668
+ (4.2)
669
+ FA+b,b.c(w) = e⟨b,w⟩FA,c(w),
670
+ Fg(A),g.c(w) = FA,c(gT w),
671
+ where (g.c)(a) := c(g−1a) and b.c(a) := c(a − b).
672
+ Suppose now we have n such analytic functions encoded by ci : Ai → R, for i = 1, . . . , n.
673
+ Throughout, we denote by ti the cardinality of Ai and by Pi its convex hull. We are interested
674
+ in the number N of nondegenerate zeros w ∈ Rn of the system
675
+ (4.3)
676
+ FA1,c1(w) = 0, . . . , FAn,cn(w) = 0.
677
+ Our goal is to study the expected number of nondegenerate zeros for random coefficient func-
678
+ tions. More specifically, we denote by N(A1, . . . , An) the expectation of N, when all the coeffi-
679
+ cients ci(a), for i ∈ [n] and ai ∈ Ai, are independent standard Gaussians. Clearly, N(A1, . . . , An)
680
+ is invariant under permutations of the Ai. Also, N(A1, . . . , An) = 0 if ti = 1 for some i. More-
681
+ over, we have N(A1, . . . , An) = 0 if dim(P1 + . . . + Pn) < n, see Lemma 4.2.
682
+ Equation (4.2) implies the following invariance properties
683
+ (4.4)
684
+ N(A1 + b1, . . . , An + bn) = N(A1, . . . , An),
685
+ N(g(A1), . . . , g(An)) = N(A1, . . . , An),
686
+ where b1, . . . , bn ∈ Rn and g ∈ GL(n, R).
687
+ Our main result is Theorem 1.1 stated in the introduction. Note that it gives the correct
688
+ answer N(A1, . . . , An) = 0 if ti = 1 for some i.
689
+ Example 4.1. In the case t1 = . . . = tn = 2, the Pi are segments. If they are linearly independent,
690
+ P1 + . . . + Pn is a parallelepiped with 2n vertices. Thus, Theorem 1.1 gives N(A1, . . . , An) ≤
691
+ (2/π)
692
+ n
693
+ 2 . This can be easily verified directly as follows. Suppose Ai = {ai, bi}. We claim that
694
+ N(A1, . . . , An) = 2−n if b1 − a1, . . . , bn − an are linearly independent. For showing this, by the
695
+
696
+ REAL ZEROS OF MIXED RANDOM FEWNOMIAL SYSTEMS
697
+ 11
698
+ invariance properties (4.4), it suffices to consider the case where Ai = {0, ei}. Then (4.3) amounts
699
+ to the system ci(0) + ci(ei)ewi = 0, for i = 1, . . . , n, which has a solution iff ci(0)ci(ei) < 0, for
700
+ all i. This happens with probability 2−n, hence indeed N(A1, . . . , An) = 2−n.
701
+ 4.1. Proof of Theorem 1.1. Let us look at a special instance of (3.5). To the given finite
702
+ nonempty subsets A1, . . . , An ⊆ Rn, we assign the maps
703
+ ψi : Rn
704
+ >0 → P(RAi) ≃ Pmi, ψi(x) := [xai]ai∈Ai,
705
+ where mi := #Ai − 1. Recall that Pi denotes the convex hull of Ai and put P := P1 + . . . + Pn.
706
+ We consider the combined map
707
+ (4.5)
708
+ ψ: Rn
709
+ >0 → Pm1 × · · · × Pmn, ψ(x) := (ψ1(x), . . . , ψn(x)).
710
+ Lemma 4.2. The map ψ is injective iff P is n-dimensional. Moreover, if P is not n-dimensional,
711
+ then rankDxψ < n for all x ∈ Rn
712
+ >0.
713
+ Proof. Assume ψ(exp(w)) = ψ(exp(w′)) for w ̸= w′ ∈ Rn Then there are ci ∈ R such that for
714
+ all ai ∈ Ai we have ⟨ai, w − w′⟩ = ci. Hence, ⟨x, w − w′⟩ = ci for all xi ∈ Pi. It follows that
715
+ ⟨x, w − w′⟩ = c1 + . . . + cn for all x ∈ P. Hence dim P < n.
716
+ Conversely, assume there is a nonzero w ∈ Rn and c ∈ R such that ⟨x, w⟩ = c for all x ∈ P.
717
+ Then there are ci ∈ R such that ⟨xi, w⟩ = ci for all xi ∈ Pi. It follows that for any x ∈ Rn
718
+ >0 and
719
+ any s ∈ R we have
720
+ ψi(eswx) = [(esw)aixai]ai∈Ai = [es⟨ai,w⟩xai]a∈Ai = [escixai]a∈Ai = ψi(x).
721
+ Hence ψ is not injective. Moreover, w is in the kernel of the derivative of ψi at x.
722
+
723
+ We denote by Z the image of ψ. Then we can write
724
+ N(A1, . . . , An) = E g∈G#(Z ∩ g1H1 ∩ . . . ∩ gnHn),
725
+ where the hypersurfaces Hi are defined in (3.1). By Theorem 3.2 and (3.6), this can be expressed
726
+ as
727
+ (4.6)
728
+ N(A1, . . . , An) = (2π)− n
729
+ 2 ρm1 · · · ρmn
730
+
731
+ Rn
732
+ >
733
+ (¯σZ ◦ ψ)Jψ dx.
734
+ We make the coordinate change Rn → Rn
735
+ >0, (w1, . . . , wn) �→ x = (e−w1, . . . , e−wn), which has
736
+ the absolute Jacobian x1 · · · xn, and obtain (slightly abusing notation)
737
+ (4.7)
738
+
739
+ Rn
740
+ >
741
+ (¯σZ ◦ ψ)Jψ dx =
742
+
743
+ Rn x1 · · · xn(¯σZ ◦ ψ)Jψ dw.
744
+ Recall from Subsection 2.4 that each vertex v of P defines the inner normal cone Cv := P ∗
745
+ v .
746
+ We can write
747
+ (4.8)
748
+ Rn =
749
+
750
+ v
751
+ Cv
752
+ as the union over the vertices v of P. Moreover, we know that dim(Cv ∩ Cv′) < n for different
753
+ vertices v, v′. Therefore, we can rewrite (4.7) as the sum
754
+
755
+ v
756
+
757
+ Cv
758
+ x1 · · · xn(¯σZ ◦ ψ)Jψ dw.
759
+ over the f0 many vertices v of P.
760
+ Fix now a vertex v of P. According to Lemma 2.5, there are vertices vi of Pi, for i = 1, . . . , n,
761
+ satisfying v = v1 + . . . + vn. Note that ai ∈ Ai.
762
+
763
+ 12
764
+ PETER B¨URGISSER
765
+ We define the map ϕi : Rn
766
+ >0 → RAi\{vi} by
767
+ ϕi(x) = (xai−vi)ai∈Ai\{vi} ∈ RAi\{vi} ≃ Rmi.
768
+ Note that ϕi expresses ψi in the affine chart given by P(RAi)yvi ̸=0 → Rai∈Ai\{vi}, which maps
769
+ [yai]ai∈Ai to y−1
770
+ vi (yai)ai∈Ai\{vi}. So we are in the setting of Subsection 3.2 and ϕi is an instance
771
+ of (3.8). The rows of the matrix M(x) := Dxϕ are labeled by the disjoint union A1⊔. . .⊔An and
772
+ M(x) has n columns. For any n-tuple (a1, . . . , an) with ai ∈ Ai \{vi}, we denote by M(x)a1,...,an
773
+ the n×n submatrix of M(x), obtained by selecting from M(x) the rows numbered by a1, . . . , an.
774
+ We apply Lemma 3.5 to bound
775
+ ρm1 · · · ρmn
776
+
777
+ Cv
778
+ x1 · · · xn(¯σZ ◦ ψ)Jψ dw ≤
779
+
780
+ a1,...,an
781
+
782
+ Cv
783
+ x1 · · · xn| det M(x)a1,...,an| dw,
784
+ where the sum runs over all tuples (a1, . . . , an) with ai ∈ Ai \ {vi}. So there are m1 · · · mn many
785
+ summands. To prove Theorem 1.1, it is sufficient to show that
786
+ (4.9)
787
+
788
+ Cv
789
+ x1 · · · xn| det M(x)a1,...,an| dw ≤ 1
790
+ for each vertex v and each selection (a1, . . . , an).
791
+ The component (row) of the derivative Dxϕi corresponding to ai ∈ Ai \ {vi} is given by
792
+ (Dxϕi)ai = xai−vi(ai − vi)diag(x−1
793
+ 1 , . . . , x−1
794
+ n ).
795
+ Hence the n × n-submatrix M(x)a1,...,an of M(x) is given by
796
+ M(x)a1,...,an = diag(xa1−v1, . . . , xan−vn)
797
+
798
+ 
799
+ a1 − v1
800
+ ...
801
+ an − vn
802
+
803
+  diag(x−1
804
+ 1 , . . . , x−1
805
+ n ).
806
+ Therefore, setting bi := ai − vi, we get
807
+ x1 · · · xn det(M(x)a1,...,an) = xb1+...+bn det[b1, . . . , bn].
808
+ Let us write Πi for the cone of Pi at the vertex vi. By definition, bi ∈ Π∗
809
+ i . By Lemma 2.5,
810
+ Π := Π1+. . .+Πn equals the cone of the polytope P = P1+. . .+Pn at the vertex v = v1+. . .+vn.
811
+ Hence bi ∈ Π∗
812
+ i ⊆ Π∗
813
+ 1 ∩ . . . ∩ Π∗
814
+ n = Π∗ = Cv.
815
+ We can therefore rewrite the left-hand side of (4.9) as
816
+ (4.10)
817
+
818
+ Cv
819
+ x1 · · · xn| det M(x)a1,...,an| dw =
820
+
821
+ Cv
822
+ e−⟨b1+...+bn,w⟩| det[b1, . . . , bn]| dw.
823
+ By Proposition 2.4, this is at most 1. This shows claim (4.9) and finishes the proof of Theo-
824
+ rem 1.1.
825
+
826
+ 4.2. Proof of Proposition 1.2. For finite Si ⊆ R, put A := S1 × . . . × Sn, and consider the
827
+ maps
828
+ ψi : R>0 → P(RSi), xi �→ [xai
829
+ i ]ai∈Si,
830
+ ψ: Rn
831
+ >0 → P(RA), x �→ [xa]a∈A
832
+ with images Zi and Z, respectively. The kinematic formula for real projective space gives (see
833
+ [9, Cor. A.3])
834
+ N(Si) = vol(Zi)
835
+ vol(P1),
836
+ N(A, . . . , A) = vol(Z)
837
+ vol(Pn).
838
+ The key insight is that Z is obtained as the image of Z1 × . . . × Zn under the Segre embedding
839
+ P(RS1) × . . . × P(RSn) → P(RS1 ⊗ . . . ⊗ RSn) ≃ P(RA),
840
+
841
+ REAL ZEROS OF MIXED RANDOM FEWNOMIAL SYSTEMS
842
+ 13
843
+ which is well known to be isometric. Therefore, vol(Z) = vol(Z1) · · · vol(Zn), and this completes
844
+ the proof of Proposition 1.2.
845
+
846
+ 4.3. Proof of Theorem 1.3. Given is a finite subset A ⊆ Rn with convex hull P. By Lemma 4.2
847
+ we can can w.l.o.g. assume that dim P = n. Consider the injective map
848
+ (4.11)
849
+ ψ: Rn
850
+ >0 → P(RA), ψ(x) := [xa]a∈A
851
+ with image Z ⊆ P(RA). The kinematic formula for real projective space [9, Cor. A.3] is con-
852
+ siderably simpler than the one in Theorem 3.2, since O(m) acts transitively on the Grassmann
853
+ manifolds Gr(k, Rm): we have
854
+ (4.12)
855
+ N(A, . . . , A) = vol(Z)
856
+ vol(Pn) =
857
+ 1
858
+ vol(Pn)
859
+
860
+ Rn
861
+ >0
862
+ Jψ(x) dx.
863
+ We now proceed as in the proof of Theorem 1.3. We make the coordinate change x = e−w
864
+ and decompose the resulting integral according to the decomposition (4.8) of Rn into the full
865
+ dimensional cones Cv corresponding to vertices v. Thus
866
+
867
+ Rn
868
+ >0
869
+ Jψ(x) dx =
870
+
871
+ Rn x1 · · · xnJψ(x) dw =
872
+
873
+ Cv
874
+
875
+ Cv
876
+ x1 · · · xnJψ(x) dw
877
+ For a fixed vertex v of P, we consider the map ϕ: Rn
878
+ >0 → RA\{v} defined by
879
+ (4.13)
880
+ ϕ(x) = (xa−v)a∈A\{v}.
881
+ Then we have ψ(x) = π(ϕ(x)), where π is the inverse of the chart P(RA)yv̸=0 → RA\{v}. It is
882
+ easy to verify that Jψ(x) ≤ Jϕ(x) using ∥Dϕ(x)π∥ ≤ 1, see (2.1).
883
+ Le us view M(x) := Dxϕ as a matrix whose rows are labelled by elements of A \ {v}. and
884
+ denote by M(x)a1,...,an the submatrix of M(x) obtained by selecting the rows labelled by the ai.
885
+ Binet-Cauchy implies that
886
+ Jϕ(x)2 = det(M(x)T M(x)) =
887
+
888
+ a1,...,an
889
+ (det M(x)a1,...,an)2,
890
+ with the sum running over all n-element subsets {a1, . . . , an} of A\{v}, of which there are
891
+ �t−1
892
+ n
893
+
894
+ many. This implies Jϕ(x) ≤ �
895
+ a1,...,an | det M(x)a1,...,an|. We have arrived at
896
+
897
+ Cv
898
+ x1 · · · xnJψ(x) dw ≤
899
+
900
+ a1,...,an
901
+
902
+ Cv
903
+ x1 · · · xn| det M(x)a1,...,an| dw ≤
904
+ �t − 1
905
+ n
906
+
907
+ ,
908
+ where the right-hand inequality follows from Proposition 2.4 as in (4.10).
909
+
910
+ 4.4. Proof of Theorem 1.4. The key observation is the following. Define for ε > 0
911
+ Dε := {x ∈ Rn | ∥x∥ ≥ ε}.
912
+ Lemma 4.3. Let C ⊆ Rn be a proper cone, d ∈ int(C∗), and ε > 0. Then
913
+ lim
914
+ m→∞ mn
915
+
916
+ C∩Bε
917
+ e−m⟨d,w⟩ dw = 0
918
+ Proof. Since ∩m≥1Dmε = ∅, basic integration theory implies
919
+ lim
920
+ m→∞
921
+
922
+ C∩Dmε
923
+ e−⟨d,u⟩ du = 0.
924
+ Making the change of variables u = mw shows the assertion.
925
+
926
+
927
+ 14
928
+ PETER B¨URGISSER
929
+ We now observe the following. Let U ⊆ Rn
930
+ >0 be open. Analogously as for (4.6), one shows
931
+ that
932
+ (2π)− n
933
+ 2 ρm1 · · · ρmn
934
+
935
+ U
936
+ x1 · · · xn(¯σZ ◦ ψ)Jψ dw.
937
+ equals the expected number of nondegenerate zeros in U of the random system (4.3).
938
+ We follow the proof of Theorem 1.1. Note that stretching the support does not change the
939
+ Newton polytopes Pi and P = P1 + . . . + Pn. Fix a vertex v of P. According to Lemma 2.5,
940
+ there are vertices vi of Pi, for i = 1, . . . , n, satisfying v = v1 + . . . + vn. Tracing the proof
941
+ of Theorem 1.1, one sees that it is sufficient to show that (compare (4.10)) for any selection
942
+ a1 ∈ A1 \ {v1}, . . . , an ∈ An \ {vn}, the vectors bi = ai − vi satisfy
943
+ lim
944
+ m→∞
945
+
946
+ Cv
947
+ e−m⟨b1+...+bn,w⟩| det[mb1, . . . , mbn]| dw = 0.
948
+ However, this is a consequence of Lemma 4.3.
949
+
950
+ 4.5. Additional comment. It is instructive to see how (4.12) directly follows from the more
951
+ general kinematic formula in Theorem 3.2. Consider the injective map ψ from (4.11) with image
952
+ Z ⊆ P(RA). We use ψ to define the map
953
+ (4.14)
954
+ ψd : Rn
955
+ >0 → (P(RA))n, x �→ (ψ(x), . . . , ψ(x)).
956
+ The image Zd = {(y, . . . , y) | y ∈ Z} ⊆ (Pm)n of ψd is the diagonal embedding of Z in the
957
+ product of projective spaces. By Theorem 3.2 and (3.6) we have
958
+ N(A, . . . , A) = (2π)− n
959
+ 2 ρn
960
+ m
961
+
962
+ Rn
963
+ >0
964
+ (¯σZd ◦ ψd)Jψd dx.
965
+ Via Lemma 4.4 below, we indeed conclude that
966
+ N(A, . . . , A) =
967
+ 1
968
+ vol(Pn)
969
+
970
+ Rn
971
+ >0
972
+ Jψ dx = vol(Z)
973
+ vol(Pn),
974
+ which is (4.12).
975
+ Lemma 4.4. For x ∈ Rn
976
+ >0 we have
977
+ ρn
978
+ m ¯σZd(ψd(x))Jψd(x) =
979
+ (2π)
980
+ n
981
+ 2
982
+ vol(Pn)Jψ(x).
983
+ Proof. Lemma 3.4 applied to the map ψd from (4.14) gives
984
+ (4.15)
985
+ ρn
986
+ m ¯σZd(ψd(x))Jψd(x) = E λ1,...,λn ∥(λ1 ◦ Dxψ) ∧ . . . ∧ (λn ◦ Dxψ)∥
987
+ where the λi are standard Gaussian linear forms on Tψ(x)Pm. Take an isometry Tψ(x)Pm ≃ Rm,
988
+ view λi ∈ Rm as a vector, and view ∆ := Dxψ as a matrix in Rm×n. We note that Jψ(x) =
989
+
990
+ det(∆T ∆). The right-hand side of (4.15) can be written as the expectation E λi| det R(x)|,
991
+ with the matrix
992
+ (4.16)
993
+ R(x) :=
994
+
995
+ 
996
+ λT
997
+ 1 ◦ Dxψ
998
+ ...
999
+ λT
1000
+ n ◦ Dxψ
1001
+
1002
+  =
1003
+
1004
+ 
1005
+ λT
1006
+ 1
1007
+ ...
1008
+ λT
1009
+ n
1010
+
1011
+  · ∆.
1012
+ We thus need to prove that
1013
+ (4.17)
1014
+ E λi| det R(x)| =
1015
+ (2π)
1016
+ n
1017
+ 2
1018
+ vol(Pn)
1019
+
1020
+ det(∆T ∆).
1021
+
1022
+ REAL ZEROS OF MIXED RANDOM FEWNOMIAL SYSTEMS
1023
+ 15
1024
+ In order to show this, by the singular value decomposition, we may assume that ∆ =
1025
+
1026
+ D
1027
+ 0
1028
+
1029
+ ,
1030
+ where D = diag(σ1, . . . , σn). Note that
1031
+
1032
+ det(∆T ∆) = σ1 · · · σn. Then (4.16) can be written as
1033
+ R(x) = ΛD, where Λ ∈ Rn×n is a standard Gaussian square matrix and we get E Λ| det(R(x))| =
1034
+ σ1 · · · σn E w| det Λ|. It is well known that E Λ| det Λ| = ρnρn−1 · · · ρ1, e.g., see [6, Cor. 4.11]. On
1035
+ the other hand (see [6, Lemma 2.25])
1036
+ ρm =
1037
+
1038
+ 2π vol(Pm−1)
1039
+ vol(Pm) ,
1040
+ hence ρnρn−1 · · · ρ1 = (2π)
1041
+ n
1042
+ 2
1043
+ vol(Pn). We have thus verified (4.17).
1044
+
1045
+ References
1046
+ [1] Mart´ın Avenda˜no. The number of roots of a lacunary bivariate polynomial on a line. Journal of Symbolic
1047
+ Computation, 44(9):1280–1284, 2009.
1048
+ [2] D. N. Bernstein. The number of roots of a system of equations. Funkcional. Anal. i Priloˇzen., 9(3):1–4, 1975.
1049
+ [3] Fr´ed´eric Bihan and Boulos El-Hilany. A sharp bound on the number of real intersection points of a sparse
1050
+ plane curve with a line. Journal of Symbolic Computation, 81:88–96, 2017.
1051
+ [4] Fr´ed´eric Bihan and Frank Sottile. New fewnomial upper bounds from Gale dual polynomial systems. Mosc.
1052
+ Math. J., 7(3):387–407, 573, 2007.
1053
+ [5] Ir´en´ee Briquel and Peter B¨urgisser. The real tau-conjecture is true on average. Random Structures Algo-
1054
+ rithms, 57(2):279–303, 2020.
1055
+ [6] Peter B¨urgisser and Felipe Cucker. Condition, volume 349 of Grundlehren der Mathematischen Wis-
1056
+ senschaften [Fundamental Principles of Mathematical Sciences]. Springer, Heidelberg, 2013. The geometry
1057
+ of numerical algorithms.
1058
+ [7] Peter B¨urgisser, Felipe Cucker, and Pierre Lairez. Rigid continuation paths ii. structured systems. Preprint
1059
+ arXiv:2010.10997, 2021.
1060
+ [8] Peter B¨urgisser, Alperen A. Erg¨ur, and Josu´e Tonelli-Cueto. On the number of real zeros of random fewno-
1061
+ mials. SIAM J. Appl. Algebra Geom., 3(4):721–732, 2019.
1062
+ [9] Peter B¨urgisser and Antonio Lerario. Probabilistic Schubert calculus. J. Reine Angew. Math., 760:1–58,
1063
+ 2020.
1064
+ [10] Ren´e Descartes. La G´eom´etrie. Librairie Scientifique A. Hermann, 1886. Digital reproduction of 2008 by
1065
+ Project Gutenberg (Ebook number: 26400).
1066
+ [11] Mathias Drton, Bernd Sturmfels, and Seth Sullivant. Lectures on algebraic statistics, volume 39 of Oberwol-
1067
+ fach Seminars. Birkh¨auser Verlag, Basel, 2009.
1068
+ [12] Alan Edelman and Eric Kostlan. How many zeros of a random polynomial are real? Bull. Amer. Math. Soc.
1069
+ (N.S.), 32(1):1–37, 1995.
1070
+ [13] Jacques Faraut and Adam Kor´anyi. Analysis on symmetric cones. Oxford Mathematical Monographs. The
1071
+ Clarendon Press, Oxford University Press, New York, 1994. Oxford Science Publications.
1072
+ [14] Osman G¨uler. Barrier functions in interior point methods. Math. Oper. Res., 21(4):860–885, 1996.
1073
+ [15] Bertrand Haas. A simple counterexample to Kouchnirenko’s conjecture. Beitr¨age Algebra Geom., 43(1):1–8,
1074
+ 2002.
1075
+ [16] Fritz Horn and Roy Jackson. General mass action kinetics. Arch. Rational Mech. Anal., 47:81–116, 1972.
1076
+ [17] Ralph Howard. The kinematic formula in Riemannian homogeneous spaces. Mem. Amer. Math. Soc.,
1077
+ 106(509):vi+69, 1993.
1078
+ [18] Gorav Jindal, Anurag Pandey, Himanshu Shukla, and Charilaos Zisopoulos. How many zeros of a random
1079
+ sparse polynomial are real? In ISSAC’20—Proceedings of the 45th International Symposium on Symbolic
1080
+ and Algebraic Computation, pages 273–280. ACM, New York, [2020] ©2020.
1081
+ [19] Askold G. Khovanski˘ı. A class of systems of transcendental equations. Dokl. Akad. Nauk SSSR, 255(4):804–
1082
+ 807, 1980.
1083
+ [20] Askold G. Khovanski˘ı. Fewnomials, volume 88 of Translations of Mathematical Monographs. American Math-
1084
+ ematical Society, Providence, RI, 1991.
1085
+ [21] Pascal Koiran. Shallow circuits with high-powered inputs. Proc. Second Symposium on Innovations in Com-
1086
+ puter Science, ICS, 2011.
1087
+ [22] Pascal Koiran, Natacha Portier, and S´ebastien Tavenas. On the intersection of a sparse curve and a low-degree
1088
+ curve: a polynomial version of the lost theorem. Discrete Comput. Geom., 53(1):48–63, 2015.
1089
+
1090
+ 16
1091
+ PETER B¨URGISSER
1092
+ [23] Pascal Koiran, Natacha Portier, and S´ebastien Tavenas. A Wronskian approach to the real τ-conjecture. J.
1093
+ Symbolic Comput., 68(part 2):195–214, 2015.
1094
+ [24] Anatoli G. Kushnirenko. Poly`edres de Newton et nombres de Milnor. Invent. Math., 32(1):1–31, 1976.
1095
+ [25] L´eo Mathis. The Handbook of Zonoid Calculus. PhD thesis, SISSA, 2022.
1096
+ [26] Yurii Nesterov and Arkadii Nemirovskii. Interior-point polynomial algorithms in convex programming, vol-
1097
+ ume 13 of SIAM Studies in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM),
1098
+ Philadelphia, PA, 1994.
1099
+ [27] Kaitlyn Phillipson and J. Maurice Rojas. Fewnomial systems with many roots, and an adelic tau conjecture.
1100
+ In Proceedings of Bellairs workshop on tropical and non-Archimedean geometry (May 6-13, 2011, Barbados),
1101
+ Contemporary Mathematics, volume 605, pages 45–71, 2014.
1102
+ [28] Rolf Schneider. Convex bodies: the Brunn-Minkowski theory, volume 151 of Encyclopedia of Mathematics
1103
+ and its Applications. Cambridge University Press, Cambridge, expanded edition, 2014.
1104
+ [29] Frank Sottile. Real solutions to equations from geometry, volume 57 of University Lecture Series. American
1105
+ Mathematical Society, Providence, RI, 2011.
1106
+ [30] G¨unter M. Ziegler. Lectures on polytopes, volume 152 of Graduate Texts in Mathematics. Springer-Verlag,
1107
+ New York, 1995.
1108
+ Institute of Mathematics, Technische Universit¨at Berlin
1109
+ Email address: pbuerg@math.tu-berlin.de
1110
+
29AyT4oBgHgl3EQfb_di/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
2dFAT4oBgHgl3EQfkh3i/content/tmp_files/2301.08612v1.pdf.txt ADDED
@@ -0,0 +1,1544 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ARcode: HPC Application Recognition Through
2
+ Image-encoded Monitoring Data
3
+ 1st Jie Li
4
+ Department of Computer Science
5
+ Texas Tech University
6
+ Lubbock, TX, USA
7
+ jie.li@ttu.edu
8
+ 2nd Brandon Cook
9
+ National Energy Research Scientific Computing Center
10
+ Lawrence Berkeley National Laboratory
11
+ Berkeley, CA, USA
12
+ bgcook@lbl.gov
13
+ 3rd Yong Chen
14
+ Department of Computer Science
15
+ Texas Tech University
16
+ Lubbock, TX, USA
17
+ yong.chen@ttu.edu
18
+ Abstract—Knowing HPC applications of jobs and analyzing
19
+ their performance behavior play important roles in system
20
+ management and optimizations. The existing approaches detect
21
+ and identify HPC applications through machine learning models.
22
+ However, these approaches rely heavily on the manually extracted
23
+ features from resource utilization data to achieve high prediction
24
+ accuracy. In this study, we propose an innovative application
25
+ recognition method, ARcode, which encodes job monitoring
26
+ data into images and leverages the automatic feature learning
27
+ capability of convolutional neural networks to detect and identify
28
+ applications. Our extensive evaluations based on the dataset
29
+ collected from a large-scale production HPC system show that
30
+ ARcode outperforms the state-of-the-art methodology by up
31
+ to 18.87% in terms of accuracy at high confidence thresholds.
32
+ For some specific applications (BerkeleyGW and e3sm), ARcode
33
+ outperforms by over 20% at a confidence threshold of 0.8.
34
+ Index Terms—High Performance Computing, Application De-
35
+ tection, Deep Learning, Convolutional Neural Network
36
+ I. INTRODUCTION
37
+ As HPC systems are approaching the exaFLOP era, the scale
38
+ and complexity of HPC systems have increased significantly
39
+ over the past few years. Administrators need to understand
40
+ not only the performance of the hardware system, but also the
41
+ typical applications and their characteristics, such as how they
42
+ use the computing resources and how they have been executed
43
+ before [1]–[5]. With the increase of computation capability, the
44
+ resource contention and energy consumption increase as well.
45
+ To improve HPC system efficiency, it is imperative to under-
46
+ stand the characteristics of applications and to guide better
47
+ resource-aware scheduling policies based on the knowledge
48
+ of resource requirements of applications [6]–[8]. Moreover,
49
+ emergent misbehaviour is becoming more prevalent due to the
50
+ large scale and high utilization [9]. For system administrators
51
+ striving to guarantee optimal system performance, detecting
52
+ anomalies and potential errors of applications is an essential
53
+ task [10]–[12].
54
+ An online detection system that is capable of identifying
55
+ applications in real-time, with little or no human intervention,
56
+ would be a boon to system management. However, this is a
57
+ daunting task. Large-scale HPC systems are generally shared
58
+ by a variety of users from different domains. In addition to
59
+ traditional large-scale simulation applications (e.g., molecu-
60
+ lar dynamics, quantum chemistry applications, and climate
61
+ simulations), emerging Machine Learning (ML) and Artificial
62
+ Intelligence (AI) applications have become an increasingly
63
+ critical part of the workloads on HPC systems. Frequently
64
+ used applications and libraries are usually pre-installed on the
65
+ system by system administrators. However, administrators do
66
+ not necessarily possess the knowledge about the executions
67
+ and characteristics of each application. Users could build,
68
+ compile and name their own applications that are not shared
69
+ with others. In addition, if users do not provide application
70
+ information in job submission scripts, it is difficult to know
71
+ what applications these jobs belong to. These various use
72
+ cases and the imprecise mapping of job names to actual
73
+ applications make it difficult to identify applications using
74
+ naive approaches. As an example, we examined the application
75
+ names derived from the job submission script on Cori and
76
+ found that about 42.4% of the names were incorrect.
77
+ Advanced methods for detecting and recognizing applica-
78
+ tions can be divided into static analysis of binaries and/or
79
+ scripts, which can be performed without running a job, and dy-
80
+ namic analysis of system logs and performance metrics, which
81
+ implies analysis during or after job execution. Early works
82
+ explored static analysis of binaries to determine the semantic
83
+ similarity between two applications [13], [14]. However, The
84
+ complexity of HPC systems has reached a point where static
85
+ analysis of the binaries used to run and maintain the detection
86
+ system is no longer feasible. This approach is invasive to
87
+ users’ data and requires a dedicated binaries collection and
88
+ management infrastructure, which is not always of interest for
89
+ system administrators. Moreover, even though the binaries are
90
+ available, it does not perform well if the same application is
91
+ compiled by a different compiler toolchain or optimization
92
+ level [15]–[17].
93
+ Collecting and analyzing system logs and performance
94
+ metrics are critical to combat performance crisis, and they
95
+ are prevalent in HPC systems, although the approach may
96
+ vary. Recently, there has been a growing research interest
97
+ in automatic detection that relies on extensive performance
98
+ metrics and employs ML techniques to identify applica-
99
+ tions [18]–[22]. A representative approach proposed by Ates
100
+ et al. explored building supervised ML models with statistic
101
+ features of monitoring metrics to classify applications [19].
102
+ The classification model relies on thousands of statistical
103
+ arXiv:2301.08612v1 [cs.DC] 20 Jan 2023
104
+
105
+ features extracted from hundreds of time-series monitoring
106
+ metrics to achieve high prediction accuracy. A major weakness
107
+ of this approach is the high-latency responses of the detection
108
+ model, and the statistical features are only accurate for repre-
109
+ senting the application after the job is finished. In addition, the
110
+ performance of feature-based models is highly dependent on
111
+ feature engineering; using different features has the potential
112
+ to deviate the classification performance [23].
113
+ In this study, we extend the line of performance metrics
114
+ based approaches and propose an innovative method called
115
+ ARcode (stands for Application Recognition code). It is
116
+ an application recognition method utilizing images encoded
117
+ from performance monitoring metrics. Specifically, we lever-
118
+ age monitoring metrics collected from HPC systems (§II-A)
119
+ and encode time-series data to two-dimensional images to
120
+ represent the resource usage patterns of HPC executions (or
121
+ job signatures for simplicity, discussed in §III-B). We then
122
+ build a dataset labelled with application names and train a
123
+ Convolutional Neural Network (CNN) to build the classifi-
124
+ cation model (§III-C). The contributions of this study are
125
+ summarized below:
126
+ • Contrary to other studies where datasets are generated
127
+ from benchmarks and proxy applications, our dataset is
128
+ built from real applications with different input data,
129
+ resource allocations and run times, which well reflects the
130
+ complex real scenarios. Specifically, we collect monitor-
131
+ ing data from a production system and build a dataset of
132
+ performance metrics of twelve popular HPC applications
133
+ where the application names are labelled.
134
+ • Our innovative methodology encodes time-series mon-
135
+ itoring data into two-dimensional images, where the
136
+ performance metrics are creatively represented in a much
137
+ smaller size compared to the original data without losing
138
+ important metric variations. The encoded job signatures
139
+ can be used not only for application classification and
140
+ detection, but also to inspire methods for predicting and
141
+ estimating the resource usage of applications.
142
+ • We use the CNN techniques and train the CNN model
143
+ with the job signatures. The job signatures are generated
144
+ from the performance monitoring data, thus do not in-
145
+ volve collecting and analyzing users’ private data. The
146
+ CNN model, on the other hand, does not require manual
147
+ features engineering, making it easier to be tuned and
148
+ adopted by any HPC sites.
149
+ Through extensive experiments, we find that ARcode
150
+ achieved a competitive classification performance in most
151
+ cases and outperformed by up to 18.87% at high confidence
152
+ thresholds compared to the state-of-the-art methods. When
153
+ detecting some specific applications (e.g., BerkeleyGW and
154
+ e3sm) with a confidence threshold of 0.8, ARcode is better
155
+ than the state-of-the-art methods by over 20% in terms of ac-
156
+ curacy. Meanwhile, ARcode retains the temporal information
157
+ of the monitoring data and is able to recognize running jobs.
158
+ This capability is not available in any state-of-the-art methods.
159
+ The details of all these experiment evaluations are discussed
160
+ Figure. 1: Workflow of LDMS on Cori
161
+ in
162
+ §IV. The ARcode model and dataset used in this study
163
+ can be found in a separate submission of artifacts.
164
+ II. BACKGROUND
165
+ In this section, we briefly introduce the Cori system and
166
+ how we collect job monitoring data. Then, we describe the
167
+ workflow of the monitoring infrastructure being used and
168
+ present the available job-level monitoring metrics.
169
+ A. The Cori System
170
+ Cori1 is a Cray XC40 system at National Energy Research
171
+ Scientific Computing Center (NERSC). It consists of 2,388
172
+ Intel Xeon “Haswell” processor nodes and 9,688 Intel Xeon
173
+ Phi “Knight’s Landing” (KNL) nodes interconnected on Cray
174
+ Aries High-Speed Network, which provides a peak perfor-
175
+ mance of about 30 petaflops. Additionally, Cori is equipped
176
+ with a large scratch Luster File System that provides 432
177
+ GB/s of performance with a capacity of 28.5 petabytes to
178
+ the compute nodes. Cori also has the Cray DataWarp based
179
+ Burst Buffer, offering a 1.8 petabytes burst buffer storage with
180
+ 1.7 TB/s in peak bandwidth performance [24], [25]. With the
181
+ mission of accelerating the pace of scientific discovery through
182
+ HPC and data analysis, workloads running on the Cori system
183
+ cover a wide range of scientific disciplines, including lattice
184
+ QCD, materials science, climate research, high energy physics,
185
+ astrophysics, and more.
186
+ B. Monitoring Workflow
187
+ In this study, we utilize the monitoring metrics collected
188
+ from the CPU nodes of the NERSC Cori system, where the in-
189
+ 1https://docs.nersc.gov/systems/cori/
190
+
191
+ Compute Node
192
+ Compute Node
193
+ LDMS Sampler Daemon
194
+ LDMS Sampler Daemon
195
+ Haswel
196
+ Aggregation Node
197
+ LDMS Aggregator Daemon
198
+ Parguet
199
+ Large Memory Node
200
+ 2TB of MemoryTABLE I: Selected Monitoring Metrics
201
+ Sampler
202
+ Metrics
203
+ Derived Metrics
204
+ Description
205
+ cray aries sampler
206
+ power
207
+ power
208
+ Node Power Consumption
209
+ syspapi
210
+ PAPI TOT INS
211
+ IPC (PAPI TOT INS/PAPI TOT TOT)
212
+ Instruction Per Cycle
213
+ PAPI TOT TOT
214
+ meminfo
215
+ MemTotal
216
+ Mem (MemTotal - MemFree)
217
+ Memory Used
218
+ MemFree
219
+ Figure. 2: Overview of ARcode Design. ARcode encodes the time-series monitoring data into job signatures. In the offline
220
+ training phase, ARcode trains the CNN from a labelled job signature dataset. In the running recognition phase, the CNN
221
+ model is used to detect the encoded job signature. The CNN model is modified so that it can identify novel applications.
222
+ band monitoring tool, LDMS is used [26]. The detailed discus-
223
+ sion of how LDMS works on Cori is out of scope of this paper.
224
+ In Figure 1, we illustrate its workflow for generating job-level
225
+ performance metrics. The workflow includes the following
226
+ steps: 1 LDMS samplers on Haswell and KNL nodes (two
227
+ partitions in Cori) collect in-band metrics at a pre-configured
228
+ frequency; 2 the monitoring data are then sent to aggregation
229
+ nodes, where metrics collected from the same sampler are
230
+ stored in CSV files under the same folder. Each CSV contains
231
+ metrics from multiple nodes and the corresponding metrics for
232
+ a job may span multiple CSV files. To improve the usability of
233
+ the monitoring data, the NERSC LDMS [27], an LDMS data
234
+ processing tool, takes care of the post-processing of CSV files.
235
+ 3 NERSC LDMS gets job IDs from Slurm sacct and joins
236
+ the job IDs with CSV files, and 4 submits these files to large
237
+ memory nodes for post-processing, where the same metrics of
238
+ the same job are extracted. 5 The post-processed job-level
239
+ metrics are saved in parquet files by metric samplers for future
240
+ analysis. Compared to raw CSV files, job-level parquet files
241
+ significantly improve the availability of monitoring data and
242
+ the efficiency of querying job performance metrics.
243
+ C. Available Metrics
244
+ The available metrics collected through LDMS on HPC
245
+ systems depend on the configurations and available samplers
246
+ on the hardware platform. As routine tasks of monitoring
247
+ the health of the Cori system, 34 different samplers collect
248
+ metrics related to I/O, network, CPU counters, memory usage,
249
+ power consumption, etc. The total number of metrics collected
250
+ through the sampler varies from 12 to 3,016, depending
251
+ on the sampler. The granularity of collected metrics is one
252
+ second, generating approximately 400MB of monitoring data
253
+ per second on a system wide basis.
254
+ From the perspective of application recognition, it is
255
+ unattractive and impractical to include all of these extensive
256
+ monitoring metrics in one model because processing large
257
+ amounts of time-series data is compute-intensive and time-
258
+ consuming. On the other hand, we envision that the proposed
259
+ methodology should be easily adopted by other HPC systems
260
+ and the selected metrics should be common even when using
261
+ different monitoring infrastructures. Therefore, we select five
262
+ of these metrics and derive three representative metrics for
263
+ creating job signatures. These three metrics are the power
264
+ consumption of the compute node, instruction per cycle (IPC),
265
+ and memory used as shown in Table I. These metrics are
266
+ expected to be available through the monitoring infrastructure
267
+ on a variety of HPC architectures.
268
+ III. METRICS ENCODING AND CLASSIFICATION
269
+ In this section, we first discuss design considerations and
270
+ provide an overview of ARcode design. We then present
271
+ the details of encoding monitoring data, including resampling
272
+ job metrics, converting 1D time-series data into 2D images,
273
+ and encoding multiple traces into a single image. Lastly, we
274
+ introduce the CNN architecture for classifying the encoded
275
+ images.
276
+ A. Design Consideration and Overview
277
+ As discussed in §I, existing solutions either perform a static
278
+ analysis of binaries and/or scripts or leverage machine learning
279
+ methods to extract key features out of extensive monitoring
280
+ data to build application prediction and classification models.
281
+
282
+ Known App
283
+ App1
284
+ App2
285
+ Known App 2
286
+ Known App n
287
+ App 3
288
+ App 4
289
+ Unknown Apps
290
+ App n(a) Original Power Consumption Trace
291
+ (b) Downsampled Trace by Aggregating
292
+ (c) Original Power Consumption Trace
293
+ (d) Upsampled Trace by Padding
294
+ Figure. 3: Resampling traces by aggregating and padding based on the original trace length and the predefined length. Figure
295
+ a is the trace longer than the predefined length 128, in which the aggregating function is applied to downsample the trace.
296
+ Figure c is a trace shorter than 128, in which the padding is used to upsample the trace. Figure b and d show the corresponding
297
+ resampled traces, respectively.
298
+ Our approach, ARcode, is similar to the monitoring data
299
+ based approaches but with two design considerations: features
300
+ learned without human intervention and data retaining tempo-
301
+ ral information.
302
+ First, current state-of-art application detection models, such
303
+ as Taxonomist [19], extract statistical summaries from raw
304
+ monitoring data to create a feature vector for machine learning
305
+ models, where the classification performance is highly de-
306
+ pendent on the quality of the manually constructed features.
307
+ To improve the usability, one of our considerations is that
308
+ the features of the monitoring traces can be learned without
309
+ human intervention. Second, although statistical features are
310
+ spatially efficient and lightweight when building detection
311
+ models, they lose the temporal information of time-series data,
312
+ thus limiting their use case. To improve the extensibility,
313
+ the other consideration of our model is to retain temporal
314
+ information. So it is able to use part of the monitoring data in
315
+ detection, classification, and prediction of the resource usage
316
+ of applications.
317
+ With these considerations in mind, our proposed approach,
318
+ ARcode, encodes entire time-series monitoring data of jobs
319
+ into unified-size images and leverages deep learning tech-
320
+ niques to learn features. The encoded image, which we named
321
+ as job signature, is a representation of monitoring traces that
322
+ preserve temporal performance behavior of the job.
323
+ As shown in Figure 2, ARcode has two main components:
324
+ the monitoring data encoding and the CNN model. The
325
+ first component, the monitoring data encoding component,
326
+ performs a series of operations on the raw monitoring data.
327
+ It creates job signatures encoding the time-series data and
328
+ represents the jobs as images. The second component is a CNN
329
+ model that is customized to learn features from job signatures
330
+ and to classify these job signatures. ARcode operates in two
331
+ phases. The first phase is the offline training phase, where
332
+ the CNN model is trained from a labelled job signature
333
+ dataset. The training phase can be enhanced with transfer
334
+ learning [28], where the convolutional layers can be transferred
335
+ from a trained job detection model and only the layers that
336
+ make predictions need to be trained. The runtime recognition
337
+ phase is where ARcode operates to detect and to predict the
338
+ applications by job signatures.
339
+ Classification model should not be limited to classify
340
+ known applications already seen in the training phase. To
341
+ make ARcode practically useful, we introduce confidence
342
+ thresholds to help identify applications. When the prediction
343
+ probability exceeds the defined threshold, ARcode labels
344
+ the job with the application name; otherwise, it marks the
345
+ observation as unknown, indicating the job is likely to be a
346
+ new application.
347
+ B. Construction of Job Signature
348
+ 1) Resampling Traces: To construct job signatures that can
349
+ be measured for the similarity between pairs of signatures, it
350
+ requires the time series traces to have equal length. Given a
351
+ trace, we resample it with a predefined length l. For a trace T
352
+ of length n, we create T ′ by sampling the data points from T
353
+
354
+ 275.00
355
+ Power Consumption (W)
356
+ 250.00
357
+ 225.00
358
+ 200.00
359
+ 75.00
360
+ 150.00
361
+ 125.00
362
+ 14000
363
+ 0
364
+ 2000
365
+ 4000
366
+ 6000
367
+ 8000
368
+ 10000
369
+ 12000
370
+ Timesteps220.00
371
+ Power Consumption (W)
372
+ 210.00
373
+ 200.00
374
+ 190.00
375
+ 180.00
376
+ 170.00
377
+ 20
378
+ 60
379
+ 80
380
+ 100
381
+ 120
382
+ 0
383
+ 40
384
+ Timesteps300.00
385
+ Power Consumption (W)
386
+ 250.00
387
+ 200.00
388
+ .50.00
389
+ 100.00
390
+ 50.00
391
+ 0
392
+ 10
393
+ 20
394
+ 30
395
+ 40
396
+ 50
397
+ Timesteps300.00
398
+ Power Consumption (W)
399
+ 250.00
400
+ 200.00
401
+ .50.00
402
+ 100.00
403
+ 50.00
404
+ 0
405
+ 20
406
+ 40
407
+ 60
408
+ 80
409
+ 100
410
+ 120
411
+ Timesteps(a) Polar Coordinate of the Normalized Trace
412
+ (b) Gramian Angular Summation (Left) and Difference (Right) Fields
413
+ Figure. 4: Steps of Gramian Angular Field Conversion. Each encoded image has a resolution of 128 × 128.
414
+ so that n′ = l, where n′ is the length of the sampled trace T ′.
415
+ Note that the predefined length is usually set to a relatively
416
+ small value to reduce the compute time when calculating the
417
+ similarities.
418
+ Considering most jobs on HPC run for hours or even days,
419
+ their corresponding monitoring traces are usually longer than
420
+ the predefined length, i.e, n > l. In this case, we downsample
421
+ the traces. For each set of ⌊n/l⌋ data points, we apply one of
422
+ the functions, such as mean, max, min, median, to calculate the
423
+ aggregated value. Assuming we set the predefined length to be
424
+ 120, to resample the power consumption trace of a 10-minute
425
+ job (i.e., the trace has 600 timesteps in total), every 5 data
426
+ points should be aggregated. Figure 3a and Figure 3b illustrate
427
+ the procedure of resampling the power consumption traces of
428
+ a job using the mean value. The original trace contains more
429
+ than 14,000 timesteps, while after resampling, the trace length
430
+ becomes 128 timesteps.
431
+ In case that n < l, i.e., the length of a job metric trace is less
432
+ than the predefined length l, we upsample the original traces.
433
+ Specifically, we add ⌊l/n⌋ paddings between consecutive data
434
+ points and fill with the previous value. Figure 3c and Figure 3d
435
+ show the traces before and after upsampling. After resampling,
436
+ all traces have the length of l, irrespective of the duration of
437
+ the job. The corresponding resampled traces T ′ will be used
438
+ for further processing.
439
+ 2) Converting 1D time series to 2D images: As shown
440
+ in Figure 3, the monitoring traces and the corresponding
441
+ resampled traces are univariate time series. To take advantage
442
+ of the feature learning in deep learning architectures, we
443
+ convert 1D time series to 2D images.
444
+ We utilize the Gramian Angular Field (GAF) to transform
445
+ time series into images [29]. Specifically, the time series data
446
+ is first normalized or scaled into the range of [−1, 1]. The
447
+ normalized time series data is then represented in a polar
448
+ coordinate instead of the typical Cartesian coordinate. A Gram
449
+ Matrix like operation is applied on the resulting angles to
450
+ construct 2D images.
451
+ Given a time series trace T = {t1, t2, ..., tn} of n times-
452
+ tamps, we rescale T to have the interval [−1, 1] by the equation
453
+ below:
454
+ ˜ti = (ti − max(T)) + (ti − min(T))
455
+ max(T) − min(T)
456
+ (1)
457
+ The value of the time series and its corresponding timestamp
458
+ need to be accounted for so that no information is lost. These
459
+ two quantities are expressed with the angle and the radius
460
+ in polar coordinates, respectively. Mathematically, the angle
461
+ is computed by arccos(˜ti), which lies within [0, π], and the
462
+ radius variable is calculated by i/n, which is in [0, 1]. The
463
+ point can be expressed in polar coordinates (φi, ri), where:
464
+
465
+ φi = arccos(˜ti),
466
+ −1 ≤ ˜ti ≤ 1
467
+ ri = i
468
+ n,
469
+ 0 ≤ i ≤ n
470
+ (2)
471
+ The encoding function is a composition of bijective func-
472
+ tions, producing one and only one result in the polar coordinate
473
+ system. In addition, as opposed to Cartesian coordinates,
474
+ polar coordinates preserve temporal dependency through the
475
+ r coordinate. An example of a trace represented in polar
476
+ coordinates is shown in Figure 4a, which is transformed from
477
+ the normalized trace of Figure 3d.
478
+ The temporal correlations between each pair of data points
479
+ (ti, tj) are computed by considering the trigonometric sum-
480
+ mation (cos(φi + φj)) or subtraction (cos(φi − φj)), leading
481
+ to the Gramian Matrix called Gramian Angular Summation
482
+ Field (GASF) or Gramian Angular Difference Field (GADF),
483
+ respectively. The GASF is defined as follows:
484
+ GASF =
485
+
486
+ ����
487
+ cos(φ1 + φ1)
488
+ . . .
489
+ cos(φ1 + φn)
490
+ cos(φ2 + φ1)
491
+ . . .
492
+ cos(φ2 + φn)
493
+ ...
494
+ ...
495
+ ...
496
+ cos(φn + φ1)
497
+ . . .
498
+ cos(φn + φn)
499
+
500
+ ����
501
+ (3)
502
+ Through the GASF or GADF conversion, the diagonal Gi,i
503
+ contains the original value of the scaled time series, while
504
+ Gi,j represents the relative correlation by superposition of
505
+ directions with respect to time interval |i − j|. Other details
506
+ on time series encoding can be found from [29]. In Figure 4b,
507
+
508
+ 90°
509
+ 135°
510
+ 45°
511
+ 20.00
512
+ 180°
513
+
514
+ 0.25
515
+ 0.50
516
+ 0.75
517
+ L.00
518
+ 225°
519
+ 315°
520
+ 270°60
521
+ 0
522
+ 20
523
+ 40
524
+ 80
525
+ 100
526
+ 120
527
+ 0
528
+ 20
529
+ 40
530
+ 60
531
+ 80
532
+ 100
533
+ 120
534
+ 1.00
535
+ 0.00
536
+ -1.00
537
+ 120
538
+ 0.75
539
+ 100
540
+ 0.50
541
+ 80
542
+ 0.25
543
+ 0.00
544
+ 60
545
+ -0.25
546
+ 40
547
+ -0.50
548
+ 20
549
+ -0.75
550
+ 0
551
+ 1.00
552
+ .00
553
+ 0
554
+ 1we illustrate the encoded 2D images with GASF and GADF
555
+ for the trace in Figure 4a. To keep it concise, we use GASF
556
+ as the 1D time series conversion algorithm and refer to GASF
557
+ as GAF in the following discussion.
558
+ 3) Encoding Multiple Time Series Traces: The procedure
559
+ presented in §III-B2 only converts one monitoring trace to
560
+ a 2D image. Since we have multiple monitoring traces cor-
561
+ responding to the same job and we do not want to lose the
562
+ correlation between each pair of traces. The question becomes
563
+ how we can encode multiple time series to a single image such
564
+ that a deep learning architecture can understand. To solve this
565
+ problem, we are inspired by the concept of RGB channels,
566
+ where each RGB channel emphasizes different aspects of the
567
+ original image. Similarly, the power consumption trace, IPC
568
+ trace, and memory used trace can be considered as the R
569
+ channel, G channel, and B channel of the encoded image,
570
+ respectively.
571
+ The output of GAF conversion is nothing but a 2D matrix
572
+ of floating-point numbers that fall in [−1, 1]. To visualize the
573
+ job signature, we rescale the GAFs of the above-mentioned
574
+ three traces to be in [0, 255] by using the below equation:
575
+
576
+ GAF = ⌊GAF + 1
577
+ 2
578
+ ∗ 255⌋
579
+ (4)
580
+ The �
581
+ GAF contains the pixel value of the gray scale image.
582
+ When combining �
583
+ GAF power, �
584
+ GAF ipc, �
585
+ GAF mem as three
586
+ channels of RGB, we create a single color image. Figure 5
587
+ shows the GAFs of the power, IPC and memory usage of a
588
+ job and its corresponding encoded job signature. It is worth
589
+ noting that rescaling GAF to the range [0, 255] is only for
590
+ the purpose of visualizing the job signature while the original
591
+ GAF falling in [−1, 1] can be directly fed in the Convelutional
592
+ Neural Network.
593
+ It is important to note that the channel-like encoding
594
+ methodology is not limited to three channels. Each time series
595
+ trace is converted to a l ×l matrix by the procedure presented
596
+ in §III-B2. An encoded job signature of three channels is
597
+ a l × l × 3 matrix. Encoding one more metric is simply
598
+ adding another dimension in the matrix. More formally, a job
599
+ signature of c metrics is a l × l × c matrix. Even though it
600
+ is not straightforward to be visualized when c is larger than
601
+ 3, the CNN model can “understand” and analyze the high-
602
+ dimensional matrix.
603
+ C. Classification Model
604
+ Using the methodology presented in §III-B, the monitoring
605
+ traces of jobs can be represented in images (i.e., job sig-
606
+ natures). Therefore, detecting and identifying applications of
607
+ jobs become an image recognition problem. In this subsec-
608
+ tion, we first introduce the CNN, a deep learning technique
609
+ that has been widely used in image classification problems
610
+ and achieved promising results in many domains. Then, we
611
+ present the CNN architecture that is specifically customized
612
+ for classifying job signatures.
613
+ 1) Deep learning using CNN: The performance of con-
614
+ ventional machine learning techniques depends heavily on
615
+ data representation, which requires lots of efforts to design
616
+ preprocessing pipeline and feature engineering. Such feature
617
+ engineering is labor intensive and lacks the ability to extract
618
+ discriminative information from the data [30]. Deep learning,
619
+ on the other hand, explores the possibility to feed raw data to
620
+ the algorithm and automatically discover the features needed
621
+ for detection or classification. The key concept of deep learn-
622
+ ing is to transform the representation at a lower level into a
623
+ representation at a higher and more abstract level; and with
624
+ composition of such transformations, complex functions can
625
+ be learned [31]. As a widely-used deep learning technique,
626
+ CNNs have been successful in image classification problems.
627
+ 2) Customized CNN Architecture for Job Signatures: The
628
+ CNN architecture for classifying job signatures is designed as
629
+ shown in Figure 6, which contains the following customized
630
+ layers and parameters:
631
+ 1. Input layer for job signature: The inputs are job
632
+ signatures of encoded multiple time series traces, as presented
633
+ in §III-B. The resolution of the job signature is 128 × 128
634
+ and the number of channels equals to the number of traces
635
+ encoded in the job signature (i.e., three in our dataset). Note
636
+ that for other cases that job signatures encode more than three
637
+ monitoring traces, the input shape should be set accordingly.
638
+ 2. Layers for feature extraction: In our model, we have
639
+ three layers of CNN to learn features from the job signature,
640
+ each of which contains one convolution layer to extract
641
+ features and one pooling layer to reduce the spatial dimension
642
+ of the convoluted image. The convolution layer extracts image
643
+ features by convolving the job signature with a set of kernels
644
+ and produces one feature map for each kernel. We apply
645
+ the activation function ReLU on the convoluted features. It
646
+ replaces negative values with zero and keeps the positive value.
647
+ The output of ReLU will be the input for the pooling layer.
648
+ The first convolution layer learns 32 kernels, and the sec-
649
+ ond and third convolution layers learn 64 and 128 kernels,
650
+ respectively. We set the kernels to be size of 3×3 and use the
651
+ same padding in the convolution to maintain the dimension of
652
+ output as input. All three pooling layers perform max pooling
653
+ that returns the maximum value from the portion of the image
654
+ covered by a window of size of 2 × 2.
655
+ 3. Layers for classification: After going through the feature
656
+ extraction layers, the customized CNN model flattens the
657
+ final output and feeds it to a regular neural network for
658
+ classification. The flattened vector is connected to a fully
659
+ connected layer, through which non-linear combinations of
660
+ the features can be learned. After passing through the fully
661
+ connected layer, we use the softmax activation function in the
662
+ last layer to get the probabilities of the input job signature
663
+ being in a particular class.
664
+ To prevent the CNN model from overfitting and improve the
665
+ generalization of the CNN model, we add several dropout lay-
666
+ ers in the model to randomly disable neurons during training,
667
+ as shown in the dashed red parallelograms in Figure 6. In our
668
+
669
+ Figure. 5: Encoding Multiple Time Series Traces into a Job Signature with a Resolution of 128 × 128.
670
+ Figure. 6: Customized CNN Architecture for Classifying Job Signatures.
671
+ experiments, the dropout rate before the flatten layer and in
672
+ the fully-connected layer is set as 30% and 70%, respectively.
673
+ IV. EXPERIMENTAL EVALUATION
674
+ In this section, we introduce the experimental evaluation
675
+ of our proposed classification model on a real-world dataset
676
+ collected from the Cori system. Particularly, we first introduce
677
+ the dataset built based on the proposed encoding methodology
678
+ and then, we compare the performance of our model with the
679
+ baseline methods in terms of accuracy.
680
+ A. Dataset
681
+ To the best of our knowledge, there are no publicly released
682
+ monitoring traces with labelled application information col-
683
+ lected from production HPC systems. Ates el al. [32] published
684
+ a dataset containing the monitoring data of benchmarks and
685
+ proxy applications. Google published its cluster traces that do
686
+ not have application information [33]. Therefore, in order to
687
+ train the CNN model for detecting applications running in
688
+ production HPC systems, we built our own dataset.
689
+ On Cori system, some other research groups had imple-
690
+ mented the job metadata management service, where the
691
+ metadata of jobs running on Cori are stored and managed
692
+ in a MySQL database. The job metadata has a field named
693
+ ‘application name’ which is derived from the job submission
694
+ script. However, based on our analysis, about 42.4% of derived
695
+ names do not reflect the application accurately. Many of them
696
+ have names like ‘test’, ‘bugs’, ‘b.sh’, etc. Therefore, to build
697
+ a reliable labelled dataset, we select jobs that have accurate
698
+ application names through the job metadata service. In addi-
699
+ tion, since Cori system has the KNL partition and the Haswell
700
+ partition, the monitoring metrics of the same application (even
701
+ with same configurations and same input files) running on
702
+ different architectures could potentially have large variations.
703
+ To avoid discrepancy caused by the architecture, we only focus
704
+ on the jobs running on the same architecture and we select
705
+ KNL jobs as our dataset. Besides, we discard short jobs that
706
+ run for less than 60 seconds since they are likely for testing
707
+ purposes.
708
+ The
709
+ job
710
+ IDs
711
+ of
712
+ the
713
+ selected
714
+ jobs
715
+ are
716
+ used
717
+ with
718
+ NERSC LDMS [27] to obtain the corresponding monitoring
719
+ traces. Considering that a job may have multiple steps and
720
+ that job steps may correspond to different applications, we
721
+ treat the job steps of a job separately. In addition, since a job
722
+ may use multiple nodes (nodes are exclusively used by the
723
+ job on Cori), we aggregate the monitoring metrics from all
724
+ involved nodes and use the average time-series traces to build
725
+ the job signature.
726
+ We select 23,665 jobs from 12 different applications to build
727
+ the job signature dataset after eliminating those jobs that do
728
+ not have monitoring metrics (due to data collection errors or
729
+ historical traces are purged) and balancing the number of jobs
730
+ of each application as much as possible. Details are listed in
731
+ Table II. The numbers of allocated nodes for a job vary from
732
+ 1 to a maximum of 2,048. The BerkeleyGW, Espresso and
733
+
734
+ Footunee Lonin:
735
+ CNIN Ieyr
736
+ JAI NING
737
+ CNIN IyEr
738
+ 128 × 129 x3
739
+ FT X
740
+ 84 X 04 × B4
741
+ [Poad mps
742
+ 32 量 $2 x 128
743
+ Potpd mp
744
+ L
745
+
746
+
747
+ 口0
748
+ 20
749
+ 40
750
+ 60
751
+ 80
752
+ 100
753
+ 120
754
+ 20
755
+ 40
756
+ 60
757
+ 80
758
+ 100
759
+ 120
760
+ 20
761
+ 40
762
+ 60
763
+ 80
764
+ 100
765
+ 120
766
+ 0.90 卡
767
+ 0.13
768
+ 185.00
769
+ 0.12
770
+ 182.50
771
+ 120 -
772
+ 120
773
+ 120
774
+ 20
775
+ 100
776
+ 100
777
+ 100
778
+ 40
779
+ 80
780
+ 80
781
+ 80 -
782
+ 60
783
+ 09
784
+ 60
785
+ 80 -
786
+ 40
787
+ 40
788
+ 40 -
789
+ 100
790
+ 20 -
791
+ M
792
+ 120
793
+ ol
794
+ 01
795
+ 0
796
+ 20
797
+ 40
798
+ 60
799
+ 80
800
+ 100
801
+ 120
802
+ GAF of Power (Channel R)
803
+ GAF of IPC (Channel G)
804
+ GAF of Mem (Channel B)
805
+ Job SignatureTABLE II: Dataset of Job Signatures
806
+ Application
807
+ # of Jobs
808
+ # of Nodes*
809
+ Runtime(s)*
810
+ Description
811
+ BerkeleyGW
812
+ 1899
813
+ 1 / 2048
814
+ 60 / 172867
815
+ For quasiparticle excitations and optical properties of materials.
816
+ Espresso
817
+ 2000
818
+ 1 / 2048
819
+ 61 / 172858
820
+ For electronic-structure calculations and materials modeling at the nanoscale.
821
+ Gromacs
822
+ 1937
823
+ 1 / 64
824
+ 61 / 172836
825
+ For simulations of proteins, lipids and nucleic acids.
826
+ LAMMPS
827
+ 1999
828
+ 1 / 64
829
+ 60 / 172866
830
+ For molecular dynamics with a focus on materials modeling.
831
+ NWChem
832
+ 1992
833
+ 1 / 384
834
+ 71 / 169209
835
+ For computational chemistry.
836
+ VASP
837
+ 2000
838
+ 1 / 128
839
+ 69 / 172864
840
+ For “ab-initio” quantum-mechanical molecular dynamics (MD) simulations.
841
+ WRF
842
+ 1860
843
+ 1 / 256
844
+ 72 / 174608
845
+ for atmospheric research and operational forecasting applications.
846
+ aims
847
+ 2000
848
+ 1 / 192
849
+ 71 / 172959
850
+ For “ab-initio” molecular simulations.
851
+ chroma
852
+ 1996
853
+ 2 / 137
854
+ 488 / 147447
855
+ For lattice Quantum Chromodynamics calculations (LQCD).
856
+ cp2k
857
+ 1993
858
+ 1 / 128
859
+ 60 / 174608
860
+ For quantum chemistry and solid state physics.
861
+ e3sm
862
+ 1989
863
+ 1 / 2048
864
+ 60 / 173402
865
+ For earth system modeling, simulation and prediction.
866
+ su3
867
+ 2000
868
+ 1 / 36
869
+ 65 / 20277
870
+ For lattice Quantum Chromodynamics calculations (LQCD)
871
+ *The values on the left and right side of ‘/’ indicate the minimum and maximum values of the corresponding characteristics of the jobs.
872
+ s3sm have extremely large-scale jobs where all cores of 2,048
873
+ nodes are used, corresponding to 131,072 physical cores. The
874
+ selected jobs also cover a large range of runtime variations.
875
+ The shortest job, as defined earlier, runs for only 60 seconds.
876
+ The longest job, limited by the Quality of Service of the KNL
877
+ partition, runs for 48 hours. The dataset can be found in a
878
+ separate submission of artifacts.
879
+ It is worth mentioning that, it is up to users to set the resam-
880
+ ling length l and define the resolution based on their computing
881
+ capability. Nevertheless, the CNN model for images of larger
882
+ resolution usually requires more complex architecture and
883
+ the time for fine tuning and training the parameters of the
884
+ architecture becomes high. In our experiments, we set the
885
+ resampling length to be 128 and use a resolution of 128×128
886
+ for job signatures.
887
+ B. Baseline Methods
888
+ To compare the performance of our proposed CNN model
889
+ with state-of-the-art methods for detecting HPC jobs, we
890
+ examine several other performance metrics based approaches.
891
+ The Power Signature [18] and Taxonomist [19] are two repre-
892
+ sentative methods that use statistic features of the time series
893
+ monitoring data to build the classification model. The statistics
894
+ include the minimum, maximum, mean, standard deviation,
895
+ skew, kurtosis and the 5th, 25th, 50th, 75th, 95th percentiles.
896
+ Using the same monitoring metrics as ARcode, namely power
897
+ consumption, IPC and memory usage of the selected jobs,
898
+ we extract statistical features and build several classifiers as
899
+ baselines. These classifiers are Random Forest (RF), linear
900
+ Support Vector Classifier (Liner-SVC), and non-linear Support
901
+ Vector Classifier (SVC). In addition, we include a Random
902
+ Forest model that uses only statistical features extracted from
903
+ the power consumption trace. All of these models use default
904
+ hyperparameters.
905
+ C. Experiment Setup
906
+ The ARcode and baseline models are trained and evaluated
907
+ on a Cori GPU node, where 2 Skylake CPUs, 8 NVIDIA Tesla
908
+ V100 GPUs and 384 GB DDR4 memory are provided. The
909
+ proposed CNN is implemented using the TensorFlow Keras
910
+ library in a Python 3.9 environment. The baseline models are
911
+ implemented in Python leveraging scikit-learn library.
912
+ Figure. 7: Loss (top) and accuracy (bottom) of the training
913
+ and validation data. The vertical dashed line indicates the
914
+ determined epoch of 50.
915
+ We divide the dataset into 60% for training, 20% for
916
+ validation, and 20% for testing. To mitigate overfitting and to
917
+ increase the generalization of ARcode model, we determine
918
+ the optimal epoch number by examining the loss and accuracy
919
+ trends on training and validation data. As shown in Figure 7,
920
+ after epoch reaches to 50, the training loss gets lower than
921
+ validation loss while the accuracy of validation does not
922
+ improve. Therefore, we set epoch to 50. While evaluating the
923
+ classification performance on each application, we use ten-fold
924
+ stratified cross validation to divide the dataset into ten disjoint
925
+ partitions and evaluate model performance with each partition.
926
+ We test the classification performance on different con-
927
+ fidence thresholds. For each baseline classifier, we use the
928
+ one-vs.-rest version of that classifier such that it produces a
929
+ set of real-valued prediction scores for its decision instead
930
+ of a labeled class. In ARcode model, the softmax function
931
+ assigns probabilities of classes in each prediction. We compare
932
+ the prediction probabilities with the confidence thresholds to
933
+ determine the predicted class. For the prediction score si of
934
+ class ci, i ∈ {1, ..., k}, the classifier assigns the label of the
935
+ class by the following expression:
936
+
937
+ ci, where si = max(s1, ..., sk),
938
+ if si ≥ threshold
939
+ unknown,
940
+ otherwise
941
+ (5)
942
+ In other words, when the maximum value of the prediction
943
+
944
+ Training
945
+ 4.00
946
+ Validation
947
+ 3.00
948
+ S
949
+ LoSS
950
+ 2.00
951
+ 1.00
952
+ 0.80 -
953
+ Accuracy
954
+ 0.60
955
+ 0.40
956
+ -
957
+ 40
958
+ 60
959
+ 120
960
+ 0
961
+ 20
962
+ 80
963
+ 100
964
+ EpochsFigure. 8: Accuracy of ARcode and baseline classifiers at
965
+ different confidence thresholds. The vertical dashed line in-
966
+ dicates the confidence threshold (0.4) above which ARcode
967
+ outperforms all other classifiers.
968
+ Figure. 9: Accuracy of classifiers on each application at a
969
+ confidence threshold of 0.8.
970
+ scores is larger than the threshold, the class with the largest
971
+ score is the predicted class. Otherwise, the classifier labels the
972
+ observation with unknown. When the confidence threshold is
973
+ 0, it is the same with the vanilla multi-class classifier.
974
+ D. Experimental Results
975
+ We evaluate the capability of ARcode in identifying appli-
976
+ cations in this subsection. First, we evaluate the classification
977
+ performance on different confidence thresholds and examine
978
+ the performance on each application. Then, we assess the
979
+ performance of identifying applications that have not been
980
+ trained with the models. In addition, since the job signatures
981
+ encode temporal information of the monitoring metrics, we use
982
+ a subset of the monitoring data to construct partial signatures
983
+ to evaluate the ARcode model.
984
+ 1) Classification Performance: Figure 8 depicts the accu-
985
+ racy of ARcode and baseline models on different confidence
986
+ thresholds. As we can see from the figure, the Linear-SVC
987
+ model has the worst performance at all confidence thresholds.
988
+ When the confidence threshold is below 0.4, Random Forest
989
+ outperforms all other classifiers, with the highest accuracy
990
+ of 93.81% at a confidence threshold of 0. ARcode follows
991
+ closely with an accuracy of 89.67%. When the confidence
992
+ threshold is above 0.4, the accuracy of Random Forest de-
993
+ creases and ARcode has the best performance. At a threshold
994
+ of 1.0, the SVC model performs a little better than Random
995
+ Figure. 10: Accuracy of ARcode and baseline classifiers on
996
+ detecting novel applications at different confidence thresholds.
997
+ ARcode achieved the highest accuracy when the confidence
998
+ threshold is greater than 0.8.
999
+ Forest, but it is still 18.87% worse than ARcode. At a
1000
+ confidence threshold of 0, the accuracy of Random Forest
1001
+ on power features is close to ARcode , but it decreases
1002
+ significantly as the confidence threshold increases. In sum-
1003
+ mary, the accuracy of all classifier decreases with increasing
1004
+ confidence thresholds, but the slowest decrease rate is observed
1005
+ for ARcode.
1006
+ We further examine the classification performance of
1007
+ ARcode and Random Forest on each application, as shown
1008
+ in Figure 9, where we use a confidence threshold of 0.8
1009
+ in the experiment. From this figure, we have the following
1010
+ observations. First, the accuracy of ARcode and Random
1011
+ Forest are very close in most cases. When detecting Gromacs,
1012
+ LAMMPS and cp2k, Random Forest performs slightly bet-
1013
+ ter. Second, for some applications such as BerkeleyGW and
1014
+ e3sm, ARcode achieves a significantly better accuracy. In
1015
+ BerkeleyGW classification, the accuracy of Random Forest is
1016
+ 62.06% while ARcode achieves 83.94% accuracy. ARcode
1017
+ is also 20.21% better than Random Forest in detecting e3sm.
1018
+ 2) Classification on Novel Applications: Considering that
1019
+ in HPC environments, ‘novel’ applications are more prevalent
1020
+ than those trained with the classifier, it is appropriate to
1021
+ define an ‘unknown’ class for all these novel applications. To
1022
+ be practically useful, the classification system must classify
1023
+ both known and unknown novel applications. We evaluate
1024
+ this capability by removing one application from the training
1025
+ set while keeping the testing set untouched. If the removed
1026
+ application in the testing set is predicted to be unknown, we
1027
+ mark it as a correct prediction.
1028
+ The classification performance for novel applications is
1029
+ depicted in Figure 10. From this figure, we can observe
1030
+ that Random Forest has the best prediction accuracy when
1031
+ the confidence threshold is below 0.8, while ARcode beats
1032
+ Random Forest once the confidence threshold is greater than
1033
+ 0.8. ARcode, similar to its performance in known application
1034
+ detection, has relatively stable prediction accuracy across all
1035
+ confidence thresholds. However, the accuracy of Random
1036
+ Forest drops significantly in large confidence thresholds.
1037
+
1038
+ 100%
1039
+ 80%
1040
+ 60%
1041
+ Accuracy
1042
+ 40%
1043
+ ARcode (CNN)
1044
+ Random Forest
1045
+ 20%
1046
+ SVC
1047
+ LinearisvC
1048
+ Random Forest on Poweri Features!
1049
+ 0%
1050
+ 0.2
1051
+ 0.0
1052
+ 0.1
1053
+ 0.3
1054
+ 0.4
1055
+ 0.5
1056
+ 0.6
1057
+ 0.7
1058
+ 0.8
1059
+ 0.9
1060
+ 1.0
1061
+ Confidence ThresholdARcode(CNN)
1062
+ Random Forest
1063
+ 100%
1064
+ 80%
1065
+ Accuracy
1066
+ 60%
1067
+ 40%
1068
+ 20%
1069
+ 0%
1070
+ aims
1071
+ WRF
1072
+ BerkeleyGW Espresso Gromacs LAMMPS NWCHEM
1073
+ VASP
1074
+ chroma
1075
+ cp2k
1076
+ e3sm
1077
+ su3
1078
+ Applications100%
1079
+ 80%
1080
+ 60%
1081
+ Accuracy
1082
+ 40%
1083
+ ARcode (CNN)
1084
+ Random Forest
1085
+ 20%
1086
+ SVC
1087
+ Linearisvc
1088
+ Random Forest on Poweri Features
1089
+ 0%
1090
+ 0.0
1091
+ 0.1
1092
+ 0.2
1093
+ 0.3
1094
+ 0.4
1095
+ 0.5
1096
+ 0.6
1097
+ 0.7
1098
+ 0.8
1099
+ 0.9
1100
+ 1.0
1101
+ Confidence ThresholdFigure. 11: Accuracy of ARcode on each application using
1102
+ different channels of the job signature.
1103
+ Figure. 12: Accuracy of ARcode on each application using
1104
+ partial job signature. The partial job signatures are all built
1105
+ from the metrics collected since the startup of jobs.
1106
+ 3) Classification using Single Channel: In our experiment,
1107
+ ARcode encodes three channels of monitoring data in the
1108
+ job signature. It is worth knowing whether each channel plays
1109
+ the same importance in classification and whether we can use
1110
+ one channel for detection while still achieving high accuracy.
1111
+ To answer these questions, we train CNN models with each
1112
+ of these channels individually and analyze their classification
1113
+ performance. The results are shown in Figure 11.
1114
+ From the figure we can see that using any of the chan-
1115
+ nels gives a competitive accuracy when detecting Espresso,
1116
+ LAMMPS, WRF, and chroma compared to using all channels.
1117
+ For NWCHEM, the classification accuracy using the memory
1118
+ channel is significantly better than using the power or IPC
1119
+ channel. We can also see that all channels are important for
1120
+ detecting both Gromacs and cp2k with an accuracy improve-
1121
+ ment of 26.36% and 19.66%, respectively, compared to using
1122
+ only one of the channels. The memory channel is the most
1123
+ representative of these channels. In most applications, using
1124
+ the memory channel in detection has the closest accuracy to
1125
+ using all channels.
1126
+ 4) Classification using Partial Signatures: The job sig-
1127
+ nature retains the temporal information of the time-series
1128
+ monitoring data, and the job signature generated before the
1129
+ end of the job still holds some of the attributes of the full
1130
+ job signature. We use the first 25%, 50% and 75% of the
1131
+ time-series data to create partial job signatures and compare
1132
+ the detection performance with the full job signature (i.e,
1133
+ a job signature built from 100% of the monitoring data).
1134
+ This experiment is performed to evaluate the usability of the
1135
+ ARcode model for detecting running applications, which is
1136
+ not available in the statistics-based models.
1137
+ The results are shown in Figure 12. It is not surprising that
1138
+ the larger the percentage of encoded data, the better the detec-
1139
+ tion performance achieved by ARcode. When encoded with
1140
+ 25% of the monitoring data, ARcode achieves a relatively
1141
+ high accuracy of 77.27% in detecting WRF, but only 17.27%
1142
+ and 12.88% in detecting cp2k and Espresso, respectively.
1143
+ When detecting NWCHEM, the full job signature brings
1144
+ 89.79% accuracy; however, the 75% partial job signature
1145
+ gives only 46.73% accuracy. The improvement from encoding
1146
+ more data varies from application to application. For example,
1147
+ encoding 25% more data brings an average improvement of
1148
+ 24.67% for Espresso, but only 4.65% for WRF.
1149
+ 5) Sensitivity to the resampling length: The performance
1150
+ evaluation described above is based on job signatures with
1151
+ a resolution of 128 × 128, i.e., the performance metrics are
1152
+ resampled to a length of 128. It is valuable to have knowledge
1153
+ of the sensitivity of the classification accuracy in terms of the
1154
+ resampling length such that an appropriate resolution can be
1155
+ chosen to achieve a balance between accuracy and training
1156
+ overhead. To explore this, we further build two job signature
1157
+ datasets with resampling lengths of 32 and 64, respectively,
1158
+ and use the same CNN architecture to train these models.
1159
+ Figure 13 depicts the accuracy (solid lines) and training
1160
+ time (horizontal dashed lines) of ARcode using different
1161
+ resampling lengths. Note that the training time is constant
1162
+ across different thresholds for the same resampling length, as
1163
+ illustrated by horizontal dashed lines. This is because training
1164
+ time does not vary according to confidence thresholds, which
1165
+ are set during the prediction of applications. As illustrated
1166
+ from the figure, the training times vary significantly among
1167
+ these three resampling lengths. It is over 185 seconds for
1168
+ the resampling length of 128. For signatures with resampling
1169
+ lengths of 64 and 32, it is 80 and 65 seconds, respectively.
1170
+ Additionally, we can observe from the figure that the higher
1171
+ resolution it is, the higher prediction accuracy. While the
1172
+ accuracy improvement from the resampling length of 64 to
1173
+ 128 is not significant (only by 0.5% on average), the accuracy
1174
+ improvement from the resampling length of 32 to 64 is 3.0%
1175
+ on average.
1176
+ This result suggests that 64 is the optimal resampling length
1177
+ for building job signatures in our experiment, considering the
1178
+ trade-off between accuracy and training time. Its prediction
1179
+ accuracy is close to that of the highest resolution signature, but
1180
+ only uses 43.2% of the training time of the latter. Furthermore,
1181
+ the data size of the job signature generated with a resolution
1182
+ of 64 × 64 is only 25% of that with 128 × 128.
1183
+ V. RELATED WORKS
1184
+ Significant amount of work has been reported in the lit-
1185
+ erature on detecting and classifying applications. Identifying
1186
+ similarities and differences among binary executables was
1187
+ explored in [13]–[16]. These approaches are limited by the
1188
+
1189
+ ZZIPC
1190
+ Memory
1191
+ Power
1192
+ All
1193
+ 100%
1194
+ 80%
1195
+ Accuracy
1196
+ 60%
1197
+ 40%
1198
+ 20%
1199
+ 0%
1200
+ WRF
1201
+ BerkeleyGWEspresso Gromacs LAMMPS NWCHEM
1202
+ VASP
1203
+ aims
1204
+ chroma
1205
+ cp2k
1206
+ e3sm
1207
+ su3
1208
+ Applications25%
1209
+ 75%
1210
+ 100%
1211
+ 50%
1212
+ Z
1213
+ 100%
1214
+ 80%
1215
+ Accuracy
1216
+ 60%
1217
+ 40%
1218
+ 20%
1219
+ 0%
1220
+ WRF
1221
+ BerkeleyGWEspresso Gromacs LAMMPS NWCHEM
1222
+ VASP
1223
+ aims
1224
+ chroma
1225
+ cp2k
1226
+ e3sm
1227
+ su3
1228
+ ApplicationsFigure. 13: Accuracy and training time of ARcode using dif-
1229
+ ferent resampling lengths. The horizontal dashed lines indicate
1230
+ the training time.
1231
+ fact that, they cannot differentiate the same source program
1232
+ compiled by different compiler toolchains or optimization
1233
+ levels. To overcome this limitation, Blanket Execution [17]
1234
+ presented a binary differencing algorithm that compares the
1235
+ side effects of functions during executation, which is based
1236
+ on the insight that similar codes have semantically similar
1237
+ execution behavior.
1238
+ However, the binary based approach cannot be applied in the
1239
+ HPC environment, where it is impractical to conduct binary
1240
+ differencing among hundreds of thousands of executables. In
1241
+ addition, obtaining and managing binaries of users’ applica-
1242
+ tions are not always possible for HPC researchers. Instead
1243
+ of using binaries, Yamamoto et al. [34] used job scripts as
1244
+ job information to classify applications with text classification
1245
+ techniques. This approach, however, also requires dedicated
1246
+ collection and management infrastructures, which are not as
1247
+ prevalent as monitoring infrastructures for performance metric.
1248
+ Another line of work aims at characterizing HPC appli-
1249
+ cations through system logs. Liu et al. extracted features
1250
+ from combined logs of multiple subsystems to represent
1251
+ applications and build a machine learning model based on
1252
+ the eXtreme Gradient Boosting (XGB) algorithm to identify
1253
+ HPC applications [35]. DeMasi et al. collected and extracted
1254
+ features from Integrated Performance Monitoring (IPM) per-
1255
+ formance logs to fingerprint HPC codes [36]. Log analysis is
1256
+ more common in characterizing subsystem and user behavior,
1257
+ related works can be found in [37]–[40].
1258
+ Monitoring data based application detection has been ex-
1259
+ plored in [18]–[22]. As a early quantitative study of power
1260
+ consumption of HPC workloads, Combs et al. [18] studied
1261
+ the applicability of classifying applications through power
1262
+ consumption traces. Ramos et al. [21] relied on performance
1263
+ counters to model, fingerprint and clustering applications. Zou
1264
+ et al. [20] explored detecting illicit applications in GPU-
1265
+ accelerated HPC workloads. They used performance counters,
1266
+ data movement behavior and resources utilization traces to
1267
+ train machine learning models. Taxonomist [19], proposed
1268
+ by Ates et al., used over 700 system metrics and a time
1269
+ window spanning the whole execution to extract statistical
1270
+ features. They enhanced the classification model such that
1271
+ unknown applications can be detected. EFD [22] created
1272
+ key-values pairs that link execution fingerprints of system
1273
+ metrics to application and input size information to implement
1274
+ application recognition. Except for using measurements of
1275
+ system metrics, they also used the metrics name, node ID and
1276
+ time interval to create fingerprints.
1277
+ These studies, however, are based on the datasets built from
1278
+ the monitoring data of benchmarks and proxy applications,
1279
+ where a relative small range of configurations and input size
1280
+ are shown in the applications. On the contrary, the model
1281
+ and experiment results of ARcode are developed and tested
1282
+ on datasets collected from real applications in a large-scale
1283
+ production system. In addition, the models of these studies rely
1284
+ on the manually defined features extracted from time series
1285
+ monitoring data and some studies utilize the input information
1286
+ to enhance the detection model. In this work, ARcode allevi-
1287
+ ates the effort of features engineering and takes advantages of
1288
+ the capability of features learning in CNN model to detect and
1289
+ classify encoded monitoring data. Moreover, ARcode retains
1290
+ the temporal information of time-series performance metrics,
1291
+ enabling detecting applications before jobs are finished. This
1292
+ capability bridges a major gap in related works.
1293
+ VI. CONCLUSION
1294
+ Existing application detection methodologies on HPC sys-
1295
+ tems either relies on the data that are not prevalent or require
1296
+ intensive effort of feature engineering to build high accuracy
1297
+ models. In this study, we aim to provide a solution that can
1298
+ be easily used and adopted by any HPC site. We have intro-
1299
+ duced ARcode, an application recognition framework which
1300
+ is effective and extensible with the following characteristics:
1301
+ 1) ARcode uses three most common monitoring metrics (i.e.,
1302
+ the power consumption of the compute node, instruction per
1303
+ cycle, and memory usage) available through the monitoring
1304
+ infrastructure on diverse HPC architectures. 2) ARcode allevi-
1305
+ ates the effort of feature engineering by leveraging the feature
1306
+ learning capability of CNN models. 3) ARcode’s channel-like
1307
+ encoding method allows easy encoding of additional metrics
1308
+ in job signatures. 4) ARcode encodes job monitoring data into
1309
+ images, which translates the application recognition problem
1310
+ into an image classification problem. Unlike the statistics-
1311
+ based approaches where the temporal information of monitor-
1312
+ ing data are lost, the job signature encodes metric variations
1313
+ over the runtime. Therefore, the job signature generated from
1314
+ part of monitoring data can still be used in detection, but with
1315
+ the sacrifice of accuracy.
1316
+ Although our evaluation is performed on job signatures
1317
+ generated from three common monitoring metrics, HPC re-
1318
+ searchers and system administrators can select other represen-
1319
+ tative metrics and build job signatures to detect and classify
1320
+ applications with specific characteristics such as CPU intensive
1321
+ applications and I/O intensive applications. In addition, we
1322
+ have seen lots of successful cases of applying image recogni-
1323
+ tion in the medical and automobile industries. Their experience
1324
+ in training high-accuracy models can be used in our model to
1325
+ further improve the recognition accuracy. Moreover, encoding
1326
+
1327
+ 100%
1328
+ 128
1329
+ 32
1330
+ 64
1331
+ 32
1332
+ 64
1333
+ 128
1334
+ 200
1335
+ (accuracy)
1336
+ (training time)
1337
+ 90%
1338
+ 180
1339
+ Time (
1340
+ 80%
1341
+ Accuracy
1342
+ 140
1343
+ ining
1344
+ 70%
1345
+ 120
1346
+ Trai
1347
+ -100
1348
+ 60%
1349
+ -80
1350
+ 50%
1351
+ 60
1352
+ 0.0
1353
+ 0.1
1354
+ 0.2
1355
+ 0.3
1356
+ 0.6
1357
+ 0.7
1358
+ 0.8
1359
+ 0.9
1360
+ 1.0
1361
+ 0.4
1362
+ 0.5
1363
+ Confidence Thresholdmonitoring data in job signatures offers a new perspective
1364
+ of exploring and analyzing the performance monitoring data.
1365
+ In our future work, we will further explore the use of job
1366
+ signatures to predict resource usage, detect anomalies, and
1367
+ identify malicious applications.
1368
+ REFERENCES
1369
+ [1] J. Brandt, A. Gentile, J. Mayo, P. Pebay, D. Roe, D. Thompson, and
1370
+ M. Wong, “Resource monitoring and management with ovis to enable
1371
+ hpc in cloud computing environments,” in 2009 IEEE International
1372
+ Symposium on Parallel & Distributed Processing.
1373
+ IEEE, 2009, pp.
1374
+ 1–8.
1375
+ [2] W. Allcock, E. Felix, M. Lowe, R. Rheinheimer, and J. Fullop, “Chal-
1376
+ lenges of hpc monitoring,” in SC’11: Proceedings of 2011 International
1377
+ Conference for High Performance Computing, Networking, Storage and
1378
+ Analysis.
1379
+ IEEE, 2011, pp. 1–6.
1380
+ [3] W. M. Jones, J. T. Daly, and N. DeBardeleben, “Application monitoring
1381
+ and checkpointing in hpc: looking towards exascale systems,” in Pro-
1382
+ ceedings of the 50th Annual Southeast Regional Conference, 2012, pp.
1383
+ 262–267.
1384
+ [4] T. Evans, W. L. Barth, J. C. Browne, R. L. DeLeon, T. R. Furlani,
1385
+ S. M. Gallo, M. D. Jones, and A. K. Patra, “Comprehensive resource use
1386
+ monitoring for hpc systems with tacc stats,” in 2014 First International
1387
+ Workshop on HPC User Support Tools.
1388
+ IEEE, 2014, pp. 13–21.
1389
+ [5] J. Li, G. Ali, N. Nguyen, J. Hass, A. Sill, T. Dang, and Y. Chen,
1390
+ “Monster: an out-of-the-box monitoring tool for high performance
1391
+ computing systems,” in 2020 IEEE International Conference on Cluster
1392
+ Computing (CLUSTER).
1393
+ IEEE, 2020, pp. 119–129.
1394
+ [6] H. Shoukourian, T. Wilde, A. Auweter, and A. Bode, “Predicting
1395
+ the energy and power consumption of strong and weak scaling hpc
1396
+ applications,” Supercomputing frontiers and innovations, vol. 1, no. 2,
1397
+ pp. 20–41, 2014.
1398
+ [7] P.-F. Dutot, Y. Georgiou, D. Glesser, L. Lefevre, M. Poquet, and I. Rais,
1399
+ “Towards energy budget control in hpc,” in 2017 17th IEEE/ACM Inter-
1400
+ national Symposium on Cluster, Cloud and Grid Computing (CCGRID).
1401
+ IEEE, 2017, pp. 381–390.
1402
+ [8] O. Tuncer, E. Ates, Y. Zhang, A. Turk, J. Brandt, V. J. Leung, M. Egele,
1403
+ and A. K. Coskun, “Online diagnosis of performance variation in hpc
1404
+ systems using machine learning,” IEEE Transactions on Parallel and
1405
+ Distributed Systems, vol. 30, no. 4, pp. 883–896, 2018.
1406
+ [9] J. Dean, “Large-scale distributed systems at google: Current systems and
1407
+ future directions,” in The 3rd ACM SIGOPS International Workshop on
1408
+ Large Scale Distributed Systems and Middleware (LADIS 2009) Tutorial,
1409
+ 2009.
1410
+ [10] E. Baseman, S. Blanchard, N. DeBardeleben, A. Bonnie, and A. Morrow,
1411
+ “Interpretable anomaly detection for monitoring of high performance
1412
+ computing systems,” in Outlier Definition, Detection, and Description
1413
+ on Demand Workshop at ACM SIGKDD. San Francisco (Aug 2016),
1414
+ 2016.
1415
+ [11] M. C. Dani, H. Doreau, and S. Alt, “K-means application for anomaly
1416
+ detection and log classification in hpc,” in International Conference on
1417
+ Industrial, Engineering and Other Applications of Applied Intelligent
1418
+ Systems.
1419
+ Springer, 2017, pp. 201–210.
1420
+ [12] A. Borghesi, A. Libri, L. Benini, and A. Bartolini, “Online anomaly
1421
+ detection in hpc systems,” in 2019 IEEE International Conference on
1422
+ Artificial Intelligence Circuits and Systems (AICAS).
1423
+ IEEE, 2019, pp.
1424
+ 229–233.
1425
+ [13] H. Flake, “Structural comparison of executable objects,” in Detection
1426
+ of intrusions and malware & vulnerability assessment, GI SIG SIDAR
1427
+ workshop, DIMVA 2004.
1428
+ Gesellschaft f¨ur Informatik eV, 2004.
1429
+ [14] T. Dullien and R. Rolles, “Graph-based comparison of executable objects
1430
+ (english version),” Sstic, vol. 5, no. 1, p. 3, 2005.
1431
+ [15] D. Gao, M. K. Reiter, and D. Song, “Binhunt: Automatically finding
1432
+ semantic differences in binary programs,” in International Conference
1433
+ on Information and Communications Security.
1434
+ Springer, 2008, pp.
1435
+ 238–255.
1436
+ [16] M. Bourquin, A. King, and E. Robbins, “Binslayer: accurate comparison
1437
+ of binary executables,” in Proceedings of the 2nd ACM SIGPLAN
1438
+ Program Protection and Reverse Engineering Workshop, 2013, pp. 1–10.
1439
+ [17] M. Egele, M. Woo, P. Chapman, and D. Brumley, “Blanket execution:
1440
+ Dynamic similarity testing for program binaries and components,” in
1441
+ 23rd {USENIX} Security Symposium ({USENIX} Security 14), 2014,
1442
+ pp. 303–317.
1443
+ [18] J. Combs, J. Nazor, R. Thysell, F. Santiago, M. Hardwick, L. Olson,
1444
+ S. Rivoire, C.-H. Hsu, and S. W. Poole, “Power signatures of high-
1445
+ performance computing workloads,” in 2014 Energy Efficient Supercom-
1446
+ puting Workshop.
1447
+ IEEE, 2014, pp. 70–78.
1448
+ [19] E. Ates, O. Tuncer, A. Turk, V. J. Leung, J. Brandt, M. Egele, and A. K.
1449
+ Coskun, “Taxonomist: Application detection through rich monitoring
1450
+ data,” in European Conference on Parallel Processing.
1451
+ Springer, 2018,
1452
+ pp. 92–105.
1453
+ [20] P. Zou, A. Li, K. Barker, and R. Ge, “Fingerprinting anomalous
1454
+ computation with rnn for gpu-accelerated hpc machines,” in 2019
1455
+ IEEE International Symposium on Workload Characterization (IISWC).
1456
+ IEEE, 2019, pp. 253–256.
1457
+ [21] V. Ramos, C. Valderrama, S. X. de Souza, and P. Manneback, “An
1458
+ accurate tool for modeling, fingerprinting, comparison, and clustering
1459
+ of parallel applications based on performance counters,” in 2019 IEEE
1460
+ International Parallel and Distributed Processing Symposium Workshops
1461
+ (IPDPSW).
1462
+ IEEE, 2019, pp. 797–804.
1463
+ [22] T. Jakobsche, N. Lachiche, A. Cavelan, and F. M. Ciorba, “An execution
1464
+ fingerprint dictionary for hpc application recognition,” in 2021 IEEE
1465
+ International Conference on Cluster Computing (CLUSTER).
1466
+ IEEE,
1467
+ 2021, pp. 604–608.
1468
+ [23] B. Zhao, H. Lu, S. Chen, J. Liu, and D. Wu, “Convolutional neural
1469
+ networks for time series classification,” Journal of Systems Engineering
1470
+ and Electronics, vol. 28, no. 1, pp. 162–169, 2017.
1471
+ [24] Y. He, B. Cook, J. Deslippe, B. Friesen, R. Gerber, R. Hartman-Baker,
1472
+ A. Koniges, T. Kurth, S. Leak, W.-S. Yang et al., “Preparing nersc
1473
+ users for cori, a cray xc40 system with intel many integrated cores,”
1474
+ Concurrency and Computation: Practice and Experience, vol. 30, no. 1,
1475
+ p. e4291, 2018.
1476
+ [25] K. Antypas, N. Wright, N. P. Cardo, A. Andrews, and M. Cordery, “Cori:
1477
+ a cray xc pre-exascale system for nersc,” Cray User Group Proceedings.
1478
+ Cray, vol. 1, 2014.
1479
+ [26] A. Agelastos, B. Allan, J. Brandt, P. Cassella, J. Enos, J. Fullop, A. Gen-
1480
+ tile, S. Monk, N. Naksinehaboon, J. Ogden et al., “The lightweight
1481
+ distributed metric service: a scalable infrastructure for continuous mon-
1482
+ itoring of large scale computing systems and applications,” in SC’14:
1483
+ Proceedings of the International Conference for High Performance
1484
+ Computing, Networking, Storage and Analysis.
1485
+ IEEE, 2014, pp. 154–
1486
+ 165.
1487
+ [27] B.
1488
+ Cook.
1489
+ (2021)
1490
+ NERSC
1491
+ LDMS
1492
+ Pipeline.
1493
+ [Online].
1494
+ Available:
1495
+ https://software.nersc.gov/ldms/nersc-ldms
1496
+ [28] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans-
1497
+ actions on knowledge and data engineering, vol. 22, no. 10, pp. 1345–
1498
+ 1359, 2009.
1499
+ [29] Z. Wang and T. Oates, “Encoding time series as images for visual in-
1500
+ spection and classification using tiled convolutional neural networks,” in
1501
+ Workshops at the twenty-ninth AAAI conference on artificial intelligence,
1502
+ 2015.
1503
+ [30] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A
1504
+ review and new perspectives,” IEEE transactions on pattern analysis
1505
+ and machine intelligence, vol. 35, no. 8, pp. 1798–1828, 2013.
1506
+ [31] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
1507
+ no. 7553, pp. 436–444, 2015.
1508
+ [32] E. Ates, O. Tuncer, A. Turk, V. J. Leung, J. Brandt, M. Egele, and
1509
+ A. K. Coskun, “Artifact for taxonomist: Application detection through
1510
+ rich monitoring data,” 2018.
1511
+ [33] J. Wilkes, “Google cluster-usage traces v3,” Google Inc., Mountain
1512
+ View, CA, USA, Technical Report, Apr. 2020, posted at https://github.
1513
+ com/google/cluster-data/blob/master/ClusterData2019.md.
1514
+ [34] K. Yamamoto, Y. Tsujita, and A. Uno, “Classifying jobs and predicting
1515
+ applications in hpc systems,” in International Conference on High
1516
+ Performance Computing.
1517
+ Springer, 2018, pp. 81–99.
1518
+ [35] Z. Liu, R. Lewis, R. Kettimuthu, K. Harms, P. Carns, N. Rao, I. Foster,
1519
+ and M. E. Papka, “Characterization and identification of hpc applications
1520
+ at leadership computing facility,” in Proceedings of the 34th ACM
1521
+ International Conference on Supercomputing, 2020, pp. 1–12.
1522
+ [36] O. DeMasi, T. Samak, and D. H. Bailey, “Identifying hpc codes via
1523
+ performance logs and machine learning,” in Proceedings of the first
1524
+ workshop on Changing landscapes in HPC security, 2013, pp. 23–30.
1525
+ [37] S. Chunduri, S. Parker, P. Balaji, K. Harms, and K. Kumaran, “Char-
1526
+ acterization of mpi usage on a production supercomputer,” in SC18:
1527
+ International Conference for High Performance Computing, Networking,
1528
+ Storage and Analysis.
1529
+ IEEE, 2018, pp. 386–400.
1530
+
1531
+ [38] S.-H. Lim, H. Sim, R. Gunasekaran, and S. S. Vazhkudai, “Scientific
1532
+ user behavior and data-sharing trends in a petascale file system,” in
1533
+ Proceedings of the International Conference for High Performance
1534
+ Computing, Networking, Storage and Analysis, 2017, pp. 1–12.
1535
+ [39] G. K. Lockwood, S. Snyder, T. Wang, S. Byna, P. Carns, and N. J.
1536
+ Wright, “A year in the life of a parallel file system,” in SC18: In-
1537
+ ternational Conference for High Performance Computing, Networking,
1538
+ Storage and Analysis.
1539
+ IEEE, 2018, pp. 931–943.
1540
+ [40] T. Patel, S. Byna, G. K. Lockwood, and D. Tiwari, “Revisiting i/o be-
1541
+ havior in large-scale storage systems: the expected and the unexpected,”
1542
+ in Proceedings of the International Conference for High Performance
1543
+ Computing, Networking, Storage and Analysis, 2019, pp. 1–13.
1544
+
2dFAT4oBgHgl3EQfkh3i/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
6dFJT4oBgHgl3EQflizf/content/tmp_files/2301.11584v1.pdf.txt ADDED
@@ -0,0 +1,1959 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Robust variance-regularized risk minimization
2
+ with concomitant scaling
3
+ Matthew J. Holland
4
+ Osaka University
5
+ Abstract
6
+ Under losses which are potentially heavy-tailed, we consider the task of minimizing sums
7
+ of the loss mean and standard deviation, without trying to accurately estimate the variance.
8
+ By modifying a technique for variance-free robust mean estimation to fit our problem
9
+ setting, we derive a simple learning procedure which can be easily combined with standard
10
+ gradient-based solvers to be used in traditional machine learning workflows. Empirically,
11
+ we verify that our proposed approach, despite its simplicity, performs as well or better
12
+ than even the best-performing candidates derived from alternative criteria such as CVaR
13
+ or DRO risks on a variety of datasets.
14
+ Contents
15
+ 1
16
+ Introduction
17
+ 2
18
+ 2
19
+ Background
20
+ 3
21
+ 2.1
22
+ Robust mean estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
23
+ 3
24
+ 2.2
25
+ Good-enough ancillary scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . .
26
+ 4
27
+ 2.3
28
+ A bridge between two problems . . . . . . . . . . . . . . . . . . . . . . . . . . .
29
+ 5
30
+ 2.4
31
+ Overview of contributions and limitations . . . . . . . . . . . . . . . . . . . . .
32
+ 6
33
+ 3
34
+ Theory
35
+ 7
36
+ 3.1
37
+ Links to the mean-SD objective . . . . . . . . . . . . . . . . . . . . . . . . . . .
38
+ 7
39
+ 3.2
40
+ Guiding the optimal threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . .
41
+ 8
42
+ 3.3
43
+ Deriving an algorithm using finite-sample theory . . . . . . . . . . . . . . . . .
44
+ 8
45
+ 3.4
46
+ Stationary points of mean-variance . . . . . . . . . . . . . . . . . . . . . . . . .
47
+ 10
48
+ 3.5
49
+ Comparison with dual form of DRO risk . . . . . . . . . . . . . . . . . . . . . .
50
+ 11
51
+ 4
52
+ Empirical analysis
53
+ 11
54
+ 4.1
55
+ Simulated noisy classification on the plane . . . . . . . . . . . . . . . . . . . . .
56
+ 12
57
+ 4.2
58
+ Classification on real datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . .
59
+ 12
60
+ A Technical appendix
61
+ 18
62
+ A.1 Basic facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
63
+ 18
64
+ A.2 Convexity and smoothness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
65
+ 19
66
+ B Additional proofs
67
+ 20
68
+ C Empirical test appendix
69
+ 27
70
+ 1
71
+ arXiv:2301.11584v1 [stat.ML] 27 Jan 2023
72
+
73
+ 1
74
+ Introduction
75
+ Traditionally, the “textbook definition” of a statistical machine learning problem is formulated
76
+ in terms of making decisions which minimize the expected value of a random loss [9, 27, 35].
77
+ More precisely, the traditional setup has us minimize Eµ L(h) with respect to a decision h,
78
+ where we denote random losses as L(h) ..= ℓ(h; Z), with a random data point Z ∼ µ, and ℓ(·)
79
+ is a loss function assigning real values to (decision, data) pairs. This problem class is very
80
+ general in that it covers a wide range of learning problems both supervised and unsupervised,
81
+ but it is limited in the sense that it only aspired to be optimal on average, with no guarantees
82
+ for other aspects of performance such as loss deviations, resilience to worst-case examples and
83
+ distribution shift, sub-population disparity, and class-balanced error. While it is sometimes
84
+ possible to account for these issues by modifying the base loss function ℓ (e.g., logit-adjusted
85
+ softmax cross-entropy for balanced error [26]), there is a growing literature looking at prin-
86
+ cipled, systematic modifications to the “risk,” i.e., a non-random numerical property of the
87
+ distribution of L(h) to be optimized in h, leaving the base loss ℓ(·) fixed. Some prominent
88
+ examples are weighted sums of loss quantiles [25], distributionally robust optimization (DRO)
89
+ risk [13], conditional value-at-risk (CVaR) [7], tilted risk [20], and more general optimized
90
+ certainty equivalent (OCE) risks [19], among others. It is well-known that many risks can be
91
+ expressed in terms of location-deviation sums, with the canonical example being a weighted
92
+ sum of the loss mean and standard deviation (or variance) [31, §2]. We refer the reader to some
93
+ recent surveys [14, 16, 32] for more general background on developments in learning criteria.
94
+ In this work, the criterion of interest is the mean loss regularized by standard deviation
95
+ (SD), when losses are allowed to be heavy-tailed. More formally, we allow for heavy tails in
96
+ the sense that all we assume is that the second moment Eµ|L(h)|2 is finite, and the ultimate
97
+ objective of interest is the mean-SD criterion
98
+ MSµ(h; λ) ..= Eµ L(h) +
99
+
100
+ λ Vµ L(h)
101
+ (1)
102
+ with loss variance denoted by Vµ L ..= Eµ(L − Eµ L)2, and weighting parameter λ ≥ 0. This
103
+ mean-SD objective (1) and its mean-variance counterpart have a long history in the literature
104
+ on decision making under uncertainty, including the influential work of Markowitz [23] on
105
+ optimal portfolio selection. In the context of machine learning, it is well-known that one can
106
+ obtain “fast rate” bounds on the expected loss when variance is small (see [11, §1]), though the
107
+ problem of actually ensuring that loss deviations are sufficiently small is an entirely separate
108
+ matter. In this direction, Maurer and Pontil [24] bound the (population) expected loss using a
109
+ weighted sum of the sample mean and standard deviation. Their “sample variance penalized”
110
+ objective is convenient to compute and can be used to guarantee fast rates in theory, but a
111
+ lack of convexity makes it hard to minimize in practice. A convex approximation is developed
112
+ by Duchi and Namkoong [11], who show that a sub-class of (empirical) DRO risks can be used
113
+ to approximate the sample mean-SD objective, again yielding fast rates when the (population)
114
+ variance is small enough. The critical limitation to this approach is poor guarantees under
115
+ heavy-tailed losses; while we gain in terms of convexity, the empirical DRO risk of [11] is at least
116
+ as sensitive to outliers as the naive empirical objective (i.e., directly minimizing the sample
117
+ mean and SD), which is already known to result in highly sub-optimal performance guarantees
118
+ under heavy tails [5, 10, 15]. Recent work by Zhai et al. [36] studies a natural strategy for
119
+ robustifying the DRO objective (called DORO), which discards a specified fraction of the
120
+ largest losses. While the impact of outliers can be reduced under the right setting of DORO,
121
+ their approach is limited to non-negative losses, and the impact that such one-sided trimming
122
+ has on the resulting mean-SD sum, our ultimate object of interest, is unknown.
123
+ 2
124
+
125
+ With this context in mind, in this paper we propose a new approach to robustly minimize
126
+ the objective (1) under heavy-tailed losses, without a priori knowledge of anything but the
127
+ fact that variance is finite. Our key technique is based on extending a convex program of Sun
128
+ [34] from one-dimensional mean estimation to our mean-variance objective MSµ(h; λ) under
129
+ general losses. After some motivating background points in §2.1–§2.2, we describe our basic
130
+ approach and summarize our contributions in §2.3–§2.4. Theoretical analysis comes in §3, and
131
+ based upon formal properties of the proposed objective function, we derive a general-purpose
132
+ procedure summarized in Algorithm 1, and tested empirically in §4.
133
+ Our main finding is
134
+ that the simple algorithm we derive works remarkably well on both simulated and real-world
135
+ datasets without any fine-tuning, despite sacrificing the convexity enjoyed by procedures based
136
+ on criteria such as CVaR and DRO. Software and notebooks to reproduce all results in this
137
+ paper are provided in an online repository.1
138
+ 2
139
+ Background
140
+ Before we describe our proposed approach to the mean-SD task described in §1, we start with
141
+ a much simpler problem, namely the task of robust mean estimation. This will allow us to
142
+ highlight key technical points from the literature which provide both conceptual and technical
143
+ context for our proposal. Key points from the existing literature are introduced in §2.1–§2.2,
144
+ and building upon this we introduce our method in §2.3–§2.4.
145
+ 2.1
146
+ Robust mean estimation
147
+ Let X be a random variable. For the moment, our goal will be to construct an accurate empirical
148
+ estimate of the mean Eµ X, assuming only that the variance Vµ X = Eµ X2 − (Eµ X)2 is both
149
+ defined and finite. We assume access to an independent and identically distributed (IID) sample
150
+ X1, . . . , Xn. Since higher-order moments may be infinite, the tails of X may be “heavy” and
151
+ decidedly non-Gaussian, causing problems for the usual empirical mean. This problem setting
152
+ is now very well-understood; see Lugosi and Mendelson [22] for an authoritative reference.
153
+ One very well-known approach is to use M-estimators [18], namely to design an estimator
154
+ An ≈ Eµ X satisfying
155
+ An ∈ arg min
156
+ a∈R
157
+ b
158
+ n
159
+ n
160
+
161
+ i=1
162
+ ρ
163
+ �Xi − a
164
+ b
165
+
166
+ (2)
167
+ where ρ: R → R+ is a function that is approximately quadratic near zero, but grows more
168
+ slowly in the limit, i.e., large deviations are penalized in a sub-quadratic manner, where “large”
169
+ is relative to the scaling parameter b > 0, used to control bias. When ρ(·) is convex, differen-
170
+ tiable, and the solution set is non-empty, the condition (2) is equivalent to
171
+ 1
172
+ n
173
+ n
174
+
175
+ i=1
176
+ ρ′
177
+ �Xi − An
178
+ b
179
+
180
+ = 0
181
+ (3)
182
+ and when the derivative ρ′(·) is bounded such that
183
+ − log(1 + −x + γx2) ≤ ρ′(x) ≤ log(1 + x + γx2),
184
+ x ∈ R
185
+ (4)
186
+ for some constant 0 < γ < ∞, then the analytical approach of Catoni [6] tells us that when b2
187
+ scales with Vµ X/n, the deviations |An − Eµ X| enjoy sub-Gaussian tails, namely upper bounds
188
+ 1https://github.com/feedbackward/bdd-mv
189
+ 3
190
+
191
+ -2
192
+ 0
193
+ 2
194
+ 2
195
+ 0
196
+ 2
197
+ -2
198
+ 0
199
+ 2
200
+
201
+ -2
202
+ 0
203
+ 2
204
+ ′′
205
+ Figure 1: From left to right, we plot the graphs of ρ(·), ρ′(·), and ρ′′(·) with ρ as in (6). In the middle plot,
206
+ the dotted curves represent the upper (blue) and lower (dark pink) bounds in (4) with γ = 1.
207
+ of the order O(
208
+
209
+ log(1/δ) Vµ X/n) with probability at least 1 − δ. Under these weak assump-
210
+ tions, such guarantees are essentially optimal [10]. While a very important result, for practical
211
+ purposes, the need for knowledge of Vµ X is a significant limitation, since without finite higher-
212
+ order moments, it is not plausible to obtain variance estimates with analogous sub-Gaussian
213
+ guarantees (e.g., impossibility results of [10]). There do exist other robust estimators such
214
+ as median-of-means [22, §2.1] which do not require variance information, and this illustrates
215
+ the fact that knowledge of the variance is sufficient, although not necessary, for sub-Gaussian
216
+ mean estimation under heavy tails.
217
+ 2.2
218
+ Good-enough ancillary scaling
219
+ Since sub-Gaussian estimates of the variance Vµ X are not possible under our weak assump-
220
+ tions, it is natural to ask whether there exists a middle-ground, namely whether or not it is
221
+ possible to construct a (data-driven) procedure for setting the scale b > 0 in (2) which is “good
222
+ enough” in the sense that the resulting An is sub-Gaussian, even though the scale itself cannot
223
+ be. An initial (affirmative) answer to this question was given in recent work by Sun [34], whose
224
+ basic idea we briefly review here, with some slight re-formulation for readability and additional
225
+ generality.
226
+ Essentially, the underlying idea in [34] is to utilize the convexity of ρ in (2), and to solve
227
+ for both a ∈ R and b > 0 simultaneously, while penalizing b in such a way as to encourage
228
+ scaling which is “good enough” as mentioned. More precisely, the empirical objective
229
+ �Sn(a, b) ..= βb + b
230
+ n
231
+ n
232
+
233
+ i=1
234
+ ρ
235
+ �Xi − a
236
+ b
237
+
238
+ (5)
239
+ plays a central role, where 0 < β < 1 is a parameter we can control, and ρ is fixed as
240
+ ρ(x) =
241
+
242
+ x2 + 1 − 1,
243
+ x ∈ R
244
+ (6)
245
+ which is differentiable, and satisfies the Catoni condition (4) with γ = 1 (see Figure 1). If we
246
+ fix b > 0, then the solution sets (in a) of both �Sn(a, b) and b × �Sn(a, b) are identical, and it
247
+ should be noted that the re-scaled map x �→ b2ρ(x/b) = b
248
+
249
+ x2 + b2 − b2 closely approximates
250
+ x �→ x2/2 as b grows large (Figure 2), and is well-known as the “pseudo Huber” or “smooth
251
+ Huber” function, where b acts as a smoothing parameter.2
252
+ When considering the joint objective �Sn(a, b), from the computational side, one important
253
+ fact is that this function is convex on R × (0, ∞) (see Lemma 8). From the statistical side of
254
+ 2Barron [2, §1] gives a summary of this and related functions from the perspective of loss function design.
255
+ This is not the only smoothed variant of the classic Huber function [17], see for example Rey [29, §6.4.4].
256
+ 4
257
+
258
+ 1
259
+ 0
260
+ 1
261
+ 0.0
262
+ 0.2
263
+ 0.4
264
+ x
265
+ b2 (x/b)
266
+ 0.1
267
+ 2.0
268
+ b value
269
+ Figure 2: Graphs of the smooth Huber function, with ρ as in (6), over a range of smoothing parameters. For
270
+ visual comparison, the graph of x �→ x2/2 is plotted with a thick dashed green curve.
271
+ things, the solutions
272
+ (An, Bn) ∈ arg min
273
+ a∈R,b>0
274
+ �Sn(a, b)
275
+ (7)
276
+ are such that under certain regularity conditions, the deviations |An − Eµ X| are nearly optimal
277
+ (sub-Gaussian, up to poly-logarithmic factors) [34, §3.3].3 The corresponding Bn of course
278
+ cannot give us sub-Gaussian estimates of the variance under such weak assumptions, but it
279
+ does scale in a desirable way [34, §3.2], and when bias is mitigated by setting β sufficiently small
280
+ given the sample size n, the resulting Bn is good enough to provide such guarantees for An,
281
+ which is the ultimate goal anyways. By taking on a slightly more difficult optimization problem,
282
+ it is possible to get away with not having prior knowledge or sub-Gaussian estimates of the
283
+ variance. We use this basic insight as a stepping stone to our approach for learning algorithms
284
+ charged with selecting a decision h such that the loss L(h) has a small mean-variance.
285
+ 2.3
286
+ A bridge between two problems
287
+ To develop our proposal, we now return to the more general learning setup, where the test
288
+ data is a random vector Z ∼ µ, test loss is L(h) ..= ℓ(h; Z), and we have n IID training
289
+ points Z1, . . . , Zn yielding losses Li(·) ..= ℓ(·; Zi), i ∈ [n]. If our goal was to simply minimize
290
+ the traditional risk Eµ L(h) over h ∈ H under heavy-tailed losses, then in principle we could
291
+ extend the approach of §2.2 to robustly estimate the test risk using
292
+ (An(h), Bn(h)) ∈ arg min
293
+ a∈R,b>0
294
+
295
+ βb + b
296
+ n
297
+ n
298
+
299
+ i=1
300
+ ρ
301
+ �Li(h) − a
302
+ b
303
+ ��
304
+ (8)
305
+ and design a learning algorithm using (8) as follows:
306
+ Hn ∈ arg min
307
+ h∈H
308
+ An(h).
309
+ (9)
310
+ Under some regularity conditions, the machinery of Brownlees et al. [5] could then be combined
311
+ with pointwise concentration inequalities in [34] to control the tails of Eµ L(Hn) under just finite
312
+ loss variance. Our goal however is not to minimize the expected loss, but rather the mean-SD
313
+ sum (1). Furthermore, the bi-level program inherent in (9) is not computationally congenial
314
+ from the perspective of large-scale machine learning tasks. To ease the computational burden
315
+ 3Strictly speaking, the objective used in [34] is �Sn(a, b)/β, but all key results easily translate to our setup.
316
+ 5
317
+
318
+ while at the same time building a bridge between these two problems, we consider a new
319
+ objective function taking the form
320
+ �Cn(h; a, b) ..= αa + βb + λb
321
+ n
322
+ n
323
+
324
+ i=1
325
+ ρ
326
+ �Li(h) − a
327
+ b
328
+
329
+ (10)
330
+ with parameters α ≥ 0 and β ≥ 0. We call (10) the modified Sun-Huber objective, since ρ is
331
+ fixed as (6), and this form plays a special role in our analysis. Compared with that of (9),
332
+ this objective is a simple function of h, and gradient-based minimizers can be easily applied
333
+ assuming the underlying loss ℓ(·) is sufficiently smooth. On the other hand, it is “biased” in
334
+ the sense that it penalizes not just the loss location (whenever α > 0), but the loss scale as well
335
+ (whenever β > 0). Intuitively, some kind of deviation-driven “bias” is precisely what we need
336
+ from the standpoint of minimizing the mean-SD objective MSµ(h; λ), but it is not immediately
337
+ clear how this objective relates to �Cn(h; a, b), and it is equally unclear if we can just plug this
338
+ new objective into standard machine learning workflows (e.g., using stochastic gradient-based
339
+ optimizers) and achieve the desired effect without a prohibitive amount of manual tuning.
340
+ 2.4
341
+ Overview of contributions and limitations
342
+ With our basic idea described and some key questions raised, we summarize the central points
343
+ that characterize the rest of this paper, and also highlight the limitations of this work. Broadly
344
+ speaking, the new proposal here is a class of empirical “risk” minimizers, namely any learning
345
+ algorithm which minimizes the new empirical objective (10). More explicitly, this refers to all
346
+ procedures which returns a triplet satisfying
347
+ (Hn, An, Bn) ∈
348
+ arg min
349
+ h∈H,a∈R,b>0
350
+ �Cn(h; a, b)
351
+ (11)
352
+ where H denotes a set of feasible decisions, and we note that each element of this class is
353
+ characterized by the settings of α, β, and λ used to define �Cn. In analogy with the strat-
354
+ egy employed in §2.2, we do not expect An and Bn to provide sub-Gaussian estimates; we
355
+ simply hope that these estimates are good enough to ensure the mean-SD is smaller and/or
356
+ better-behaved when compared to standard benchmarks such as mean-based empirical risk
357
+ minimization (ERM) and DRO-based algorithms. Theoretically, we are interested in identify-
358
+ ing links between the proposed objective �Cn and loss properties such as Eµ L(h) and Vµ L(h),
359
+ with particular emphasis on how the settings of α, β, and λ influence such links.
360
+ Our main theory-driven contribution is the derivation of a principled approach to determine
361
+ �Cn (i.e., set α and β), before seeing any training data, in such a way that we can balance between
362
+ “biased but robust” ρ-based deviations and “unbiased but outlier-sensitive” squared deviations
363
+ that arise in the loss variance. Details are in §3.1–§3.3, and a concise procedure is summarized
364
+ in Algorithm 1. We do not, however, consider the behavior of MSµ(Hn; λ) for a particular
365
+ implementation of (11) (e.g., SGD) from a theoretical viewpoint; the implementation is left
366
+ abstract. This is where the empirical analysis of §4 comes in. We provide evidence using
367
+ simulated and real data that our procedure can be quite useful, even using a rudimentary
368
+ implementation where we wrap base loss objects and naively pass them to standard stochastic
369
+ gradient-based learning routines, with no manual tweaking of parameters.
370
+ 6
371
+
372
+ 3
373
+ Theory
374
+ 3.1
375
+ Links to the mean-SD objective
376
+ We would like to make the connection between the proposed objective (10) and the ultimate
377
+ objective (1) a bit more transparent. To do this, we will make use of the population version of
378
+ �Cn, denoted henceforth by Cµ and defined as
379
+ Cµ(h; a, b) ..= αa + βb + λb Eµ ρ
380
+ �L(h) − a
381
+ b
382
+
383
+ .
384
+ (12)
385
+ Let us fix the decision h and threshold a, paying close attention to the optimal value of the
386
+ scale b, denoted here by bµ(h, a). More explicitly, consider any positive real number satisfying
387
+ bµ(h, a) ∈ arg min
388
+ b>0
389
+ Cµ(h; a, b).
390
+ (13)
391
+ While it is not explicit in our notation, the optimal scale in (13) depends critically on the
392
+ value of β. Intuitively, a smaller value of β leads to a weaker penalty for taking b large, thus
393
+ encouraging a larger value of bµ(h, a). In fact, one can show that viewing bµ(h, a) as a function
394
+ of the parameter β, in the limit we have (proof in §B)
395
+ lim
396
+ β→0+ bµ(h, a) = ∞.
397
+ (14)
398
+ Combining this with the fact that
399
+ lim
400
+ b→∞ b Eµ ρ
401
+ �L(h) − a
402
+ b
403
+
404
+ = 0
405
+ (15)
406
+ also holds (proof in §B), by re-scaling to avoid trivial limits we can obtain a result which
407
+ sharply bounds the proposed learning criterion at the optimal scale using the square root of
408
+ quadratic deviations, thereby establishing a clear link to the desired mean-SD objective (1).
409
+ Proposition 1. Let H be such that Eµ|L(h)|2 < ∞ for each h ∈ H. If we set α = α(β) such
410
+ that α(β)/√β → �α ∈ [0, ∞) as β → 0+, then in this limit, with appropriate re-scaling the
411
+ scale-optimized learning criteria can be bounded above and below as
412
+ �αa + (1/2)
413
+
414
+ λ Eµ(L(h) − a)2 ≤ lim
415
+ β→0+ min
416
+ b>0
417
+ Cµ(h; a, b)
418
+ √β
419
+ ≤ �αa + 4
420
+
421
+ λ Eµ(L(h) − a)2
422
+ for any choice of threshold a ∈ R and weight α ≥ 0.
423
+ In the special case where a = Eµ L(h) and �α > 0, we naturally recover mean-SD sums akin to
424
+ those studied in an ERM framework by Maurer and Pontil [24] and those bounded from above
425
+ using convex surrogates by Duchi and Namkoong [11].
426
+ Of course in practice, we will only ever be working with fixed values of β, and the entire
427
+ point of introducing new criteria (namely �Cn and Cµ) was to give us some control over how
428
+ sensitive our objective is to loss tails. The following result makes the nature of this control
429
+ (through β) more transparent.
430
+ Proposition 2. Let H and L(h) be as stated in Proposition 1. Letting bµ(h, a) be as specified
431
+ in (13), we define a Bernoulli random variable
432
+ I(h; a) ..= I {|L(h) − a| ≤ bµ(h, a)}
433
+ 7
434
+
435
+ for any choice of h ∈ H and a ∈ R. The optimal scale can then be bounded by
436
+ λ
437
+ 4β Eµ I(h; a)(L(h) − a)2 ≤ b2
438
+ µ(h, a) ≤ λ
439
+ 2β Eµ(L(h) − a)2
440
+ for any choice of 0 < β < λ and a ∈ R.
441
+ While it is difficult to pin down exactly how bµ(h, a) changes as a function of β, Proposition 2
442
+ clearly shows us the appealing property that optimal scale induced by the proposed objective
443
+ function essentially falls between the (tail-sensitive) quadratic deviations and a (tail-insensitive)
444
+ truncated variant, with the truncation threshold loosening as β shrinks.
445
+ 3.2
446
+ Guiding the optimal threshold
447
+ Since the preceding Propositions 1–2 both hold for any choice of threshold a ∈ R, they clearly
448
+ hold when both a and b are optimal, i.e., when a and b are set as
449
+ (aµ(h), bµ(h)) ∈ arg min
450
+ a∈R,b>0
451
+ Cµ(h; a, b).
452
+ (16)
453
+ In particular, using first-order conditions, the inclusion (16) is equivalent to the following two
454
+ equalities holding at once:
455
+
456
+
457
+
458
+ L(h) − aµ(h)
459
+
460
+ (L(h) − aµ(h))2 + b2µ(h)
461
+
462
+ � = α,
463
+
464
+
465
+
466
+ bµ(h)
467
+
468
+ (L(h) − aµ(h))2 + b2µ(h)
469
+
470
+ � = 1 − β/λ.
471
+ (17)
472
+ Given the context of our analysis in §3.1, let us consider the effect of taking β towards zero.
473
+ For any non-trivial random loss, the second equality asks that bµ(h) grow without bound as
474
+ β → 0+, while |aµ(h)| must be either bounded or grow slower than bµ(h). On the other hand,
475
+ if α is too large (i.e., α > 1) then the first equality will be impossible to satisfy. In addition to
476
+ taking 0 < α < 1, note that if we multiply both sides of the first equality in (17) by bµ(h) and
477
+ apply Proposition 2, then under this optimality condition we must have
478
+
479
+
480
+
481
+
482
+
483
+ L(h) − aµ(h)
484
+
485
+ (L(h)−aµ(h)
486
+ bµ(h)
487
+ )2 + 1
488
+
489
+
490
+
491
+ � ≤ α
492
+
493
+ λ
494
+ 2β Eµ(L(h) − aµ(h))2.
495
+ (18)
496
+ With this inequality in place, we adopt the following strategy: encourage the optimal location
497
+ to converge as aµ(h) → Eµ L(h) when β → 0+. Since λ > 0 is assumed to be fixed in advance,
498
+ the only way to ensure this using (18) is to set α = α(β) such that
499
+ lim
500
+ β→0+
501
+ α(β)
502
+ √β = 0.
503
+ (19)
504
+ While (19) gives us a rather clear condition for determining α given β, we still do not have a
505
+ principled setting for β. This point will be treated in the following sub-section.
506
+ 3.3
507
+ Deriving an algorithm using finite-sample theory
508
+ To complement the preceding analysis and discussion centered around the population objective
509
+ (12), we now return to the empirical objective function �Cn(h; a, b) introduced in (10). We
510
+ maintain the running assumption that the training data Z1, . . . , Zn are an IID sample from µ,
511
+ 8
512
+
513
+ and thus the losses Li(h), i = 1, . . . , n are independent given any fixed h. With h and b > 0
514
+ fixed for the moment, we will now take a closer look at the optimal (empirical) threshold that
515
+ arises from this objective function, namely any random variable An(h, b) satisfying
516
+ An(h, b) ∈ arg min
517
+ a∈R
518
+ �Cn(h; a, b).
519
+ (20)
520
+ Using the property (4) of the smooth Huber-like function ρ, we can demonstrate how data-
521
+ driven thresholds satisfying (20) are concentrated at a point near the expected loss, where α
522
+ and b play a key role in how close this point is to the mean.
523
+ Proposition 3 (Concentration at a shifted location). Taking 0 ≤ α < 1, b > 0, and 0 < δ < 1,
524
+ with large enough n it is always possible to satisfy the condition
525
+
526
+ λ ≤ 4
527
+ �Vµ L(h)
528
+ b2
529
+ + log(2/δ)
530
+ n
531
+
532
+ ≤ 1 − 4α
533
+ λ ,
534
+ and when this condition is satisfied, the data-driven threshold An(h, b) in (20) satisfies
535
+ ����An(h, b) −
536
+
537
+ Eµ L(h) − 2α
538
+ λ b
539
+ ����� ≤ 2
540
+ �Vµ L(h)
541
+ b
542
+ + b log(2/δ)
543
+ n
544
+
545
+ with probability no less than 1 − δ.
546
+ This result can be seen as an extension of [34, Prop. 3.1] for the function (5) used in mean
547
+ estimation to our generalized learning problem, although we use a different proof strategy
548
+ which does not require strong convexity of �Cn (with respect to a).
549
+ With Proposition 3 established, conventional wisdom might incline one to pursue a O(1/√n)
550
+ rate in the upper bound; in this case, setting β ∝ 1/n is a natural strategy since Proposition
551
+ 2 tells us that for the population objective, the optimal setting of b scales with
552
+
553
+ λ/β. While
554
+ this is natural from the perspective of tight concentration bounds for An(h, b), we argue that a
555
+ different strategy is more appropriate when we actually consider how (Hn, An, Bn) will behave
556
+ in the full joint optimization (11). The most obvious reason for this is that the joint objective
557
+ lacks convexity and smoothness, as the following result summarizes.
558
+ Proposition 4 (Joint objective is non-convex and non-smooth). Even when H is a compact
559
+ convex set and the base loss function ℓ(·; Z) is convex, the mapping (h, a, b) �→ �Cn is not convex
560
+ in general, and is non-smooth in the sense that its gradient is not Lipschitz continuous on
561
+ H × R × (0, ∞).
562
+ In consideration of Proposition 4, standard complexity results for typical optimizers such as
563
+ stochastic gradient descent to achieve a ε-stationary point are on the order of O(ε−4); see
564
+ Davis and Drusvyatskiy [8] for example.4
565
+ With this in mind, setting β ∝ 1/n to achieve
566
+ O(ε−2) sample complexity for error bounds of An(h, b) seems superfluous if in the end the
567
+ dominant complexity for solving the ultimate problem (11) will be of the order O(ε−4). As
568
+ such, in order to match this rate, the more natural strategy is to set β ∝ 1/√n, or more
569
+ precisely to set
570
+ β = β0
571
+ √n
572
+ (21)
573
+ where β0 > 0 is a constant used to ensure 0 < β < λ. This, coupled with α(β) = β to satisfy
574
+ (19) from the previous sub-section, is our proposed setting to determine (α, β) (and thus �Cn)
575
+ using just knowledge of n, and without having observed any data points. This procedure is
576
+ summarized in Algorithm 1, and will be the subject of empirical analysis later in §4.
577
+ 4Even if the objective were smooth, the same rates are typical; see for example Ghadimi and Lan [12].
578
+ 9
579
+
580
+ Algorithm 1 Modified Sun-Huber
581
+ Inputs: data Z1, . . . , Zn and parameter λ > 0.
582
+ Set: β = β0/√n, with β0 such that 0 < β < λ.
583
+ {Based on (21).}
584
+ Set: α = β.
585
+ {Satisfies (19).}
586
+ Minimize: �Cn(h; a, b) in (h, a, b) using α and β as above.
587
+ 3.4
588
+ Stationary points of mean-variance
589
+ Having established links between the proposed objective and the mean-SD objective, we next
590
+ consider the mean-variance objective
591
+ MVµ(h) ..= Eµ L(h) + Vµ L(h).
592
+ (22)
593
+ This quantity can be expressed as the minimum value of a convex function, namely we have
594
+ MVµ(h) = min
595
+ a∈R
596
+
597
+ a + Eµ(L(h) − a)2 + 1
598
+ 2
599
+
600
+ = aMV(h) + Eµ(L(h) − aMV(h))2 + 1
601
+ 2
602
+ (23)
603
+ where on the right-most side we have set aMV(h) ..= Eµ L(h)−1. Assuming the underlying loss
604
+ is differentiable, the gradient with respect to h can be written as
605
+ MV′
606
+ µ(h) = Eµ L′(h) + Eµ L(h) L′(h) − Eµ L(h) Eµ L′(h)
607
+ = Eµ L′(h) + Eµ (L(h) − Eµ L(h)) L′(h)
608
+ = Eµ (L(h) − (Eµ L(h) − 1)) L′(h)
609
+ which implies a stationarity condition of
610
+ MV′
611
+ µ(h) = 0 ⇐⇒ Eµ (L(h) − (Eµ L(h) − 1)) L′(h) = 0.
612
+ (24)
613
+ Similarly, the partial derivative of the learning criterion (12) taken with respect to h is
614
+
615
+ ∂h Cµ(h; a, b) = Eµ
616
+
617
+ L(h) − a
618
+
619
+ (L(h) − a)2 + b2
620
+
621
+ L′(h)
622
+ and thus multiplying both sides by b > 0, we obtain a simple stationarity condition of
623
+
624
+ ∂h Cµ(h; a, b) = 0 ⇐⇒ Eµ
625
+
626
+
627
+ L(h) − a
628
+
629
+ (L(h)−a
630
+ b
631
+ )2 + 1
632
+
633
+ � L′(h) = 0.
634
+ (25)
635
+ With the right threshold setting, obviously the two conditions become very similar as b grows
636
+ large. The following result makes this precise.
637
+ Proposition 5. Let loss function ℓ and data distribution µ be such that the random vector
638
+ L(h) L′(h) is integrable and has a norm with finite mean, i.e., Eµ∥L(h) L′(h)∥ < ∞ for some
639
+ choice of h ∈ H. Then, for any a ∈ R, defining
640
+ f(h; a) ..= lim
641
+ b→∞ b ∂
642
+ ∂h Cµ(h; a, b)
643
+ (26)
644
+ the stationary points of the mean-variance objective are related to those of the proposed objective
645
+ (12) through the following equivalence:
646
+ f(h; aMV(h)) = 0 ⇐⇒
647
+
648
+ ∂h MVµ(h) = 0
649
+ where MVµ(h) is as defined in (22).
650
+ 10
651
+
652
+ 1.0
653
+ 0.5
654
+ 0.0
655
+ 0.5
656
+ 1.0
657
+ 0.0
658
+ 0.5
659
+ 1.0
660
+ Figure 3: Graph of the Legendre transform ρ∗ as given in (28) over (−1, 1).
661
+ 3.5
662
+ Comparison with dual form of DRO risk
663
+ Some readers may notice that the proposed (population) objective (12) looks quite similar to
664
+ the dual form of DRO risks:
665
+ DROµ(h; β) ..=
666
+ inf
667
+ a∈R,b>0
668
+
669
+ a + βb + b Eµ φ∗
670
+ �L(h) − a
671
+ b
672
+ ��
673
+ (27)
674
+ where φ∗ is the Legendre-Fenchel convex conjugate φ∗(x) ..= supu∈R[xu − φ(u)] induced by a
675
+ function φ : R → R, assumed to be convex and lower semi-continuous, with φ(1) = 0 and
676
+ φ(x) = ∞ whenever x < 0 (cf. [33, §3.2]). Given this similarity, one might ask whether or not
677
+ some form of DRO risk can be reverse engineered from our proposed objective. Taking up this
678
+ point briefly, we first note that the conjugate of ρ given by (6) is
679
+ ρ∗(x) ..= sup
680
+ u∈R
681
+ [xu − ρ(u)] = sup
682
+ u∈R
683
+
684
+ xu −
685
+
686
+ u2 + 1 + 1
687
+
688
+ .
689
+ From the non-negative nature of ρ, clearly ρ∗(0) = −ρ(0) = 0. For x ̸= 0, note that taking the
690
+ derivative of concave function u �→ xu − ρ(u) and setting it to zero, we obtain the first-order
691
+ optimality conditions
692
+ u
693
+
694
+ u2 + 1 = x ⇐⇒
695
+ sign(x)
696
+
697
+ 1 + 1/u2 = x ⇐⇒
698
+ 1
699
+ x2 = 1 + 1/u2 ⇐⇒ u =
700
+ sign(x)
701
+
702
+ 1/x2 − 1.
703
+ Plugging this solution in whenever |x| < 1 and doing a bit of algebra readily yields the simple
704
+ closed-form expression
705
+ ρ∗(x) =
706
+
707
+
708
+
709
+ x2
710
+
711
+ 1−x2 + 1 −
712
+ 1
713
+
714
+ 1−x2 ,
715
+ if 0 ≤ |x| < 1
716
+ ∞,
717
+ else.
718
+ (28)
719
+ As can be readily observed from both (28) and Figure 3, this function does not satisfy any
720
+ of the requirements placed on φ except convexity, and thus despite the similar form, the non-
721
+ monotonic nature of ρ is in sharp contrast with monotonicity of typical cases of φ∗ that arise
722
+ in the DRO literature (e.g. [3, §3]), and does not readily imply a “primal” DRO objective that
723
+ can be recovered using ρ∗.
724
+ 4
725
+ Empirical analysis
726
+ Our investigation in the previous section led us to Algorithm 1, giving us a principled and
727
+ precise strategy to construct the objective function �Cn, but leaving the actual minimization
728
+ procedure abstract.
729
+ Here we make this concrete by implementing a simple gradient-based
730
+ minimizer of this objective, and comparing this procedure with natural benchmarks from the
731
+ literature.
732
+ 11
733
+
734
+ 4.1
735
+ Simulated noisy classification on the plane
736
+ As a simplified and controlled setting to start with, we generate random data points on the
737
+ plane which are mostly linearly separable, save for a single distant outlier (Figure 4). Before
738
+ we consider off-sample generalization, here we focus simply on the training loss distribution
739
+ properties as a function of algorithm iterations.
740
+ Experiment setup
741
+ We generate n = 100 training data points using two Gaussian distri-
742
+ butions on the plane to represent two classes, with each class having the same number of
743
+ points.
744
+ We choose a single point uniformly at random, and perturb it by multiplying the
745
+ scalar -10. We compare our proposed procedure (denoted “Modified Sun-Huber”) with three
746
+ alternatives: traditional mean-based empirical risk minimization (denoted “Vanilla ERM”),
747
+ conditional value-at-risk (CVaR) [7], and the well-studied χ2-DRO risk [11, 13]. In light of
748
+ Algorithm 1, we set λ = log(n)/√n > β = β0/√n, and try a variety of β0 values just for
749
+ reference. For all the aforementioned methods, we set the base loss ℓ(·) to the usual binary
750
+ logistic loss (linear model), and run (batch) gradient descent on the empirical risk objectives
751
+ implied by each of these methods (see §C for details), with a fixed step size of 0.01 over 15,000
752
+ iterations. Alternative settings of step size and iteration number were not tested. All methods
753
+ are initialized at the same point, shown in Figure 4.
754
+ Results and discussion
755
+ In Figure 5, we show the empirical mean-SD trajectories for the
756
+ base loss, over algorithm iterations (log10 scale), for each method of interest. Using our no-
757
+ tation, this is the sample version of MSµ(h; λ) in (1), with λ = 1 fixed. All methods besides
758
+ vanilla ERM have multiple settings that were tested, and the results for each are distinguished
759
+ using curves of different color. Our method tests different values of β0, CVaR tests different
760
+ quantile levels, and DRO tests different robustness levels (details in §C). Since Vanilla ERM
761
+ is designed to optimize the average loss, it is perhaps not surprising that it fails in terms of
762
+ the mean-SD objective. On the other hand, the proposed method (for any choice of β0) is as
763
+ good or better than all the competing methods. As a basic sanity check, in Figure 6 we also
764
+ consider the error rate (average zero-one loss) and model norm trajectories over iterations for
765
+ each method. For each method, we plot just one trajectory, namely the one achieving the best
766
+ final error rate. While our method is not designed to minimize the average loss and typical
767
+ surrogate theory does not apply, we find that the error rate is surprisingly good, albeit with
768
+ slower convergence than the other methods. Note also how the error rate for CVaR matches
769
+ that of Vanilla ERM; this is in fact the CVaR setting with the worst final mean-SD value. On
770
+ the other hand, the proposed method performs well from both perspectives at once.
771
+ 4.2
772
+ Classification on real datasets
773
+ We proceed to experiments using real-world datasets, some of which are orders of magnitude
774
+ larger than the simple setup given in §4.1, and which include multi-class classification tasks.
775
+ Experiment setup
776
+ We make use of four well-known datasets, all available from online
777
+ repositories: adult,5 australian,6 cifar10,7 and fashion_mnist.8 For multi-class datasets,
778
+ we extend the binary logistic loss to the usual multi-class logistic regression loss under a linear
779
+ 5https://archive.ics.uci.edu/ml/datasets/Adult
780
+ 6https://archive.ics.uci.edu/ml/datasets/statlog+(australian+credit+approval)
781
+ 7https://www.cs.toronto.edu/~kriz/cifar.html
782
+ 8https://github.com/zalandoresearch/fashion-mnist
783
+ 12
784
+
785
+ model, with one linear model for each class. Features for all datasets are normalized to [0, 1],
786
+ with one-hot representations of categorical features. The learning algorithms being compared
787
+ here are the same as described in §4.1, except that now we implement each method using
788
+ mini-batch stochastic gradient descent (batch size 32), and do 30 epochs (i.e., 30 passes over
789
+ the training data). In addition, our proposed “Modified Sun-Huber” method performs almost
790
+ identically for the range of β0 values tested in §4.1, and thus we have simply fixed β0 = 0.9, so
791
+ there is only one trajectory curve this time. On the other hand, we now try a range of step sizes
792
+ for each method, choosing the best step size in terms of average (base) loss value on validation
793
+ data for each method. We run five independent trials, and for each trial we randomly re-shuffle
794
+ the dataset, taking 80% for training, 10% for validation (used to select step sizes), and 10%
795
+ for final testing.
796
+ Results and discussion
797
+ Our main results are shown in Figure 7, where once again we
798
+ plot the trajectory of the mean-SD objective, but this time computed on test data, and given
799
+ as a function of epoch number, rather than individual iterations.
800
+ Since there are multiple
801
+ trials, the curves drawn represent averages taken over trials, and the lightly shaded region
802
+ above/below each curve shows standard deviation over trials. Perhaps surprisingly, the very
803
+ simple implementation of our proposed Algorithm 1 (fixed step size, no regularization) works
804
+ remarkably well on a number of datasets. From the perspective of mean-SD minimization,
805
+ for three our of four datasets, the proposed method is far better than Vanilla ERM, and as
806
+ good or better than even the best settings of CVaR and DRO viewed after the fact. Regarding
807
+ the sub-standard performance observed on fashion_mnist, detailed analysis shows that more
808
+ fine-tuned settings of α and β can readily bring the method up to par; the non-convex and non-
809
+ smooth nature of �Cn naturally means that some tasks will require more careful settings than
810
+ are captured by our Algorithm 1, and indeed will take explicit account of the optimizer to be
811
+ used. We leave both the theoretical grounding and empirical testing of such optimizer-aligned
812
+ mean-SD minimizers for future work.
813
+ 13
814
+
815
+ Figure 4: 2D classification example from §4.1. The red line represents the initial value used by each method.
816
+ 102
817
+ 1
818
+ 2
819
+ Vanilla ERM
820
+ 102
821
+ Modified Sun-Huber
822
+ 102
823
+ CVaR
824
+ 102
825
+ 2-DRO risk
826
+ 0.1
827
+ 0.9
828
+ 0.0
829
+ 0.8
830
+ 0.0
831
+ 0.3
832
+ Mean + SD (2D classification with outliers)
833
+ Figure 5: Trajectory of the (empirical) mean-SD objective (1) over iterations. Colors correspond to different
834
+ choices from each class: β0 for Modified Sun-Huber, quantile level for CVaR, and constraint level for DRO.
835
+ 101
836
+ 103
837
+ 0.0
838
+ 0.2
839
+ 0.4
840
+ Error rate
841
+ 101
842
+ 103
843
+ 0
844
+ 2
845
+ 4
846
+ Norm
847
+ Trajectory with best final error rate
848
+ Vanilla ERM
849
+ Modified Sun-Huber
850
+ CVaR
851
+ 2-DRO risk
852
+ Figure 6:
853
+ From each method class, we show the classification error rate and Euclidean norm trajectories
854
+ corresponding to the setting that achieved the best error rate after the final iteration.
855
+ 14
856
+
857
+ 0
858
+ 20
859
+ 0.7
860
+ 0.8
861
+ Vanilla ERM
862
+ 0
863
+ 20
864
+ Modified Sun-Huber
865
+ 0
866
+ 20
867
+ CVaR risk
868
+ 0
869
+ 20
870
+ 2-DRO risk
871
+ Mean + SD (dataset: adult)
872
+ 0
873
+ 20
874
+ 0.8
875
+ 1.0
876
+ Vanilla ERM
877
+ 0
878
+ 20
879
+ Modified Sun-Huber
880
+ 0
881
+ 20
882
+ CVaR risk
883
+ 0
884
+ 20
885
+ 2-DRO risk
886
+ Mean + SD (dataset: australian)
887
+ 0
888
+ 20
889
+ 2.5
890
+ 3.0
891
+ 3.5
892
+ Vanilla ERM
893
+ 0
894
+ 20
895
+ Modified Sun-Huber
896
+ 0
897
+ 20
898
+ CVaR risk
899
+ 0
900
+ 20
901
+ 2-DRO risk
902
+ Mean + SD (dataset: cifar10)
903
+ 0
904
+ 20
905
+ 1.5
906
+ 2.0
907
+ 2.5
908
+ Vanilla ERM
909
+ 0
910
+ 20
911
+ Modified Sun-Huber
912
+ 0
913
+ 20
914
+ CVaR risk
915
+ 0
916
+ 20
917
+ 2-DRO risk
918
+ Mean + SD (dataset: fashion_mnist)
919
+ Figure 7: Mean-SD trajectories on real-world datasets as described in §4.2, given as a function of epochs and
920
+ averaged over multiple independent trials. Coloring for CVaR and DRO is analogous to that of Figure 5.
921
+ 15
922
+
923
+ References
924
+ [1] Ash, R. B. and Doléans-Dade, C. A. (2000). Probability and Measure Theory. Academic
925
+ Press, 2nd edition.
926
+ [2] Barron, J. T. (2019). A general and adaptive robust loss function. In Proceedings of the
927
+ IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4331–4339.
928
+ [3] Ben-Tal, A., Den Hertog, D., De Waegenaere, A., Melenberg, B., and Rennen, G. (2013).
929
+ Robust solutions of optimization problems affected by uncertain probabilities. Management
930
+ Science, 59(2):341–357.
931
+ [4] Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge University Press.
932
+ [5] Brownlees, C., Joly, E., and Lugosi, G. (2015). Empirical risk minimization for heavy-tailed
933
+ losses. The Annals of Statistics, 43(6):2507–2536.
934
+ [6] Catoni, O. (2012). Challenging the empirical mean and empirical variance: a deviation
935
+ study. Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, 48(4):1148–1185.
936
+ [7] Curi, S., Levy, K. Y., Jegelka, S., and Krause, A. (2020). Adaptive sampling for stochastic
937
+ risk-averse learning. In Advances in Neural Information Processing Systems 33 (NeurIPS
938
+ 2020), pages 1036–1047.
939
+ [8] Davis, D. and Drusvyatskiy, D. (2019). Stochastic model-based minimization of weakly
940
+ convex functions. SIAM Journal on Optimization, 29(1):207–239.
941
+ [9] Devroye, L., Györfi, L., and Lugosi, G. (1996). A Probabilistic Theory of Pattern Recogni-
942
+ tion. Springer.
943
+ [10] Devroye, L., Lerasle, M., Lugosi, G., and Oliveira, R. I. (2016).
944
+ Sub-Gaussian mean
945
+ estimators. The Annals of Statistics, 44(6):2695–2725.
946
+ [11] Duchi, J. and Namkoong, H. (2019). Variance-based regularization with convex objectives.
947
+ Journal of Machine Learning Research, 20(68):1–55.
948
+ [12] Ghadimi, S. and Lan, G. (2013). Stochastic first- and zeroth-order methods for nonconvex
949
+ stochastic programming. SIAM Journal on Optimization, 23(4):2341–2368.
950
+ [13] Hashimoto, T. B., Srivastava, M., Namkoong, H., and Liang, P. (2018). Fairness with-
951
+ out demographics in repeated loss minimization. In Proceedings of the 35th International
952
+ Conference on Machine Learning (ICML), volume 80 of Proceedings of Machine Learning
953
+ Research, pages 1929–1938.
954
+ [14] Holland, M. J. and Tanabe, K. (2022). Learning criteria going beyond the usual risk.
955
+ arXiv preprint arXiv:2110.04996v2.
956
+ [15] Hsu, D. and Sabato, S. (2016). Loss minimization and parameter estimation with heavy
957
+ tails. Journal of Machine Learning Research, 17(18):1–40.
958
+ [16] Hu, S., Wang, X., and Lyu, S. (2022).
959
+ Rank-based decomposable losses in machine
960
+ learning: A survey. arXiv preprint arXiv:2207.08768v1.
961
+ [17] Huber, P. J. (1964). Robust estimation of a location parameter. The Annals of Mathe-
962
+ matical Statistics, 35(1):73–101.
963
+ 16
964
+
965
+ [18] Huber, P. J. and Ronchetti, E. M. (2009). Robust Statistics. John Wiley & Sons, 2nd
966
+ edition.
967
+ [19] Lee, J., Park, S., and Shin, J. (2020). Learning bounds for risk-sensitive learning. In
968
+ Advances in Neural Information Processing Systems 33 (NeurIPS 2020), pages 13867–13879.
969
+ [20] Li, T., Beirami, A., Sanjabi, M., and Smith, V. (2021). Tilted empirical risk minimization.
970
+ In The 9th International Conference on Learning Representations (ICLR).
971
+ [21] Luenberger, D. G. (1969). Optimization by Vector Space Methods. John Wiley & Sons.
972
+ [22] Lugosi, G. and Mendelson, S. (2019). Mean estimation and regression under heavy-tailed
973
+ distributions: A survey. Foundations of Computational Mathematics, 19(5):1145–1190.
974
+ [23] Markowitz, H. (1952). Portfolio selection. Journal of Finance, 7(1):77–91.
975
+ [24] Maurer, A. and Pontil, M. (2009).
976
+ Empirical Bernstein bounds and sample variance
977
+ penalization. In Proceedings of the 22nd Conference on Learning Theory (COLT).
978
+ [25] Medina, A. M. and Yang, S. (2021). Robust unsupervised learning via L-statistic mini-
979
+ mization. In 38th International Conference on Machine Learning (ICML), volume 139 of
980
+ Proceedings of Machine Learning Research, pages 7524–7533.
981
+ [26] Menon, A. K., Jayasumana, S., Rawat, A. S., Jain, H., Veit, A., and Kumar, S. (2021).
982
+ Long-tail learning via logit adjustment. In The 9th International Conference on Learning
983
+ Representations (ICLR).
984
+ [27] Mohri, M., Rostamizadeh, A., and Talwalkar, A. (2012). Foundations of Machine Learn-
985
+ ing. MIT Press.
986
+ [28] Nesterov, Y. (2004). Introductory Lectures on Convex Optimization: A Basic Course.
987
+ Springer.
988
+ [29] Rey, W. J. J. (1983).
989
+ Introduction to Robust and Quasi-Robust Statistical Methods.
990
+ Springer.
991
+ [30] Rockafellar, R. T. and Uryasev, S. (2000).
992
+ Optimization of conditional value-at-risk.
993
+ Journal of Risk, 2:21–42.
994
+ [31] Rockafellar, R. T. and Uryasev, S. (2013).
995
+ The fundamental risk quadrangle in risk
996
+ management, optimization and statistical estimation. Surveys in Operations Research and
997
+ Management Science, 18(1-2):33–53.
998
+ [32] Royset, J. O. (2022). Risk-adaptive approaches to learning and decision making: A survey.
999
+ arXiv preprint arXiv:2212.00856.
1000
+ [33] Shapiro, A. (2017). Distributionally robust stochastic programming. SIAM Journal on
1001
+ Optimization, 27(4):2258–2275.
1002
+ [34] Sun, Q. (2021). Do we need to estimate the variance in robust mean estimation? arXiv
1003
+ preprint arXiv:2107.00118v1.
1004
+ [35] Vapnik, V. N. (1999). The Nature of Statistical Learning Theory. Statistics for Engineering
1005
+ and Information Science. Springer, 2nd edition.
1006
+ 17
1007
+
1008
+ [36] Zhai, R., Dan, C., Kolter, J. Z., and Ravikumar, P. (2021). DORO: Distributional and
1009
+ outlier robust optimization. In 38th International Conference on Machine Learning (ICML),
1010
+ volume 139 of Proceedings of Machine Learning Research, pages 12345–12355.
1011
+ A
1012
+ Technical appendix
1013
+ A.1
1014
+ Basic facts
1015
+ Assuming ρ is defined as in (6), let us consider the function
1016
+ f(x, a, b) ..= αa + βb + bρ
1017
+ �x − a
1018
+ b
1019
+
1020
+ (29)
1021
+ = αa + βb +
1022
+
1023
+ (x − a)2 + b2 − b
1024
+ (30)
1025
+ = αa +
1026
+
1027
+ (x − a)2 + b2 − (1 − β)b.
1028
+ (31)
1029
+ The partial derivatives are as follows.
1030
+ ∂xf(x, a, b) =
1031
+ x − a
1032
+
1033
+ (x − a)2 + b2
1034
+ (32)
1035
+ ∂af(x, a, b) = α −
1036
+ x − a
1037
+
1038
+ (x − a)2 + b2
1039
+ (33)
1040
+ ∂bf(x, a, b) =
1041
+ b
1042
+
1043
+ (x − a)2 + b2 − (1 − β)
1044
+ (34)
1045
+ The corresponding second derivatives are as follows.
1046
+ ∂2
1047
+ xf(x, a, b) =
1048
+ 1
1049
+
1050
+ (x − a)2 + b2 −
1051
+ (x − a)2
1052
+ ((x − a)2 + b2)3/2 =
1053
+ b2
1054
+ ((x − a)2 + b2)3/2
1055
+ (35)
1056
+ ∂2
1057
+ af(x, a, b) =
1058
+ 1
1059
+
1060
+ (x − a)2 + b2 −
1061
+ (x − a)2
1062
+ ((x − a)2 + b2)3/2 =
1063
+ b2
1064
+ ((x − a)2 + b2)3/2
1065
+ (36)
1066
+ ∂2
1067
+ b f(x, a, b) =
1068
+ 1
1069
+
1070
+ (x − a)2 + b2 −
1071
+ b2
1072
+ ((x − a)2 + b2)3/2 =
1073
+ (x − a)2
1074
+ ((x − a)2 + b2)3/2
1075
+ (37)
1076
+ The remaining elements of the Hessian of f(x, a, b) follow easily, given as follows.
1077
+ ∂a∂xf(x, a, b) =
1078
+ −1
1079
+
1080
+ (x − a)2 + b2 +
1081
+ (x − a)2
1082
+ ((x − a)2 + b2)3/2 =
1083
+ −b2
1084
+ ((x − a)2 + b2)3/2
1085
+ (38)
1086
+ ∂b∂xf(x, a, b) =
1087
+ −b(x − a)
1088
+ ((x − a)2 + b2)3/2
1089
+ (39)
1090
+ ∂b∂af(x, a, b) =
1091
+ b(x − a)
1092
+ ((x − a)2 + b2)3/2
1093
+ (40)
1094
+ Lemma 6 (Useful inequalities).
1095
+ 1
1096
+ 1 + x ≤ 1 − x
1097
+ 2,
1098
+ 0 ≤ x ≤ 1.
1099
+ (41)
1100
+ (1 + x)c ≥ 1 + cx,
1101
+ x ≥ −1, c ∈ R \ (0, 1).
1102
+ (42)
1103
+ 18
1104
+
1105
+ A.2
1106
+ Convexity and smoothness
1107
+ Lemma 7. The map x �→ 1/√1 + x is convex on [0, ∞).
1108
+ Lemma 8 (Properties of partial objective). With ρ as in (6) and β ≥ 0, the function
1109
+ (x, b) �→ βb + bρ
1110
+ �x
1111
+ b
1112
+
1113
+ is convex and (1 + max{1 − β, β})-Lipschitz (in ∥·∥1) on R × (0, ∞), but its gradient is not
1114
+ (globally) Lipschitz, and thus the function is not smooth.9
1115
+ Proof of Lemma 8. For notational convenience, setting 0 < β < 1, let us denote
1116
+ g(x, b) ..= βb + bρ(x/b),
1117
+ x ∈ R, b > 0
1118
+ with ρ as in (6). From the partial derivatives (32) and (34), it is clear that we have
1119
+ −1 ≤ ∂xg(x, b) ≤ 1,
1120
+ −(1 − β) ≤ ∂bg(x, b) ≤ β
1121
+ when evaluated at any choice of x ∈ R and b > 0. It follows that the gradient norm can be
1122
+ bounded as
1123
+ ∥∇g(x, b)∥1 ≤ 1 + max{(1 − β), β}
1124
+ and thus g(·) is Lipschitz continuous in ∥·∥1 (and also ∥·∥2).10
1125
+ Next, let us denote the Hessian of g(·) evaluated at (x, b) by H. Basic calculus gives us the
1126
+ simple form
1127
+ H ..=
1128
+ 1
1129
+ (x2 + b2)3/2
1130
+
1131
+ b2
1132
+ −xb
1133
+ −xb
1134
+ x2
1135
+
1136
+ and for any pair of real values u = (u1, u2), we have
1137
+ ⟨Hu, u⟩ =
1138
+ 1
1139
+ (x2 + b2)3/2 (u1b − u2x)2 ≥ 0.
1140
+ (43)
1141
+ Since this holds for any choice of x ∈ R and b > 0, the Hessian is thus positive semi-definite,
1142
+ implying that g(·) is (jointly) convex [28, Thm. 2.1.4].
1143
+ On the other hand, the function g(·) is not smooth. To see this, first note that having
1144
+ chosen any u such that ∥u∥ ≤ 1, we have that the (operator) norm is bounded below as
1145
+ ∥H∥ = sup
1146
+ ∥u′∥≤1
1147
+
1148
+ sup
1149
+ ∥u′′∥≤1
1150
+ ⟨Hu′, u′′⟩
1151
+
1152
+ ≥ ⟨Hu, u⟩.
1153
+ Then, as a concrete example, consider setting x = b, with u = (u1, u2) such that u1 ̸= u2.
1154
+ Recalling the lower bound (43), we have
1155
+ ∥H∥ ≥
1156
+ b2
1157
+ (2b2)3/2 (u1 − u2)2 = (u1 − u2)2
1158
+ (
1159
+
1160
+ 2)3b
1161
+ → ∞
1162
+ in the limit as b → 0+.
1163
+ As such, the gradient of g(·) cannot be Lipschitz continuous on
1164
+ R × (0, ∞), and thus g(·) is not smooth [28, Thm. 2.1.6].
1165
+ 9We prove that the Hessian’s norm is unbounded, which implies (via Nesterov [28, Thm. 2.1.6]) that the
1166
+ convex function of interest cannot be smooth.
1167
+ 10That bounded gradients imply Lipschitz continuity is a general fact on linear spaces [21, §7.3, Prop. 2].
1168
+ 19
1169
+
1170
+ B
1171
+ Additional proofs
1172
+ Proof of Proposition 1. To begin, note that the function
1173
+ b �→ b Eµ ρ
1174
+ �L(h) − a
1175
+ b
1176
+
1177
+ = Eµ
1178
+ ��
1179
+ (L(h) − a)2 + b2 − b
1180
+
1181
+ (44)
1182
+ is monotonic (non-increasing) on (0, ∞) (follows clearly from (34)). We will use this property
1183
+ moving forward. Recalling the upper and lower bounds of Proposition 2, we re-write them as
1184
+ clo(β)
1185
+ β
1186
+ ≤ b2
1187
+ µ(h, a) ≤ chi
1188
+ β
1189
+ (45)
1190
+ using the shorthand notation
1191
+ clo(β) ..= λ
1192
+ 4 Eµ I(h; a)(L(h) − a)2
1193
+ chi ..= λ
1194
+ 2 Eµ(L(h) − a)2
1195
+ and noting that while chi is free of β, clo(β) depends on β through the definition of I(h; a).
1196
+ Fixing 0 < β < λ for now and recalling the form of Cµ in (12), the preceding bounds (45) and
1197
+ monotonicity of (44) can be used to obtain a lower bound of the form
1198
+ min
1199
+ b>0 Cµ(h; a, b) ≥ αa +
1200
+
1201
+ βclo(β) + λ√chi Eµ
1202
+
1203
+
1204
+
1205
+ (L(h) − a)2
1206
+ chi
1207
+ + 1
1208
+ β −
1209
+
1210
+ 1
1211
+ β
1212
+
1213
+ � .
1214
+ (46)
1215
+ Using the fact (14) and applying dominated convergence [1, Thm. 1.6.9], in the limit we have
1216
+ lim
1217
+ β→0+ clo(β) = λ
1218
+ 4 Eµ(L(h) − a)2.
1219
+ Dividing both sides of (46) by √β, setting α = α(β) as in the proposition statement, and
1220
+ taking the limit as β → 0+, we obtain
1221
+ lim
1222
+ β→0+ min
1223
+ b>0
1224
+ Cµ(h; a, b)
1225
+ √β
1226
+ ≥ �αa +
1227
+
1228
+ λ
1229
+ 4 Eµ(L(h) − a)2 + λ Eµ(L(h) − a)2
1230
+ 2√chi
1231
+ = �αa +
1232
+
1233
+ λ
1234
+ 4 Eµ(L(h) − a)2 +
1235
+
1236
+ λ
1237
+ 2 Eµ(L(h) − a)2
1238
+ = �αa +
1239
+ �1
1240
+ 2 + 1
1241
+
1242
+ 2
1243
+ � �
1244
+ λ Eµ(L(h) − a)2.
1245
+ The first inequality uses the fact that for any c > 0, we have
1246
+
1247
+ cx + x2 − x → c/2 as x → ∞,
1248
+ and also uses dominated convergence. The remaining equalities just follow from plugging in
1249
+ the definition of chi and cleaning up terms. This proves the desired lower bound.
1250
+ As for the upper bound of interest, a perfectly analogous argument can be applied. Using
1251
+ Proposition 2 again and taking β small enough that
1252
+ clo(β) ≥ chi/4
1253
+ (47)
1254
+ 20
1255
+
1256
+ holds (always possible), we can obtain upper bounds of the form
1257
+ min
1258
+ b>0 Cµ(h; a, b) ≤ αa +
1259
+
1260
+ βchi + λ
1261
+
1262
+ clo(β) Eµ
1263
+ ��
1264
+ (L(h) − a)2
1265
+ clo(β)
1266
+ + 1
1267
+ β −
1268
+
1269
+ 1
1270
+ β
1271
+
1272
+ ≤ αa +
1273
+
1274
+ βchi + λ√chi Eµ
1275
+
1276
+
1277
+
1278
+ 4(L(h) − a)2
1279
+ chi
1280
+ + 1
1281
+ β −
1282
+
1283
+ 1
1284
+ β
1285
+
1286
+
1287
+ (48)
1288
+ noting that the latter inequality (48) follows from using (47) as well as clo(β) ≤ chi. As with
1289
+ the lower bound argument in the preceding paragraph, we set α = α(β), divide both sides by
1290
+ √β, and take the limit as β → 0+. This results in
1291
+ lim
1292
+ β→0+ min
1293
+ b>0
1294
+ Cµ(h; a, b)
1295
+ √β
1296
+ ≤ �αa +
1297
+
1298
+ λ
1299
+ 2 Eµ(L(h) − a)2 + 2λ Eµ(L(h) − a)2
1300
+ √chi
1301
+ = �αa +
1302
+
1303
+ λ
1304
+ 2 Eµ(L(h) − a)2 + 2
1305
+
1306
+ 2λ Eµ(L(h) − a)2
1307
+ = �αa +
1308
+
1309
+ 2
1310
+
1311
+ 2 + 1
1312
+
1313
+ 2
1314
+ � �
1315
+ λ Eµ(L(h) − a)2
1316
+ which gives us the desired upper bound. The bounds given in the proposition statement are
1317
+ slightly looser, but more readable.
1318
+ Proof of Proposition 2. We adapt key elements of the scale control used by Sun [34, §2] to our
1319
+ setting. We start by looking at first-order conditions for optimality of b > 0. First, note that
1320
+
1321
+ ∂b Cµ(h; a, b) = β + λ ∂
1322
+ ∂b
1323
+
1324
+
1325
+
1326
+ (L(h) − a)2 + b2 − b
1327
+
1328
+ = β + λ Eµ
1329
+
1330
+ b
1331
+
1332
+ (L(h) − a)2 + b2
1333
+
1334
+ − λ.
1335
+ As such, it follows that
1336
+
1337
+
1338
+ b
1339
+
1340
+ (L(h) − a)2 + b2
1341
+
1342
+ = 1 − β/λ
1343
+ (49)
1344
+ is equivalent to ∂b Cµ(h; a, b) = 0. Obviously, the left-hand side of (49) is non-negative for all
1345
+ b ≥ 0 and bounded above by 1 for all b ≥ 0, a ∈ R, and h ∈ H. Thus (49) can only hold for
1346
+ 0 ≤ β ≤ λ. Using convexity (Lemma 7) and Jensen’s inequality [1, Thm. 6.3.5], we have
1347
+
1348
+
1349
+ b
1350
+
1351
+ (L(h) − a)2 + b2
1352
+
1353
+ = Eµ
1354
+
1355
+
1356
+ 1
1357
+
1358
+ (L(h)−a
1359
+ b
1360
+ )2 + 1
1361
+
1362
+ � ≥
1363
+
1364
+
1365
+ 1
1366
+
1367
+ Eµ(L(h)−a
1368
+ b
1369
+ )2 + 1
1370
+
1371
+
1372
+ and thus whenever (49) holds, we know that
1373
+ (1 − β/λ)2 ≥
1374
+ 1
1375
+ Eµ(L(h)−a
1376
+ b
1377
+ )2 + 1
1378
+ must also hold. Re-arranging terms, we see that this implies
1379
+ b2 ≤ (1 − β/λ)2 Eµ(L(h) − a)2
1380
+ 1 − (1 − β/λ)2
1381
+ .
1382
+ 21
1383
+
1384
+ For readability, set η ..= β/λ, and note that since
1385
+ (1 − η)2
1386
+ 1 − (1 − η)2 = (1 − η)2
1387
+ 2η − η2 =
1388
+ (1 − η)2
1389
+ 2η(1 − η/2) ≤ (1 − η)2
1390
+ 2η(1 − η) ≤ 1
1391
+
1392
+ we can obtain the cleaner (but looser) upper bound
1393
+ b2 ≤ Eµ(L(h) − a)2
1394
+
1395
+ = λ
1396
+ 2β Eµ(L(h) − a)2
1397
+ for any choice of 0 < β ≤ λ and a ∈ R. Since the first-order condition (49) is necessary for
1398
+ optimality [28, Thm. 1.2.1], it follows that
1399
+ b2
1400
+ µ(h, a) ≤ Eµ(L(h) − a)2
1401
+
1402
+ (50)
1403
+ which is the desired upper bound.
1404
+ Considering a lower bound next, note first that using the concavity of x �→ √x on R+,
1405
+ another application of Jensen’s inequality gives us
1406
+
1407
+
1408
+ b
1409
+
1410
+ (L(h) − a)2 + b2
1411
+
1412
+ = Eµ
1413
+
1414
+ b2
1415
+ (L(h) − a)2 + b2 ≤
1416
+
1417
+
1418
+
1419
+ �Eµ
1420
+
1421
+ 1
1422
+ (L(h)−a
1423
+ b
1424
+ )2 + 1
1425
+
1426
+ .
1427
+ (51)
1428
+ Using the inequality 1/(x + 1) ≤ 1 − x/2 for all 0 ≤ x ≤ 1 ((41) in Lemma 6), this suggests
1429
+ a natural event to use as a condition.
1430
+ More precisely, writing E ..= I {|L(h) − a| ≤ b} for
1431
+ readability, note that we have
1432
+ 1
1433
+ (L(h)−a
1434
+ b
1435
+ )2 + 1
1436
+ =
1437
+ 1 − E
1438
+ (L(h)−a
1439
+ b
1440
+ )2 + 1
1441
+ +
1442
+ E
1443
+ (L(h)−a
1444
+ b
1445
+ )2 + 1
1446
+
1447
+ 1 − E
1448
+ (L(h)−a
1449
+ b
1450
+ )2 + 1
1451
+ + E
1452
+
1453
+ 1 − 1
1454
+ 2
1455
+ �L(h) − a
1456
+ b
1457
+ �2�
1458
+ =
1459
+
1460
+ 1 − E
1461
+ (L(h)−a
1462
+ b
1463
+ )2 + 1
1464
+ + E
1465
+
1466
+
1467
+ ��
1468
+
1469
+ ≤1
1470
+ −E
1471
+ 2
1472
+ �L(h) − a
1473
+ b
1474
+ �2
1475
+ .
1476
+ Taking expectation and utilizing (51), whenever (49) holds, we have
1477
+ 1 − β/λ = Eµ
1478
+
1479
+ b
1480
+
1481
+ (L(h) − a)2 + b2
1482
+
1483
+
1484
+
1485
+ 1 − Eµ
1486
+ E
1487
+ 2
1488
+ �L(h) − a
1489
+ b
1490
+ �2
1491
+ .
1492
+ (52)
1493
+ With this established, note that via helper inequality (42), for any β ≤ λ we have
1494
+ (1 − β/λ)2 ≥ 1 − 2β/λ
1495
+ and thus in light of (52), we may conclude that
1496
+ 1 − 2β/λ ≤ 1 − Eµ
1497
+ E
1498
+ 2
1499
+ �L(h) − a
1500
+ b
1501
+ �2
1502
+ which implies
1503
+ λ
1504
+ 4β Eµ E(h; a, b)(L(h) − a)2 ≤ b2
1505
+ 22
1506
+
1507
+ noting that we have written E(h; a, b) to emphasize the dependence on h, a, and b. Once again
1508
+ since the first-order condition (49) is necessary for optimality, we may conclude that
1509
+ λ
1510
+ 4β Eµ E(h; a, bµ(h, a))(L(h) − a)2 ≤ b2
1511
+ µ(h, a)
1512
+ (53)
1513
+ which is the remaining desired inequality.
1514
+ Proof of the limit (14). Recall from the proof of Proposition 2 the first-order optimality con-
1515
+ dition (49), which is satisfied by any solution bµ(h, a) given by (13), i.e., we have
1516
+
1517
+
1518
+
1519
+ bµ(h, a)
1520
+
1521
+ (L(h) − a)2 + (bµ(h, a))2
1522
+
1523
+ � = 1 − β/λ
1524
+ (54)
1525
+ for any 0 < β ≤ λ. Defining g(β) ..= 1 − β/λ and taking any 0 < β2 < β1 ≤ λ, clearly we have
1526
+ g(β1) < g(β2) and thus using the equality (54), we must have that bµ(h, a; β2) ≥ bµ(h, a; β1),
1527
+ otherwise it would result in a contradiction of (54). Using this monotonicity, clearly
1528
+ E(h; a, bµ(h, a; β1)) ≤ E(h; a, bµ(h, a; β2))
1529
+ and thus
1530
+ Eµ E(h; a, bµ(h, a; β1))(L(h) − a)2 ≤ E(h; a, bµ(h, a; β2))(L(h) − a)2.
1531
+ Applying this to the lower bound in Proposition 2, we have
1532
+ lim inf
1533
+ β→0+ b2
1534
+ µ(h, a) ≥ lim
1535
+ β→0+
1536
+ λ
1537
+ 4β Eµ I(h; a)(L(h) − a)2 = ∞
1538
+ as desired.
1539
+ Proof of the limit (15). Note that we can easily bound the random variable of interest as
1540
+ 0 ≤ bρ
1541
+ �L(h) − a
1542
+ b
1543
+
1544
+ =
1545
+
1546
+ (L(h) − a)2 + b2 − b ≤ |L(h) − a|
1547
+ (55)
1548
+ for any choice of 0 < b < ∞. Some straightforward calculus shows that
1549
+ lim
1550
+ b→∞ bρ
1551
+ �L(h) − a
1552
+ b
1553
+
1554
+ = 0
1555
+ in a pointwise sense. Since the upper bound in (55) is µ-integrable by assumption, a simple
1556
+ application of dominated convergence [1, Thm. 1.6.9] yields
1557
+ lim
1558
+ b→∞ b Eµ ρ
1559
+ �L(h) − a
1560
+ b
1561
+
1562
+ = Eµ
1563
+
1564
+ lim
1565
+ b→∞ bρ
1566
+ �L(h) − a
1567
+ b
1568
+ ��
1569
+ = 0
1570
+ as desired.
1571
+ 23
1572
+
1573
+ Proof of Proposition 3. From condition (20), since any solution must also be a stationary point
1574
+ [28, Thm. 1.2.1], we know that An ..= An(h, b) must satisfy the first-order condition
1575
+ λ
1576
+ n
1577
+ n
1578
+
1579
+ i=1
1580
+ ρ′
1581
+ �Li(h) − An
1582
+ b
1583
+
1584
+ = α
1585
+ which is equivalent to
1586
+ b
1587
+ n
1588
+ n
1589
+
1590
+ i=1
1591
+ ρ′
1592
+ �Li(h) − An
1593
+ b
1594
+
1595
+ = α
1596
+ λb.
1597
+ (56)
1598
+ Next we make use of the argument developed by Catoni [6, §2]. First note that fixing any
1599
+ a ∈ R and b > 0, we have
1600
+ E exp
1601
+ � n
1602
+
1603
+ i=1
1604
+ ρ′
1605
+ �Li(h) − a
1606
+ b
1607
+ ��
1608
+ = E
1609
+ � n
1610
+
1611
+ i=1
1612
+ exp
1613
+
1614
+ ρ′
1615
+ �Li(h) − a
1616
+ b
1617
+ ���
1618
+ =
1619
+ n
1620
+
1621
+ i=1
1622
+ Ei exp
1623
+
1624
+ ρ′
1625
+ �Li(h) − a
1626
+ b
1627
+ ��
1628
+
1629
+ n
1630
+
1631
+ i=1
1632
+ Ei
1633
+
1634
+ 1 + Li(h) − a
1635
+ b
1636
+ + γ
1637
+ b2 (Li(h) − a)2
1638
+
1639
+ =
1640
+ �Eµ L(h) − a
1641
+ b
1642
+ + γ
1643
+ b2 Eµ(L(h) − a)2
1644
+ �n
1645
+ ≤ exp
1646
+ �n
1647
+ b (Eµ L(h) − a) + nγ
1648
+ b2 Eµ(L(h) − a)2
1649
+
1650
+ .
1651
+ (57)
1652
+ The second equality above follows from the independence of the training data, and the first
1653
+ inequality uses the upper bound in (4), which is satisfied by ρ given in (6) with γ = 1, though
1654
+ we leave γ as is to illustrate how more general results are obtained. The third equality just uses
1655
+ the fact that the training data is an IID sample from µ, and the final inequality culminating
1656
+ in (57) just uses the bound 1 + x ≤ exp(x). Using Markov’s inequality and taking 0 < δ < 1,
1657
+ it is straightforward to show that (57) implies a 1 − δ event (over the draw of Z1, . . . , Zn) in
1658
+ which we have
1659
+ n
1660
+
1661
+ i=1
1662
+ ρ′
1663
+ �Li(h) − a
1664
+ b
1665
+
1666
+ ≤ n
1667
+ b (Eµ L(h) − a) + nγ
1668
+ b2 Eµ(L(h) − a)2 + log(1/δ).
1669
+ Multiplying both sides by b/n, on the same “good” event, we have
1670
+ b
1671
+ n
1672
+ n
1673
+
1674
+ i=1
1675
+ ρ′
1676
+ �Li(h) − a
1677
+ b
1678
+
1679
+ ≤ Eµ L(h) − a + γ
1680
+ b Eµ(L(h) − a)2 + b log(1/δ)
1681
+ n
1682
+ = Eµ L(h) − a + γ
1683
+ b
1684
+
1685
+ Vµ L(h) + (Eµ L(h) − a)2�
1686
+ + b log(1/δ)
1687
+ n
1688
+ (58)
1689
+ where (58) follows from expanding the quadratic term and doing some algebra.
1690
+ With the
1691
+ equality (56) in mind, subtracting a constant from both sides of (58), note that we equivalently
1692
+ have
1693
+ b
1694
+ n
1695
+ n
1696
+
1697
+ i=1
1698
+ ρ′
1699
+ �Li(h) − a
1700
+ b
1701
+
1702
+ − α
1703
+ λb ≤ p(a)
1704
+ (59)
1705
+ 24
1706
+
1707
+ where we have defined
1708
+ p(a) ..= Eµ L(h) − a + γ
1709
+ b
1710
+
1711
+ Vµ L(h) + (Eµ L(h) − a)2�
1712
+ + b log(1/δ)
1713
+ n
1714
+ − α
1715
+ λb
1716
+ (60)
1717
+ for readability. Note that p(·) in (60) is a polynomial of degree 2, and can be written as
1718
+ p(a) = ua2 + va + w
1719
+ (61)
1720
+ with coefficients defined as
1721
+ u ..= γ
1722
+ b
1723
+ v ..= (−1)
1724
+
1725
+ 1 + 2γ Eµ L(h)
1726
+ b
1727
+
1728
+ w ..= Eµ L(h) + γ
1729
+ b Eµ|L(h)|2 + b log(1/δ)
1730
+ n
1731
+ − α
1732
+ λb.
1733
+ This polynomial has real roots whenever v2 − 4uw ≥ 0, and some algebra shows that this is
1734
+ equivalent to
1735
+ 0 ≤ D ≤ 1, where D ..= 4
1736
+ ��γ
1737
+ b
1738
+ �2
1739
+ Vµ L(h) + γ log(1/δ)
1740
+ n
1741
+ − γα
1742
+ λ
1743
+
1744
+ .
1745
+ (62)
1746
+ Assuming this holds, denoting by a+ the smallest root of p(·), i.e., the smallest of satisfying
1747
+ p(a+) = 0, the critical fact of interest to us is that An ≤ a+ on the good event of (59). This is
1748
+ valid due to two facts: first, the left-hand side of (59) is a decreasing function of a; second, due
1749
+ to (56), we know that An is a root of the left-hand side of (59). With this key fact in hand,
1750
+ using the quadratic formula we have
1751
+ An ≤ a+
1752
+ = Eµ L(h) + b
1753
+
1754
+
1755
+ 1 −
1756
+
1757
+ 1 − D
1758
+
1759
+ = Eµ L(h) + b
1760
+
1761
+
1762
+ 1 −
1763
+
1764
+ 1 − D
1765
+ � �
1766
+ 1 +
1767
+
1768
+ 1 − D
1769
+
1770
+
1771
+ 1 +
1772
+
1773
+ 1 − D
1774
+
1775
+ = Eµ L(h) + b
1776
+
1777
+ D
1778
+
1779
+ 1 +
1780
+
1781
+ 1 − D
1782
+
1783
+ ≤ Eµ L(h) + b
1784
+ 2γ D.
1785
+ Taking the two ends of this inequality chain together and expanding D, we have
1786
+ An ≤ Eµ L(h) − 2(α/λ)b + 2
1787
+ �γ
1788
+ b Vµ L(h) + b log(1/δ)
1789
+ n
1790
+
1791
+ (63)
1792
+ with probability no less than 1 − δ, assuming that n, b, and α are such that 0 ≤ D ≤ 1 holds.
1793
+ This gives us the desired upper bound.
1794
+ To obtain a lower bound, a perfectly analogous argument can be applied. First, using the
1795
+ lower bound in (4) and the fact that ρ′(−x) = −ρ′(x), we know that
1796
+ ρ′
1797
+ �a − Li(h)
1798
+ b
1799
+
1800
+ ≤ log
1801
+
1802
+ 1 + a − Li(h)
1803
+ b
1804
+ + γ
1805
+ b2 (a − Li(h))2
1806
+
1807
+ (64)
1808
+ 25
1809
+
1810
+ for any a ∈ R, b > 0, and i ∈ [n]. Plugging this inequality (64) into an argument analogous to
1811
+ the chain of inequalities that led to (58) earlier, it is clear that again on an event of probability
1812
+ no less than 1 − δ, we have
1813
+ b
1814
+ n
1815
+ n
1816
+
1817
+ i=1
1818
+ ρ′
1819
+ �a − Li(h)
1820
+ b
1821
+
1822
+ ≤ a − Eµ L(h) + γ
1823
+ b
1824
+
1825
+ Vµ L(h) + (Eµ L(h) − a)2�
1826
+ + b log(1/δ)
1827
+ n
1828
+ .
1829
+ (65)
1830
+ Once again the upper bound we can bound this using a polynomial of degree 2, namely
1831
+ b
1832
+ n
1833
+ n
1834
+
1835
+ i=1
1836
+ ρ′
1837
+ �a − Li(h)
1838
+ b
1839
+
1840
+ + α
1841
+ λb ≤ q(a)
1842
+ (66)
1843
+ where we have defined
1844
+ q(a) ..= a − Eµ L(h) + γ
1845
+ b
1846
+
1847
+ Vµ L(h) + (Eµ L(h) − a)2�
1848
+ + b log(1/δ)
1849
+ n
1850
+ + α
1851
+ λb.
1852
+ (67)
1853
+ Now, since An is a root of the left-hand side of (66) viewed as a function of a, and this function
1854
+ is monotonically increasing, it is evident that denoting the largest root of q(·) (when it exists)
1855
+ by a−, we have An ≥ a−, a lower bound in contrast to the An ≤ a+ upper bound used earlier.
1856
+ For completeness, we write this polynomial as
1857
+ q(a) = u′a2 + v′a + w′
1858
+ (68)
1859
+ with coefficients
1860
+ u′ ..= γ
1861
+ b
1862
+ v′ ..=
1863
+
1864
+ 1 − 2γ Eµ L(h)
1865
+ b
1866
+
1867
+ w′ ..= (−1) Eµ L(h) + γ
1868
+ b Eµ|L(h)|2 + b log(1/δ)
1869
+ n
1870
+ + α
1871
+ λb.
1872
+ We have two real roots whenever
1873
+ 1 ≥ D′ ..= 4
1874
+ ��γ
1875
+ b
1876
+ �2
1877
+ Vµ L(h) + γ log(1/δ)
1878
+ n
1879
+ + γα
1880
+ λ
1881
+
1882
+ (69)
1883
+ holds, and thus we obtain a high probability lower bound on An as follows:
1884
+ An ≥ a−
1885
+ = Eµ L(h) − b
1886
+
1887
+
1888
+ 1 −
1889
+
1890
+ 1 − D′
1891
+
1892
+ ≥ Eµ L(h) − b
1893
+ 2γ D′.
1894
+ Expanding D′ gives us the lower bound
1895
+ An ≥ Eµ L(h) − 2(α/λ)b − 2
1896
+ �γ
1897
+ b Vµ L(h) + b log(1/δ)
1898
+ n
1899
+
1900
+ (70)
1901
+ with probability no less than 1 − δ, as desired.
1902
+ 26
1903
+
1904
+ Let us conclude this proof by organizing the technical assumptions. First of all, for the
1905
+ two quadratics used in the preceding bounds, we require both (62) and (69) to hold. It is
1906
+ straightforward to verify that having these conditions both hold is equivalent to the following:
1907
+ 4γα
1908
+ λ
1909
+ ≤ 4
1910
+ ��γ
1911
+ b
1912
+ �2
1913
+ Vµ L(h) + γ log(1/δ)
1914
+ n
1915
+
1916
+ ≤ 1 − 4γα
1917
+ λ .
1918
+ (71)
1919
+ As such, whenever α, δ, and b are such that (71) holds, using a union bound, it follows that
1920
+ with probability no less than 1 − 2δ, we have a bound on
1921
+ |An − (Eµ L(h) − 2(α/λ)b)| ≤ 2
1922
+ �γ
1923
+ b Vµ L(h) + b log(1/δ)
1924
+ n
1925
+
1926
+ as desired. The proposition statement takes a cleaner form since we have γ = 1.
1927
+ Proof of Proposition 4. The lack of convexity follows from the fact that the composition of
1928
+ two convex functions need not be convex when the outermost function is non-monotonic (see
1929
+ for example Boyd and Vandenberghe [4, Ch. 3]), and the lack of smoothness follows a fortiori
1930
+ from Lemma 8.
1931
+ C
1932
+ Empirical test appendix
1933
+ For reference, we give the population versions of the CVaR and χ2-DRO criteria used in the
1934
+ empirical tests of §4. First, it is well known (see Rockafellar and Uryasev [30]) that CVaR at
1935
+ quantile level ξ can be represented as
1936
+ CVaRµ(h; ξ) = inf
1937
+ a∈R
1938
+
1939
+ a +
1940
+ 1
1941
+ 1 − ξ Eµ (L(h) − a)+
1942
+
1943
+ (72)
1944
+ where (x)+ ..= max{0, x}. Similarly, DRO risk based on the Cressie-Read family of divergence
1945
+ functions is formulated (for any c > 1) using
1946
+ DROµ(h; η) = inf
1947
+ a∈R
1948
+
1949
+ a + (1 + c(c − 1)η)1/c �
1950
+ Eµ (L(h) − a)c∗
1951
+ +
1952
+ �1/c∗�
1953
+ (73)
1954
+ where c∗ ..= c/(c − 1), and χ2-DRO is the special case where c = 2 [11, 13, 36]. The different
1955
+ “robustness levels” mentioned in §4 correspond to a re-parameterized quantity �η ∈ (0, 1),
1956
+ related to η by the equality η = (1/(1 − �η) − 1)/2. Just as our �Cn(h; a, b) is solved jointly in
1957
+ (h, a, b), our empirical tests minimize the empirical versions of (72) and (73) jointly in (h, a).
1958
+ 27
1959
+
6dFJT4oBgHgl3EQflizf/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
8tFJT4oBgHgl3EQfnyx6/content/tmp_files/2301.11593v1.pdf.txt ADDED
@@ -0,0 +1,1890 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.11593v1 [math.AG] 27 Jan 2023
2
+ THE DONOVAN–WEMYSS CONJECTURE VIA THE
3
+ TRIANGULATED AUSLANDER–IYAMA CORRESPONDENCE
4
+ GUSTAVO JASSO, BERNHARD KELLER, AND FERNANDO MURO
5
+ Abstract. We provide an outline of the proof of the Donovan–Wemyss Con-
6
+ jecture in the context of the Homological Minimal Model Program for three-
7
+ folds. The proof relies on results of August, of Hua and the second-named au-
8
+ thor, Wemyss, and on the Triangulated Auslander–Iyama Correspondence—a
9
+ recent result by the first- and third-named authors.
10
+ Contents
11
+ Introduction
12
+ 1
13
+ 1.
14
+ Preliminaries
15
+ 2
16
+ 2.
17
+ The Derived Donovan–Wemyss Conjecture
18
+ 7
19
+ 3.
20
+ Uniqueness of the 2Z-derived contraction algebra
21
+ 8
22
+ 4.
23
+ Concluding remarks
24
+ 20
25
+ References
26
+ 23
27
+ Introduction
28
+ We work over the field C of complex numbers. A compound Du Val (=cDV)
29
+ singularity is a complete local hypersurface
30
+ R ∼= C�x, y, z, t�
31
+ (f + tg) ,
32
+ where C�x, y, z�/(f) is a Kleinian surface singularity and g ∈ C�x, y, z, t� is arbi-
33
+ trary. Introduced by Reid in the early 1980s [Rei83], cDV singularities form an
34
+ important class of three-dimensional singularities in birational geometry and play
35
+ a significant role in the Minimal Model Program (MMP) for threefolds [KM98,
36
+ Sec. 5.3] as well as in the Homological MMP [Wem18].
37
+ We refer the reader
38
+ to [Aug19, Ch. 1] and [Wem21] for introductions to the subject.
39
+ This note is concerned with the following geometric situation: Let R be an iso-
40
+ lated cDV singularity and p: X → Spec(R) a crepant resolution, that is p is a
41
+ proper birational map with smooth source such that the pullback of the dualising
42
+ sheaf of Spec(R) along f is the dualising sheaf of X. It follows that Spec(R) has
43
+ a unique singular point m and the (reduced) exceptional fibre p−1(m) = �n
44
+ i=1 Ci is
45
+ a union of curves, with Ci ∼= P1
46
+ C [VdB04, Lemma 3.4.1]. To these data, Donovan
47
+ and Wemyss [DW16, DW19] associate a (basic, connected) finite-dimensional alge-
48
+ bra Λcon = Λcon(p), the contraction algebra of p, which represents the functor of
49
+ ‘simultaneous non-commutative deformations’ of the reduced exceptional fibre. By
50
+ construction, Λcon is a Cn-augmented algebra, and hence in particular determines
51
+ the number n of irreducible components of the exceptional fibre. The contraction
52
+ 2020 Mathematics Subject Classification. Primary 14E30; Secondary 13D03.
53
+ Key words and phrases. Minimal model program; compound Du Val singularity; crepant res-
54
+ olution; contraction algebra; Hochschild cohomology; Auslander correspondence.
55
+ 1
56
+
57
+ 2
58
+ G. JASSO, B. KELLER, AND F. MURO
59
+ algebra encodes a surprising amount of information stemming from the given geo-
60
+ metric setup. For example, when p contracts a single curve, the contraction algebra
61
+ recovers known invariants such as Reid’s width [Rei83] and the Gopakumar–Vafa
62
+ invariants [Kat08], see [Tod15]. Neither the dimension nor the Gabriel quiver of
63
+ contraction algebras suffice for differentiating cDV singularities [DW16, Table 2].
64
+ In fact, it is well-known that there are continuous families of pairwise non isomor-
65
+ phic cDV singularities (that is ‘cDV singularities have moduli’). Notwithstanding,
66
+ at the risk of stating the obvious, let us point out that the contraction algebra is
67
+ equiped with crucial data in the form of the multiplication law and that this law
68
+ is essential in recovering the above mentioned invariants. Equipped with their al-
69
+ gebra structure, contraction algebras distinguish between non-isomorphic isolated
70
+ cDV singularities that admit a crepant resolution in all known examples. These
71
+ considerations motivate the following remarkable conjecture.
72
+ Conjecture A (Donovan and Wemyss [DW16]). Let R1 and R2 be isolated cDV
73
+ singularities with crepant resolutions
74
+ p1 : X1 → Spec(R1)
75
+ and
76
+ p2 : X2 → Spec(R2).
77
+ Then, the contraction algebras Λcon(p1) and Λcon(p2) are derived equivalent if and
78
+ only if there is an isomorphism of algebras R1 ∼= R2.
79
+ The original conjecture was formulated only in the case of single-curve contrac-
80
+ tions; algebraically, this corresponds to the case where the contraction algebras are
81
+ local and thus derived equivalence reduces to mere isomorphism of algebras since
82
+ contraction algebras are basic, see [Zim14, Prop. 6.7.4] for example. In the above
83
+ form, which allows for contracting multiple curves, the conjecture appeared in print
84
+ in [Aug20, Conj. 1.3].
85
+ That the contraction algebras of a given isolated cDV singularity are derived
86
+ equivalent follows by combining results from Wemyss [Wem18] and Dugas [Dug15].
87
+ In this note we provide an outline of the proof of the remaining part of Conjecture A.
88
+ This proof first appeared in the appendix to [JM22] written by the second-named
89
+ author where it is explained how the conjecture follows by combining previous
90
+ results of August [Aug20] and [HK18] with the Triangulated Auslander–Iyama Co-
91
+ rrespondence—the main result in [JM22]. For the sake of concreteness, we restrict
92
+ ourselves to the specific context of the conjecture, with the understanding that
93
+ most concepts and results that are presented here are but special cases of a much
94
+ more general theory that the reader can find in the original sources. We hope that
95
+ this sacrifice in generality makes the proof of the conjecture accessible to a broader
96
+ readership.
97
+ Acknowledgements. The authors thank Michael Wemyss and Zheng Hua for in-
98
+ teresting conversations and email exchanges; in addition, they thank M. W. for sug-
99
+ gesting the terminology ‘2Z-derived contraction algebra’ used in these proceedings.
100
+ The third-named author is algo grateful to Matt Booth for answering questions.
101
+ Financial
102
+ support. F.
103
+ M.
104
+ was
105
+ partially
106
+ supported
107
+ by
108
+ grants
109
+ PID2020-
110
+ 117971GB-C21
111
+ funded
112
+ by
113
+ MCIN/AEI/10.13039/501100011033,
114
+ US-1263032
115
+ (US/JUNTA/FEDER, UE), and P20 01109 (JUNTA/FEDER, UE).
116
+ 1. Preliminaries
117
+ In this section we collect preliminary definitions and results that are needed in
118
+ our proof of Conjecture A. We use freely the theories of differential graded cate-
119
+ gories [Kel94, Kel06] and A∞-categories [LH03]. We denote the derived category
120
+ of an algebra or, more generally, a DG algebra A by D(A); the perfect derived
121
+
122
+ THE DONOVAN–WEMYSS CONJECTURE
123
+ 3
124
+ category of A, that is the full subcategory of D(A) spanned by its compact objects,
125
+ is denoted by Dc(A). All (DG) modules are right (DG) modules.
126
+ 1.1. 2Z-cluster tilting objects. Let T be a triangulated category whose underly-
127
+ ing additive category is Krull–Schmidt and has finite-dimensional morphism spaces.
128
+ Definition 1.1.1 ([IY08, GKO13]). A basic1 object T ∈ T is 2-cluster tilting if the
129
+ following conditions hold:
130
+ (1) The object T is rigid: T(T, T [1]) = 0.
131
+ (2) For each object X ∈ T there exists a triangle T1 → T0 → X → T1[1] with
132
+ T0, T1 ∈ add(T ), where add(T ) is the smallest additive subcategory of T
133
+ containing T that is closed under direct summands.
134
+ We say that T is 2Z-cluster tilting if it is 2-cluster tilting and T ∼= T [2].
135
+ Remark 1.1.2. Clearly, if T ∈ T is a 2- or 2Z-cluster tilting object, then T generates
136
+ T as a triangulated category with split idempotents (which is to say that T is a
137
+ classical generator of T). In particular, if the triangulated category T is algebraic2
138
+ then there exists a DG algebra A and an equivalence of triangulated categories
139
+ T
140
+
141
+ −→ Dc(A),
142
+ T �−→ A.
143
+ Remark 1.1.3. Given a basic 2-cluster tilting object T ∈ T, one can produce a new
144
+ such object by a procedure called mutation that, in a nutshell, replaces a single
145
+ indecomposable direct summand of T by a new one, see [IY08] for a precise defini-
146
+ tion. This process, which can be iterated, is an important reason for introducing
147
+ 2-cluster tilting objects into the framework of the Homological MMP, see [Wem18]
148
+ and compare with Section 1.3.
149
+ Remark 1.1.4. In general, 2Z-cluster tilting objects are not invariant under mu-
150
+ tation (however, see [HI11, Sec. 4]). In the context of the Homological MMP this
151
+ problem does not occur since the notions of 2- and 2Z-cluster tilting object coincide,
152
+ see Section 1.2.
153
+ 1.2. Maximal Cohen–Macaulay modules and singularity categories. Let
154
+ R be an isolated cDV singularity and
155
+ CM(R) := {M ∈ mod(R)| depth(M) = dim(R)}
156
+ be the category of maximal Cohen–Macaulay R-modules [Yos90, LW12]. The cate-
157
+ gory CM(R) is a Frobenius exact category and, therefore, the stable category CM(R)
158
+ has an induced structure of a triangulated category; moreover, there is a canonical
159
+ equivalence of triangulated categories
160
+ CM(R)
161
+
162
+ −→ Dsg(R) := Db(mod(R))/ Kb(proj(R)),
163
+ where Dsg(R) is the singularity category of R, see [Buc21] for details. We record
164
+ the following facts for later use:
165
+ • [Yos90, Prop. 1.18] Since R is complete local, CM(R) ≃ Dsg(R) is a Krull–
166
+ Schmidt category with finite-dimensional morphism spaces.
167
+ • [Aus78] Since R is 3-dimensional, CM(R) ≃ Dsg(R) is a 2-Calabi–Yau tri-
168
+ angulated category [Kon98, Kel08], that is there is a natural isomorphism
169
+ DHom(X, Y )
170
+
171
+ −→ Hom(Y, X[2]),
172
+ X, Y ∈ CM(R) ≃ Dsg(R),
173
+ where V �→ DV denotes the passage to the C-linear dual.
174
+ 1An object in a Krull–Schmidt additive category is basic if all of its indecomposable direct
175
+ summands have multiplicity one.
176
+ 2A triangulated category is algebraic if it is equivalent—as a triangulated category—to the
177
+ stable category of a Frobenius exact category [Kel94].
178
+
179
+ 4
180
+ G. JASSO, B. KELLER, AND F. MURO
181
+ • [Eis80] Since R is a hypersurface, CM(R) ≃ Dsg(R) is a 2-periodic triangu-
182
+ lated category, that is there is an isomorphism of exact functors [2] ∼= 1.
183
+ In particular, the notions of 2- and 2Z-cluster tilting object coincide in this
184
+ context.
185
+ • The endomorphism algebra of any basic object X in CM(R) ≃ Dsg(R) is
186
+ a symmetric algebra.
187
+ This is an immediate consequence of the natural
188
+ isomorphisms
189
+ Hom(X, X) ∼= D Hom(X, X[2]) ∼= D Hom(X, X) .
190
+ We also consider the DG category Dsg(R)dg, which is defined as the DG quo-
191
+ tient [Kel99, Dri04] of the canonical DG enhancements of the triangulated cate-
192
+ gories Db(mod(R)) and Kb(proj(R)). By construction,
193
+ H0(Dsg(R)dg) = Dsg(R).
194
+ 1.3. Contraction algebras via 2Z-cluster tilting objects. Let R be an isolated
195
+ cDV singularity and p: X → Spec(R) a crepant resolution. As explained in the
196
+ introduction, to this geometric setup Donovan and Wemyss associate a basic finite-
197
+ dimensional algebra Λcon = Λcon(p). We recall an alternative construction of the
198
+ algebra Λcon that is more adapted to the methods we utilise in this note. Given p
199
+ as above, a theorem of Van den Bergh [VdB04] furnishes a tilting bundle
200
+ OX ⊕ N = OX ⊕ N(p) ∈ coh(X)
201
+ and Wemyss proves [Wem18] that there is an isomorphism of algebras
202
+ Λcon ∼= EndR(N)
203
+ between the contraction algebra of p and the stable endomorphism algebra of
204
+ N := H0(N) ∈ CM(R). Remarkably, when viewed as an object of the triangulated
205
+ category CM(R), the R-module N is a 2Z-cluster tilting object. Conversely, given
206
+ a 2Z-cluster tilting object T ∈ CM(R), there exists a crepant resolution of Spec(R)
207
+ whose associated contraction algebra is isomorphic to EndR(T ). We summarise the
208
+ previous discussion in the following theorem.3
209
+ Theorem 1.3.1 ([Wem18]). Let R be an isolated cDV singularity and assume
210
+ that Spec(R) admits a crepant resolution. Then, the contraction algebras of R are
211
+ precisely the endomorphism algebras of 2Z-cluster tilting objects in the triangulated
212
+ category CM(R) ≃ Dsg(R).
213
+ The following theorem of August reduces Conjecture A from a derived equiv-
214
+ alence to an isomorphism problem.
215
+ The proof leverages the characterisation of
216
+ contraction algebras provided by Theorem 1.3.1.
217
+ Theorem 1.3.2 ([Aug20, Thm. 1.4]). Let R be an isolated cDV singularity and
218
+ assume that Spec(R) admits a crepant resolution. The contraction algebras of R
219
+ form a single and complete derived equivalence class of basic algebras.
220
+ Corollary 1.3.3. Let R1 and R2 be isolated cDV singularities with crepant reso-
221
+ lutions
222
+ p1 : X1 → Spec(R1)
223
+ and
224
+ p2 : X2 → Spec(R2)
225
+ and corresponding contraction algebras Λ1 = Λcon(p1) and Λ2 = Λcon(p2). If the
226
+ algebras Λ1 and Λ2 are derived equivalent, then there exists a contraction algebra
227
+ Λ of R2 such that Λ ∼= Λ1.
228
+ 3Wemyss proves even more: Up to isomorphism on both sides, crepant resolutions of R cor-
229
+ respond bijectively to (basic) 2Z-cluster tilting objects in Dsg(R). In particular, the number of
230
+ isomorphism classes of 2Z-cluster tilting objects in Dsg(R) if finite, for the number of minimal
231
+ models of Spec(R) is finite [KM87].
232
+
233
+ THE DONOVAN–WEMYSS CONJECTURE
234
+ 5
235
+ 1.4. Hochschild cohomology. Let A be a graded algebra.
236
+ The bigraded
237
+ Hochschild cochain complex has components
238
+ Cp,q(A, A) := HomC
239
+
240
+ A⊗p, A(q)
241
+
242
+ ,
243
+ p ≥ 0, q ∈ Z,
244
+ where V �→ V (1) is the (vertical) degree shift of graded vector spaces, equipped
245
+ with the Hochschild differential x �→ ∂(x) of bidegree (1, 0), see [Mur20] for the
246
+ precise definition, related structure (described below) and sign conventions. The
247
+ first degree is called horizontal or Hochschild degree and the second is the vertical
248
+ or internal degree; the sum of both is the total degree and we denote it by |x| (we
249
+ also use this notation for the degree of an element in a singly-graded vector space).
250
+ The component of total degree n of the Hochschild complex is
251
+
252
+ p+q=n
253
+ Cp,q(A, A) .
254
+ The Hochschild complex is equipped with a brace algebra structure, consisting
255
+ of operations called braces (which we do not describe explicitly here)
256
+ C•,∗(A, A)⊗n+1
257
+ −→ C•,∗(A, A) ,
258
+ x0 ⊗ x1 ⊗ · · · ⊗ xn �−→ x0{x1, . . . , xn},
259
+ that are defined for all n ≥ 1, and satisfy the brace relation
260
+ x{y1, . . . , yp}{z1, . . . , zq}
261
+ =
262
+
263
+ 0≤i1≤j1≤···≤ip≤jp≤q
264
+ (−1)ǫ{z1, . . . , zi1, y1{zi1+1, . . . , zj1}, zj1+1, . . .
265
+ . . . , zip, yq{zip+1, . . . , zjp}, zjp+1, . . . , zq}.
266
+ Above, ǫ reflects the Koszul sign rule with respect to the total degree shifted by
267
+ −1. Brace operations have horizontal degree −n and vertical degree 0 and the
268
+ n-th brace operation vanishes when x0 has horizontal degree < n. The Hochschild
269
+ complex is a bigraded associative algebra equipped with the cup-product
270
+ x · y = (−1)|x|−1m2{x, y},
271
+ where m2 ∈ C2,0(A, A) is, up to a sign, the multiplication in the graded algebra A.
272
+ The Hochschild complex also has the structure of a (horizontally-shifted) graded
273
+ Lie algebra, with Lie bracket
274
+ [x, y] = x{y} − (−1)(|x|−1)(|y|−1)y{x}
275
+ of horizontal degree −1 and vertical degree 0. The Hochschild differential is given
276
+ by
277
+ ∂(x) = [m2, x]
278
+ and satisfies the corresponding Leibniz rules with respect to the previous associative
279
+ product and Lie bracket.
280
+ The relation between brace operations, the Hochschild differential and the cup
281
+ product are encoded in the following straightforward consequences of the brace
282
+ relation.
283
+
284
+ 6
285
+ G. JASSO, B. KELLER, AND F. MURO
286
+ Lemma 1.4.1. The following formula holds for all n ≥ 1:
287
+ ∂(x0{x1, . . . , xn}) = ∂(x0){x1, . . . , xn}
288
+ +
289
+ n
290
+
291
+ i=1
292
+ (−1)
293
+ �i−1
294
+ j=0 |xj|−ix0{x1, . . . , ∂(xi), . . . , xn}
295
+ + (−1)|x0|−1+|x0||x1|x1 · x0{x2, . . . , xn−1}
296
+ +
297
+ n−1
298
+
299
+ i=1
300
+ (−1)
301
+ �i
302
+ j=0 |xi|−i−1x0{x1, . . . , xi · xi+1, . . . , xn}
303
+ + (−1)
304
+ �n−1
305
+ j=0 |xj|−n−1x0{x1, . . . , xn−1} · xn.
306
+ Lemma 1.4.2. The following formula holds for all n ≥ 1:
307
+ (x · y){z1, . . . , zn} =
308
+ n
309
+
310
+ i=0
311
+ (−1)|y| �i
312
+ j=1(|zi|−1)x{z1, . . . , zi} · y{zi+1, . . . , zn}.
313
+ Lemma 1.4.1 for n = 1 proves that the induced associative product in Hochschild
314
+ cohomology
315
+ HH•,∗(A, A) = H•,∗(C•,∗(A, A))
316
+ (the cohomology of the Hochschild complex) is graded commutative with respect to
317
+ the total degree. This products satisfies the following compatibility relation with
318
+ the (horizontally shifted) Lie algebra structure,
319
+ [x, y · z] = [x, y] · z + (−1)(|x|−1)|y|y · [x, z],
320
+ and hence Hochschild cohomology is a Gernstenhaber algebra. For this we use both
321
+ Lemmas 1.4.1 and 1.4.2, for n = 2 and n = 1 respectively. The Hochschild complex
322
+ C•,∗(A, M) and Hochschild cohomology HH•,∗(A, M) are defined, more generally,
323
+ for M an A-bimodule, but it does not have any multiplicative structure in this
324
+ general case. For the existence of a graded associative algebra structure it suffices
325
+ that M be an associative algebra in A-bimodules, see also [Mur22, Sec. 1].
326
+ 1.5. Minimal A∞-algebras. We now describe minimal A∞-algebras and their
327
+ morphisms in terms of the Hochschild complex. A minimal A∞-algebra structure
328
+ on a graded algebra A is a Hochschild cochain
329
+ m = (0, 0, 0, m3, . . . , mn, . . . ) ∈ C•,∗(A, A)
330
+ of total degree 2 such that the Maurer–Cartan equation
331
+ (1.5.1)
332
+ ∂(m) + m{m} = ∂(m) + 1
333
+ 2[m, m] = 0
334
+ is satisfied. The pair (A, m) is also denoted
335
+ (A, m3, . . . , mn, . . . ).
336
+ If g : A′ → A is a graded algebra isomorphism, then
337
+ m ∗ g = (0, 0, 0, g−1m3g⊗3, . . . , g−1mng⊗n, . . . )
338
+ is a minimal A∞-algebra structure on A′. If
339
+ m′ = (0, 0, 0, m′
340
+ 3, . . . , m′
341
+ n, . . . ) ∈ C•,∗(A, A)
342
+ is another minimal A∞-algebra structure on A, an A∞-isomorphism with identity
343
+ linear part
344
+ f : (A, m) −→ (A, m′)
345
+ is a Hochschild cochain
346
+ f = (0, 0, f2, f3, . . . , fn, . . . ) ∈ C•,∗(A, A)
347
+
348
+ THE DONOVAN–WEMYSS CONJECTURE
349
+ 7
350
+ of total degree 1 such that the following Hochschild cochain vanishes
351
+ (1.5.2)
352
+ ∂(f) + f · f +
353
+
354
+ r≥0
355
+ m′{f, r. . ., f} − m − f{m}.
356
+ More generally, an A∞-isomorphism between minimal A∞-algebras
357
+ f : (A, m) −→ (A′, m′)
358
+ consists of an isomorphism of graded algebras
359
+ f1 : A −→ A′
360
+ and a Hochschild cochain
361
+ (0, 0, f2, f3, . . . , fn, . . . ) ∈ C•,∗(A, A′)
362
+ of total degree 1 such that
363
+ (0, 0, f −1
364
+ 1 f2, f −1
365
+ 1 f3, . . . , f −1
366
+ 1 fn, . . . ): (A, m) −→ (A, m′ ∗ f1)
367
+ is an A∞-isomorphism with identity linear part.
368
+ 2. The Derived Donovan–Wemyss Conjecture
369
+ In this section we discuss one of the main results in [HK18]—crucial to our proof
370
+ of the Dononvan–Wemyss conjecture—and explain how it implies a derived version
371
+ of the conjecture (Corollary 2.2.4).
372
+ 2.1. 2Z-derived contraction algebras. By means of the equivalence of triangu-
373
+ lated categories CM(R) ≃ Dsg(R), the contraction algebra associated to a crepant
374
+ resolution p of an isolated cDV singularity can be promoted to the DG algebra
375
+ Λcon = Λcon(p) := REnd(N)
376
+ given by the derived endomorphism algebra of the corresponding 2Z-cluster tilt-
377
+ ing object N = N(p) ∈ Dsg(R)dg. By construction H0(Λcon) ∼= Λcon and, as a
378
+ consequence of the 2-periodicity of the singularity category of R,
379
+ H•(Λcon) ∼= Λcon[ı±1] = Λcon ⊗C C[ı±1],
380
+ |ı| = −2.
381
+ We refer to the DG algebra Λcon as the 2Z-derived contraction algebra of p. The
382
+ (soft) non-positive truncation Λ≤0
383
+ con = τ ≤0Λcon of Λcon is quasi-isomorphic to the
384
+ derived contraction algebra of p considered for example in [Boo19, Boo21, HK18],
385
+ and there is an isomorphism of graded algebras
386
+ H•(Λ≤0
387
+ con) ∼= Λcon[ı] = Λcon ⊗C C[ı],
388
+ |ı| = −2.
389
+ The 2Z-derived contraction algebra Λcon is a localisation of Λ≤0
390
+ con (see [Boo21,
391
+ Thms. 6.4.6 and 7.2.3] and [HK18, Thm. 4.17]) and Λcon can also be interpreted
392
+ as a non-connective variant of Λ≤0
393
+ con.
394
+ Notice also that, since 2Z-cluster tilting objects are in particular classical gen-
395
+ erators, there is a canonical quasi-equivalence of DG categories
396
+ Dc(Λcon)dg
397
+
398
+ −→ Dsg(R)dg
399
+ that induces an equivalence of triangulated categories
400
+ Dc(Λcon)
401
+
402
+ −→ Dsg(R).
403
+ Although we do not need this fact in the sequel, we mention that there is an
404
+ equivalence of triangulated categories4 [HK18, Lemma 5.12]
405
+ C(Λ≤0
406
+ con) := Dc(Λ≤0
407
+ con)/ Dfd(Λ≤0
408
+ con) ≃ Dsg(R),
409
+ 4For a DG algebra A, we denote by Dfd(A) the full subcategory of D(A) spanned by the DG
410
+ A-modules with finite-dimensional total cohomology.
411
+
412
+ 8
413
+ G. JASSO, B. KELLER, AND F. MURO
414
+ that is compatible with the canonical DG enhancements on either side. The cate-
415
+ gory C(Λ≤0
416
+ con) is known as the Amiot cluster category of Λ≤0
417
+ con [Ami07] and, indeed,
418
+ establishing a link between birational geometry and the theory of cluster categories
419
+ was one of the objectives in [HK18].
420
+ 2.2. The Derived Donovan–Wemyss Conjecture. The following theorem of
421
+ Hua and the second-named author settles a derived version of Conjecture A.
422
+ Theorem 2.2.1 ([HK18, Thm. 5.9]). Let R = C�x, y, z, t�/(f) be an isolated cDV
423
+ singularity. Then, there is an isomorphism of algebras
424
+ HH0(Dsg(R)dg) ∼=
425
+ C�x, y, z, t�
426
+ (f, ∂xf, ∂yf, ∂zf, ∂tf)
427
+ between the 0-th Hochschild cohomology of the DG category Dsg(R)dg and the Tyu-
428
+ rina algebra of R. In particular, if R′ is a further isolated cDV singularity such
429
+ that the DG categories Dsg(R)dg and Dsg(R′)dg are quasi-equivalent, then there is
430
+ an isomorphism of algebras R ∼= R′.
431
+ Remark 2.2.2. The proof of Theorem 2.2.1 relies on a comparison result [Kel18,
432
+ Kel19] between the singular Hochschild cohomology (=Hochschild–Tate cohomol-
433
+ ogy) of R and the Hochschild cohomology of the DG category Dsg(R)dg.
434
+ The
435
+ appearance of the Tyurina algebra stems from an earlier result of the Buenos Aires
436
+ Cyclic Homology Group [GGRV92, Thm. 3.2.7]. That the Tyurina algebra, together
437
+ with the dimension of R, determines the isomorphism type of the singularity is a
438
+ theorem of Mather and Yau [MY82].
439
+ Remark 2.2.3. In [Dyc11], Dyckerhoff shows that the 0-th Hochschild cohomology
440
+ of Dsg(R)dg—viewed as a Z/2-graded DG category—is isomorphic to the Milnor
441
+ algebra
442
+ C�x, y, z, t�
443
+ (∂xf, ∂yf, ∂zf, ∂tf)
444
+ of the singularity (which does not determine the isomorphism type of the singularity,
445
+ even if one knows the dimension). Thus, in Theorem 2.2.1 it is crucial to consider
446
+ Dsg(R)dg as a Z-graded DG category.
447
+ Corollary 2.2.4 (Derived Donovan–Wemyss Conjecture). Let R1 and R2 be iso-
448
+ lated cDV singularities with crepant resolutions
449
+ p1 : X1 → Spec(R1)
450
+ and
451
+ p2 : X2 → Spec(R2).
452
+ If the 2Z-derived contraction algebras Λcon(p1) and Λcon(p2) are quasi-isomorphic,
453
+ then there is an isomorphism of algebras R1 ∼= R2.
454
+ Proof. Indeed, if the DG algebras Λcon(p1) and Λcon(p2) are quasi-isomorphic, then
455
+ the DG categories
456
+ Dc(Λcon(p1))dg ≃ Dsg(R1)dg
457
+ and
458
+ Dc(Λcon(p2))dg ≃ Dsg(R2)dg
459
+ are quasi-equivalent. Theorem 2.2.1 then implies the existence of an isomorphism
460
+ of algebras R1 ∼= R2.
461
+
462
+ 3. Uniqueness of the 2Z-derived contraction algebra
463
+ In this section we prove that 2Z-derived contraction algebras are determined
464
+ up to quasi-isomorphism by their zeroth cohomology plus a minimal amount of
465
+ additional algebraic data (see Corollary 3.4.6 for the precise statement). Before
466
+ that, we formulate a closely related result (Theorem 3.1.1) that states that two 2Z-
467
+ derived contraction algebras whose zeroth cohomologies are isomorphic as algebras
468
+ must be quasi-isomorphic, and use this result to prove Conjecture A.
469
+
470
+ THE DONOVAN–WEMYSS CONJECTURE
471
+ 9
472
+ 3.1. Proof of the Donovan–Wemyss Conjecture. In view of Corollaries 1.3.3
473
+ and 2.2.4, Conjecture A is an immediate consequence of the following theorem, the
474
+ proof of which is given in Section 3.4.
475
+ Theorem 3.1.1. Let R1 and R2 be isolated cDV singularities with crepant resolu-
476
+ tions
477
+ p1 : X1 → Spec(R1)
478
+ and
479
+ p2 : X2 → Spec(R2).
480
+ If the contraction algebras Λ(p1) and Λ(p2) are isomorphic, then the 2Z-derived
481
+ contraction algebras Λcon(p1) and Λcon(p2) are quasi-isomorphic.
482
+ Remark
483
+ 3.1.2.
484
+ Theorem 3.1.1
485
+ is
486
+ a
487
+ special
488
+ case
489
+ of
490
+ [JM22,
491
+ Thm.
492
+ 5.1.10],
493
+ see Section 4.2.
494
+ Proof of Conjecture A using Theorem 3.1.1. Let R1 and R2 be isolated cDV sin-
495
+ gularities with crepant resolutions
496
+ p1 : X1 → Spec(R1)
497
+ and
498
+ p2 : X2 → Spec(R2)
499
+ whose corresponding contraction algebras Λcon(p1) and Λcon(p2) are derived equiva-
500
+ lent. In view of Corollaries 1.3.3 and 2.2.4, we may and we will assume that Λcon(p1)
501
+ and Λcon(p2) are isomorphic and hence, by Theorem 3.1.1, the 2Z-derived contrac-
502
+ tion algebras Λcon(p1) and Λcon(p2) are quasi-isomorphic. Finally, Corollary 2.2.4
503
+ yields the desired algebra isomorphism R1 ∼= R2.
504
+
505
+ 3.2. The restricted universal Massey product. The proof of Theorem 3.1.1
506
+ makes use of an invariant of the 2Z-derived contraction algebra, a certain Hochschild
507
+ cohomology class of bidegree (4, −2) that we call the restricted universal Massey
508
+ product. As we explain below, this invariant is induced by the first possibly non-
509
+ trivial higher operation on a minimal A∞-algebra model of the 2Z-derived contrac-
510
+ tion algebra.
511
+ Setting 3.2.1. Fix an isolated cDV singularity R that admits a crepant resolution
512
+ p: X → Spec(R), and let Λ = Λcon(p) be the corresponding 2Z-derived contraction
513
+ algebra so that H0(Λ) ∼= Λ = Λcon(p) is the contraction algebra defined by Donovan
514
+ and Wemyss. For simplicity, we treat the isomorphism of graded algebras
515
+ H•(Λ) ∼= Λ[ı±1] = Λ ⊗C C[ı±1],
516
+ |ı| = −2,
517
+ as an identification.
518
+ Kadeishvili’s Homotopy Transfer Theorem [Kad82] provides us with a minimal
519
+ A∞-algebra structure, unique up to A∞-isomorphism with identity linear part,
520
+ B = (Λ[ı±1], m3, m4, m5, · · · )
521
+ on the cohomology algebra Λ[ı±1]. Since Λ[ı±1] is concentrated in even degrees and,
522
+ by definition,
523
+ mn : Λ[ı±1]⊗n −→ Λ[ı±1]
524
+ is a morphism of degree 2 − n, we conclude that mn = 0 whenever n is odd. We
525
+ write
526
+ B = (Λ[ı±1], m4, m6, m8, · · · )
527
+ as a way to record this observation. We refer to B as a minimal (A∞-algebra)
528
+ model of the DG algebra Λ and fix it for the rest of the section.
529
+ Remark 3.2.2. The passage from DG to A∞-algebras is a matter of technical
530
+ convenience: The homotopy theories of non-unital DG and of A∞-algebras are
531
+ equivalent, [LV12, Thm. 11.4.8]. In particular, two non-unital DG algebras are
532
+ quasi-isomorphic if and only if their minimal models are A∞-isomorphic [LV12,
533
+ Thms. 11.4.9 and 10.3.10]. Here, we are exclusively interested in unital DG algebras,
534
+
535
+ 10
536
+ G. JASSO, B. KELLER, AND F. MURO
537
+ but this is not a problem since by [Mur14, Prop. 6.2] two unital DG algebras are
538
+ quasi-isomorphic as non-unital DG algebras if and only if they are quasi-isomorphic
539
+ as unital DG algebras.
540
+ Consider now the bigraded Hochschild cochain complex
541
+ Cp,q�
542
+ Λ[ı±1], Λ[ı±1]
543
+ � := HomC
544
+
545
+ Λ[ı±1]⊗p, Λ[ı±1](q)
546
+
547
+ ,
548
+ p ≥ 0, q ∈ Z,
549
+ recalled in Section 1.4. Since m3 = 0, the A∞-equations imply that ∂(m4) = 0
550
+ ([LH03, Lemme B.4.1]); hence we obtain a class
551
+ (3.2.3)
552
+ {m4} =
553
+
554
+
555
+ 4
556
+
557
+ ∈ HH4,−2�
558
+ Λ[ı±1], Λ[ı±1]
559
+
560
+ that we call the universal Massey product (of length 4). It follows from the definition
561
+ of A∞-morphism ([LH03, Lemme B.4.2]) that the class {m4} does not depend on
562
+ the choice of minimal model for Λ and hence the universal Massey product can and
563
+ will be regarded as an invariant of the latter DG algebra.
564
+ Consider now the graded-algebra morphism j : Λ ֒→ Λ[ı±1] given by the inclusion
565
+ of the degree 0 part. The morphism j induces a restriction morphism on Hochschild
566
+ cohomology5
567
+ j∗: HH•,∗�
568
+ Λ[ı±1], Λ[ı±1]
569
+
570
+ −→ HH•,∗�
571
+ Λ, Λ[ı±1]
572
+
573
+ ,
574
+ where the space on the right is the Hochschild cohomology of Λ, viewed as a graded
575
+ algebra concentrated in degree 0, with coefficients in the graded Λ-bimodule Λ[ı±1].
576
+ In particular, since the degree −2 component Λ · ı of Λ[ı±1] is isomorphic to the
577
+ diagonal Λ-bimodule, we obtain a class
578
+ (3.2.4)
579
+ j∗{m4} = j∗�
580
+
581
+ 4
582
+
583
+ ∈ HH4,−2�
584
+ Λ, Λ[ı±1]
585
+
586
+ = HH4(Λ, Λ · ı) = Ext4
587
+ Λe(Λ, Λ) ,
588
+ where Λe = Λ ⊗C Λop is the eveloping algebra of Λ; we call the class j∗{m4}
589
+ the restricted universal Massey product (of length 4) and, as with the unrestricted
590
+ version, we regard it as an invariant of the 2Z-derived contraction algebra Λ. Notice
591
+ also that the previous discussion applies verbatim to any DG algebra A whose
592
+ cohomology is isomorphic to the graded algebra Λ[ı±1], so that we may associate
593
+ to A its restricted universal Massey product j∗�
594
+ mA
595
+ 4
596
+
597
+ .
598
+ The following theorem is the first main step towards the proof of Theorem 3.1.1.
599
+ Theorem 3.2.5. The restricted universal Massey product j∗{m4}, when viewed as
600
+ an element of the space Ext4
601
+ Λe(Λ, Λ) of Yoneda extensions of Λ-bimodules, can be
602
+ represented by an exact sequence
603
+ 0 → Λ → P3 → P2 → P1 → P0 → Λ → 0
604
+ with projective middle terms. In particular, Ω4
605
+ Λe(Λ) ∼= Λ in the stable category of
606
+ Λ-bimodules.
607
+ Proof. The first claim is a special case of [JM22, Cor. 4.5.17]. Indeed, by definition,
608
+ the 2Z-derived contraction algebra Λ is the derived endomorphism algebra of a 2Z-
609
+ cluster tilting object in Dc(Λ) ≃ Dsg(R), which is one of the equivalent conditions
610
+ in loc. cit. The second claim follows immediately from the first.
611
+
612
+ Remark 3.2.6. The proof of [JM22, Cor. 4.5.17], and hence that of Theorem 3.2.5, is
613
+ non-trivial. In the special case of the contraction algebra, it is possible that detailed
614
+ knowledge of the first non-trivial higher operation m4 of some minimal model of
615
+ the 2Z-derived contraction algebra allows for establishig the desired property of the
616
+ restricted universal Massey product j∗{m4} directly. The approach taken in [JM22],
617
+ which deals with an abstract and more general situation, rather leverages the fact
618
+ that Λ is the endomorphism algebra of a 2Z-cluster tilting object T ∈ Dsg(R).
619
+ 5In fact, the morphism j∗ is surjective, see [JM22, Prop. 4.6.9] and take σ = 1 and d = 2
620
+ (which is even and hence no signs occur in the formulas therein).
621
+
622
+ THE DONOVAN–WEMYSS CONJECTURE
623
+ 11
624
+ The upshot is that the additive closure add(T ) of T has an induced structure of a
625
+ so-called 4-angulated category, that is add(T ) is equipped with a natural class of
626
+ diagrams □GKO, called 4-angles, of the form6
627
+ T1 → T2 → T3 → T4 → T1[2]
628
+ that satisfies axioms analogous to those of triangulated categories [GKO13]. On
629
+ the other hand, an extension of Λ-bimodules
630
+ 0 → Λ → P3 → P2 → P1 → P0 → Λ → 0
631
+ with P0, P1, P2 projective-injective (but perhaps not P3) that represents the class
632
+ j∗{m4} ∈ Ext4
633
+ Λe(Λ, Λ) yields a class of 4-angles □j∗{m4} defined in terms of certain
634
+ exactness properties [Ami07, Lin19]; the class □j∗{m4} is a priori not known to
635
+ form a 4-angulation of add(T ). The crux of the argument is then to prove that
636
+ □GKO = □j∗{m4}
637
+ so that the class □j∗{m4} is indeed a 4-angulation of add(T ); this agreement relies
638
+ on a delicate analysis of the relationship between Toda brackets, Massey products
639
+ and the classes □GKO and □j∗{m4}. Finally, in view of the exactness properties
640
+ defining the class □j∗{m4} (now known to be 4-angulation), a theorem of Auslander
641
+ and Reiten [AR91] for detecting projective bimodules implies that P3 must be a
642
+ projective Λ-bimodule, which is what Theorem 3.2.5 claims. The reader is referred
643
+ to [JM22] for details.
644
+ Recall that the contraction algebra is Frobenius (in fact, symmetric). Conse-
645
+ quently, its enveloping algebra is also a Frobenius algebra and we may consider the
646
+ Hochschild–Tate cohomology
647
+ HH•,∗�
648
+ Λ, Λ[ı±1]
649
+ � := Ext•,∗
650
+ Λe
651
+
652
+ Λ, Λ[ı±1]
653
+
654
+ defined in terms of the extension spaces in the stable category of graded Λ-
655
+ bimodules; thus,
656
+ HH>0,∗�
657
+ Λ, Λ[ı±1]
658
+
659
+ = HH>0,∗�
660
+ Λ, Λ[ı±1]
661
+
662
+ and there is a surjection
663
+ HH0,∗�
664
+ Λ, Λ[ı±1]
665
+
666
+ ։ HH0,∗�
667
+ Λ, Λ[ı±1]
668
+
669
+ .
670
+ The multiplication on Λ[ı±1] endows HH•,∗�
671
+ Λ, Λ[ı±1]
672
+
673
+ with the structure of a bi-
674
+ graded algebra, see [Mur22, Sec. 5] for details.
675
+ Corollary 3.2.7. The restricted universal Massey product j∗{m4}, when viewed
676
+ as an element of the Hochschild–Tate cohomology HH•,∗�
677
+ Λ, Λ[ı±1]
678
+
679
+ , is a unit.
680
+ Proof. Immediate from Theorem 3.2.5 and [Mur22, Prop. 5.7 and Rmk. 5.8], which
681
+ characterises the units in HH•,∗�
682
+ Λ, Λ[ı±1]
683
+
684
+ of positive Hochschild (=horizontal) de-
685
+ gree.
686
+
687
+ Remark 3.2.8. In Corollary 3.2.7 it is essential to pass from Hochschild to
688
+ Hochschild–Tate cohomology in order to have units of positive Hochschild degree.
689
+ 6Recall that [2] ∼
690
+ = 1 in Dsg(R).
691
+
692
+ 12
693
+ G. JASSO, B. KELLER, AND F. MURO
694
+ 3.3. Hochschild cohomology of the graded contraction algebra. In this
695
+ section we compute the Hochschild cohomology of the graded algebra
696
+ Λcon[ı±1] = Λ[ı±1] = Λ ⊗C C[ı±1],
697
+ |ı| = −2,
698
+ that we call graded contraction algebra, in terms of the Hochschild cohomology of
699
+ the Dononvan–Wemyss contraction algebra Λcon = Λ.
700
+ First, notice that ı lies in the (graded) centre of Λ[ı±1], which is
701
+ Z(Λ[ı±1]) = HH0,∗�
702
+ Λ[ı±1], Λ[ı±1]
703
+
704
+ ;
705
+ hence
706
+ ı ∈ HH0,−2�
707
+ Λ[ı±1], Λ[ı±1]
708
+
709
+ .
710
+ We introduce the fractional Euler derivation
711
+ ¯δ ∈ C1,0�
712
+ Λ[ı±1], Λ[ı±1]
713
+
714
+ ,
715
+ which acts by the formula
716
+ ¯δ : a �−→ |a|
717
+ 2 a,
718
+ where we observe that |a|
719
+ 2 is an integer since Λ[ı±1] is concentrated in even degrees.
720
+ It is a cocycle with cohomology class
721
+ δ ∈ HH1,0�
722
+ Λ[ı±1], Λ[ı±1]
723
+
724
+ .
725
+ Proposition 3.3.1. The following statements hold:
726
+ (1) There is an isomorphism of graded commutative algebras
727
+ HH•,∗�
728
+ Λ[ı±1], Λ[ı±1]
729
+ � ∼= HH•(Λ, Λ) [ı±1, δ].
730
+ The graded Lie algebra structure on the right hand side is induced by the
731
+ (usual) Lie algebra structure on HH•,∗(Λ, Λ) by setting
732
+ [ı, HH•(Λ, Λ)] = 0,
733
+ [ı, ı] = 0,
734
+ [δ, HH•(Λ, Λ)] = 0,
735
+ [δ, ı] = −ı.
736
+ (2) There is an isomorphism of graded algebras
737
+ HH•,∗�
738
+ Λ, Λ[ı±1]
739
+ � ∼= HH•(Λ, Λ) [ı±1].
740
+ Moreover, the morphism
741
+ j∗ : HH•,∗�
742
+ Λ[ı±1], Λ[ı±1]
743
+
744
+ −→ HH•,∗�
745
+ Λ, Λ[ı±1]
746
+
747
+ induced by the inclusion j : Λ ֒→ Λ[ı±1] of the degree 0 part is the apparent
748
+ natural projection with kernel the graded ideal generated by δ.
749
+ (3) There is an isomorphism of graded algebras
750
+ HH•,∗�
751
+ Λ, Λ[ı±1]
752
+ � ∼= HH•(Λ, Λ) [ı±1].
753
+ Furthermore, the comparison map
754
+ HH•,∗�
755
+ Λ, Λ[ı±1]
756
+
757
+ −→ HH•,∗�
758
+ Λ, Λ[ı±1]
759
+
760
+ is the apparent extension of the comparison map HH•(Λ, Λ) → HH•(Λ, Λ).
761
+ Proof. All of the forthcoming claims follow from the proof of [JM22, Prop. 4.6.9]
762
+ for σ = 1Λ and d = 2.
763
+ (1) The Hochschild complex C•,∗�
764
+ Λ[ı±1], Λ[ı±1]
765
+
766
+ contains the subcomplex
767
+ C•,∗
768
+ C[ı±1]
769
+
770
+ Λ[ı±1], Λ[ı±1]
771
+
772
+ of C[ı±1]-linear cochains; this subcomplex is also an associative subalgebra and a
773
+ Lie subalgebra of the C-linear Hochschild complex.
774
+ The composite
775
+ C•,∗
776
+ C[ı±1]
777
+
778
+ Λ[ı±1], Λ[ı±1]
779
+
780
+ i֒→ C•,∗�
781
+ Λ[ı±1], Λ[ı±1]
782
+
783
+ j∗
784
+ −→ C•,∗�
785
+ Λ, Λ[ı±1]
786
+
787
+ ,
788
+
789
+ THE DONOVAN–WEMYSS CONJECTURE
790
+ 13
791
+ of the inclusion of the C[ı±1]-linear Hochschild cochains into the C-linear ones with
792
+ the restriction of scalars along the inclusion j : Λ ֒→ Λ[ı±1] of the degree 0 part is
793
+ an isomorphism of DG algebras. The target, unlike the source, does not a priori
794
+ carry any Lie algebra structure. Nevertheless, there is an obvious isomorphism of
795
+ DG algebras
796
+ C•,∗�
797
+ Λ, Λ[ı±1]
798
+ � ∼= C•(Λ, Λ) [ı±1]
799
+ that we regard as an identification, and the composite isomorphism
800
+ C•,∗
801
+ C[ı±1]
802
+
803
+ Λ[ı±1], Λ[ı±1]
804
+ � ∼= C•(Λ, Λ) [ı±1]
805
+ is also a Lie algebra map when we regard the target as a Lie algebra extension of
806
+ C•(Λ, Λ) with ı a central element (in the Lie-algebra sense).
807
+ The morphism
808
+ C•,∗�
809
+ Λ[ı±1], Λ[ı±1]
810
+
811
+ −→ C���(Λ, Λ) [ı±1, ¯δ],
812
+ x �−→ j∗(x) − ı−1 · j∗([x, ı]) · ¯δ,
813
+ is a quasi-isomorphism of DG algebras with quasi-inverse
814
+ C•(Λ, Λ) [ı±1] ⊕ C•(Λ, Λ) [ı±1] · ¯δ −→ C•,∗�
815
+ Λ[ı±1], Λ[ı±1]
816
+
817
+ ,
818
+ x + y · ¯δ �−→ i(x) + i(y) · ¯δ.
819
+ (The latter is just a morphism of complexes since ¯δ2 ̸= 0 in the target, it only
820
+ vanishes in cohomology.)
821
+ In fact, the relevant composite equals the identity of
822
+ C•(Λ, Λ) [ı±1, ¯δ].
823
+ The Lie bracket formulas in the statement of the proposition
824
+ follow from the definition of the fractional Euler class, C[ı±1]-linear cochains and
825
+ degree considerations.
826
+ (2) The statement follows easily from the previous computations.
827
+ (3) The statement is consequece of the fact that HH•,∗(Λ, Λ) is obtained from
828
+ HH•,∗(Λ, Λ) by inverting any element of
829
+ HH4(Λ, Λ) = Ext4
830
+ Λe(Λ, Λ)
831
+ representing the 4-periodicty of Λ, and similarly when the coefficients lie in Λ[ı±1].
832
+
833
+ Below, we use the isomorphisms in Proposition 3.3.1 as identifications.
834
+ Corollary 3.3.2. Let u ∈ HH4(Λ, Λ) be a unit. There exists a unique Hochschild
835
+ class
836
+ m ∈ HH4,−2�
837
+ Λ[ı±1], Λ[ı±1]
838
+
839
+ such that
840
+ j∗(m) = u · ı,
841
+ 1
842
+ 2[m, m] = 0.
843
+ Proof. The first equation in the statement is equivalent to m being of the form
844
+ (3.3.3)
845
+ m = (u + x · δ) · ı
846
+ for some x ∈ HH3(Λ, Λ). Using the relations in a Gerstenhaber algebra, the second
847
+ equation is equivalent to
848
+ 0 = ([u, u] − 2u · x) · ı2 − 2[x, u] · ı2 · δ.
849
+ This means that both summands must vanish. For the first one, this is equivalent
850
+ to
851
+ x = 1
852
+ 2u−1[u, u].
853
+ This is takes place in the piece of HH•(Λ, Λ) that agrees with HH•(Λ, Λ), and is
854
+ compatible with the second summand since
855
+ 0 = 1
856
+ 2[[u, u], u] = [ux, u] = u[x, u] − [u, u]x = u[x, u] − u−1[u, u]2 = u[x, u],
857
+
858
+ 14
859
+ G. JASSO, B. KELLER, AND F. MURO
860
+ so [x, u] = 0. The first step follows from the graded Jacobi identity and we also
861
+ use that [u, u]2 = 0 since [u, u] has odd total degree and Hochschild cohomology is
862
+ graded commutative.
863
+
864
+ The following result should be compared with equation (3.3.3); its proof is similar
865
+ to that of Corollary 3.3.2.
866
+ Corollary 3.3.4. Let u ∈ HH4(Λ, Λ) be a unit such that [u, u] = 0. Given
867
+ (x + y · δ) · ıq ∈ HHp,−2q�
868
+ Λ[ı±1], Λ[ı±1]
869
+
870
+ with p ≥ 2, x ∈ HHp(Λ, Λ) and y ∈ HHp−1(Λ, Λ), if [u · ı, (x + y · δ) · ıq] = 0 then
871
+ (x + y · δ) · ıq = [u · ı, u−1 · δ · x · ıq−1].
872
+ We obtain the following more precise information on a minimal A∞-model of the
873
+ 2Z-derived contraction algebra.
874
+ Proposition 3.3.5. The 2Z-derived contraction algebra has a minimal A∞-model
875
+ (Λ[ı±1], m4, m6, · · · )
876
+ such that mn is C[ı±1]-linear for all n ≥ 4. In particular, {m4} = u · ı for some
877
+ unit u ∈ HH4(Λ, Λ) satisfying [u, u] = 0.
878
+ Proof. The first part follows from [HK18].
879
+ The rest is a direct consecuence of
880
+ Proposition 3.3.1 and the fact that [{m4}, {m4}] = 0, which follows from (1.5.1).
881
+
882
+ 3.4. Proof of Theorem 3.1.1. The introduction of the restricted universal
883
+ Massey product of Λ is justified by the following result and the subsequent corol-
884
+ lary. Theorem 3.4.1 is an immediate consequence of [JM22, Thm. B], and the latter
885
+ theorem is obtained an application of the obstruction theory for the existence of
886
+ A∞-structures developed by the third-named author in [Mur20]. In this note we
887
+ give a direct proof of Theorem 3.4.1 that leverages our detailed knowledge of the
888
+ relationship between the Hochschild cohomology of the contraction algebra and
889
+ that if its graded variant (see Section 3.3), although part of the techniques used to
890
+ prove [JM22, Thm. B] are utilised in some guise.
891
+ Theorem 3.4.1. Let A be a DG algebra such that H•(A) = Λ[ı±1] as graded
892
+ algebras. If
893
+ j∗�
894
+ mA
895
+ 4
896
+
897
+ = j∗�
898
+
899
+ 4
900
+
901
+ ∈ HH•,∗�
902
+ Λ, Λ[ı±1]
903
+
904
+ ,
905
+ then A is quasi-isomorphic to the 2Z-derived contraction algebra Λ via a quasi-iso-
906
+ morphism that induces the identity in cohomology.
907
+ Proof. Let
908
+ (Λ[ı±1], m4, m6, . . . )
909
+ be a minimal model for the 2Z-derived contraction algebra as in Proposition 3.3.5,
910
+ and
911
+ (Λ[ı±1], m′
912
+ 4, m′
913
+ 6, . . . )
914
+ a minimal model for A. Inductively, we will construct an A∞-isomorphism with
915
+ identity linear part
916
+ f = (0, 0, 0, f3, 0, f5, . . . ): (Λ[ı±1], m4, m6, . . . ) −→ (Λ[ı±1], m′
917
+ 4, m′
918
+ 6, . . . ),
919
+ and this clearly suffices to prove the claim. Notice that, necessarily, f2n = 0 for all
920
+ n ≥ 0 since Λ[ı±1] is concentrated in even degrees.
921
+ We proceed as follows. For all n ≥ 0 we define a Hochschild cochain of total
922
+ degree 1
923
+ f (n) = (0, 0, 0, f (n)
924
+ 3
925
+ , 0, . . . , f (n)
926
+ 2n+1, 0, . . . )
927
+
928
+ THE DONOVAN–WEMYSS CONJECTURE
929
+ 15
930
+ such that f (n) coincides with f (n−1) up to Hochschild degree 2n − 2 and
931
+ (3.4.2)n
932
+ ∂(f (n)) + f (n) · f (n) +
933
+
934
+ r≥0
935
+ m′{f (n), r. . ., f (n)} − m − f (n){m}
936
+ vanishes up to Hochschild degree 2n + 2. If we achieve this goal, then we can take
937
+ f = (0, 0, 0, f (3)
938
+ 3 , 0, . . . , f (n)
939
+ 2n���3, 0, . . . ).
940
+ Indeed, f coincides with f (n) up to Hochschild degree 2n − 2, so (1.5.2) coincides
941
+ with (3.4.2)n up to Hochschild degree 2n − 1. In particular (1.5.2) vanishes up to
942
+ Hochschild degree 2n − 1 for all n ≥ 0. Therefore (1.5.2) fully vanishes, so f is
943
+ indeed an A∞-isomorphism with identity linear part.
944
+ We start with f (0) = 0.
945
+ With this choice, (3.4.2)0 clearly vanishes up to
946
+ Hochschild degree 2.
947
+ Below, when defining f (n) we will only specify f (n)
948
+ 2n−1 and f (n)
949
+ 2n+1 since in smaller
950
+ Hochschild degrees they are determined by f (n−1) and in higher Hochschild degrees
951
+ they are irrelevant. Moreover, we will also use that (3.4.2)n−1 and (3.4.2)n agree
952
+ (and hence both vanish) up to Hochschild degree 2n − 1.
953
+ Since j∗{m4} = j∗{m′
954
+ 4}, then {m4} = {m′
955
+ 4} by Corollary 3.3.2, so there exists
956
+ f (1)
957
+ 3
958
+ such that
959
+ (3.4.3)
960
+ ∂(f (1)
961
+ 3 ) + m′
962
+ 4 − m4 = 0.
963
+ This proves that (3.4.2)1 vanishes up to Hochschild degree 4.
964
+ Assume we have constructed up to f (n−1) for some n ≥ 2. Let us see how to
965
+ construct f (n). We know by [LH03, Lemme B.4.2] that the Hochschild degree 2n+2
966
+ part of (3.4.2)n−1, that we simply denote by a, is an obstruction cocycle (∂(a) = 0)
967
+ which vanishes in cohomology if and only if there exists f (n)
968
+ 2n+1 such that, taking
969
+ f (n)
970
+ 2n−1 = f (n−1)
971
+ 2n−1 , (3.4.2)n vanishes up to Hochschild degree 2n + 2. Indeed, any
972
+ f (n)
973
+ 2n+1 such that a + ∂(f (n)
974
+ 2n+1) = 0 would do. We claim that
975
+ (3.4.4)
976
+ [m4, a] + ∂(b − f n−1
977
+ 3
978
+ {a})
979
+ vanishes, where b is the Hochschild degree 2n + 4 part of (3.4.2)n−1. We prove this
980
+ claim below. Now, we deduce from Proposition 3.3.5 and Corollary 3.3.4 that there
981
+ exist Hochschild cochains c2n−1 and c2n+1 such that
982
+ a + ∂(c2n+1) + [m4, c2n−1] = 0,
983
+ ∂(c2n−1) = 0.
984
+ If we set
985
+ f (n)
986
+ 2n−1 = f (n−1)
987
+ 2n−1 + c2n−1,
988
+ f (n)
989
+ 2n+1 =
990
+
991
+ c5 + f (1)
992
+ 3 {c3} − 1
993
+ 2c3{c3},
994
+ n = 2;
995
+ c2n+1 + f3{c2n−1},
996
+ n > 2;
997
+ we complete the induction step since the Hochschild degree 2n part of (3.4.2)n is,
998
+ ∂(c2n−1) = 0,
999
+ and its Hochschild degree 2n + 2 part is, for n = 2,
1000
+ a + ∂
1001
+
1002
+ c5 + f (1)
1003
+ 3 {c3} − 1
1004
+ 2c3{c3}
1005
+
1006
+ + c3 · c3 + m′
1007
+ 4{c3} − c3{m4}
1008
+ = a + ∂(c5) + ∂
1009
+
1010
+ f (1)
1011
+ 3
1012
+
1013
+ {c3} + f (1)
1014
+ 3 {∂(c3)} + m′
1015
+ 4{c3} − c3{m4}
1016
+ = a + ∂(c5) + (m4 − m′
1017
+ 4){c3} + m′
1018
+ 4{c3} − c3{m4}
1019
+ = a + ∂(c5) + [m4, c3] = 0,
1020
+
1021
+ 16
1022
+ G. JASSO, B. KELLER, AND F. MURO
1023
+ where we use that ∂(c3{c3}) = 2c3 · c3 by Lemma 1.4.1, and for n > 2,
1024
+ a + ∂
1025
+
1026
+ c2n+1 + f3{c2n−1}
1027
+
1028
+ + m′
1029
+ 4{c2n−1} − c2n−1{m4}
1030
+ = a + ∂(c2n+1) + ∂
1031
+
1032
+ f (n−1)
1033
+ 3
1034
+
1035
+ {c2n−1} + f (n−1)
1036
+ 3
1037
+ {∂(c2n−1)} + m′
1038
+ 4{c2n−1} − c2n−1{m4}
1039
+ = a + ∂(c2n+1) + (m4 − m′
1040
+ 4){c2n−1} + m′
1041
+ 4{c2n−1} − c2n−1{m4}
1042
+ = a + ∂(c2n+1) + [m4, c2n−1] = 0.
1043
+ We finish the proof with the vanishing of (3.4.4). In what follows, let us write
1044
+ Ξ = (3.4.2)n−1 and f = f (n−1), so as not to overload notation. Note that (3.4.4) is
1045
+ the Hochschild degree 2n + 5 part of
1046
+ (3.4.5)
1047
+ [m, Ξ] + ∂(Ξ − f{Ξ}).
1048
+ This cochain vanishes in Hochschild degrees < 2n + 5.
1049
+ We now start a series of computations. We number most terms for bookkeeping
1050
+ purposes. In the first equation we use Lemma 1.4.1,
1051
+ ∂(Ξ) =
1052
+ 1
1053
+ ∂(f) · f −
1054
+ 2
1055
+ f · ∂f +
1056
+ 3
1057
+
1058
+ r≥0
1059
+ ∂(m′){f, r. . ., f}
1060
+
1061
+ 4
1062
+
1063
+ r≥1
1064
+ r
1065
+
1066
+ i=1
1067
+ m′{f, i−1
1068
+ . . ., ∂(f), r−i
1069
+ . . ., f}
1070
+
1071
+ 5
1072
+
1073
+ r≥1
1074
+ f · m′{f, r−1
1075
+ . . ., f} −
1076
+ 6
1077
+
1078
+ r≥2
1079
+ r−1
1080
+
1081
+ i=1
1082
+ m′{f, i−1
1083
+ . . ., f 2, r−i−1
1084
+ . . . , f}
1085
+ +
1086
+ 7
1087
+
1088
+ r≥1
1089
+ m′{f, r−1
1090
+ . . ., f} · f −
1091
+ 8
1092
+ ∂(m) −
1093
+ 9
1094
+ ∂(f){m} −
1095
+ 10
1096
+ f{∂(m)} +
1097
+ 11
1098
+ f · m −
1099
+ 12
1100
+ m · f
1101
+ Since m and m′ are A∞-algebra structures,
1102
+ 8 = −m{m},
1103
+ 10 = −f{m{m}},
1104
+ 3 = −
1105
+
1106
+ r≥0
1107
+ m′{m′}{f, r. . ., f}
1108
+ = −
1109
+
1110
+ r≥0
1111
+
1112
+ 0≤i≤j≤r
1113
+ m′{f,
1114
+ i. . ., m′{f, j−i
1115
+ . . ., f}, r−j
1116
+ . . ., f},
1117
+ = −
1118
+ 13
1119
+
1120
+ r≥0
1121
+ m′{m′{f, r. . ., f}} −
1122
+ 14
1123
+
1124
+ r≥1
1125
+
1126
+ 0≤i≤j≤r
1127
+ j−i<r
1128
+ m′{f,
1129
+ i. . ., m′{f, j−i
1130
+ . . ., f}, r−j
1131
+ . . ., f}
1132
+
1133
+ THE DONOVAN–WEMYSS CONJECTURE
1134
+ 17
1135
+ Here we also use the brace relation. We also split the following summations in two
1136
+ parts,
1137
+ 4 =
1138
+ 15
1139
+ m′{∂(f)} +
1140
+ 16
1141
+
1142
+ r≥2
1143
+ r
1144
+
1145
+ i=1
1146
+ m′{f, i−1
1147
+ . . ., ∂(f), r−i
1148
+ . . ., f},
1149
+ 6 =
1150
+ 17
1151
+ m′{f 2} +
1152
+ 18
1153
+
1154
+ r≥3
1155
+ r−1
1156
+
1157
+ i=1
1158
+ m′{f, i−1
1159
+ . . ., f 2, r−i−1
1160
+ . . . , f} .
1161
+ Consider the following cochain, that we decompose using the brace relation,
1162
+ 19
1163
+
1164
+ r≥0
1165
+ m′{f, r. . ., f}{m} =
1166
+
1167
+ r≥0
1168
+ r
1169
+
1170
+ i=0
1171
+ m′{f,
1172
+ i. . ., m, r−i
1173
+ . . ., f}
1174
+ +
1175
+
1176
+ r≥1
1177
+ r
1178
+
1179
+ i=0
1180
+ m′{f, i−1
1181
+ . . ., f{m}, r−i
1182
+ . . ., f}
1183
+ =
1184
+ 20
1185
+ m′{m} +
1186
+ 21
1187
+
1188
+ r≥1
1189
+ r
1190
+
1191
+ i=0
1192
+ m′{f,
1193
+ i. . ., m, r−i
1194
+ . . ., f} +
1195
+ 22
1196
+ m′{f{m}}
1197
+ +
1198
+ 23
1199
+
1200
+ r≥2
1201
+ r
1202
+
1203
+ i=0
1204
+ m′{f, i−1
1205
+ . . ., f{m}, r−i
1206
+ . . ., f} .
1207
+ Consider also the following cochain, which is computed by using Lemma 1.4.2,
1208
+ 24
1209
+ f 2{m} =
1210
+ 25
1211
+ f · f{m} −
1212
+ 26
1213
+ f{m} · f .
1214
+ Since Ξ vanishes up to Hochschild degree 2n + 1 and its Hochschild degree 2n + 2
1215
+ part is a cocycle, the following cochains vanish up to Hochschild degree 2n + 5,
1216
+
1217
+ r≥2
1218
+ r
1219
+
1220
+ i=1
1221
+ m′{f, i−1
1222
+ . . ., Ξ, r−i
1223
+ . . ., f} = 16 + 18 + 14 − 21 − 23 ,
1224
+ ∂(f){Ξ} + m′{Ξ} − m{Ξ},
1225
+ f{∂(Ξ)}.
1226
+ Notice that
1227
+ Ξ · f = 1 + f 3 + 7 − 12 − 26 ,
1228
+ f · Ξ = 2 + f 3 + 5 − 11 − 25 ,
1229
+ m′{Ξ} = 15 + 17 + 13 − 20 − 22 ,
1230
+ Ξ{m} = 9 + 24 + 19 + 8 + 10 .
1231
+
1232
+ 18
1233
+ G. JASSO, B. KELLER, AND F. MURO
1234
+ Using all the above, we obtain the following relations, where ≡ stands for con-
1235
+ gruence modulo cochains vanishing in Hochschild degrees < 2n + 5,
1236
+ (3.4.5) = m{Ξ} + Ξ{m} + ∂(Ξ) − ∂(f){Ξ} − f{∂(Ξ)} + f · Ξ − Ξ · f
1237
+ ≡ m{Ξ} −
1238
+
1239
+ 9 + 24 + 19 + 8 + 10
1240
+
1241
+ +
1242
+
1243
+ 1 − 2 + 3 − 4 − 5 − 6 + 7 − 8 − 9 − 10 + 11 − 12
1244
+
1245
+ +
1246
+
1247
+ 15 + 17 + 13 − 20 − 22
1248
+
1249
+ − m{Ξ} − 0
1250
+ +
1251
+
1252
+ 2 + f 3 + 5 − 11 − 25
1253
+
1254
+
1255
+
1256
+ 1 + f 3 + 7 − 12 − 26
1257
+
1258
+ +
1259
+
1260
+ 16 + 18 + 14 − 21 − 23
1261
+
1262
+ = 0.
1263
+ This finally concludes the proof.
1264
+
1265
+ Corollary 3.4.6. Let A be a DG algebra such that H•(A) = Λ[ı±1] as graded
1266
+ algebras. If the restricted universal Massey product
1267
+ j∗�
1268
+ mA
1269
+ 4
1270
+
1271
+ ∈ HH•,∗�
1272
+ Λ, Λ[ı±1]
1273
+
1274
+ is a unit, then A is quasi-isomorphic to the 2Z-derived contraction algebra Λ.
1275
+ Proof. Firstly, we observe that the group of graded-algebra automorphisms of Λ[ı±1]
1276
+ acts on the right of HH•,∗�
1277
+ Λ, Λ[ı±1]
1278
+
1279
+ by conjugation.
1280
+ In particular, the group
1281
+ Z(Λ)× of units of the centre of Λ acts on HH•,∗�
1282
+ Λ, Λ[ı±1]
1283
+
1284
+ via the graded-algebra
1285
+ automorphisms
1286
+ gu : x �−→ xui,
1287
+ |x| = 2i,
1288
+ where u ∈ Z(Λ)×. The induced action on
1289
+ HH4,−2�
1290
+ Λ, Λ[ı±1]
1291
+ � ∼= Ext4
1292
+ Λe(Λ, Λ)
1293
+ has the following explicit description: Given a unit u ∈ Z(Λ)× and an exact se-
1294
+ quence of Λ-bimodules
1295
+ η: 0 → Λ
1296
+ f−→ X3 → X2 → X1 → X0 → Λ → 0,
1297
+ we let [η] · u be the class of the exact sequence
1298
+ 0 → Λ
1299
+ f ′
1300
+ −→ X3 → X2 → X1 → X0 → Λ → 0,
1301
+ where f ′ := u−1f.
1302
+ The above action clearly restricts to the set of units in
1303
+ HH•,∗�
1304
+ Λ, Λ[ı±1]
1305
+
1306
+ of bidegree (4, −2), since these are precisely the classes that can be
1307
+ represented by an exact sequence with projective(-injective) middle terms [Mur22,
1308
+ Rmk. 5.8], and is in fact transitive on this set. To prove the latter claim on the
1309
+ transitivity of the action we appeal to [Che21, Cor. 2.3], which allows us to lift
1310
+ stable bimodule isomorphisms Λ ≃ Λ to honest bimodule isomorphisms Λ ∼= Λ, see
1311
+ the proof of [JM22, Prop. 2.2.16].
1312
+ Let u ∈ Z(Λ)× be a unit such that
1313
+ j∗�
1314
+ mA
1315
+ 4
1316
+
1317
+ · u = j∗�
1318
+
1319
+ 4
1320
+
1321
+ ∈ HH4,−2�
1322
+ Λ, Λ[ı±1]
1323
+
1324
+ .
1325
+ Given a minimal model
1326
+ (Λ[ı±1], mA
1327
+ 4 , mA
1328
+ 6 , mA
1329
+ 8 , · · · )
1330
+ of the DG algebra A we define a new minimal A∞-algebra structure
1331
+ (Λ[ı±1], mA
1332
+ 4 , mA
1333
+ 6 , mA
1334
+ 8 , · · · ) = (Λ[ı±1], mA
1335
+ 4 , mA
1336
+ 6 , mA
1337
+ 8 , · · · ) ∗ gu
1338
+ with n-ary opearations mA
1339
+ n := g−1
1340
+ u mA
1341
+ 4 g⊗n
1342
+ u
1343
+ (notice that mA
1344
+ 4 ̸= mA
1345
+ 4 as soon as u ̸= 1).
1346
+ It is easy to see that
1347
+ j∗�
1348
+ mA
1349
+ 4
1350
+
1351
+ = j∗�
1352
+ mA
1353
+ 4
1354
+
1355
+ · u = j∗�
1356
+
1357
+ 4
1358
+
1359
+
1360
+ THE DONOVAN–WEMYSS CONJECTURE
1361
+ 19
1362
+ and that there is an isomorphism of A∞-algebras
1363
+ (Λ[ı±1], mA
1364
+ 4 , mA
1365
+ 6 , mA
1366
+ 8 , · · · ) ⇝ (Λ[ı±1], mA
1367
+ 4 , mA
1368
+ 6 , mA
1369
+ 8 , · · · ).
1370
+ Thus, A is quasi-isomorphic to any DG algebra model B of the minimal A∞-
1371
+ algebra on the right-hand side, see Remark 3.2.2, and by Theorem 3.4.1 the DG
1372
+ algebras B and Λ are quasi-isomorphic. Consequently, the DG algebras A and Λ
1373
+ are isomorphic, which is what we needed to prove.
1374
+
1375
+ We are ready to prove Theorem 3.1.1.
1376
+ Proof of Theorem 3.1.1. Let R1 and R2 be isolated cDV singularities with crepant
1377
+ resolutions
1378
+ p1 : X1 → Spec(R1)
1379
+ and
1380
+ p2 : X2 → Spec(R2)
1381
+ whose corresponding contraction algebras Λ1 = Λ(p1) and Λ2 = Λ(p2) are isomor-
1382
+ phic. We need to prove that the 2Z-derived contraction algebras Λ1 = Λcon(p1)
1383
+ and Λ2 = Λcon(p2) are quasi-isomorphic. Recall that
1384
+ H•(Λ1) ∼= Λ1[ı±1]
1385
+ and
1386
+ H•(Λ2) ∼= Λ2[ı±1],
1387
+ |ı| = −2.
1388
+ In view of the assumption that Λ1 ∼= Λ2, we obtain a chain of isomorphisms of
1389
+ graded algebras
1390
+ H•(Λ1) ∼= Λ1[ı±1] ∼= Λ2[ı±1] ∼= H•(Λ2).
1391
+ In particular, we may and we will identify minimal models of Λ1 and Λ2 via the
1392
+ above isomorphism. For simplicity, let Λ = Λ1 ∼= Λ2. Corollary 3.2.7 shows that
1393
+ the restricted universal Massey products
1394
+ j∗�
1395
+ mΛ1
1396
+ 4
1397
+
1398
+ ∈ HH4,−2�
1399
+ Λ, Λ[ı±1]
1400
+
1401
+ and
1402
+ j∗�
1403
+ mΛ2
1404
+ 4
1405
+
1406
+ ∈ HH4,−2�
1407
+ Λ, Λ[ı±1]
1408
+
1409
+ are units in the Hochschild–Tate cohomology HH•,∗�
1410
+ Λ, Λ[ı±1]
1411
+
1412
+ . Corollary 3.4.6 im-
1413
+ plies that the DG algebras Λ1 and Λ2 are quasi-isomorphic, which is what we
1414
+ needed to prove.
1415
+
1416
+ We also have the following important corollary.
1417
+ Corollary 3.4.7. Let R be an isolated cDV singularity that admits a crepant res-
1418
+ olution. Then, the singularity category Dsg(R) admits a unique DG enhancement
1419
+ in the sense of [BK90].
1420
+ Proof. Let A be a DG enhancement of Dsg(R). By definition, this means that A
1421
+ is a pre-triangulated DG category and there exists an equivalence of triangulated
1422
+ categories
1423
+ H0(A) ≃ Dsg(R).
1424
+ Let T ∈ Dsg(R) be a 2Z-cluster tilting object and A the derived endomorphism alge-
1425
+ bra of T computed by means of the DG enhancement A. In particular Dc(A)dg ≃ A
1426
+ since T is a classical generator. By definition, H•(A) ∼= H•(Λ) where Λ is the de-
1427
+ rived endomorphism algebra of T computed by means of the canonical DG enhance-
1428
+ ment of Dsg(R). The proofs of Theorem 3.2.5 and Corollary 3.2.7 only rely on the
1429
+ fact that T ∈ Dsg(R) is a 2Z-cluster tilting object, see Remark 3.2.6. Consequently,
1430
+ the restricted universal Massey product j∗�
1431
+ mA
1432
+ 4
1433
+
1434
+ is a unit in HH•,∗�
1435
+ Λ, Λ[ı±1]
1436
+
1437
+ and,
1438
+ by Corollary 3.4.6, the DG algebras A and Λ are quasi-isomorphic. Therefore, the
1439
+ DG categories
1440
+ A ≃ Dc(A)dg
1441
+ and
1442
+ Dsg(R)dg
1443
+ are quasi-equivalent. This shows that every DG enhancement of Dsg(R) is equiva-
1444
+ lent to the canonical DG enhancement and the claim follows.
1445
+
1446
+
1447
+ 20
1448
+ G. JASSO, B. KELLER, AND F. MURO
1449
+ Remark 3.4.8. Corollary 3.4.7 is stronger that Conjecture A, as it shows that the
1450
+ DG category Dsg(R)dg is determined by Λcon up to isomorphism in Hmo, the Morita
1451
+ category of small DG categories [Tab05].
1452
+ 4. Concluding remarks
1453
+ In this section we collect some observations, some of which follow easily from
1454
+ the results in the previous sections.
1455
+ 4.1. Formality of contraction algebras. Recall that a DG algebra A is formal
1456
+ if there is a quasi-isomorphism A ≃ H•(A), where the graded algebra H•(A) is
1457
+ viewed as a DG algebra with vanishing differential. We observe that 2Z-derived
1458
+ contraction algebras are almost never formal.7
1459
+ Theorem 4.1.1. Let R be an isolated cDV singularity with a crepant resolution
1460
+ and Λcon a 2Z-derived contraction algebra for R.
1461
+ The following statements are
1462
+ equivalent:
1463
+ (1) The 2Z-derived contraction algebra Λcon is formal.
1464
+ (2) There is an isomorphism of algebras Λcon ∼= C.
1465
+ (3) There is an isomorphism of algebras
1466
+ R ∼= C�x, y, z, t�/(xy − zt),
1467
+ so that Spec(R) is the base of the Atiyah flop [Ati58].
1468
+ If the above equivalent conditions hold, then there is a quasi-isomorphism
1469
+ Λcon ≃ C[ı±1],
1470
+ |ı| = −2,
1471
+ where the graded algebra C[ı±1] is equipped with the trivial differential.
1472
+ Proof. (1)⇒(2) If the 2Z-derived contraction algebra Λcon is formal, then its re-
1473
+ stricted universal Massey product j∗{m4} is represented by the trivial sequence in
1474
+ HH4,−2�
1475
+ Λcon, Λcon[ı±1]
1476
+
1477
+ = Ext4
1478
+ Λecon(Λcon, Λcon). In view of Theorem 3.2.5, this can
1479
+ only happen if Λcon is projective as a Λcon-bimodule or, equivalently, if the algebra
1480
+ Λcon is semisimple. Since contraction algebras are basic and connected, we must
1481
+ have an isomorphism of algebras Λcon ∼= C, which is what we needed to prove.
1482
+ (2)⇒(1) If Λcon ∼= C, then there is an isomorphism of graded algebras
1483
+ H•(Λcon) ∼= Λcon[ı±1] ∼= C[ı±1],
1484
+ |ı| = −2.
1485
+ It is well-known (and easy to prove using Kadeishvili’s Theorem [Kad88], for exam-
1486
+ ple) that the latter graded algebra is intrinsically formal, that is every DG algebra
1487
+ with cohomology algebra C[ı±1] is formal. In particular, Λcon is formal.8
1488
+ (2)⇔(3) In view of the validity of Conjecture A, it is enough to observe that C is
1489
+ indeed isomorphic to the contraction algebra of the Atiyah flop [DW16, Table 2].
1490
+
1491
+ Remark 4.1.2. The (non-)formality of the derived contraction algebra Λ≤0
1492
+ con is inves-
1493
+ tigated in [Boo19, Ch. 9] where minimal models of this DG algebra are computed
1494
+ in various examples, see also [Boo18, Boo21, Boo22].
1495
+ 7This fact will come as no surprise to the experts, but we did not find a proof of it in the
1496
+ literature.
1497
+ 8Alternatively, one can prove this fact using the results in this note as follows: Since the
1498
+ enveloping algebra
1499
+ Λe
1500
+ con ∼
1501
+ = C ⊗C C ∼
1502
+ = C
1503
+ is semisimple, the Hochschild–Tate cohomology HH•,∗�
1504
+ Λcon, Λcon[ı±1]
1505
+
1506
+ vanishes in positive
1507
+ Hochschild degrees. Then, by Theorem 3.4.1, the 2Z-derived contraction algebra Λcon is quasi-
1508
+ isomorphic to its cohomology algebra H•(Λcon) for the condition on the agreement of the corre-
1509
+ sponding universal Massey products is trivially satisfied. Of course, this is essentially the same
1510
+ proof as the one using Kadeishvili’s Theorem, which is indeed a special case of [JM22, Thm. B].
1511
+
1512
+ THE DONOVAN–WEMYSS CONJECTURE
1513
+ 21
1514
+ Remark 4.1.3. More generally, Kadeishvili’s Theorem [Kad88] can be used to prove
1515
+ that the Laurent polynomial algebra K[ı±1] = K ⊗C C[ı±1] is intrinsically formal
1516
+ if K is a finite-dimensional algebra of projective dimension at most 2 as a K-
1517
+ bimodule [Sai20, Cor. 4.2].
1518
+ This K, however, cannot be a contraction algebra
1519
+ unless K = C since contraction algebras are basic and connected, and a symmetric
1520
+ C-algebra has finite projective dimension as a bimodule over itself if and only if it
1521
+ is separable (semisimple).
1522
+ 4.2. Relationship to the Triangulated Auslander–Iyama Correspondence.
1523
+ Let T be a triangulated category whose underlying additive category is Krull–
1524
+ Schmidt and has finite-dimensional morphism spaces.
1525
+ A basic object T ∈ T is
1526
+ d-cluster tilting, d ≥ 1, if the following conditions are satisfied [IY08, Bel15]:
1527
+ • The object T is d-rigid: T(T, T [i]) = 0 for all 0 < i < d.
1528
+ • For each object X ∈ T there exists a diagram
1529
+ Td−2
1530
+ · · ·
1531
+ T1
1532
+ T0
1533
+ Td−1
1534
+ Xd−2
1535
+ · · ·
1536
+ X2
1537
+ X1
1538
+ X
1539
+ +1
1540
+ +1
1541
+ +1
1542
+ in which Ti ∈ add(T ), 0 ≤ i < d, the oriented triangles denote exact triangles in
1543
+ T and the unoriented triangles commute. The object T is dZ-cluster tilting if it
1544
+ is d-cluster tilting and T ∼= T [d]. Theorem 3.1.1 is a special case of the theorem
1545
+ below. For a finite-dimensional algebra Λ, we let proj(Λ) be the category of finite-
1546
+ dimensional projective Λ-modules. For example, if Λ = T(T, T ), then the Yoneda
1547
+ functor
1548
+ T ⊇ add(T )
1549
+
1550
+ −→ proj(Λ),
1551
+ X �−→ T(T, X),
1552
+ is an equivalence (of additive categories).
1553
+ Theorem
1554
+ 4.2.1
1555
+ (Triangulated
1556
+ Auslander–Iyama
1557
+ Correspondence
1558
+ [JM22,
1559
+ Thm. 5.1.10]). Let d ≥ 1.
1560
+ There is a bijective correspondence between the
1561
+ following:
1562
+ (1) Quasi-isomorphism classes of DG algebras A that satisfy the following:
1563
+ • The algebra H0(A) is a basic finite-dimensional algebra.
1564
+ • The free DG A-module A ∈ Dc(A) is a dZ-cluster tilting object.
1565
+ (2) Equivalence classes of pairs (Λ, I) consisting of
1566
+ • a basic finite-dimensional self-injective algebra Λ and
1567
+ • an invertible Λ-bimodule I such that Ωd+2
1568
+ Λe (Λ) ∼= I in the stable category
1569
+ of Λ-bimodules.
1570
+ The correspondence is given by the formula A �→ (H0(A), H−d(A)).
1571
+ Remark 4.2.2. The case d = 1 of Theorem 4.2.1 is one way to formulate the main
1572
+ result in [Mur22]. Indeed, an object T ∈ T is 1-cluster tilting if and only if it is
1573
+ 1Z-cluster tilting if and only if add(T ) = T; the latter condition means that T is a
1574
+ triangulated category of finite type in the terminology of [Mur22].
1575
+ Remark 4.2.3. Let (Λ, I) be a pair as in Theorem 4.2.1(2). Since the algebra Λ is
1576
+ assumed to be basic, the map
1577
+ Aut(Λ) −→ Pic(Λ),
1578
+ σ �−→ [1Λσ]
1579
+ from the group of algebra automorphisms of Λ to the Picard group of invertible
1580
+ Λ-bimodules induces an isomorphism of groups [Bol84, Prop. 3.8]
1581
+ Out(Λ)
1582
+
1583
+ −→ Pic(Λ),
1584
+ [σ] �−→ [1Λσ],
1585
+ where Out(Λ) = Aut(Λ)/ Inn(Λ) is the group of outer automorphisms of Λ. In par-
1586
+ ticular, there exists σ ∈ Aut(Λ) such that I ∼= 1Λσ as Λ-bimodules. The condition
1587
+
1588
+ 22
1589
+ G. JASSO, B. KELLER, AND F. MURO
1590
+ Ωd+2
1591
+ Λe (Λ) ≃ 1Λσ expresses the fact that the algebra Λ is twisted (d + 2)-periodic
1592
+ with respect to σ. When σ = 1 or, equivalently, I ∼= Λ, the algebra Λ is said to be
1593
+ (d+ 2)-periodic. For example, contraction algebras are known to be 4-periodic. We
1594
+ refer the reader to [ES08] and the references therein for information on (twisted)
1595
+ periodic algebras.
1596
+ Theorem 3.1.1
1597
+ follows
1598
+ from
1599
+ the
1600
+ injectivity
1601
+ of
1602
+ the
1603
+ correspondence
1604
+ in Theorem 4.2.1 with d = 2; the proof of Theorem 3.1.1 outlined in this
1605
+ note effectively goes through the proof of the latter in the special case of
1606
+ 2Z-derived contraction algebras.
1607
+ We record the resulting characterisation of
1608
+ contraction algebras for the sake of completeness.
1609
+ Theorem 4.2.4. Let R be an isolated cDV singularity with a crepant resolution
1610
+ p: X → Spec(R).
1611
+ Up to quasi-isomorphism, the 2Z-derived contraction algebra
1612
+ Λ = Λcon(p) is the unique DG algebra with the following properties:
1613
+ (1) Λ ∈ Dc(Λ) is a 2Z-cluster tilting object.
1614
+ (2) There is an isomorphism of algebras H0(Λ) ∼= Λ = Λcon(p).
1615
+ (3) There is an isomorphism of Λ-bimodules H−2(Λ) ∼= Λ.
1616
+ In other words, Λ is determined up to quasi-isomorphism by its image (Λ, Λ) under
1617
+ the Triangulated Auslander–Iyama Correspondence.
1618
+ Proof. That the 2Z-derived contraction algebra satisfies the first two properties
1619
+ follows from Theorem 1.3.1 since, by definition, Λ is the derived endomorphism
1620
+ algebra of a 2Z-cluster tilting object in Dsg(R) ≃ Dc(Λ). Therefore Λ belongs to
1621
+ the class of DG algebras in Theorem 4.2.1(1) with d = 2. Given that Λ is 4-periodic,
1622
+ the third property follows. Moreover, Λ is determined up to quasi-isomorphism by
1623
+ its image (Λ, Λ) under the Triangulated Auslander–Iyama Correspondence, which
1624
+ is what we needed to prove.
1625
+
1626
+ 4.3. Isolated cDV singularities with non-smooth minimal models. Con-
1627
+ traction algebras are defined for an arbitrary cDV singularity R that is neither
1628
+ isolated nor admits a crepant resolution. However, contraction algebras are finite-
1629
+ dimensional if and only if R defines an isolated singularity [DW19, Summary 5.6],
1630
+ and this finite-dimensionality is crucial to our approach. On the other hand, R
1631
+ admits a crepant resolution if and only if the singularity category Dsg(R) admits a
1632
+ 2Z-cluster tilting object, see [BIKR08, Thm. 5.4] and the references therein. If, on
1633
+ the other hand, the minimal models9 of R are singular, then the contraction algebras
1634
+ of R are the endomorphism algebras of maximal rigid objects in Dsg(R) [Wem18],
1635
+ that is objects T ∈ Dsg(R) such that
1636
+ add(T ) = {X ∈ Dsg(R)| Hom(T ⊕ X, (T ⊕ X)[1]) = 0}.
1637
+ It is easy to verify that 2-cluster tilting objects are maximal rigid, but the converse is
1638
+ false in general [BIKR08, BMV10]; moreover, if there exists a 2-cluster tilting object
1639
+ then every maximal rigid object is also 2-cluster tilting [BIRS09, Thm. II.1.8].10 In
1640
+ any case, one may still define the 2Z-derived contraction algebras of R as the derived
1641
+ endomorphism algebras of maximal rigid objects in Dsg(R), computed in terms of
1642
+ the canonical DG enhancement of the latter triangulated category. Note, however,
1643
+ that Theorem 4.2.1 does not cover the case of maximal rigid objects that are not
1644
+ 9In the context of the MMP in dimension three and higher, minimal models play the role of
1645
+ minimal resolutions of surfaces. We do not recall the technical definition in this note, but only
1646
+ mention that minimal models are permitted to have ‘mild’ singularities as long as they remain
1647
+ ‘closer’ to the original space than a smooth resolution (which always exists by a famous theorem
1648
+ of Hironaka [Hir64].)
1649
+ 10The reader should compare this statement with the following geometric fact: If one minimal
1650
+ model of Spec(R) is smooth, then all of its minimal models are also smooth [Kol89, Cor. 4.11].
1651
+
1652
+ THE DONOVAN–WEMYSS CONJECTURE
1653
+ 23
1654
+ 2Z-cluster tilting and hence it cannot be applied to prove a version of Theorem 4.2.4
1655
+ for isolated cDV singularities that do not admit a crepant resolution. Finally, we
1656
+ mention that the apparent variant of Conjecture A does not hold for isolated cDV
1657
+ singularities whose minimal models are not smooth, see [Boo21, Ex 8.4.2] for an
1658
+ explicit counterexample.
1659
+ References
1660
+ [Ami07]
1661
+ Claire Amiot. On the structure of triangulated categories with finitely many indecom-
1662
+ posables. Bull. Soc. Math. France, 135(3):435–474, 2007.
1663
+ [AR91]
1664
+ Maurice Auslander and Idun Reiten. On a theorem of E. Green on the dual of the trans-
1665
+ pose. In Representations of finite-dimensional algebras (Tsukuba, 1990), volume 11 of
1666
+ CMS Conf. Proc., pages 53–65. Amer. Math. Soc., Providence, RI, 1991.
1667
+ [Ati58]
1668
+ M. F. Atiyah. On analytic surfaces with double points. Proc. Roy. Soc. London Ser.
1669
+ A, 247:237–244, 1958.
1670
+ [Aug19]
1671
+ Jenny August. The tilting theory of contraction algebras. Ph. D. thesis, University of
1672
+ Edinburgh, 2019.
1673
+ [Aug20]
1674
+ Jenny August. On the finiteness of the derived equivalence classes of some stable
1675
+ endomorphism rings. Math. Z., 296(3-4):1157–1183, 2020.
1676
+ [Aus78]
1677
+ Maurice Auslander. Functors and morphisms determined by objects. In Representation
1678
+ theory of algebras (Proc. Conf., Temple Univ., Philadelphia, Pa., 1976), pages 1–244.
1679
+ Lecture Notes in Pure Appl. Math., Vol. 37. Dekker, New York, 1978.
1680
+ [Bel15]
1681
+ Apostolos Beligiannis. Relative homology, higher cluster-tilting theory and categorified
1682
+ Auslander-Iyama correspondence. J. Algebra, 444:367–503, 2015.
1683
+ [BIKR08]
1684
+ Igor Burban, Osamu Iyama, Bernhard Keller, and Idun Reiten. Cluster tilting for
1685
+ one-dimensional hypersurface singularities. Adv. Math., 217(6):2443–2484, 2008.
1686
+ [BIRS09]
1687
+ A. B. Buan, O. Iyama, I. Reiten, and J. Scott. Cluster structures for 2-Calabi-Yau
1688
+ categories and unipotent groups. Compos. Math., 145(4):1035–1079, 2009.
1689
+ [BK90]
1690
+ A. I. Bondal and M. M. Kapranov. Framed triangulated categories. Mat. Sb.,
1691
+ 181(5):669–683, 1990.
1692
+ [BMV10]
1693
+ Aslak Bakke Buan, Robert J. Marsh, and Dagfinn F. Vatne. Cluster structures from
1694
+ 2-Calabi-Yau categories with loops. Math. Z., 265(4):951–970, 2010.
1695
+ [Bol84]
1696
+ Michael L. Bolla. Isomorphisms between endomorphism rings of progenerators. J. Al-
1697
+ gebra, 87(1):261–281, 1984.
1698
+ [Boo18]
1699
+ Matt Booth. Noncommutative deformation theory, the derived quotient, and DG sin-
1700
+ gularity categories, November 2018, 1810.10060 [math.AG].
1701
+ [Boo19]
1702
+ Matt Booth. The derived contraction algebra, 2019, 1911.09626 [math.AG].
1703
+ [Boo21]
1704
+ Matt Booth. Singularity categories via the derived quotient. Adv. Math., 381:Paper
1705
+ No. 107631, 56, 2021.
1706
+ [Boo22]
1707
+ Matt Booth. The derived deformation theory of a point. Mathematische Zeitschrift,
1708
+ 300(3):3023–3082, March 2022.
1709
+ [Buc21]
1710
+ Ragnar-Olaf Buchweitz. Maximal Cohen-Macaulay modules and Tate cohomology, vol-
1711
+ ume 262 of Mathematical Surveys and Monographs. American Mathematical Society,
1712
+ Providence, RI, [2021] ©2021. With appendices and an introduction by Luchezar L.
1713
+ Avramov, Benjamin Briggs, Srikanth B. Iyengar and Janina C. Letz.
1714
+ [Che21]
1715
+ Justin Chen. Surjections of unit groups and semi-inverses. J. Commut. Algebra,
1716
+ 13(3):323–331, 2021.
1717
+ [Dri04]
1718
+ Vladimir Drinfeld. DG quotients of DG categories. J. Algebra, 272(2):643–691, 2004.
1719
+ [Dug15]
1720
+ Alex Dugas. A construction of derived equivalent pairs of symmetric algebras. Proc.
1721
+ Amer. Math. Soc., 143(6):2281–2300, 2015.
1722
+ [DW16]
1723
+ Will Donovan and Michael Wemyss. Noncommutative deformations and flops. Duke
1724
+ Math. J., 165(8):1397–1474, 2016.
1725
+ [DW19]
1726
+ Will Donovan and Michael Wemyss. Contractions and deformations. Amer. J. Math.,
1727
+ 141(3):563–592, 2019.
1728
+ [Dyc11]
1729
+ Tobias Dyckerhoff. Compact generators in categories of matrix factorizations. Duke
1730
+ Math. J., 159(2):223–274, 2011.
1731
+ [Eis80]
1732
+ David Eisenbud. Homological algebra on a complete intersection, with an application
1733
+ to group representations. Trans. Amer. Math. Soc., 260(1):35–64, 1980.
1734
+ [ES08]
1735
+ Karin Erdmann and Andrzej Skowro´nski. Periodic algebras. In Trends in representa-
1736
+ tion theory of algebras and related topics, EMS Ser. Congr. Rep., pages 201–251. Eur.
1737
+ Math. Soc., Z¨urich, 2008.
1738
+
1739
+ 24
1740
+ G. JASSO, B. KELLER, AND F. MURO
1741
+ [GGRV92] Jorge Alberto Guccione, Juan Jose Guccione, Maria Julia Redondo, and Orlando Eu-
1742
+ genio Villamayor. Hochschild and cyclic homology of hypersurfaces. Advances in Math-
1743
+ ematics, 95(1):18–60, September 1992.
1744
+ [GKO13]
1745
+ Christof Geiss, Bernhard Keller, and Steffen Oppermann. n-angulated categories. J.
1746
+ Reine Angew. Math., 675:101–120, 2013.
1747
+ [HI11]
1748
+ Martin Herschend and Osamu Iyama. Selfinjective quivers with potential and 2-
1749
+ representation-finite algebras. Compos. Math., 147(6):1885–1920, 2011.
1750
+ [Hir64]
1751
+ Heisuke Hironaka. Resolution of singularities of an algebraic variety over a field of
1752
+ characteristic zero. I, II. Ann. of Math. (2) 79 (1964), 109–203; ibid. (2), 79:205–326,
1753
+ 1964.
1754
+ [HK18]
1755
+ Zheng Hua and Bernhard Keller. Cluster categories and rational curves, 2018,
1756
+ 1810.00749 [math.AG].
1757
+ [IY08]
1758
+ Osamu Iyama and Yuji Yoshino. Mutation in triangulated categories and rigid Cohen-
1759
+ Macaulay modules. Invent. Math., 172(1):117–168, 2008.
1760
+ [JM22]
1761
+ Gustavo Jasso and Fernando Muro. The Triangulated Auslander–Iyama Correspon-
1762
+ dence, with an appendix by B. Keller, 2022, 2208.14413 [math.RT].
1763
+ [Kad82]
1764
+ T. V. Kadeishvili. The algebraic structure in the homology of an A(∞)-algebra. Soob-
1765
+ shch. Akad. Nauk Gruzin. SSR, 108(2):249–252 (1983), 1982.
1766
+ [Kad88]
1767
+ T. V. Kadeishvili. The structure of the A(∞)-algebra, and the Hochschild and Harrison
1768
+ cohomologies. Trudy Tbiliss. Mat. Inst. Razmadze Akad. Nauk Gruzin. SSR, 91:19–27,
1769
+ 1988.
1770
+ [Kat08]
1771
+ Sheldon Katz. Genus zero Gopakumar-Vafa invariants of contractible curves. J. Dif-
1772
+ ferential Geom., 79(2):185–195, 2008.
1773
+ [Kel94]
1774
+ Bernhard Keller. Deriving DG categories. Ann. Sci. ´Ecole Norm. Sup. (4), 27(1):63–
1775
+ 102, 1994.
1776
+ [Kel99]
1777
+ Bernhard Keller. On the cyclic homology of exact categories. J. Pure Appl. Algebra,
1778
+ 136(1):1–56, 1999.
1779
+ [Kel06]
1780
+ Bernhard Keller. On differential graded categories. In International Congress of Math-
1781
+ ematicians. Vol. II, pages 151–190. Eur. Math. Soc., Z¨urich, 2006.
1782
+ [Kel08]
1783
+ Bernhard Keller. Calabi-Yau triangulated categories, 2008.
1784
+ [Kel18]
1785
+ Bernhard Keller. Singular Hochschild cohomology via the singularity category. C. R.
1786
+ Math. Acad. Sci. Paris, 356(11-12):1106–1111, 2018.
1787
+ [Kel19]
1788
+ Bernhard Keller. Corrections to “Singular Hochschild cohomology via the singularity
1789
+ category” [C. R. Acad. Sci. Paris, Ser. I 356 (2018) 1106–1111]. C. R. Math. Acad.
1790
+ Sci. Paris, 357(6):533–536, 2019.
1791
+ [KM87]
1792
+ Yujiro Kawamata and Kenji Matsuki. The number of the minimal models for a 3-fold
1793
+ of general type is finite. Math. Ann., 276(4):595–598, 1987.
1794
+ [KM98]
1795
+ J´anos Koll´ar and Shigefumi Mori. Birational geometry of algebraic varieties, volume
1796
+ 134 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge,
1797
+ 1998. With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998
1798
+ Japanese original.
1799
+ [Kol89]
1800
+ J´anos Koll´ar. Flops. Nagoya Math. J., 113:15–36, 1989.
1801
+ [Kon98]
1802
+ Maxim Kontsevich. Triangulated categories and geometry. Course at the ´Ecole Nor-
1803
+ male Sup´erieure, Paris. Notes taken by J. Bella¨ıche, J.-F. Dat, I. Marin, G. Racinet
1804
+ and H. Randriambololona, 1998.
1805
+ [LH03]
1806
+ Kenji Lef`evre-Hasegawa. Sur les A-infini cat´egories, 2003, math/0310337.
1807
+ [Lin19]
1808
+ Zengqiang Lin. A general construction of n-angulated categories using periodic injec-
1809
+ tive resolutions. J. Pure Appl. Algebra, 223(7):3129–3149, 2019.
1810
+ [LV12]
1811
+ Jean-Louis Loday and Bruno Vallette. Algebraic operads, volume 346 of Grundlehren
1812
+ der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sci-
1813
+ ences]. Springer, Heidelberg, 2012.
1814
+ [LW12]
1815
+ Graham J. Leuschke and Roger Wiegand. Cohen-Macaulay representations, volume
1816
+ 181 of Mathematical Surveys and Monographs. American Mathematical Society, Prov-
1817
+ idence, RI, 2012.
1818
+ [Mur14]
1819
+ Fernando Muro. Moduli spaces of algebras over nonsymmetric operads. Algebr. Geom.
1820
+ Topol., 14(3):1489–1539, 2014.
1821
+ [Mur20]
1822
+ Fernando Muro. Enhanced A∞-obstruction theory. J. Homotopy Relat. Struct.,
1823
+ 15(1):61–112, 2020.
1824
+ [Mur22]
1825
+ Fernando Muro. Enhanced Finite Triangulated Categories. J. Inst. Math. Jussieu,
1826
+ 21(3):741–783, 2022.
1827
+ [MY82]
1828
+ John N. Mather and Stephen S. T. Yau. Classification of isolated hypersurface singu-
1829
+ larities by their moduli algebras. Invent. Math., 69(2):243–251, 1982.
1830
+
1831
+ THE DONOVAN–WEMYSS CONJECTURE
1832
+ 25
1833
+ [Rei83]
1834
+ Miles Reid. Minimal models of canonical 3-folds. In Algebraic varieties and analytic
1835
+ varieties (Tokyo, 1981), volume 1 of Adv. Stud. Pure Math., pages 131–180. North-
1836
+ Holland, Amsterdam, 1983.
1837
+ [Sai20]
1838
+ Shunya
1839
+ Saito.
1840
+ Tilting
1841
+ objects
1842
+ in
1843
+ periodic
1844
+ triangulated
1845
+ categories,
1846
+ 2020,
1847
+ arXiv:2011.14096 [math.RT].
1848
+ [Tab05]
1849
+ Gon¸calo Tabuada. Invariants additifs de DG-cat´egories. Int. Math. Res. Not.,
1850
+ (53):3309–3339, 2005.
1851
+ [Tod15]
1852
+ Yukinobu
1853
+ Toda.
1854
+ Non-commutative
1855
+ width
1856
+ and
1857
+ Gopakumar-Vafa
1858
+ invariants.
1859
+ Manuscripta Math., 148(3-4):521–533, 2015.
1860
+ [VdB04]
1861
+ Michel Van den Bergh. Three-dimensional flops and noncommutative rings. Duke
1862
+ Math. J., 122(3):423–455, 2004.
1863
+ [Wem18]
1864
+ Michael Wemyss. Flops and clusters in the homological minimal model programme.
1865
+ Invent. Math., 211(2):435–521, 2018.
1866
+ [Wem21]
1867
+ Michael Wemyss. A lockdown survey on cDV singularities, 2021, arXiv:2103.16990
1868
+ [math.AG].
1869
+ [Yos90]
1870
+ Yuji Yoshino. Cohen-Macaulay modules over Cohen-Macaulay rings, volume 146 of
1871
+ London Mathematical Society Lecture Note Series. Cambridge University Press, Cam-
1872
+ bridge, 1990.
1873
+ [Zim14]
1874
+ Alexander Zimmermann. Representation theory, volume 19 of Algebra and Applica-
1875
+ tions. Springer, Cham, 2014. A homological algebra point of view.
1876
+ (G. Jasso) Lund University, Centre for Mathematical Sciences, S¨olvegatan 18A, 22100
1877
+ Lund, Sweden
1878
+ Email address: gustavo.jasso@math.lu.se
1879
+ URL: https://www.maths.lu.se/staff/gustavo-jasso/
1880
+ (B. Keller) Universit´e Paris Cit´e, UFR de Math´ematiques, Case 7012, Bˆatiment Sophie
1881
+ Germain, 8 place Aur´elie Nemours, 75013 Paris Cedex 13, France
1882
+ Email address: bernhard.keller@imj-prg.fr
1883
+ URL: https://webusers.imj-prg.fr/~bernhard.keller/
1884
+ (F. Muro) Universidad de Sevilla,
1885
+ Facultad de Matem´aticas,
1886
+ Departamento de
1887
+ ´Algebra, Calle Tarfia s/n, 41012 Sevilla, Spain
1888
+ Email address: fmuro@us.es
1889
+ URL: https://personal.us.es/fmuro/
1890
+
8tFJT4oBgHgl3EQfnyx6/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
99E4T4oBgHgl3EQfDgse/content/tmp_files/2301.04869v1.pdf.txt ADDED
@@ -0,0 +1,1726 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Parallel Interior-Point Solver for Block-Structured Nonlinear
2
+ Programs on SIMD/GPU Architectures
3
+ Fran¸cois Pacauda, Michel Schanenb, Sungho Shinb, Daniel Adrian Maldonadob,
4
+ Mihai Anitescub
5
+ a Centre Automatique et Syst`emes, Mines Paris - PSL, Paris, France; b Mathematics and
6
+ Computer Science Department, Argonne National Laboratory, Lemont, USA
7
+ ARTICLE HISTORY
8
+ Compiled January 13, 2023
9
+ ABSTRACT
10
+ We investigate how to port the standard interior-point method to new exascale
11
+ architectures for block-structured nonlinear programs with state equations. Compu-
12
+ tationally, we decompose the interior-point algorithm into two successive operations:
13
+ the evaluation of the derivatives and the solution of the associated Karush-Kuhn-
14
+ Tucker (KKT) linear system. Our method accelerates both operations using two
15
+ levels of parallelism. First, we distribute the computations on multiple processes
16
+ using coarse parallelism. Second, each process uses a SIMD/GPU accelerator lo-
17
+ cally to accelerate the operations using fine-grained parallelism. The KKT system
18
+ is reduced by eliminating the inequalities and the state variables from the corre-
19
+ sponding equations, to a dense matrix encoding the sensitivities of the problem’s
20
+ degrees of freedom, drastically minimizing the memory exchange. We demonstrate
21
+ the method’s capability on the supercomputer Polaris, a testbed for the future exas-
22
+ cale Aurora system. Each node is equipped with four GPUs, a setup amenable to our
23
+ two-level approach. Our experiments on the stochastic optimal power flow problem
24
+ show that the method can achieve a 50x speed-up compared to the state-of-the-art
25
+ method.
26
+ 1. Introduction
27
+ Solving complex engineering problems often resorts to the solution of large-scale block-
28
+ structured nonlinear programs. As such, there has been a long interest in designing
29
+ efficient nonlinear optimization algorithms, particularly by using parallel computing.
30
+ Parallelism can happen at two levels. At first, coarse parallelism splits the program
31
+ into large computational chunks, usually dispatched to multiple processors using a
32
+ message-passing interface in distributed memory. In this paradigm, the parallel al-
33
+ gorithm is designed to minimize the communication between the different processes.
34
+ In a complementary direction, fine-grained parallelism breaks down the program into
35
+ small tasks, fast to compute in shared memory. This method requires a large num-
36
+ ber of processors to be efficient, and it is usually better on SIMD architectures with
37
+ low communication overhead, as provided by Graphical Processing Units (GPUs). In
38
+ the mathematical optimization community, coarse parallelism has traditionally been
39
+ used to solve large-scale block-structured optimization problems, as encountered in
40
+ dynamic or stochastic nonlinear programs. On the contrary, fine-grained parallelism
41
+ has gained attraction only recently, with the renewed interests for machine learning
42
+ arXiv:2301.04869v1 [math.OC] 12 Jan 2023
43
+
44
+ applications and stochastic gradient algorithms. In this work, we combine coarse and
45
+ fine-grained parallelism to solve block-structured nonlinear problems on new exascale
46
+ architectures, where the solution algorithm is streamlined on different GPUs using
47
+ CUDA-aware MPI.
48
+ 1.1. Literature review
49
+ In his pioneering work [39, 40], Robert Schnabel identified three practical approaches
50
+ to run optimization algorithms in parallel: (i) parallelize the function evaluations; (ii)
51
+ parallelize the linear algebra; and (iii) parallelize the optimization algorithm itself.
52
+ The first attempt to parallelize the evaluations has been to streamline the com-
53
+ putation of the derivatives using finite-differences [29]. Soon, it has been noted that
54
+ parallelizing the forward pass in automatic differentiation (AD) is also straightforward,
55
+ provided that we can propagate the tangents (encoding the first-order sensitivity) in
56
+ parallel [20]. Unfortunately, doing the same in the reverse pass is not trivial, as ad-
57
+ joining a mutable code leads to race conditions (e.g., every read becomes a write
58
+ operation). This has led to extensive research on adapting automatic differentiation
59
+ to parallel environments [4, 19, 27]. Now, most state-of-the-art differentiable tools em-
60
+ ploy a Domain Specific Language (DSL) constraining the user to specific differentiable
61
+ operations. In particular, this approach has been adopted mainly in machine learning,
62
+ leading to the development of fast AD libraries efficiently generating the derivatives
63
+ efficiently on hardware accelerators such as GPUs or TPUs [3, 32].
64
+ The parallelization of linear algebra is usually more involved, as most large-scale op-
65
+ timization methods fall back on the solution of sparse indefinite Karush-Kuhn-Tucker
66
+ (KKT) systems [30]. In the 1980s, preliminary results were obtained by running itera-
67
+ tive methods in parallel, using block-Krylov [36] or block-truncated Newton methods
68
+ [28]. However, block iterative algorithms are quickly limited by the lack of generic
69
+ preconditioners for KKT systems. The 1990s witnessed the emergence of the interior-
70
+ point methods (IPM), together with the development of large-scale sparse direct linear
71
+ solvers [12, 38]. In IPM, a significant portion of the time is spent solving a sequence
72
+ of (indefinite) KKT systems, hence the method directly benefits from efficient sparse
73
+ linear solvers able to run in parallel [1, 13]. In the 2000s, it was shown that, for block-
74
+ structured optimization problems as we consider here, the layout of the optimization
75
+ problem can be exploited further in a Schur complement approach to solve the Newton
76
+ step in parallel [2, 9, 17, 22, 33, 44, 45]. These developments led to the development
77
+ of mature decomposition-based parallel nonlinear solvers for scenario-based problems
78
+ in the 2010s [8, 16, 34, 41, 46].
79
+ Eventually, running an optimization algorithm fully in parallel generally requires a
80
+ subtle combination of (i) and (ii), often devolving to a software engineering problem.
81
+ The challenge is to evaluate the derivatives and solve the resulting KKT system each in
82
+ parallel; all this while minimizing the communication between the different processes.
83
+ This has led to the development of different prototypes for MPI-parallel modelers [10,
84
+ 21, 34, 43], most of them extending a specific AD backend [5, 14, 15]. Such approaches
85
+ have been successfully applied to solve large-scale block-structured nonlinear problems,
86
+ as encountered in stochastic programming and dynamic optimization.
87
+ 2
88
+
89
+ 1.2. Contributions
90
+ In this article, we introduce a new parallel algorithm to solve block-structured non-
91
+ linear programs involving state equations on exascale supercomputers. Our algorithm
92
+ uses the parallel interior-point solver MadNLP [41], using two layers of parallelism to
93
+ streamline both the evaluation of the derivatives and the solution of the KKT system.
94
+ This framework targets new exascale supercomputers, where each node is assigned
95
+ to multiple GPUs connected with a unified memory (designed to have fast memory
96
+ exchange between the different GPUs).
97
+ We demonstrate the capability of the algorithm on scenario-based power flow prob-
98
+ lems (block-OPF), here formulated as two-stage stochastic nonlinear programs. The
99
+ scenarios can be stochastic or represent contingencies (which can be interpreted as
100
+ stochastic outcomes with uniform distribution), as is the case of the very widely used
101
+ security-constrained AC optimal power flow (SC-ACOPF) problem [7]. SC-ACOPF is
102
+ one of the core analyses undertaken in the planning, operational planning, and real-
103
+ time operation of transmission systems [7]. SC-ACOPF is run several times a day by
104
+ many operators in the US and the world. For brevity, we will refer to such problems
105
+ as stochastic.
106
+ The block structure of such problems is given by the different scenarios associ-
107
+ ated with the stochastic problem, leading to potential parallelism in both the evalu-
108
+ ation of the derivatives and the solution of the resulting block-angular KKT system.
109
+ The parallel solution of the block-OPF problem with a Schur complement approach
110
+ has been studied extensively both with PIPS-NLP [8, 37] (multiprocessing) and with
111
+ Beltistos [23, 25] (multiprocessing + factorization of the dense Schur complement on
112
+ the GPU). Compared to the state-of-the-art solver Beltistos, our approach carries out
113
+ almost all computation on the GPUs including a global CUDA-aware MPI reduction,
114
+ from the evaluation of the derivatives to the assembling of the Schur complement. We
115
+ test our implementation on the pre-exascale supercomputer Polaris, where each node
116
+ is equipped with 4 A100 GPUs, and we solve block-OPF problems with up to 9,251
117
+ nodes.
118
+ 2. Problem statement
119
+ In systems engineering, it is common to encounter optimization problems with rela-
120
+ tively few degrees of freedom – ”controls”. Then, the goal is to appropriately fix the
121
+ values for the degrees of freedom, e.g., by minimizing a given operational cost while
122
+ satisfying the physical equations of the problem. In that context, the internal state of
123
+ the system is described by a state variable x ∈ Rnx, whose values depend on the cur-
124
+ rent controls u ∈ Rnu associated with the problem’s degrees of freedom. If the problem
125
+ is well-posed, this translates to the state equation g(x, u) = 0, where the function g
126
+ exhibits the physical structure of the problem (e.g., a differential equation encoding a
127
+ dynamics, or a nonlinear network flow associated with static balance equations). When
128
+ the system faces uncertainties, it is often appropriate to choose a control u feasible
129
+ under a finite set of conditions (or scenarios). That is, the control u must satisfy N
130
+ different state equations
131
+ gi(xi, u) = 0
132
+ for all
133
+ i = 1, · · · , N,
134
+ (1)
135
+ 3
136
+
137
+ where the state xi now depend on the current scenario i. The variables xi can be assim-
138
+ ilated into a recourse variable. The N functions g1, · · · , gN define the block structure
139
+ of the problem.
140
+ 2.1. Block-structured nonlinear programs
141
+ In addition to satisfying the N state equations (1), we aim at minimizing the average
142
+ operating costs on the N different scenarios. The corresponding problem formulates
143
+ as a two-stage nonlinear program, which, in our case, is a nonlinear program with
144
+ partially separable structure [11]:
145
+ min
146
+ x1,··· ,xN,
147
+ u
148
+ N
149
+
150
+ i=1
151
+ fi(xi, u)
152
+ s.t.
153
+
154
+
155
+
156
+
157
+
158
+ xi ≥ 0 ,
159
+ u ≥ 0
160
+ gi(xi, u) = 0 ,
161
+ hi(xi, u) ≤ 0 ,
162
+ ∀i = 1, · · · , N ,
163
+ (2)
164
+ with fi : Rnx × Rnu → R, gi : Rnx × Rnu → Rnx, hi : Rnx × Rnu → Rm smooth
165
+ functions encoding the objective, the state equations, and the operational constraints,
166
+ respectively. We note that the number of variables (N × nx + nu) and constraints
167
+ (N × (m + nx)) are linearly proportional to the number of blocks N.
168
+ In addition, if we introduce local control variables u1, · · · , uN with the additional
169
+ coupling constraint u1 = · · · = uN = u, we get a problem with a separable structure,
170
+ solvable using the primal decomposition method; at the expense of increasing the
171
+ search space [11, 35].
172
+ By introducing slack variables s1, · · · , sN, we rewrite (2) in standard form:
173
+ min
174
+ x1,··· ,xN,
175
+ s1,··· ,sN,
176
+ u
177
+ N
178
+
179
+ i=1
180
+ fi(xi, u)
181
+ s.t.
182
+
183
+
184
+
185
+
186
+
187
+ u ≥ 0 ,
188
+ xi ≥ 0 ,
189
+ si ≥ 0
190
+ gi(xi, u) = 0 ,
191
+ hi(xi, u) + si = 0 ,
192
+ ∀i = 1, · · · , N .
193
+ (3)
194
+ We define yi ∈ Rnx the multipliers (or adjoints) associated to the equality con-
195
+ straints gi(xi, u) = 0, zi ∈ Rm the multipliers associated to the operational constraints
196
+ hi(xi, u) + si = 0, as well as λ, κi, νi the three multipliers associated to the respective
197
+ bound constraints u ≥ 0, xi ≥ 0, si ≥ 0. The Lagrangian associated to (3) is:
198
+ L(x, u, s; y, z, λ, µ, ν) :=
199
+ N
200
+
201
+ i=1
202
+
203
+ fi(xi, u) + y⊤
204
+ i gi(xi, u) + z⊤
205
+ i
206
+
207
+ hi(xi, u) + si
208
+
209
+ − κixi − νisi
210
+
211
+ − λu ,
212
+ (4)
213
+ with x := (x1, · · · , xN), s := (s1, · · · , sN), y := (y1, · · · , yN), z := (z1, · · · , zN). To
214
+ simplify the notations, we define the extended objective function and the extended
215
+ constraints:
216
+ f(x, u) :=
217
+
218
+ i=1
219
+ fi(xi, u) ,
220
+ g(x, u) :=
221
+
222
+ ��
223
+ g1(x1, u)
224
+ ...
225
+ gN(xN, u)
226
+
227
+ �� ,
228
+ h(x, u) :=
229
+
230
+ ��
231
+ h1(x1, u)
232
+ ...
233
+ hN(xN, u)
234
+
235
+ �� .
236
+ 4
237
+
238
+ We assume the functions f, g, h are twice differentiable. We denote
239
+ H = ∂(x,u)h(x, u) ∈ RNm×(Nnx+nu)
240
+ Jacobian of the inequality cons.
241
+ G = ∂(x,u)g(x, u) ∈ RNnx×(Nnx+nu)
242
+ Jacobian of the equality cons.
243
+ W = ∇2
244
+ (x,u)L(x, u, s; ·) ∈ R(Nnx+nu)×(Nnx+nu)
245
+ Hessian of Lagrangian.
246
+ 2.2. Interior-point method
247
+ The interior-point method (IPM) [30, Chapter 19] is a classical approach to solve (3).
248
+ 2.2.1. KKT system
249
+ The Karush-Kuhn-Tucker (KKT) equations associated to (3) can be expressed as
250
+ ∇xfi + (Gi
251
+ x)⊤yi + (Hi
252
+ x)⊤zi − κi = 0,
253
+ ∀i = 1, · · · , N
254
+ (5a)
255
+ N
256
+
257
+ i=1
258
+
259
+ ∇ufi + (Gi
260
+ u)⊤yi + (Hi
261
+ u)⊤zi
262
+
263
+ − λ = 0,
264
+ (coupling)
265
+ (5b)
266
+ zi − νi = 0,
267
+ ∀i = 1, · · · , N
268
+ (5c)
269
+ gi(xi, u) = 0,
270
+ ∀i = 1, · · · , N
271
+ (5d)
272
+ hi(xi, u) + si = 0,
273
+ ∀i = 1, · · · , N
274
+ (5e)
275
+ Xiκi = 0, (xi, κi) ≥ 0,
276
+ ∀i = 1, · · · , N
277
+ (5f)
278
+ Siνi = 0, (si, νi) ≥ 0,
279
+ ∀i = 1, · · · , N
280
+ (5g)
281
+ Uλ = 0, (u, λ) ≥ 0,
282
+ (5h)
283
+ where U = diag(u), Xi = diag(xi), Si = diag(si).
284
+ The interior-point method uses a homotopy parameter µ > 0 to replace the
285
+ complementarity constraints (5f)-(5g)-(5h) by the smooth approximations: Xiκi =
286
+ µenx, Siνi = µem, Uλ = µenu (en being the vector of all ones of dimension n). The
287
+ resulting (smooth) system of nonlinear equations can be solved iteratively using New-
288
+ ton method, where at each iteration, the descent direction is updated by solving the
289
+ following augmented linear system:
290
+
291
+ ���
292
+ W + Σp
293
+ 0
294
+ G⊤
295
+ H⊤
296
+ 0
297
+ Σs
298
+ 0
299
+ I
300
+ G
301
+ 0
302
+ 0
303
+ 0
304
+ H
305
+ I
306
+ 0
307
+ 0
308
+
309
+ ���
310
+
311
+ ���
312
+ pd
313
+ ps
314
+ py
315
+ pz
316
+
317
+ ��� = −
318
+
319
+ ���
320
+ r1
321
+ r2
322
+ r3
323
+ r4
324
+
325
+ ���
326
+ (6)
327
+ with r1 =
328
+
329
+ ∇xf + G⊤
330
+ x y + H⊤
331
+ x z − µX−1enx
332
+ ∇uf + G⊤
333
+ u y + H⊤
334
+ u z − µU−1enu
335
+
336
+ , r2 = z − µS−1em, r3 = g(x, u), r4 =
337
+ h(x, u) + s. The primal descent direction pd decomposes as pd = (px1, · · · , pxN, pu).
338
+ 2.2.2. Block angular structure
339
+ The linear system (6) is sparse and symmetric indefinite, and can be factorized using
340
+ the Bunch-Kaufman algorithm. However, it is often beneficial to exploit its block-
341
+ angular structure. Indeed, both the Hessian of the Lagrangian and the Jacobians have
342
+ 5
343
+
344
+ a block-angular structure, given as
345
+ W =
346
+
347
+ ����
348
+ Wx1x1
349
+ Wx1u
350
+ ...
351
+ ...
352
+ WxNxN
353
+ WxNu
354
+ Wux1
355
+ . . .
356
+ WuxN
357
+ Wuu
358
+
359
+ ���� ,
360
+ G =
361
+
362
+ ��
363
+ G1
364
+ x1
365
+ G1
366
+ u
367
+ ...
368
+ ...
369
+ GN
370
+ xN
371
+ GN
372
+ u
373
+
374
+ �� .
375
+ By reordering the linear system (6), we can expose the block-angular structure of the
376
+ KKT system as:
377
+
378
+ ����
379
+ A1
380
+ B⊤
381
+ 1
382
+ ...
383
+ ...
384
+ AN
385
+ B⊤
386
+ N
387
+ B1
388
+ . . .
389
+ BN
390
+ A0
391
+
392
+ ����
393
+ (7)
394
+ with
395
+ A0 = Wuu,
396
+ Ai =
397
+
398
+ ���
399
+ Wxixi + Σxi
400
+ 0
401
+ G⊤
402
+ xi
403
+ H⊤
404
+ xi
405
+ 0
406
+ Σsi
407
+ 0
408
+ I
409
+ Gxi
410
+ 0
411
+ 0
412
+ 0
413
+ Hxi
414
+ I
415
+ 0
416
+ 0
417
+
418
+ ��� ,
419
+ Bi =
420
+
421
+
422
+ Wxiu
423
+ (Gi
424
+ u)⊤
425
+ (Hi
426
+ u)⊤
427
+
428
+
429
+
430
+ .
431
+ The block-angular structure (7) can be exploited to solve the KKT linear system in
432
+ parallel using a Schur complement approach. In that case, the submatrices Ai can be
433
+ factorized independently to assemble the Schur complement in parallel [8].
434
+ 2.3. Condensation and reduction
435
+ Instead of reordering the augmented KKT system (6) as a block angular matrix (7),
436
+ we propose an alternative approach based on successive condensation and reduction
437
+ of the KKT system, following the method introduced in [31]. If the structure is well-
438
+ defined, we show that we can condense the KKT system (6) to a dense matrix with
439
+ size nu × nu in two steps: first, by removing the inequality constraints in (6), then by
440
+ exploiting the structure of the equality constraints to reduce the condensed system to
441
+ a dense matrix. The condensation and reduction steps are illustrated in Figure 1.
442
+ 2.3.1. Condensation step
443
+ The condensation step allows reducing the size of the KKT system drastically if the
444
+ number of inequality constraints is large1.
445
+ Proposition 2.1 (Condensed KKT system). The linear system (6) is equivalent to
446
+
447
+ K + Σp
448
+ G⊤
449
+ G
450
+ 0
451
+ � �
452
+ pd
453
+ py
454
+
455
+ = −
456
+
457
+ r1 + H⊤(Σsr4 − r2)
458
+ r3
459
+
460
+ ,
461
+ (8)
462
+ where K ∈ R(Nnx+nu)×(Nnx+nu) is the condensed matrix K := W + H⊤ΣsH. The
463
+ 1It is equivalent to the normal equations in linear programming [30, Chapter 16, p.412]
464
+ 6
465
+
466
+ Figure 1.. Successive reductions for a block-structured nonlinear problem with N = 3: Aug-
467
+ mented system (6), Condensed system (8), Reduced system (11).
468
+ descent directions ps and pz are recovered as
469
+
470
+ pz = Σs
471
+
472
+ Hpd + r4
473
+
474
+ − r2 ,
475
+ ps = −Σ−1
476
+ s
477
+
478
+ r2 + pz
479
+
480
+ .
481
+ (9)
482
+ Proof. See [31, Theorem 2.2].
483
+ The condensed matrix K inherits the block-angular structure of the Hessian of the
484
+ Lagrangian W.
485
+ Proposition 2.2. The condensed matrix K = W +H⊤ΣsH has a block-angular struc-
486
+ ture, given as
487
+ K =
488
+
489
+ ����
490
+ Kx1x1
491
+ Kx1u
492
+ ...
493
+ ...
494
+ KxNxN
495
+ KxNu
496
+ Kux1
497
+ . . .
498
+ KuxN
499
+ Kuu
500
+
501
+ ����
502
+ (10)
503
+ where we have defined the condensed blocks Kxixi := Wxixi + (Hi
504
+ xi)⊤ΣsiHi
505
+ xi, Kuxi :=
506
+ Wuxi + (Hi
507
+ u)⊤ΣsiHi
508
+ xi and Kuu := Wuu + �N
509
+ i=1(Hi
510
+ u)⊤ΣsiHi
511
+ u.
512
+ Proof. This is proved by induction.
513
+ 2.3.2. Reduction step
514
+ In addition, we can exploit the structure of the equality constraints g1, · · · , gN to
515
+ further reduce the size of the linear system (8) down to a dense matrix with size
516
+ nu × nu. Equation (10) exhibits the structure w.r.t. the state x and the control u, we
517
+ 7
518
+
519
+ 3755 x 3755
520
+ 1193 x 1193
521
+ 107 x 107rewrite as such the condensed KKT system (8) as
522
+
523
+ �����������
524
+ Kx1x1
525
+ Kx1u
526
+ (G1
527
+ x1)⊤
528
+ ...
529
+ ...
530
+ ...
531
+ KxNxN
532
+ KxNu
533
+ (GN
534
+ xN)⊤
535
+ Kux1
536
+ . . .
537
+ KuxN
538
+ Kuu
539
+ (G1
540
+ u)⊤
541
+ . . .
542
+ (G1
543
+ u)⊤
544
+ G1
545
+ x1
546
+ G1
547
+ u
548
+ ...
549
+ ...
550
+ GN
551
+ xN
552
+ GN
553
+ u
554
+
555
+ �����������
556
+
557
+ �����������
558
+ px1...
559
+ pxN
560
+ pu
561
+ p1
562
+ y...
563
+ pN
564
+ y
565
+
566
+ �����������
567
+ = −
568
+
569
+ ����������
570
+ ˆr1
571
+ 1...
572
+ ˆrN
573
+ 1
574
+ ˆr2
575
+ ˆr1
576
+ 3...
577
+ ˆrN
578
+ 3
579
+
580
+ ����������
581
+ ,
582
+ where we have renamed the right-hand-side in (8) as ˆr.
583
+ Proposition 2.3 (Reduction). Assume that for all i = 1, · · · , N the Jacobian matri-
584
+ ces Gi
585
+ x ∈ Rnx×nx are invertible. Then the linear system (8) is equivalent to
586
+ ˆKuu pu = −ˆr2 +
587
+ N
588
+
589
+ i=1
590
+
591
+ (Gi
592
+ u)⊤(Gi
593
+ x)−⊤ˆri
594
+ 1 +
595
+
596
+ Kuxi − (Gi
597
+ u)⊤(Gi
598
+ x)−⊤Kxixi
599
+
600
+ (Gi
601
+ x)−1ˆri
602
+ 3
603
+
604
+ (11)
605
+ with ˆKuu := Z⊤KZ and Z ∈ R(nu+Nnx)×nu is the reduction operator defined as
606
+ Z =
607
+
608
+ ����
609
+ −(G1
610
+ x)−1G1
611
+ u
612
+ ...
613
+ −(GN
614
+ x )−1GN
615
+ u
616
+ I
617
+
618
+ ���� .
619
+ (12)
620
+ The descent directions px and py are recovered as
621
+
622
+ pi
623
+ x = −(Gi
624
+ x)−1�
625
+ ˆri
626
+ 3 + Gi
627
+ upu
628
+
629
+ pi
630
+ y = −(Gi
631
+ x)−⊤�
632
+ ˆri
633
+ 1 + Kxixipi
634
+ x + Kxiupu
635
+
636
+ .
637
+ (13)
638
+ Proof. See [31, Theorem 2.1].
639
+ The reduction (11) is equivalent to a Schur complement approach applied to the
640
+ condensed KKT system (8). In Proposition (2.1), we have shown that the condensed
641
+ matrix K has a block-angular structure. The associated condensed KKT system (8)
642
+ is also inheriting a block-angular structure in the form of (7), where the blocks are
643
+ given by
644
+ A0 = Kuu ,
645
+ Ai =
646
+
647
+ Kxixi
648
+ (Gi
649
+ x)⊤
650
+ Gi
651
+ x
652
+ 0
653
+
654
+ ,
655
+ Bi =
656
+
657
+ Kxiu
658
+ Gi
659
+ u
660
+ �⊤
661
+ .
662
+ (14)
663
+ Proposition 2.4. Assume that for each i = 1, · · · , N the Jacobian Gi
664
+ x is invertible.
665
+ Let Suu = A0 − �N
666
+ i=1 BiA−1
667
+ i B⊤
668
+ i
669
+ be the Schur complement associated to the block-
670
+ angular system (7) with the matrices (Ai, Bi) defined in (14). Then, the Schur com-
671
+ plement Suu is equal to the reduced matrix �Kuu defined in (11): Suu = Z⊤KZ.
672
+ 8
673
+
674
+ Proof. First, note that if the Jacobian Gi
675
+ x is invertible, then the block matrix Ai
676
+ defined in (14) is also invertible, with
677
+ A−1
678
+ i
679
+ =
680
+
681
+ 0
682
+ (Gi
683
+ x)−1
684
+ (Gi
685
+ x)−⊤
686
+ −(Gi
687
+ x)−⊤Kxixi(Gi
688
+ x)−1
689
+
690
+ .
691
+ (15)
692
+ Using (14)-(15), we expand the expression of the terms in the sum constituting the
693
+ Schur complement Suu:
694
+ BiA−1
695
+ i B⊤
696
+ i =
697
+
698
+ Kuxi
699
+ (Gi
700
+ u)⊤� �
701
+ 0
702
+ (Gi
703
+ x)−1
704
+ (Gi
705
+ x)−⊤
706
+ −(Gi
707
+ x)−⊤Kxixi(Gi
708
+ x)−1
709
+ � �
710
+ Kxiu
711
+ Gi
712
+ u
713
+
714
+ ,
715
+ = (Gi
716
+ u)⊤(Gi
717
+ x)−⊤Kxiu + Kuxi(Gi
718
+ x)−1(Gi
719
+ u) − (Gi
720
+ u)⊤(Gi
721
+ x)−⊤Kxixi(Gi
722
+ x)−1Gi
723
+ u .
724
+ Hence, the Schur complement Suu = A0 − �N
725
+ i=1 BiA−1
726
+ i B⊤
727
+ i expands as
728
+ Suu = Kuu −
729
+ N
730
+
731
+ i=1
732
+
733
+ (Gi
734
+ u)⊤(Gi
735
+ x)−⊤Kxiu + Kuxi(Gi
736
+ x)−1(Gi
737
+ u) − (Gi
738
+ u)⊤(Gi
739
+ x)−⊤Kxixi(Gi
740
+ x)−1Gi
741
+ u
742
+
743
+ = Z⊤KZ .
744
+ We recover the expression of the reduced matrix �Kuu in Proposition 2.3.
745
+ 2.4. Discussion
746
+ Hence, we can interpret the reduction step as a Schur complement approach. Forming
747
+ the Schur complement has always been the bottleneck when solving distributed block
748
+ angular problems in parallel [8, 26]. Its reduction operation involves large memory
749
+ transfers between the processes, with the number of transfers being on the order
750
+ of O(log(p)), where p is the number of processes. Due to the quasi-shared memory
751
+ architecture on GPUs, the reduction can be implemented efficiently [31]. In the next
752
+ section, we propose to extend [31] to assemble the reduced matrix �Kuu using two levels
753
+ of parallelism, using both MPI and CUDA, thus reducing the reliance on distributed
754
+ memory.
755
+ 3. Parallel implementation
756
+ In the previous section, we have detailed the structure of block-angular nonlinear
757
+ programs and presented the condensation and reduction steps for the KKT system.
758
+ The loose coupling between the blocks is favorable for parallelizing the evaluation of
759
+ the derivatives and the solution of the block-angular KKT system. Globally, we can
760
+ distribute the computation on different processes using MPI (coarse parallelism). Lo-
761
+ cally, we can further streamline the computation using GPU accelerators (fine-grained
762
+ parallelism). This paradigm, with its two levels of parallelism, is directly in line with
763
+ what is currently offered by the new exascale architectures, where each node has 4 to
764
+ 8 GPUs, all sharing a unified memory for fast communication. We present in §3.1 how
765
+ we streamline the evaluation of the model using automatic differentiation, and in §3.2
766
+ how we parallelize the solution of the KKT system.
767
+ 9
768
+
769
+ 3.1. Parallel automatic-differentiation
770
+ First, we present how to evaluate the model in parallel using automatic differentiation
771
+ [18]. We illustrate the procedure in Figure 2. The goal of the algorithm is to streamline
772
+ the evaluation of the N scenarios on N/M GPUs, M being the number of scenarios
773
+ evaluated locally on each GPU (we suppose here that N is a multiple of M).
774
+ root
775
+ g1, · · · , g4
776
+ g13, · · · , g16
777
+ g1
778
+ g4
779
+ · · ·
780
+ g13
781
+ g16
782
+ · · ·
783
+ · · ·
784
+ · · ·
785
+ Figure 2.. Parallel evaluation of the derivatives for g1, · · · gN on 4 GPUs: we have a total of
786
+ N = 16 scenarios, each GPU evaluating M = 16/4 = 4 scenarios locally.
787
+ 3.1.1. Local parallelism
788
+ The first level of parallelism streamlines the evaluation of the model on SIMD/GPU
789
+ devices. We have designed our implementation to run entirely on the GPU device, to
790
+ avoid any data transfer between the host and the device.
791
+ 3.1.1.1. Block evaluation. We suppose that the nonlinear functions (fi, gi, hi)
792
+ share the same structure, its expressions yielding the same Abstract Syntax Tree (AST)
793
+ for all i = 1, · · · , M. We illustrate the block evaluation on a simple abstract tree, but
794
+ the reasoning extends to more complicated structures. We suppose that for all i, the
795
+ functions fi, gi, hi depend linearly on a nonlinear basis matrix ψ : Rnx × Rnu → Rnb:
796
+ that is, there exists three sparse matrices Lf, Lg, Lh such that
797
+ fi(xi, u) = Lfψ(xi, u) ,
798
+ gi(xi, u) = Lgψ(xi, u) ,
799
+ hi(xi, u) = Lhψ(xi, u) .
800
+ (16)
801
+ Suppose we aim to evaluate the M functions g1, · · · , gM in batch for the states
802
+ x1, · · · , xM. The structure (16) is directly amenable for SIMD evaluation. We de-
803
+ note by XM = (x1, · · · , xM) ∈ Rnx×M the dense matrix obtained by concatenat-
804
+ ing the M states together. By using a proper GPU kernel or a parallel modeler,
805
+ we can evaluate the basis in a SIMD fashion and build the matrix Ψ(XM, u) :=
806
+
807
+ ψ(x1, u), · · · , ψ(xM, u)
808
+
809
+ ∈ Rnb×M. Then, evaluating the functions g1, · · · , gM simul-
810
+ taneously translates to the evaluation of one SpMM product:
811
+
812
+ g1(x1, u), · · · , gM(xM, u)
813
+
814
+ = LgΨ(XM, u) ∈ Rnx×M .
815
+ (17)
816
+ The total memory required in the two successive operations is O((nx + nb) × M), and
817
+ depends linearly on the number of blocks M. We note the SpMM operations are generally
818
+ implemented efficiently in the vendor library (cusparse for CUDA, rocSPARSE for
819
+ AMDGPU).
820
+ 10
821
+
822
+ 3.1.1.2. First-order derivatives. Suppose that for a given i we have a differen-
823
+ tiable implementation gbi : Rnd → Rnx associated to the function gi. We aim to
824
+ evaluate the Jacobian-matrix products (∇gi)D for p tangents encoded in a matrix
825
+ D ∈ Rnd×p using forward-mode AD and operator overloading. This operation trans-
826
+ lates to propagating forward a vector of dual numbers. Denoting by d ∈ Dnd
827
+ p
828
+ the dual
829
+ number encoding the p tangents stored in D, evaluating (∇gi)D simply amounts to
830
+ call gbi(d) and extract the results in the dual numbers returned as a result. As Gi
831
+ is sparse, we can apply the technique of Jacobian coloring [18] to compress the inde-
832
+ pendent columns of the sparse matrix Gi and reduces the number of required seeding
833
+ tangents p needed to evaluate the full Jacobian.
834
+ Suppose now we want to evaluate the sparse Jacobians G1, · · · , GM in batch. As
835
+ the functions gi are based on the same AST, their respective Jacobians G1, · · · , GM
836
+ are sharing the same sparsity pattern. By seeding a matrix of dual numbers DM =
837
+ (d1, · · · , dM) ∈ Dnd×M
838
+ p
839
+ , we can use the same operation as (17) to streamline the
840
+ evaluation of the M Jacobian-vector products using the SIMD kernel Ψ(·) and SpMM
841
+ operations:
842
+
843
+ gb1(d1), · · · , gbM(dM)
844
+
845
+ := LgΨ(DM) ∈ Dnx×M
846
+ p
847
+ .
848
+ (18)
849
+ Once the results are evaluated, it remains to uncompress the dual outputs to build
850
+ the M sparse Jacobians G1, · · · , GM. Hence, we can streamline the evaluation of the
851
+ Jacobian along with the number of tangents p and the number of blocks M. This comes
852
+ at the expense of increasing memory usage to O((nx + nb + nd) × M × p) (to store the
853
+ dual matrices associated to the input, the intermediate basis Ψ and the output).
854
+ 3.1.1.3. Second-order derivatives. The evaluation of the second-order deriva-
855
+ tives follows the same procedure, using forward-over-reverse AD. For each i, we sup-
856
+ pose available an adjoint function adj gbi : Rnd × Rnx → Rnd which for any pri-
857
+ mal x ∈ Rnd and adjoint y ∈ Rnx evaluates the Jacobian-transpose vector product
858
+ (Gi(x))⊤y (reverse-mode). Using forward-mode AD on top of adj gbi, we can compute
859
+ the second-order derivatives y⊤∇2gi(x)V for p directions V by calling adj gbi(x, y).
860
+ Using Hessian coloring, we can compress the independent columns of the sparse matrix
861
+ y⊤∇2g(x) and reduce the number of seeding tangents p required to evaluate the full
862
+ Hessian. We note that in general obtaining an adjoint adj gbi running in parallel is
863
+ nontrivial due to potential race conditions incurred by the control flow reversal of the
864
+ original code.
865
+ Computing the Hessian y⊤∇2gi(x) in parallel for i = 1, · · · M amounts to defining
866
+ two matrices of dual numbers XM = (X1, · · · , XM) ∈ Dnd×M
867
+ p
868
+ , Y M = (y1, · · · , yM) ∈
869
+ Dnx×M
870
+ p
871
+ and evaluate ∇Ψ(XM)⊤L⊤
872
+ g Y M. The dual outputs are uncompressed to build
873
+ the M sparse Hessians (as the sparsity pattern of the Hessians is different than those
874
+ of the Jacobians, the matrix XM employed here is different than the one used in (18)).
875
+ The total memory required to store the duals is O((2nx +nd +nb)×M ×p). For more
876
+ details, we refer to the vector forward mode as described in [18].
877
+ 3.1.2. Global parallelism
878
+ Now, if we have several GPUs at our disposal, we can push the parallelism further
879
+ by distributing the evaluations using multiprocessing and a Message Passing Interface
880
+ (MPI) library. Coming back at our original problem (2), we illustrate in Figure 2 how to
881
+ dispatch the evaluation of the N nonlinear constraints g1, · · · , gN (the same reasoning
882
+ 11
883
+
884
+ applies to the objectives f1, · · · , fN and the inequality constraints h1, · · · , hN). We use
885
+ the streamlined implementation described in the previous subsection to evaluate the
886
+ constraints in a batch of size M: the first GPU evaluates the constraints g1, · · · , gM,
887
+ the second GPU evaluates gM+1, · · · , g2M, and so on. In total, the evaluation of the
888
+ N constraints requires N/M GPUs (if M = 1, each GPU evaluate one constraint; if
889
+ M = N, we use only one GPU evaluating all the constraints).
890
+ The implementation has been designed to minimize the communication between
891
+ the different processes: each batch g1, · · · , gM stores the data it needs locally, the only
892
+ data exchange with the other processes being the vector of input and the vector of
893
+ output. In addition, we will see in the next section we do not have to transfer the first-
894
+ and second-order information if a parallel linear solver is being used.
895
+ 3.2. Parallel KKT solver
896
+ By exploiting the block-angular structure of the KKT system, we can solve the New-
897
+ ton step in parallel using a Schur complement approach. The challenge lies in the
898
+ computation of the Schur complement matrix S = A0 − �N
899
+ i=1 BiA−1
900
+ i B⊤
901
+ i . Each prod-
902
+ uct BiA−1
903
+ i B⊤
904
+ i requires the factorization of the matrix Ai and the solution of a linear
905
+ system with multiple (sparse) right-hand-side A−1
906
+ i Bi. State-of-the-art methods are
907
+ evaluating the Schur complement using an incomplete augmented factorization ap-
908
+ plied on the auxiliary matrix
909
+
910
+ Ai
911
+ B⊤
912
+ i
913
+ Bi
914
+ 0
915
+
916
+ , as currently implemented in the Pardiso
917
+ linear solver [33]. Here, we use an alternative approach building on the reduced KKT
918
+ system §2.3.2 (equivalent to the Schur complement approach). As the reduction can
919
+ be streamlined on GPU accelerators [31], this approach can assemble the Schur com-
920
+ plement in parallel using CUDA-aware MPI. We illustrate the parallel computation of
921
+ the Schur complement in Figure 3.
922
+ root
923
+ (Assembling)
924
+ K, G
925
+ K, G
926
+ K, G
927
+ K, G
928
+ AD
929
+ AD
930
+ AD
931
+ AD
932
+ ˆK1:4
933
+ uu
934
+ ˆK5:8
935
+ uu
936
+ ˆK9:12
937
+ uu
938
+ ˆK13:16
939
+ uu
940
+ (Reduction)
941
+ Z⊤KZ
942
+ Z⊤KZ
943
+ Z⊤KZ
944
+ Z⊤KZ
945
+ MPI AllReduce
946
+ +
947
+ (Schur compl.)
948
+ ˆKuu
949
+ Figure 3.. Parallel computation of the Schur complement.
950
+ Assembling the sparse matrices. Using the procedure introduced in §3.1.1, we
951
+ evaluate locally the Jacobians G1, · · · , GM the Jacobians H1, · · · , HM and the Hes-
952
+ sians W 1, · · · , W M. Using dedicated kernels, we uncompress the results in the block-
953
+ 12
954
+
955
+ angular sparse Jacobians
956
+ G1:M
957
+ x
958
+ =
959
+
960
+ ��
961
+ G1
962
+ x1
963
+ ...
964
+ GM
965
+ xM
966
+
967
+ �� , G1:M
968
+ u
969
+ =
970
+
971
+ ��
972
+ G1
973
+ u...
974
+ GM
975
+ u
976
+
977
+ �� , H1:M =
978
+
979
+ ��
980
+ H1
981
+ x1
982
+ H1
983
+ u
984
+ ...
985
+ ...
986
+ HM
987
+ xM
988
+ HM
989
+ u
990
+
991
+ �� ,
992
+ and sparse Hessian
993
+ W 1:M =
994
+
995
+ ����
996
+ Wx1x1
997
+ Wx1u
998
+ ...
999
+ ...
1000
+ WxMxM
1001
+ WxMu
1002
+ Wux1
1003
+ . . .
1004
+ WuxM
1005
+ Wuu
1006
+
1007
+ ���� .
1008
+ Once the sparse matrices are obtained, we recover the condensed matrix K1:M =
1009
+ W 1:M + (H1:M)⊤Σ(H1:M) (Proposition 2.1) using one SpGEMM operation and we fac-
1010
+ torize the matrix G1:M
1011
+ x
1012
+ using a sparse LU factorization (potentially running in batch
1013
+ as the matrices G1
1014
+ x1, · · · , GM
1015
+ xM are sharing the same sparsity pattern). Once the ma-
1016
+ trix G1:M
1017
+ x
1018
+ is factorized as PG1:M
1019
+ x
1020
+ Q = LU (P, Q being two permutation matrices),
1021
+ computing (G1:M
1022
+ x
1023
+ )−1b translates to two backsolves (SpSV) and two matrix-vector mul-
1024
+ tiplications (SpMV), as (G1:M
1025
+ x
1026
+ )−1b = QU−1L−1Pb.
1027
+ Local reduction. Once the sparse matrices are built, we evaluate locally the reduced
1028
+ matrix �K1:M
1029
+ uu
1030
+ on the GPU, using div(nu, nbatch) + 1 matrix-matrix product �K1:M
1031
+ uu V
1032
+ (with V ∈ Rnu×nbatch a dense matrix encoding nbatch vectors of the Cartesian basis of
1033
+ Rnu). The evaluation of one batched matrix-matrix product �K1:M
1034
+ uu V = (Z⊤K1:MZ)V
1035
+ proceeds in three steps
1036
+ (1) Solve Tx = −(G1:M
1037
+ x
1038
+ )−1(G1:M
1039
+ u
1040
+ V ).
1041
+ (2) Evaluate
1042
+
1043
+ Lx
1044
+ Lu
1045
+
1046
+ :=
1047
+
1048
+ K1:M
1049
+ xx
1050
+ K1:M
1051
+ xu
1052
+ K1:M
1053
+ ux
1054
+ K1:M
1055
+ uu
1056
+ � �
1057
+ Tx
1058
+ V
1059
+
1060
+ .
1061
+ (3) Set �K1:M
1062
+ uu V = Lu − G1:M
1063
+ u
1064
+ (G1:M
1065
+ x
1066
+ )−⊤Lx.
1067
+ In total, we need 2 SpSM and 3 SpMM operations in the first step, 1 SpMM in the second
1068
+ step, and 2 SpSM and 3 SpMM operations in the third step, giving a total of 4 SpSM
1069
+ and 7 SpMM operations. More than the computation, the reduction is limited by the
1070
+ memory, as we have to store the three buffers Lx, Tx, Tu with a total size of (2M ×
1071
+ nx + nu) × nbatch. If nx is too large, it is in our interest to reduce M (by using more
1072
+ GPUs) or to reduce nbatch (at the expense of computing more matrix-matrix product
1073
+ �K1:M
1074
+ uu V ).
1075
+ Global reduction. Once we obtain the locally reduced matrices �KnM+1:(n+1)M
1076
+ uu
1077
+ for n = 0, · · · , N/M − 1, we can assemble the global reduced matrix
1078
+ �Kuu =
1079
+ �N/M−1
1080
+ n=0
1081
+ �KnM+1:(n+1)M
1082
+ uu
1083
+ using one all reduce (MPI Allreduce) operation. The size of
1084
+ the reduced matrix �Kuu is nu × nu, hence limiting the memory transfer required in
1085
+ the algorithm.
1086
+ 13
1087
+
1088
+ 3.3. Discussion
1089
+ We have presented a practical way to assemble the Schur complement on multi-GPU
1090
+ architectures. The parallelism occurs both at the local level (SIMD evaluations on the
1091
+ GPUs) and at the global level (distributed computation with MPI). The algorithm
1092
+ has the advantage of assembling the sparse Jacobians and Hessians only locally, as
1093
+ the reduction occurs before proceeding to the memory transfer with MPI Allreduce.
1094
+ The reduced matrix has a dimension nu × nu, which compresses the memory transfer
1095
+ significantly if the number of degrees of freedom nu is small. However, this comes at the
1096
+ expense of storing a vector of dual numbers (whose memory is linearly proportional
1097
+ to the number of blocks M evaluated locally and the number of tangents p being
1098
+ employed to evaluate the sparse derivatives) and additional buffers in the reduction
1099
+ algorithm. In the next section, we will test an implementation of the algorithm on
1100
+ CUDA GPUs, and show that the algorithm is practical.
1101
+ 4. Numerical results
1102
+ We demonstrate the capabilities of the algorithm we introduced in Section §3 on the
1103
+ supercomputer Polaris, using CUDA-aware MPI to dispatch the solution on multiple
1104
+ GPUs. We present in §4.1 the stochastic optimal power flow problem, and give in §4.2
1105
+ detailed assessments of the algorithms we have introduced earlier in §3. Eventually,
1106
+ we present in §4.3 a benchmark comparing our parallel solution algorithm with a
1107
+ state-of-the-art solution method running on the CPU.
1108
+ 4.1. Settings
1109
+ 4.1.1. Case study: the block-structured optimal power flow
1110
+ The stochastic optimal power flow problem aims at finding an optimal dispatch for the
1111
+ generators u. The solution u should minimize the operational costs while satisfying the
1112
+ physical constraints (power flow equations g(x, u) = 0, here playing the role of the state
1113
+ equations) and operational constraints (line flow constraints h(x, u) ≤ 0) on a given
1114
+ set of scenarios. Each scenario is assigned given load parameters (energy demands) and
1115
+ potential contingencies (line tripping). The values of the state x depend on the local
1116
+ scenario we are in, the state x being the recourse variable in our case. As such, the
1117
+ problem has a partially separable structure as introduced in Problem (2), the control
1118
+ u being shared across all scenarios. We refer to [7] for the original presentation of the
1119
+ stochastic optimal power flow problem and to [8, 23, 24, 26] for practical algorithms
1120
+ solving the stochastic optimal power flow problem (some also focus on the multistage
1121
+ setting, which is not covered in this article). For our benchmark, we look at reference
1122
+ instances provided by MATPOWER [47], whose characteristics are detailed in Table 1.
1123
+ We recall that in our case, the size of the Schur complement matrix ˆKuu is given by
1124
+ the number of controls nu.
1125
+ 4.1.2. Implementation
1126
+ The algorithm has been implemented entirely in Julia 1.8. The Schur complement
1127
+ approach has been developed as an extension of the nonlinear optimization solver
1128
+ MadNLP [41], using CUDA-aware MPI as provided in [6]. We have used the package
1129
+ 14
1130
+
1131
+ Name
1132
+ #bus
1133
+ #lines
1134
+ #gen
1135
+ nx
1136
+ nu
1137
+ case118
1138
+ 118
1139
+ 186
1140
+ 54
1141
+ 181
1142
+ 107
1143
+ case1354pegase
1144
+ 1,354
1145
+ 1,991
1146
+ 260
1147
+ 2,447
1148
+ 519
1149
+ case2869pegase
1150
+ 2,869
1151
+ 4,582
1152
+ 510
1153
+ 5,227
1154
+ 1,019
1155
+ case9241pegase
1156
+ 9,241
1157
+ 16,049
1158
+ 1,445
1159
+ 17,036
1160
+ 2,889
1161
+ Table 1.. MATPOWER instances used in the benchmark.
1162
+ ExaPF as a nonlinear modeler for the optimal power flow problem. All the results
1163
+ presented here have been generated on the supercomputer Polaris equipped with a
1164
+ total of 560 nodes, each node having with 1 CPU and 4 A100 GPUs.
1165
+ 4.2. Assessment of the parallel implementation
1166
+ 4.2.1. Assessing the performance of the parallel automatic differentation
1167
+ We first assess the performance of the parallel automatic differentiation we introduced
1168
+ in §3.1 in a multi-GPU setting. We compare the performance we obtain with a CPU
1169
+ implementation. We use case1354pegase as a representative instance, and display the
1170
+ time spent in the automatic differentiation as we increase the total number of scenarios
1171
+ N. The results are displayed in Figure 4.
1172
+ We observe that the computation time depends linearly on the number of scenarios,
1173
+ as expected. For N = 8, it is not worthwhile dispatching the evaluation on multiple
1174
+ GPUs as the problem is small enough to be evaluated on a single GPU. For N = 512,
1175
+ the evaluation time is 12.3s on the CPU, compared to 0.50, 0.41, 0.31, and 0.28s using
1176
+ 1, 2, 4 and 8 GPUs, respectively. Hence, we get a 40x speed-up when evaluating the
1177
+ derivatives in a multi-GPU setting, and it is not worthwhile to use more than 4 GPUs
1178
+ (one node).
1179
+ 8
1180
+ 16
1181
+ 32
1182
+ 64
1183
+ 128
1184
+ 256
1185
+ 512
1186
+ N scenarios
1187
+ 10
1188
+ 1
1189
+ 100
1190
+ 101
1191
+ Evaluation time [s]
1192
+ case1354pegase
1193
+ CPU
1194
+ 1 GPUs
1195
+ 2 GPUs
1196
+ 4 GPUs
1197
+ 8 GPUs
1198
+ Figure 4.. Time spent to evaluate the model and its derivatives with automatic differentiation.
1199
+ 15
1200
+
1201
+ 4.2.2. Assessing the performance of the parallel KKT solver
1202
+ We proceed to the same performance analysis to assess the performance of the parallel
1203
+ KKT solver detailed in §3.2. We compare the time required to evaluate the full solution
1204
+ of the KKT system afresh (including reduction time, factorization time and backsolve
1205
+ time) on case1354pegase as we increase the number of scenarios N. As a reference,
1206
+ we give the time taken by the sparse linear solvers HSL MA27 (single-threaded) and
1207
+ HSL MA57 (multi-threaded). The results are displayed in Figure 5.
1208
+ On the left, we display the evolution of the time spent in the linear solver as we
1209
+ increase the number of scenarios. For N = 512, we observe that we get a linear speed-
1210
+ up as we increase the number of GPUs: using 8 GPUs, the parallel KKT solver is
1211
+ 40x faster than using HSL MA27 on the CPU. Interestingly, we observe that HSL
1212
+ MA57 is not faster than HSL MA27, despite being multithreaded. This is consistent
1213
+ with the observation made in [42], and illustrates the difficulty of parallelizing ef-
1214
+ fectively the sparse LDL factorization (Bunch-Kaufman). On the right, we display a
1215
+ performance profile detailing the time spent in MA27 and the parallel KKT solver on
1216
+ case1354pegase with N = 512 scenarios. We observe that most of the time in HSL
1217
+ MA27 is spent on factorizing the sparse augmented KKT system (6). On the other
1218
+ side, the factorization of the dense reduced matrix ˆKuu is trivial using LAPACK on
1219
+ the GPU; the bottleneck in the parallel KKT solver is the reduction algorithm itself.
1220
+ Fortunately, the reduction algorithm can run in parallel: we get a linear speed-up as
1221
+ we increase the number of GPUs used in the reduction algorithm.
1222
+ 8
1223
+ 16
1224
+ 32
1225
+ 64
1226
+ 128
1227
+ 256
1228
+ 512
1229
+ N scenarios
1230
+ 10
1231
+ 1
1232
+ 100
1233
+ 101
1234
+ Time [s]
1235
+ Linear solver time against N
1236
+ ma27
1237
+ ma57
1238
+ 1 GPUs
1239
+ 2 GPUs
1240
+ 4 GPUs
1241
+ 8 GPUs
1242
+ ma27
1243
+ 1 GPU
1244
+ 2 GPUs
1245
+ 4 GPUs
1246
+ 8 GPUs
1247
+ 0
1248
+ 2
1249
+ 4
1250
+ 6
1251
+ 8
1252
+ Time [s]
1253
+ Performance profile for N = 512
1254
+ Factorization
1255
+ Backsolve
1256
+ Reduction
1257
+ Figure 5.. Time spent to solve the KKT system for case1354pegase.
1258
+ 4.2.3. Assessing the memory consumption
1259
+ We have observed in §3.1 that the total memory required to store the duals is O((2nx+
1260
+ nd + nb) × M × p), with M being the number of scenarios stored locally (M = N on
1261
+ 1 GPU, M = N/2 on 2 GPUs) and p the number of tangents. We display in Table 2
1262
+ the memory taken by the automatic differentiation backend and by the parallel KKT
1263
+ solver for case1354pegase as we increase the number of scenarios N. We note that
1264
+ storing the duals is expensive in terms of memory, with up to 10.9GB for N = 512 on
1265
+ one GPU (as a reference, each NVIDIA A100 GPU on Polaris has 40GB of memory
1266
+ available). By evaluating the model on different processes with MPI, we can split the
1267
+ memory consumption on the different GPUs we are using, leading to better use of the
1268
+ resource at our disposal.
1269
+ 16
1270
+
1271
+ 1 GPU
1272
+ 2 GPUs
1273
+ N
1274
+ AD
1275
+ KKT solver
1276
+ AD
1277
+ KKT solver
1278
+ 8
1279
+ 171.1
1280
+ 92.3
1281
+ 85.5
1282
+ 48.1
1283
+ 16
1284
+ 342.2
1285
+ 181.5
1286
+ 171.1
1287
+ 93.1
1288
+ 32
1289
+ 684.3
1290
+ 360.0
1291
+ 342.2
1292
+ 183.2
1293
+ 64
1294
+ 1,368.7
1295
+ 716.8
1296
+ 684.3
1297
+ 363.2
1298
+ 128
1299
+ 2,737.3
1300
+ 1,430.5
1301
+ 1,368.7
1302
+ 723.4
1303
+ 256
1304
+ 5,474.7
1305
+ 2,858.0
1306
+ 2,737.3
1307
+ 1,443.6
1308
+ 512
1309
+ 10,949.3
1310
+ 5,712.8
1311
+ 5,474.7
1312
+ 2,884.1
1313
+ Table 2.. Memory consumption in MB
1314
+ 4.3. Parallel solution of the block-structured OPF problem
1315
+ We analyze the parallel performance of our implementation on block-structured OPF
1316
+ problems.
1317
+ 4.3.1. Assessing the parallel performance w.r.t. the number of scenarios
1318
+ First, we are interested in the scaling of the parallel algorithm in relation to the total
1319
+ number of scenarios N. We consider the case118 instance, and increase the number
1320
+ of scenarios N from 8 up to 2,048. For each N, we solve the block-structured OPF
1321
+ problem with MadNLP using our parallel KKT solver, and we compare with the
1322
+ performance we obtained with HSL MA27. The results are displayed in Figure 6. We
1323
+ observe that the solver HSL MA27 is initially faster than our parallel KKT solver, as
1324
+ the problem is too small to benefit from parallelism. However, as soon as N ≥ 16 the
1325
+ parallel KKT solver becomes competitive with HSL MA27. The relative performance is
1326
+ improving as we increase the number of scenarios N: for N = 512, we get a 68x speed-
1327
+ up when using 8 GPUs, compared to the reference HSL MA27 (10.4s versus 712s).
1328
+ Interestingly, using 2 nodes (=8 GPUs) does not lead to any speed-up compared to
1329
+ a single node (=4 GPUs) if N ≤ 256; this setting is attractive only when the size of
1330
+ the problem becomes sufficiently large (N ≥ 1024) to compensate for the additional
1331
+ memory exchange.
1332
+ 4.3.2. Assessing the parallel performance w.r.t. the size of the problem
1333
+ Second, we increase the size of the problems. We set a fixed number of scenarios
1334
+ N = 8, and look at the time to solution for case1354pegase, case2869pegase and
1335
+ case9241pegase. We detail the respective dimension of each problem in Table 3. We
1336
+ display the results in Figure 7, and give the detailed benchmark in Table 4. On the
1337
+ left (a), we display the total time required to find the solution of the three instances as
1338
+ a function of the number of GPUs; on the right (b), we show the performance profile
1339
+ associated to case9241pegase. In (a), we observe that overall the parallel algorithm is
1340
+ faster than the CPU implementation. The parallel algorithm scales well as we increase
1341
+ the number of GPUs we are using, the parallel algorithm being 35x faster than the
1342
+ reference when using 8 GPUs to solve case9241pegase. In (b), we detail the time
1343
+ 17
1344
+
1345
+ 8
1346
+ 16
1347
+ 32
1348
+ 64
1349
+ 128
1350
+ 256
1351
+ 512
1352
+ 1,024 2,048
1353
+ N scenarios
1354
+ 100
1355
+ 101
1356
+ 102
1357
+ 103
1358
+ Time to solution [s]
1359
+ case118
1360
+ ma27 (CPU)
1361
+ polaris (1 GPUs)
1362
+ polaris (2 GPUs)
1363
+ polaris (4 GPUs)
1364
+ polaris (8 GPUs)
1365
+ Figure 6.. Time to solve the block-structured OPF problem case118 as a function of the
1366
+ number of scenarios N.
1367
+ spent in the different operations for case9241pegase: the time spent to factorize the
1368
+ Schur complement with Lapack (using cusolve) is constant as the size of the Schur
1369
+ complement remains the same as we increase the number of GPUs. We observe that
1370
+ the time spent in the AD decreases linearly with the number of GPUs exploited, but
1371
+ the relative time spent in AD is negligible (less than 5% of the total time). Most of
1372
+ the time is spent in the parallel reduction, as discussed earlier in §4.2.2.
1373
+ N
1374
+ nvar
1375
+ ncon
1376
+ ˆKuu (mb)
1377
+ 1354pegase
1378
+ 8
1379
+ 20,095
1380
+ 53,520
1381
+ 2.1
1382
+ 2869pegase
1383
+ 8
1384
+ 42,835
1385
+ 119,216
1386
+ 7.9
1387
+ 9241pegase
1388
+ 8
1389
+ 139,177
1390
+ 404,640
1391
+ 63.7
1392
+ 1354pegase
1393
+ 512
1394
+ 1,253,383
1395
+ 4,425,280
1396
+ 2.1
1397
+ Table 3.. Dimension of the instances we have used in our benchmark.
1398
+ 4.3.3. Assessing the parallel performance on a very large-scale instance
1399
+ We finish our numerical experiments by solving a very large-scale instance:
1400
+ case1354pegase with N = 512 scenarios. The dimension of the resulting optimization
1401
+ problem is displayed in Table 3: the problem has more than 1 million variables, and 4
1402
+ millions constraints. We solve this instance on resp. 1 node, 2, 4 and 8 nodes (resp. 4,
1403
+ 8, 16 and 32 GPUs). The results are displayed in Figure 8. We observe that the scaling
1404
+ is almost perfect when we use 2 nodes (8 GPUs) instead of a single node (4 GPUs)
1405
+ but we do not observe the same behavior when we increase the number of nodes to 4
1406
+ and 8. On that instance, the gain we get when using 8 nodes (32 GPUs) is marginal
1407
+ 18
1408
+
1409
+ CPU
1410
+ 1 GPU
1411
+ 2 GPU
1412
+ 4 GPU
1413
+ 8 GPU
1414
+ 100
1415
+ 101
1416
+ 102
1417
+ 103
1418
+ Time to solution [s]
1419
+ Benchmark
1420
+ 1354pegase
1421
+ 2849pegase
1422
+ 9241pegase
1423
+ 1 GPU
1424
+ 2 GPUs
1425
+ 4 GPUs
1426
+ 8 GPUs
1427
+ 10
1428
+ 1
1429
+ 100
1430
+ 101
1431
+ 102
1432
+ Time [s]
1433
+ Performance profile, 9241pegase
1434
+ Total time
1435
+ linear scaling
1436
+ AD
1437
+ Factorization
1438
+ Figure 7.. For a fixed number of scenarios N = 8, (a) total time spent solving the block-
1439
+ OPF case1354pegase, case2869pegase and case9241pegase with MadNLP (b) performance
1440
+ profile for case9241pegase with varying number of GPUs.
1441
+ 1354pegase
1442
+ 2869pegase
1443
+ 9241pegase
1444
+ #it
1445
+ AD
1446
+ KKT
1447
+ Tot.
1448
+ #it
1449
+ AD
1450
+ KKT
1451
+ Tot.
1452
+ #it
1453
+ AD
1454
+ KKT
1455
+ Tot.
1456
+ CPU
1457
+ 44
1458
+ 2.6
1459
+ 4.2
1460
+ 7.0
1461
+ 77
1462
+ 11.9
1463
+ 27.4
1464
+ 40.3
1465
+ 136
1466
+ 205.6
1467
+ 771.8
1468
+ 984.1
1469
+ 1 GPU
1470
+ 44
1471
+ 0.3
1472
+ 1.8
1473
+ 2.1
1474
+ 93
1475
+ 1.1
1476
+ 11.7
1477
+ 12.8
1478
+ 98
1479
+ 5.5
1480
+ 112.3
1481
+ 117.8
1482
+ 2 GPUs
1483
+ 44
1484
+ 0.3
1485
+ 1.1
1486
+ 1.4
1487
+ 93
1488
+ 0.8
1489
+ 7.4
1490
+ 8.2
1491
+ 98
1492
+ 3.4
1493
+ 56.8
1494
+ 60.2
1495
+ 4 GPUs
1496
+ 44
1497
+ 0.3
1498
+ 1.0
1499
+ 1.3
1500
+ 93
1501
+ 0.8
1502
+ 5.7
1503
+ 6.5
1504
+ 98
1505
+ 2.3
1506
+ 35.8
1507
+ 38.1
1508
+ 8 GPUs
1509
+ 44
1510
+ 0.2
1511
+ 1.0
1512
+ 1.2
1513
+ 93
1514
+ 0.6
1515
+ 5.1
1516
+ 5.7
1517
+ 98
1518
+ 1.4
1519
+ 26.4
1520
+ 27.7
1521
+ Table 4.. Detailed results
1522
+ compared to when using 4 nodes (16 GPUs): the solving time only decreases from
1523
+ 67s to 58s. This corroborate our observations: it is better to pack all the computa-
1524
+ tion on a single node to use four A100 GPUs connected together via unified memory
1525
+ (NVLINK has a transfer rate of 600GB/s). When we have to use more than 2 nodes,
1526
+ the memory transfers are more involved as they have to pass through the network of
1527
+ the supercomputer.
1528
+ 5. Conclusion
1529
+ We show promising results for leveraging massively parallel SIMD architectures like
1530
+ GPUs for block-structured nonlinear programs. The parallelism is applied to both the
1531
+ derivative evaluation and the solution of the KKT linear system. The main operation
1532
+ in the KKT algorithm is the assembling of the Schur complement, the factorization of
1533
+ the dense Schur complement being fast to carry on the GPU.
1534
+ At all levels, the method benefits significantly from the massive parallelism, achiev-
1535
+ ing a speedup of around 40 for the derivatives compared to a sequential CPU im-
1536
+ plementation. The speedup is very application dependent, not least on the Hessian
1537
+ coloring and the problem’s structure. The assembling of the Schur complement is bot-
1538
+ tlenecked by a distributed reduction operation bound by the interconnect’s latency
1539
+ and throughput between GPUs. Current, so-called super nodes with multiple GPUs
1540
+ 19
1541
+
1542
+ 4
1543
+ 8
1544
+ 16
1545
+ 32
1546
+ #GPUs
1547
+ 102
1548
+ 3 × 101
1549
+ 4 × 101
1550
+ 6 × 101
1551
+ 2 × 102
1552
+ Time to solution [s]
1553
+ Benchmark 1354pegase (N=512)
1554
+ Measured
1555
+ linear scaling
1556
+ Figure 8.. Solving case1354pegase with N = 512
1557
+ connected via fast networks like NVLINK greatly accelerate this operation. Lastly, our
1558
+ method is limited by the memory capacity of the GPU accelerators as it grows linearly
1559
+ with the number of problem blocks. In the context of ACOPF we are confident that
1560
+ upcoming GPUs will provide enough memory to solve a large number of scenarios in
1561
+ parallel, even for the largest grid instances (e.g., Eastern Interconnection with 70,000
1562
+ nodes).
1563
+ With the upcoming release of the Aurora supercomputer, these SIMD architectures
1564
+ will allow new science in regimes that were impossible with previous CPU architec-
1565
+ tures.
1566
+ Acknowledgment
1567
+ This material was based upon work supported by the U.S. Department of Energy, Of-
1568
+ fice of Science, Office of Advanced Scientific Computing Research (ASCR) under Con-
1569
+ tract DE-AC02-06CH11347 and by NSF through award CNS-1545046. The authors
1570
+ gratefully acknowledge the funding support from the Applied Mathematics Program
1571
+ within the U.S. Department of Energy’s (DOE) Office of Advanced Scientific Com-
1572
+ puting Research (ASCR) as part of the project ExaSGD. This research used resources
1573
+ of the Argonne Leadership Computing Facility, which is a DOE Office of Science User
1574
+ Facility supported under Contract DE-AC02-06CH11357.
1575
+ References
1576
+ [1] Amestoy, P. R., Duff, I. S., and L’excellent, J.-Y. (2000). Multifrontal parallel distributed
1577
+ symmetric and unsymmetric solvers. Computer methods in applied mechanics and engineer-
1578
+ ing, 184(2-4):501–520.
1579
+ [2] Birge, J. R. and Qi, L. (1988).
1580
+ Computing block-angular Karmarkar projections with
1581
+ applications to stochastic programming. Management science, 34(12):1472–1479.
1582
+ [3] Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G.,
1583
+ 20
1584
+
1585
+ Paszke, A., VanderPlas, J., Wanderman-Milne, S., and Zhang, Q. (2018). JAX: composable
1586
+ transformations of Python+NumPy programs.
1587
+ [4] B¨ucker, H. M., Lang, B., an Mey, D., and Bischof, C. H. (2001). Bringing together auto-
1588
+ matic differentiation and OpenMP. In Proceedings of the 15th international conference on
1589
+ Supercomputing, pages 246–251.
1590
+ [5] Bussieck, M. R. and Meeraus, A. (2004). General algebraic modeling system (GAMS). In
1591
+ Modeling languages in mathematical optimization, pages 137–157. Springer.
1592
+ [6] Byrne, S., Wilcox, L. C., and Churavy, V. (2021). MPI. jl: Julia bindings for the Message
1593
+ Passing Interface. In Proceedings of the JuliaCon Conferences, volume 1, page 68.
1594
+ [7] Capitanescu, F., Ramos, J. M., Panciatici, P., Kirschen, D., Marcolini, A. M., Platbrood,
1595
+ L., and Wehenkel, L. (2011).
1596
+ State-of-the-art, challenges, and future trends in security
1597
+ constrained optimal power flow. Electric power systems research, 81(8):1731–1741.
1598
+ [8] Chiang, N., Petra, C. G., and Zavala, V. M. (2014). Structured nonconvex optimization
1599
+ of large-scale energy systems using PIPS-NLP. In 2014 Power Systems Computation Con-
1600
+ ference, pages 1–7. IEEE.
1601
+ [9] Choi, I. C. and Goldfarb, D. (1993). Exploiting special structure in a primal—dual path-
1602
+ following algorithm. Mathematical Programming, 58(1):33–52.
1603
+ [10] Colombo, M., Grothey, A., Hogg, J., Woodsend, K., and Gondzio, J. (2009). A structure-
1604
+ conveying modelling language for mathematical and stochastic programming. Mathematical
1605
+ Programming Computation, 1(4):223–247.
1606
+ [11] DeMiguel, V. and Nogales, F. J. (2008). On decomposition methods for a class of partially
1607
+ separable nonlinear programs. Mathematics of Operations Research, 33(1):119–139.
1608
+ [12] Duff, I. S. (2004). MA57—a code for the solution of sparse symmetric definite and indef-
1609
+ inite systems. ACM Transactions on Mathematical Software (TOMS), 30(2):118–144.
1610
+ [13] Duff, I. S. and Van Der Vorst, H. A. (1999). Developments and trends in the parallel
1611
+ solution of linear systems. Parallel Computing, 25(13-14):1931–1970.
1612
+ [14] Dunning, I., Huchette, J., and Lubin, M. (2017). JuMP: A modeling language for math-
1613
+ ematical optimization. SIAM review, 59(2):295–320.
1614
+ [15] Fourer, R., Gay, D. M., and Kernighan, B. W. (1990). A modeling language for mathe-
1615
+ matical programming. Management Science, 36(5):519–554.
1616
+ [16] Gondzio, J. and Grothey, A. (2009). Exploiting structure in parallel implementation of
1617
+ interior point methods for optimization. Computational Management Science, 6(2):135–160.
1618
+ [17] Gondzio, J. and Sarkissian, R. (2003). Parallel interior-point solver for structured linear
1619
+ programs. Mathematical Programming, 96(3):561–584.
1620
+ [18] Griewank, A. and Walther, A. (2008). Evaluating derivatives: principles and techniques
1621
+ of algorithmic differentiation. SIAM.
1622
+ [19] Hovland, P. and Bischof, C. (1998). Automatic differentiation for message-passing parallel
1623
+ programs. In Proceedings of the First Merged International Parallel Processing Symposium
1624
+ and Symposium on Parallel and Distributed Processing, pages 98–104. IEEE.
1625
+ [20] Hovland, P. D. (1997). Automatic differentiation of parallel programs. University of Illinois
1626
+ at Urbana-Champaign.
1627
+ [21] Huchette, J., Lubin, M., and Petra, C. (2014). Parallel algebraic modeling for stochas-
1628
+ tic optimization. In 2014 First Workshop for High Performance Technical Computing in
1629
+ Dynamic Languages, pages 29–35. IEEE.
1630
+ [22] Jessup, E. R., Yang, D., and Zenios, S. A. (1994). Parallel factorization of structured
1631
+ matrices arising in stochastic programming. SIAM journal on Optimization, 4(4):833–846.
1632
+ [23] Kardoˇs, J., Kourounis, D., and Schenk, O. (2019). Two-level parallel augmented Schur
1633
+ complement interior-point algorithms for the solution of security constrained optimal power
1634
+ flow problems. IEEE Transactions on power systems, 35(2):1340–1350.
1635
+ [24] Kardoˇs, J., Kourounis, D., and Schenk, O. (2020). Structure-exploiting interior point
1636
+ methods. In Parallel Algorithms in Computational Science and Engineering, pages 63–93.
1637
+ Springer.
1638
+ [25] Kardoˇs, J., Kourounis, D., Schenk, O., and Zimmerman, R. (2022). Beltistos: A robust
1639
+ interior point method for large-scale optimal power flow problems. Electric Power Systems
1640
+ 21
1641
+
1642
+ Research, 212:108613.
1643
+ [26] Lubin, M., Petra, C. G., Anitescu, M., and Zavala, V. (2011). Scalable stochastic opti-
1644
+ mization of complex energy systems. In SC’11: Proceedings of 2011 International Conference
1645
+ for High Performance Computing, Networking, Storage and Analysis, pages 1–10. IEEE.
1646
+ [27] Moses, W. S., Churavy, V., Paehler, L., H¨uckelheim, J., Narayanan, S. H. K., Schanen, M.,
1647
+ and Doerfert, J. (2021). Reverse-mode automatic differentiation and optimization of GPU
1648
+ kernels via Enzyme. In Proceedings of the International Conference for High Performance
1649
+ Computing, Networking, Storage and Analysis, pages 1–16.
1650
+ [28] Nash, S. G. and Sofer, A. (1989). Block truncated-Newton methods for parallel optimiza-
1651
+ tion. Mathematical Programming, 45(1):529–546.
1652
+ [29] Nash, S. G. and Sofer, A. (1991). A general-purpose parallel algorithm for unconstrained
1653
+ optimization. SIAM Journal on Optimization, 1(4):530–547.
1654
+ [30] Nocedal, J. and Wright, S. J. (2006). Numerical optimization. Springer series in operations
1655
+ research. Springer, New York, 2nd edition.
1656
+ [31] Pacaud, F., Shin, S., Schanen, M., Maldonado, D. A., and Anitescu, M. (2022).
1657
+ Ac-
1658
+ celerating condensed interior-point methods on SIMD/GPU architectures. arXiv preprint
1659
+ arXiv:2203.11875.
1660
+ [32] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
1661
+ Gimelshein, N., Antiga, L., et al. (2019). Pytorch: An imperative style, high-performance
1662
+ deep learning library. Advances in neural information processing systems, 32.
1663
+ [33] Petra, C. G., Schenk, O., Lubin, M., and G¨artner, K. (2014). An augmented incomplete
1664
+ factorization approach for computing the Schur complement in stochastic optimization.
1665
+ SIAM Journal on Scientific Computing, 36(2):C139–C162.
1666
+ [34] Rodriguez, J. S., Parker, R., Laird, C. D., Nicholson, B., Siirola, J. D., and Bynum, M.
1667
+ (2021). Scalable parallel nonlinear optimization with PyNumero and Parapint. Optimization
1668
+ Online.
1669
+ [35] Ruszczynski, A. (1993).
1670
+ Interior point methods in stochastic programming.
1671
+ Working
1672
+ paper.
1673
+ [36] Saad, Y. (1980).
1674
+ On the rates of convergence of the Lanczos and the block-Lanczos
1675
+ methods. SIAM Journal on Numerical Analysis, 17(5):687–706.
1676
+ [37] Schanen, M., Gilbert, F., Petra, C. G., and Anitescu, M. (2018). Toward multiperiod
1677
+ ac-based contingency constrained optimal power flow at large scale. In 2018 Power Systems
1678
+ Computation Conference (PSCC), pages 1–7. IEEE.
1679
+ [38] Schenk, O. and G¨artner, K. (2004). Solving unsymmetric sparse systems of linear equa-
1680
+ tions with PARDISO. Future Generation Computer Systems, 20(3):475–487.
1681
+ [39] Schnabel, R. B. (1985). Parallel computing in optimization. In Computational Mathe-
1682
+ matical Programming, pages 357–381. Springer.
1683
+ [40] Schnabel, R. B. (1995). A view of the limitations, opportunities, and challenges in parallel
1684
+ nonlinear optimization. Parallel computing, 21(6):875–905.
1685
+ [41] Shin, S., Coffrin, C., Sundar, K., and Zavala, V. M. (2021). Graph-based modeling and
1686
+ decomposition of energy infrastructures. IFAC-PapersOnLine, 54(3):693–698.
1687
+ [42] Tasseff, B., Coffrin, C., W¨achter, A., and Laird, C. (2019). Exploring benefits of lin-
1688
+ ear solver parallelism on modern nonlinear optimization applications.
1689
+ arXiv preprint
1690
+ arXiv:1909.08104.
1691
+ [43] Watson, J.-P., Woodruff, D. L., and Hart, W. E. (2012). PySP: modeling and solving
1692
+ stochastic programs in python. Mathematical Programming Computation, 4(2):109–149.
1693
+ [44] Word, D. P., Kang, J., Akesson, J., and Laird, C. D. (2014). Efficient parallel solution
1694
+ of large-scale nonlinear dynamic optimization problems. Computational Optimization and
1695
+ Applications, 59(3):667–688.
1696
+ [45] Zavala, V. M., Laird, C. D., and Biegler, L. T. (2008).
1697
+ Interior-point decomposition
1698
+ approaches for parallel solution of large-scale nonlinear parameter estimation problems.
1699
+ Chemical Engineering Science, 63(19):4834–4845.
1700
+ [46] Zhu, Y., Word, D., Siirola, J., and Laird, C. D. (2009). Exploiting modern computing
1701
+ architectures for efficient large-scale nonlinear programming. In Computer Aided Chemical
1702
+ 22
1703
+
1704
+ Engineering, volume 27, pages 783–788. Elsevier.
1705
+ [47] Zimmerman, R. D., Murillo-S´anchez, C. E., and Thomas, R. J. (2010). MATPOWER:
1706
+ Steady-state operations, planning, and analysis tools for power systems research and edu-
1707
+ cation. IEEE Transactions on Power Systems, 26(1):12–19.
1708
+ Government License: The submitted manuscript
1709
+ has been created by UChicago Argonne, LLC,
1710
+ Operator of Argonne National Laboratory (“Ar-
1711
+ gonne”). Argonne, a U.S. Department of Energy
1712
+ Office of Science laboratory, is operated under
1713
+ Contract No. DE-AC02-06CH11357. The U.S.
1714
+ Government retains for itself, and others acting
1715
+ on its behalf, a paid-up nonexclusive, irrevoca-
1716
+ ble worldwide license in said article to repro-
1717
+ duce, prepare derivative works, distribute copies
1718
+ to the public, and perform publicly and display
1719
+ publicly, by or on behalf of the Government.
1720
+ The Department of Energy will provide pub-
1721
+ lic access to these results of federally sponsored
1722
+ research in accordance with the DOE Public
1723
+ Access Plan. http://energy.gov/downloads/doe-
1724
+ public-access-plan.
1725
+ 23
1726
+
99E4T4oBgHgl3EQfDgse/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
9tFLT4oBgHgl3EQfCC72/content/tmp_files/2301.11974v1.pdf.txt ADDED
@@ -0,0 +1,2684 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.11974v1 [math.OC] 27 Jan 2023
2
+ Augmenting Bi-objective Branch and Bound
3
+ by Scalarization-Based Information
4
+ Julius Bauß∗ and Michael Stiglmayr
5
+ University of Wuppertal, School of Mathematics and Natural Sciences,
6
+ IMACM, Gaußstr. 20, 42119 Wuppertal, Germany
7
+ {bauss,stiglmayr}@math.uni-wuppertal.de
8
+ While Branch and Bound based algorithms are a standard approach to solve single-
9
+ objective (mixed-)integer optimization problems, multi-objective Branch and Bound meth-
10
+ ods are only rarely applied compared to the predominant objective space methods. In this
11
+ paper we propose modifications to increase the performance of multi-objective Branch
12
+ and Bound algorithms by utilizing scalarization-based information. We use the hypervol-
13
+ ume indicator as a measure for the gap between lower and upper bound set to implement
14
+ a multi-objective best-first strategy. By adaptively solving scalarizations in the root node
15
+ to integer optimality we improve both, upper and lower bound set. The obtained lower
16
+ bound can then be integrated into the lower bounds of all active nodes, while the deter-
17
+ mined solution is added to the upper bound set. Numerical experiments show that the
18
+ number of investigated nodes can be significantly reduced by up to 83% and the total
19
+ computation time can be reduced by up to 80%.
20
+ Keywords: multi-objective optimization, mult-iobjective branch and bound, integer pro-
21
+ gramming, hypervolume indicator
22
+ 1 Introduction
23
+ Many optimization problems occurring in real-word applications include a conflict of interests and
24
+ goals, or secondary objectives, in a word, they are multi-objective. Thus, there is (in general) not
25
+ one solution that optimizes all objectives at once. Following the a posteriori paradigm of decision
26
+ making, we aim at determining the set of so-called efficient solutions or the images, the so-called
27
+ non-dominated points, which cannot be improved in one objective without deterioration in at least
28
+ one other objective. Thus, efficient solutions are reasonable choices for decision makers.
29
+ As we are considering specifically bi-objective integer linear programs and their solution with
30
+ multi-objective Branch and Bound methods, the following literature survey will also focus on this
31
+ and closely related topics. A comprehensive introduction to multi-objective optimization in general
32
+ is given, e.g., in Steuer (1986); Ehrgott (2005).
33
+ Solution approaches for multi-objective optimization problems are often categorized in: objective
34
+ space and decision space methods. Objective space methods scalarize the underlying problem, i. e.,
35
+ it is replaced by a series of single-objective problems to determine successively the set of efficient
36
+ ∗Corresponding author
37
+ 1
38
+
39
+ solutions.
40
+ In the case of multi-objective integer programming, these scalarized problems can be
41
+ solved with commercial integer programming solvers like CPLEX or Gurobi. The utilization of these
42
+ optimized, single-criteria solvers are a major advantage and one of the reasons why those methods
43
+ are predominant in multi-objective optimization.
44
+ There are numerous objective space methods and a popular one is the ε-constraint method that
45
+ was introduced for two objectives by Haimes et al. (1971). In every iteration the first objective is
46
+ optimized with an updated constraint to ensure an improvement regarding the second objective. In
47
+ Laumanns et al. (2006) an extension to three and more objectives is presented. Many approaches
48
+ based on the ε-constraint method have been published in the last decades, for example Boland et al.
49
+ (2017) and Kirlik and Sayın (2014) combine the method with reduction of dimension in the tri-
50
+ respectively multi-dimensional case.
51
+ The weighted sum scalarization is an objective space method based on the optimization of a
52
+ weighted sum of the objective functions using non-negative weights.
53
+ Note that not all efficient
54
+ solutions can be determined as optimal solutions of the weighted sum scalarization using suit-
55
+ able weights (see, e. g. Aneja and Nair, 1979).
56
+ Efficient solutions which can be obtained by us-
57
+ ing weighted sum scalarization are denoted as supported efficicent and their corresponding non-
58
+ dominated points are located on the boundary of the convex hull of feasible image points. Extensions
59
+ of the weighted sum method to the multi-objective case are proposed in Przybylski et al. (2010a),
60
+ Özpeynirci and Köksalan (2010), Bö¸kler and Mutzel (2015), and Przybylski et al. (2019).
61
+ Ulungu and Teghem (1995) introduced the so-called two-phase method for bi-objective problems.
62
+ In the first phase the extreme supported non-dominated points are generated with an algorithm sim-
63
+ ilar to the initial weighted sum approach. In the second phase the remaining non-dominated points
64
+ are generated by searching in triangles defined by two consecutive extreme supported non-dominated
65
+ points. In Przybylski et al. (2008) and Tuyttens et al. (2000) problem specific algorithms are sug-
66
+ gested for the second phase, while in Przybylski et al. (2010b) a two-phase method for problems
67
+ with more than two objectives is proposed.
68
+ The augmented weighted Tchebycheff method, first presented in Steuer and Choo (1983), mini-
69
+ mizes the augmented weighted Tchebycheff distance between a predefined reference point and the
70
+ set of feasible image points. Dächert et al. (2012) suggested an adaptive choice of the augmentation
71
+ term for the bi-objective case.
72
+ In Boland et al. (2015a), Boland et al. (2015b) (for the bi-objective case), Dächert and Klamroth
73
+ (2014), and Klamroth et al. (2015) (for the tri- respectively multi-objective case) search region split-
74
+ ting methods are proposed. In this class of objective space methods, the search region (based on the
75
+ already determined non-dominated points) is splitted into so-called search zones on which scalariza-
76
+ tions are solved indpendently.
77
+ Besides their advantages, objective space methods share a shortcoming: In each iteration a scalar-
78
+ ized integer program is solved from scratch. Even though in some objective space methods starting
79
+ solutions can be transfered from previous iterations, a large number of very similar problems has
80
+ to be solved. In order to avoid this effort, decision space methods, mainly the Branch and Bound
81
+ method, have been increasingly investigated in the recent years.
82
+ Klein and Hannan (1982) developed one of the first Branch and Bound algorithms for multi-
83
+ objective integeger programs with a typical one tree structure. In Kiziltan and Yucaoğlu (1983) a
84
+ general Branch and Bound framework for multi-objective integer programs with binary variables
85
+ is presented. Ulungu and Teghem (1997) and Visée et al. (1998) proposed problem specific Branch
86
+ and Bound approaches for bi-objective Knapsack problems, where the latter approach is integrated
87
+ in a two-phase method.
88
+ Mavrotas and Diakoulaki (1998) extend the Branch and Bound approach to multi-objective mixed
89
+ integer programs. Parts of the algorithm are refined in Mavrotas and Diakoulaki (2005). In Vincent et al.
90
+ (2013) this algorithm is improved and it is shown that the original algorithm is not correct because
91
+ the final dominance test is incomplete.
92
+ In Belotti et al. (2012) a Branch and Bound method is
93
+ presented that can handle bi-objective mixed integer programs with continious variables in both
94
+ objective functions.
95
+ 2
96
+
97
+ The Branch and Bound method proposed in Sourd and Spanjaard (2008) uses a set of points as
98
+ lower bound instead of just using a single point. Furthermore hyperplanes are used to fathom nodes
99
+ by dominance. In Stidsen et al. (2014) this idea is continued. They use hyperplanes as a lower
100
+ bound set that are generated by solving weighted sum scalarizations. Additionally they present
101
+ the so-called Pareto branching and the slicing technique. With Pareto branching it is possible to
102
+ divide the objective space to possibly ignore parts of it in specific nodes.
103
+ Slicing partitions the
104
+ objective space in equally large parts and a respective slice can be fathomed if it is dominated by
105
+ an already found integer point.
106
+ In Stidsen and Andersen (2018) this algorithm is improved and
107
+ an approach to parallelize the algorithm is presented. Based on this, the idea Pareto branching is
108
+ further investigated in Parragh and Tricoire (2019) and Gadegaard et al. (2019) for the bi-objective
109
+ case and Forget et al. (2022) for the tri-objective case. A self-contained survey of multi-objective
110
+ Branch and Bound approaches is given in Przybylski and Gandibleux (2017).
111
+ In this paper we present a bi-objective Branch and Bound algorithm that is augmented by
112
+ scalarization-based information. We make use of optimized single-objective solvers for scalar in-
113
+ teger programs and integrate the resulting information into the bi-objective Branch and Bound by
114
+ improving lower and upper bounds. Furthermore, we propose a new adaptive node selection strategy,
115
+ which relies on objective space information. In our numerical analysis we show the effectiveness of
116
+ these improvements by comparing them with a generic multi-objective Branch and Bound algorithm,
117
+ which we use as our baseline algorithm.
118
+ The remainder of the article is organized as follows: In Section 2, we introduce notations and def-
119
+ initions for multi-objective optimization. In Section 3, we present a general multi-objective Branch
120
+ and Bound framework and its key components. Furthermore, we describe a specific (however stan-
121
+ dard) multi-objective Branch and Bound algorithm, which will be used as baseline implementation
122
+ in our numerical tests. In Section 4, we present augmentations of the multi-objective Branch and
123
+ Bound, that utilize objective space information to improve the node selection as well as the compu-
124
+ tation of upper and lower bounds. We provide numerical results in Section 5 and in Section 6, we
125
+ outline conclusions and outlooks for further research.
126
+ 2 Preliminaries
127
+ We introduce a general multi-objective integer linear program which can be written in the form:
128
+ min
129
+
130
+ z1(x), . . . , zp(x)
131
+ �⊤
132
+ s.t.
133
+ A x ≤ b
134
+ x ≥ 0
135
+ x ∈ Zn.
136
+ (MOILP)
137
+ Thereby, z(x) := (z1(x), . . . , zp(x))⊤ = C ·x ∈ Rp (with p ≥ 2) denotes the objective function vector,
138
+ with C ∈ Rp×n the matrix of objective coefficients. The set of feasible solutions X := {x ∈ Zn : A ≤
139
+ b, x ≥ 0} is a subset of the decision space Rn, while its image Y := {C x: x ∈ X} is a subset of the
140
+ objective space Rp.
141
+ We use the Pareto concept of optimality which relies on the componentwise order. Let y1, y2 ∈ Rp,
142
+ then we define the corresponding dominance relations as follows:
143
+ • y1 ≦ y2, i.e., y1 weakly dominates y2 if y1
144
+ k ≤ y2
145
+ k for k = 1, ..., p,
146
+ • y1 < y2, i.e., y1 strictly dominates y2 if y1
147
+ k < y2
148
+ k for k = 1, ..., p,
149
+ • y1 ≤ y2, i.e., y1 dominates y2 if y1 ≤ y2 and y1 ̸= y2.
150
+ A feasible solution x ∈ X is called efficient if there is no other solution ˆx ∈ X dominating it, i.e.,
151
+ z(ˆx) ≤ z(x). A feasible solution x ∈ X is called weakly efficient if there is no ˆx ∈ X such that
152
+ z(ˆx) < z(x). The set of efficient solutions is denoted by XE. By YN = {z(x) ∈ Y : x ∈ XE} we
153
+ 3
154
+
155
+ denote the set of the non-dominated points in the objective space. Moreover, for any set Q ⊆ Rp
156
+ we denote by QN the set of its non-dominated points (i.e., q ∈ QN
157
+ ⇐⇒ ∄q′ ∈ Q: q′ ≤ q). For a
158
+ comprehensive introduction to multi-objective optimization see, e. g., Ehrgott (2005).
159
+ In this article we consider a minimal complete set as solution of a multi-objective optimization
160
+ problem. A minimal complete set denotes the set of all non-dominated points YN and one efficient
161
+ solution for each non-dominated point. See Serafini (1987) for a comparison of solution concepts in
162
+ multi-objective optimization.
163
+ A standard solution approach in multi-objective optimization is the weighted sum scalarization
164
+ given in (WSλ).
165
+ min WSλ(x) := λ⊤z(x) =
166
+ p
167
+
168
+ i=1
169
+ λi zi(x)
170
+ s.t. x ∈ X
171
+ (WSλ)
172
+ Obviously, every optimal solution of the weighted sum scalarization for λ ∈ Rp
173
+ > := {λ ∈ Rp : λ > 0}
174
+ is efficient for (MOILP). However, in general not all efficient solutions are optimal solutions of a
175
+ corresponding weighted sum problem. An efficient solution x′ ∈ XE is called supported if there is a
176
+ weighting vector λ′ ∈ Rp
177
+ > such that x′ is optimal for (WSλ) for λ = λ′, otherwise x′ is unsupported.
178
+ Note that the non-dominated points corresponding to supported efficient solutions are located on
179
+ the boundary of the convex hull of Y , while the unsupported non-dominated points are located in
180
+ its (relative) interior.
181
+ As already mentioned in the introduction the computation of upper and lower bounds on the
182
+ non-dominated set is a crucial component of any multi-objective Branch and Bound algorithm. The
183
+ tightest componentwise upper and lower bounds of YN are the ideal point yI and the Nadir point
184
+ yN given by:
185
+ yI
186
+ k = min
187
+ y∈Y yk
188
+ and
189
+ yN
190
+ k = max
191
+ y∈YN yk
192
+ for k = 1, . . . p.
193
+ Obviously, yI ≦ y ≦ yN holds for every y ∈ YN, i.e.; YN is contained in the hyperbox spanned by
194
+ the corner points yI and yN. However, these single point bounds are in general very weak except for
195
+ the degenerate case of yI = yN. This motivates to consider bound sets instead of bounds consisting
196
+ of a single point. We will rely on the definition of bound sets proposed in Ehrgott and Gandibleux
197
+ (2007). Let Rp
198
+ ≧ := {y ∈ Rp : y ≧ 0}, then
199
+ • A lower bound set L ⊂ Rp for YN is a
200
+ – Rp
201
+ ≧-closed (i.e., the set L + Rp
202
+ ≧ is closed),
203
+ – Rp
204
+ ≧-bounded (i.e., there exists a y ∈ Rp such that L ⊂ y + Rp
205
+ ≧)
206
+ – stable set (i.e., L ⊂ (L + Rp
207
+ ≧)N),
208
+ such that YN ⊂ (L + Rp
209
+ ≧).
210
+ • An upper bound set U ⊂ Rp for YN is a
211
+ – Rp
212
+ ≧-closed,
213
+ – Rp
214
+ ≧-bounded,
215
+ – stable sets,
216
+ such that YN ⊂ cl
217
+
218
+ (U + Rp
219
+ ≧)∁�
220
+ .
221
+ The upper bound and lower bound that we will define for our branch and bound framework in
222
+ Section 3 will suit these definitions. We say a lower bound L is weakly dominated by an upper
223
+ bound U if for all l ∈ L there exists an u ∈ U such that u ≦ l.
224
+ 4
225
+
226
+ In the following we restrict ourselves to bi-objective binary linear optimization problems, i. e.,
227
+ problems with two linear objective functions and variables x ∈ {0, 1}n:
228
+ min
229
+ z(x) =
230
+
231
+ z1(x), z2(x)
232
+ �⊤
233
+ s.t.
234
+ A x ≤ b
235
+ x ∈ {0, 1}n.
236
+ (BO01LP)
237
+ 3 A Generic Multi-objective Branch and Bound Framework
238
+ In this section we present a generic multi-objective Branch and Bound framework, which we specify
239
+ and augment by using scalarization based information in the then following sections.
240
+ Branch and Bound methods follow a “divide and conquer” paradigm. A problem that is too hard
241
+ to be solved directly, is divided into smaller and thus easier subproblems. Thereby, subproblems are
242
+ associated with nodes in a tree data structure according to their descent, i.e., node i is a descendant
243
+ node of node j iff the feasible set of the subprobem associated with node i is a subset of the feasible
244
+ set of the subproblem associated with node j. The corresponding subproblems of the child nodes are
245
+ created by subdividing the feasible set of the corresponding (sub)problem of the parent node. Starting
246
+ with the root node, to which the original optimization problem is associated, the algorithm selects in
247
+ each iteration one active node and updates its lower bound and upper bound. Then the active node
248
+ can be fathomed if the corresponding subproblem is either solved or irrelevant for the determination
249
+ of a minimal complete set. If we cannot prune we subdivide the corresponding problem into new
250
+ subproblems and create corresponding child nodes (branching). For a more detailed introduction
251
+ and survey of multi-objective Branch and Bound algorithms see Przybylski and Gandibleux (2017).
252
+ A recent survey of single-objective Branch and Bound frameworks is given e.g. in Morrison et al.
253
+ (2016). In the following we specify the lower bound, upper bound, branching rule and node selection
254
+ we use in our framework.
255
+ Lower bound:
256
+ Lower bound sets are often determined by solving relaxations of the respective
257
+ subproblem. Like in the single-objective case, the most frequently used relaxations are linear and
258
+ convex relaxations. In order to solve the linear relaxation we are using in our framework, we apply
259
+ Benson’s outer approximation algorithm (Benson, 1998). The algorithm is initiated with a lower
260
+ bound, which is improved in every iteration by generating cuts. Due to the outer approximation
261
+ structure the algorithm can be aborted at any time returning a valid lower bound.
262
+ Alternatively, linear (or convex) relaxations can be obtained using a dichotomic scheme (see, for
263
+ example, Aneja and Nair, 1979; Özpeynirci and Köksalan, 2010; Przybylski et al., 2010a).
264
+ Upper bound:
265
+ The upper bound set, in the following denoted by U, is stored in the form of a so-
266
+ called incumbent list. Throughout the run of the algorithm, it contains all integer feasible solutions
267
+ and their corresponding outcome vectors that are not dominated by another feasible solution found
268
+ so far. In every iteration the extreme supported solutions of the computed lower bound sets are
269
+ checked for integer feasibility. An integer feasible solution ¯x ∈ X is then appended to the incumbent
270
+ list, if there is no x ∈ U dominating ¯x, i. e., C(x) ≤ C(¯x). If a new solution ¯x is added to the
271
+ incumbent list U all solutions x ∈ U which are dominated by ¯x (C(¯x) ≤ C(x)) are removed from
272
+ it. Note that an update of the incubent list requires a subsequent update of the list of local upper
273
+ bounds. A detailed description of local upper bounds, their computation and update in an arbitrary
274
+ number of criteria is given in Klamroth et al. (2015). In this framework we start with an empty
275
+ upper bound set. However, it is also possible to initialize the incumbent list by heuristic methods, or
276
+ by solving scalarizations like, e.g., in the two-phase method (Ulungu and Teghem, 1995; Visée et al.,
277
+ 1998).
278
+ U ⊎ {¯x} :=
279
+
280
+ U
281
+ if ∃x ∈ U : C(x) ≤ C(¯x)
282
+ {¯x} ∪ {x ∈ U : C(¯x) ≰ C(x)}
283
+ otherwise
284
+ 5
285
+
286
+ Node selection:
287
+ In every iteration of the algorithm an unexplored node is selected from the tree of
288
+ subproblems. This node is called active node. The order in which the nodes of the tree are considered
289
+ has a significant impact on the number of created nodes that have to be explored and thus on the
290
+ computation time.
291
+ Two types of strategies need to be distinguished: static strategies and dynamic strategies. The two
292
+ most common examples of static strategies are the depth-first strategy and the breadth-first strategy.
293
+ Most multi-objective Branch and Bound algorithms in literature follow a depth-first strategy. Thus,
294
+ we use this strategy for our baseline implementation as well.
295
+ In contrast to the single-objective case, dynamic node selection strategies are rarely applied in the
296
+ multi-objective case. The usage of dynamic strategies for the choice of the active node can be seen
297
+ in (Stidsen et al., 2014), (Belotti et al., 2012) and (Jesus et al., 2021), for example.
298
+ Fathoming:
299
+ In order to avoid the total enumeration of all feasible solutions, nodes are fathomed
300
+ if the respective subproblem is either solved to optimality or does not contain solutions which are
301
+ necessary to determine a minimal complete set. In particular, there are three different situations in
302
+ which a node can be fathomed:
303
+ i) Fathoming by infeasibility: If the LP-relaxation of a subproblem is infeasible then the corre-
304
+ sponding subproblem is infeasible as well, since the feasible set of the subproblem is a subset
305
+ of the feasible set of its relaxation.
306
+ ii) Fathoming by optimality: Similar to the single-objective case we can fathom a node by opti-
307
+ mality if the lower bound L is equal to the upper bound U. This implies the subproblem is
308
+ solved to optimality and the associated node must not be subdiveded further. However, this
309
+ can happen in the multi-objective case only if the lower and upper bound consist of the same
310
+ single point, namely the ideal point.
311
+ iii) Fathoming by dominance: A node can be fathomed by dominance if all feasible solutions of this
312
+ subproblem are dominated by points in the incumbent list. In order to check dominance for all
313
+ feasible outcome vectors of a subproblem we compare the lower bound L of the corresponding
314
+ node to the current upper bound U. If for all l ∈ L there is a point in the incumbent list u ∈ U
315
+ with u ≦ l then all feasible points in the subtree are dominated by the current incumbent list.
316
+ In other words, if there is no local upper bound defined by U above the computed lower bound
317
+ the node can be fathomed by dominance.
318
+ Branching:
319
+ As mentioned in the beginning of this section, one of the key aspects of Branch and
320
+ Bound is iterative subdivision into smaller subproblems. Thereby subproblems are associated with
321
+ nodes in a tree, such that the subproblem associated to a child node is obtained by one branching
322
+ step. Since we consider binary optimization problems (BO01LP), we can divide a (sub)problem into
323
+ two new subproblems by fixing a specific variable to 0 and respectively to 1 in the other subproblem.
324
+ This results in a binary Branch and Bound tree.
325
+ The branching rule determines which variable is selected as branching variable in each iteration.
326
+ Thereby, one distinguishes between static and dynamic strategies. Static strategies determine an
327
+ order of the variables in advance. In each iteration of the algorithm the next variable in this list is
328
+ used as branching variable. With dynamic strategies the branching variable is selected by consid-
329
+ ering information obtained from previous iterations, i.e., from the solution of (linear) relaxations of
330
+ (sub)problems.
331
+ The basic idea of static strategies for single-objective problems is to sort the variables, beginning
332
+ with the most promising according to the objective function values (see, e. g., (Kellerer et al., 2004)).
333
+ However, this cannot be easily extended to the multi-objective case due to conflicting objective
334
+ functions. Nevertheless there are some approaches to extend static strategies to the multi-objective
335
+ case (see for example (Ulungu and Teghem, 1997) and (Bazgan et al., 2009)).
336
+ 6
337
+
338
+ In contrast to most of the published papers which apply static strategies we use a dynamic strategy
339
+ as proposed in Belotti et al. (2012). By solving the linear relaxation of a (sub)problem we obtain
340
+ the lower bound set L. For all extreme points of L we check how often a variable is fractional in the
341
+ corresponding solutions. As branching variable we choose the one which is most often fractional.
342
+ 4 Using Objective Space Information in Multi-objective Branch
343
+ and Bound
344
+ In this section, we propose modifications which improve the computational efficiency of bi-objective
345
+ Branch and Bound algorithms in two critical aspects.
346
+ One of the weaknesses of multi-objective
347
+ Branch and Bound as compared to its single-objective counterpart is the bounding procedure. While
348
+ any feasible solution ¯x ∈ X dominates w.r.t. one (linear) objective a half-space in decision space (i.e.,
349
+ {x ∈ Rn : c⊤x ≥ c⊤¯x}), the set of feasible solutions which are dominated by a solution ¯x in p ≥ 2
350
+ objective functions (C ∈ Rp×n) forms a cone {x ∈ Rn : C x ≧ C ¯x}. The cone of dominated solutions
351
+ is smaller the more the objective functions are in conflict, leading also to a larger number of efficient
352
+ solutions. This implies that a significant part of the Branch and Bound tree has to be enumerated
353
+ and only a small number of branches can be pruned by dominance. Despite of this general problem
354
+ in multi-objective optimization, this asks for good bounding procedures to avoid the unnecessary
355
+ evaluation of dominated branches. This however, requires good solutions in the incumbent list as
356
+ well as tight lower bounds.
357
+ In order to achieve this, we suggest a new branching strategy and the hybridization of Branch and
358
+ Bound with objective space methods. We determine scalarized subproblems adapted to the state of
359
+ the Branch and Bound and solve these to integer optimality.
360
+ 4.1 Branching Strategy
361
+ The branching strategy comprises two subsequent decisions: the choice of the active node and its
362
+ branching into subproblems, i. e. the decision on which variable the subproblem is branched. This
363
+ second step is denoted as branching rule. We discuss these two steps together since the order in
364
+ which the nodes are considered has a significant impact on the branched variable. Instead of the
365
+ static depth- or breadth-first we use a dynamic node selection strategy, while we rely on the most
366
+ fractional rule as branching rule.
367
+ The basic idea of our strategy is quite simple and a natural extension of choosing the largest gap
368
+ in the single-objective case (see, for example, Dechter and Pearl, 1985). For every created node we
369
+ compute the approximate hypervolume gap between lower and upper bound. We use the definition of
370
+ hypervolume proposed in Zitzler and Thiele (1999). In every iteration we choose the node with the
371
+ largest hypervolume gap as active node (cf. Jesus et al. (2021)). Note that when a node is created
372
+ during the branching process, the approximated hypervolume gap of the parent node is assigned to
373
+ it. We distinguish two variants of the hypervolume gap: the total hypervolume gap and the local
374
+ hypervolume gap. While the total hypervolume gap measures the volume of the search region, i. e.
375
+ the volume between lower and upper bound set, the local hypervolume gap approach considers only
376
+ the volume of the largest search zone, i. e. the gap between a local upper bound and the lower bound
377
+ set. For a more detailed definition of search regions and search zones we refer to Klamroth et al.
378
+ (2015).
379
+ Figure 1 illustrates the two different approaches. Here, z1, . . . , z4 ∈ K ⊂ U are points of the
380
+ incumbent list and lu1, . . . , lu3 are their corresponding local upper bounds, where K is a subset
381
+ of the incumbent list containing just the points above the lower bound of node ¯n. The green line
382
+ represents the lower bound. Figure 1a shows how to measure the total hypervolume gap of a node ¯n,
383
+ in the following denoted by thg(¯n). For this approach we consider the approximated search region
384
+ of the corresponding node. Since there is a natural order in the bi-objective case, it is possible to
385
+ consider the approximated search zone of the first local upper bound, i.e. the local upper bound
386
+ 7
387
+
388
+ z1
389
+ z2
390
+ lu1
391
+ lu2
392
+ lu3
393
+ z1
394
+ z2
395
+ z3
396
+ z4
397
+ (a)
398
+ z1
399
+ z2
400
+ A
401
+ lu1
402
+ lu2
403
+ lu3
404
+ z1
405
+ z2
406
+ z3
407
+ z4
408
+ (b)
409
+ z1
410
+ z2
411
+ B
412
+ lu1
413
+ lu2
414
+ lu3
415
+ z1
416
+ z2
417
+ z3
418
+ z4
419
+ (c)
420
+ z1
421
+ z2
422
+ C
423
+ lu1
424
+ lu2
425
+ lu3
426
+ z1
427
+ z2
428
+ z3
429
+ z4
430
+ (d)
431
+ Figure 1: Example of computation of the two different approximated hypervolume gap approaches.
432
+ 8
433
+
434
+ with the smallest z1-value. Therefore we define the two spanning points, which, together with the
435
+ corresponding local upper bound, define a triangle. The spanning points of a local upper bound lu
436
+ are defined by spi(lu) := {l ∈ L: l3−i = lu3−i}, i = 1, 2. So, the approximate hypervolume gap of lu
437
+ is given by
438
+ hg(lu) := 1
439
+ 2
440
+ ��sp1(lu)1 − lu1
441
+ �� ·
442
+ ��sp2(lu)2 − lu2
443
+ ��.
444
+ For the remaining local upper bounds we compute the hypervolume of slices as shown in the illus-
445
+ tration. The hypervolume of the slice of lui, i = 1, . . . , |K| − 1 is defined as
446
+ sl(lui) :=
447
+ ��zi
448
+ 2 − sp2(lui−1)2
449
+ �� +
450
+ ��lui
451
+ 2 − sp2(lui)2
452
+ ��
453
+ 2
454
+ ·
455
+ ��zi
456
+ 1 − lui
457
+ 1
458
+ ��.
459
+ So, the total (approximated) hypervolume gap, which is assigned to node ¯n, is given by
460
+ thg(¯n) := hg(lu1) + sl(lu2) + . . . + sl(lu|K|−1).
461
+ The Figures 1b, 1c and 1d show the computation of the local hypervolume gap. The local hyper-
462
+ volume gap of a node ¯n is considered as the largest approximated hypervolume gap of a local upper
463
+ bound corresponding to points in K. Therefore, the the local hypervolume gap, which is assigned
464
+ to node ¯n, is defined by
465
+ lhg(¯n) :=
466
+ max
467
+ i=1,...,|K|−1hg(lui).
468
+ In the given example, B is the largest approximated hypervolume and therefore is assigned to node
469
+ ¯n.
470
+ Note that in our presented algorithms in Section 4.2 the local upper bound is initialized with the
471
+ point (∞, ∞)⊤. Therefore, it is possible to apply the new branching strategies immediately at the
472
+ beginning of the algorithm. Obviously, this approximation may neglect significantly large parts of
473
+ the search regions and search zones. However, the idea of the approximated hypervolume gap eases
474
+ computation and saves time. The efficiency of these new dynamic branching strategies is shown in
475
+ Section 5.
476
+ 4.2 Augmenting Branch and Bound with IP Scalarizations
477
+ In this subsection, we introduce a method to incorporate scalarizations into Branch and Bound. We
478
+ build a hybrid Branch and Bound algorithm combining the partial enumeration of decision space
479
+ with objective space information by solving scalarizations to integer optimality.
480
+ An integer optimal solution ¯x of a scalarization can be used to update upper and lower bound.
481
+ Obviously, the corresponding image point z(¯x) can be added to the incumbent list. Moreover, a
482
+ scalarizing function and its optimal solution ¯x define a level set, which can be included in the lower
483
+ bound set for all descendant nodes. In order to utilize these improved lower bounds in all nodes we
484
+ solve the IP scalarizations in the root node.
485
+ 4.2.1 Using Weighted Sum Scalarization
486
+ During the run of the Branch and Bound algorithm, a strategy triggers the IP solution of weighted
487
+ sum scalarizations in the root node. Thus, we solve problem (WSλ) for for adaptively chosen values
488
+ of λ ∈ R2
489
+ >. Although we solve the IP scalarization in the root node the parameter λ is gained from
490
+ the currently active node. Thereby, λ is determined by the largest approximated local hypervolume
491
+ gap in the active node. This gap is spanned by two points in the incumbent list together with their
492
+ local upper bound. Note that these points spanning the largest gap are already determined if the
493
+ local hypervolume gap branching strategy is applied. The corresponding value of λ is determined by
494
+ computing the normal to the hyperplane that is defined by those two points. Once λ is obtained,
495
+ we can solve problem (WSλ) with a single-objective integer linear programming solver. Let ¯xλ be
496
+ 9
497
+
498
+ the optimal solution of the weighted sum scalarization with weighting vector λ, then z(¯xλ) is a
499
+ supported non-dominated point of (BO01LP). Thus, we can add this point to the incumbent list (if
500
+ it was not found in previous iterations) and filter the resulting list for non-dominance. Moreover,
501
+ the solution of integer scalarizations can also be used to tighten the lower bound set, since the level
502
+ set {z ∈ R2 : λ⊤z = WSλ(¯xλ)} provides the valid inequality λ⊤z(x) ≥ WSλ(¯xλ) for all x ∈ X.
503
+ z1
504
+ z2
505
+ lu1
506
+ lu2
507
+ lu3
508
+ z1
509
+ z2
510
+ z3
511
+ z4
512
+ z(¯xλ)
513
+ (a)
514
+ z1
515
+ z2
516
+ lu4
517
+ lu5
518
+ z1
519
+ z5
520
+ z4
521
+ (b)
522
+ z1
523
+ z2
524
+ lu4
525
+ lu5
526
+ z1
527
+ z5
528
+ z4
529
+ (c)
530
+ z1
531
+ z2
532
+ lu4
533
+ lu5
534
+ z1
535
+ z5
536
+ z4
537
+ (d)
538
+ Figure 2: Example of updating the lower and upper bound with the usage of the weighted sum
539
+ scalarization.
540
+ Figure 2 illustrates the update of the lower and upper bound set. In Figure 2a, z1, . . . , z4 indicate
541
+ points that are currently in the incumbent list U¸ and lu1, . . . , lu3 are the corresponding local upper
542
+ bounds.
543
+ The point z(¯xλ) is obtained by solving a weighted sum scalarization (WSλ) to integer
544
+ optimality. Since the new point is not contained in the incumbent list so far, we can update the
545
+ upper bound as it is shown in Figure 2b. The new incumbent list then reads as U := {z(¯xλ)} ∪ {z ∈
546
+ U : z(¯xλ) � z}. Moreover, the lower bound set L can be updated by integrating the blue hyperplane
547
+ into the lower bound set, i. e. L := {z ∈ L + R2
548
+ ≧ : λ⊤z ≥ WS(¯xλ)}N as it is shown in Figure 2c and
549
+ 2d. In this situation, both —the lower and upper bound— are updated, which is not the case in
550
+ 10
551
+
552
+ general.
553
+ The example illustrates the benefits of hybridizing multi-objective Branch and Bound with IP
554
+ scalarizations. Due to weak bounding, nodes may not be fathomed by dominance even if they do
555
+ not contain additional non-dominated points. The tighter upper bound increases the probability of
556
+ fathoming a node by dominance in later iterations of the algorithm. Also, the lower bound might be
557
+ improved. Since we are solving an IP scalarization in the root node, the obtained optimal level set is
558
+ a valid inequality for all subproblems. We combine our new branching strategy and the augmentation
559
+ with IP scalarizations to our first hybrid Branch and Bound approach.
560
+ Hybrid Branch and Bound Algorithm using Weighted Sum Scalarization
561
+ • Lower bound: linear relaxation
562
+ • Upper bound: incumbent list
563
+ • Node selection: node with the largest total/local hypervolume gap
564
+ • Branching rule: most fractional
565
+ • Adaptively solve weighted sum scalarizations in the root node to integer optimality to improve
566
+ lower and upper bounds by objective space information
567
+ Instead of using a static depth-first strategy (as in the general Branch and Bound framework in
568
+ Section 3) we apply the dynamic strategy based on the hypervolume gap (c.f. Section 4.1). Even
569
+ though the extreme points of the lower bound sets might be updated by the weighted sum scalar-
570
+ ization, the branching variable is selected based on the original lower bounds. This is due to the
571
+ fact that the preimages of such intersection points of IP scalarizations and the lower bound set
572
+ are in general not available. Note that the weighted sum IP scalarizations are included adaptively
573
+ into the Branch and Bound. The description of their algorithmic control, however, is postponed to
574
+ Section 4.3.
575
+ In order to conclude the description of the proposed hybrid Branch and Bound algorithm using
576
+ weighted sum scalarizations, we want to briefly discuss its advantages and shortcomings. Firstly, it
577
+ is easy to determine the scalarization parameter λ and to integrate the hyperplane into the lower
578
+ bound set. Its advantage, however, is that the lower bound remains convex. Therefore, the check
579
+ for fathoming by dominance remains intuitive. Unfortunately, the weighted sum scalarization can
580
+ only find supported efficient solutions and the lower bound cannot be improved beyond the convex
581
+ hull of YN. This motivates us to consider in the following the augmented weighted Tchebycheff
582
+ scalarization, a scalarization approach which can determine also unsupported efficient solutions.
583
+ 4.2.2 Using Augmented Weighted Tchebycheff Scalarization
584
+ We start by defining the weighted Tchebycheff norm: Let wi > 0, i = 1, . . . , p be positive weights
585
+ with �p
586
+ i=1 wi = 1. Then the weighted Tchebycheff norm of a vector z ∈ Rp is defined by
587
+ ∥z∥w
588
+ ∞ := max
589
+ i=1,...,p
590
+
591
+ wi |zi|
592
+
593
+ .
594
+ (1)
595
+ So, the weighted Tchebycheff scalarization of a multi-objective optimization problem (MOILP) with
596
+ respect to a given reference point s ∈ Rp can be written as:
597
+ min
598
+
599
+ ∥z(x) − s∥w
600
+ ∞ : x ∈ X
601
+
602
+ .
603
+ (2)
604
+ If the reference point is chosen such that s < z(x) for all x ∈ X, every efficient solution can be deter-
605
+ mined as optimal solution of the weighted Tchebycheff scalarization (2) by variation of w ∈ Rp
606
+ + (see,
607
+ e.g., Miettinen, 1998). Nevertheless, optimal solutions of the weighted Tchebycheff scalarization cor-
608
+ respond in general only to weakly efficient solutions of the multi-objective problem (Steuer and Choo,
609
+ 1983; Miettinen, 1998). This shortcoming is compensated by an additive augmentation term in the
610
+ augmented weighted Tchebycheff norm
611
+ ∥z∥w
612
+ τ := ���z∥w
613
+ ∞ + τ ∥z∥1 ,
614
+ (3)
615
+ 11
616
+
617
+ where ∥z∥1 = |z1| + . . . + |zp| denotes the L1-norm, wi ≥ 0, i = 1, . . . , p, �p
618
+ i=1 wi = 1 and τ >
619
+ 0.
620
+ Steuer and Choo (1983) proposed the augmented weighted Tchebycheff scalarization given in
621
+ (AWT w
622
+ τ ).
623
+ min AWT w
624
+ τ (x) := ∥z(x) − s∥w
625
+ τ
626
+ s.t. x ∈ X
627
+ (AWT w
628
+ τ )
629
+ Thereby, the augmentation term makes the augmented weighted Tchebycheff norm a strongly mono-
630
+ tone norm and thus the objective function of (AWT w
631
+ τ ) a strongly increasing achievement scalar-
632
+ izing function (Miettinen, 1998). Consequently, every optimal solution of (AWT w
633
+ τ ) is efficient for
634
+ (MOILP).
635
+ Note that an appropriate choice of the parameter τ is difficult in general. On the one hand, too
636
+ small values of τ may lead to numerical difficulties. On the other hand, non-supported efficient
637
+ solutions might be suboptimal for (AWT w
638
+ τ ) if the value of τ is too large. However, for bi-objective
639
+ integer programming Dächert et al. (2012) propose an adaptive method to determine an optimal
640
+ value of τ. We use this proposed parameters w1, w2 and τ for our method.
641
+ As a reference point s we use the local ideal point of two adjacent non-dominated points. Since the
642
+ augmented weighted Tchebycheff scalarization can only determine non-dominated points (and the
643
+ corresponding efficient solutions) which are (strictly) dominated by the reference point, we obtain a
644
+ non-dominated point in this box.
645
+ The goal to improve the lower bound set beyond the convex hull of non-dominated points is the
646
+ motivation to solve augmented weighted Tchebycheff scalarizations to integer optimality. Figure
647
+ 3 shows an example how such an update of the bounds could look like. Here, z1 and z2 are two
648
+ known non-dominated points (obtained with the weighted sum IP scalarization).
649
+ Point z3 is a
650
+ non-supported non-dominated point that has not been found yet in Figure 3a. By using the local
651
+ ideal point of z1 and z2 as the reference point s, Figure 3b illustrates how the non-dominated point
652
+ z3 is found by applying the augmented weighted Tchebycheff scalarization. In Figure 3c and 3d
653
+ the resulting improvements of the lower and upper bound are shown. Obviously the lower bound
654
+ is improved beyond the convex hull of YN. We now define our second hybrid Branch and Bound
655
+ approach:
656
+ Hybrid Branch and Bound Algorithm using augmented weighted Tchebycheff Scalarization
657
+ • Lower bound: linear relaxation
658
+ • Upper bound: incumbent list
659
+ • Node selection: node with the biggest total/local hypervolume gap
660
+ • Branching rule: most fractional
661
+ • Adaptively solve weighted sum and augmented weighted Tchebycheff scalarizations in the root
662
+ node to integer optimality to improve lower and upper bounds by objective space information
663
+ Additionally to the weighted sum scalarization, we use the augmented weighted Tchebycheff scalar-
664
+ ization. Since two adjacent non-dominated points are required as input of the augmented weighted
665
+ Tchebycheff scalarization, we cannot rely on points in the incumbent list, which are only non-
666
+ dominated so far. In fact, we apply augmented weighted Tchebycheff IP scalarizations only to boxes
667
+ spanned by points obtained as optimal solutions of the weighted sum scalarization. Thus, we do not
668
+ rely on parameters from the currently active node, but solve the augmented weighted Tchebycheff
669
+ scalarization in the largest area defined by two adjacent known non-dominated points.
670
+ When using augmented weighted Tchebycheff IP scalarizations, the lower bound can become
671
+ tighter than the convex hull of the set of non-dominated points, which reduces the area where
672
+ new non-dominated points can be found. Additionally, we can find non-supported non-dominated
673
+ points in early stages of the algorithm. This improves the upper bound in the beginning resulting
674
+ in a higher chance of fathoming a node by dominance. However, this also implies that the lower
675
+ 12
676
+
677
+ z1
678
+ z2
679
+ z1
680
+ z2
681
+ z3
682
+ lu1
683
+ (a)
684
+ z1
685
+ z2
686
+ z1
687
+ z2
688
+ z3
689
+ lu1
690
+ s
691
+ (b)
692
+ z1
693
+ z2
694
+ z1
695
+ z2
696
+ z3
697
+ lu2
698
+ lu3
699
+ s
700
+ (c)
701
+ z1
702
+ z2
703
+ z1
704
+ z2
705
+ z3
706
+ lu2
707
+ lu3
708
+ (d)
709
+ Figure 3: Example of updating the lower and upper bound with the usage of the augmented weighted
710
+ Tchebycheff scalarization.
711
+ bound gets non-convex in general, which makes the fathoming tests significantly harder, and the
712
+ lower bound improves only locally.
713
+ 4.3 Algorithmic Control of IP Scalarizations
714
+ In the previous subsections we did not specify when to solve IP scalarizations, which implies a sig-
715
+ nificant computational cost itself. However, this might be the most crucial part within the presented
716
+ methods. Obviously, we aim at gaining as much information as possible by solving IP scalarizations.
717
+ More objective space information will lead to tighter bounds that reduce the number of created
718
+ nodes, due to a higher probability of fathoming by dominance and smaller search zones. Moreover, a
719
+ reduced number of created nodes will reduce the total computation time. At the same time, solving
720
+ overly many IP scalarizations will have a negative impact on the computation time. Furthermore,
721
+ at a certain point the lower and upper bound will not improve anymore when solving additional IP
722
+ 13
723
+
724
+ scalarizations.
725
+ So, there exists a trade-off between the reduction of the number of created subproblems and the
726
+ decrease of the computation time. The difficulty is to find an appropriate condition to trigger an IP
727
+ scalarization. Obviously, solving IP scalarizations more frequently in the beginning of the Branch
728
+ and Bound algorithm is very promising.
729
+ The earlier the lower and upper bounds are improved
730
+ the more nodes might be fathomed. Moreover, solving the IP scalarization when the active node
731
+ has weak bounds will lead to stronger improvements than in later stages of the algorithm. This
732
+ is complemented by our adaptive branching strategy, which tends to select subproblems with weak
733
+ lower bounds first.
734
+ The hybrid Branch and Bound algorithm using augmented weighted Tchebycheff scalarization
735
+ entails also another problem. The augmented weighted Tchebycheff scalarization improves the lower
736
+ bound just locally. If we use this scalarization at the beginning of the algorithm instead of the
737
+ weighted sum scalarization, this could lead to an increase of created nodes. Once again, the intuitive
738
+ idea is to start with the weighted sum IP scalarization more frequently in the beginning of the
739
+ algorithm. This ensures that the lower bound improves globally at early stages of the Branch and
740
+ Bound. The augmented weighted Tchebycheff scalarization should be used in later stages of the
741
+ algorithm to find non-supported non-dominated points and to improve the lower bound locally. The
742
+ efficiency of this idea and other approaches will be shown in the next section where we present
743
+ numerical test results.
744
+ 5 Numerical Results
745
+ All algorithms were implemented in Julia 1.7.1 and the linear relaxations were solved with Bensolve
746
+ 2.1. The numerical tests were executed on a single core of a 3.20 GHz Intel® Core™ i7-8700 CPU
747
+ processor in a computer with 32 GB RAM, running under openSUSE linux Leap 15.3.
748
+ We present numerical results of our new approaches and compare them to the general Branch
749
+ and Bound framework presented in Section 3 which we use as baseline implementation. We consider
750
+ three different types of problems: knapsack problems, assignment problems and discrete facility
751
+ location problems. Multiple combinations of parameter settings are used to solve these test problems.
752
+ Thereby, we compare the average number of explored nodes, the average number of solved IPs and
753
+ the average computation time for 20 instances per problem size. The different evaluated approaches
754
+ are
755
+ • the generic bi-objective Branch and Bouch (BB),
756
+ • bi-objective Branch and Bound using the local (BS1) respectively global (BS2) hypervolume
757
+ gap as node selection criterion,
758
+ • hybrid Branch and Bound including weighted sum IP scalarizations (WS), and
759
+ • different combinations of the hybrid Branch and Bound algorithm using weighted sum IP scalar-
760
+ ization (M1.α.β) and hybrid Branch and Bound algorithm using weighted sum and augmented
761
+ weighted Tchebycheff IP scalarization (M2.α.β.γ).
762
+ The parameter α ∈ {1, 2, 3} controls how often IP scalarizations are applied. Since the algorithmic
763
+ control of IP scalarization is selected for each value of α problem dependent, it is described in
764
+ detail in the following subsections. However, the larger the parameter α is chosen, the fewer IP
765
+ scalarizations are applied. With β we distinguish between the local (β = 1) and the global (β = 2)
766
+ hypervolume gap strategy. In the hybrid Branch and Bound algorithm using augmented weighted
767
+ Tchebycheff scalarization we also distinguish between integrating the objective space information
768
+ of the augmented weighted Tchebycheff into the lower bound (γ = 1) or not (γ = 2). Note that
769
+ the tested parameter values are not optimized but have shown to provide good results on our test
770
+ instances.
771
+ 14
772
+
773
+ 5.1 Bi-objective Multidimensional Knapsack Problems
774
+ We consider bi-objective, multidimensional knapsack problems with one, two and three linear re-
775
+ strictions (i. e. m = 1, 2, 3). For every problem size we randomly generate 20 instances of the form
776
+ max
777
+ n
778
+
779
+ i=1
780
+ ck
781
+ i xi
782
+ k = 1, 2
783
+ s.t.
784
+ n
785
+
786
+ i=1
787
+ wi xi ≤ b
788
+ n
789
+
790
+ i=1
791
+ vij xi ≤ dj
792
+ j = 1, ..., m − 1
793
+ x ∈ {0, 1}n
794
+ with ck
795
+ i ∈ [50, 100], wi ∈ [5, 15], b = 5 n, vij ∈ [5, 15] and dj =
796
+ � r n
797
+ 2
798
+
799
+ with r ∈ [5, 15]. Depending on
800
+ the parameter α we specify when and how often IP scalarizations are solved. In M1.1.β and WS
801
+ we apply the weighted sum scalarization every 10-th iterations. In M1.2.β we apply it every 10-th
802
+ iteration but only within the first n2 iterations. In M1.3.β we apply the weighted sum scalarization
803
+ every 10-th iteration within the first n2/3 iterations, every n-th iteration within the next n2/3
804
+ iterations and every 2n-th iteration within the third n2/3 iterations. In M2.1.β.γ we apply the
805
+ weighted sum scalarization every 10-th iteration and every 50-th iteration the augmented weighted
806
+ Tchebycheff scalarization is used instead. In M2.2.β.γ we operate like in M1.2.β but after the first
807
+ n2 iterations we apply the augmented weighted Tchebycheff scalarization every 50-th iteration. In
808
+ M2.3.β.γ we operate like in M1.3.β but after the first n2 iterations we apply the augmented weighted
809
+ Tchebycheff scalarization every 50-th iteration. If a scalarization cannot be applied or the same IP
810
+ scalarization has already been solved before, no IP scalarization is solved in that iteration.
811
+ First of all, we notice that our branching strategies have a huge impact on the number of explored
812
+ nodes and the computation time in knapsack problems. We observe that in general the local hyper-
813
+ volume gap strategy works better than the global hypervolume gap strategy. With the local strategy
814
+ we can reduce the number of explored nodes by up to 76% (Table 1c and 2b) and the computation
815
+ time by up to 73% (Table 1c). Although the local strategy works better the global hypervolume
816
+ gap strategy has also a significant impact. The number of explored nodes can be reduced by up to
817
+ 58% (Table 2c) and the computation time by up to 52% (Table 2c). The number of nodes and the
818
+ computation time is reduced in all our approaches and we can notice that combinations with the
819
+ local hypervolume strategy work better.
820
+ By limiting the number of solved weighted sum IPs (i. e. in M1.2.β, M1.3.β, M2.2.β.γ and
821
+ M2.3.β.γ) we notice two consequences. The number of nodes increases while the number of solved
822
+ IPs decreases. Although the number of nodes (and thus the number of considered subproblems) is
823
+ increasing, the total computation time decreases. This implies that the reduced computation time
824
+ to solve IP scalarizations compensates the increase of nodes, which results in a trade-off between the
825
+ number of explored nodes and the computation time. Another interesting aspect can be observed in
826
+ M2.α.β.1 and M2.α.β.2. The computation time can be reduced if we do not integrate the augmented
827
+ weighted Tchebycheff objective level set into the lower bound. This can be explained by the fact that
828
+ the lower bound improvements of augmented weighted Tchebycheff are only local and do not com-
829
+ pensate the computation time needed to integrate the information. The intuitive assumption that
830
+ the number of explored nodes will then rise significantly is false. So, both our branching strategies
831
+ work better, if we do not consider the local updates of the lower bound.
832
+ We can reach a reduction of the explored nodes by up to 83% (Table 2b) and a reduction of the
833
+ computation time by up to 80% (Table 2b) in the best case. The strategies M2.1.1.1 and M2.1.1.2
834
+ seem to work best for knapsack problems. In most cases these two strategies have the largest impact
835
+ on the number of explored nodes. Nevertheless, M2.1.1.2 achieves for all instance sizes the best
836
+ computation times, since computation time is saved by not integrating the augmented weighted
837
+ 15
838
+
839
+ knapsack problem, m = 1, n = 50
840
+ version
841
+ nodes
842
+ time (s)
843
+ solved
844
+ IPs
845
+ BB
846
+ 27916.3
847
+ 18.153
848
+ 0.0
849
+ BS1
850
+ 11788.1
851
+ 8.339
852
+ 0.0
853
+ WS
854
+ 14270.7
855
+ 10.507
856
+ 33.75
857
+ M1.1.1
858
+ 10789.7
859
+ 8.452
860
+ 26.4
861
+ M1.2.1
862
+ 10793.5
863
+ 8.188
864
+ 21.2
865
+ M1.3.1
866
+ 10795.7
867
+ 8.116
868
+ 17.95
869
+ M2.1.1.1
870
+ 9888.5
871
+ 10.873
872
+ 48.7
873
+ M2.2.1.1
874
+ 10140.3
875
+ 9.437
876
+ 32.65
877
+ M2.3.1.1
878
+ 10521.0
879
+ 8.774
880
+ 25.65
881
+ M2.1.1.2
882
+ 9840.1
883
+ 8.396
884
+ 45.55
885
+ M2.2.1.2
886
+ 10130.6
887
+ 8.422
888
+ 32.35
889
+ M2.3.1.2
890
+ 10401.8
891
+ 8.288
892
+ 26.25
893
+ BS2
894
+ 16739.8
895
+ 11.397
896
+ 0.0
897
+ M1.1.2
898
+ 11026.3
899
+ 8.861
900
+ 26.1
901
+ M1.2.2
902
+ 11024.5
903
+ 8.860
904
+ 19.85
905
+ M1.3.2
906
+ 11047.4
907
+ 8.645
908
+ 16.05
909
+ M2.1.2.1
910
+ 10071.8
911
+ 10.907
912
+ 45.85
913
+ M2.2.2.1
914
+ 10421.4
915
+ 9.587
916
+ 31.8
917
+ M2.3.2.1
918
+ 10583.2
919
+ 9.448
920
+ 24.45
921
+ M2.1.2.2
922
+ 9994.1
923
+ 8.940
924
+ 46.65
925
+ M2.2.2.2
926
+ 10413.4
927
+ 8.820
928
+ 32.55
929
+ M2.3.2.2
930
+ 10568.9
931
+ 8.727
932
+ 25.15
933
+ (a) Knapsack problem with m = 1 constraint
934
+ and n = 50 variables
935
+ knapsack problem, m = 1, n = 80
936
+ version
937
+ nodes
938
+ time (s)
939
+ solved
940
+ IPs
941
+ BB
942
+ 153938.9
943
+ 186.330
944
+ 0.0
945
+ BS1
946
+ 36392.0
947
+ 50.952
948
+ 0.0
949
+ WS
950
+ 58825.7
951
+ 79.545
952
+ 54.0
953
+ M1.1.1
954
+ 34337.7
955
+ 50.431
956
+ 41.65
957
+ M1.2.1
958
+ 34333.9
959
+ 50.312
960
+ 33.1
961
+ M1.3.1
962
+ 34307.1
963
+ 50.505
964
+ 26.35
965
+ M2.1.1.1
966
+ 31643.7
967
+ 81.625
968
+ 100.2
969
+ M2.2.1.1
970
+ 32708.9
971
+ 68.939
972
+ 76.2
973
+ M2.3.1.1
974
+ 32986.3
975
+ 69.848
976
+ 63.6
977
+ M2.1.1.2
978
+ 31274.5
979
+ 46.721
980
+ 102.85
981
+ M2.2.1.2
982
+ 32795.7
983
+ 48.576
984
+ 76.3
985
+ M2.3.1.2
986
+ 33025.8
987
+ 48.358
988
+ 63.4
989
+ BS2
990
+ 90976.0
991
+ 116.847
992
+ 0.0
993
+ M1.1.2
994
+ 39745.1
995
+ 59.321
996
+ 45.25
997
+ M1.2.2
998
+ 40083.2
999
+ 59.350
1000
+ 31.2
1001
+ M1.3.2
1002
+ 39918.1
1003
+ 58.999
1004
+ 24.5
1005
+ M2.1.2.1
1006
+ 31905.8
1007
+ 80.505
1008
+ 99.7
1009
+ M2.2.2.1
1010
+ 34496.9
1011
+ 79.444
1012
+ 84.0
1013
+ M2.3.2.1
1014
+ 34571.7
1015
+ 72.955
1016
+ 65.15
1017
+ M2.1.2.2
1018
+ 32074.9
1019
+ 48.510
1020
+ 104.85
1021
+ M2.2.2.2
1022
+ 34169.8
1023
+ 51.464
1024
+ 87.15
1025
+ M2.3.2.2
1026
+ 34943.3
1027
+ 51.887
1028
+ 63.1
1029
+ (b) Knapsack problem with m = 1 constraint
1030
+ and n = 80 variables
1031
+ knapsack problem, m = 1, n = 100
1032
+ version
1033
+ nodes
1034
+ time (s)
1035
+ solved
1036
+ IPs
1037
+ BB
1038
+ 297345.3
1039
+ 484.676
1040
+ 0.0
1041
+ BS1
1042
+ 68920.5
1043
+ 128.967
1044
+ 0.0
1045
+ WS
1046
+ 128080.8
1047
+ 224.587
1048
+ 66.95
1049
+ M1.1.1
1050
+ 67369.1
1051
+ 128.665
1052
+ 54.1
1053
+ M1.2.1
1054
+ 67370.1
1055
+ 128.924
1056
+ 39.95
1057
+ M1.3.1
1058
+ 67353.3
1059
+ 128.993
1060
+ 32.9
1061
+ M2.1.1.1
1062
+ 58214.2
1063
+ 198.683
1064
+ 156.85
1065
+ M2.2.1.1
1066
+ 61533.1
1067
+ 179.516
1068
+ 123.0
1069
+ M2.3.1.1
1070
+ 62127.3
1071
+ 177.621
1072
+ 104.55
1073
+ M2.1.1.2
1074
+ 58151.3
1075
+ 112.575
1076
+ 158.1
1077
+ M2.2.1.2
1078
+ 61490.6
1079
+ 118.600
1080
+ 120.1
1081
+ M2.3.1.2
1082
+ 61762.6
1083
+ 118.306
1084
+ 108.65
1085
+ BS2
1086
+ 187306.9
1087
+ 318.524
1088
+ 0.0
1089
+ M1.1.2
1090
+ 73766.2
1091
+ 144.684
1092
+ 54.75
1093
+ M1.2.2
1094
+ 74065.4
1095
+ 144.677
1096
+ 37.9
1097
+ M1.3.2
1098
+ 73865.0
1099
+ 144.306
1100
+ 31.0
1101
+ M2.1.2.1
1102
+ 59512.7
1103
+ 200.754
1104
+ 158.05
1105
+ M2.2.2.1
1106
+ 64489.2
1107
+ 192.211
1108
+ 127.0
1109
+ M2.3.2.1
1110
+ 64330.5
1111
+ 187.803
1112
+ 114.65
1113
+ M2.1.2.2
1114
+ 60470.8
1115
+ 118.479
1116
+ 157.75
1117
+ M2.2.2.2
1118
+ 64943.8
1119
+ 127.428
1120
+ 123.5
1121
+ M2.3.2.2
1122
+ 64711.1
1123
+ 126.525
1124
+ 113.5
1125
+ (c) Knapsack problem with m = 1 constraint
1126
+ and n = 100 variables
1127
+ knapsack problem, m = 2, n = 50
1128
+ version
1129
+ nodes
1130
+ time (s)
1131
+ solved
1132
+ IPs
1133
+ BB
1134
+ 32655.6
1135
+ 25.8684
1136
+ 0.0
1137
+ BS1
1138
+ 10982.3
1139
+ 9.6578
1140
+ 0.0
1141
+ WS
1142
+ 14180.9
1143
+ 13.1749
1144
+ 33.25
1145
+ M1.1.1
1146
+ 9784.7
1147
+ 9.5159
1148
+ 26.6
1149
+ M1.2.1
1150
+ 9782.5
1151
+ 9.2684
1152
+ 19.65
1153
+ M1.3.1
1154
+ 9791.1
1155
+ 9.1580
1156
+ 14.85
1157
+ M2.1.1.1
1158
+ 8900.7
1159
+ 12.6639
1160
+ 47.75
1161
+ M2.2.1.1
1162
+ 9407.5
1163
+ 11.5112
1164
+ 34.5
1165
+ M2.3.1.1
1166
+ 9507.5
1167
+ 11.0256
1168
+ 24.8
1169
+ M2.1.1.2
1170
+ 8892.9
1171
+ 9.2702
1172
+ 47.0
1173
+ M2.2.1.2
1174
+ 9370.2
1175
+ 9.2053
1176
+ 33.05
1177
+ M2.3.1.2
1178
+ 9484.3
1179
+ 9.1161
1180
+ 24.75
1181
+ BS2
1182
+ 15639.2
1183
+ 13.1246
1184
+ 0.0
1185
+ M1.1.2
1186
+ 10665.3
1187
+ 10.8423
1188
+ 28.5
1189
+ M1.2.2
1190
+ 10671.3
1191
+ 10.5141
1192
+ 19.4
1193
+ M1.3.2
1194
+ 10854.2
1195
+ 10.5765
1196
+ 15.7
1197
+ M2.1.2.1
1198
+ 9045.3
1199
+ 12.8916
1200
+ 48.9
1201
+ M2.2.2.1
1202
+ 9629.7
1203
+ 12.1913
1204
+ 34.9
1205
+ M2.3.2.1
1206
+ 9814.7
1207
+ 11.6068
1208
+ 28.1
1209
+ M2.1.2.2
1210
+ 9030.0
1211
+ 9.5854
1212
+ 48.2
1213
+ M2.2.2.2
1214
+ 9608.5
1215
+ 9.7621
1216
+ 36.05
1217
+ M2.3.2.2
1218
+ 9787.6
1219
+ 9.6722
1220
+ 28.35
1221
+ (d) Knapsack problem with m = 2 constraints
1222
+ and n = 50 variables
1223
+ Table 1: Numerical results of the bi-objective, multidimensional knapsack problems
1224
+ 16
1225
+
1226
+ knapsack problem, m = 2, n = 80
1227
+ version
1228
+ nodes
1229
+ time (s)
1230
+ solved
1231
+ IPs
1232
+ BB
1233
+ 159911.4
1234
+ 287.925
1235
+ 0.0
1236
+ BS1
1237
+ 41092.0
1238
+ 88.121
1239
+ 0.0
1240
+ WS
1241
+ 63215.0
1242
+ 130.338
1243
+ 55.0
1244
+ M1.1.1
1245
+ 37799.1
1246
+ 82.654
1247
+ 43.9
1248
+ M1.2.1
1249
+ 37835.8
1250
+ 82.544
1251
+ 30.55
1252
+ M1.3.1
1253
+ 37811.3
1254
+ 82.369
1255
+ 24.75
1256
+ M2.1.1.1
1257
+ 31615.0
1258
+ 115.164
1259
+ 102.55
1260
+ M2.2.1.1
1261
+ 34772.5
1262
+ 102.965
1263
+ 72.5
1264
+ M2.3.1.1
1265
+ 35127.1
1266
+ 100.706
1267
+ 60.6
1268
+ M2.1.1.2
1269
+ 31590.2
1270
+ 69.290
1271
+ 104.7
1272
+ M2.2.1.2
1273
+ 34977.7
1274
+ 77.063
1275
+ 72.45
1276
+ M2.3.1.2
1277
+ 35170.3
1278
+ 77.279
1279
+ 61.3
1280
+ BS2
1281
+ 115223.3
1282
+ 224.926
1283
+ 0.0
1284
+ M1.1.2
1285
+ 43581.8
1286
+ 97.039
1287
+ 47.8
1288
+ M1.2.2
1289
+ 43744.8
1290
+ 97.874
1291
+ 29.1
1292
+ M1.3.2
1293
+ 45481.1
1294
+ 102.689
1295
+ 23.45
1296
+ M2.1.2.1
1297
+ 32388.8
1298
+ 116.173
1299
+ 106.25
1300
+ M2.2.2.1
1301
+ 36453.2
1302
+ 120.161
1303
+ 78.3
1304
+ M2.3.2.1
1305
+ 35942.7
1306
+ 116.972
1307
+ 69.05
1308
+ M2.1.2.2
1309
+ 33264.8
1310
+ 74.207
1311
+ 104.75
1312
+ M2.2.2.2
1313
+ 36578.1
1314
+ 81.915
1315
+ 77.2
1316
+ M2.3.2.2
1317
+ 35505.1
1318
+ 77.971
1319
+ 69.55
1320
+ (a) Knapsack problem with m = 2 constraints
1321
+ and n = 80 variables
1322
+ knapsack problem, m = 2, n = 100
1323
+ version
1324
+ nodes
1325
+ time (s)
1326
+ solved
1327
+ IPs
1328
+ BB
1329
+ 428526.3
1330
+ 1074.21
1331
+ 0.0
1332
+ BS1
1333
+ 100962.6
1334
+ 326.98
1335
+ 0.0
1336
+ WS
1337
+ 166108.1
1338
+ 464.71
1339
+ 67.25
1340
+ M1.1.1
1341
+ 98831.5
1342
+ 323.54
1343
+ 54.8
1344
+ M1.2.1
1345
+ 99313.5
1346
+ 325.32
1347
+ 38.95
1348
+ M1.3.1
1349
+ 98770.6
1350
+ 322.65
1351
+ 32.6
1352
+ M2.1.1.1
1353
+ 69951.9
1354
+ 402.48
1355
+ 149.35
1356
+ M2.2.1.1
1357
+ 73433.8
1358
+ 379.33
1359
+ 119.6
1360
+ M2.3.1.1
1361
+ 73424.7
1362
+ 371.63
1363
+ 102.95
1364
+ M2.1.1.2
1365
+ 70172.3
1366
+ 212.40
1367
+ 153.15
1368
+ M2.2.1.2
1369
+ 72824.8
1370
+ 219.73
1371
+ 121.55
1372
+ M2.3.1.2
1373
+ 73651.5
1374
+ 221.96
1375
+ 107.5
1376
+ BS2
1377
+ 271110.8
1378
+ 720.46
1379
+ 0.0
1380
+ M1.1.2
1381
+ 113605.9
1382
+ 381.46
1383
+ 57.45
1384
+ M1.2.2
1385
+ 117188.3
1386
+ 394.57
1387
+ 36.45
1388
+ M1.3.2
1389
+ 113665.3
1390
+ 378.63
1391
+ 29.85
1392
+ M2.1.2.1
1393
+ 70603.0
1394
+ 404.28
1395
+ 150.8
1396
+ M2.2.2.1
1397
+ 77836.0
1398
+ 400.18
1399
+ 121.4
1400
+ M2.3.2.1
1401
+ 76818.2
1402
+ 399.89
1403
+ 110.8
1404
+ M2.1.2.2
1405
+ 72316.9
1406
+ 219.91
1407
+ 148.4
1408
+ M2.2.2.2
1409
+ 78135.2
1410
+ 240.57
1411
+ 121.3
1412
+ M2.3.2.2
1413
+ 77073.0
1414
+ 235.49
1415
+ 112.45
1416
+ (b) Knapsack problem with m = 2 constraints
1417
+ and n = 100 variables
1418
+ knapsack problem, m = 3, n = 50
1419
+ version
1420
+ nodes
1421
+ time (s)
1422
+ solved
1423
+ IPs
1424
+ BB
1425
+ 54430.4
1426
+ 51.5026
1427
+ 0.0
1428
+ BS1
1429
+ 15260.1
1430
+ 17.9276
1431
+ 0.0
1432
+ WS
1433
+ 18112.9
1434
+ 20.5208
1435
+ 36.2
1436
+ M1.1.1
1437
+ 13522.4
1438
+ 16.8431
1439
+ 28.8
1440
+ M1.2.1
1441
+ 13530.7
1442
+ 16.4735
1443
+ 19.0
1444
+ M1.3.1
1445
+ 13576.5
1446
+ 16.4442
1447
+ 14.95
1448
+ M2.1.1.1
1449
+ 12345.3
1450
+ 22.1289
1451
+ 51.15
1452
+ M2.2.1.1
1453
+ 12973.5
1454
+ 19.7592
1455
+ 34.5
1456
+ M2.3.1.1
1457
+ 13014.0
1458
+ 19.6348
1459
+ 28.8
1460
+ M2.1.1.2
1461
+ 12241.1
1462
+ 16.1190
1463
+ 53.55
1464
+ M2.2.1.2
1465
+ 12934.3
1466
+ 16.2933
1467
+ 35.15
1468
+ M2.3.1.2
1469
+ 12908.3
1470
+ 16.1009
1471
+ 30.35
1472
+ BS2
1473
+ 22597.3
1474
+ 24.5736
1475
+ 0.0
1476
+ M1.1.2
1477
+ 14645.7
1478
+ 18.6425
1479
+ 29.55
1480
+ M1.2.2
1481
+ 14573.2
1482
+ 18.0521
1483
+ 16.75
1484
+ M1.3.2
1485
+ 14597.0
1486
+ 17.9793
1487
+ 14.5
1488
+ M2.1.2.1
1489
+ 12617.9
1490
+ 22.3518
1491
+ 54.65
1492
+ M2.2.2.1
1493
+ 13324.9
1494
+ 20.7655
1495
+ 33.4
1496
+ M2.3.2.1
1497
+ 13252.3
1498
+ 20.4366
1499
+ 30.55
1500
+ M2.1.2.2
1501
+ 12682.4
1502
+ 16.8670
1503
+ 56.65
1504
+ M2.2.2.2
1505
+ 13180.2
1506
+ 16.7601
1507
+ 33.6
1508
+ M2.3.2.2
1509
+ 13274.4
1510
+ 16.8497
1511
+ 32.15
1512
+ (c) Knapsack problem with m = 3 constraints
1513
+ and n = 50 variables
1514
+ knapsack problem, m = 3, n = 80
1515
+ version
1516
+ nodes
1517
+ time (s)
1518
+ solved
1519
+ IPs
1520
+ BB
1521
+ 263971.6
1522
+ 724.999
1523
+ 0.0
1524
+ BS1
1525
+ 81609.9
1526
+ 287.899
1527
+ 0.0
1528
+ WS
1529
+ 121360.8
1530
+ 376.247
1531
+ 56.4
1532
+ M1.1.1
1533
+ 80406.5
1534
+ 282.897
1535
+ 47.35
1536
+ M1.2.1
1537
+ 79971.5
1538
+ 279.885
1539
+ 32.2
1540
+ M1.3.1
1541
+ 80089.6
1542
+ 279.686
1543
+ 26.55
1544
+ M2.1.1.1
1545
+ 54187.1
1546
+ 340.389
1547
+ 115.7
1548
+ M2.2.1.1
1549
+ 55915.9
1550
+ 328.411
1551
+ 85.45
1552
+ M2.3.1.1
1553
+ 58486.8
1554
+ 330.347
1555
+ 66.9
1556
+ M2.1.1.2
1557
+ 53396.0
1558
+ 164.755
1559
+ 116.0
1560
+ M2.2.1.2
1561
+ 56572.6
1562
+ 174.131
1563
+ 86.25
1564
+ M2.3.1.2
1565
+ 57452.9
1566
+ 176.657
1567
+ 67.85
1568
+ BS2
1569
+ 140681.4
1570
+ 390.578
1571
+ 0.0
1572
+ M1.1.2
1573
+ 92175.8
1574
+ 334.414
1575
+ 50.45
1576
+ M1.2.2
1577
+ 96339.3
1578
+ 350.148
1579
+ 29.05
1580
+ M1.3.2
1581
+ 96099.5
1582
+ 348.915
1583
+ 24.0
1584
+ M2.1.2.1
1585
+ 54119.5
1586
+ 349.261
1587
+ 112.5
1588
+ M2.2.2.1
1589
+ 59379.8
1590
+ 344.899
1591
+ 89.1
1592
+ M2.3.2.1
1593
+ 60326.6
1594
+ 349.874
1595
+ 74.15
1596
+ M2.1.2.2
1597
+ 54595.6
1598
+ 176.090
1599
+ 119.65
1600
+ M2.2.2.2
1601
+ 62851.9
1602
+ 211.373
1603
+ 88.9
1604
+ M2.3.2.2
1605
+ 61200.8
1606
+ 205.413
1607
+ 76.6
1608
+ (d) Knapsack problem with m = 3 constraints
1609
+ and n = 80 variables
1610
+ Table 2: Numerical results of the bi-objective, multidimensional knapsack problems
1611
+ 17
1612
+
1613
+ Tchebycheff objective space information into the lower bound. Note that with rising numbers of
1614
+ variables and constraints the hybridization techniques have larger impact on the performance of the
1615
+ Branch and Bound algorithm.
1616
+ 5.2 Bi-objective Assignment Problems
1617
+ We consider bi-objective assignment problems having n = ℓ2 variables,
1618
+ max
1619
+
1620
+
1621
+ i=1
1622
+
1623
+
1624
+ j=1
1625
+ ck
1626
+ ij xij
1627
+ k = 1, 2
1628
+ s.t.
1629
+
1630
+
1631
+ i=1
1632
+ xij = 1
1633
+ j = 1, ..., ℓ
1634
+
1635
+
1636
+ j=1
1637
+ xij = 1
1638
+ i = 1, ..., ℓ
1639
+ x ∈ {0, 1}ℓ×ℓ
1640
+ where the cost coefficients ck
1641
+ ij ∈ [50, 100]. The algorithmic strategy for the solution of IP scalariza-
1642
+ tions depending on the value of the parameter α is chosen similarly to the previous case of knapsack
1643
+ problems. However, we adapt the boundaries due to the different number of nodes to explore in as-
1644
+ signment problems. In M1.1.β weighted sum scalarizations are solved every 10-th iteration to integer
1645
+ optimality. In M1.2.β we apply the weighted sum every 10-th iteration within the first n·ℓ iterations.
1646
+ In M1.3.β we apply the weighted sum every 10-th iteration within the first n · ℓ/3 iterations, every
1647
+ ℓ-th iteration in the next n · ℓ/3 iterations and every n-th iteration in the third n · ℓ/3 iterations.
1648
+ For M.2.α.β.γ we use the same algorithmic strategy as in hybrid Branch and Bound for knapsack
1649
+ problems. If a scalarization cannot be applied or an IP with identical objective function has been
1650
+ solved prior, no IP is solved in that iteration.
1651
+ Due to the total unimodularity of the assignment problem, the weighted sum scalarizations do in
1652
+ general not improve the lower bound sets of subproblems. However, in situations where the weighted
1653
+ sum IP scalarization generates a supported efficient solution, whose corresponding non-dominated
1654
+ point is not an extreme point of the lower bound set, the local upper bounds move closer to the lower
1655
+ bound set. This reduces the gap between upper and lower bound and may lead to a decrease of the
1656
+ explored subproblems. Note that this update of the upper bound set may also have the contrary
1657
+ effect (the number of considered subproblems increases), since it can change the order in which the
1658
+ subproblems are considered. Nevertheless, the weighted sum IP scalarizations are necessary to find
1659
+ non-dominated points on which the augmented weighted Tchebycheff scalarization can be applied.
1660
+ Our branching strategies have a significant impact on the number of explored nodes and the
1661
+ computation time. Again, the local hypervolume gap performs better than the global hypervolume
1662
+ gap strategy. With the local strategy we can reduce the number of explored nodes by up to 39%
1663
+ (Table 3c) and the computation time by up to 33% (Table 3c). Using the global hypervolume gap
1664
+ strategy we can reduce the number of explored nodes by up to 12% (Table 3b) and the computation
1665
+ time by up to 12% (Table 3b). We reach a reduction of the explored nodes by up to 46% (Table 3d)
1666
+ and a reduction of the computation time by up to 42% (Table 3d), in the best case. Again, the
1667
+ strategies M2.1.1.1 and M2.1.1.2 seem to work the best for assignment problems in terms of explored
1668
+ nodes. Nevertheless, M2.1.1.2 leads to a better computation time which can be explained by the
1669
+ same argument as before. Furthermore, strategy BS1 works very well and is able to compete with
1670
+ the previously mentioned strategies with respect to number of nodes and computation time without
1671
+ solving a single IP scalarization.
1672
+ 18
1673
+
1674
+ assignment problem, n = 100
1675
+ version
1676
+ nodes
1677
+ time (s)
1678
+ solved
1679
+ IPs
1680
+ BB
1681
+ 3117.0
1682
+ 5.1507
1683
+ 0.0
1684
+ BS1
1685
+ 2422.2
1686
+ 4.1182
1687
+ 0.0
1688
+ WS
1689
+ 3117.0
1690
+ 5.2631
1691
+ 19.2
1692
+ M1.1.1
1693
+ 2425.1
1694
+ 4.1937
1695
+ 13.95
1696
+ M1.2.1
1697
+ 2425.1
1698
+ 4.1564
1699
+ 11.95
1700
+ M1.3.1
1701
+ 2425.1
1702
+ 4.1996
1703
+ 8.4
1704
+ M2.1.1.1
1705
+ 2418.2
1706
+ 4.4063
1707
+ 19.8
1708
+ M2.2.1.1
1709
+ 2420.5
1710
+ 4.2726
1711
+ 14.4
1712
+ M2.3.1.1
1713
+ 2419.5
1714
+ 4.2242
1715
+ 9.65
1716
+ M2.1.1.2
1717
+ 2420.5
1718
+ 4.3474
1719
+ 19.9
1720
+ M2.2.1.2
1721
+ 2420.5
1722
+ 4.2014
1723
+ 14.55
1724
+ M2.3.1.2
1725
+ 2423.0
1726
+ 4.2055
1727
+ 9.8
1728
+ BS2
1729
+ 2948.9
1730
+ 4.9644
1731
+ 0.0
1732
+ M1.1.2
1733
+ 2519.8
1734
+ 4.4349
1735
+ 14.1
1736
+ M1.2.2
1737
+ 2518.7
1738
+ 4.4211
1739
+ 11.05
1740
+ M1.3.2
1741
+ 2516.2
1742
+ 4.4203
1743
+ 7.65
1744
+ M2.1.2.1
1745
+ 2499.7
1746
+ 4.6173
1747
+ 20.4
1748
+ M2.2.2.1
1749
+ 2518.7
1750
+ 4.4661
1751
+ 12.2
1752
+ M2.3.2.1
1753
+ 2516.2
1754
+ 4.4214
1755
+ 8.35
1756
+ M2.1.2.2
1757
+ 2498.1
1758
+ 4.5400
1759
+ 19.55
1760
+ M2.2.2.2
1761
+ 2518.7
1762
+ 4.4451
1763
+ 12.25
1764
+ M2.3.2.2
1765
+ 2516.2
1766
+ 4.3972
1767
+ 8.4
1768
+ (a) Assignment problem with n = 100 variables
1769
+ assignment problem, n = 144
1770
+ version
1771
+ nodes
1772
+ time (s)
1773
+ solved
1774
+ IPs
1775
+ BB
1776
+ 9661.9
1777
+ 28.2667
1778
+ 0.0
1779
+ BS1
1780
+ 6255.4
1781
+ 18.9362
1782
+ 0.0
1783
+ WS
1784
+ 9610.8
1785
+ 28.1363
1786
+ 33.35
1787
+ M1.1.1
1788
+ 6274.5
1789
+ 18.9323
1790
+ 22.3
1791
+ M1.2.1
1792
+ 6274.5
1793
+ 18.9869
1794
+ 14.3
1795
+ M1.3.1
1796
+ 6274.5
1797
+ 18.9318
1798
+ 9.85
1799
+ M2.1.1.1
1800
+ 6210.9
1801
+ 20.0216
1802
+ 46.0
1803
+ M2.2.1.1
1804
+ 6279.9
1805
+ 19.4670
1806
+ 23.55
1807
+ M2.3.1.1
1808
+ 6271.2
1809
+ 19.1542
1810
+ 12.65
1811
+ M2.1.1.2
1812
+ 6171.0
1813
+ 19.4994
1814
+ 43.6
1815
+ M2.2.1.2
1816
+ 6261.5
1817
+ 19.2851
1818
+ 24.65
1819
+ M2.3.1.2
1820
+ 6270.5
1821
+ 18.8676
1822
+ 12.45
1823
+ BS2
1824
+ 8448.0
1825
+ 24.7742
1826
+ 0.0
1827
+ M1.1.2
1828
+ 6781.8
1829
+ 20.6825
1830
+ 24.05
1831
+ M1.2.2
1832
+ 6779.4
1833
+ 20.5940
1834
+ 13.25
1835
+ M1.3.2
1836
+ 6734.2
1837
+ 20.4270
1838
+ 9.3
1839
+ M2.1.2.1
1840
+ 6472.8
1841
+ 20.8732
1842
+ 44.1
1843
+ M2.2.2.1
1844
+ 6724.2
1845
+ 20.6838
1846
+ 16.8
1847
+ M2.3.2.1
1848
+ 6682.3
1849
+ 20.4212
1850
+ 12.6
1851
+ M2.1.2.2
1852
+ 6500.3
1853
+ 20.2536
1854
+ 42.55
1855
+ M2.2.2.2
1856
+ 6737.7
1857
+ 20.5214
1858
+ 16.75
1859
+ M2.3.2.2
1860
+ 6689.0
1861
+ 20.3987
1862
+ 12.95
1863
+ (b) Assignment problem with n = 144 variables
1864
+ assignment problem, n = 225
1865
+ version
1866
+ nodes
1867
+ time (s)
1868
+ solved
1869
+ IPs
1870
+ BB
1871
+ 26810.5
1872
+ 160.712
1873
+ 0.0
1874
+ BS1
1875
+ 16142.2
1876
+ 107.909
1877
+ 0.0
1878
+ WS
1879
+ 26810.5
1880
+ 163.666
1881
+ 46.85
1882
+ M1.1.1
1883
+ 16150.0
1884
+ 107.842
1885
+ 32.8
1886
+ M1.2.1
1887
+ 16151.2
1888
+ 109.687
1889
+ 19.7
1890
+ M1.3.1
1891
+ 16164.7
1892
+ 109.073
1893
+ 12.05
1894
+ M2.1.1.1
1895
+ 15424.1
1896
+ 111.181
1897
+ 87.4
1898
+ M2.2.1.1
1899
+ 15964.3
1900
+ 110.004
1901
+ 43.05
1902
+ M2.3.1.1
1903
+ 16112.2
1904
+ 110.372
1905
+ 19.5
1906
+ M2.1.1.2
1907
+ 15554.1
1908
+ 106.748
1909
+ 89.5
1910
+ M2.2.1.2
1911
+ 16008.4
1912
+ 107.641
1913
+ 41.35
1914
+ M2.3.1.2
1915
+ 16106.5
1916
+ 109.735
1917
+ 19.25
1918
+ BS2
1919
+ 24566.2
1920
+ 152.341
1921
+ 0.0
1922
+ M1.1.2
1923
+ 17499.1
1924
+ 117.481
1925
+ 34.15
1926
+ M1.2.2
1927
+ 17591.4
1928
+ 118.804
1929
+ 16.75
1930
+ M1.3.2
1931
+ 17287.8
1932
+ 116.681
1933
+ 11.3
1934
+ M2.1.2.1
1935
+ 16095.7
1936
+ 115.012
1937
+ 85.8
1938
+ M2.2.2.1
1939
+ 17048.8
1940
+ 116.275
1941
+ 31.55
1942
+ M2.3.2.1
1943
+ 17093.3
1944
+ 117.976
1945
+ 17.75
1946
+ M2.1.2.2
1947
+ 16183.0
1948
+ 110.920
1949
+ 79.55
1950
+ M2.2.2.2
1951
+ 17104.7
1952
+ 117.885
1953
+ 32.2
1954
+ M2.3.2.2
1955
+ 17070.0
1956
+ 117.557
1957
+ 16.65
1958
+ (c) Assignment problem with n = 225 variables
1959
+ assignment problem, n = 324
1960
+ version
1961
+ nodes
1962
+ time (s)
1963
+ solved
1964
+ IPs
1965
+ BB
1966
+ 76643.0
1967
+ 798.644
1968
+ 0.0
1969
+ BS1
1970
+ 47311.6
1971
+ 527.471
1972
+ 0.0
1973
+ WS
1974
+ 75179.2
1975
+ 786.036
1976
+ 61.75
1977
+ M1.1.1
1978
+ 47327.0
1979
+ 530.055
1980
+ 47.75
1981
+ M1.2.1
1982
+ 47332.8
1983
+ 523.562
1984
+ 21.9
1985
+ M1.3.1
1986
+ 47375.6
1987
+ 524.610
1988
+ 15.25
1989
+ M2.1.1.1
1990
+ 40978.0
1991
+ 477.927
1992
+ 157.5
1993
+ M2.2.1.1
1994
+ 43760.5
1995
+ 497.812
1996
+ 82.0
1997
+ M2.3.1.1
1998
+ 44343.9
1999
+ 499.678
2000
+ 52.35
2001
+ M2.1.1.2
2002
+ 41294.4
2003
+ 457.120
2004
+ 159.05
2005
+ M2.2.1.2
2006
+ 43864.6
2007
+ 487.051
2008
+ 81.25
2009
+ M2.3.1.2
2010
+ 44499.7
2011
+ 489.744
2012
+ 52.05
2013
+ BS2
2014
+ 69042.4
2015
+ 723.853
2016
+ 0.0
2017
+ M1.1.2
2018
+ 49367.5
2019
+ 565.719
2020
+ 48.45
2021
+ M1.2.2
2022
+ 49053.0
2023
+ 553.130
2024
+ 22.95
2025
+ M1.3.2
2026
+ 49221.4
2027
+ 554.594
2028
+ 15.2
2029
+ M2.1.2.1
2030
+ 41840.5
2031
+ 489.647
2032
+ 150.2
2033
+ M2.2.2.1
2034
+ 45621.0
2035
+ 520.469
2036
+ 67.15
2037
+ M2.3.2.1
2038
+ 46915.9
2039
+ 533.692
2040
+ 39.35
2041
+ M2.1.2.2
2042
+ 42726.6
2043
+ 474.220
2044
+ 156.15
2045
+ M2.2.2.2
2046
+ 45901.6
2047
+ 513.111
2048
+ 67.05
2049
+ M2.3.2.2
2050
+ 46902.8
2051
+ 526.440
2052
+ 43.45
2053
+ (d) Assignment problem with n = 324 variables
2054
+ Table 3: Numerical results of the bi-objective assignment problems
2055
+ 19
2056
+
2057
+ 5.3 Bi-objective Discrete Facility Location Problems
2058
+ We consider discrete facility location problems of the form
2059
+ max
2060
+
2061
+
2062
+ i=1
2063
+ q
2064
+
2065
+ j=1
2066
+ ck
2067
+ ij xij +
2068
+ q
2069
+
2070
+ j=1
2071
+ f k
2072
+ j yj
2073
+ k = 1, 2
2074
+ s.t.
2075
+ q
2076
+
2077
+ j=1
2078
+ xij ≤ 1
2079
+ i = 1, ..., ℓ
2080
+ xij ≤ yj
2081
+ i = 1, ..., ℓ, j = 1, ..., q
2082
+ x ∈ {0, 1}ℓ×q
2083
+ y ∈ {0, 1}q
2084
+ where ℓ is the number of customers and q the number of facilities. We randomly generate coordinates
2085
+ of ℓ customers and q facilities in a square with length 200. The costs of the first objective function
2086
+ correspond to the l1-distances between the customers and facilities, while the costs of the second
2087
+ objective function are randomly generated (i. e. c2
2088
+ ij ∈ [1, 200]) and f k
2089
+ j ∈ [200, 400]. The number
2090
+ of variables is n = (ℓ + 1) q.
2091
+ We restrict the numerical tests to problems where the number of
2092
+ facilities is 20% of the number of customers. Again, we need to specify when and how often integer
2093
+ scalarizations are applied: We use the same methods as before but adapt the boundaries due to the
2094
+ different number of nodes to explore in discrete facility location problems. In M1.1.β we apply the
2095
+ weighted sum IP scalarization every 10-th iteration. In M1.2.β we apply the weighted sum every
2096
+ 10-th iteration within the first n2/4 iterations. In M1.3.β we apply the weighted sum scalarization
2097
+ every 10-th iteration in the first n2/4 iterations, every n/2-th iteration in the next n2/4 iterations
2098
+ and every n-th iteration in the third n2/4 iterations. In M.2.α.β.γ we operate analogous to the
2099
+ methods used for knapsack and assignment problems. If a scalarization cannot be applied or an IP
2100
+ with identical objective function has been solved prior, no IP is solved in that iteration.
2101
+ Again, both new branching strategies have an impact on the number of explored nodes and the
2102
+ computation time. The local strategy, once more, leads to better results, namely reduction of the
2103
+ explored nodes by up to 52% (Table 4d) and reduction of the computation time by up to 45%
2104
+ (Table 4d). With the global hypervolume gap strategy we can reach a reduction of the explored
2105
+ nodes by up to 24% (Table 4d) and a reduction of the computation time by up to 21% (Table 4d).
2106
+ In the best case we can reach a reduction of the explored nodes by up to 57% (Table 4d) and of
2107
+ the computation time by up to 50% (Table 4d). Once again, M2.1.1.2 seems to be the best choice
2108
+ with respect to the number of explored nodes and with a rising number of variables it is also the
2109
+ best choice regarding the computation time. With a smaller number of variables, BS1 leads to good
2110
+ results with respect to both aspects without solving a single IP.
2111
+ 5.4 Summary
2112
+ In all of the three tested problem classes (knapsack, assignment, discrete facility location) a signif-
2113
+ icant reduction of the number of explored nodes and the computation time can be realized with
2114
+ all presented combinations of the hybrid Branch and Bound approach. With increasing problem
2115
+ size (number of variables) the impact of the presented augmentations increases. Furthermore, the
2116
+ approaches perform better on problems where the gap between YN and the solution of the linear
2117
+ relaxation is larger compared to totally unimodular problems.
2118
+ The local hypervolume gap strategy for the node selection outperforms the global hypervolume gap
2119
+ strategy in our numerical tests. A reason for this is that in the global hypervolume gap strategy many
2120
+ small search zones can add up to a large gap although the lower bound might be quite close to the non-
2121
+ dominated points. The local hypervolume gap strategy chooses the node with the largest search zone,
2122
+ which has the biggest potential to reduce this gap. Moreover, the local hypervolume gap strategy
2123
+ aims at an uniform distribution of points in the incumbent list. In our numerical test, M2.1.1.2 turn
2124
+ 20
2125
+
2126
+ facility location problem, n = 48
2127
+ version
2128
+ nodes
2129
+ time (s)
2130
+ solved
2131
+ IPs
2132
+ BB
2133
+ 1431.1
2134
+ 1.0851
2135
+ 0.0
2136
+ BS1
2137
+ 999.8
2138
+ 0.7640
2139
+ 0.0
2140
+ WS
2141
+ 1431.1
2142
+ 1.4550
2143
+ 15.35
2144
+ M1.1.1
2145
+ 1000.2
2146
+ 0.8354
2147
+ 10.95
2148
+ M1.2.1
2149
+ 1000.2
2150
+ 0.8219
2151
+ 8.8
2152
+ M1.3.1
2153
+ 1000.2
2154
+ 0.8243
2155
+ 6.95
2156
+ M2.1.1.1
2157
+ 999.7
2158
+ 0.9361
2159
+ 13.2
2160
+ M2.2.1.1
2161
+ 1000.2
2162
+ 0.8361
2163
+ 9.85
2164
+ M2.3.1.1
2165
+ 1000.2
2166
+ 0.8079
2167
+ 7.85
2168
+ M2.1.1.2
2169
+ 999.3
2170
+ 0.8536
2171
+ 12.8
2172
+ M2.2.1.2
2173
+ 1000.2
2174
+ 0.8182
2175
+ 9.85
2176
+ M2.3.1.2
2177
+ 1000.2
2178
+ 0.8037
2179
+ 7.85
2180
+ BS2
2181
+ 1268.6
2182
+ 0.9714
2183
+ 0.0
2184
+ M1.1.2
2185
+ 1041.8
2186
+ 0.8654
2187
+ 12.3
2188
+ M1.2.2
2189
+ 1041.8
2190
+ 0.8527
2191
+ 9.35
2192
+ M1.3.2
2193
+ 1041.8
2194
+ 0.8592
2195
+ 7.35
2196
+ M2.1.2.1
2197
+ 1036.5
2198
+ 0.9722
2199
+ 15.65
2200
+ M2.2.2.1
2201
+ 1041.8
2202
+ 0.8761
2203
+ 10.25
2204
+ M2.3.2.1
2205
+ 1041.8
2206
+ 0.8735
2207
+ 7.6
2208
+ M2.1.2.2
2209
+ 1034.6
2210
+ 0.9678
2211
+ 15.1
2212
+ M2.2.2.2
2213
+ 1041.8
2214
+ 0.8843
2215
+ 10.4
2216
+ M2.3.2.2
2217
+ 1041.8
2218
+ 0.8654
2219
+ 7.6
2220
+ (a) Facility location problem with 15 customers
2221
+ and 3 facilities
2222
+ facility location problem, n = 84
2223
+ version
2224
+ nodes
2225
+ time (s)
2226
+ solved
2227
+ IPs
2228
+ BB
2229
+ 7949.1
2230
+ 12.6393
2231
+ 0.0
2232
+ BS1
2233
+ 4626.7
2234
+ 7.9303
2235
+ 0.0
2236
+ WS
2237
+ 7490.2
2238
+ 12.2058
2239
+ 35.0
2240
+ M1.1.1
2241
+ 4627.2
2242
+ 8.1249
2243
+ 26.45
2244
+ M1.2.1
2245
+ 4627.2
2246
+ 8.1149
2247
+ 18.2
2248
+ M1.3.1
2249
+ 4626.4
2250
+ 8.0610
2251
+ 13.85
2252
+ M2.1.1.1
2253
+ 4527.8
2254
+ 9.2394
2255
+ 49.0
2256
+ M2.2.1.1
2257
+ 4601.6
2258
+ 8.4311
2259
+ 26.45
2260
+ M2.3.1.1
2261
+ 4610.4
2262
+ 8.2569
2263
+ 18.9
2264
+ M2.1.1.2
2265
+ 4526.1
2266
+ 8.4415
2267
+ 45.3
2268
+ M2.2.1.2
2269
+ 4591.1
2270
+ 8.1289
2271
+ 24.25
2272
+ M2.3.1.2
2273
+ 4605.2
2274
+ 8.1312
2275
+ 19.8
2276
+ BS2
2277
+ 7084.4
2278
+ 11.5822
2279
+ 0.0
2280
+ M1.1.2
2281
+ 4873.8
2282
+ 8.7719
2283
+ 26.35
2284
+ M1.2.2
2285
+ 4874.8
2286
+ 8.7534
2287
+ 17.45
2288
+ M1.3.2
2289
+ 4894.1
2290
+ 8.7031
2291
+ 12.6
2292
+ M2.1.2.1
2293
+ 4673.6
2294
+ 9.5755
2295
+ 49.65
2296
+ M2.2.2.1
2297
+ 4832.0
2298
+ 8.9275
2299
+ 23.6
2300
+ M2.3.2.1
2301
+ 4812.8
2302
+ 8.8050
2303
+ 17.4
2304
+ M2.1.2.2
2305
+ 4628.9
2306
+ 8.7019
2307
+ 46.15
2308
+ M2.2.2.2
2309
+ 4825.9
2310
+ 8.7491
2311
+ 24.4
2312
+ M2.3.2.2
2313
+ 4807.5
2314
+ 8.5984
2315
+ 17.5
2316
+ (b) Facility location problem with 20 customers
2317
+ and 4 facilities
2318
+ facility location problem, n = 130
2319
+ version
2320
+ nodes
2321
+ time (s)
2322
+ solved
2323
+ IPs
2324
+ BB
2325
+ 17461.9
2326
+ 51.6307
2327
+ 0.0
2328
+ BS1
2329
+ 10684.0
2330
+ 34.5157
2331
+ 0.0
2332
+ WS
2333
+ 16795.9
2334
+ 50.9317
2335
+ 51.35
2336
+ M1.1.1
2337
+ 10753.9
2338
+ 35.4356
2339
+ 37.1
2340
+ M1.2.1
2341
+ 10753.9
2342
+ 35.2764
2343
+ 25.5
2344
+ M1.3.1
2345
+ 10753.9
2346
+ 35.1007
2347
+ 19.15
2348
+ M2.1.1.1
2349
+ 10104.4
2350
+ 38.3909
2351
+ 89.65
2352
+ M2.2.1.1
2353
+ 10678.1
2354
+ 35.7434
2355
+ 39.35
2356
+ M2.3.1.1
2357
+ 10722.3
2358
+ 35.6262
2359
+ 27.7
2360
+ M2.1.1.2
2361
+ 10103.0
2362
+ 34.5003
2363
+ 85.95
2364
+ M2.2.1.2
2365
+ 10691.2
2366
+ 35.3730
2367
+ 39.05
2368
+ M2.3.1.2
2369
+ 10718.6
2370
+ 35.1690
2371
+ 27.45
2372
+ BS2
2373
+ 15474.7
2374
+ 46.5130
2375
+ 0.0
2376
+ M1.1.2
2377
+ 11548.8
2378
+ 38.4891
2379
+ 39.3
2380
+ M1.2.2
2381
+ 11601.4
2382
+ 38.5848
2383
+ 24.6
2384
+ M1.3.2
2385
+ 11535.1
2386
+ 38.2917
2387
+ 18.0
2388
+ M2.1.2.1
2389
+ 10684.3
2390
+ 39.8639
2391
+ 81.5
2392
+ M2.2.2.1
2393
+ 11381.8
2394
+ 39.1988
2395
+ 37.15
2396
+ M2.3.2.1
2397
+ 11336.0
2398
+ 38.7754
2399
+ 28.45
2400
+ M2.1.2.2
2401
+ 10695.5
2402
+ 36.9098
2403
+ 78.25
2404
+ M2.2.2.2
2405
+ 11341.6
2406
+ 38.2646
2407
+ 39.55
2408
+ M2.3.2.2
2409
+ 11352.1
2410
+ 38.0063
2411
+ 25.9
2412
+ (c) Facility location problem with 25 customers
2413
+ and 5 facilites
2414
+ facility location problem, n = 186
2415
+ version
2416
+ nodes
2417
+ time (s)
2418
+ solved
2419
+ IPs
2420
+ BB
2421
+ 67369.3
2422
+ 373.238
2423
+ 0.0
2424
+ BS1
2425
+ 31844.1
2426
+ 203.145
2427
+ 0.0
2428
+ WS
2429
+ 62192.8
2430
+ 349.741
2431
+ 69.95
2432
+ M1.1.1
2433
+ 32106.6
2434
+ 206.244
2435
+ 53.05
2436
+ M1.2.1
2437
+ 32097.9
2438
+ 206.851
2439
+ 33.4
2440
+ M1.3.1
2441
+ 32148.5
2442
+ 207.199
2443
+ 23.75
2444
+ M2.1.1.1
2445
+ 28384.2
2446
+ 224.486
2447
+ 186.8
2448
+ M2.2.1.1
2449
+ 31074.5
2450
+ 218.314
2451
+ 101.15
2452
+ M2.3.1.1
2453
+ 32004.8
2454
+ 209.608
2455
+ 50.1
2456
+ M2.1.1.2
2457
+ 28558.8
2458
+ 186.010
2459
+ 172.7
2460
+ M2.2.1.2
2461
+ 30946.4
2462
+ 202.329
2463
+ 97.75
2464
+ M2.3.1.2
2465
+ 32011.8
2466
+ 207.715
2467
+ 47.5
2468
+ BS2
2469
+ 50759.0
2470
+ 292.344
2471
+ 0.0
2472
+ M1.1.2
2473
+ 35150.1
2474
+ 230.687
2475
+ 55.5
2476
+ M1.2.2
2477
+ 35789.8
2478
+ 233.967
2479
+ 30.8
2480
+ M1.3.2
2481
+ 35255.0
2482
+ 233.163
2483
+ 21.95
2484
+ M2.1.2.1
2485
+ 29704.3
2486
+ 230.016
2487
+ 172.65
2488
+ M2.2.2.1
2489
+ 33959.7
2490
+ 236.351
2491
+ 81.75
2492
+ M2.3.2.1
2493
+ 34228.0
2494
+ 233.553
2495
+ 50.2
2496
+ M2.1.2.2
2497
+ 30412.6
2498
+ 202.719
2499
+ 167.4
2500
+ M2.2.2.2
2501
+ 34511.8
2502
+ 229.970
2503
+ 69.95
2504
+ M2.3.2.2
2505
+ 34405.0
2506
+ 229.021
2507
+ 47.1
2508
+ (d) Facility location problem with 30 customers
2509
+ and 6 facilities
2510
+ Table 4: Numerical results of the bi-objective integer facility location problem
2511
+ 21
2512
+
2513
+ out to be the best choice in most cases with respect to the number of explored nodes and computation
2514
+ time. In this version, we use the local hypervolume gap strategy for the choice of the active node,
2515
+ every 10-th iteration the weighted sum IP scalarization is applied and every 50-th iteration we
2516
+ apply the augmented weighted Tchebycheff scalarization instead. Futhermore, the objective space
2517
+ information gained by the augmented weighted Tchebycheff scalarization is not used to update the
2518
+ lower bound set, since its local improvements do not compensate the increased computation time.
2519
+ Although we need to solve more IPs than in most other approaches, the computation time is the
2520
+ lowest compared to the others. So, using the augmented weighted Tchebycheff scalarization in the
2521
+ beginning of the Branch and Bound works best. Due to the likelihood of finding non-supported non-
2522
+ dominated points in the early stages of the algorithm, the upper bound can be further improved.
2523
+ This results to a higher probability of fathoming a node by dominance. Nevertheless, with version
2524
+ BS1 we also achive a remarkable reduction in terms of the number of explored nodes and computation
2525
+ time by using the local hypervolume gap strategy for node selection.
2526
+ 6 Conclusion and Outlook
2527
+ In this paper, we propose two approaches to incorporate objective space information in bi-objective
2528
+ Branch and Bound. By using the local or global (approximated) hypervolume gap as a node selection
2529
+ criterion, we adapt the run of the Branch and Bound algorithm to the problem instance. Additionally,
2530
+ we adaptively solve scalarizations to integer optimality to improve the lower and the upper bound
2531
+ set by the obtained objective space information. Our numerical results show the effectiveness of
2532
+ both approaches and in particular of their combination. The dynamic branching rule based on the
2533
+ local (approximated) hypervolume gap has large impact on the number of explored subproblems,
2534
+ is compuationally efficient and can be easily integrated in other multi-objective Branch and Bound
2535
+ algorithms.
2536
+ While we tested in this paper the individual contributions of our augmentations on a generic
2537
+ bi-objective Branch and Bound, we will continue to extend our ideas to multiple dimensions and
2538
+ integrate them into a competetive multi-objective Branch and Bound framework. Particularly in
2539
+ higher dimensions, it may be promising to combine our approaches with objective space branching.
2540
+ Acknowledgment
2541
+ The authors thankfully acknowledge financial support by Deutsche Forschungsgemeinschaft, project
2542
+ number KL 1076/11-1.
2543
+ References
2544
+ Y. P. Aneja and K. P. K. Nair. Bicriteria transportation problem. Management Science, 25(1):
2545
+ 73–78, 1979. doi: 10.1287/mnsc.25.1.73.
2546
+ C. Bazgan, H. Hugot, and D. Vanderpooten. Solving efficiently the 0–1 multi-objective knapsack
2547
+ problem. Computers & Operations Research, 36(1):260–279, 2009. doi: 10.1016/j.cor.2007.09.009.
2548
+ P. Belotti, B. Soylu, and M. M. Wiecek. A branch-and-bound algorithm for biobjective mixed-integer
2549
+ programs. Technical report, https://optimization-online.org/?p=12266, 2012.
2550
+ H. P. Benson. An outer approximation algorithm for generating all efficient extreme points in the
2551
+ outcome set of a multiple objective linear programming problem. Journal of Global Optimization,
2552
+ 13(1):1–24, 1998. doi: 10.1023/A:1008215702611.
2553
+ 22
2554
+
2555
+ N. Boland, H. Charkhgard, and M. Savelsbergh. A criterion space search algorithm for biobjective
2556
+ integer programming: The balanced box method. INFORMS Journal on Computing, 27(4):735–
2557
+ 754, 2015a. doi: 10.1287/ijoc.2015.0657.
2558
+ N. Boland, H. Charkhgard, and M. Savelsbergh. A criterion space search algorithm for biobjective
2559
+ mixed integer programming: The triangle splitting method. INFORMS Journal on Computing,
2560
+ 27(4):597–618, 2015b. doi: 10.1287/ijoc.2015.0646.
2561
+ N. Boland, H. Charkhgard, and M. Savelsbergh. The quadrant shrinking method: A simple and
2562
+ efficient algorithm for solving tri-objective integer programs. European Journal of Operational
2563
+ Research, 260(3):873–885, 2017. doi: 10.1016/j.ejor.2016.03.035.
2564
+ F. Bö¸kler and P. Mutzel. Output-sensitive algorithms for enumerating the extreme nondominated
2565
+ points of multiobjective combinatorial optimization problems. In Algorithms - ESA 2015, pages
2566
+ 288–299. Springer Berlin Heidelberg, Berlin Heidelberg, 2015. doi: 10.1007/978-3-662-48350-3_25.
2567
+ K. Dächert and K. Klamroth.
2568
+ A linear bound on the number of scalarizations needed to solve
2569
+ discrete tricriteria optimization problems. Journal of Global Optimization, 61(4):643–676, 2014.
2570
+ doi: 10.1007/s10898-014-0205-z.
2571
+ K. Dächert, J. Gorski, and K. Klamroth. An augmented weighted Tchebycheff method with adap-
2572
+ tively chosen parameters for discrete bicriteria optimization problems. Computers & Operations
2573
+ Research, 39(12):2929–2943, 2012. doi: 10.1016/j.cor.2012.02.021.
2574
+ R. Dechter and J. Pearl. Generalized best-first search strategies and the optimality of A∗. Journal
2575
+ of the ACM, 32(3):505–536, 1985. doi: 10.1145/3828.3830.
2576
+ M. Ehrgott. Multicriteria Optimization. Springer, Berlin Heidelberg, 2005. ISBN 978-3-540-21398-7.
2577
+ doi: 10.1007/3-540-27659-9.
2578
+ M. Ehrgott and X. Gandibleux. Bound sets for biobjective combinatorial optimization problems.
2579
+ Computers & Operations Research, 34(9):2674–2694, 2007. doi: 10.1016/j.cor.2005.10.003.
2580
+ N. Forget, S. L. Gadegaard, K. Klamroth, L. R. Nielsen, and A. Przybylski. Branch-and-bound and
2581
+ objective branching with three or more objectives. Computers & Operations Research, 148:106012,
2582
+ dec 2022. doi: 10.1016/j.cor.2022.106012.
2583
+ S. L. Gadegaard, L. R. Nielsen, and M. Ehrgott.
2584
+ Bi-objective branch-and-cut algorithms based
2585
+ on LP relaxation and bound sets. INFORMS Journal on Computing, 31(4):790–804, 2019. doi:
2586
+ 10.1287/ijoc.2018.0846.
2587
+ Y. Haimes, L. Lasdon, and D. Wismer. On a bicriterion formation of the problems of integrated
2588
+ system identification and system optimization. IEEE Transactions on Systems, Man, and Cyber-
2589
+ netics, pages 296–297, 1971. doi: 10.1109/TSMC.1971.4308298.
2590
+ A. D. Jesus, L. Paquete, B. Derbel, and A. Liefooghe. On the design and anytime performance
2591
+ of indicator-based branch and bound for multi-objective combinatorial optimization.
2592
+ In Pro-
2593
+ ceedings of the Genetic and Evolutionary Computation Conference, Lille, 2021. ACM.
2594
+ doi:
2595
+ 10.1145/3449639.3459360.
2596
+ H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer, Berlin Heidelberg, 2004.
2597
+ doi: 10.1007/978-3-540-24777-7.
2598
+ G. Kirlik and S. Sayın. A new algorithm for generating all nondominated solutions of multiobjective
2599
+ discrete optimization problems. European Journal of Operational Research, 232(3):479–488, 2014.
2600
+ doi: 10.1016/j.ejor.2013.08.001.
2601
+ 23
2602
+
2603
+ G. Kiziltan and E. Yucaoğlu. An algorithm for multiobjective zero-one linear programming. Man-
2604
+ agement Science, 29(12):1444–1453, 1983. doi: 10.1287/mnsc.29.12.1444.
2605
+ K. Klamroth, R. Lacour, and D. Vanderpooten. On the representation of the search region in multi-
2606
+ objective optimization. European Journal of Operational Research, 245(3):767–778, 2015. doi:
2607
+ 10.1016/j.ejor.2015.03.031.
2608
+ D. Klein and E. Hannan. An algorithm for the multiple objective integer linear programming prob-
2609
+ lem. European Journal of Operational Research, 9(4):378–385, 1982. doi: 10.1016/0377-2217(82)
2610
+ 90182-5.
2611
+ M. Laumanns, L. Thiele, and E. Zitzler.
2612
+ An efficient, adaptive parameter variation scheme for
2613
+ metaheuristics based on the epsilon-constraint method. European Journal of Operational Research,
2614
+ 169(3):932–942, 2006. doi: 10.1016/j.ejor.2004.08.029.
2615
+ G. Mavrotas and D. Diakoulaki. A branch and bound algorithm for mixed zero-one multiple objective
2616
+ linear programming. European Journal of Operational Research, 107(3):530–541, 1998. doi: 10.
2617
+ 1016/s0377-2217(97)00077-5.
2618
+ G. Mavrotas and D. Diakoulaki. Multi-criteria branch and bound: A vector maximization algorithm
2619
+ for mixed 0-1 multiple objective linear programming. Applied Mathematics and Computation, 171
2620
+ (1):53–71, 2005. doi: 10.1016/j.amc.2005.01.038.
2621
+ K. Miettinen. Nonlinear Multiobjective Optimization. Springer, New York, 1998. ISBN 0792382781.
2622
+ doi: 10.1007/978-1-4615-5563-6.
2623
+ D. R. Morrison, S. H. Jacobson, J. J. Sauppe, and E. C. Sewell. Branch-and-bound algorithms: A
2624
+ survey of recent advances in searching, branching, and pruning. Discrete Optimization, 19:79–102,
2625
+ 2016. doi: 10.1016/j.disopt.2016.01.005.
2626
+ Ö. Özpeynirci and M. Köksalan. An exact algorithm for finding extreme supported nondominated
2627
+ points of multiobjective mixed integer programs. Management Science, 56(12):2302–2315, 2010.
2628
+ doi: 10.1287/mnsc.1100.1248.
2629
+ S. N. Parragh and F. Tricoire. Branch-and-bound for bi-objective integer programming. INFORMS
2630
+ Journal on Computing, 31(4):805–822, 2019. doi: 10.1287/ijoc.2018.0856.
2631
+ A. Przybylski and X. Gandibleux. Multi-objective branch and bound. European Journal of Opera-
2632
+ tional Research, 260(3):856–872, 2017. doi: 10.1016/j.ejor.2017.01.032.
2633
+ A. Przybylski, X. Gandibleux, and M. Ehrgott. Two phase algorithms for the bi-objective assignment
2634
+ problem. European Journal of Operational Research, 185(2):509–533, 2008. doi: 10.1016/j.ejor.
2635
+ 2006.12.054.
2636
+ A. Przybylski, X. Gandibleux, and M. Ehrgott. A recursive algorithm for finding all nondominated
2637
+ extreme points in the outcome set of a multiobjective integer programme. INFORMS Journal on
2638
+ Computing, 22(3):371–386, 2010a. doi: 10.1287/ijoc.1090.0342.
2639
+ A. Przybylski, X. Gandibleux, and M. Ehrgott. A two phase method for multi-objective integer
2640
+ programming and its application to the assignment problem with three objectives. Discrete Opti-
2641
+ mization, 7(3):149–165, 2010b. doi: 10.1016/j.disopt.2010.03.005.
2642
+ A. Przybylski, K. Klamroth, and R. Lacour. A simple and efficient dichotomic search algorithm for
2643
+ multi-objective mixed integer linear programs, 2019.
2644
+ P. Serafini. Some considerations about computational complexity for multi objective combinatorial
2645
+ problems. In Recent Advances and Historical Development of Vector Optimization, pages 222–232.
2646
+ Springer Berlin Heidelberg, Berlin Heidelberg, 1987. doi: 10.1007/978-3-642-46618-2_15.
2647
+ 24
2648
+
2649
+ F. Sourd and O. Spanjaard. A multiobjective branch-and-bound framework: Application to the
2650
+ biobjective spanning tree problem. INFORMS Journal on Computing, 20(3):472–484, 2008. doi:
2651
+ 10.1287/ijoc.1070.0260.
2652
+ R. E. Steuer. Multiple Criteria Optimization: Theory, Computation and Application. John Wiley,
2653
+ New York, 1986. ISBN 978-0894643934. doi: 10.1002/oca.4660100109.
2654
+ R. E. Steuer and E.-U. Choo. An interactive weighted Tchebycheff procedure for multiple objective
2655
+ programming. Mathematical Programming, 26(3):326–344, 1983. doi: 10.1007/BF02591870.
2656
+ T. Stidsen and K. A. Andersen. A hybrid approach for biobjective optimization. Discrete Optimiza-
2657
+ tion, 28:89–114, 2018. doi: 10.1016/j.disopt.2018.02.001.
2658
+ T. Stidsen, K. A. Andersen, and B. Dammann.
2659
+ A branch and bound algorithm for a class of
2660
+ biobjective mixed integer programs. Management Science, 60(4):1009–1032, 2014. doi: 10.1287/
2661
+ mnsc.2013.1802.
2662
+ D. Tuyttens, J. Teghem, P. Fortemps, and K. V. Nieuwenhuyze. Performance of the mosa method
2663
+ for the bicriteria assignment problem. Journal of Heuristics, 6(3):295–310, 2000. doi: 10.1023/a:
2664
+ 1009670112978.
2665
+ E. Ulungu and J. Teghem. The two phases method: An efficient procedure to solve bi-objective
2666
+ combinatorial optimization problems. Foundations of Computing and Decision Sciences, 20:149–
2667
+ 156, 1995.
2668
+ E. Ulungu and J. Teghem.
2669
+ Solving multi-objective knapsack problem by a branch-and-bound
2670
+ procedure.
2671
+ In Multicriteria Analysis, pages 269–278. Springer, Berlin Heidelberg, 1997.
2672
+ doi:
2673
+ 10.1007/978-3-642-60667-0_26.
2674
+ T. Vincent, F. Seipp, S. Ruzika, A. Przybylski, and X. Gandibleux. Multiple objective branch and
2675
+ bound for mixed 0-1 linear programming: Corrections and improvements for the biobjective case.
2676
+ Computers & Operations Research, 40(1):498–509, 2013. doi: 10.1016/j.cor.2012.08.003.
2677
+ M. Visée, J. Teghem, M. Pirlot, and E. Ulungu. Two-phases method and branch and bound proce-
2678
+ dures to solve the bi–objective knapsack problem. Journal of Global Optimization, 12(2):139–155,
2679
+ 1998. doi: 10.1023/A:1008258310679.
2680
+ E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: a comparative case study and the
2681
+ strength pareto approach. IEEE Transactions on Evolutionary Computation, 3(4):257–271, 1999.
2682
+ doi: 10.1109/4235.797969.
2683
+ 25
2684
+
9tFLT4oBgHgl3EQfCC72/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
BNE3T4oBgHgl3EQfTwqq/content/tmp_files/2301.04445v1.pdf.txt ADDED
@@ -0,0 +1,1153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MNRAS 000, 1–10 (2023)
2
+ Preprint 12 January 2023
3
+ Compiled using MNRAS LATEX style file v3.0
4
+ Hi intensity mapping with MeerKAT: forecast for delay power spectrum
5
+ measurement using interferometer mode
6
+ Ming Zhang
7
+ ID1, Yichao Li
8
+ ID1★, Jing-Fei Zhang
9
+ ID1, Xin Zhang
10
+ ID1,2,3†
11
+ 1Key Laboratory of Cosmology and Astrophysics (Liaoning Province) & Department of Physics, College of Sciences, Northeastern University, Shenyang 110819, China
12
+ 2Key Laboratory of Data Analytics and Optimization for Smart Industry (Ministry of Education), Northeastern University, Shenyang 110819, China
13
+ 3National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang 110819, China
14
+ 12 January 2023
15
+ ABSTRACT
16
+ Neutral hydrogen (Hi) intensity mapping (IM) survey is generally regarded as a promising tool to explore the expansion history
17
+ of the universe. In this work, we investigate the capability of MeerKAT Hi IM observation with interferometric mode to estimate
18
+ the power spectrum and constrain cosmological parameters in typical dark energy models. Besides, a novel approach of ‘delay
19
+ spectrum’ is employed, which can achieve separating the weak Hi signal from the foreground in the frequency space. We find
20
+ that the different survey fields have a great influence on the fractional errors on power spectrum Δ𝑃/𝑃 in a limited observational
21
+ time 10 h. With the integration time increasing from 10 h to 10000 h, Δ𝑃/𝑃 becomes distinctly smaller until the cosmic
22
+ variance begins to dominate. In the total 10000 h observation, the lower Δ𝑃/𝑃 in low 𝑘 can be achieved when tracking 100
23
+ points for MeerKAT L-band and 10 points for MeerKAT UHF-band. Through simulating 10000 h Hi IM survey, we obtain
24
+ 𝜎(Ωm) = 0.044 and 𝜎(𝐻0) = 2.8 km s−1 Mpc−1 with MeerKAT L-band, which are worse than the results of 𝜎(Ωm) = 0.028
25
+ and 𝜎(𝐻0) = 2.0 km s−1 Mpc−1 with MeerKAT UHF-band in the ΛCDM model. However, in the 𝑤CDM and CPL models,
26
+ MeerKAT shows a limited capability of constraining dark-energy equation of state, even though combined with Planck data. Our
27
+ analysis is shown to be a useful guide for the near future MeerKAT observations in Hi IM survey.
28
+ Key words: techniques: interferometric – cosmology: large scale structure of Universe – cosmology: cosmological parameters
29
+ – radio lines: general
30
+ 1 INTRODUCTION
31
+ In the last two decades, the accurate measurement of the cosmic
32
+ microwave background (CMB) brings us to the era of precision cos-
33
+ mology. Another promising method for reaching precision cosmol-
34
+ ogy is the cosmic large scale structure (LSS) survey. At present, the
35
+ cosmic LSS survey has made significant progress with galaxy red-
36
+ shift survey in constraining cosmological parameters, e.g. the 2dF
37
+ Galaxy Redshift Survey (Colless et al. 2001; Cole et al. 2005), the
38
+ 6dF Galaxy Survey (Jones et al. 2009; Beutler et al. 2011), the Wig-
39
+ gleZ Dark Energy Survey (Blake et al. 2011; Drinkwater et al. 2010),
40
+ the Baryon Oscillation Spectroscopic Survey (Alam et al. 2017) and
41
+ the Dark Energy Survey (DES) (Abbott et al. 2018). In addition, the
42
+ next generation galaxy survey targeting at even larger and deeper
43
+ universe, such as Dark Energy Spectroscopic Instrument (Dey et al.
44
+ 2019), Large Synoptic Survey Telescope (Ivezić et al. 2019; Chisari
45
+ et al. 2019) and Euclid (Amendola et al. 2018), will significantly
46
+ improve the measurement precision in the near future.
47
+ Besides, neutral hydrogen (Hi) is widely regarded as a promising
48
+ tracer of the underlying dark matter distribution of the late Universe.
49
+ Hi can be detected with radio telescope via its 21 cm line which
50
+ ★ E-mail: liyichao@mail.neu.edu.cn
51
+ † E-mail: zhangxin@mail.neu.edu.cn
52
+ arises from the spin-flip transition of ground state hydrogen atom.
53
+ Nevertheless, it is known that detecting Hi signal in individual galaxy
54
+ at higher redshfit requires good angular resolution and sensitivity,
55
+ which relies on large radio interferometer in the near future, such as
56
+ Square Kilometre Array (SKA). However, Hi survey of the cosmic
57
+ LSS can be quickly carried out using existing radio telescopes via
58
+ the intensity mapping (IM) methodology, which observes the total
59
+ Hi intensity of the galaxies in a voxel (Battye et al. 2004; McQuinn
60
+ et al. 2006; Loeb & Wyithe 2008; Chang et al. 2008; Wyithe et al.
61
+ 2008; Bagla et al. 2010; Seo et al. 2010; Lidz et al. 2011; Ansari
62
+ et al. 2012). A variety of related studies show that Hi IM survey has a
63
+ great performance in cosmology studies, e.g. constraints on the basic
64
+ and dark-energy cosmological parameters (Pritchard & Loeb 2012;
65
+ Bull et al. 2015; Pourtsidou et al. 2017; Olivari et al. 2018; Obuljen
66
+ et al. 2018; Sprenger et al. 2019; Xu et al. 2018; Cheng et al. 2020;
67
+ Xu & Zhang 2020; Jin et al. 2020; Xiao et al. 2021; Zhang et al.
68
+ 2021; Jin et al. 2021; Wu & Zhang 2022; Scelfo et al. 2022; Berti
69
+ et al. 2022; Wu et al. 2022a,b), primordial non-Gaussianity (Camera
70
+ et al. 2013; Xu et al. 2015; Li & Ma 2017; Ballardini et al. 2019;
71
+ Karagiannis et al. 2020; Cunnington et al. 2020; Karagiannis et al.
72
+ 2021; Viljoen et al. 2021) and neutrino mass (Villaescusa-Navarro
73
+ et al. 2015; Zhang et al. 2020).
74
+ Hi IM LSS detection was first reported by measuring the cross-
75
+ correlation function between the Hi map observed with Green Bank
76
+ © 2023 The Authors
77
+ arXiv:2301.04445v1 [astro-ph.CO] 11 Jan 2023
78
+
79
+ 2
80
+ M. Zhang et al.
81
+ Telescope (GBT) and the DEEP2 optical redshift survey (Chang
82
+ et al. 2010). The cross-correlation power spectrum between Hi IM
83
+ survey and optical galaxy survey was also detected with the GBT
84
+ and the WiggleZ Dark Energy Survey (Masui et al. 2013). Anderson
85
+ et al. (2018) reported the results of Hi IM maps cross-correlated with
86
+ 2dF galaxy survey. Tramonte & Ma (2020) presented the feasibility
87
+ of measuring Hi maps with Parkes radio telescope and 2dF galaxy
88
+ survey. A cross-correlation signal detected with Parkes Hi IM and
89
+ WiggleZ redshift data was discussed in Li et al. (2021a). Wolz et al.
90
+ (2022) gave a joint analysis of GBT IM and eBOSS survey. To date,
91
+ the auto-correlation power spectrum is still not detected because of
92
+ systematics and foreground contamination.
93
+ Several large radio telescopes or interferometers, such as Five
94
+ hundred-meter Aperture Spherical radio Telescope (FAST; Nan
95
+ et al. 2011), Baryon acoustic oscillations In Neutral Gas Obser-
96
+ vations (BINGO; Dickinson 2014; Wuensche et al. 2020) and SKA
97
+ (Maartens et al. 2015; Bacon et al. 2020), are built or planned for
98
+ Hi survey, which are expected to detect the auto-correlation power
99
+ spectrum. In addition, interferometers have inherent advantages of
100
+ being less sensitive to systematics, which can be regarded as a com-
101
+ plementary approach to single-dish IM experiments. The smallest
102
+ 𝑘-modes accessible to an interferometer is determined by the short-
103
+ est baselines. Therefore, a compacted radio interferometer array is
104
+ required for probing the cosmic LSS, especially for the scales of
105
+ baryon acoustic oscillation (BAO). To date, several interferometers,
106
+ such as Canadian Hydrogen Intensity Mapping Experiment (CHIME;
107
+ Bandura et al. 2014), Hydrogen Intensity and Real-time Analysis eX-
108
+ periment (HIRAX; Newburgh et al. 2016) and Tianlai (Chen 2012;
109
+ Wu et al. 2021), are designed with short baselines to probe the BAO.
110
+ Besides, the MeerKAT radio telescope array with 64 dish anten-
111
+ nas of 13.5 m diameter is a precursor of SKA, which is located in
112
+ the Northern Cape Province of South Africa. MeerKAT has already
113
+ been operating and producing preliminary results (Pourtsidou 2018;
114
+ Wang et al. 2021; Knowles et al. 2021; Terni de Gregory et al. 2021;
115
+ de Villiers & Cotton 2022). The MeerKAT Large Area Synoptic
116
+ Survey (MeerKLASS; Santos et al. 2017; Irfan et al. 2021) proposed
117
+ Hi IM with single-dish mode (Li et al. 2021b; Wang et al. 2021)
118
+ and reported the cross-correlation power spectrum detection with
119
+ the optical galaxy survey (Cunnington et al. 2022). In addition, the
120
+ small field deep surveys using MeerKAT interferometric mode, such
121
+ as the MeerKAT International GHz Tiered Extragalactic Exploration
122
+ (MIGHTEE; Jarvis et al. 2018; Paul et al. 2021; Maddox, N. et al.
123
+ 2021), also provided the Hi cube. In this paper, we investigate the
124
+ performance of Hi IM survey in measuring power spectrum using
125
+ MeerKAT interferometric mode with different survey strategies and
126
+ forecast the constraints on cosmological parameters in typical dark
127
+ energy models including ΛCDM, 𝑤CDM and CPL models (Cheval-
128
+ lier & Polarski 2001; Linder 2003).
129
+ In this work, it is worth mentioning that we employ a novel ap-
130
+ proach, i.e. the ‘delay spectrum’ analysis, which is first applied in the
131
+ PAPER observation (Parsons & Backer 2009). It is known that the
132
+ cosmic Hi signal is contaminated by the bright foreground emissions
133
+ in the same frequency ranges, such as the synchrotron and free-free
134
+ emission from the Galaxy and extra-galactic point sources. Gen-
135
+ erally, the foreground contamination components have the smooth
136
+ frequency spectra, which can be separated from the cosmic Hi fluc-
137
+ tuation in the ‘delay spectrum’ space (Parsons et al. 2012; Liu et al.
138
+ 2014a,b; Liu & Shaw 2020).
139
+ This paper is organized as follows. In Section 2, we provide the de-
140
+ tailed description of estimating Hi signal power spectrum, MeerKAT
141
+ survey strategy and its system noise, foregrounds and shot noise. In
142
+ Section 3, we present the constraint results of the power spectrum
143
+ and cosmological parameters. Finally, the conclusion is given in Sec-
144
+ tion 4. In our simulation, we assume a flat ΛCDM model and keep
145
+ all cosmological parameters fixed to Planck 2018 results (Aghanim
146
+ et al. 2020).
147
+ 2 METHODOLOGY
148
+ 2.1 Hi delay spectrum
149
+ Hi IM observation directly measures Hi brightness temperature. The
150
+ sky brightness temperature can be defined as
151
+ 𝑇(𝜽, 𝜈) = ¯𝑇(𝜈)[1 + Δ𝑇(𝜽, 𝜈)] ,
152
+ (1)
153
+ where 𝜽 is the position vector on the sky, 𝜈 is the observation fre-
154
+ quency, ¯𝑇(𝜈) and Δ𝑇(𝜽, 𝜈) denote the isotropic and fluctuating com-
155
+ ponents of the Hi brightness temperature distribution, respectively.
156
+ Radio interferometers detect Hi signals by measuring their visi-
157
+ bilities, which are the cross-correlation signals between each pair of
158
+ antennas. Assuming the flat-sky approximation, the visibility for a
159
+ pair of antennae is given by
160
+ 𝑉(𝒖, 𝜈) =
161
+
162
+ 𝐴(𝜽, 𝜈)Δ𝑇(𝜽, 𝜈)𝑒−𝑖2𝜋𝒖·𝜽𝑑Ω ,
163
+ (2)
164
+ where 𝒖 = 𝜈𝒃/𝑐 is the baseline vector in units of wavelength, cor-
165
+ responding to each antenna pair, where 𝒃 is the baseline vector in
166
+ physical units and 𝑐 is the speed of light. 𝐴(𝜽, 𝜈) denotes the primary
167
+ beam response of the telescope in the direction of 𝜽 and dΩ repre-
168
+ sents the solid angle element. The visibility function can be Fourier
169
+ transferred to the ‘delay spectrum’ space,
170
+ ˜𝑉(𝒖, 𝜏) =
171
+
172
+ 𝑉(𝒖, 𝜈)𝑒−𝑖2𝜋𝜈𝜏d𝜈,
173
+ (3)
174
+ where 𝜏 = 1/𝛿𝜈 is the corresponding delay of frequency interval 𝛿𝜈.
175
+ Following McQuinn et al. (2006), Parsons et al. (2012) and Liu &
176
+ Shaw (2020), Hi power spectrum can be obtained from measured
177
+ visibilities in the form of ‘delay spectrum’
178
+ 𝑃D(𝑘⊥, 𝑘 ∥) ≡ 𝐴𝑒
179
+ 𝜆2𝐵
180
+ 𝑟2𝑟𝜈
181
+ 𝐵
182
+ �� ˜𝑉(𝒖, 𝜏)
183
+ ��2
184
+ � 𝜆2
185
+ 2𝑘B
186
+ �2
187
+ ,
188
+ (4)
189
+ where 𝐴𝑒 and 𝐵 are the effective antenna area and bandwidth, re-
190
+ spectively, 𝜆 denotes the wavelength at the center of the band, 𝑟 is
191
+ the comoving distance to the redshift 𝑧 corresponding to 𝜆, 𝑟𝜈 is the
192
+ comoving width along the line-of-sight (LoS) corresponding to the
193
+ redshift range determined by 𝐵, and 𝑘B is the Boltzmann constant.
194
+ Here, 𝑘⊥ and 𝑘 ∥ are the Fourier wave vectors perpendicular and par-
195
+ allel to the LoS, respectively. They are related to the interferometric
196
+ variables via
197
+ 𝑘⊥ = 2𝜋|𝒖|
198
+ 𝑟
199
+ ;
200
+ 𝑘 ∥ = 2𝜋𝜏𝜈21𝐻(𝑧)
201
+ 𝑐(1 + 𝑧)2
202
+ .
203
+ (5)
204
+ where 𝜈21 = 1420 MHz is the rest-frame frequency of the 21 cm line.
205
+ 𝐻(𝑧) denotes the Hubble parameter as a function of redshift 𝑧.
206
+ There are various advantages of this ‘delay spectrum’ method
207
+ (Parsons et al. 2012; Vedantham et al. 2012; Paul et al. 2016). The
208
+ different spectral behaviors between Hi signal and foreground make
209
+ it possible to isolate the latter in the Fourier space. In addition, the
210
+ Fourier conjugate variable is associated with the LoS cosmological
211
+ distance, therefore the ‘delay spectrum’ constructed in this method
212
+ can recover the cosmological 3D Hi power spectrum (Parsons et al.
213
+ 2012; Liu et al. 2014a,b).
214
+ MNRAS 000, 1–10 (2023)
215
+
216
+ Hi delay spectrum with MeerKAT interferometer mode
217
+ 3
218
+ 2.2 Hi signal power spectrum
219
+ The mean sky brightness temperature of Hi 21 cm emission can be
220
+ given by (Santos et al. 2015, 2017)
221
+ ¯𝑇𝑏(𝑧) ≈ 566ℎ
222
+ � 𝐻0
223
+ 𝐻(𝑧)
224
+ � � ΩHi(𝑧)
225
+ 0.003
226
+
227
+ (1 + 𝑧)2 𝜇K ,
228
+ (6)
229
+ where 𝐻0 = 100ℎ km s−1 Mpc−1 is the Hubble constant, ΩHi(𝑧) is
230
+ the fractional density of Hi, which can be written as
231
+ ΩHi(𝑧) =
232
+ 𝜌Hi(𝑧)
233
+ 𝜌𝑐,0(1 + 𝑧)3 ,
234
+ (7)
235
+ where 𝜌𝑐,0 is the critical density today and the proper Hi density is
236
+ calculated by
237
+ 𝜌Hi(𝑧) =
238
+ ∫ 𝑀max
239
+ 𝑀min
240
+ d𝑀 d𝑛
241
+ d𝑀 (𝑀, 𝑧)𝑀Hi(𝑀, 𝑧) ,
242
+ (8)
243
+ where 𝑀 denotes the dark matter halo mass, d𝑛/d𝑀 is the proper
244
+ halo mass function and 𝑀Hi(𝑀, 𝑧) denotes the Hi mass in a halo of
245
+ mass 𝑀 at redshift 𝑧. Throughout this paper, we assume a simple
246
+ power-law model of the halo mass following Santos et al. (2015),
247
+ i.e., 𝑀Hi(𝑀) = 𝐴𝑀 𝛼 with 𝐴 ∼ 220 and 𝛼 = 0.6 that can fit both
248
+ low- and high-redshift observations within reasonable accuracy.
249
+ Considering the redshift space distortion (RSD) effect (Kaiser
250
+ 1987), Hi signal power spectrum can be written as
251
+ 𝑃Hi(𝑘, 𝜇, 𝑧) = ¯𝑇2
252
+ 𝑏 (𝑧)𝐹RSD(𝑘, 𝜇)𝑃(𝑘, 𝑧) ,
253
+ (9)
254
+ where 𝜇 ≡
255
+ 𝑘 ∥/𝑘 and the matter power spectrum 𝑃(𝑘, 𝑧)
256
+ =
257
+ 𝐷2(𝑧)𝑃(𝑘, 𝑧 = 0) with 𝐷(𝑧) being the growth factor and 𝑃(𝑘, 𝑧 = 0)
258
+ being the matter power spectrum at z = 0 which can be obtained by
259
+ CAMB (Lewis et al. 2000). 𝐹RSD(𝑘, 𝜇) represents the RSD effect, and
260
+ its form can be expressed as
261
+ 𝐹RSD(𝑘, 𝜇) =
262
+
263
+ 𝑏2
264
+ Hi(𝑧) + 𝑓 𝜇2�2
265
+ exp
266
+
267
+ −𝑘2𝜇2𝜎2
268
+ NL
269
+
270
+ .
271
+ (10)
272
+ Here 𝑏Hi(𝑧) is the Hi bias, written as
273
+ 𝑏Hi(𝑧) = 𝜌−1
274
+ Hi (𝑧)
275
+ ∫ 𝑀max
276
+ 𝑀min
277
+ d𝑀 d𝑛
278
+ d𝑀 𝑀Hi(𝑀, 𝑧)𝑏(𝑀, 𝑧),
279
+ (11)
280
+ where 𝑏(𝑀, 𝑧) is the halo bias. 𝑓 ≡ dln𝐷/dln𝑎 is the linear growth
281
+ rate with 𝑎 being the scale factor. 𝜎NL is the nonlinear dispersion
282
+ scale with a middling value of 𝜎NL = 7Mpc. In this paper, for con-
283
+ venience, ΩHi(𝑧) and 𝑏Hi(𝑧) are employed with the fitting functions
284
+ following Santos et al. (2017).
285
+ 2.3 MeerKAT noise power spectrum
286
+ The total thermal noise power spectrum can be written as (Bull et al.
287
+ 2015)
288
+ 𝑃N(𝑘, 𝜇, 𝑧) = 𝑟2(𝑧)𝑟𝜈(𝑧)
289
+ 𝑇2sys𝜆4
290
+ 𝑛pol𝜈21𝑡int𝐴2𝑒𝑛(𝒖)
291
+ ,
292
+ (12)
293
+ where 𝑛pol = 2 denotes the number of polarization. 𝑡int is the inte-
294
+ gration time. The ratio of MeerKAT effective aperture and system
295
+ temperature, 𝐴𝑒/𝑇sys, is frequency dependent. Currently, there are
296
+ two frequency bands available for observation, i.e., the L-band (900–
297
+ 1700 MHz) and the UHF-band (580–1000 MHz). Because of the
298
+ serious RFI contamination in the L-band frequency range, only the
299
+ frequency range of 900–1200 MHz (0.18 < 𝑧 < 0.58) is used in our
300
+ analysis. The full UHF-band is used in this analysis, corresponding
301
+ 500
302
+ 750
303
+ 1000
304
+ 1250
305
+ 1500
306
+ ν [MHz]
307
+ 0
308
+ 2
309
+ 4
310
+ 6
311
+ 8
312
+ 10
313
+ Ae/T sys [m2/K]
314
+ MeerKAT L-band
315
+ MeerKAT UHF-band
316
+ Figure 1. The sensitivity designs for MeerKAT receivers, shown as 𝐴𝑒/𝑇sys
317
+ for L-band and UHF-band.
318
+ to 0.42 < 𝑧 < 1.45. In Fig. 1, we show 𝐴𝑒/𝑇sys for L-band and
319
+ UHF-band.1
320
+ Here 𝑛(𝒖) is the baseline density referring to the detailed 𝑢𝑣
321
+ coverage of a particular observation in the 𝑢𝑣 plane. We employ the
322
+ actual MeerKAT antenna coordinates and track the COSMOS field
323
+ (RA=10h01m, Dec=+02d12m) following Paul et al. (2021). In a strict
324
+ sense, 𝑛(𝒖) is also a function of frequency. We break the frequency
325
+ range into a couple of Δ𝜈 = 60 MHz sub-bands. The 𝑢𝑣 coverage is
326
+ assumed to be uniform within each sub-band and simulated according
327
+ to the center frequency of each sub-band. The simulated 𝑢𝑣 coverage
328
+ corresponding to the sub-bands in L-band centering at 𝑧 = 0.3 and
329
+ in UHF-band centering at 𝑧 = 1.2 are shown in left and right panels
330
+ of Fig. 2, respectively. For both cases, we assume 10 h tracking
331
+ observation of the COSMOS field spanning over two days (the start
332
+ time is 14:15 and 13:33 at UTC, respectively). The 𝑢𝑣 plane is
333
+ segmented on to a discrete grid with cell size Δ𝑢 = Δ𝑣 = 60𝜆. The
334
+ color represents the number of 𝑢𝑣 points within the grid. It is clear
335
+ that there are more samples in the short 𝑢𝑣 distance region at low
336
+ frequency band than high frequency band.
337
+ Because of the uniform 𝑢𝑣 coverage assumption across the sub-
338
+ band, the baseline density 𝑛(𝒖) and the corresponding total thermal
339
+ noise power spectrum 𝑃N are only the functions of 𝑘⊥. According to
340
+ Eq. (5), 𝑘⊥ is proportional to the 𝑢𝑣 distance, i.e. |𝒖| =
341
+
342
+ 𝑢2 + 𝑣2. The
343
+ circular averaged 𝑢𝑣 coverage within a |𝒖| shell of width Δ|𝒖| = 100𝜆
344
+ are shown in Fig. 3, where the left panel shows the distribution
345
+ corresponding to the sub-bands centering at 𝑧 = 0.3 and the right
346
+ panel shows the one centering at 𝑧 = 1.2. Since |𝑘⊥| is proportional
347
+ to the 𝑢𝑣 distance, the more densely populated 𝑢𝑣 points at smaller
348
+ distance mean the higher sensitivity at the smaller |𝑘⊥| modes.
349
+ It is known that the 𝑢𝑣 coverage also depends on the pointing direc-
350
+ tion. In order to investigate the influence of the different sky zones,
351
+ we also show in Fig. 3 the numbers of 𝑢𝑣 points with 10 h track-
352
+ ing at different declinations: Dec = +30◦, +02◦, −30◦, −60◦, −90◦
353
+ respectively. The case of Dec = +02◦ is the same as tracking the
354
+ COSMOS field and the case of Dec = −30◦ corresponds to tracking
355
+ a field that the transit line passes near Zenith the MeerKAT site. It
356
+ is obvious that when the field is targeted farther from the zenith, the
357
+ number of short baselines rises substantially for both the L-band and
358
+ 1 http://public.ska.ac.za/meerkat/meerkat-schedule
359
+ MNRAS 000, 1–10 (2023)
360
+
361
+ 4
362
+ M. Zhang et al.
363
+ Figure 2. The distribution of baselines on a two-dimensional (2D) 𝑢𝑣 plane for 10 h tracking of the COSMOS field with sub-bands in MeerKAT L-band centering
364
+ at 𝑧 = 0.3 (left panel) and in UHF-band centering at 𝑧 = 1.2 (right panel). The 𝑢𝑣 plane is segmented on to a discrete grid with cell-size Δ𝑢 = Δ𝑣 = 60𝜆. The
365
+ color signifies the number of 𝑢𝑣 points on the grid.
366
+ Figure 3. The average number of baselines as a function of 𝑢𝑣 distance, |𝒖| =
367
+
368
+ 𝑢2 + 𝑣2, with bin size of Δ|𝒖| = 100𝜆, for 10 h tracking with sub-bands in
369
+ MeerKAT L-band centering at 𝑧 = 0.3 (left panel) and in UHF-band centering at 𝑧 = 1.2 (right panel).
370
+ UHF-band, which potentially increases the sensitivity at the smaller
371
+ |𝑘⊥| modes.
372
+ 2.4 The foreground wedge and shot noise
373
+ The foreground contamination, which is several orders of magnitude
374
+ stronger than Hi signal, is the major challenge in recovering the Hi
375
+ LSS. Since foreground spectrum is smooth across frequency chan-
376
+ nels, it only contaminates the power spectrum close to the smallest
377
+ 𝑘 ∥. However, the property of the interferometer response function
378
+ will cause foreground leakage into the high-𝑘⊥ modes. Therefore,
379
+ we exclude the 𝑘⊥–𝑘 ∥ space modes within the foreground wedge
380
+ (Datta et al. 2010; Morales et al. 2012; Liu et al. 2014a,b; Pober
381
+ 2015; Seo & Hirata 2016) that can be expressed as
382
+ 𝑘 ∥ < 𝑟(𝑧)𝐻(𝑧) sin(𝜃)
383
+ 𝑐(1 + 𝑧)
384
+ 𝑘⊥ ,
385
+ (13)
386
+ where 𝜃 denotes the field of view of the interferometer.
387
+ In addition, shot noise needs to be taken into account in Hi IM
388
+ survey. Because of Poisson fluctuations in halo number, the shot
389
+ noise power spectrum is written as (Bull et al. 2015)
390
+ 𝑃shot
391
+ Hi (𝑧) =
392
+ � ¯𝑇𝑏(𝑧)
393
+ 𝜌Hi(𝑧)
394
+ �2 ∫ 𝑀max
395
+ 𝑀min
396
+ d𝑀 d𝑛
397
+ d𝑀 𝑀2
398
+ Hi(𝑀) .
399
+ (14)
400
+ Here Hi mass model is consistent with the description in the Hi
401
+ signal power spectrum. Since shot noise is very low according to our
402
+ calculation, it makes a very small contribution to the total noise.
403
+ 3 RESULTS
404
+ In this section, we present the results of Hi IM survey analysis. In
405
+ Section 3.1, we give a detailed analysis of the power spectrum in the
406
+ different survey strategies. The relative errors on the BAO features
407
+ and the constraints on cosmological parameters in different dark
408
+ energy models are showed in Section 3.2.
409
+ MNRAS 000, 1–10 (2023)
410
+
411
+ uv coverage at z = 0.3 for RA=10:00:28.60 Dec=2:12:21.0
412
+ 104
413
+ 10
414
+ 103
415
+ 5
416
+ (Y)
417
+ 0
418
+ 102
419
+ 101
420
+ -10
421
+ -15
422
+ 100
423
+ -10
424
+ 0
425
+ 10
426
+ u (k入)uv coverage at z = 1.2 for RA=10:00:28.60 Dec=2:12:21.0
427
+ 104
428
+ 10
429
+ 103
430
+ 5
431
+ 0
432
+ 102
433
+ 5
434
+ 101
435
+ -10
436
+ -15
437
+ 100
438
+ -10
439
+ 0
440
+ 10
441
+ u (k入)5000
442
+ Dec=十30°
443
+ Dec=-90°
444
+ 4000
445
+ Number of u points
446
+ Dec=+02°
447
+ Dec=-60°
448
+ 3000
449
+ Dec=-30°
450
+ L-band
451
+ 2000
452
+ 1000
453
+ 102
454
+ 103
455
+ 10
456
+ u distance in ^ (z = 0.312000
457
+ Dec=±30°
458
+ 10000
459
+ Dec=-90°
460
+ Dec=+02°
461
+ S
462
+ Dec=-60°
463
+ 8000
464
+ Dec=-30°
465
+ UHF-band
466
+ TO
467
+ 6000
468
+ 4000
469
+ 2000
470
+ 0
471
+ 102
472
+ 103
473
+ 10
474
+ uv distance in ^ (z = 1.2Hi delay spectrum with MeerKAT interferometer mode
475
+ 5
476
+ (a) Hi power spectrum
477
+ (b) Total power spectrum
478
+ Figure 4. 2D power spectrum at 𝑧 = 0.3. Left panel: Hi signal power spectrum 𝑃Hi. Right panel: Total power spectrum 𝑃tot with MeerKAT L-band 10 h
479
+ observation.
480
+ (a) Hi power spectrum
481
+ (b) Total power spectrum
482
+ Figure 5. 2D power spectrum at 𝑧 = 1.2. Left panel: Hi signal power spectrum 𝑃Hi. Right panel: Total power spectrum 𝑃tot with MeerKAT UHF-band 10 h
483
+ observation.
484
+ 3.1 Power spectrum estimation
485
+ The Hi LSS carries a significant quantity of cosmic information.
486
+ However, it is extremely weak comparing to the brilliant foreground
487
+ contamination. The 2D Hi power spectrum 𝑃Hi at 𝑧 = 0.3 (for
488
+ MeerKAT L-band) is shown in the left panel of Fig. 4. The scales
489
+ available for Hi IM in interferometric mode observation are limited
490
+ by the detailed configuration. In summary, the scales for Hi IM survey
491
+ are:
492
+ 𝑘min
493
+
494
+ = 2𝜋/(𝑟𝜈Δ𝜈/𝜈21),
495
+ 𝑘max
496
+
497
+ = 1/𝜎NL,
498
+ 𝑘min
499
+
500
+ = 2𝜋|𝒖|min/𝑟,
501
+ 𝑘max
502
+
503
+ = 2𝜋|𝒖|max/𝑟.
504
+ (15)
505
+ In principle, only the scales between minimum and maximum can be
506
+ probed by a certain instrument, and the sensitivity to scales depends
507
+ on the 𝑢𝑣 coverage. Adopting only 10 h observation, the total power
508
+ spectrum 𝑃tot at the same redshift, which consists of the contributions
509
+ of Hi signal, MeerKAT thermal noise, foregrounds and shot noise,
510
+ is shown in the right panel of Fig. 4.
511
+ The power spectrum at 𝑧 = 1.2 (for MeerKAT UHF-band) are
512
+ shown in Fig. 5, where the Hi power spectrum 𝑃Hi is in the left panel
513
+ and the total power spectrum 𝑃tot is in the right panel, respectively.
514
+ Note that, in the right panel of Fig. 5, the brown part denotes the
515
+ foreground wedge. We find that Hi signal is completely covered by
516
+ the thermal noise and foregrounds for both MeerKAT L-band and
517
+ UHF-band, which makes it difficult to obtain Hi signal directly.
518
+ The Hi detection is quantified with the relative error of the power
519
+ spectrum
520
+ � Δ𝑃
521
+ 𝑃
522
+ �2
523
+ =
524
+
525
+ 1
526
+ 8𝜋2𝑉bin
527
+
528
+ 𝑘2d𝑘d𝜇
529
+ � 𝑃Hi(𝑘, 𝜇)
530
+ 𝑃tot(𝑘, 𝜇)
531
+ �2�−1
532
+ ,
533
+ (16)
534
+ where 𝑉bin = 𝑆area𝑟2𝑟𝜈 Δ𝜈
535
+ 𝜈21 is the survey volume of each redshift bin
536
+ with the survey area 𝑆area = 𝜋
537
+
538
+ 1
539
+ 2
540
+ 𝜆
541
+ 13.5𝑚
542
+ �2 �
543
+ 180
544
+ 𝜋
545
+ �2
546
+ .
547
+ Firstly, we investigate the influence on the 𝑃(𝑘) error when track-
548
+ ing the source at the different declinations. As is shown in Fig. 3,
549
+ when tracking the source at Dec = +30◦, +02◦, −30◦, −60◦, −90◦,
550
+ completely different numbers of 𝑢𝑣 points are obtained, e.g. there are
551
+ more 𝑢𝑣 points in the shorter 𝑢𝑣 distance for the case of Dec = +30◦.
552
+ In the top panel of Fig. 6, the relative errors of power spectrum with
553
+ different tracking declinations are shown in different colors. For all
554
+ the cases, we assume 10 h observation time. The results with L-band
555
+ and UHF-band are shown in solid and dashed lines, respectively.
556
+ Here, we divide the whole range of 𝑘 into 10 logarithmic bins. It is
557
+ clear that the power spectrum uncertainty is reduced by more than
558
+ MNRAS 000, 1–10 (2023)
559
+
560
+ 104
561
+ 10-1
562
+ 102
563
+ ku [Mpc-1]
564
+ 6 × 10-2
565
+ 100
566
+ 4 × 10-2
567
+ 10-2
568
+ 3 × 10-2
569
+ 100
570
+ 10'
571
+ 102
572
+ k [Mpc-1]107
573
+ 10-1
574
+ 105
575
+ ku [Mpc-1]
576
+ 6 × 10-2
577
+ 103
578
+ 4 × 10-2
579
+ 3 × 102
580
+ 101
581
+ 10°
582
+ 10
583
+ 102
584
+ k [Mpc-1]104
585
+ 10-1
586
+ 102
587
+ ku [Mpc-1]
588
+ 100
589
+ 10-2
590
+ 10-
591
+ 100
592
+ 101
593
+ k[Mpc-1]107
594
+ 10-1
595
+ 105
596
+ ku [Mpc-1]
597
+ 103
598
+ 100
599
+ 101
600
+ 10
601
+ 10
602
+ k}[Mpc-1]6
603
+ M. Zhang et al.
604
+ 10−1
605
+ 100
606
+ k [Mpc−1]
607
+ 100
608
+ 101
609
+ 102
610
+ ∆P/P
611
+ 10 hours
612
+ L-band at Dec=+30◦
613
+ L-band at Dec=+02◦
614
+ L-band at Dec=−30◦
615
+ L-band at Dec=−60◦
616
+ L-band at Dec=−90◦
617
+ UHF-band at Dec=+30◦
618
+ UHF-band at Dec=+02◦
619
+ UHF-band at Dec=−30◦
620
+ UHF-band at Dec=−60◦
621
+ UHF-band at Dec=−90◦
622
+ 10−1
623
+ 100
624
+ 101
625
+ 102
626
+ k [Mpc−1]
627
+ 10−2
628
+ 100
629
+ 102
630
+ 104
631
+ 106
632
+ ∆P/P
633
+ 1 point
634
+ L-band 10 hours
635
+ L-band 100 hours
636
+ L-band 1000 hours
637
+ L-band 10000 hours
638
+ UHF-band 10 hours
639
+ UHF-band 100 hours
640
+ UHF-band 1000 hours
641
+ UHF-band 10000 hours
642
+ 10−1
643
+ 100
644
+ 101
645
+ 102
646
+ k [Mpc−1]
647
+ 10−2
648
+ 10−1
649
+ 100
650
+ 101
651
+ 102
652
+ 103
653
+ 104
654
+ ∆P/P
655
+ 10000 hours
656
+ L-band 1 point
657
+ L-band 10 points
658
+ L-band 100 points
659
+ L-band 1000 points
660
+ UHF-band 1 point
661
+ UHF-band 10 points
662
+ UHF-band 100 points
663
+ UHF-band 1000 points
664
+ Figure 6. Fractional errors on 𝑃(𝑘) obtained with MeerKAT L-band and UHF-band. Top panel: 10 h observations at the different declinations. Middle panel:
665
+ Different observation times of tracking the COSMOS field. Bottom panel: Tracking different numbers of points in a 10000 h observation.
666
+ MNRAS 000, 1–10 (2023)
667
+
668
+ Hi delay spectrum with MeerKAT interferometer mode
669
+ 7
670
+ 0.00
671
+ 0.25
672
+ 0.50
673
+ 0.75
674
+ 1.00
675
+ 1.25
676
+ 1.50
677
+ z
678
+ 10−2
679
+ 10−1
680
+ 100
681
+ σ(DA)/DA
682
+ L-band 10 points
683
+ UHF-band 100 points
684
+ 0.00
685
+ 0.25
686
+ 0.50
687
+ 0.75
688
+ 1.00
689
+ 1.25
690
+ 1.50
691
+ z
692
+ 10−1
693
+ 100
694
+ 101
695
+ σ(H)/H
696
+ L-band 10 points
697
+ UHF-band 100 points
698
+ 0.00
699
+ 0.25
700
+ 0.50
701
+ 0.75
702
+ 1.00
703
+ 1.25
704
+ 1.50
705
+ z
706
+ 10−1
707
+ 100
708
+ 101
709
+ σ(fσ8)/(fσ8)
710
+ L-band 10 points
711
+ UHF-band 100 points
712
+ Figure 7. Fractional errors on 𝐷𝐴(𝑧), 𝐻 (𝑧) and 𝑓 𝜎8(𝑧) obtained with MeerKAT L-band and UHF-band.
713
+ a factor of two when tracking Dec = +30◦ compared to tracking
714
+ Dec = −30◦ or Dec = −60◦. The results show that, with limited
715
+ observation time, the tracking declination has a obvious influence on
716
+ the results of the constraints on the power spectrum.
717
+ Next, in order to assess the influence of integration time, we in-
718
+ crease the integration time by assuming observations on the same
719
+ field at the same local sidereal time as the existing data on different
720
+ days, which means that we obtain the same 𝑢𝑣 points from multiple
721
+ days coherently to increase the sensitivity of the same 𝑘 modes. In
722
+ addition to the current 10 h observation, we further consider 100,
723
+ 1000 and 10000 h observations. In the middle panel of Fig. 6, we
724
+ show the fractional errors on the power spectrum 𝑃(𝑘) for 10, 100,
725
+ 1000 and 10000 hours observation of tracking the COSMOS field
726
+ with MeerKAT L-band (in blue) and UHF-band (in red). The results
727
+ with different integration times are shown with different color satu-
728
+ rations. It can be seen that, compared to L-band, using the UHF-band
729
+ could measure smaller 𝑘 modes down to ∼ 0.1, which makes it pos-
730
+ sible to detect cosmological LSS on the larger scales. In addition, it
731
+ is expected that the lower Δ𝑃/𝑃 can be obtained with the observa-
732
+ tion time increasing as is shown in the middle panel of Fig. 6. With
733
+ MeerKAT UHF-band 10 h observation, the value of Δ𝑃/𝑃 could
734
+ reach 1 roughly. The values of Δ𝑃/𝑃 are distinctly reduced when
735
+ tracking 1000 h, approximately reaching 0.1. However, we find that
736
+ when the integration time increases from 1000 h to 10000 h, the
737
+ reduction of Δ𝑃/𝑃 is not significant at low 𝑘. It is mainly because
738
+ the cosmic variance, which is limited by the survey volume, plays
739
+ the dominating role.
740
+ Therefore, we consider tracking multiple points equally in the total
741
+ 10000 h observation. In this case, compared to tracking one point
742
+ with 10000 h, the survey volume 𝑉bin and the thermal noise power
743
+ spectrum 𝑃N are increased by a factor of the number of points 𝑁.
744
+ In our analysis, we calculate the additional fractional error on 𝑃(𝑘)
745
+ for 𝑁 = 10, 100 and 1000 in the 10000 h observation, as shown
746
+ in the bottom panel of Fig. 6. In order to constrain cosmological
747
+ parameters, we expect to obtain lower Δ𝑃/𝑃 in low 𝑘. We find that
748
+ the lower values of Δ𝑃/𝑃 in low 𝑘 are obtained when tracking 100
749
+ points for MeerKAT L-band in the total 10000 h observation, while
750
+ tracking 10 points for MeerKAT UHF-band. Therefore, we employ
751
+ these two survey strategies for MeerKAT L-band and UHF-band,
752
+ respectively, in the next subsection.
753
+ 3.2 Cosmological parameters
754
+ In this subsection, we explore the capability of MeerKAT Hi IM
755
+ survey with interferometer mode of constraining cosmological pa-
756
+ rameters using the Fisher matrix method. Given the power spectrum
757
+ measurement at a given redshift, the Fisher matrix for a set of ob-
758
+ servables {𝑝} can be written as
759
+ 𝐹𝑖 𝑗 =
760
+ 1
761
+ 8𝜋2𝑉bin
762
+ ∫ 1
763
+ −1
764
+ d𝜇
765
+ ∫ 𝑘max
766
+ 𝑘min
767
+ 𝑘2d𝑘 𝜕𝑃tot
768
+ 𝜕𝑝𝑖
769
+ 𝜕𝑃tot
770
+ 𝜕𝑝 𝑗
771
+ .
772
+ (17)
773
+ Here, we take the set of observables as {𝐷 𝐴(𝑧𝑖), 𝐻(𝑧𝑖), 𝑓 𝜎8(𝑧𝑖),
774
+ 𝑏𝜎8(𝑧𝑖), 𝜎NL} in each redshift bin 𝑧𝑖. The nuisance parameters
775
+ 𝑏𝜎8(𝑧𝑖) and 𝜎NL can be marginalized by selecting the submatrix of
776
+ 𝐹−1
777
+ 𝑖 𝑗 with only the appropriate columns and rows. Therefore, we can
778
+ derive the measurement errors on 𝐷 𝐴(𝑧), 𝐻(𝑧) and 𝑓 𝜎8(𝑧).
779
+ For MeerKAT L-band (900-1200 MHz) and UHF-band (580-1000
780
+ MHz), we divide these frequency bands into some bins with equal
781
+ bandwidth Δ𝜈 = 60 MHz and then obtain the estimates for the
782
+ measurement errors on observables in the corresponding redshift
783
+ bins. We plot the fractional measurement errors on 𝐷 𝐴(𝑧), 𝐻(𝑧)
784
+ and 𝑓 𝜎8(𝑧) with MeerKAT 10000 h observation in Fig. 7. We find
785
+ that the survey with interferometer mode has a better measurement
786
+ on 𝐷 𝐴(𝑧), of which the fractional errors can reach roughly 10%
787
+ for MeerKAT L-band and UHF-band. Comparatively speaking, the
788
+ fractional measurement errors on 𝐻(𝑧) and 𝑓 𝜎8(𝑧) seem slightly
789
+ larger, though MeerKAT UHF-band preforms slightly better than
790
+ MeerKAT L-band.
791
+ Next, from the cosmological measurements on 𝐷 𝐴(𝑧), 𝐻(𝑧) and
792
+ 𝑓 𝜎8(𝑧), we can constrain the various dark enenrgy models, including
793
+ the ΛCDM, 𝑤CDM and CPL models, by performing a Markov Chain
794
+ Monte Carlo (MCMC) analysis. The 1𝜎 errors of the cosmological
795
+ parameters are summarized in Table 1. In addition, The 1𝜎 and
796
+ 2𝜎 posterior distribution contours for cosmological parameters are
797
+ shown in Figs. 8–10.
798
+ In the flat ΛCDM model, we obtain 𝜎(Ωm) = 0.044 and 𝜎(𝐻0) =
799
+ 2.8 km s−1 Mpc−1 with MeerKAT L-band and 𝜎(Ωm) = 0.028
800
+ and 𝜎(𝐻0) = 2.0 km s−1 Mpc−1 with MeerKAT UHF-band. We
801
+ find that UHF-band performs better than L-band in constraining
802
+ Ωm and 𝐻0. Recently, Cunnington (2022) gave a result of 𝐻0 =
803
+ 69.1+8.4
804
+ −5.7 km s−1 Mpc−1 with MeerKAT UHF-band 4000 h survey
805
+ with single-dish mode. It is found that we give a better constraint
806
+ on 𝐻0 with MeerKAT UHF-band interferometric mode although we
807
+ use a longer observational time of 10000 h. In comparison with other
808
+ radio telescopes, MeerKAT L-band and BINGO perform similarly,
809
+ while MeerKAT UHF-band performs nearly as well as FAST in
810
+ constraining Ωm and 𝐻0 in the flat ΛCDM model (Wu & Zhang
811
+ 2022). Compared to the Stage-III dark energy experiments, such as
812
+ DES, we find that MeerKAT UHF-band gives a smaller error on Ωm
813
+ than DES with Ωm = 0.339+0.032
814
+ −0.031 in the ΛCDM model (Abbott et al.
815
+ 2020).
816
+ In the 𝑤CDM model, in order to help break the parameter degen-
817
+ MNRAS 000, 1–10 (2023)
818
+
819
+ 8
820
+ M. Zhang et al.
821
+ Table 1. The 1𝜎 errors of the cosmological parameters in the ΛCDM, 𝑤CDM, and CPL models using MeerKAT L-band and UHF-band or in combination
822
+ with Planck data. Note that here 𝐻0 is in units of km s−1 Mpc−1.
823
+ Error
824
+ ΛCDM
825
+ 𝑤CDM
826
+ CPL
827
+ L-band
828
+ UHF-band
829
+ Planck+L-band
830
+ Planck+UHF-band
831
+ Planck+L-band
832
+ Planck+UHF-band
833
+ 𝜎(Ωm)
834
+ 0.044
835
+ 0.028
836
+ 0.030
837
+ 0.024
838
+ 0.092
839
+ 0.046
840
+ 𝜎(𝐻0)
841
+ 2.8
842
+ 2.0
843
+ 3.5
844
+ 2.6
845
+ 6.1
846
+ 4.1
847
+ 𝜎(𝑤)
848
+
849
+
850
+ 0.12
851
+ 0.08
852
+
853
+
854
+ 𝜎(𝑤0)
855
+
856
+
857
+
858
+
859
+ 1.1
860
+ 0.6
861
+ 𝜎(𝑤𝑎)
862
+
863
+
864
+
865
+
866
+ 4.3
867
+ 2.0
868
+ 0.2
869
+ 0.3
870
+ 0.4
871
+ 0.5
872
+ Ωm
873
+ 60
874
+ 65
875
+ 70
876
+ 75
877
+ H0 [km s−1 Mpc−1]
878
+ L-band
879
+ UHF-band
880
+ Figure 8. Constraints on Ωm and 𝐻0 with MeerKAT L-band and UHF-band
881
+ in the ΛCDM model.
882
+ eracy, we combine the BAO data from MeerKAT IM with Planck
883
+ TT,TE,EE+lowE power spectrum (Aghanim et al. 2020) in the
884
+ MCMC analysis. The 1𝜎 and 2𝜎 measurement error contours for
885
+ Ωm, 𝐻0 and dark-energy equation of state parameter 𝑤 are shown in
886
+ Fig. 9. We obtain 𝜎(Ωm) = 0.030, 𝜎(𝐻0) = 3.5 km s−1 Mpc−1
887
+ and 𝜎(𝑤) = 0.12 with Planck+L-band and 𝜎(Ωm) = 0.024,
888
+ 𝜎(𝐻0) = 2.6 km s−1 Mpc−1 and 𝜎(𝑤) = 0.08 with Planck+UHF-
889
+ band. It can be seen that MeerKAT UHF-band combined with Planck
890
+ data gives tighter constraints on cosmological parameters in the
891
+ 𝑤CDM model, with the conclusion the same as in the ΛCDM model.
892
+ For dark energy, we find that MeerKAT has a very limited capability
893
+ of constraining 𝑤, and the error on 𝑤 is still larger even though in
894
+ combination with Planck data.
895
+ Finally, we forecast the constraints on cosmological parameters
896
+ in the CPL model. The 1𝜎 and 2𝜎 measurement error contours are
897
+ shown in Fig. 10. We focus on the DE equation of state parameters 𝑤0
898
+ and 𝑤𝑎. We obtain 𝜎(𝑤0) = 1.1 and 𝜎(𝑤𝑎) = 4.3 with Planck+L-
899
+ band, and 𝜎(𝑤0) = 0.6 and 𝜎(𝑤𝑎) = 2.0 with Planck+MeerKAT
900
+ UHF-band. Note that dark energy dominates the evolution of the
901
+ universe in the redshift range of 𝑧 ≲ 0.4. MeerKAT L-band has
902
+ a very limited constraining power for dark energy at the range of
903
+ 0.18 < 𝑧 < 0.58, and MeerKAT UHF-band only surveys at the range
904
+ of 0.42 < 𝑧 < 1.45. Therefore, MeerKAT in interferometer mode
905
+ −1.5
906
+ −1.0
907
+ w
908
+ 0.2
909
+ 0.3
910
+ 0.4
911
+ Ωm
912
+ 60
913
+ 70
914
+ 80
915
+ H0 [km s−1 Mpc−1]
916
+ 60
917
+ 70
918
+ 80
919
+ H0 [km s−1 Mpc−1]
920
+ 0.3
921
+ 0.4
922
+ Ωm
923
+ Planck+L-band
924
+ Planck+UHF-band
925
+ Figure 9. Constraints on Ωm, 𝐻0 and 𝑤 with MeerKAT L-band and UHF-
926
+ band in combination with Planck data in the 𝑤CDM model.
927
+ cannot give stringent constraints on dark energy. But we still keep
928
+ optimistic since the precise measurements on dark energy would be
929
+ achieved by the future larger radio telescopes, such as HIRAX and
930
+ SKA (Wu & Zhang 2022; Wu et al. 2022a,b).
931
+ 4 CONCLUSIONS
932
+ In this work, we give a detailed analysis on measuring the Hi IM
933
+ delay power spectrum using the MeerKAT interferometer mode. We
934
+ also discuss the capability of MeerKAT interferometer mode of con-
935
+ straining cosmological parameters.
936
+ We use the Fisher matrix method to estimate the Hi power spec-
937
+ trum with MeerKAT IM observation. We find that the different survey
938
+ fields have the distinct impacts on determining the power spectrum
939
+ errors in the limited observational time of 10 hours. As the obser-
940
+ vational time increases from 10 h to 10000 h, the power spectrum
941
+ errors are reduced evidently until the cosmic variance begins to dom-
942
+ inate. We also discuss the different survey strategies and find that the
943
+ lower fractional errors on power spectrum at low 𝑘 are obtained when
944
+ tracking 100 points for L-band and tracking 10 points for UHF-band
945
+ in a total 10000 h observation.
946
+ We obtain the measurement errors on 𝐷 𝐴(𝑧), 𝐻(𝑧) and 𝑓 𝜎8(𝑧)
947
+ MNRAS 000, 1–10 (2023)
948
+
949
+ Hi delay spectrum with MeerKAT interferometer mode
950
+ 9
951
+ −2
952
+ 0
953
+ 2
954
+ w0
955
+ 0.2
956
+ 0.4
957
+ 0.6
958
+ Ωm
959
+ 50
960
+ 60
961
+ 70
962
+ 80
963
+ H0 [km s−1 Mpc−1]
964
+ −10
965
+ −5
966
+ 0
967
+ wa
968
+ −10
969
+ −5
970
+ 0
971
+ wa
972
+ 50
973
+ 60
974
+ 70
975
+ 80
976
+ H0 [km s−1 Mpc−1]
977
+ 0.4
978
+ 0.6
979
+ Ωm
980
+ Planck+L-band
981
+ Planck+UHF-band
982
+ Figure 10. Constraints on Ωm, 𝐻0, 𝑤0 and 𝑤𝑎 with MeerKAT L-band and
983
+ UHF-band in combination with Planck data in the CPL model.
984
+ by using the Fisher matrix, and then use these measurements to
985
+ constrain cosmological parameters in typical dark energy models, in-
986
+ cluding ΛCDM, 𝑤CDM and CPL models, by performing the MCMC
987
+ analysis. We obtain 𝜎(Ωm) = 0.028 and 𝜎(𝐻0) = 2.0 km s−1
988
+ Mpc−1 with MeerKAT UHF-band which are better than the results
989
+ of 𝜎(Ωm) = 0.044 and 𝜎(𝐻0) = 2.8 km s−1 Mpc−1 with MeerKAT
990
+ L-band in the ΛCDM model. However, MeerKAT has a very limited
991
+ constraining power for dark-energy equation of state, such as 𝑤 in
992
+ the 𝑤CDM model and 𝑤0 and 𝑤𝑎 in the CPL model, even though in
993
+ combination with Planck data.
994
+ Though MeerKAT L-band and UHF-band Hi IM surveys in in-
995
+ terferometer mode have a very limited constraining power for dark
996
+ energy, our analysis still provide a useful guide for the near future
997
+ MeerKAT survey. It is expected that the future larger radio telescope
998
+ arrays, such as SKA, will have a much better and powerful perfor-
999
+ mance on cosmological research. In addition, MeerKAT baselines
1000
+ are not short enough for detecting large cosmological scales, but the
1001
+ measurements with MeerKAT interferometer mode on these scales
1002
+ are still very useful in detecting Hi content of galaxies, obtaining the
1003
+ cross-correlation between Hi content and star formation rates (Wolz
1004
+ et al. 2016), constraining warm dark matter (Carucci et al. 2015) and
1005
+ breaking the degeneracy between ΩHi and 𝑏Hi (Chen et al. 2021).
1006
+ These aspects deserve further detailed investigations in the future.
1007
+ ACKNOWLEDGEMENTS
1008
+ We thank Peng-Ju Wu and Li-Yang Gao for helpful discussions.
1009
+ This work was supported by the National SKA Program of China
1010
+ (Grants Nos. 2022SKA0110200 and 2022SKA0110203) and the Na-
1011
+ tional Natural Science Foundation of China (Grants Nos. 11975072,
1012
+ 11875102, and 11835009).
1013
+ DATA AVAILABILITY
1014
+ The data underlying this article will be shared on reasonable request
1015
+ to the corresponding author.
1016
+ REFERENCES
1017
+ Abbott T. M. C., et al., 2018, Phys. Rev. D, 98, 043526
1018
+ Abbott T. M. C., et al., 2020, Phys. Rev. D, 102, 023509
1019
+ Aghanim N., et al., 2020, Astron. Astrophys., 641, A6
1020
+ Alam S., et al., 2017, Mon. Not. Roy. Astron. Soc., 470, 2617
1021
+ Amendola L., et al., 2018, Living Rev. Rel., 21, 2
1022
+ Anderson C. J., et al., 2018, Mon. Not. Roy. Astron. Soc., 476, 3382
1023
+ Ansari R., et al., 2012, Astron. Astrophys., 540, A129
1024
+ Bacon D. J., et al., 2020, Publ. Astron. Soc. Austral., 37, e007
1025
+ Bagla J. S., Khandai N., Datta K. K., 2010, Mon. Not. Roy. Astron. Soc., 407,
1026
+ 567
1027
+ Ballardini M., Matthewson W. L., Maartens R., 2019, Mon. Not. Roy. Astron.
1028
+ Soc., 489, 1950
1029
+ Bandura K., et al., 2014, Proc. SPIE Int. Soc. Opt. Eng., 9145, 22
1030
+ Battye R. A., Davies R. D., Weller J., 2004, Mon. Not. Roy. Astron. Soc.,
1031
+ 355, 1339
1032
+ Berti M., Spinelli M., Haridasu B. S., Viel M., Silvestri A., 2022, JCAP, 01,
1033
+ 018
1034
+ Beutler F., et al., 2011, Mon. Not. Roy. Astron. Soc., 416, 3017
1035
+ Blake C., et al., 2011, Mon. Not. Roy. Astron. Soc., 418, 1707
1036
+ Bull P., Ferreira P. G., Patel P., Santos M. G., 2015, Astrophys. J., 803, 21
1037
+ Camera S., Santos M. G., Ferreira P. G., Ferramacho L., 2013, Phys. Rev.
1038
+ Lett., 111, 171302
1039
+ Carucci I. P., Villaescusa-Navarro F., Viel M., Lapi A., 2015, JCAP, 07, 047
1040
+ Chang T.-C., Pen U.-L., Peterson J. B., McDonald P., 2008, Phys. Rev. Lett.,
1041
+ 100, 091303
1042
+ Chang T.-C., Pen U.-L., Bandura K., Peterson J. B., 2010, Nature, 466, 463
1043
+ Chen X., 2012, Int. J. Mod. Phys. Conf. Ser., 12, 256
1044
+ Chen Z., Wolz L., Spinelli M., Murray S. G., 2021, Mon. Not. Roy. Astron.
1045
+ Soc., 502, 5259
1046
+ Cheng G., Ma Y.-Z., Wu F., Zhang J., Chen X., 2020, Phys. Rev. D, 102,
1047
+ 043517
1048
+ Chevallier M., Polarski D., 2001, Int. J. Mod. Phys. D, 10, 213
1049
+ Chisari N. E., et al., 2019, Astrophys. J. Suppl., 242, 2
1050
+ Cole S., et al., 2005, Mon. Not. Roy. Astron. Soc., 362, 505
1051
+ Colless M., et al., 2001, Mon. Not. Roy. Astron. Soc., 328, 1039
1052
+ Cunnington S., 2022, Mon. Not. Roy. Astron. Soc., 512, 2408
1053
+ Cunnington S., Camera S., Pourtsidou A., 2020, Mon. Not. Roy. Astron. Soc.,
1054
+ 499, 4054
1055
+ Cunnington S., et al., 2022, arXiv e-prints, p. arXiv:2206.01579
1056
+ Datta A., Bowman J. D., Carilli C. L., 2010, Astrophys. J., 724, 526
1057
+ Dey A., et al., 2019, Astron. J., 157, 168
1058
+ Dickinson C., 2014, in 49th Rencontres de Moriond on Cosmology. pp 139–
1059
+ 142 (arXiv:1405.7936)
1060
+ Drinkwater M. J., et al., 2010, Mon. Not. Roy. Astron. Soc., 401, 1429
1061
+ Irfan M. O., et al., 2021, Mon. Not. Roy. Astron. Soc., 509, 4923
1062
+ Ivezić v., et al., 2019, Astrophys. J., 873, 111
1063
+ Jarvis M. J., et al., 2018, PoS, MeerKAT2016, 006
1064
+ Jin S.-J., He D.-Z., Xu Y., Zhang J.-F., Zhang X., 2020, JCAP, 03, 051
1065
+ Jin S.-J., Wang L.-F., Wu P.-J., Zhang J.-F., Zhang X., 2021, Phys. Rev. D,
1066
+ 104, 103507
1067
+ Jones D. H., et al., 2009, Mon. Not. Roy. Astron. Soc., 399, 683
1068
+ Kaiser N., 1987, Mon. Not. Roy. Astron. Soc., 227, 1
1069
+ Karagiannis D., Slosar A., Liguori M., 2020, JCAP, 11, 052
1070
+ Karagiannis D., Fonseca J., Maartens R., Camera S., 2021, Phys. Dark Univ.,
1071
+ 32, 100821
1072
+ Knowles K., et al., 2021, Mon. Not. Roy. Astron. Soc., 504, 1749
1073
+ Lewis A., Challinor A., Lasenby A., 2000, Astrophys. J., 538, 473
1074
+ Li Y.-C., Ma Y.-Z., 2017, Phys. Rev. D, 96, 063525
1075
+ Li L., Staveley-Smith L., Rhee J., 2021a, Res. Astron. Astrophys., 21, 030
1076
+ Li Y., Santos M. G., Grainge K., Harper S., Wang J., 2021b, MNRAS, 501,
1077
+ 4344
1078
+ Lidz A., Furlanetto S. R., Oh S. P., Aguirre J., Chang T.-C., Dore O., Pritchard
1079
+ J. R., 2011, Astrophys. J., 741, 70
1080
+ Linder E. V., 2003, Phys. Rev. Lett., 90, 091301
1081
+ Liu A., Shaw J. R., 2020, Publ. Astron. Soc. Pac., 132, 062001
1082
+ Liu A., Parsons A. R., Trott C. M., 2014a, Phys. Rev. D, 90, 023018
1083
+ MNRAS 000, 1–10 (2023)
1084
+
1085
+ 10
1086
+ M. Zhang et al.
1087
+ Liu A., Parsons A. R., Trott C. M., 2014b, Phys. Rev. D, 90, 023019
1088
+ Loeb A., Wyithe S., 2008, Phys. Rev. Lett., 100, 161301
1089
+ Maartens R., Abdalla F. B., Jarvis M., Santos M. G., 2015, PoS, AASKA14,
1090
+ 016
1091
+ Maddox, N. et al., 2021, A&A, 646, A35
1092
+ Masui K. W., et al., 2013, Astrophys. J. Lett., 763, L20
1093
+ McQuinn M., Zahn O., Zaldarriaga M., Hernquist L., Furlanetto S. R., 2006,
1094
+ Astrophys. J., 653, 815
1095
+ Morales M. F., Hazelton B., Sullivan I., Beardsley A., 2012, Astrophys. J.,
1096
+ 752, 137
1097
+ Nan R., et al., 2011, Int. J. Mod. Phys. D, 20, 989
1098
+ Newburgh L. B., et al., 2016, Proc. SPIE Int. Soc. Opt. Eng., 9906, 99065X
1099
+ Obuljen A., Castorina E., Villaescusa-Navarro F., Viel M., 2018, JCAP, 05,
1100
+ 004
1101
+ Olivari L. C., Dickinson C., Battye R. A., Ma Y.-Z., Costa A. A., Remazeilles
1102
+ M., Harper S., 2018, Mon. Not. Roy. Astron. Soc., 473, 4242
1103
+ Parsons A. R., Backer D. C., 2009, Astron. J., 138, 219
1104
+ Parsons A. R., Pober J. C., Aguirre J. E., Carilli C. L., Jacobs D. C., Moore
1105
+ D. F., 2012, Astrophys. J., 756, 165
1106
+ Paul S., et al., 2016, Astrophys. J., 833, 213
1107
+ Paul S., Santos M. G., Townsend J., Jarvis M. J., Maddox N., Collier J. D.,
1108
+ Frank B. S., Taylor R., 2021, Mon. Not. Roy. Astron. Soc., 505, 2039
1109
+ Pober J. C., 2015, Mon. Not. Roy. Astron. Soc., 447, 1705
1110
+ Pourtsidou A., 2018, PoS, MeerKAT2016, 037
1111
+ Pourtsidou A., Bacon D., Crittenden R., 2017, Mon. Not. Roy. Astron. Soc.,
1112
+ 470, 4251
1113
+ Pritchard J. R., Loeb A., 2012, Rept. Prog. Phys., 75, 086901
1114
+ Santos M. G., et al., 2015, PoS, AASKA14, 019
1115
+ Santos M. G., et al., 2017, in MeerKAT Science: On the Pathway to the SKA.
1116
+ (arXiv:1709.06099)
1117
+ Scelfo G., Spinelli M., Raccanelli A., Boco L., Lapi A., Viel M., 2022, JCAP,
1118
+ 01, 004
1119
+ Seo H.-J., Hirata C. M., 2016, Mon. Not. Roy. Astron. Soc., 456, 3142
1120
+ Seo H.-J., Dodelson S., Marriner J., Mcginnis D., Stebbins A., Stoughton C.,
1121
+ Vallinotto A., 2010, Astrophys. J., 721, 164
1122
+ Sprenger T., Archidiacono M., Brinckmann T., Clesse S., Lesgourgues J.,
1123
+ 2019, JCAP, 02, 047
1124
+ Terni de Gregory B., et al., 2021, Mon. Not. Roy. Astron. Soc., 504, 2924
1125
+ Tramonte D., Ma Y.-Z., 2020, Mon. Not. Roy. Astron. Soc., 498, 5916
1126
+ Vedantham H., Shankar N. U., Subrahmanyan R., 2012, Astrophys. J., 745,
1127
+ 176
1128
+ Viljoen J.-A., Fonseca J., Maartens R., 2021, JCAP, 11, 010
1129
+ Villaescusa-Navarro F., Bull P., Viel M., 2015, Astrophys. J., 814, 146
1130
+ Wang J., et al., 2021, Mon. Not. Roy. Astron. Soc., 505, 3698
1131
+ Wolz L., Tonini C., Blake C., Wyithe J. S. B., 2016, Mon. Not. Roy. Astron.
1132
+ Soc., 458, 3399
1133
+ Wolz L., et al., 2022, Mon. Not. Roy. Astron. Soc., 510, 3495
1134
+ Wu P.-J., Zhang X., 2022, JCAP, 01, 060
1135
+ Wu F., et al., 2021, Mon. Not. Roy. Astron. Soc., 506, 3455
1136
+ Wu P.-J., Shao Y., Jin S.-J., Zhang X., 2022a, arXiv e-prints, p.
1137
+ arXiv:2202.09726
1138
+ Wu P.-J., Li Y., Zhang J.-F., Zhang X., 2022b, arXiv e-prints, p.
1139
+ arXiv:2212.07681
1140
+ Wuensche C. A., et al., 2020, Exper. Astron., 50, 125
1141
+ Wyithe S., Loeb A., Geil P., 2008, Mon. Not. Roy. Astron. Soc., 383, 1195
1142
+ Xiao L., Costa A. A., Wang B., 2021, Mon. Not. Roy. Astron. Soc., 510, 1495
1143
+ Xu Y., Zhang X., 2020, Sci. China Phys. Mech. Astron., 63, 270431
1144
+ Xu Y., Wang X., Chen X., 2015, Astrophys. J., 798, 40
1145
+ Xu X., Ma Y.-Z., Weltman A., 2018, Phys. Rev. D, 97, 083504
1146
+ Zhang J.-F., Wang B., Zhang X., 2020, Sci. China Phys. Mech. Astron., 63,
1147
+ 280411
1148
+ Zhang M., Wang B., Wu P.-J., Qi J.-Z., Xu Y., Zhang J.-F., Zhang X., 2021,
1149
+ Astrophys. J., 918, 56
1150
+ de Villiers M. S., Cotton W. D., 2022, Astron. J., 163, 135
1151
+ This paper has been typeset from a TEX/LATEX file prepared by the author.
1152
+ MNRAS 000, 1–10 (2023)
1153
+
BNE3T4oBgHgl3EQfTwqq/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
ENFRT4oBgHgl3EQfAze2/content/tmp_files/2301.13463v1.pdf.txt ADDED
@@ -0,0 +1,974 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.13463v1 [hep-ph] 31 Jan 2023
2
+ Higgs production at next generation e+e− colliders
3
+ Deniz YILMAZ1∗, Mehmet SAHIN2, Dogukan Hazar YAVUZ1
4
+ 1Physics Engineering Department, Ankara University, Ankara,Turkey
5
+ 2Department of Computer Engineering, Usak University, Usak,Turkey
6
+ February 1, 2023
7
+ Abstract
8
+ In this study, Higgs production processes, Higgsstrahlung and vector boson (W and Z) fusion
9
+ processes, were investigated for four different future lepton colliders (CEPC, ILC, CLIC, and FCC-
10
+ ee). The cross sections for each production process and corresponding backgrounds were calculated
11
+ considering the ISR and beamstrahlung effects. Various cuts and the b-tagging method were used
12
+ to reduce the background.
13
+ Finally, the number of events for each collider was determined, and
14
+ significance calculations were performed. In our calculations, high event numbers were obtained for
15
+ all four colliders for the Higgsstrahlung, W, and Z fusion process. This shows that electron-positron
16
+ colliders will play an important role in future Higgs physics research.
17
+ 1
18
+ Introduction
19
+ The discovery of the Higgs boson at the Large Hadron Collider (LHC) [1, 2] confirmed the electroweak
20
+ symmetry breaking mechanism of the Standard Model (SM) [3, 4, 5, 6]. However, there is still some
21
+ unknown about the observed Higgs boson: is it the fundamental scalar of the SM, or a more complex
22
+ object, or part of an extended Higgs sector? Studying the properties of the Higgs boson at the LHC
23
+ and in future colliders is crucial to understanding its true nature. Up to now, some properties of the
24
+ Higgs boson have been measured at the LHC with an accuracy of about 10% [7, 8, 9, 10]. Although the
25
+ LHC Run 2 to be developed will examine it with higher data, because of the complexity of the internal
26
+ structure of the proton, the LHC will not be sensitive enough to examine the properties of Higgs.
27
+ Electron-positron colliders, which will be installed to precisely measure the properties of the Higgs
28
+ particle, have unique capabilities for the measurement of Higgs boson parameters, including the Higgs
29
+ total cross section, decay width, branching ratios, Higgs width, and determination of Higgs couplings.
30
+ Therefore, today, four e+e− colliders are being designed to study the properties of the Higgs boson
31
+ and other standard model (SM) particles with high precision: the International Linear Collider (ILC)
32
+ [11], with a center of mass energy of 250 – 500 GeV, Compact Linear Collider (CLIC) [12] with center
33
+ of mass energies of 380 – 1500 – 3000 GeV, Circular Electron Positron Collider (CEPC) with center of
34
+ mass energies between 90 and 250 GeV [13] and the Future e+e− Circular Collider (FCC-ee) [14], which
35
+ will be located in a new tunnel at CERN at 240 GeV center of mass energy. The main beam parameters
36
+ of these colliders [11, 12, 13, 14] are given in Table 1. The integrated luminosities given here are annual
37
+ values.
38
+ Table 1: The main collider parameters
39
+ Parameters
40
+ CEPC
41
+ FCC-ee
42
+ ILC
43
+ CLIC
44
+ Center of mass energy (GeV)
45
+ 240
46
+ 240
47
+ 250
48
+ 500
49
+ 380
50
+ 1500
51
+ 3000
52
+ Number of particles per bunch (1010)
53
+ 15
54
+ 18
55
+ 2
56
+ 2
57
+ 0.52
58
+ 0.37
59
+ 0.37
60
+ Horizontal beam size at IP (σx) (µm)
61
+ 20.9
62
+ 13.7
63
+ 0.516
64
+ 0.474
65
+ 0.149
66
+ 0.06
67
+ 0.04
68
+ Vertical beam size at IP (σy) (nm)
69
+ 60
70
+ 36
71
+ 7.66
72
+ 5.86
73
+ 2.9
74
+ 1.5
75
+ 1
76
+ Bunch length (mm)
77
+ 4.4
78
+ 5.3
79
+ 0.3
80
+ 0.3
81
+ 0.07
82
+ 0.044
83
+ 0.044
84
+ Luminosity (105pb−1 )
85
+ 6
86
+ 17
87
+ 1.35
88
+ 1.8
89
+ 1.5
90
+ 3.7
91
+ 5.9
92
+ In the electron-positron collider, Higgs bosons are produced by the Higgsstrahlung and vector boson
93
+ (W and Z) fusion processes [15, 16, 17, 18, 19, 20, 21]. In this study, these three processes were examined
94
+ ∗dyilmaz@eng.ankara.edu.tr
95
+ 1
96
+
97
+ Figure 1: The Feynmann diagrams of the Higgs production processes
98
+ and calculations were performed using CalcHEP [22, 23]. In the electron-positron collider, it is important
99
+ to consider the effects of ISR and Beamstrahlung [24, 25]. The parameters listed in Table 1 were used
100
+ to calculate the ISR and the beamstraghlung effects. In section 2 cross sections are given for these three
101
+ processes. Section 3 provides signal and background analyses, the number of events for each collider, and
102
+ the significance calculations. Finally, conclusion is provided in the section 4.
103
+ 2
104
+ Higgs Production at the electron - positron colliders
105
+ The main production processes of Higgs at the e+e− colliders are the Higgsstrahlung and W/Z fusion
106
+ mechanisms given below, as shown in Figure 1.
107
+ Higgs − strahlung
108
+ e+e− → ZH
109
+ Wfusion
110
+ e+e− → νeνeH
111
+ Zfusion
112
+ e+e− → e+e−H
113
+ The cross section for the Higgsstrahlung process can be written as
114
+ σ(e+e− → ZH) = G2
115
+ F M 4
116
+ Z
117
+ 96πs (η2
118
+ e + a2
119
+ e)κ1/2 κ + 12M 2
120
+ Z/s
121
+ (1 − M 2
122
+ Z/s)2
123
+ (1)
124
+ where ae = −1, ηe = −1 + 4sin2θW are the Z charges of the electron and κ = (1 − (MH + MZ)2/s)(1 −
125
+ (MH − MZ)2/s) is the usual two particle phase space function. The total cross section for the vector
126
+ boson fusion mechanism is
127
+ σ(e+e− → V V → llH) = G2
128
+ F m4
129
+ V
130
+ 64
131
+
132
+ 2π3
133
+ � 1
134
+ xH
135
+ dx
136
+ � 1
137
+ x
138
+ dyT (x, y)
139
+ [1 + (y − x)/xV ]2 .
140
+ (2)
141
+ T (x, y) = (2x
142
+ y3 − 3x + 1
143
+ y2
144
+ + x + 2
145
+ y
146
+ − 1)[
147
+ z
148
+ z + 1 − log(z + 1)] + xz2(1 − y)
149
+ y3(z + 1) ,
150
+ where V denotes the vector bosons W or Z and xH = m2
151
+ H/s, xV = m2
152
+ V /s and z = y(x − xH)/xxV (√s
153
+ is the center-of-mass energy) [26].
154
+ 200
155
+ 250
156
+ 300
157
+ 350
158
+ 400
159
+ 450
160
+ 500
161
+ √s [GeV]
162
+ 0
163
+ 0,05
164
+ 0,1
165
+ 0,15
166
+ 0,2
167
+ 0,25
168
+ σ [pb]
169
+ Higgsstrahlung
170
+ W Fusion
171
+ Z Fusion
172
+ Figure 2: The cross sections of the Higgs production mechanisms as a function of center-of-mass energy.
173
+ 2
174
+
175
+ 200
176
+ 250
177
+ 300
178
+ 350
179
+ 400
180
+ 450
181
+ 500
182
+ √s [GeV]
183
+ 0,05
184
+ 0,1
185
+ 0,15
186
+ 0,2
187
+ 0,25
188
+ σ [pb]
189
+ CEPC
190
+ ILC
191
+ FCC-ee
192
+ CLIC
193
+ Higgsstrahlung
194
+ 200
195
+ 250
196
+ 300
197
+ 350
198
+ 400
199
+ 450
200
+ 500
201
+ √s [GeV]
202
+ 0,01
203
+ 0,02
204
+ 0,03
205
+ 0,04
206
+ 0,05
207
+ 0,06
208
+ 0,07
209
+ σ [pb]
210
+ CEPC
211
+ ILC
212
+ FCC-ee
213
+ CLIC
214
+ W Fusion
215
+ 200
216
+ 250
217
+ 300
218
+ 350
219
+ 400
220
+ 450
221
+ 500
222
+ √s [GeV]
223
+ 0,001
224
+ 0,002
225
+ 0,003
226
+ 0,004
227
+ 0,005
228
+ 0,006
229
+ 0,007
230
+ σ [pb]
231
+ CEPC
232
+ ILC
233
+ FCC-ee
234
+ CLIC
235
+ Z Fusion
236
+ Figure 3: The cross section comparison for Higgsstrahlung, W Fusion and Z Fusion processes for four
237
+ e+e−colliders.
238
+ The behavior of the production cross-sections of the Higgs boson calculated by the Higgsstrahlung
239
+ and the W/Z fusion mechanisms using the CalcHEP simulation program, depending on the center of
240
+ mass energy, are shown in Figure 2 and Figure 3. The relevant production cross sections as a function of
241
+ the center of mass energy are shown in Figure 2. As shown in Figure 2, the Higgsstrahlung suppresses the
242
+ vector boson production processes for moderate values of the energy due to the additional electroweak
243
+ coupling. With the increase in energy, the cross sections of the vector boson procecesses increase log-
244
+ arithmically and become dominant. At a center of mass energy of about 250 GeV, Higgs bosons are
245
+ predominantly produced from the ZH process as seen in the same figure. In the Figure 3, the cross
246
+ sections are shown as a function of the center of mass energy for each production mechanisms for four
247
+ electron-positron colliders with the ISR and the beamstrahlung effects of each colliders.
248
+ 3
249
+ Signal and Background Analyses
250
+ Because the Higgs boson’s decay rate to bb is greater than the decay rate to other quarks and leptons
251
+ [27, 28, 29, 30, 31], the bb decay mode of Higgs (H −→ bb) is considered in all production processes in
252
+ this study. Since the cross sections of the background processes corresponding to the leptonic decays of
253
+ the Z boson are less than the background cross sections corresponding to the other decays, the leptonic
254
+ decays of the Z boson in the Higgsstrahlung process are taken into account. The signal processes are
255
+ given below.
256
+ Signal 1:
257
+ Higgsstrahlung
258
+ e+e− → ZH → llbb
259
+ Zfusion
260
+ e+e− → e+e−bb
261
+ Signal 2:
262
+ Wfusion
263
+ e+e− → νeνebb
264
+ 3
265
+
266
+ Here, l and l are e−, µ− and e+, µ+, respectively. The corresponding background processes analysed here
267
+ are as follows:
268
+ For signal 1:
269
+ i)
270
+ e+e− → ZZ → llJJ,
271
+ ii)
272
+ e+e− → e+e−Z → e+e−JJ,
273
+ iii)
274
+ e+e− → tt → W +JW −J → llJJνlνl,
275
+ For signal 2:
276
+ e+e− → JJ,
277
+ here, J represents the quark and antiquark: J = d, d, u, u, s, s, c, c, b, b. The transverse momentum (PT ),
278
+ pseudo rapidity (η) and invariant mass (Minv) distributions of the final state particles were investigated
279
+ by using CalcHEP program in order to find the cut values to distinguish the signal from the background
280
+ in the FCC-ee collider with a center of mass energy of 240 GeV. The background iii process corresponding
281
+ to Signal 1 is not included in the calculations for 240 GeV, as it starts to contribute at 350 GeV and
282
+ greater center of mass energies. Because the transverse momentum, pseudo rapidity, and invariant mass
283
+ distributions of the final state particles in the signal and background processes will exhibit similar behavior
284
+ for other colliders, the cut values obtained can be used for CEPC, ILC, and CLIC. Transverse momentum
285
+ distribution plots for the final state particles of signal 1 and the corresponding background processes i
286
+ and ii are shown in Figure 4, while the graphs of signal 2 are shown in Figure 5. As can be seen from
287
+ Figure 4 and 5, when a transverse momentum cut of 35 GeV is applied to the e−, e+, µ−, µ+, and two
288
+ jets (J) in the final state particles of signal 1 and signal 2 and the corresponding background processes,
289
+ the signal will almost not change, but the background will be significantly reduced.
290
+ Pseudorapidity plots for signal 1, signal 2, and the corresponding backgrounds are shown in Figure
291
+ 6 and 7. As can be seen from the figures, cut regions of −2.5 < ηJ,J < 2.5, −2.5 < ηe−,e+ < 2.5,
292
+ −2.5 < ηµ−,µ+ < 2.5 will be appropriate for e−, e+, µ−, µ+ and two jets (J) in the final state particles
293
+ of signal 1 and signal 2 and the corresponding background processes.
294
+ 10-5
295
+ 10-4
296
+ 10-3
297
+ 10-2
298
+ 10-1
299
+ 100
300
+ 101
301
+ 0
302
+ 20
303
+ 40
304
+ 60
305
+ 80
306
+ 100
307
+ 120
308
+ 140
309
+ √s=240 GeV
310
+ (1/σ)dσ/dpT (1/GeV)
311
+ pT (GeV)
312
+ signal 1
313
+ background i
314
+ background ii
315
+ 10-5
316
+ 10-4
317
+ 10-3
318
+ 10-2
319
+ 10-1
320
+ 100
321
+ 101
322
+ 0
323
+ 20
324
+ 40
325
+ 60
326
+ 80
327
+ 100
328
+ 120
329
+ 140
330
+ √s=240 GeV
331
+ (1/σ)dσ/dpT (1/GeV)
332
+ pT (GeV)
333
+ signal 1
334
+ background i
335
+ 10-5
336
+ 10-4
337
+ 10-3
338
+ 10-2
339
+ 10-1
340
+ 100
341
+ 101
342
+ 0
343
+ 20
344
+ 40
345
+ 60
346
+ 80
347
+ 100
348
+ 120
349
+ 140
350
+ √s=240 GeV
351
+ (1/σ)dσ/dpT (1/GeV)
352
+ pT (GeV)
353
+ signal 1
354
+ background i
355
+ background ii
356
+ Figure 4: Transverse momentum distribution plots for the e−/e+ (upper left ), µ−/µ+ (upper right)
357
+ and J/J (bottom) final state particles of signal 1 and the corresponding bacground processes in FCC-ee
358
+ collider with 240 GeV center of mass energy.
359
+ 4
360
+
361
+ 10-5
362
+ 10-4
363
+ 10-3
364
+ 10-2
365
+ 10-1
366
+ 100
367
+ 101
368
+ 0
369
+ 20
370
+ 40
371
+ 60
372
+ 80
373
+ 100
374
+ 120
375
+ 140
376
+ √s=240 GeV
377
+ (1/σ)dσ/dpT (1/GeV)
378
+ pT (GeV)
379
+ signal 2
380
+ background
381
+ Figure 5: Transverse momentum distribution plots for the b/b and J/J final state particles of signal 2
382
+ and the corresponding bacground processes in FCC-ee collider with 240 GeV center of mass energy.
383
+ An Emiss
384
+ T
385
+ cut value of >15 GeV was also used for neutrinos in our calculations.
386
+ Invariant mass distribution plots for signal 1, signal 2 and their corresponding background processes
387
+ are shown in Figure 8. As can be seen from the figures, in the calculations, it would be appropriate to
388
+ exclude the 80 GeV < Minv(e−, e+) <100 GeV and 80 GeV < Minv(µ−, µ+) < 100 GeV regions for the
389
+ ll final states in signal and background processes. In addition, only the 115 GeV < Minv(J, J) <135
390
+ GeV region was included in the calculations for two final jet states in the signal and background pro-
391
+ cesses. These included and excluded invariant mass regions allow the signal to be distinguished from the
392
+ background.
393
+ In addition to these cut values, the separation cuts of ∆R(l, J) >0.5 and ∆R(l, J) >0.5 distinguish
394
+ the final state leptons and antileptons from the jets, while the ∆R(J, J) >0.5 separation cut was used to
395
+ distinguish the final state jets from each other.
396
+ 10-5
397
+ 10-4
398
+ 10-3
399
+ 10-2
400
+ 10-1
401
+ 100
402
+ 101
403
+ -6
404
+ -4
405
+ -2
406
+ 0
407
+ 2
408
+ 4
409
+ 6
410
+ √s=240 GeV
411
+ (1/σ)dσ/dη
412
+ ηe
413
+ signal 1
414
+ background i
415
+ background ii
416
+ 10-5
417
+ 10-4
418
+ 10-3
419
+ 10-2
420
+ 10-1
421
+ 100
422
+ 101
423
+ -6
424
+ -4
425
+ -2
426
+ 0
427
+ 2
428
+ 4
429
+ 6
430
+ √s=240 GeV
431
+ (1/σ)dσ/dη
432
+ ηµ
433
+ signal 1
434
+ background i
435
+ 10-5
436
+ 10-4
437
+ 10-3
438
+ 10-2
439
+ 10-1
440
+ 100
441
+ 101
442
+ -6
443
+ -4
444
+ -2
445
+ 0
446
+ 2
447
+ 4
448
+ 6
449
+ √s=240 GeV
450
+ (1/σ)dσ/dη
451
+ ηJ
452
+ signal 1
453
+ background i
454
+ background ii
455
+ Figure 6: Pseudorapidity distribution plots for the e−/e+ (upper left ), µ−/µ+ (upper right) and J/J
456
+ (bottom) final state particles of signal 1 and the corresponding bacground processes in FCC-ee collider
457
+ with 240 GeV center of mass energy.
458
+ 5
459
+
460
+ 10-5
461
+ 10-4
462
+ 10-3
463
+ 10-2
464
+ 10-1
465
+ 100
466
+ 101
467
+ -6
468
+ -4
469
+ -2
470
+ 0
471
+ 2
472
+ 4
473
+ 6
474
+ √s=240 GeV
475
+ (1/σ)dσ/dη
476
+ ηJ
477
+ signal 2
478
+ background
479
+ Figure 7: Pseudorapidity distribution plots for the b/b and J/J final state particles of signal 2 and the
480
+ corresponding bacground processes in FCC-ee collider with 240 GeV center of mass energy.
481
+ All the cut values obtained are listed in Table 2, and these cut values were used in the calculations for
482
+ the four colliders. In addition to the cut values in Table 2, because the Higgs boson decays to bb in our
483
+ signal processes, it is possible to further reduce the background cross section value using the b-tagging
484
+ method [27]: 68% is used for the b-tagging identification rate, and a 1% ratio is used for misidentification
485
+ rate with light quarks as b quarks.
486
+ The following equation is used to calculate the significance of the
487
+ 10-8
488
+ 10-6
489
+ 10-4
490
+ 10-2
491
+ 100
492
+ 0
493
+ 25
494
+ 50
495
+ 75
496
+ 100
497
+ 125
498
+ 150
499
+ 175
500
+ 200
501
+ 225
502
+ 250
503
+ √s=240 GeV
504
+ dσ/dMinv (pb/GeV)
505
+ Minv (GeV)
506
+ signal Z(e-,e+)
507
+ signal h(b, b-)
508
+ background Z(e-,e+)
509
+ background γ(e-,e+)
510
+ background Z(J,J)
511
+ 10-8
512
+ 10-6
513
+ 10-4
514
+ 10-2
515
+ 100
516
+ 0
517
+ 25
518
+ 50
519
+ 75
520
+ 100
521
+ 125
522
+ 150
523
+ 175
524
+ 200
525
+ 225
526
+ 250
527
+ √s=240 GeV
528
+ (1/σ)dσ/dMinv (1/GeV)
529
+ Minv (GeV)
530
+ signal h(b,b-)
531
+ background Z(J,J))
532
+ Figure 8: Invariant mass plots for the signal 1 (left) and signal 2 (right) and the corresponding bacground
533
+ processes in FCC-ee collider with 240 GeV center of mass energy.
534
+ obtained data:
535
+ S =
536
+
537
+ 2((s + b) ln(1 + s/b) − s)
538
+ (3)
539
+ where s and b represent signal and background events, respectively [32]. Cross-sections, event rates, and
540
+ significance values were calculated for the signal and background processes using the cut values in Table 2,
541
+ Table 2: Cut values
542
+ Emiss
543
+ T
544
+ (νl, νl) > 15 GeV
545
+ PT (l, l) > 35 GeV
546
+ PT (J) > 35 GeV
547
+ -2.5 < η(l, l) < 2.5
548
+ -2.5 < η(J) < 2.5
549
+ 80 GeV < Minv(l, l) < 100 GeV region is excluded
550
+ 115 GeV< Minv(J, J) < 135 GeV region is included
551
+ ∆R(l, J) > 0.5
552
+ ∆R(l, J) > 0.5
553
+ ∆R(J, J) > 0.5
554
+ 6
555
+
556
+ Table 3: Cross sections, number of events and the significance values for CEPC.
557
+ Colliders
558
+ Processes
559
+ Sg CS
560
+ (pb)
561
+ Bg CS
562
+ (pb)
563
+ L
564
+ (pb−1)
565
+ No. SgE
566
+ No.BgE
567
+ S
568
+ CEPC
569
+ (240 GeV)
570
+ Signal 1
571
+ 9.91×10−5
572
+ 2.38×10−4
573
+ 6×105
574
+ 59.5
575
+ 142.8
576
+ 4.7
577
+ Signal 1
578
+ (with b-tagging)
579
+ 6.72×10−5
580
+ 3.68×10−5
581
+ 40.32
582
+ 22.08
583
+ 7
584
+ Signal 2
585
+ 1.24×10−2
586
+ 5.22×10−1
587
+ 7440
588
+ 313200
589
+ 13.24
590
+ Signal 2
591
+ (with b-tagging)
592
+ 8.45×10−3
593
+ 7.17×10−2
594
+ 5070
595
+ 43020
596
+ 23.98
597
+ b-tagging method, and nominal integrated luminosity given in Table 1. The event rates and significance
598
+ values of the signals and corresponding backgrounds are obtained for four future lepton colliders. The
599
+ numerical results are given in Table 3-6. The abbreviations used in the tables are: Sg CS (signal cross-
600
+ section), Bg CS ( background cross-section),L (integrated luminosity), No. SgE (number of signal events)
601
+ and No. BgE (number of background events).
602
+ 4
603
+ Conclusion
604
+ After the discovery of the Higgs particle, precise measurements of the Higgs properties became an im-
605
+ portant step forward for future research in particle physics. Electron positron colliders to be installed
606
+ for this purpose have unique capabilities for the measurement of Higgs boson parameters, including the
607
+ Higgs total cross section of production processes, decay width, branching rates and determination of
608
+ Higgs couplings. In this study, the Higgsstrahlung and W and Z fusion processes were examined, and the
609
+ data obtained are presented in graphs and tables for four different electron-positron colliders. The pro-
610
+ duction cross-sections for each process and additionally cross-sections for various final state backgrounds
611
+ were calculated. In the calculations, we attempted to reduce the background by transverse momentum,
612
+ pseudo rapidity, invariant mass, cone-angle constraints, and the b-tagging method. Significance calcula-
613
+ tions were performed by determining the number of events related to the production processes and the
614
+ background for each collider. The values are listed in Table 3-6.
615
+ When the results are examined in Table 5 , it is seen that the desired significance value for Signal 1
616
+ cannot be reached at the luminosity value given for ILC – 250 GeV. For Signal 1 processes to be observed
617
+ in the ILC-250 GeV, the collider needs to accumulate data for a longer period of time. Again, at the end
618
+ of one year, it was seen that the statistical significance value of 5σ would be reached after the b-tagging
619
+ method for the Signal 1 processes in the CEPC collider. Therefore, the CEPC collider will enable the
620
+ properties of the Higgs boson to be investigated precisely through Signal 1 processes. It is seen that at
621
+ the end of 1 year in the FCC-ee collider, a significance value of 7.95 will be reached without b-tagging and
622
+ a high significance value of 11.9 can be reached by using b-tagging. This shows that FCC-ee will be more
623
+ advantageous than ILC-250 GeV and CEPC 250 GeV colliders for investigating Higgs boson properties
624
+ through the Signal 1 group around these center of mass energies (240-250 GeV). In the ILC-500 GeV
625
+ and CLIC-380-1500-3000 GeV colliders, results well above the desired significance value can be obtained
626
+ for signal 1 processes, even without the b-tagging. Therefore, the properties of the Higgs boson through
627
+ Signal 1 processes can be studied with precision in colliders other than the ILC-250 GeV collider. Since
628
+ the results obtained for the Signal 2 process are greater than 5 significance values, the properties of the
629
+ Table 4: Cross sections, number of events and the significance values for FCC-ee.
630
+ Colliders
631
+ Processes
632
+ Sg CS
633
+ (pb)
634
+ Bg CS
635
+ (pb)
636
+ L
637
+ (pb−1)
638
+ No. SgE
639
+ No.BgE
640
+ S
641
+ FCC-ee
642
+ (240 GeV)
643
+ Signal 1
644
+ 9.98×10−5
645
+ 2.36×10−4
646
+ 1.7×106
647
+ 169.7
648
+ 401.2
649
+ 7.95
650
+ Signal 1
651
+ (with b-tagging)
652
+ 6.79×10−5
653
+ 3.67×10−5
654
+ 115.4
655
+ 62.4
656
+ 11.9
657
+ Signal 2
658
+ 1.25×10−2
659
+ 5.37×10−1
660
+ 21250
661
+ 912900
662
+ 22.15
663
+ Signal 2
664
+ (with b-tagging)
665
+ 8.53×10−3
666
+ 7.38×10−2
667
+ 14501
668
+ 125460
669
+ 40.18
670
+ 7
671
+
672
+ Table 5: Cross sections, number of events and the significance values for ILC.
673
+ Colliders
674
+ Processes
675
+ Sg CS
676
+ (pb)
677
+ Bg CS
678
+ (pb)
679
+ L
680
+ (pb−1)
681
+ No. SgE
682
+ No.BgE
683
+ S
684
+ ILC
685
+ (250 GeV)
686
+ Signal 1
687
+ 1.33×10−4
688
+ 2.9×10−4
689
+ 1.35×105
690
+ 17.95
691
+ 39.15
692
+ 2.68
693
+ Signal 1
694
+ (with b-tagging)
695
+ 9.04×10−5
696
+ 4.34×10−5
697
+ 12.2
698
+ 5.86
699
+ 4.03
700
+ Signal 2
701
+ 1.3×10−2
702
+ 5.33×10−1
703
+ 1755
704
+ 71955
705
+ 6.51
706
+ Signal 2
707
+ (with b-tagging)
708
+ 8.82×10−3
709
+ 7.32×10−2
710
+ 1190
711
+ 9882
712
+ 11.74
713
+ ILC
714
+ (500 GeV)
715
+ Signal 1
716
+ 1.41×10−3
717
+ 1.7×10−3
718
+ 1.8×105
719
+ 253.8
720
+ 306
721
+ 12.98
722
+ Signal 1
723
+ (with b-tagging)
724
+ 9.57×10−4
725
+ 3.32×10−4
726
+ 172.3
727
+ 59.8
728
+ 16.88
729
+ Signal 2
730
+ 2.86×10−2
731
+ 1.13×10−1
732
+ 5148
733
+ 20340
734
+ 34.71
735
+ Signal 2
736
+ (with b-tagging)
737
+ 1.94×10−2
738
+ 1.56×10−2
739
+ 3492
740
+ 2808
741
+ 56.54
742
+ Table 6: Cross sections, number of events and the significance values for CLIC.
743
+ Colliders
744
+ Processes
745
+ Sg CS
746
+ (pb)
747
+ Bg CS
748
+ (pb)
749
+ L
750
+ (pb−1)
751
+ No. SgE
752
+ No.BgE
753
+ S
754
+ CLIC
755
+ (380 GeV)
756
+ Signal 1
757
+ 6.44×10−4
758
+ 1.08×10−3
759
+ 1.5×105
760
+ 96.6
761
+ 162
762
+ 6.98
763
+ Signal 1
764
+ (with b-tagging)
765
+ 4.38×10−4
766
+ 2.53×10−4
767
+ 65.7
768
+ 37.95
769
+ 8.76
770
+ Signal 2
771
+ 1.7×10−2
772
+ 2.11×10−1
773
+ 2550
774
+ 31650
775
+ 14.14
776
+ Signal 2
777
+ (with b-tagging)
778
+ 1.16×10−2
779
+ 2.9×10−2
780
+ 1740
781
+ 4350
782
+ 24.86
783
+ CLIC
784
+ (1500 GeV)
785
+ Signal 1
786
+ 1.95×10−3
787
+ 1.47×10−3
788
+ 3.7×105
789
+ 721.5
790
+ 543.9
791
+ 26.34
792
+ Signal 1
793
+ (with b-tagging)
794
+ 1.32×10−3
795
+ 2.34×10−4
796
+ 488.4
797
+ 86.58
798
+ 36.64
799
+ Signal 2
800
+ 1.03×10−1
801
+ 9.22×10−3
802
+ 38110
803
+ 3411
804
+ 362
805
+ Signal 2
806
+ (with b-tagging)
807
+ 6.99×10−2
808
+ 1.27×10−3
809
+ 25863
810
+ 470
811
+ 400
812
+ CLIC
813
+ (3000 GeV)
814
+ Signal 1
815
+ 6.01×10−4
816
+ 8.47×10−4
817
+ 5.9×105
818
+ 355
819
+ 499.7
820
+ 14.38
821
+ Signal 1
822
+ (with b-tagging)
823
+ 4.09×10−4
824
+ 1.32×10−4
825
+ 241
826
+ 77.8
827
+ 20.44
828
+ Signal 2
829
+ 1.61×10−1
830
+ 2.72×10−3
831
+ 94990
832
+ 1605
833
+ 776
834
+ Signal 2
835
+ (with b-tagging)
836
+ 1.09×10−1
837
+ 3.74×10−4
838
+ 64310
839
+ 221
840
+ 777
841
+ Higgs boson can be studied precisely for all colliders through this channel.
842
+ As a result, in future lepton colliders, the Higgs boson can be observed with high event rates via
843
+ Higgsstrahlung, W and Z fusion. Thus, electron–positron colliders can precisely measure the properties
844
+ of the Higgs boson.
845
+ Acknowledgment
846
+ We would like to thank Professor Dr Inanc Sahin for his suggestions.
847
+ 8
848
+
849
+ References
850
+ [1] G. Aad et al. [ATLAS], “Observation of a new particle in the search for the Standard
851
+ Model Higgs boson with the ATLAS detector at the LHC,” Phys. Lett. B 716 (2012) 1-29,
852
+ arXiv:hep-ex/1207.7214.
853
+ [2] S. Chatrchyan et al. [CMS], “Observation of a New Boson at a Mass of 125 GeV with the CMS
854
+ Experiment at the LHC,” Phys. Lett. B 716(2012) 30-61, arXiv:hep-ex/1207.7235
855
+ [3] P.
856
+ W.
857
+ Higgs,
858
+ “Broken
859
+ Symmetries
860
+ and
861
+ the
862
+ Masses
863
+ of
864
+ Gauge
865
+ Bosons,”
866
+ Phys. Rev. Lett. 13 (1964) 508-509
867
+ [4] P. W. Higgs, “Broken symmetries, massless particles and gauge fields,” Phys. Lett. 12(1964) 132-133
868
+ [5] F. Englert and R. Brout,
869
+ “Broken Symmetry and the Mass of Gauge Vector Mesons,”
870
+ Phys. Rev. Lett. 13 (1964) 321-323
871
+ [6] G. S. Guralnik, C. R. Hagen and T. W. B. Kibble, “Global Conservation Laws and Massless Parti-
872
+ cles,” Phys. Rev. Lett. 13 (1964) 585-587
873
+ [7] S. Dittmaier et al. [LHC Higgs Cross Section Working Group], “Handbook of LHC Higgs Cross
874
+ Sections: 1. Inclusive Observables,” ,arXiv:hep-ph/1101.0593.
875
+ [8] S. Dittmaier, C. Mariotti, G. Passarino, R. Tanaka, S. Alekhin, J. Alwall, E. A. Bagnaschi, A. Banfi,
876
+ J. Bl¨umlein and S. Bolognesi, et al. “Handbook of LHC Higgs Cross Sections: 2. Differential Distri-
877
+ butions,” ,arXiv:hep-ph/1201.3084.
878
+ [9] S. Heinemeyer et al. [LHC Higgs Cross Section Working Group], “Handbook of LHC Higgs Cross
879
+ Sections: 3. Higgs Properties,” ,arXiv:hep-ph/1307.1347.
880
+ [10] D. de Florian et al. [LHC Higgs Cross Section Working Group], “Handbook of LHC Higgs Cross
881
+ Sections: 4. Deciphering the Nature of the Higgs Sector,” ,arXiv:hep-ph/1610.07922.
882
+ [11] L. Evans et al. [Linear Collide], “The International Linear Collider Machine Staging Report 2017,”
883
+ arXiv:physics.acc-ph/1711.00568 .
884
+ [12] M. J. Boland et al. [CLIC and CLICdp], “Updated baseline for a staged Compact Linear Collider,”
885
+ CERN 004 (2016) arXiv:physics.acc-ph/1608.07537 .
886
+ [13] [CEPC
887
+ Study
888
+ Group],
889
+ “CEPC
890
+ Conceptual
891
+ Design
892
+ Report:
893
+ Volume
894
+ 1
895
+ -
896
+ Accelerator,”
897
+ arXiv:physics.acc-ph/1809.00285 .
898
+ [14] A. Abada et al. [FCC], “FCC Physics Opportunities: Future Circular Collider Conceptual Design
899
+ Report Volume 1,” Eur. Phys. J. C 79(2019) no.6, 474
900
+ [15] D. R. T. Jones and S. T. Petcov, “Heavy Higgs Bosons at LEP,” Phys. Lett. B 84 (1979) 440-444,
901
+ [16] D. A. Dicus and S. S. D. Willenbrock, “Higgs Bosons From Vector Boson Fusion in e+e−, ep and pp
902
+ Collisions,” Phys. Rev. D 32 (1985) 1642,
903
+ [17] G.
904
+ Altarelli,
905
+ B.
906
+ Mele
907
+ and
908
+ F.
909
+ Pitolli,
910
+ “Heavy
911
+ Higgs
912
+ Production
913
+ at
914
+ Future
915
+ Colliders,”
916
+ Nucl. Phys. B 287 (1987) 205-224,
917
+ [18] W. Kilian, M. Kramer and P. M. Zerwas, “Higgsstrahlung and W W fusion in e+ e- collisions,”
918
+ Phys. Lett. B 373 (1996) 135-140, arXiv:hep-ph/9512355.
919
+ [19] K. i. Hikasa, “Heavy Higgs Production in e+e− and e−e− Collisions,” Phys. Lett. B 164 (1985) 385
920
+ [20] X. Mo, G. Li, M. Q. Ruan and X. C. Lou, “Physics cross sections and event generation of e+e−
921
+ annihilations at the CEPC,” Chin. Phys. C 40 (2016), no.3, 033001, arXiv:hep-ex/1505.01008.
922
+ [21] Y. Zhang, “WW fusion and Higgsstrahlung interplay in Higgs precision tests with the e-e+→νν¯h
923
+ process,” Phys. Rev. D 99 (2019), no.3, 033011, arXiv:hep-ph/9704448.
924
+ [22] A. Belyaev, N. D. Christensen and A. Pukhov, “CalcHEP 3.4 for collider physics within and beyond
925
+ the Standard Model,” Comput. Phys. Commun. 184 (2013) 1729-1769, arXiv:hep-ph/1207.6082.
926
+ [23] A. Pukhov, “CalcHEP 2.3: MSSM, structure functions, event generation, batchs, and generation of
927
+ matrix elements for other packages,” arXiv:hep-ph/0412191.
928
+ 9
929
+
930
+ [24] M. Skrzypek and S. Jadach, “Exact and approximate solutions for the electron nonsinglet structure
931
+ function in QED,” Z. Phys. C 49 (1991) 557-584,
932
+ [25] A. Pukhov, E. Boos, M. Dubinin, V. Edneral, V. Ilyin, D. Kovalenko, A. Kryukov, V. Savrin,
933
+ S. Shichanin and A. Semenov, “CompHEP: A Package for evaluation of Feynman diagrams and
934
+ integration over multiparticle phase space,” arXiv:hep-ph/9908288.
935
+ [26] W. Kilian, M. Kramer and P. M. Zerwas, “Higgsstrahlung and W W fusion in e+ e- collisions,”
936
+ Phys. Lett. B 373 (1996) 135-140, arXiv:hep-ph/9512355.
937
+ [27] A. M. Sirunyan et al. [CMS], “Identification of heavy-flavour jets with the CMS detector in pp
938
+ collisions at 13 TeV,” JINST 13 (2018) no.05, P05011, arXiv:physics.ins-det/1712.07158.
939
+ [28] A. Djouadi, J. Kalinowski and M. Spira, “HDECAY: A Program for Higgs boson decays in the
940
+ standard model and its supersymmetric extension,” Comput. Phys. Commun. 108 (1998) 59-74,
941
+ arXiv:hep-ph/9704448.
942
+ [29] M.
943
+ Spira,
944
+ “Higgs
945
+ Boson
946
+ Production
947
+ and
948
+ Decay
949
+ at
950
+ Hadron
951
+ Colliders,”
952
+ Prog. Part. Nucl. Phys. 95 (2017) 98-159, arXiv:hep-ph/1612.07651.
953
+ [30] A. Djouadi, “The Anatomy of electro-weak symmetry breaking. I: The Higgs boson in the standard
954
+ model,” Phys. Rept. 457 (2008) 1-216, arXiv:hep-ph/0503172.
955
+ [31] S.
956
+ Dawson,
957
+ C.
958
+ Englert
959
+ and
960
+ T.
961
+ Plehn,
962
+ “Higgs
963
+ Physics:
964
+ It
965
+ ain’t
966
+ over
967
+ till
968
+ it’s
969
+ over,”
970
+ Phys. Rept. 816 (2019) 1-85, [arXiv:1808.01324 [hep-ph]].
971
+ [32] G. Cowan, K. Cranmer, E. Gross and O. Vitells, “Asymptotic formulae for likelihood-based tests of
972
+ new physics,” Eur. Phys. J. C 71 (2011) 1554, arXiv:1007.1727 [physics.data-an].
973
+ 10
974
+
ENFRT4oBgHgl3EQfAze2/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
JNFRT4oBgHgl3EQfCTcy/content/tmp_files/2301.13468v1.pdf.txt ADDED
@@ -0,0 +1,593 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Complete identification of spin-wave eigenmodes excited by parametric pumping in YIG microdisks
2
+ T. Srivastava*,1, ∗ H. Merbouche*,2, † I. Ngouagnia Yemeli,1 N. Beaulieu,3 J. Ben Youssef,3 M.
3
+ Mu˜noz,4 P. Che,5 P. Bortolotti,5 V. Cros,5 O. Klein,6 S. Sangiao,7 J. M. De Teresa,7 S. O.
4
+ Demokritov,2 V. E. Demidov,2 A. Anane,5 C. Serpico,8 M. d’Aquino,8 and G. de Loubens1, ‡
5
+ 1SPEC, CEA, CNRS, Universit´e Paris-Saclay, Gif-sur-Yvette, France
6
+ 2Institute for Applied Physics, University of Muenster, Germany
7
+ 3LabSTICC, CNRS, Universit´e de Bretagne Occidentale, Brest, France
8
+ 4Instituto de Tecnolog´ıas F´ısicas y de la Informaci´on (CSIC), Madrid, Spain
9
+ 5Unit´e Mixte de Physique, CNRS, Thales, Universit´e Paris-Saclay, Palaiseau, France
10
+ 6Universit´e Grenoble Alpes, CEA, CNRS, Grenoble INP, Spintec, Grenoble, France
11
+ 7Instituto de Nanociencia y Materiales de Arag´on (INMA) and Laboratorio de
12
+ Microscop´ıas Avanzadas (LMA), Universidad de Zaragoza, Zaragoza, Spain
13
+ 8Department of Electrical Engineering and ICT, University of Naples Federico II, Italy
14
+ We present the parametric excitation of spin-wave modes in YIG microdisks via parallel pumping. Their
15
+ spectroscopy is performed using magnetic resonance force microscopy (MRFM), while their spatial profiles
16
+ are determined by micro-focus Brillouin light scattering (BLS). We observe that almost all the fundamental
17
+ eigenmodes of an in-plane magnetized YIG microdisk, calculated using a micromagnetic eigenmode solver,
18
+ can be excited using the parallel pumping scheme, as opposed to the transverse one. The comparison between
19
+ the MRFM and BLS data on one side, and the simulations on the other side, provides the complete spectro-
20
+ scopic labeling of over 40 parametrically excited modes. Our findings could be promising for spin-wave-based
21
+ computation schemes, in which the amplitudes of a large number of spin-wave modes have to be controlled.
22
+ I.
23
+ INTRODUCTION
24
+ Novel proposals for spin-wave-based computing schemes
25
+ necessitate the generation and control of multiple spin-wave
26
+ (SW) modes1–5. The most standard way to excite SW modes
27
+ in a magnetic microstructure is by direct inductive coupling.
28
+ There, the quasi-uniform microwave field, produced on the
29
+ magnetic volume by an rf antenna, couples to the transverse
30
+ dynamical component of the magnetization associated with
31
+ the SW mode, with a maximal efficiency when the applied
32
+ rf frequency coincides with the eigenfrequency of the mode.
33
+ However, this method is not adapted to excite modes with anti-
34
+ symmetric spatial profiles, as their overlap integral with the
35
+ excitation field is zero6, nor short-wavelength modes, as their
36
+ excitation efficiency quickly decreases with their wavevector.
37
+ Yet, these two categories of modes make up a significant part
38
+ of the SW k-space. In order to excite a large number of modes
39
+ irrespective of their spatial profiles, parametric parallel pump-
40
+ ing, which does not suffer from these limitations, becomes the
41
+ ideal choice7. In this case, the microwave magnetic field cre-
42
+ ated by the rf antenna is aligned parallel to the static field. As
43
+ a result, it does not couple to the SW modes directly. Instead,
44
+ it interacts with the dynamic component of magnetization os-
45
+ cillating at 2ω in the static field direction, which arises due to
46
+ the elliptical trajectory of magnetization precession at ω. An
47
+ rf field at 2ω can therefore excite SW modes at ω. A quantum
48
+ mechanical picture of this process is a photon generating two
49
+ magnons of opposite momenta at half its frequency8. Since
50
+ this is a nonlinear process, SWs are excited only if the am-
51
+ plitude of the excitation field exceeds a parametric threshold,
52
+ which depends on the mode relaxation, and on the mode ellip-
53
+ ticity. The threshold power is lower for lower relaxation rates
54
+ and higher ellipticities.
55
+ Parallel pumping has been employed to generate SW modes
56
+ in extended films9–13 and micro- and nano-waveguides14,15
57
+ of yttrium iron garnet (YIG), as well as in magnetic
58
+ nanocontacts16, magnetic tunnel junctions17, and micro- and
59
+ nano-dots of Permalloy18–20. It has also been used for SW
60
+ amplification21. All these studies have been limited to a hand-
61
+ ful number of modes.
62
+ The excitation and identification of
63
+ many modes in an adequate system would pave the way to-
64
+ wards simultaneous control and manipulation of a large num-
65
+ ber of SW modes for different applications in magnonics.
66
+ In this study, we present the excitation and identification of
67
+ multiple SW modes in YIG microdisks via parametric pump-
68
+ ing. The scheme of the experiments is shown in Fig. 1. The
69
+ SW modes are excited in YIG disks of diameters 1 µm, 3 µm
70
+ and 5 µm through an integrated rf antenna and detected us-
71
+ ing a magnetic resonance force microscope (MRFM). Their
72
+ spatial profiles can also be recorded using micro-focus Bril-
73
+ louin light scattering spectroscopy (µ-BLS). We observe that
74
+ almost all the SW eigenmodes are accessible by parametric
75
+ pumping. As expected, these eigenmodes become fewer in
76
+ number as the size of the disk decreases. For the 3 µm disk,
77
+ we label over 40 eigenmodes by comparing its MRFM para-
78
+ metric spectroscopy to micromagnetic simulations, and con-
79
+ firm the identification of as many as 10 of them through their
80
+ profiles thanks to µ-BLS. Our results could be instrumental in
81
+ designing basic units for unconventional computing schemes
82
+ like neuromorphic computing using hyperconnected popula-
83
+ tions of a large number of eigen-excitations in a single mi-
84
+ crostructure.
85
+ II.
86
+ RESULTS
87
+ A.
88
+ Sample
89
+ We use 50 nm thick YIG grown on 0.5 mm thick GGG
90
+ substrate by liquid phase epitaxy22.
91
+ The characteristics of
92
+ arXiv:2301.13468v1 [physics.app-ph] 31 Jan 2023
93
+
94
+ 2
95
+ FIG. 1. Schematics of the experimental setup. Parallel pump-
96
+ ing of a YIG microdisk using an rf antenna deposited on top. The
97
+ spectroscopy of the parametrically excited modes is achieved using
98
+ a magnetic resonance force microscope (MRFM) positioned above
99
+ the sample. Their spatial profiles are measured by micro-focus Bril-
100
+ louin light scattering (µ-BLS) using a separate experimental setup,
101
+ the laser beam being focused to the bottom of the sample, through
102
+ the transparent GGG substrate.
103
+ the extended film are measured by standard magnetometry
104
+ and broadband FMR techniques.
105
+ These yield a saturation
106
+ magnetization Ms = 140.7 kA/m, a gyromagnetic ratio γ =
107
+ 28.28 GHz/T, a Gilbert damping parameter α = 7.5 × 10−5,
108
+ and a weak inhomogeneous broadening of the FMR linewidth,
109
+ found to be 0.1 mT. These parameters are typical of the YIG
110
+ material; the exchange constant, which has not been specifi-
111
+ cally determined on this film, is assumed to be A = 3.7 pJ/m, a
112
+ standard value from literature23. The YIG layer was patterned
113
+ into disks of diameters 1 µm, 3 µm and 5 µm using e-beam
114
+ lithography. A 220 nm thick Ti/Au antenna, of width equal to
115
+ 8 µm, was then deposited on top of the disks. Injecting an rf
116
+ current in the antenna generates an rf in-plane magnetic field
117
+ that is orthogonal to the long axis of the antenna.
118
+ B.
119
+ Parallel pumping spectroscopy
120
+ The SW mode spectroscopy is done using MRFM. It em-
121
+ ploys a very soft cantilever, at the end of which a submicronic
122
+ magnetic spherical probe made of cobalt is attached24, to me-
123
+ chanically detect the magnetization dynamics in the sample
124
+ placed underneath25. When SWs are excited in the sample
125
+ by the microwave field, the (static) longitudinal component of
126
+ magnetization is reduced and so is the dipolar force on the
127
+ MRFM probe, resulting in a displacement of the cantilever
128
+ beam, which is detected optically. The rf excitation applied
129
+ to the sample via the antenna is modulated at the mechanical
130
+ resonance frequency of the cantilever to improve the quality
131
+ factor and the signal-to-noise ratio.
132
+ In these measurements, the dc magnetic field is applied in-
133
+ plane at an angle of 45° with respect to the direction of the rf
134
+ magnetic field, as displayed in Fig. 1. Therefore the rf field ex-
135
+ citation has both a transverse and a parallel component relative
136
+ to the magnetization direction. The parallel pumped SW spec-
137
+ trum is studied for different-sized disks as a function of the
138
+ applied microwave power. Figure 2 shows the results of the
139
+ MRFM parametric spectroscopy performed at a constant mi-
140
+ crowave frequency of 4 GHz for the three disks (color-coded
141
+ intensity maps), together with the corresponding transverse
142
+ excitation spectra measured at fixed frequency of 2 GHz and
143
+ power of −5 dBm (continuous white curves). Only a few SW
144
+ modes are detected in the latter regime. In contrast, we ob-
145
+ serve that a large number of modes can be excited by parallel
146
+ pumping at 4 GHz for all the disks, in the range of applied dc
147
+ field corresponding to the direct excitation of modes at 2 GHz,
148
+ because parametrically excited modes are generated at half the
149
+ pumping frequency. As expected, this occurs only above a
150
+ minimum power level, that ranges from about −4 dBm for the
151
+ 5 µm disk to −2 dBm for the 1 µm disk. The fact that the para-
152
+ metric threshold increases and that the density of the excited
153
+ modes decreases as the lateral size decreases can be explained
154
+ by geometrical confinement effects, as reported earlier20.
155
+ In the following, we will mainly focus on the 3 µm disk
156
+ where the SW modes are quite abundant but at the same time
157
+ discernible (not too closely spaced). We perform similar mea-
158
+ surements on this disk, this time fixing the value of the dc field
159
+ to 27 mT, and scanning the parallel pumping frequency as a
160
+ function of the microwave power. Fig. 3b shows the intensity
161
+ map of the parametrically excited modes in these conditions,
162
+ as a function of half the pumping frequency fp/2 and the rf
163
+ power P, varied along the horizontal and vertical axes, respec-
164
+ tively. We note that the threshold power increases with the
165
+ frequency in a non-monotonic way, which can be explained
166
+ as follows. The threshold excitation field of each mode can
167
+ indeed be computed as the ratio between the relaxation rate
168
+ ωr(k) to a coupling coefficient V(k), that is related to the mode
169
+ ellipticity7: the more elliptical a mode is, the larger its V(k)
170
+ and the lower will its threshold be. Both the terms depend
171
+ non-monotonously on the wavevector k and on the mode fre-
172
+ quency. However, on a wide range, when k increases, so does
173
+ the mode frequency and its relaxation rate, while its ellipticity
174
+ and its coupling V(k) tends to decrease7,21. This leads to the
175
+ clear but not monotonous increase of the experimental thresh-
176
+ old power with frequency seen in Fig. 3b.
177
+ C.
178
+ Simulations
179
+ In order to identify these parametrically excited modes, mi-
180
+ cromagnetic simulations using the eigenmode solver imple-
181
+ mented in the micromagnetic code MaGICo26 have been per-
182
+ formed to calculate the SW spectrum. The magnetic ground
183
+ state is first computed for the specific geometry and applied
184
+ magnetic field. Once the magnetic ground state is known,
185
+ the equation describing magnetization dynamics, the Landau-
186
+ Lifshitz-Gilbert equation, is linearized around the ground state
187
+ and small-amplitude spatial profiles of the modes are com-
188
+
189
+ G
190
+ rf antenna
191
+ GGG3
192
+ FIG. 2. MRFM parametric spectroscopy. Intensity maps of the parametrically excited modes in the field-power coordinates excited by the
193
+ microwave field of frequency 4 GHz, measured by MRFM on the 5 µm (a), 3 µm (b) and 1 µm (c) diameter YIG disks. In each panel, the
194
+ continuous white curve corresponds to the direct excitation spectrum at the frequency of 2 GHz. The rf pumping field hrf is at 45° from the dc
195
+ field H.
196
+ puted. This problem can be formulated as a generalized eigen-
197
+ value problem as described in ref.27.
198
+ The solution of the
199
+ eigenvalue problem allows to the determination of the SW
200
+ spectrum of the magnetic sample under investigation. Here,
201
+ the geometry of the body, a 50 nm thick disk of 3 µm in di-
202
+ ameter, was discretized using 300 × 300 × 5 cubic cells (mesh
203
+ size of 10 × 10 × 10 nm3), and the values of the magnetic pa-
204
+ rameters used in the simulation were those determined exper-
205
+ imentally. As in the experimental case, the applied field lies
206
+ in the plane of the disk and is set to 27 mT. The implemen-
207
+ tation of suitable matrix-free large-scale methods described
208
+ in ref.28 allowed the calculation of hundreds of eigenmodes
209
+ for such an extended structure (353440 computational cells,
210
+ eigenvalue problem size 706880 × 706880) in a few hours.
211
+ Figure 3a displays the computed spatial profiles of the first
212
+ 100 eigenmodes. The 10 lowest frequency modes (first row)
213
+ correspond to edge modes, where the precession of the mag-
214
+ netization is strongly confined at the boundaries of the disk,
215
+ in the (horizontal) direction of the applied dc field due to the
216
+ demagnetizing field29,30. The following modes correspond to
217
+ standing SW modes, which can be labelled by the number of
218
+ precession lobes in the horizontal (nx) and vertical (ny) direc-
219
+ tions. For instance, mode 20 (second row, last column) can be
220
+ labelled by nx = 2 and ny = 1, i.e., it is the (2,1) mode. Mode
221
+ 40 (fourth row, last column) is the (11,3) mode. The most uni-
222
+ form mode, usually referred as the FMR mode, is mode 29, or
223
+ mode (1,1).
224
+ Figure 3b presents the comparison between the experimen-
225
+ tal spectroscopy and the computed eigenfrequencies of modes
226
+ 11 to 70, shown as red ticks on top of the intensity map of
227
+ the parametrically excited modes. We observe a good agree-
228
+ ment between the computed mode frequencies and the exper-
229
+ imental mode frequencies (at half-pumping frequencies fp/2)
230
+ observed at the bottom of the parametric instability regions
231
+ (elongated yellow-green triangles extending downwards on
232
+ the intensity map). From this comparison, it is possible to
233
+ state that almost all, if not all SW eigenmodes, can be para-
234
+ metrically excited, irrespective of their spatial profile. Due to
235
+ the high density of modes in the investigated frequency range,
236
+ we will only focus on a few modes, to emphasize the good
237
+ agreement noted above. The lowest-lying computed modes in
238
+ Fig. 3b are the pair of modes 11 and 12 with respective fre-
239
+ quencies 1.938 and 1.9383 GHz, which correspond rather well
240
+ to the measured parametric instability region with a threshold
241
+ power of 2 dBm at around 1.95 GHz. The small disagree-
242
+ ment of 10 MHz between the computed and measured fre-
243
+ quencies is not unexpected, since these modes belong to the
244
+ category of edge modes, whose characteristics are very sen-
245
+ sitive to imperfections at the periphery of the disk30,31, which
246
+ are not taken into account in the simulations. If we move to
247
+ the next parametrically excited modes, which have the low-
248
+ est power threshold and have frequencies around 1.975 GHz,
249
+ the comparison with computed frequencies shows that they
250
+ correspond to two pairs of modes: modes 13 and 14 with re-
251
+ spective frequencies 1.973 and 1.9731 GHz, and modes 15
252
+ and 16, at 1.9796 and 1.9809 GHz. The next excited modes
253
+ in the experimental spectroscopy map are at around 2 GHz,
254
+ and they correspond to mode 17 at 1.998 GHz and mode 18
255
+ at 2.001 GHz. As a matter of fact, a detailed inspection of the
256
+ data shows that indeed, the parametric instability region has
257
+ two nearby minima with frequencies equally spaced around
258
+ 2 GHz. This good agreement between experimental and com-
259
+ puted mode frequencies continues over the full range of inves-
260
+ tigated frequencies. We note that among the 60 modes whose
261
+ frequencies have been plotted in ig. 3b, only 44 modes have
262
+ discernible frequencies and spatial profiles, a few of them be-
263
+ ing pairs of modes with very similar characteristics (e.g., pairs
264
+ of modes 11 and 12, 13 and 14, 15 and 16, 21 and 22, etc.).
265
+ D.
266
+ Spatial profiles with µ-BLS
267
+ To push further the comparison between computed SW
268
+ modes and experiments, it is possible to take advantage of
269
+ µ-BLS, to map the spatial profiles of dynamic magnetization
270
+ in micro-structures32. A probing laser light (λ = 473 nm and
271
+ Plaser = 0.1 mW) is focused into a diffraction-limited spot on
272
+ the surface of a similar 3 µm YIG disk (Fig. 1) and the mod-
273
+
274
+ a
275
+ C
276
+ 10.0
277
+ 10.0
278
+ 10.0
279
+ 7.5
280
+ 7.5
281
+ 7.5
282
+ 5.0 -
283
+ 5.0
284
+ 5.0
285
+ (dBm)
286
+ 2.5
287
+ (dBm)
288
+ 2.5
289
+ (dBm)
290
+ 2.5
291
+ 0.0 -
292
+ 0.0
293
+ 0.0
294
+ P
295
+ P
296
+ P
297
+ -2.5 -
298
+ 2.5
299
+ 2.5
300
+ -5.0
301
+ 5.0
302
+ 5.0
303
+ 7.5
304
+ 5
305
+ wn
306
+ 7.5
307
+ μm
308
+ 7.5
309
+ 1 μm
310
+ 10.0-
311
+ -10.0-
312
+ 10.0
313
+ 10
314
+ 15
315
+ 20
316
+ 25
317
+ 30
318
+ 35
319
+ 10
320
+ 15
321
+ 20
322
+ 25
323
+ 30
324
+ 35
325
+ 10
326
+ 15
327
+ 20
328
+ 25
329
+ 30
330
+ 35
331
+ μoH (mT)
332
+ μoH (mT)
333
+ μoH (mT)4
334
+ FIG. 3. Computed spin-wave eigenmodes. (a) Computed spatial
335
+ profiles of the 100 lowest frequency modes of the 3 µm diameter YIG
336
+ disk, in-plane magnetized by a field of 27 mT. The color code refers
337
+ to the oscillation amplitude of the local magnetization, from blue
338
+ (minimum) to red (maximum). (b) Comparison between parametric
339
+ spectroscopy MRFM data (color-coded intensity map) and computed
340
+ eigenfrequencies (red vertical ticks) of modes 11 to 70 (surrounded
341
+ by the red rectangle in panel (a)).
342
+ ulation of this probing light by the magnetization oscillations
343
+ is analysed using a high-contrast optical spectrometer. The
344
+ obtained signal – the BLS intensity – is proportional to the
345
+ intensity of the magnetic oscillations at a given frequency. In
346
+ this BLS measurement, the in-plane bias field is set at 30 mT.
347
+ To compare the experimental mode profiles with the computed
348
+ mode profiles, the micromagnetic simulations have therefore
349
+ been repeated at 30 mT as well. To avoid nonlinear distor-
350
+ tions of the mode profiles, known to occur when the mode
351
+ amplitude increases too much, the BLS mapping of the mode
352
+ profiles is performed at microwave power only slightly above
353
+ threshold. By sweeping the laser spot position across the disk,
354
+ a dozen of different modes are imaged, Fig. 4 presents the
355
+ comparison between the experimental and computed profiles
356
+ of 10 modes. Overall, the measured profiles are in good agree-
357
+ ment with the computed ones, taking into account the exper-
358
+ imental spatial resolution (≃ 250 nm) and the long duration
359
+ of these measurements, which are subjected to experimental
360
+ drifts. Similarly to the analysis performed in Fig. 3b, we ob-
361
+ serve that the mode frequencies obtained by BLS correspond
362
+ very well to the computed mode frequencies, with a mismatch
363
+ that remains under 13 MHz for all modes. In particular, we
364
+ observe well defined modes up to nx = 7 and ny = 3, which
365
+ validates the agreement between experiment and simulations
366
+ for a large number of modes.
367
+ III.
368
+ CONCLUSION
369
+ Thanks to the comparison between parametric spectroscopy
370
+ and mode imaging respectively performed by MRFM and
371
+ BLS on one side, and micromagnetic simulations on the other
372
+ side, we have successfully excited, detected and identified a
373
+ large number (> 40) of SW eigenmodes in a 3 µm YIG disk,
374
+ where the mode density is large due to the large lateral dimen-
375
+ sions. The computed spatial profiles provide a direct way to
376
+ label those modes, using the numbers of precession nodes in
377
+ the directions parallel (nx) and transverse (ny) to the applied
378
+ magnetic field. This study opens up the possibility to per-
379
+ form experiments where many parametric modes are simulta-
380
+ neously excited while using the normal mode approach33,34 to
381
+ understand and harness the complex dynamics in the modal
382
+ space of confined magnetic structures.
383
+ ACKNOWLEDGEMENTS
384
+ This work was supported by the Horizon2020 Research
385
+ Framework Programme of the European Commission under
386
+ grant no. 899646 (k-NET). It is also supported by a pub-
387
+ lic grant overseen by the Agence Nationale de la Recherche
388
+ as part of the “Investissements d’Avenir” program (Labex
389
+ NanoSaclay, reference: ANR-10-LABX-0035).
390
+ I.N.Y. ac-
391
+ knowledges support from the ANR grant no. ANR-18-CE24-
392
+ 0021 (Maestro).
393
+
394
+ 0983GH2
395
+ 2.1275GHzf.
396
+ n=2.1381GH
397
+ Q0000
398
+ 2.1493 GH
399
+ .1892GHzf
400
+ .1992GHz
401
+ 2583GHz
402
+ 4GHz
403
+ 2GHzfa.2.3457GH2
404
+ .3505GHz
405
+ 3519 GHz fgs =2.3557 GHz fa4
406
+ 9 GHz
407
+ 2.3774GHz fag-2.392GHzfgo-2.3949GHz5
408
+ FIG. 4. BLS imaging of mode profiles. The central graph displays the BLS detected frequencies at 30 mT for 10 modes of the 3 µm disk
409
+ (blue lines) and the corresponding computed frequencies of eigenmodes (red line). These frequencies are matched (dotted dark lines) by
410
+ associating the mode profiles measured in the experiment (above the graph) to the ones computed in the simulation (below). The experimental
411
+ and simulated mode frequencies (in GHz) and their difference (in MHz) are given in the table.
412
+ ∗ titiksha.srivastava@cea.fr
413
+ † hugo.merbouche@uni-muenster.de
414
+ ‡ gregoire.deloubens@cea.fr
415
+ 1 T. Br¨acher and P. Pirro, “An analog magnon adder for all-
416
+ magnonic neurons,” J. Appl. Phys. 124, 152119 (2018).
417
+ 2 R. Nakane, G. Tanaka, and A. Hirose, “Reservoir computing with
418
+ spin waves excited in a garnet film,” IEEE Access 6, 4462–4469
419
+ (2018).
420
+ 3 Tyler W. Hughes, Ian A. D. Williamson, Momchil Minkov, and
421
+ Shanhui Fan, “Wave physics as an analog recurrent neural net-
422
+ work,” Science Advances 5 (2019), 10.1126/sciadv.aay6946.
423
+ 4 ´Ad´am Papp, Wolfgang Porod,
424
+ and Gyorgy Csaba, “Nanoscale
425
+ neural network using non-linear spin-wave interference,” Nature
426
+ Commun. 12, 1–8 (2021).
427
+ 5 Lukas K¨orber, Christopher Heins, Tobias Hula, Joo-Von Kim,
428
+ Helmut Schultheiss, J¨urgen Fassbender, and Katrin Schultheiss,
429
+ “Pattern recognition with a magnon-scattering reservoir,” arXiv
430
+ preprint arXiv:2211.02328 (2022), 10.48550/arXiv.2211.02328.
431
+ 6 V. V. Naletov, G. de Loubens, G. Albuquerque, S. Borlenghi,
432
+ V. Cros, G. Faini, J. Grollier, H. Hurdequint, N. Locatelli,
433
+ B. Pigeau, A. N. Slavin, V. S. Tiberkevich, C. Ulysse, T. Valet,
434
+ and O. Klein, “Identification and selection rules of the spin-wave
435
+ eigenmodes in a normally magnetized nanopillar,” Phys. Rev. B
436
+ 84, 224423 (2011).
437
+ 7 A. G. Gurevich and G. A. Melkov, Magnetization Oscillations and
438
+ Waves (CRC Press, 1996).
439
+ 8 R. M. White and M. Sparks, “Ferromagnetic Relaxation. III. The-
440
+ ory of instabilities,” Phys. Rev. 130, 632 (1963).
441
+ 9 H. Kurebayashi, O. Dzyapko, V. E. Demidov, D. Fang, A. J.
442
+ Ferguson, and S. O. Demokritov, “Spin pumping by parametri-
443
+ cally excited short-wavelength spin waves,” Appl. Phys. Lett. 99,
444
+ 162502 (2011).
445
+ 10 C. W. Sandweg, Y. Kajiwara, A. V. Chumak, A. A. Serga, V. I.
446
+ Vasyuchka, M. B. Jungfleisch, E. Saitoh,
447
+ and B. Hillebrands,
448
+ “Spin pumping by parametrically excited exchange magnons,”
449
+ Phys. Rev. Lett. 106, 216601 (2011).
450
+ 11 A. A. Serga, C. W. Sandweg, V. I. Vasyuchka, M. B. Jungfleisch,
451
+ B. Hillebrands, A. Kreisel, P. Kopietz,
452
+ and M. P. Kostylev,
453
+ “Brillouin light scattering spectroscopy of parametrically excited
454
+ dipole-exchange magnons,” Phys. Rev. B 86, 134403 (2012).
455
+ 12 C. Hahn, G. de Loubens, M. Viret, O. Klein, V. V. Naletov, and
456
+ J. Ben Youssef, “Detection of microwave spin pumping using the
457
+ inverse spin hall effect,” Phys. Rev. Lett. 111, 217204 (2013).
458
+ 13 V. Lauer, D. A. Bozhko, T. Br ˜A¤cher, P. Pirro, V. I. Vasyuchka,
459
+ A. A. Serga, M. B. Jungfleisch, M. Agrawal, Yu. V. Kobljanskyj,
460
+ G. A. Melkov, C. Dubs, B. Hillebrands, and A. V. Chumak, “Spin-
461
+ transfer torque based damping control of parametrically excited
462
+ spin waves in a magnetic insulator,” Appl. Phys. Lett. 108, 012402
463
+ (2016).
464
+ 14 Morteza Mohseni, Martin Kewenig, Roman Verba, Qi Wang,
465
+ Michael Schneider, Bj¨orn Heinz, Felix Kohl, Carsten Dubs, Bert
466
+ L¨agel, Alexander A. Serga, Burkard Hillebrands, Andrii V. Chu-
467
+ mak, and Philipp Pirro, “Parametric generation of propagating
468
+ spin waves in ultrathin yttrium iron garnet waveguides,” Phys. Sta-
469
+ tus Solidi RRL 14, 2000011 (2020).
470
+ 15 Bj¨orn Heinz, Morteza Mohseni, Akira Lentfert, Roman Verba,
471
+ Michael Schneider, Bert L¨agel, Khrystyna Levchenko, Thomas
472
+ Br¨acher, Carsten Dubs, Andrii V. Chumak,
473
+ and Philipp Pirro,
474
+ “Parametric generation of spin waves in nanoscaled magnonic
475
+ conduits,” Phys. Rev. B 105, 144424 (2022).
476
+ 16 Sergei Urazhdin, Vasil Tiberkevich, and Andrei Slavin, “Paramet-
477
+ ric excitation of a magnetic nanocontact by a microwave field,”
478
+ Phys. Rev. Lett. 105, 237204 (2010).
479
+ 17 Yu-Jin Chen, Han Kyu Lee, Roman Verba, Jordan A. Katine, Igor
480
+ Barsukov, Vasil Tiberkevich, John Q. Xiao, Andrei N. Slavin, and
481
+
482
+ Profile
483
+ 00
484
+ (experiment)
485
+ 2.10
486
+ 2.15
487
+ Frequency,GHz
488
+ 2.20
489
+ Profile
490
+ 00.00
491
+ (simulation)
492
+ fexp (GHz)
493
+ 2.098
494
+ 2.124
495
+ 2.141
496
+ 2.147
497
+ 2.162
498
+ 2.173
499
+ 2.192
500
+ 2.226
501
+ 2.236
502
+ 2.253
503
+ fsimu (GHz)
504
+ 2.093
505
+ 2.117
506
+ 2.128
507
+ 2.145
508
+ 2.149
509
+ 2.173
510
+ 2.184
511
+ 2.217
512
+ 2.238
513
+ 2.252
514
+ fexp - fsimu
515
+ 5
516
+ 7
517
+ 13
518
+ 2
519
+ 13
520
+ 0
521
+ 8
522
+ 9
523
+ -2
524
+ 1
525
+ (MHz)6
526
+ Ilya N. Krivorotov, “Parametric resonance of magnetization ex-
527
+ cited by electric field,” Nano Letters 17, 572–577 (2017).
528
+ 18 Henning Ulrichs, Vladislav E. Demidov, Sergej O. Demokritov,
529
+ and Sergei Urazhdin, “Parametric excitation of eigenmodes in mi-
530
+ croscopic magnetic dots,” Phys. Rev. B 84, 094401 (2011).
531
+ 19 E. R. J. Edwards, H. Ulrichs, V. E. Demidov, S. O. Demokritov,
532
+ and S. Urazhdin, “Parametric excitation of magnetization oscilla-
533
+ tions controlled by pure spin current,” Phys. Rev. B 86, 134420
534
+ (2012).
535
+ 20 Feng Guo, L. M. Belova,
536
+ and R. D. McMichael, “Parametric
537
+ pumping of precession modes in ferromagnetic nanodisks,” Phys.
538
+ Rev. B 89, 104422 (2014).
539
+ 21 T. Br¨acher, P. Pirro, and B. Hillebrands, “Parallel pumping for
540
+ magnon spintronics: Amplification and manipulation of magnon
541
+ spin currents on the micron-scale,” Physics Reports 699, 1–34
542
+ (2017).
543
+ 22 N. Beaulieu, N. Kervarec, N. Thiery, O. Klein, V. Naletov, H. Hur-
544
+ dequint, G. de Loubens, J. Ben Youssef, and N. Vukadinovic,
545
+ “Temperature dependence of magnetic properties of a ultrathin
546
+ yttrium-iron garnet film grown by liquid phase epitaxy: Effect of
547
+ a pt overlayer,” IEEE Magnetics Letters 9, 1–5 (2018).
548
+ 23 Stefan Klingler, A V Chumak, Tim Mewes, Behrouz Khodadadi,
549
+ Claudia Mewes, Carsten Dubs, Oleksii Surzhenko, Burkard Hille-
550
+ brands, and Andr´es Conca, “Measurements of the exchange stiff-
551
+ ness of yig films using broadband ferromagnetic resonance tech-
552
+ niques,” J. Phys. D: Appl. Phys. 48, 015001 (2015).
553
+ 24 Soraya Sangiao, C´esar Mag´en, Darius Mofakhami, Gr´egoire
554
+ de Loubens, and Jos´e Maria De Teresa, “Magnetic properties of
555
+ optimized cobalt nanospheres grown by focused electron beam
556
+ induced deposition (febid) on cantilever tips,” Beilstein J. Nan-
557
+ otechnol. 8, 2106–2115 (2017).
558
+ 25 O. Klein, G. de Loubens, V. V. Naletov, F. Boust, T. Guillet,
559
+ H. Hurdequint, A. Leksikov, A. N. Slavin, V. S. Tiberkevich, and
560
+ N. Vukadinovic, “Ferromagnetic resonance force spectroscopy
561
+ of individual submicron-size samples,” Phys. Rev. B 78, 144410
562
+ (2008).
563
+ 26 http://wpage.unina.it/mdaquino/index file/MaGICo.html.
564
+ 27 Massimiliano d’Aquino, Claudio Serpico, Giovanni Miano, and
565
+ Carlo Forestiere, “A novel formulation for the numerical com-
566
+ putation of magnetization modes in complex micromagnetic sys-
567
+ tems,” J. Comput. Phys. 228, 6130–6149 (2009).
568
+ 28 Massimiliano d’Aquino and Riccardo Hertel, “Micromagnetic
569
+ frequency-domain simulation methods for magnonic systems,” J.
570
+ Appl. Phys. 133, 033902 (2023).
571
+ 29 J. Jersch, V. E. Demidov, H. Fuchs, K. Rott, P. Krzysteczko,
572
+ J. M¨unchenberger, G. Reiss, and S. O. Demokritov, “Mapping of
573
+ localized spin-wave excitations by near-field brillouin light scat-
574
+ tering,” Appl. Phys. Lett. 97, 152502 (2010).
575
+ 30 Feng Guo, L. M. Belova, and R. D. McMichael, “Spectroscopy
576
+ and imaging of edge modes in permalloy nanodisks,” Phys. Rev.
577
+ Lett. 110, 017601 (2013).
578
+ 31 H. T. Nembach, Justin M. Shaw, T. J. Silva, W. L. Johnson, S. A.
579
+ Kim, R. D. McMichael,
580
+ and P. Kabos, “Effects of shape dis-
581
+ tortions and imperfections on mode frequencies and collective
582
+ linewidths in nanomagnets,” Phys. Rev. B 83, 094427 (2011).
583
+ 32 Vladislav E. Demidov and Sergej O. Demokritov, “Magnonic
584
+ waveguides studied by microfocus brillouin light scattering,”
585
+ IEEE Trans. Magn. 51, 1–15 (2015).
586
+ 33 S. Perna, F. Bruckner, C. Serpico, D. Suess, and M. d’Aquino,
587
+ “Computational micromagnetics based on normal modes: Bridg-
588
+ ing the gap between macrospin and full spatial discretization,” J.
589
+ Magn. Magn. Mater. 546, 168683 (2022).
590
+ 34 S. Perna, F. Bruckner, C. Serpico, D. Suess, and M. d’Aquino,
591
+ “Normal modes description of nonlinear ferromagnetic resonance
592
+ for magnetic nanodots,” AIP Adv. 12, 035244 (2022).
593
+
JNFRT4oBgHgl3EQfCTcy/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
MtAyT4oBgHgl3EQf6vrQ/content/tmp_files/2301.00828v1.pdf.txt ADDED
@@ -0,0 +1,1347 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MNRAS 000, 1–13 (2020)
2
+ Preprint 4 January 2023
3
+ Compiled using MNRAS LATEX style file v3.0
4
+ From dark matter halos to pre-stellar cores: High resolution follow-up of
5
+ cosmological Lyman-Werner simulations.
6
+ Lewis R. Prole,1★ Anna T. P. Schauer,2 Paul C. Clark,1 Simon C. O. Glover,3 Felix D. Priestley,1 Ralf S. Klessen,3,4
7
+ 1Cardiff University School of Physics and Astronomy
8
+ 2Department of Astronomy, The University of Texas at Austin, Austin, TX 78712, USA
9
+ 3Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik, Albert-Ueberle-Straße 2, D-69120 Heidelberg, Germany
10
+ 4Universität Heidelberg, Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Im Neuenheimer Feld 205, D-69120 Heidelberg, Germany
11
+ Accepted XXX. Received YYY; in original form ZZZ
12
+ ABSTRACT
13
+ Molecular hydrogen allows cooling in primordial gas, facilitating its collapse into Population III stars within primordial halos.
14
+ Lyman-Werner (LW) radiation from these stars can escape the halo and delay further star formation by destroying H2 in other
15
+ halos. As cosmological simulations show that increasing the background LW field strength increases the average halo mass
16
+ required for star formation, we perform follow-up simulations of selected halos to investigate the knock-on effects this has on
17
+ the Population III IMF. We follow 5 halos for each of the 𝐽21 = 0, 0.01 and 0.1 LW field strengths, resolving the pre-stellar core
18
+ density of 10−6 g cm−3 (1018 cm−3) before inserting sink particles and following the fragmentation behaviour for hundreds of
19
+ years further. We find that the mass accreted onto sinks by the end of the simulations is proportional to the mass within the
20
+ ∼ 10−2 pc molecular core, which is not correlated to the initial mass of the halo. As such, the IMF shows little dependence on
21
+ the LW strength. As the range of background LW field strengths tested here covers the most likely values from literature, we
22
+ conclude that the IMF for so-called Pop III.2 stars is not significantly different from the initial population of Pop III.1 stars. The
23
+ primordial IMF therefore likely remains unchanged until the formation of the next generation of Population II stars.
24
+ Key words: stars: Population III – dark ages, reionization, first stars – hydrodynamics – stars: luminosity function, mass function
25
+ – software: simulations
26
+ 1 INTRODUCTION
27
+ This first stars are able to form because pristine baryonic gas can
28
+ collapse within the gravitational potential well of dark matter (DM)
29
+ halos (Couchman & Rees 1986; Haiman et al. 1996a; Tegmark et al.
30
+ 1997), heating it to ∼ 5000 K and facilitating the formation of H2
31
+ (Bromm et al. 2002). H2 primarily forms via the radiative association
32
+ reaction forming H−
33
+ H + e− → H− + 𝛾,
34
+ (1)
35
+ followed by the fast associative detachment reaction forming H2
36
+ H− + H → H2 + e−.
37
+ (2)
38
+ Radiative cooling from the molecular hydrogen renders the gas grav-
39
+ itationally unstable, which allows it to decouple from the DM and
40
+ collapse to form the first stars, known as Population III (Pop III)
41
+ stars. The necessity of H2 renders any process of H2 destruction as a
42
+ mechanism to delay or prevent Pop III star formation.
43
+ While so-called Pop III.1 stars form from purely cosmological
44
+ initial conditions, the radiation they produce affects Pop III.2 stars
45
+ that form in its presence. As the masses of Pop III stars are predicted
46
+ to be larger than present-day counterparts (due to the lack of cooling
47
+ from dust and metals), they are expected to emit large amounts of
48
+ ★ E-mail: Prolel@cardiff.ac.uk
49
+ ionizing radiation (e.g. Schaerer 2002). Ionizing photons above the
50
+ Lyman limit (13.6 eV) create H ii regions around the stars up to the
51
+ boundary of their Strömgren spheres (Whalen et al. 2004; Kitayama
52
+ et al. 2004; Alvarez et al. 2006; Abel et al. 2007; Yoshida et al.
53
+ 2007a; Jaura et al. 2022) while photons below the Lyman limit are
54
+ free to escape their Strömgren sphere. Lyman-Werner (LW) photons
55
+ between 11.2 and 13.6 eV can dissociate H2 via the two-step Solomon
56
+ process (Field et al. 1966; Stecher & Williams 1967)
57
+ H2 + 𝛾 → H∗
58
+ 2 → 2H,
59
+ (3)
60
+ where H∗
61
+ 2 represents an electronically excited state of H2. Photons
62
+ with energy above 0.76 eV can also photodissociate H− via
63
+ H− + 𝛾 → H + e−,
64
+ (4)
65
+ reducing the H− abundance and hence the rate at which H2 can
66
+ form via reaction 2 (e.g. Chuzhoy et al. 2007). This stellar feedback
67
+ provides a potential obstacle for Pop III.2 stars to overcome during
68
+ formation. Investigations into the effects of these far UV fields typ-
69
+ ically categorise the field strength by the intensity in the LW band
70
+ 𝐽21, in units of 10−21 erg s−1 cm−2 Hz−1 sr−1.
71
+ Calculations by Haiman et al. (1997) found that before the Ström-
72
+ gren spheres of Pop III stars overlap, the UV background below the
73
+ ionization threshold was able to penetrate large clouds and suppress
74
+ their H2 abundance. They also found that the flux necessary for H2
75
+ photodissociation is several orders of magnitude smaller than the flux
76
+ © 2020 The Authors
77
+ arXiv:2301.00828v1 [astro-ph.GA] 2 Jan 2023
78
+
79
+ 2
80
+ L. R. Prole
81
+ needed to reionize the universe. Haiman et al. (2000) showed that
82
+ this photodissociation of H2 suppresses further Pop III star formation
83
+ inside small halos and delays reionization until larger halos form.
84
+ Collapse is not impossible without sufficient H2 for cooling.
85
+ Omukai (2001) showed that if the LW field is sufficient to keep a
86
+ halo free of molecular hydrogen, the gas can nevertheless collapse
87
+ via atomic hydrogen line cooling if the halo has a virial temperature
88
+ 𝑇vir > 8000 K. The collapse occurs almost isothermally, possibly
89
+ resulting in the formation of a direct collapse black hole (DCBH)
90
+ (e.g. Bromm & Loeb 2003; Spaans & Silk 2006; Latif et al. 2013), a
91
+ possible progenitor of the supermassive black holes observed at high
92
+ redshifts (e.g. Mortlock et al. 2011; Matsuoka et al. 2019). However,
93
+ for a T = 105 K blackbody spectrum expected from Pop III stars, a
94
+ field strength of 𝐽21 ∼ 104 is required to keep the gas atomic during
95
+ the collapse (Glover 2015; Agarwal & Khochfar 2015; Agarwal et al.
96
+ 2016; Sugimura et al. 2014), while the average exposure is expected
97
+ to be 𝐽21 < 0.1 at 𝑧 ∼ 15 (Ahn et al. 2009; Trenti & Stiavelli 2009;
98
+ Wise et al. 2012; Agarwal et al. 2012; Skinner & Wise 2020). Dijk-
99
+ stra et al. (2008) showed that only a fraction of 10−8 − 10−6 of DM
100
+ halos with virial temperatures > 104 K have a close luminous neigh-
101
+ bour within < 10 kpc, and are exposed to an LW flux 𝐽21 > 103.
102
+ The occurrence of atomically cooled halos is therefore expected to
103
+ be rare.
104
+ Studies have shown that values of 𝐽21 orders of magnitude lower
105
+ than the critical intensity required to completely suppress H2 cooling
106
+ in massive halos can still drastically affect halo collapse. Typically,
107
+ the critical mass for efficient molecular hydrogen cooling and sub-
108
+ sequent star formation increases with increasing 𝐽21 (e.g. Machacek
109
+ et al. 2001; Yoshida et al. 2003; O’Shea & Norman 2008; Vis-
110
+ bal et al. 2014; Schauer et al. 2021). Cosmological simulations by
111
+ Yoshida et al. (2003) found gas cooling was suppressed for 𝐽21 = 0.1,
112
+ leading them to predict that star formation would not occur in halos
113
+ with 𝑇vir < 8000 K for LW field strengths greater than this. Con-
114
+ versely, O’Shea & Norman (2008) found that for field strengths as
115
+ high as 𝐽21 = 1, H2 cooling leads to collapse despite the depressed
116
+ core molecular hydrogen fractions. They also noted that higher LW
117
+ background fluxes lead to higher accretion rates. High resolution
118
+ cosmological simulations by Schauer et al. (2021) (hereafter AS21)
119
+ examined the impact of different values of the LW field strength on
120
+ a large sample of minihalos. They showed that both Mav, the aver-
121
+ age minihalo mass required for efficient H2 cooling (i.e. the mass
122
+ above which more than 50% of minihalos of that mass can cool), and
123
+ Mmin, the minimum minihalo mass required for efficient cooling, in-
124
+ creased with increasing 𝐽21. An increase in the critical halo mass for
125
+ star formation with increasing 𝐽21 was also found by Kulkarni et al.
126
+ (2021), although they find a significant effect only for 𝐽21 > 1. In
127
+ contrast, cosmological simulations by Skinner & Wise (2020) found
128
+ no relationship between the LW intensity and host halo mass.
129
+ The true average 𝐽21 intensity is expected to vary with redshift.
130
+ Hirano et al. (2015) followed the formation and evolution of 1540 star-
131
+ forming gas clouds. They found that in their models, the characteristic
132
+ mass of Pop III stars shifted to lower masses with decreasing redshift
133
+ due to the radiative feedback of previous generations of stars. For
134
+ 𝑧 > 20, half of the star-forming gas clouds were exposed to intense
135
+ FUV radiation, with an average exposure of 𝐽21 ∼ 0.07. Due to
136
+ smaller stellar masses and the expanding distance between stars, the
137
+ FUV background became weaker at lower redshifts. For 15 < 𝑧 < 25,
138
+ almost all the clouds had nonzero intensity 𝐽21 > 0.01. The average
139
+ LW intensity in Skinner & Wise (2020) increased stochastically from
140
+ 10−3 at 𝑧 ∼ 25 to 10 at 𝑧 ∼ 10. For redshifts above ∼12, 𝐽21 remained
141
+ > 0.1.
142
+ Self-shielding is a process that occurs when large column den-
143
+ sity of molecular hydrogen protects the inner regions against pho-
144
+ todissociation because one photon can only photodissociate one H2
145
+ molecule. This self-shielding allows further H2 production and H2
146
+ cooling (Shang et al. 2010; Agarwal et al. 2014; Regan et al. 2014;
147
+ Hartwig et al. 2015a). The large nonequilibrium abundance of elec-
148
+ trons in gas cooling from above T > 104 K also boosts H2 formation
149
+ (Oh & Haiman 2002). Early attempts to model self shielding (e.g.
150
+ Shang et al. 2010) multiplied the intensity in the LW band by a self-
151
+ shielding factor given by Draine & Bertoldi (1996). Wolcott-Green
152
+ et al. (2011) showed that this method underestimated the numerically
153
+ calculated self-shielding rate by more than an order of magnitude in
154
+ low-density regions, by overestimating shielding by a large factor at
155
+ temperatures above a few hundred kelvin. They modified the method
156
+ of Draine & Bertoldi by estimating the shielding factor based on
157
+ the Sobolev length, using local properties of the gas. This modifica-
158
+ tion was computationally inexpensive and used in many subsequent
159
+ investigations into the aforementioned critical intensity required to
160
+ form atomic halos, typically producing values an order of magnitude
161
+ lower than those using the original Draine & Bertoldi shielding (e.g.
162
+ Glover 2015; Agarwal & Khochfar 2015; Agarwal et al. 2016). Clark
163
+ et al. (2012) improved on this method further with their introduction
164
+ of the TreeCol algorithm, which calculates maps of the column den-
165
+ sity distribution seen by each computational element in a simulation
166
+ in a computationally efficient fashion with the help of an oct-tree.
167
+ Hartwig et al. (2015b) took this approach further by accounting for
168
+ the relative velocities between different computational elements. This
169
+ Doppler-shifts the spectral lines, reducing the effectiveness of self-
170
+ shielding (since molecules shifted by more than the linewidth do not
171
+ contribute to the effective column density).
172
+ In addition to a background LW field, primordial star formation is
173
+ complicated further by streaming velocities between the the gas and
174
+ DM. Prior to recombination, baryons were tightly coupled to photons.
175
+ As DM does not experience Thomson scattering, there should have
176
+ been a relative velocity between the DM and baryons (e.g. Ma &
177
+ Bertschinger 1995). At recombination, the relative velocity was ∼ 30
178
+ km s−1 and was coherent over several comoving Mpc. Recombination
179
+ resulted in a drop in the sound speed to ∼ 6 km s−1 as the gas
180
+ transitioned from plasma to a neutral state, meaning the relative
181
+ velocities were highly supersonic. Tseliakhovich & Hirata (2010)
182
+ showed that the presence of these large-scale streaming velocities
183
+ suppresses the abundance of the first bound objects by advecting
184
+ small-scale perturbations near the baryonic Jeans scale. Moving-
185
+ mesh calculations by Greif et al. (2011) found that the additional
186
+ momentum and energy from the streaming velocities reduces the gas
187
+ fractions and central densities of halos, increasing the typical virial
188
+ mass required for efficient cooling by a factor of three. They also
189
+ noted that the turbulent velocity dispersion increased in the presence
190
+ of streaming velocities. The simulations of AS21 found that the
191
+ increase in the average and minimum halo mass from increasing
192
+ streaming velocities is additive on top of the effect of a LW field,
193
+ with streaming velocities having the larger impact of the two.
194
+ While it was initally believed that Pop III stars formed in isolation
195
+ (Haiman et al. 1996b) and were massive (Abel et al. 2002; Bromm
196
+ et al. 2002), more recent studies show that primordial gas fragments
197
+ to give rise to a larger populations of lower mass stars (Clark et al.
198
+ 2011; Smith et al. 2011; Greif et al. 2012; Stacy & Bromm 2013;
199
+ Machida & Doi 2013; Stacy et al. 2014; Susa 2019; Wollenberg
200
+ et al. 2020). In Prole et al. (2022a) (hereafter LP22), we used high
201
+ resolution simulations of idealised, purely hydrodynamical Pop III
202
+ star formation to show that a number of cores are ejected from the
203
+ system with masses capable of surviving until the present day. As
204
+ small-scale primordial magnetic fields do not appear to prevent disc
205
+ MNRAS 000, 1–13 (2020)
206
+
207
+ Cosmological Lyman-Werner simulations.
208
+ 3
209
+ fragmentation (Prole et al. 2022b) and accretion of metals onto the
210
+ surface of these stars during their lifetime is unlikely (e.g. Johnson
211
+ & Khochfar 2011; Tanaka et al. 2017), the question is raised about
212
+ why these stars have not been found within archeological surveys
213
+ (see e.g. Beers & Christlieb 2005; Frebel & Norris 2015; Starken-
214
+ burg et al. 2017). Since most high resolution simulations of Pop III
215
+ star formation have considered only the Pop III.1 case, one possible
216
+ explanation could be that Pop III.2 star formation yields a different
217
+ IMF, i.e. that Pop III stars forming in the presence of a LW back-
218
+ ground have systematically larger masses than those forming in the
219
+ absence of a background.
220
+ In this paper, we aim to test this hypothesis by producing the
221
+ most accurate prediction of the Pop III.1 and Pop III.2 initial mass
222
+ functions (IMF) to date. We investigate how the increase in halo
223
+ masses due to increasing LW field intensity changes star formation
224
+ within them, by performing high resolution follow-up simulations
225
+ of cosmological halos drawn from the simulations of AS21. The
226
+ structure of our paper is as follows. In Section 2, we describe the
227
+ cosmological simulations of AS21, our selection criteria for the halos
228
+ chosen for follow-up simulations, the chemical model we use and our
229
+ use of sink particles. In Section 3 we review the characteristics of the
230
+ halos as they are taken from AS21, before presenting the results of the
231
+ zoom-in simulations in Section 4, where we probe the density regime
232
+ of the molecular core. In Section 5, we compare the fragmentation
233
+ behaviour once sink particles have formed and present the IMFs at
234
+ the end of the simulations. We discuss caveats in Section 6 before
235
+ concluding in Section 7.
236
+ 2 NUMERICAL METHOD
237
+ 2.1 Arepo
238
+ The simulations presented here were performed with the moving
239
+ mesh code Arepo (Springel 2010) with a primordial chemistry set-
240
+ up. Arepo combines the advantages of AMR and smoothed particle
241
+ hydrodynamics (SPH: Monaghan 1992) with a mesh made up of a
242
+ moving, unstructured, Voronoi tessellation of discrete points. Arepo
243
+ solves hyperbolic conservation laws of ideal hydrodynamics with a
244
+ finite volume approach, based on a second-order unsplit Godunov
245
+ scheme with an exact Riemann solver. Automatic and continuous
246
+ refinement overcome the challenge of structure growth associated
247
+ with AMR (e.g. Heitmann et al. 2008).
248
+ 2.2 Cosmological simulations
249
+ The cosmological simulations performed by AS21 assumed a ΛCDM
250
+ cosmology with parameters ℎ = 0.6774, Ω0 = 0.3089, Ωb =
251
+ 0.04864, ΩΛ = 0.6911, 𝑛 = 0.96 and 𝜎8 = 0.8159 as derived by
252
+ the Planck Collaboration et al. (2020). The simulations were ini-
253
+ tialised at 𝑧 = 200 with an initial DM distribution created by MUSIC
254
+ (Hahn & Abel 2011) using the transfer functions of Eisenstein &
255
+ Hu (1998) and the gas distribution initially followed the DM. The
256
+ DM was represented by 10243 particles and the gas was initially
257
+ modelled with 10243 grid cells, all contained within a box with side
258
+ length 1 ℎ−1 Mpc in comoving units. During the simulation, an ad-
259
+ ditional Jeans refinement criterion was applied: cells were refined
260
+ whenever necessary so as to ensure that the Jeans length was always
261
+ resolved with at least 16 cells. This refinement was carried out until
262
+ the gas reached a threshold density of ∼ 10−19 g cm−3. Above this
263
+ threshold density, gravitationally bound and collapsing gas was con-
264
+ verted into collisionless sink particles, as explained at greater length
265
+ in AS21. The simulations were carried out with four different values
266
+ of the baryonic streaming velocity (𝑣str = 0, 1, 2 and 3, in units of
267
+ 𝜎rms, the large-scale root mean squared value) and three different
268
+ values for the LW field strength (𝐽21 = 0, 0.01 and 0.1). In this study,
269
+ we make use of the three simulations with 𝑣str = 1𝜎rms because this
270
+ is the most representative value available, as the volume fraction of
271
+ streaming velocities peaks at 0.8𝜎rms (AS21).
272
+ 2.3 Halo selection
273
+ Given snapshots at 𝑧 = 15 from the three simulations with 𝑣str = 1
274
+ presented in AS21, we have selected 5 halos for each value of 𝐽21.
275
+ Halo positions and masses were provided by the friends-of-friends
276
+ (FoF) algorithm as described in that study. The selection criteria for
277
+ the halos was as follows:
278
+ • The halos identified by the FoF algorithm were sorted by their
279
+ mass difference with Mav, the average minihalo mass above which
280
+ minihalos become capable of cooling and forming stars. This average
281
+ mass was defined in AS21, following Schauer et al. (2019), to be the
282
+ minihalo mass above which more than 50% of minihalos can cool
283
+ and form stars.1 AS21 report Mav at a range of redshifts between
284
+ 𝑧 = 22 and 𝑧 = 14; here, we adopt their values at 𝑧 = 15. By sorting
285
+ the halos in this way, we ensure that the halos that we eventually
286
+ select will have masses close to Mav, i.e. that they are representative
287
+ of the common case at that redshift.
288
+ • We considered a halo if it contained a cell denser than 𝜌th =
289
+ 10−22 g cm−3 within a search radius Rsearch = 1 kpc in physical
290
+ units from the halo’s central coordinate. Note that checking the H2
291
+ abundance is not necessary, as collapse to this density is not possible
292
+ without a high H2 abundance outside of the atomically cooling halo
293
+ scenario.
294
+ • We check that the halo is sufficiently resolved i.e. that the 16
295
+ cells per Jeans length criteria has not decreased as the cell sizes
296
+ approach the maximum resolution of the cosmological simulations.
297
+ This process begins when the density reaches ∼ 10−20 g cm−3, so
298
+ we reject halos including a cell above this density. Note that this also
299
+ ensures that a sink particle has not yet been formed within Rsearch.
300
+ • Lastly, we removed the halo from consideration if there were
301
+ other dense objects in the vicinity by checking there were no cells
302
+ above 𝜌th within the radius Rsearch/2 < r < Rsearch.
303
+ We performed this search throughout the simulation cube until 5
304
+ suitable halos were selected for each 𝐽21 value. The selected halo
305
+ masses from each simulation are shown in Table 1. Mass-weighted
306
+ mean temperatures and H2 abundances are plotted as a function of
307
+ density for each halo in Figure 1 and radial distributions of enclosed
308
+ gas and DM along with velocity information are shown in Figure
309
+ 2. Projections of the initial density, temperature and H2 abundance
310
+ distributions are visualised in Figures 3, 4 and 5. Note that all of
311
+ these figures show the state of the halos at the point at which we
312
+ extract them from the AS21 simulations, i.e. prior to our zoom-in
313
+ calculation. Our choice of selection criteria means that the same
314
+ halos are not chosen for direct comparison between each simulation.
315
+ Rather, they are chosen to be most representative of the Universe at
316
+ the given background LW field strength. Direct comparison also has
317
+ the drawback that individual halos will collapse at different redshifts
318
+ depending on the LW field strength, whereas we exclusively select
319
+ halos that become able to form stars at 𝑧 = 15.
320
+ 1 Note that Mav is typically around a factor of three larger than 𝑀min, the
321
+ mass of the least massive minihalo with cool gas.
322
+ MNRAS 000, 1–13 (2020)
323
+
324
+ 4
325
+ L. R. Prole
326
+ 10
327
+ 2
328
+ 10
329
+ 1
330
+ 100
331
+ 101
332
+ 102
333
+ 103
334
+ n [cm
335
+ 3]
336
+ 101
337
+ 102
338
+ 103
339
+ T [K]
340
+ J21=0
341
+ 10
342
+ 2
343
+ 10
344
+ 1
345
+ 100
346
+ 101
347
+ 102
348
+ 103
349
+ n [cm
350
+ 3]
351
+ J21=0.01
352
+ 10
353
+ 2
354
+ 10
355
+ 1
356
+ 100
357
+ 101
358
+ 102
359
+ 103
360
+ n [cm
361
+ 3]
362
+ J21=0.1
363
+ halo 1
364
+ halo 2
365
+ halo 3
366
+ halo 4
367
+ halo 5
368
+ 10
369
+ 26 10
370
+ 25 10
371
+ 24 10
372
+ 23 10
373
+ 22 10
374
+ 21
375
+ [g cm
376
+ 3]
377
+ 10
378
+ 12
379
+ 10
380
+ 10
381
+ 10
382
+ 8
383
+ 10
384
+ 6
385
+ 10
386
+ 4
387
+ H2
388
+ 10
389
+ 26 10
390
+ 25 10
391
+ 24 10
392
+ 23 10
393
+ 22 10
394
+ 21
395
+ [g cm
396
+ 3]
397
+ 10
398
+ 26 10
399
+ 25 10
400
+ 24 10
401
+ 23 10
402
+ 22 10
403
+ 21
404
+ [g cm
405
+ 3]
406
+ Figure 1. Summaries of the initial conditions for our simulations. Mass-weighted density profiles of temperature and H2 abundances.
407
+ 102
408
+ 104
409
+ 106
410
+ Mgas [M
411
+ ]
412
+ J21=0
413
+ J21=0.01
414
+ J21=0.1
415
+ halo 1
416
+ halo 2
417
+ halo 3
418
+ halo 4
419
+ halo 5
420
+ 103
421
+ 105
422
+ 107
423
+ MDM [M
424
+ ]
425
+ 0.25
426
+ 0.50
427
+ 0.75
428
+ 1.00
429
+ v /v
430
+ 100
431
+ 101
432
+ 102
433
+ 103
434
+ R [pc]
435
+ 100
436
+ 101
437
+ v/cs
438
+ 100
439
+ 101
440
+ 102
441
+ 103
442
+ R [pc]
443
+ 100
444
+ 101
445
+ 102
446
+ 103
447
+ R [pc]
448
+ Figure 2. Summaries of the initial conditions for our simulations. Cumulative radial profiles of gas and DM mass and mass-weighted radial profiles of the ratio
449
+ of rotational to total velocity (note the dotted line represents the value above which rotational component dominates the velocity) and ratio of velocity to sound
450
+ speed i.e. Mach number.
451
+ 2.4 Chemistry
452
+ Collapse of primordial gas is closely linked to the chemistry involved
453
+ (e.g. Glover et al. 2006; Yoshida et al. 2007b; Glover & Abel 2008;
454
+ Turk et al. 2011). We therefore use a fully time-dependent chemical
455
+ network to model the gas. We use the same chemistry and cooling
456
+ as Wollenberg et al. (2020), which is described in the appendix of
457
+ Clark et al. (2011), but with updated rate coefficients, as summarised
458
+ in Schauer et al. (2017). The network has 45 chemical reactions
459
+ to model primordial gas made up of 12 species: H, H+, H−, H+
460
+ 2 ,
461
+ H2, He, He+, He++, D, D+, HD and free electrons. Included in the
462
+ network are: H2 cooling (including an approximate treatment of the
463
+ effects of opacity), collisionally-induced H2 emission, HD cooling,
464
+ ionisation and recombination, heating and cooling from changes in
465
+ the chemical make-up of the gas and from shocks, compression and
466
+ expansion of the gas, three-body H2 formation and heating from
467
+ accretion luminosity. For reasons of computational efficiency, the
468
+ MNRAS 000, 1–13 (2020)
469
+
470
+ Cosmological Lyman-Werner simulations.
471
+ 5
472
+ 500 pc
473
+ Figure 3. Column-weighted density projections of the 2 kpc region around the 5 cosmological halos for each 𝐽21 value, taken from Schauer et al. (2021),
474
+ which serve as the initial conditions of the high resolution follow-up simulations presented in this work. The halo numbers to compare with upcoming plots are
475
+ indicated at the top of the figure.
476
+ 500 pc
477
+ Figure 4. Column-weighted temperature projections of the 2 kpc region around the 5 cosmological halos for each 𝐽21 value, taken from Schauer et al. (2021),
478
+ which serve as the initial conditions of the high resolution follow-up simulations presented in this work.
479
+ network switches off tracking of deuterium chemistry2 at densities
480
+ above 10−16 g cm−3, instead assuming that the ratio of HD to H2 at
481
+ these densities is given by the cosmological D to H ratio of 2.6×10−5.
482
+ The adiabatic index of the gas is computed as a function of chemical
483
+ composition and temperature with the Arepo HLLD Riemann solver.
484
+ As in Schauer et al. (2021), we use a radiation field expected from
485
+ massive Pop III stars. We use a blackbody spectrum at temperature
486
+ 2 Note that HD cooling continues to be included in the model.
487
+ 105 K for energies below 13.6 eV. Above this energy, the flux is
488
+ expected to drop due to absorption in the intergalactic medium, so
489
+ we set the value of the radiation field to 0 above 13.6 eV. We model
490
+ the effects of H2 self-shielding using the TreeCol algorithm (Clark
491
+ et al. 2012).
492
+ MNRAS 000, 1–13 (2020)
493
+
494
+ 6
495
+ L. R. Prole
496
+ 500 pc
497
+ Figure 5. Column-weighted H2 abundance projections of the 2 kpc region around the 5 cosmological halos for each 𝐽21 value, taken from Schauer et al. (2021),
498
+ which serve as the initial conditions of the high resolution follow-up simulations presented in this work.
499
+ Table 1. Total mass (DM and gas) as detected by the FoF algorithm within
500
+ the selected halos from Schauer et al. (2021).
501
+ 𝐽21=0
502
+ 𝐽21=0.01
503
+ 𝐽21=0.1
504
+ halo
505
+ Mtot [106 M⊙]
506
+ 1
507
+ 3.50
508
+ 4.76
509
+ 8.70
510
+ 2
511
+ 3.65
512
+ 4.84
513
+ 8.30
514
+ 3
515
+ 2.81
516
+ 4.30
517
+ 6.70
518
+ 4
519
+ 2.76
520
+ 4.02
521
+ 4.15
522
+ 5
523
+ 2.96
524
+ 3.91
525
+ 3.90
526
+ 2.5 Sink particles
527
+ If the local Jeans length falls below the minimum cell size of the
528
+ mesh, artificial collapse occurs. We insert sink particles into the sim-
529
+ ulations at a threshold density to prevent artificial collapse when the
530
+ simulation reaches its maximum refinement level. Our sink particle
531
+ implementation was introduced in Wollenberg et al. (2020) and Tress
532
+ et al. (2020). A cell is converted into a sink particle if it satisfies three
533
+ criteria: 1) it reaches a threshold density; 2) it is sufficiently far away
534
+ from pre-existing sink particles so that their accretion radii do not
535
+ overlap; 3) the gas occupying the region inside the sink is gravitation-
536
+ ally bound and collapsing. Likewise, for the sink particle to accrete
537
+ mass from surrounding cells it must meet two criteria: 1) the cell lies
538
+ within the accretion radius; 2) it is gravitationally bound to the sink
539
+ particle. A sink particle can accrete up to 90% of a cell’s mass, above
540
+ which the cell is removed and the total cell mass is transferred to the
541
+ sink.
542
+ Increasing the threshold density for sink particle creation dras-
543
+ tically increases the degree of fragmentation, reducing the masses
544
+ of subsequent secondary protostars (LP22). Ideally, sink particles
545
+ would be introduced when the gas becomes adiabatic at ∼ 10−4 g
546
+ cm−3. This is currently computationally challenging. However, the
547
+ zero metallicity protostellar model of Machida & Nakamura (2015)
548
+ suggests that stellar feedback kicks in to halt collapse at ∼ 10−6 g
549
+ cm−3 (1018 cm−3), so we choose this as our sink particle creation
550
+ density.
551
+ The initial accretion radius of a sink particle 𝑅sink is chosen to
552
+ be the Jeans length 𝜆J corresponding to the sink particle creation
553
+ density and corresponding temperature. At 10−6 g cm−3, we take
554
+ the temperature value from LP22 of 4460 K to give a Jeans length
555
+ of 1.67 × 1012 cm. We set the minimum cell length to fit 8 cells
556
+ across the sink particle in compliance with the Truelove condition,
557
+ by setting a minimum cell volume 𝑉min = (𝑅sink/4)3. The minimum
558
+ gravitational softening length for cells and sink particles 𝐿soft is set
559
+ to 𝑅sink/4.
560
+ The increasing radius of a Pop III protostar is dependent on both
561
+ its mass and accretion rate (e.g. Omukai & Palla 2003; Hosokawa
562
+ & Omukai 2009; Hosokawa et al. 2012; Hirano et al. 2014). We
563
+ allow the sink particle accretion radius 𝑅sink to vary throughout its
564
+ accretion history, using on-the-fly calculations of the stellar radius
565
+ using an approximate analytic formulae originally derrived by Stahler
566
+ et al. (1986):
567
+ 𝑅sink = 26𝑅⊙
568
+ � 𝑀
569
+ 𝑀⊙
570
+ �0.27 �
571
+ �𝑀
572
+ 10−3𝑀⊙yr−1
573
+ �0.41
574
+ ,
575
+ (5)
576
+ where we smooth �𝑀 by taking the average over the time taken to
577
+ accrete 0.1M⊙.
578
+ The sink particle treatment also includes the accretion luminosity
579
+ feedback from Smith et al. (2011), as implemented in Arepo by
580
+ Wollenberg et al. (2020). Stellar internal luminosity is not included
581
+ in this work because the Kelvin-Helmholtz times of the protostars
582
+ formed in our simulations are much longer than the period simulated,
583
+ meaning that none will have yet begun nuclear burning. We also
584
+ include the treatment of sink particle mergers used in LP22.
585
+ 3 INITIAL HALO CHARACTERISTICS
586
+ Figures 1 and 2 show some of the characteristics of the halos at the
587
+ time when they were selected for zoom-in follow-up simulations.
588
+ MNRAS 000, 1–13 (2020)
589
+
590
+ Cosmological Lyman-Werner simulations.
591
+ 7
592
+ The top panel of Figure 1 shows that the gas has already been shock
593
+ heated as it fell into the gravitational potential well of the DM halo,
594
+ allowing it to produce the necessary H2 to cool and collapse to higher
595
+ densities. The bottom panel shows the destructive impact of the LW
596
+ radiation field on the H2 abundance in the outer regions of the halo.
597
+ The H2 abundance in the central regions reaches the same peak value
598
+ of 4 × 10−4 due to self-shielding from the radiation field, however
599
+ this happens at increasingly higher densities for larger 𝐽21 values.
600
+ Figure 2 shows that within ∼ 100 pc, the gas velocity is dominated
601
+ by its rotational component. The gas surrounding the halos is highly
602
+ supersonic due to large-scale streaming, which cascades down to
603
+ become subsonic at scales smaller than ∼ 10 pc, although we show
604
+ in Section 4 that the velocities do not remain subsonic once the gas
605
+ collapses further. From the density projections of Figure 3, halo sizes
606
+ range from ∼ 100−200 pc, their shapes range from roughly spherical
607
+ to structurally complex, and each is embedded within a network of
608
+ filamentary structures. Figure 4 shows that these webs of filaments
609
+ are a few hundred kelvin hotter than the ∼ 10 K gas that surrounds
610
+ them, with the central halo reaching ∼ 1000 − 2000 K. Figure 5
611
+ shows how the background H2 abundance is reduced drastically by
612
+ the LW background, with significant levels of H2 only appearing in
613
+ the central regions of the halo.
614
+ 4 FURTHER COLLAPSE
615
+ We continue the collapse down to densities of 10−6 g cm−3 before
616
+ inserting sink particles. Figure 6 shows temperature and chemical
617
+ abundance profiles as a function of density, just before the formation
618
+ of the first sink particle. At densities above 10−15 g cm−3, three-body
619
+ H2 formation raises its abundance to over 0.1 within the molecular
620
+ core. The abundance of free electrons falls off with density as the gas
621
+ recombines. Figure 7 shows radial profiles of density and velocity.
622
+ The rotational component of the gas velocity remains dominated by
623
+ rotation only down to scales of ∼ 1 pc, below which infall begins to
624
+ dominate. The velocities remain supersonic down to scales of 10−6
625
+ pc (0.2 au). Halos experiencing a LW field are capable of achieving
626
+ higher velocities, likely due to the higher halo mass.
627
+ The left hand side of Figure 8 compares the temperature, density,
628
+ accretion timescale and H2 abundance radial profiles for the differ-
629
+ ent 𝐽21 values just before the formation of the first sink particle.
630
+ Stronger LW fields require higher mass halos for star formation, as
631
+ their stronger gravitational potential is capable of shock-heating the
632
+ gas to higher temperatures, which increases the H2 formation rate
633
+ enough to build up a high column density of H2 in order to self-shield
634
+ the collapsing regions. Despite larger halo masses and shock-heating
635
+ to higher initial temperatures, the density profile of the gas remains
636
+ unaffected. Following Abel et al. (2002) and O’Shea & Norman
637
+ (2008), we have also estimated the accretion timescale (𝑡acc = M/ �M)
638
+ where
639
+ �M = 4𝜋𝑅2𝜌(𝑅)𝑣rad(𝑅)
640
+ (6)
641
+ is our estimate of the mass inflow rate at radius 𝑅 and 𝜌(𝑅) and
642
+ 𝑣rad(𝑅) are the mass-weighted density and radial velocity within
643
+ shells at radius 𝑅. For 𝑡acc > 104 yr, there is very little difference
644
+ between the runs, suggesting that the accretion rate at early times is
645
+ not influenced by the LW field. For larger 𝑡acc, we do see a difference
646
+ between different runs, but this manifests as an increased scatter in
647
+ 𝑡acc at a given 𝑅 rather than any systematic dependence on the LW
648
+ field strength.
649
+ The right hand side of Figure 8 shows the gas as it transitions into a
650
+ fully molecular state within the inner ∼ 10−2 pc core corresponding
651
+ to the density regime above 10−15 g cm−3. Halos illuminated gy
652
+ a LW background have higher gas kinetic energies owing to their
653
+ larger masses, which promotes a larger molecular core. However,
654
+ the increasing photodissociation rate with increasing 𝐽21 acts against
655
+ this mechanism, reducing the H2 formation rate and shrinking the
656
+ molecular core. This results in the 𝐽21 = 0.01 halos having molecular
657
+ cores that extend to larger radii than the 𝐽21 = 0.1 halos, despite both
658
+ having larger molecular cores than the 𝐽21 = 0 halos. As we only
659
+ have access to these 3 values of 𝐽21, the value where the core size is
660
+ maximised could lie anywhere between 0 < 𝐽21 < 0.1.
661
+ The importance of the molecular core is shown in Figure 9, which
662
+ shows the total mass in sink particles at the end of the simulations
663
+ as functions of the halo mass, virial temperature and mass within
664
+ different regimes of the collapse, just before the maximum density
665
+ was reached. The mass in sink particles grows almost linearly with
666
+ the mass within the inner molecular core with H2 abundances above
667
+ 10−1 as
668
+ log10(Msinks) = (0.85±0.11)log10(MH2>10−1) + (0.14±0.24). (7)
669
+ Due to competing effects between halo mass and H2 photodissoci-
670
+ ation rate, the mass in sink particles is not correlated with the total
671
+ halo mass or the subsequent mass that initially falls into its potential
672
+ well with H2 abundances > 10−4. However, we have only followed
673
+ the accretion for 300 yr, which corresponds to a free-fall time for gas
674
+ at density 10−14 g cm−3. Gas below this density will not have been
675
+ accreted within the simulation time, while gas above this density re-
676
+ sides within the molecular core (see Figure 6). It is therefore unclear
677
+ if the relationship between accretion and mass of the molecular core
678
+ would remain if the simulations ran for a longer time. If the relation-
679
+ ship does hold, we speculate that increasing the size of the streaming
680
+ velocities between gas and DM may have a greater effect on the IMF,
681
+ since this also increases halo masses without the counteracting ef-
682
+ fects of H2 dissociation (Tseliakhovich & Hirata 2010; Greif et al.
683
+ 2011; Hirano et al. 2017; Schauer et al. 2019, AS21).
684
+ 5 FRAGMENTATION AND THE IMF
685
+ The IMF of Pop III stars is determined by the fragmentation be-
686
+ haviour of the disc around the initial central object and the subse-
687
+ quent accretion onto fragments. Density projections of the inner 650
688
+ AU of the halos are shown in Figure 10, while Figure 11 shows the
689
+ evolution of the total number of sink particles formed, the total mass
690
+ in sink particles and highest mass sink particle in each halo as a
691
+ function of time. While the halos from the simulation without a LW
692
+ background typically yield less fragmentation, the overall fragmen-
693
+ tation behaviour is stochastic, as expected. The total mass accreted
694
+ onto sinks is typically higher in the halos illuminated by a LW field
695
+ due to their higher halo mass.
696
+ Figure 12 shows the IMF at a time 300 yr after the formation
697
+ of the first sink particle. The peak of the IMF positioned at ∼0.2-
698
+ 0.5 M⊙ shows little dependence on the LW strength, likely because
699
+ the positive influence of larger halo masses on the molecular core
700
+ is regulated by the increasing photodissociation rate. We also show
701
+ the evolution of the cumulative IMFs in time, which converge by the
702
+ end of the simulations for the 𝐽21=0.01 and 0.1 suites. The left side
703
+ of Figure 13 compares the combined cumulative IMFs for different
704
+ 𝐽21 values. While the high mass end of the IMFs are nearly identical
705
+ between the different 𝐽21 values, the low mass end of the IMFs show
706
+ variance due to the random and stochastic nature of ejection events
707
+ for low mass objects. Assuming these low mass objects (< 0.075M⊙)
708
+ do not go on to accrete significant mass, they will remain as brown
709
+ MNRAS 000, 1–13 (2020)
710
+
711
+ 8
712
+ L. R. Prole
713
+ 105
714
+ 108
715
+ 1011
716
+ 1014
717
+ 1017
718
+ n [cm
719
+ 3]
720
+ 103
721
+ T [K]
722
+ J21=0
723
+ 105
724
+ 108
725
+ 1011
726
+ 1014
727
+ 1017
728
+ n [cm
729
+ 3]
730
+ J21=0.01
731
+ 105
732
+ 108
733
+ 1011
734
+ 1014
735
+ 1017
736
+ n [cm
737
+ 3]
738
+ J21=0.1
739
+ halo 1
740
+ halo 2
741
+ halo 3
742
+ halo 4
743
+ halo 5
744
+ 10
745
+ 3
746
+ 10
747
+ 2
748
+ 10
749
+ 1
750
+ 100
751
+ H2
752
+ 10
753
+ 7
754
+ 10
755
+ 6
756
+ 10
757
+ 5
758
+ HD
759
+ 10
760
+ 19
761
+ 10
762
+ 16
763
+ 10
764
+ 13
765
+ 10
766
+ 10
767
+ 10
768
+ 7
769
+ 10
770
+ 4
771
+ [g cm
772
+ 3]
773
+ 10
774
+ 11
775
+ 10
776
+ 9
777
+ 10
778
+ 7
779
+ 10
780
+ 5
781
+ H +
782
+ 10
783
+ 19
784
+ 10
785
+ 16
786
+ 10
787
+ 13
788
+ 10
789
+ 10
790
+ 10
791
+ 7
792
+ 10
793
+ 4
794
+ [g cm
795
+ 3]
796
+ 10
797
+ 19
798
+ 10
799
+ 16
800
+ 10
801
+ 13
802
+ 10
803
+ 10
804
+ 10
805
+ 7
806
+ 10
807
+ 4
808
+ [g cm
809
+ 3]
810
+ Figure 6. Mass-weighted temperature, H2, HD and H+ abundances versus density at a time shortly after the formation of the first sink particle. (Note that the
811
+ HD abundance is only tracked self-consistently up to 𝜌 = 10−16 g cm−3; above this, we simply fix the HD/H2 ratio at 2.6×10−5, as explained in Section 2.4).
812
+ 10
813
+ 22
814
+ 10
815
+ 16
816
+ 10
817
+ 10
818
+ 10
819
+ 4
820
+ [g cm
821
+ 3]
822
+ J21=0
823
+ J21=0.01
824
+ J21=0.1
825
+ halo 1
826
+ halo 2
827
+ halo 3
828
+ halo 4
829
+ halo 5
830
+ 5
831
+ 10
832
+ 15
833
+ |v| [km s
834
+ 1]
835
+ 10
836
+ 5
837
+ 0
838
+ vr [km s
839
+ 1]
840
+ 0.50
841
+ 0.75
842
+ 1.00
843
+ |v /v|
844
+ 10
845
+ 7
846
+ 10
847
+ 5
848
+ 10
849
+ 3
850
+ 10
851
+ 1
852
+ 101
853
+ 103
854
+ R [pc]
855
+ 10
856
+ 1
857
+ 100
858
+ 101
859
+ |v|/cs
860
+ 10
861
+ 7
862
+ 10
863
+ 5
864
+ 10
865
+ 3
866
+ 10
867
+ 1
868
+ 101
869
+ 103
870
+ R [pc]
871
+ 10
872
+ 7
873
+ 10
874
+ 5
875
+ 10
876
+ 3
877
+ 10
878
+ 1
879
+ 101
880
+ 103
881
+ R [pc]
882
+ Figure 7. Radial distribution of cumulative gas mass and mass-weighted radial profiles of radial velocity, ratio of rotational to total velocity (note the dotted line
883
+ represents the value above which rotational component dominates the velocity) and ratio of velocity to sound speed, taken at a time shortly after the formation
884
+ of the first sink particle.
885
+ MNRAS 000, 1–13 (2020)
886
+
887
+ Cosmological Lyman-Werner simulations.
888
+ 9
889
+ Figure 8. Left: Comparison of the mass-weighted temperature, density and and H2 abundance profiles between the 𝐽21 values. Right: Zoom-in of the transition
890
+ to fully molecular core, showing the total kinetic energy within radial shells, mass weighted H2 photodissociation heating rate and H2 abundance.
891
+ 4
892
+ 6
893
+ 8
894
+ Mhalo [M
895
+ ]
896
+ 1e6
897
+ 5
898
+ 10
899
+ 15
900
+ 20
901
+ 25
902
+ 30
903
+ 35
904
+ 40
905
+ Msinks [M
906
+ ]
907
+ 2000
908
+ 3000
909
+ 4000
910
+ Tvir [K]
911
+ 50000
912
+ 100000
913
+ 150000
914
+ MH2 > 10
915
+ 4 [M
916
+ ]
917
+ J21=0
918
+ J21=0.01
919
+ J21=0.1
920
+ 10
921
+ 20
922
+ 30
923
+ 40
924
+ MH2 > 10
925
+ 1 [M
926
+ ]
927
+ M0.85
928
+ Figure 9. Total mass in sinks at the end of the simulations versus halo mass, virial temperature, mass within the halo with H2 abundance > 10−4 and mass
929
+ within the molecular core with H2 abundance > 10−1. The size of the markers is scaled with the halo mass.
930
+ dwarfs and never sustain nuclear fusion. The right side of the plot
931
+ shows the cumulative IMFs if the brown dwarfs are ignored. Here,
932
+ the IMFs fit well within each other’s regions of uncertainty, which
933
+ are the standard deviations from the cumulative IMFs of the 5 halos
934
+ individually. The overlap between the regions of uncertainty indicates
935
+ that the LW strength does not significantly affect the primordial IMF.
936
+ As the range of background LW field strengths tested here covers the
937
+ most likely values from literature, we infer that the IMF for Pop III.2
938
+ stars is not significantly different from the initial population of Pop
939
+ III.1 stars.
940
+ We also show the IMF from LP22 as a dotted line, which was
941
+ produced from idealised halos as opposed the cosmological initial
942
+ conditions. The cosmological halos produced a bi-modal distribution
943
+ with a significant population of brown dwarfs that the idealised halos
944
+ are missing. Even when ignoring the brown dwarfs, the cosmological
945
+ initial conditions have yielded distributions tending to lower mass
946
+ pre-stellar cores.
947
+ MNRAS 000, 1–13 (2020)
948
+
949
+ 10
950
+ L. R. Prole
951
+ 250 AU
952
+ Figure 10. Column-weighted density projections of the inner 650 AU of the halos at a time 300 yr after the formation of the first sink particle. Sink particles are
953
+ represented as red dots.
954
+ 0
955
+ 10
956
+ 20
957
+ 30
958
+ Nsink
959
+ J21=0
960
+ J21=0.01
961
+ J21=0.1
962
+ halo 1
963
+ halo 2
964
+ halo 3
965
+ halo 4
966
+ halo 5
967
+ 100
968
+ 101
969
+ Mtot [M
970
+ ]
971
+ 0
972
+ 100
973
+ 200
974
+ 300
975
+ t [yr]
976
+ 10
977
+ 1
978
+ 100
979
+ 101
980
+ Mmax [M
981
+ ]
982
+ 100
983
+ 200
984
+ 300
985
+ t [yr]
986
+ 100
987
+ 200
988
+ 300
989
+ t [yr]
990
+ Figure 11. Number of sink particles formed, total mass in sinks, largest mass sink particle and median mass of sink particles as a function of time.
991
+ 6 CAVEATS
992
+ Aside from the obvious uncertainties in the ΛCDM model on which
993
+ this work and the work of AS21 are based on, there are a number of
994
+ caveats to note.
995
+ The LW fields we have used in this study assume a population
996
+ of massive Pop III stars already exists. While previous studies do
997
+ suggest that Pop III stars were massive, more recent work suggests
998
+ that they may only grow to a few M⊙ (e.g. Stacy & Bromm 2013;
999
+ Wollenberg et al. 2020; Prole et al. 2022a; Jaura et al. 2022). In this
1000
+ scenario, significantly less LW radiation would be produced, however
1001
+ radiation from solar mass stars can inhibit H2 formation through the
1002
+ destruction of H−. The fields used in this study therefore represent the
1003
+ maximum effect Pop III stars can have on the the Pop III.2 stars that
1004
+ follow. Since the effects of the LW fields appear to be insignificant, it
1005
+ is likely that this result also represents the outcome for weaker fields.
1006
+ We have assumed that the pre-stellar core radius grows as Equation
1007
+ 5. This process begins immediately after sink particle formation.
1008
+ While this is predicted by stellar theory, it is unclear at what point
1009
+ the pre-stellar core would begin to expand, which may affect the
1010
+ accretion behaviour.
1011
+ MNRAS 000, 1–13 (2020)
1012
+
1013
+ Cosmological Lyman-Werner simulations.
1014
+ 11
1015
+ 0
1016
+ 1
1017
+ 2
1018
+ 3
1019
+ 4
1020
+ J21=0
1021
+ 0.5
1022
+ 1.0
1023
+ 0
1024
+ 5
1025
+ 10
1026
+ 15
1027
+ 20
1028
+ 25
1029
+ Nsink
1030
+ J21=0.01
1031
+ 0.5
1032
+ 1.0
1033
+ M/Mtot
1034
+ 10
1035
+ 4
1036
+ 10
1037
+ 3
1038
+ 10
1039
+ 2
1040
+ 10
1041
+ 1
1042
+ 100
1043
+ 101
1044
+ M [M
1045
+ ]
1046
+ 0
1047
+ 2
1048
+ 4
1049
+ 6
1050
+ 8
1051
+ J21=0.1
1052
+ 10
1053
+ 4
1054
+ 10
1055
+ 3
1056
+ 10
1057
+ 2
1058
+ 10
1059
+ 1
1060
+ 100
1061
+ 101
1062
+ M [M
1063
+ ]
1064
+ 0.0
1065
+ 0.5
1066
+ 1.0
1067
+ 10 yr
1068
+ 50 yr
1069
+ 100 yr
1070
+ 200 yr
1071
+ 300 yr
1072
+ Figure 12. Left: combined IMFs of sink particles for the different the 𝐽21 val-
1073
+ ues, Right: Cumulative IMFs of the combined sink particles for the different
1074
+ the 𝐽21 values.
1075
+ We have neglected the presence of primordial magnetic fields in
1076
+ this study. While the findings of Prole et al. (2022b) suggest that
1077
+ primordial magnetic fields make little difference to the primordial
1078
+ IMF due to their small-scale structure, the field is still active, with
1079
+ other recent studies finding that magnetic fields indeed lead to higher
1080
+ mass Pop III stars (e.g. Saad et al. 2022; Hirano & Machida 2022;
1081
+ Stacy et al. 2022).
1082
+ 7 CONCLUSIONS
1083
+ The results of cosmological simulations by AS21 show that increas-
1084
+ ing the background LW field strength increases the average halo mass
1085
+ required for star formation. These simulations ran up to a maximum
1086
+ density of 10−19 g cm−3, hence the knock-on effects on the Pop III
1087
+ IMF were unclear. In this investigation, we have performed follow-up
1088
+ simulations of 5 halos for each of the 𝐽21 = 0, 0.01 and 0.1 LW field
1089
+ strengths, resolving the pre-stellar core density of 10−6 g cm−3 before
1090
+ inserting sink particles and following the fragmentation behaviour
1091
+ for hundreds of years further. We have found that the mass accreted
1092
+ onto sinks by the end of the simulations is proportional to the mass
1093
+ within the ∼ 10−2 pc molecular core, which is not correlated to the
1094
+ initial mass of the halo. As such, the IMF shows little dependence
1095
+ on the LW field strength. We also find no clear relationship between
1096
+ the estimated accretion time of gas lying further out within the halo
1097
+ and the LW field strength, suggesting that the LW field is unlikely
1098
+ to influence the development of the IMF at later times. As the range
1099
+ of background LW field strengths tested here covers the most likely
1100
+ values from literature, we conclude that the IMF for so-called Pop
1101
+ III.2 stars is not significantly different from that of the initial popu-
1102
+ lation of Pop III.1 stars, although we cannot rule out greater effects
1103
+ in the small subset of halos that are illuminated by LW fields much
1104
+ stronger than the average value (see e.g Latif et al. 2014). In a future
1105
+ paper, we will explore the effects of increasing the streaming veloci-
1106
+ ties between the gas and dark matter on the Pop III IMF, as this has
1107
+ been shown to increase halo masses through a different mechanism.
1108
+ ACKNOWLEDGEMENTS
1109
+ This work used the DiRAC@Durham facility managed by the
1110
+ Institute for Computational Cosmology on behalf of the STFC
1111
+ DiRAC HPC Facility (www.dirac.ac.uk). The equipment was funded
1112
+ by BEIS capital funding via STFC capital grants ST/P002293/1,
1113
+ ST/R002371/1 and ST/S002502/1, Durham University and STFC
1114
+ operations grant ST/R000832/1. DiRAC is part of the National e-
1115
+ Infrastructure.
1116
+ The authors gratefully acknowledge the Gauss Centre for Super-
1117
+ computing e.V. (www.gauss-centre.eu) for supporting this project by
1118
+ providing computing time on the GCS Supercomputer SuperMUC at
1119
+ Leibniz Supercomputing Centre (www.lrz.de) under project pr53ka.
1120
+ AS was partially supported by NSF grant AST-1752913.
1121
+ RSK and SCOG acknowledge computing resources provided by
1122
+ the Ministry of Science, Research and the Arts (MWK) of the State
1123
+ of Baden-Württemberg through bwHPC and the German Research
1124
+ Foundation (DFG) through grant INST 35/1134-1 FUGG and for
1125
+ data storage at SDS@hd through grant INST 35/1314-1 FUGG.
1126
+ RSK and SCOG acknowledge financial support from DFG via the
1127
+ collaborative research center (SFB 881, Project-ID 138713538) “The
1128
+ Milky Way System” (subprojects A1, B1, B2 and B8), from the Hei-
1129
+ delberg Cluster of Excellence “STRUCTURES” in the framework
1130
+ of Germany’s Excellence Strategy (grant EXC-2181/1, Project-ID
1131
+ 390900948) and from the European Research Council (ERC) via the
1132
+ ERC Synergy Grant “ECOGAL” (grant 855130). RSK furthermore
1133
+ thanks the German Ministry for Economic Affairs and Climate Ac-
1134
+ tion for funding in the project “MAINN” (funding ID 50OO2206).
1135
+ We also acknowledge the support of the Supercomputing Wales
1136
+ project, which is part-funded by the European Regional Development
1137
+ Fund (ERDF) via Welsh Government.
1138
+ DATA AVAILABILITY
1139
+ The data underlying this article will be shared on reasonable request
1140
+ to the corresponding author.
1141
+ REFERENCES
1142
+ Abel T., Bryan G. L., Norman M. L., 2002, Science (New York, N.Y.), 295,
1143
+ 93
1144
+ Abel T., Wise J. H., Bryan G. L., 2007, The Astrophysical Journal, 659, L87
1145
+ Agarwal B., Khochfar S., 2015, Monthly Notices of the Royal Astronomical
1146
+ Society, 446, 160
1147
+ Agarwal B., Khochfar S., Johnson J. L., Neistein E., Dalla Vecchia C., Livio
1148
+ M., 2012, Monthly Notices of the Royal Astronomical Society, 425, 2854
1149
+ Agarwal B., Dalla Vecchia C., Johnson J. L., Khochfar S., Paardekooper J.-P.,
1150
+ 2014, Monthly Notices of the Royal Astronomical Society, 443, 648
1151
+ Agarwal B., Smith B., Glover S., Natarajan P., Khochfar S., 2016, Monthly
1152
+ Notices of the Royal Astronomical Society, 459, 4209
1153
+ Ahn K., Shapiro P. R., Iliev I. T., Mellema G., Pen U.-L., 2009, The Astro-
1154
+ physical Journal, 695, 1430
1155
+ Alvarez M. A., Bromm V., Shapiro P. R., 2006, The Astrophysical Journal,
1156
+ 639, 621
1157
+ Beers T. C., Christlieb N., 2005, Annual Review of Astronomy and Astro-
1158
+ physics, 43, 531
1159
+ MNRAS 000, 1–13 (2020)
1160
+
1161
+ 12
1162
+ L. R. Prole
1163
+ 10
1164
+ 4
1165
+ 10
1166
+ 3
1167
+ 10
1168
+ 2
1169
+ 10
1170
+ 1
1171
+ 100
1172
+ 101
1173
+ Msink [M
1174
+ ]
1175
+ 0.0
1176
+ 0.2
1177
+ 0.4
1178
+ 0.6
1179
+ 0.8
1180
+ 1.0
1181
+ 1.2
1182
+ M/Mtot
1183
+ 10
1184
+ 1
1185
+ 100
1186
+ 101
1187
+ Msink [M
1188
+ ]
1189
+ Msink > 0.075M
1190
+ J21=0
1191
+ J21=0.01
1192
+ J21=0.1
1193
+ Prole et al. 2022b
1194
+ Figure 13. Left: Comparison of the cumulative IMFs at 300 yr after the formation of the first sink particle. Right: Cumulative IMFs ignoring brown dwarfs
1195
+ (< 0.075M⊙).
1196
+ Bromm V., Loeb A., 2003, The Astrophysical Journal, 596, 34
1197
+ Bromm V., Coppi P. S., Larson R. B., 2002, The Astrophysical Journal, 564,
1198
+ 23
1199
+ Chuzhoy L., Kuhlen M., Shapiro P. R., 2007, The Astrophysical Journal, 665,
1200
+ L85
1201
+ Clark P. C., Glover S. C. O., Smith R. J., Greif T. H., Klessen R. S., Bromm
1202
+ V., 2011, Science, 331, 1040
1203
+ Clark P. C., Glover S. C. O., Klessen R. S., 2012, Monthly Notices of the
1204
+ Royal Astronomical Society, 420, 745
1205
+ Collaboration P., et al., 2020, Astronomy and Astrophysics, 641, A6
1206
+ Couchman H. M. P., Rees M. J., 1986, Monthly Notices of the Royal Astro-
1207
+ nomical Society, 221, 53
1208
+ Dijkstra M., Haiman Z., Mesinger A., Wyithe J. S. B., 2008, Monthly Notices
1209
+ of the Royal Astronomical Society, 391, 1961
1210
+ Draine B. T., Bertoldi F., 1996, The Astrophysical Journal, 468, 269
1211
+ Eisenstein D. J., Hu W., 1998, The Astrophysical Journal, 496, 605
1212
+ Field G. B., Somerville W. B., Dressler K., 1966, Annual Review of Astron-
1213
+ omy and Astrophysics, 4, 207
1214
+ Frebel A., Norris J. E., 2015, Annual Review of Astronomy and Astrophysics,
1215
+ 53, 631
1216
+ Glover S. C. O., 2015, Monthly Notices of the Royal Astronomical Society,
1217
+ 451, 2082
1218
+ Glover S. C. O., Abel T., 2008, Monthly Notices of the Royal Astronomical
1219
+ Society, 388, 1627
1220
+ Glover S. C., Savin D. W., Jappsen A.-K., 2006, The Astrophysical Journal,
1221
+ 640, 553
1222
+ Greif T. H., White S. D. M., Klessen R. S., Springel V., 2011, The Astrophys-
1223
+ ical Journal, 736, 147
1224
+ Greif T. H., Bromm V., Clark P. C., Glover S. C. O., Smith R. J., Klessen
1225
+ R. S., Yoshida N., Springel V., 2012, Monthly Notices of the Royal
1226
+ Astronomical Society, 424, 399
1227
+ Hahn O., Abel T., 2011, Monthly Notices of the Royal Astronomical Society,
1228
+ 415, 2101
1229
+ Haiman Z., Thoul A. A., Loeb A., 1996a, The Astrophysical Journal, 464,
1230
+ 523
1231
+ Haiman Z., Thoul A. A., Loeb A., 1996b, The Astrophysical Journal, 464,
1232
+ 523
1233
+ Haiman Z., Rees M. J., Loeb A., 1997, The Astrophysical Journal, 476, 458
1234
+ Haiman Z., Abel T., Rees M. J., 2000, The Astrophysical Journal, 534, 11
1235
+ Hartwig T., Glover S. C. O., Klessen R. S., Latif M. A., Volonteri M., 2015a,
1236
+ Monthly Notices of the Royal Astronomical Society, 452, 1233
1237
+ Hartwig T., Clark P. C., Glover S. C. O., Klessen R. S., Sasaki M., 2015b,
1238
+ The Astrophysical Journal, 799, 114
1239
+ Heitmann K., et al., 2008, Computational Science and Discovery, 1, 015003
1240
+ Hirano S., Machida M. N., 2022, The Astrophysical Journal, 935, L16
1241
+ Hirano S., Hosokawa T., Yoshida N., Umeda H., Omukai K., Chiaki G., Yorke
1242
+ H. W., 2014, The Astrophysical Journal, 781, 60
1243
+ Hirano S., Hosokawa T., Yoshida N., Omukai K., Yorke H. W., 2015, Monthly
1244
+ Notices of the Royal Astronomical Society, 448, 568
1245
+ Hirano S., Hosokawa T., Yoshida N., Kuiper R., 2017, Science, 357, 1375
1246
+ Hosokawa T., Omukai K., 2009, The Astrophysical Journal, 691, 823
1247
+ Hosokawa T., Omukai K., Yorke H. W., 2012, The Astrophysical Journal,
1248
+ 756, 93
1249
+ Jaura O., Glover S. C. O., Wollenberg K. M. J., Klessen R. S., Geen S., Haem-
1250
+ merlé L., 2022, Monthly Notices of the Royal Astronomical Society, 512,
1251
+ 116
1252
+ Johnson J. L., Khochfar S., 2011, Monthly Notices of the Royal Astronomical
1253
+ Society, 413, 1184
1254
+ Kitayama T., Yoshida N., Susa H., Umemura M., 2004, The Astrophysical
1255
+ Journal, 613, 631
1256
+ Kulkarni M., Visbal E., Bryan G. L., 2021, The Astrophysical Journal, 917,
1257
+ 40
1258
+ Latif M. A., Schleicher D. R. G., Schmidt W., Niemeyer J. C., 2013, Monthly
1259
+ Notices of the Royal Astronomical Society, 436, 2989
1260
+ Latif M. A., Schleicher D. R. G., Bovino S., Grassi T., Spaans M., 2014, The
1261
+ Astrophysical Journal, 792, 78
1262
+ Ma C.-P., Bertschinger E., 1995, The Astrophysical Journal, 455, 7
1263
+ Machacek M. E., Bryan G. L., Abel T., 2001, The Astrophysical Journal, 548,
1264
+ 509
1265
+ Machida M. N., Doi K., 2013, Monthly Notices of the Royal Astronomical
1266
+ Society, 435, 3283
1267
+ Machida M. N., Nakamura T., 2015, Monthly Notices of the Royal Astro-
1268
+ nomical Society, 448, 1405
1269
+ Matsuoka Y., et al., 2019, The Astrophysical Journal, 872, L2
1270
+ Monaghan J. J., 1992, Annual Review of Astronomy and Astrophysics, 30,
1271
+ 543
1272
+ Mortlock D. J., et al., 2011, Nature, 474, 616
1273
+ O’Shea B. W., Norman M. L., 2008, The Astrophysical Journal, 673, 14
1274
+ Oh S. P., Haiman Z., 2002, The Astrophysical Journal, 569, 558
1275
+ Omukai K., 2001, The Astrophysical Journal, 546, 635
1276
+ Omukai K., Palla F., 2003, The Astrophysical Journal, 589, 677
1277
+ Prole L. R., Clark P. C., Klessen R. S., Glover S. C. O., 2022a, Monthly
1278
+ Notices of the Royal Astronomical Society, 510, 4019
1279
+ Prole L. R., Clark P. C., Klessen R. S., Glover S. C. O., Pakmor R., 2022b,
1280
+ Monthly Notices of the Royal Astronomical Society, 516, 2223
1281
+ Regan J. A., Johansson P. H., Wise J. H., 2014, The Astrophysical Journal,
1282
+ 795, 137
1283
+ Saad C. R., Bromm V., El Eid M., 2022, Monthly Notices of the Royal
1284
+ MNRAS 000, 1–13 (2020)
1285
+
1286
+ Cosmological Lyman-Werner simulations.
1287
+ 13
1288
+ Astronomical Society, 516, 3130
1289
+ Schaerer D., 2002, Astronomy & Astrophysics, 382, 28
1290
+ Schauer A. T. P., Regan J., Glover S. C. O., Klessen R. S., 2017, Monthly
1291
+ Notices of the Royal Astronomical Society, 471, 4878
1292
+ Schauer A. T. P., Glover S. C. O., Klessen R. S., Ceverino D., 2019, Monthly
1293
+ Notices of the Royal Astronomical Society, 484, 3510
1294
+ Schauer A. T. P., Glover S. C. O., Klessen R. S., Clark P., 2021, Monthly
1295
+ Notices of the Royal Astronomical Society, 507, 1775
1296
+ Shang C., Bryan G. L., Haiman Z., 2010, Monthly Notices of the Royal
1297
+ Astronomical Society, 402, 1249
1298
+ Skinner D., Wise J. H., 2020, Monthly Notices of the Royal Astronomical
1299
+ Society, 492, 4386
1300
+ Smith R. J., Glover S. C. O., Clark P. C., Greif T., Klessen R. S., 2011,
1301
+ Monthly Notices of the Royal Astronomical Society, 414, 3633
1302
+ Spaans M., Silk J., 2006, The Astrophysical Journal, 652, 902
1303
+ Springel V., 2010, Monthly Notices of the Royal Astronomical Society, 401,
1304
+ 791
1305
+ Stacy A., Bromm V., 2013, Monthly Notices of the Royal Astronomical
1306
+ Society, 433, 1094
1307
+ Stacy A., Pawlik A. H., Bromm V., Loeb A., 2014, Monthly Notices of the
1308
+ Royal Astronomical Society, 441, 822
1309
+ Stacy A., McKee C. F., Lee A. T., Klein R. I., Li P. S., 2022, Monthly Notices
1310
+ of the Royal Astronomical Society, 511, 5042
1311
+ Stahler S., Palla F., Salpeter E., 1986, The Astrophysical Journal„ 302, 90
1312
+ Starkenburg E., et al., 2017, Monthly Notices of the Royal Astronomical
1313
+ Society, 471, 2587
1314
+ Stecher T. P., Williams D. A., 1967, The Astrophysical Journal, 149, L29
1315
+ Sugimura K., Omukai K., Inoue A. K., 2014, Monthly Notices of the Royal
1316
+ Astronomical Society, 445, 544
1317
+ Susa H., 2019, The Astrophysical Journal, 877, 99
1318
+ Tanaka S. J., Chiaki G., Tominaga N., Susa H., 2017, The Astrophysical
1319
+ Journal, 844, 137
1320
+ Tegmark M., Silk J., Rees M. J., Blanchard A., Abel T., Palla F., 1997, The
1321
+ Astrophysical Journal, 474, 1
1322
+ Trenti M., Stiavelli M., 2009, The Astrophysical Journal, 694, 879
1323
+ Tress R. G., Smith R. J., Sormani M. C., Glover S. C. O., Klessen R. S.,
1324
+ Mac Low M.-M., Clark P. C., 2020, Monthly Notices of the Royal Astro-
1325
+ nomical Society, 492, 2973
1326
+ Tseliakhovich D., Hirata C., 2010, Physical Review D, 82, 083520
1327
+ Turk M. J., Clark P., Glover S. C. O., Greif T. H., Abel T., Klessen R., Bromm
1328
+ V., 2011, Astrophys.J.726:55,2011, 726
1329
+ Visbal E., Haiman Z., Terrazas B., Bryan G. L., Barkana R., 2014, Monthly
1330
+ Notices of the Royal Astronomical Society, 445, 107
1331
+ Whalen D., Abel T., Norman M. L., 2004, The Astrophysical Journal, 610,
1332
+ 14
1333
+ Wise J. H., Abel T., Turk M. J., Norman M. L., Smith B. D., 2012, Monthly
1334
+ Notices of the Royal Astronomical Society, 427, 311
1335
+ Wolcott-Green J., Haiman Z., Bryan G. L., 2011, Monthly Notices of the
1336
+ Royal Astronomical Society, 418, 838
1337
+ Wollenberg K. M. J., Glover S. C. O., Clark P. C., Klessen R. S., 2020,
1338
+ Monthly Notices of the Royal Astronomical Society, 494, 1871
1339
+ Yoshida N., Abel T., Hernquist L., Sugiyama N., 2003, The Astrophysical
1340
+ Journal, 592, 645
1341
+ Yoshida N., Oh S. P., Kitayama T., Hernquist L., 2007a, The Astrophysical
1342
+ Journal, 663, 687
1343
+ Yoshida N., Omukai K., Hernquist L., 2007b, The Astrophysical Journal, 667,
1344
+ L117
1345
+ This paper has been typeset from a TEX/LATEX file prepared by the author.
1346
+ MNRAS 000, 1–13 (2020)
1347
+
MtAyT4oBgHgl3EQf6vrQ/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
MtFJT4oBgHgl3EQfzS0r/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4351c13dc146e6e995050b3a2d9240fda34239fa1fdf38fbcf595533bb10bc60
3
+ size 114227
O9A0T4oBgHgl3EQfC_9-/content/tmp_files/2301.01997v1.pdf.txt ADDED
@@ -0,0 +1,1322 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.01997v1 [cs.LG] 5 Jan 2023
2
+ 1
3
+ Data-Driven Inverse Reinforcement Learning for
4
+ Expert-Learner Zero-Sum Games
5
+ Wenqian Xue, Bosen Lian, Jialu Fan, Tianyou Chai, and Frank L. Lewis
6
+ Abstract—In this paper, we formulate inverse reinforcement
7
+ learning (IRL) as an expert-learner interaction whereby the
8
+ optimal performance intent of an expert or target agent is
9
+ unknown to a learner agent. The learner observes the states
10
+ and controls of the expert and hence seeks to reconstruct the
11
+ expert’s cost function intent and thus mimics the expert’s optimal
12
+ response. Next, we add non-cooperative disturbances that seek to
13
+ disrupt the learning and stability of the learner agent. This leads
14
+ to the formulation of a new interaction we call zero-sum game
15
+ IRL. We develop a framework to solve the zero-sum game IRL
16
+ problem that is a modified extension of RL policy iteration (PI)
17
+ to allow unknown expert performance intentions to be computed
18
+ and non-cooperative disturbances to be rejected. The framework
19
+ has two parts: a value function and control action update based
20
+ on an extension of PI, and a cost function update based on
21
+ standard inverse optimal control. Then, we eventually develop
22
+ an off-policy IRL algorithm that does not require knowledge
23
+ of the expert and learner agent dynamics and performs single-
24
+ loop learning. Rigorous proofs and analyses are given. Finally,
25
+ simulation experiments are presented to show the effectiveness
26
+ of the new approach.
27
+ I. INTRODUCTION
28
+ For an agent or system suffering from disturbances, its con-
29
+ trol input, as a defender, desires to complete a specified control
30
+ mission by determining control policy to reject the influences
31
+ of antagonistic input, i.e., non-cooperative disturbances that
32
+ intend to disrupt the mission. This is known as zero-sum games
33
+ or min-max problems [1], [2]. In real-world applications, agent
34
+ dynamics may be unknown. In order to make such an agent
35
+ perform in the target trajectories exhibited by a target agent
36
+ with optimal policy, optimal control theory assumes that the
37
+ performance cost function is known, and RL [3], [4] based
38
+ optimal tracking control methods [5]–[7] compute optimal
39
+ policy by observing states and control actions without knowing
40
+ the system dynamics, where a standard iterative form for RL
41
+ is known as policy iteration (PI) [3], [4], [8], [9]. However,
42
+ in real interactions, operators may not know the appropriate
43
+ specified cost functions, i.e., the weights on states and inputs.
44
+ As a result, these optimal control methods may not obtain the
45
+ expected control performance or even be used.
46
+ Wenqian Xue, Jialu Fan, Tianyou Chai are with the State Key Laboratory of
47
+ Synthetical Automation for Process Industries and International Joint Research
48
+ Laboratory of Integrated Automation, Northeastern University, Shenyang
49
+ 110819, China. (e-mail: xuewenqian23@163.com, fanjialu@gmail.com, ty-
50
+ chai@mail.neu.edu.cn).
51
+ Bosen Lian and Frank L. Lewis are with the UTA Research Insti-
52
+ tute, the University of Texas at Arlington, Texas 76118, USA. (email:
53
+ bosen.lian@mavs.uta.edu; lewis@uta.edu).
54
+ Instead of manually selecting cost function weights, many
55
+ efforts have been made on constructing cost function weights.
56
+ Inverse optimal control (IOC) and inverse RL (IRL) construct
57
+ cost function weights given system control behaviors. Some-
58
+ times they are referred to as the same thing [10]–[12], but they
59
+ may differ in structure and how they are applied [13].
60
+ Assuming a stable control system, IOC constructs a cost
61
+ function concerning which the system behavior is optimal.
62
+ The cost function is constructed in the framework of Lyapunov
63
+ stability condition for continuous-time (CT) systems [14]–[17]
64
+ and discrete-time (DT) systems [18]–[20] where [20] considers
65
+ finite horizon. Online IOC methods to determine cost function
66
+ in the infinite and finite horizon are studied in [21], [22]. IOC
67
+ is also used to verify the effectiveness of the proposed control
68
+ laws in [23], [24]. These works do not consider min-max
69
+ or zero-sum games, but [25] does. They all require system
70
+ dynamics, which cannot be applied directly to systems with
71
+ unknown dynamics.
72
+ IRL generally reconstructs reward and cost functions from
73
+ expert demonstrations of the optimal policy. It is usually
74
+ applied to apprenticeship learning and imitation learning prob-
75
+ lems of Markov decision processes (MDPs) [12], [26]–[29]
76
+ where a learner seeks to imitate the demonstrations by learning
77
+ the unknown expert’s reward function from the observed
78
+ demonstrations. IRL methods construct reward function since
79
+ reward function is a more succinct, robust, and transferable
80
+ definition for the task than the policy mapping from states to
81
+ actions. Lyapunov stability is not necessarily considered here.
82
+ IRL has also been developed for trajectory tracking and
83
+ imitation problems of differential systems in [30], [31], where
84
+ [30] uses a bilevel structure (also see [26], [27], [32]). That is,
85
+ an optimal control problem is solved repeatedly in the inner
86
+ loop. This two-loop iteration is computationally expensive. All
87
+ of these works are model-based and do not consider min-max
88
+ or zero-sum games. The work [33] makes an effort for data-
89
+ driven control by estimating model parameters before adopt-
90
+ ing the model-based IRL method. Unlike them, without the
91
+ need for model identification, our previous studies [34], [35]
92
+ propose completely model-free IRL methods that use merely
93
+ system data, but not for zero-sum games. Our work [36]
94
+ considers zero-sum games but propose an IRL method using
95
+ a two-loop iteration structure and partial system dynamics.
96
+ This paper considers an expert-learner zero-sum game, that
97
+ is, a learner agent suffering from non-cooperative disturbances
98
+ with unknown dynamics expects to mimic the behaviors of the
99
+ expert agent of optimal policy. As the solution, we propose a
100
+ new interaction called zero-sum game IRL, namely a novel
101
+ data-driven off-policy IRL algorithm for expert-learner zero-
102
+
103
+ 2
104
+ sum games of differential systems. It consists of a game
105
+ solution correction modified from the standard RL and a cost
106
+ function weight reconstruction using the standard IOC. Using
107
+ only the behavior data of the expert and learner, a learner
108
+ agent learns the unknown cost function objective and the
109
+ optimal control policy to mimic the expert’s behavior. This
110
+ algorithm does not need to know or identify system models
111
+ and performs a single-loop learning procedure without solving
112
+ optimal problems repeatedly in inner loops. Moreover, no
113
+ initial stabilizing policy is needed to start the iteration. The
114
+ properties and effectiveness of the proposed data-driven are
115
+ well-analyzed.
116
+ Notations. ∥·∥ is the Euclidean norm. In is n×n identity ma-
117
+ trix, and diag{a,b,..} is diagonal matrix with a,b,.. in diagonal
118
+ line. For a vector x = [x1, ··· , xn]T ∈ Rn, ˆx ≜ [x2
119
+ 1, 2x1x2, ···,
120
+ 2x1xn, x2
121
+ 2, ···, 2xn−1xn, x2
122
+ n]T. For a matrix A = {aij} ∈ Rm×n,
123
+ vec(A) ≜ [a11, a12, ···, a1n, a21, ···, am,n−1, amn]T.
124
+ II. IRL PROBLEM FORMULATION
125
+ We consider two dynamical agents. A target expert agent
126
+ exhibits the demonstrations optimally associated with an ex-
127
+ pert performance cost function. A learner agent attempts to
128
+ determine the unknown cost function objective of the expert
129
+ agent and mimic its behavior. The learner agent only knows
130
+ the target agent’s control actions and state behavior but does
131
+ not know its performance cost function and system dynamics.
132
+ A. Target optimal control
133
+ Consider a target expert agent
134
+ ˙xT = AxT + BuT + DdT,
135
+ (1)
136
+ where xT ∈ Rn is the target state, uT ∈ Rm is the target input
137
+ and dT ∈ Rz is the non-cooperative disturbance. Matrices A, B,
138
+ and D have appropriate dimensions. The pair (A,B) is assumed
139
+ to be controllable.
140
+ According to [2], the input of target (1) is uT = −KTxT
141
+ that minimizes the following target performance cost function
142
+ against dT
143
+ VT(xT) =
144
+ � ∞
145
+ t (xT
146
+ T QTxT + uT
147
+ TRTuT − γ2
148
+ TdT
149
+ T dT)dτ,
150
+ (2)
151
+ where QT = QT
152
+ T > 0 and RT = RT
153
+ T > 0 are weights, γT > 0 is
154
+ attenuation factor. The input uT and the worst disturbance d∗
155
+ T
156
+ are given by
157
+ uT = −KTxT = −R−1
158
+ T BTPTxT,
159
+ (3a)
160
+ d∗
161
+ T = LTxT = 1
162
+ γ2
163
+ T
164
+ DTPTxT,
165
+ (3b)
166
+ and form the Nash equilibrium
167
+ VT(xT)∗ = min
168
+ uT max
169
+ dT
170
+ � ∞
171
+ t
172
+ rTdτ = xT
173
+ TPTxT
174
+ (4)
175
+ where rT = xT
176
+ TQTxT + uT
177
+ TRTuT − γ2
178
+ TdT
179
+ T dT, and PT = PT
180
+ T > 0
181
+ satisfies the target Bellman equation
182
+ (AxT + BuT + DdT)TPTxT + xT
183
+ TPT(AxT + BuT + DdT)
184
+ + xT
185
+ TQTxT + uT
186
+ TRTuT − γ2
187
+ TdT
188
+ T dT = 0,
189
+ (5)
190
+ and the target game algebraic Riccati equation (GARE)
191
+ ATPT + PTA+ QT − PTBR−1
192
+ T BTPT + 1
193
+ γ2
194
+ T
195
+ PTDDTPT = 0.
196
+ (6)
197
+ The GARE guarantees the uniqueness of stabilizing optimal
198
+ control policy (3a) given the performance cost function (2).
199
+ B. Learner dynamics and IRL control problem
200
+ Consider a learner agent to be controlled
201
+ ˙x = Ax+ Bu + Dd,
202
+ (7)
203
+ where x ∈ Rn, u ∈ Rm, d ∈ Rz are the learner’s state, control
204
+ input and disturbance, respectively.
205
+ Assumption 1. The target cost function VT (2) and the target
206
+ control policy in (3a) are unknown to the learner (7). That is,
207
+ the weights QT, RT, γT in VT, the optimal strategy KT in (3a),
208
+ the worst disturbance d∗
209
+ T, LT and GARE solution PT are all
210
+ unknown.
211
+ Assumption 2. The learner knows the target behaviour data
212
+ xT, uT and dT.
213
+ Definition 1. Expert-Learner Zero-Sum Game. By using
214
+ the behaviour data of the expert (1) and the learner itself (7),
215
+ the learner desires to reconstruct the unknown performance
216
+ cost function (2) to exhibit the same control actions uT in
217
+ (3a) and states xT as the expert (1).
218
+
219
+ The learner (7) will be stabilized and perform the same way
220
+ as the target (1) does if KT in (3a) is applied to the learner (7)
221
+ with bounded dT = d. Hence, our control goal is to determine
222
+ the unknown cost function objective (2) to produce the optimal
223
+ control input u∗ = −K∗x with K∗ = KT using only target data
224
+ of xT,uT,dT and learner data of x,u,d.
225
+ III. MODEL-BASED IRL FRAMEWORK
226
+ In this section, we develop a novel model-based IRL
227
+ framework for learner (7) to determine the cost function (2)
228
+ and use this knowledge to compute control input u(t), such
229
+ that its behavior trajectories of u(t),x(t) mimic the observed
230
+ target trajectories of uT(t),xT(t). In Section 5, we will finally
231
+ propose a data-driven IRL algorithm that does not need any
232
+ system dynamics.
233
+ A. Learner optimal control
234
+ Let us take a review of the zero-sum game [2] of the learner
235
+ (7) with an arbitrary given cost function
236
+ V(x) =
237
+ � ∞
238
+ t (xT Qx+ uTRu − γ2dTd)dτ,
239
+ (8)
240
+ where Q = QT > 0, R = RT > 0, and γ > 0. The optimal input
241
+ uo and the worst dw are given by
242
+ uo = −Kx = −R−1BTPx,
243
+ (9)
244
+ dw = Lx = 1
245
+ γ2 DTPx,
246
+ (10)
247
+
248
+ 3
249
+ and (uo,dw) forms the Nash equilibrium
250
+ V ∗(x) = min
251
+ u max
252
+ d
253
+ � ∞
254
+ t
255
+ rdτ = xTPx,
256
+ (11)
257
+ where r = xTQx+uTRu−γ2dTd, and P = PT > 0 satisfies the
258
+ following learner GARE
259
+ ATP+ PA+ Q− PBR−1BTP+ 1
260
+ γ2 PDDTP = 0.
261
+ (12)
262
+ B. Expert-learner zero-sum game solution
263
+ We now present a theorem to show the conditions that the
264
+ solution to the expert-learner zero-sum game must satisfy.
265
+ Theorem 1. If the cost weights Q,R,γ and the solution P that
266
+ satisfy the GARE (12) also satisfy the following equation
267
+ (A− BKT)T P+P(A− BKT)
268
+ +Q+ 1
269
+ γ2 PDDTP+ KT
270
+ T RKT = 0,
271
+ (13)
272
+ then, the corresponding control strategy K in (9) equals the
273
+ target strategy KT in (3a).
274
+ Proof: Rewrite (12) with KT in (3a) and K in (9) as
275
+ (A− BKT)TP+ P(A− BKT)+ Q+ 1
276
+ γ2 PDDTP
277
+ + KT
278
+ T RK + KTRKT − KTRK = 0.
279
+ (14)
280
+ By subtracting (14) from (13), we have
281
+ KT
282
+ T RKT − KT
283
+ T RK − KTRKT + KTRK
284
+ = (KT − K)TR(KT − K) = 0.
285
+ (15)
286
+ Since R > 0, (15) concludes that K = KT .
287
+
288
+ C. Learning rules for cost function and game control policy
289
+ To find the Q,R,γ,P satisfying Theorem 1, we select γ > 0
290
+ and R > 0 and propose an iterative procedure based on
291
+ Theorem 1 so as to learn the weight Q, the game control
292
+ policy P, and consequently K in (9) and L in (10).
293
+ First, we apply a modified PI to correct P using (13). Set
294
+ current iteration step as i,i = 0,1,··· , and give the estimates Qi
295
+ and Li. Then the iterative form of (13), i.e., (16) in Algorithm
296
+ 1 is presented below to obtain Pi. Then optimal control ((9)
297
+ and (10)) is used to update the strategy Ki+1 and Li+1 based
298
+ on the corrected Pi by (17a) and (17b), respectively.
299
+ Now we must update the cost function weight estimate Qi+1
300
+ based on the corrected Pi. By IOC [15], taking the iterative
301
+ form of GARE (12) yields (18) in Algorithm 1 presented as
302
+ follows.
303
+ Remark 1. In Algorithm 1, step 4 is the standard IOC
304
+ computation based on Lyapunov stability condition. Note also
305
+ that if we set Qi = QT and KT = Ki in (16), then steps 2-3 are
306
+ the standard RL PI. As such, Algorithm 1 combines modified
307
+ PI with IOC to solve the IRL problem.
308
+ Algorithm 1 Model-based IRL algorithm for expert-learner
309
+ zero-sum games.
310
+ Step 1: Initialize with R > 0 and γ > 0, Q0 > 0, and L0 = 0,
311
+ and set i = 0.
312
+ Step 2: (Game policy correction) Update policy Pi by
313
+ (A− BKT)T Pi + Pi(A− BKT)
314
+ = −Qi − KT
315
+ T RKT − γ2(Li)TLi.
316
+ (16)
317
+ Step 3: (Input update) Update control input and disturbance
318
+ gain based on (9) and (10)
319
+ ui+1 = −Ki+1x = −R−1BTPix,
320
+ (17a)
321
+ di+1 = Li+1x = 1
322
+ γ2 DTPix.
323
+ (17b)
324
+ Step 4: (Cost function weight construction) Update Qi+1 by
325
+ Qi+1 =− ATPi − PiA
326
+ + (Ki+1)TRKi+1 − γ2(Li+1)T Li+1.
327
+ (18)
328
+ Step 5: Stop if it converges. Otherwise, set i = i+1 and repeat
329
+ steps 2 to 4.
330
+ IV. ANALYSIS OF ALGORITHM 1
331
+ The convergence, stability, and optimality of the proposed
332
+ Algorithm 1 are analyzed here. It is also shown that Algorithm
333
+ 1 may not converge to a unique solution (Pi,Qi) even if all
334
+ solutions give the correct target strategy Ki = KT .
335
+ A. Convergence analysis
336
+ Theorem 2. i). With an initial Q0 such that 0 < Q0 ≤ ˆQ and
337
+ L0 = 0 where ˆQ > 0 is a solution to Theorem 1 associated with
338
+ the R > 0 and γ > 0, Algorithm 1 converges. ii). As i → ∞, the
339
+ solutions Qi,Pi,Ki,Li converge to Q∗,P∗,K∗,L∗ that satisfy
340
+ ATP∗ + P∗A+ Q∗−P∗BR−1BTP∗+ 1
341
+ γ2 P∗DDTP∗ = 0,
342
+ (19a)
343
+ K∗ = KT = R−1BTP∗,
344
+ (19b)
345
+ L∗ = 1
346
+ γ2 DTP∗.
347
+ (19c)
348
+ iii). The solutions Q∗,P∗,K∗,L∗ satisfy Theorem 1.
349
+ Proof: i). Convergence proof. First, we prove that Algorithm
350
+ 1 solves an increasing sequence Qi for all i = 0,1,···. Substi-
351
+ tuting (17a) for Ki into (18) for Qi yields
352
+ ATPi−1 + Pi−1A = (Ki)T RKi − Qi − γ2(Li)TLi,
353
+ (20)
354
+ which can be rewritten as
355
+ (A− BKT)TPi−1 + Pi−1(A− BKT)
356
+ = (Ki)TRKi − Qi − γ2(Li)T Li − (Ki)T RKT − KT
357
+ T RKi.
358
+ (21)
359
+ Subtracting (16) from (21) gives
360
+ (A− BKT)T (Pi−1 − Pi)+ (Pi−1 − Pi)(A− BKT)
361
+ = (Ki − KT)TR(Ki − KT).
362
+ (22)
363
+ It follows from (Ki − KT )TR(Ki − KT ) ≥ 0 and Hurwitz
364
+ A − BKT that Pi−1 ≤ Pi holds for all iterations. Each pair of
365
+
366
+ 4
367
+ (Pi,Qi+1) satisfies (18), and they uniquely correspond to each
368
+ other. This is followed by the known fact that Pi−1 ≤ Pi if
369
+ Qi ≤ Qi+1 [37]. Therefore, Qi+1 ≥ Qi > 0 holds for i = 0,1,···,
370
+ and Qi+1 = Qi holds if and only if KT = Ki+1. Note that
371
+ achieving KT = Ki+1 is the goal of the algorithm.
372
+ Now we show that Qi is bounded by an upper bound. Let
373
+ ˆQ > 0 and ˆP > 0 be a group of solution to Theorem 1. That
374
+ is
375
+ AT ˆP+ ˆPA+ ˆQ− ˆPBR−1BT ˆP+ 1
376
+ γ2 ˆPDDT ˆP = 0,
377
+ (23a)
378
+ KT = R−1BT ˆP, ˆL = 1
379
+ γ2 DT ˆP.
380
+ (23b)
381
+ Rewriting (23a) using (23b) yields
382
+ (A− BKT)T ˆP+ ˆP(A− BKT)+ ˆQ+ KT
383
+ T RKT + γ2ˆLT ˆL = 0.
384
+ (24)
385
+ If Qi + γ2(Li)TLi ≤ ˆQ+ γ2 ˆLT ˆL holds, then (16) and (24) will
386
+ solve 0 < Pi ≤ ˆP with Hurwitz A−BKT. With (3a), (17a) and
387
+ (23b), AREs (18) and (23a) can be rewritten as
388
+ (A− BKi+1)TPi + Pi(A− BKi+1)
389
+ = −Qi+1 − (Ki+1)TRKi+1 − γ2(Li+1)T(Li+1),
390
+ (25a)
391
+ (A− BKi+1)T ˆP+ ˆP(A− BKi+1)
392
+ = KT
393
+ T RKT − ˆQ− γ2ˆLT ˆL− (Ki+1)TRKT − KT
394
+ T RKi+1,
395
+ (25b)
396
+ respectively. Since (18) ensures Hurwitz A− BKi+1, subtract-
397
+ ing (25a) from (25b) and using 0 < Pi ≤ ˆP obtains
398
+ (A− BKi+1)T ( ˆP− Pi)+ ( ˆP− Pi)(A− BKi+1)
399
+ = (Qi+1 + γ2(Li+1)TLi+1)− ( ˆQ+ γ2 ˆLT ˆL)
400
+ + (Ki+1 − KT)TR(Ki+1 − KT) ≤ 0.
401
+ (26)
402
+ Therefore, Qi+1 + γ2(Li+1)T Li+1 ≤ ˆQ+ γ2ˆLT ˆL holds.
403
+ By deduction, it is inferred that initializing Algorithm 1 with
404
+ a Q0 such that 0 < Q0 ≤ ˆQ and L0 = 0, then Qi > 0,i = 0,1,···
405
+ will be increasing with an upper bound. Therefore, Algorithm
406
+ 1 converges.
407
+ ii). Converged solutions satisfy (19a), (19b), (19c).
408
+ Substituting (18) into (16) yields
409
+ ATPi + PiA− PiBR−1BTPi
410
+ = ATPi+1 + Pi+1A− Pi+1BKT −KT
411
+ T BTPi+1 + KT
412
+ T RKT.
413
+ (27)
414
+ Taking Pi+1 = Pi = P∗ as converged value, (27) becomes
415
+ (KT − K∗)R(KT − K∗) = 0,
416
+ (28)
417
+ where K∗ = R−1BTP∗. Since R > 0, (28) implies KT = K∗,
418
+ which is exactly (19b). The converged P∗ produces the con-
419
+ verged L∗ using (17b) as shown in (19c) and the converged
420
+ Q∗ using (18) as shown in (19a).
421
+ iii). Converged solutions satisfy Theorem 1.
422
+ Rewriting (19a) with (19b) yields
423
+ (A− BKT)T P∗ + P∗(A− BKT)+ Q∗
424
+ + KT
425
+ T RKT + 1
426
+ γ2 P∗DDTP∗ = 0,
427
+ (29)
428
+ which is exactly (13). Obviously, (19a) is exactly (12). There-
429
+ fore, Q∗,P∗,K∗ satisfy Theorem 1.
430
+
431
+ B. Stability and optimality analysis
432
+ We now prove the stability of Algorithm 1 in Theorem 3,
433
+ and optimality and Nash equilibrium in Theorem 4
434
+ Theorem 3. Each iteration of Algorithm 1 exponentially
435
+ stabilizes the learner agent (7) with d = 0.
436
+ Proof: Rewriting (16) with (3a) and (17a) yields
437
+ ATPi + PiA+ ˜Qi − PiBR−1BTPi + γ2(Li)TLi = 0.
438
+ (30)
439
+ where ˜Qi = Qi + (Ki+1 − KT)TR(Ki+1 − KT ). With (Ki+1 −
440
+ KT)T R(Ki+1 −KT) ≥ 0 and Qi > 0, then ˜Qi > 0. It is obvious
441
+ that Pi solved by (30) or equivalently (16) is a symmetrical
442
+ positive definite matrix satisfying
443
+ ATPi + PiA− PiBR−1BTPi + γ2(Li)T Li < 0,
444
+ (31)
445
+ and one has
446
+ ˙V i(x,Pi) = xT(A− BKi+1)TPix+ xTPi(A− BKi+1)x
447
+ < −xTPiBR−1BTPix− γ2xT(Li)TLix < 0.
448
+ (32)
449
+ That is, Pi yields stabilizing Ki+1 by (17a) for learner (7) with
450
+ d = 0.
451
+ Considering (17a) and (31), Qi+1 in (18) satisfies
452
+ Qi+1 + γ2(Li+1)T Li+1
453
+ = −(ATPi + PiA− PiBR−1BTPi) > 0.
454
+ (33)
455
+ Using Qi+1 +γ2(Li+1)TLi+1 > 0 in (16) would still make (32)
456
+ hold for the next iteration. Therefore, provided Q0 > 0 (32)
457
+ will hold for all i = 0,1,···.
458
+
459
+ Before optimality analysis of Algorithm 1, we now give a
460
+ lemma of importance which extends the idea of classic IOC
461
+ [15] to two-player zero-sum games.
462
+ Lemma 1. Consider the two-player learner agent (7) with
463
+ x(t0) = x0, t ≥ t0 and (8) and (11). Assume there exists a
464
+ positive definite symmetric matrix P ∈ Rn×n such that
465
+ ATP+ PA− PBR−1BTP+ 1
466
+ γ2 PDDTP < 0.
467
+ (34)
468
+ Then, with the optimal feedback control input uo and the worst
469
+ disturbance dw such that
470
+ uo = −R−1BTPx, dw = 1
471
+ γ2 DTPx,
472
+ (35)
473
+ and the cost function weight
474
+ Q = −(ATP+ PA− PBR−1BTP+ 1
475
+ γ2 PDDTP),
476
+ (36)
477
+ the saddle point (uo,dw) makes the cost value function (8)
478
+ reach the Nash equilibrium
479
+ V(x0,uo,d) ≤ V(x0,uo,dw) ≤ V(x0,u,dw).
480
+ (37)
481
+ Proof: First, V(x) in (8) can be represented with P > 0 as
482
+ V(x) = xTPx ≥ 0, V(0) = 0.
483
+ (38)
484
+ It follows from (35) and (36) that H(x,uo,dw) = 0 [2] where
485
+ the Hamiltonian is
486
+ H(x,u,d) =xTQx+ uTRu − γ2dTd + (Ax+ Bu + Dd)TPx
487
+ + xTP(Ax+ Bu + Dd).
488
+ (39)
489
+
490
+ 5
491
+ One writes
492
+ H(x,u,d) = H(x,u,d)− H(x,uo,dw)
493
+ = (u − uo)R(u − uo)− γ2(d − dw)T (d − dw),
494
+ (40)
495
+ and hence
496
+ H(x0,uo,d) ≤ H(x0,uo,dw) ≤ H(x0,u,dw).
497
+ (41)
498
+ Based on [2], we obtain the conclusion (37).
499
+
500
+ Theorem 4. The converged solutions Q∗,P∗,K∗,L∗ obtained
501
+ by Algorithm 1 shown in Theorem 2 yield Nash equilibrium
502
+ of the value function V(x) in (8) such that
503
+ V(x0,u∗,d) ≤ V(x0,u∗,d∗) ≤ V(x0,u,d∗),
504
+ (42)
505
+ where u∗ = −K∗x and d∗ = L∗x.
506
+ Proof: It follows from Theorem 1 that Qi > 0 holds for all
507
+ i = 0,1,···. Thus one has the converged Q∗ > 0 and
508
+ ATP∗ + P∗A− P∗BR−1BTP∗ + 1
509
+ γ2 (P∗)TDDTP∗ < 0,
510
+ (43)
511
+ from (19a), which means that the converged P∗ satisfies (34)
512
+ in Lemma 1. Also, the converged control strategy K∗ in (19b)
513
+ and disturbance gain L∗ in (19c) satisfy (35) in Lemma 1. This
514
+ indicates that (41) also holds for u∗ and d∗, namely the Nash
515
+ equilibrium (42) holds.
516
+
517
+ C. Non-uniqueness of solution
518
+ In fact, the Q∗,R,γ,P∗ satisfying (19a)-(19c) that explain
519
+ the same strategy K∗ = KT may not be unique and can be
520
+ different from the actual target values QT,RT,γT,PT shown
521
+ in (3b) and (6). This multi-solution phenomenon is known
522
+ as the ill-posedness property, which is well-analyzed for DT
523
+ ARE in [38] and coupled ARE in [39]. In the next result,
524
+ we characterize the relationship between QT,RT,γT ,PT, and
525
+ Q∗,R,γ,P∗ for CT GARE and show the conditions for the
526
+ occurrence of this phenomenon.
527
+ Theorem 5. Recall QT, RT, γT, PT satisfying (6) and (3b),
528
+ and let Qo, Ro, Po satisfy
529
+ BTPo = RoR−1
530
+ T BTPT,
531
+ (44a)
532
+ Qo + ATPo + PoA− KT
533
+ T RoKT + 1
534
+ γ2
535
+ T
536
+ PTDDTPT − 1
537
+ γ2 P∗DDTP∗
538
+ = 0,
539
+ (44b)
540
+ where Ro = RT −R. Then any Q∗ = QT −Qo and P∗ = PT −Po
541
+ satisfy (19a)-(19c).
542
+ Proof: Subtracting (44b) from (6) and using (3b) yields
543
+ AT(PT − Po)+ (PT − Po)A+ (QT − Qo)
544
+ − KT
545
+ T (RT − Ro)KT + 1
546
+ γ2 P∗DDTP∗ = 0.
547
+ (45)
548
+ Using P∗ = PT − Po, Ro = RT − R, and R > 0 in (44a) gives
549
+ K∗ = R−1BTP∗ = R−1
550
+ T BTPT = KT,
551
+ (46)
552
+ which is (19b). Substituting it into (45) yields (19a) and (19c).
553
+ This proves the relationship between the obtained solution
554
+ Q∗,R,γ,P∗ and the expert’s QT,RT,γT ,PT. We observe that
555
+ Po, Ro, Qo satisfying (44a) and (44b) can be nonzero. That
556
+ is, Q∗,R,γ,P∗ associate optimally with the same strategy as
557
+ QT,RT,γT,PT, i.e., KT = K∗, but QT ̸= Q∗, RT ̸= R, γT ̸= γ.
558
+ Therefore, there could be multiple solutions to (19a) to gen-
559
+ erate a K∗ in (19b) equal to the target KT in (3a).
560
+
561
+ The following corollary shows a special case of the Q∗,R,γ
562
+ of Theorem 5 which gives V(x)∗ = cVT(xT)∗.
563
+ corollary 1. With scalar c > 0, any Q∗ = cQT, R = cRT, γ =
564
+ √cγT would yield V(x)∗ = cVT(xT)∗ in (4) and (11), and they
565
+ optimally associate with the same K∗ as the expert such that
566
+ K∗ = KT in (19b) and (3a).
567
+ Proof: Bring such Q∗,R,γ into (19a), since QT,RT,γT satisfy
568
+ (6), then one has P∗ = cPT and K∗ = KT . Then, using this
569
+ result in (11) for V(x)∗ and comparing it with VT(xT)∗ in (4)
570
+ shows that V(x)∗ = cVT(xT)∗.
571
+
572
+ V. DATA-DRIVEN OFF-POLICY IRL ALGORITHM
573
+ Algorithm 1 relies on the system dynamics A,B,D and the
574
+ target strategy KT . To remove this requirement, we develop
575
+ here a data-driven IRL algorithm for expert-learner zero-sum
576
+ games based on Algorithm 1, which only requires the data
577
+ xT,uT,dT of the target agent (1) and x,u,d of the learner
578
+ agent (7). To accomplish this, we use two techniques similar
579
+ to integral RL [6], [8] and off-policy RL [6], [40]. The end
580
+ result is Algorithm 2.
581
+ A. Data-driven game policy correction
582
+ In order to update Pi, Ki+1 and Li+1 in (16)-(17b) using
583
+ only target data xT,uT,dT, inspired by the idea of off-policy
584
+ integral RL technique [6], [40], rewrite (1) as
585
+ ˙xT = AxT − BKixT + DdT + B(uT + KixT).
586
+ (47)
587
+ Using (47) and (16) one writes
588
+ ˙xT
589
+ T PixT + xT
590
+ TPi ˙xT
591
+ = (AxT − BKixT)T PixT + xT
592
+ TPi(AxT − BKixT)
593
+ + 2(uT + KixT)TBTPixT + 2dT
594
+ T DTPixT
595
+ = −xT
596
+ TQixT − xT
597
+ TKT
598
+ T RKTxT − γ2xT
599
+ T(Li)T LixT
600
+ + 2xT
601
+ TKT
602
+ T BTPixT + 2uT
603
+ TBTPixT + 2dT
604
+ T DTPixT.
605
+ (48)
606
+ Using (17a), (17b), (3a) in (48) and integrating both sides from
607
+ t to t + T, where T > 0 is the integral time period, obtains
608
+ (50) in Algorithm 2 to be presented, by which Pi, Ki+1 and
609
+ Li+1 are updated simultaneously. Similar to [6], probing noise
610
+ e is added to uT, i.e., uT = −KTxT + e, for the persistence
611
+ of excitation condition in merely learning process. It is not
612
+ needed anymore when solutions converge. Unlike (16)-(17b),
613
+ (50) does not need the knowledge of agent dynamics A,B,D
614
+ or the strategy KT in (3a).
615
+
616
+ 6
617
+ B. Data-driven cost function weight reconstruction
618
+ In order to update Qi+1 in (18) using only data x,u,d,
619
+ inspired by the integral RL technique [8], multiplying both
620
+ sides of (18) by x and adding and subtracting terms uTBTPix
621
+ and dTDTPix, (18) can be rewritten as
622
+ xTQi+1x =− [(Ax+ Bu + Dd)TPix+ xTPi(Ax+ Bu + Dd)
623
+ − xT(Ki+1)TRKi+1x+ γ2xT(Li+1)T Li+1x
624
+ − 2uTBTPix− 2dTDTPix],
625
+ (49)
626
+ where u can be generated by any stabilizing policy and d
627
+ can be random and different from dT in the learning process.
628
+ Substituting (7), (17a) and (17b) into (49) and integrating it
629
+ gives (51) in Algorithm 2 below. Using Pi, Ki+1 and Li+1
630
+ obtained by (50), (51) equivalently replaces (18) in Algorithm
631
+ 1 to calculate Qi+1 without knowing any system dynamics.
632
+ Algorithm 2 Data-driven off-policy IRL algorithm for expert-
633
+ learner zero-sum games.
634
+ Step 1: Initialize with R > 0, γ > 0, Q0 > 0, and L0 = 0,
635
+ and collect system data generated by any stabilizing
636
+ control input u. Set i = 0.
637
+ Step 2: (Game policy correction) Update policy Pi, control
638
+ strategy Ki+1 and disturbance gain Li+1 by
639
+ xT(t + T)TPixT(t + T)− xT(t)TPixT(t)
640
+ − 2
641
+ � t+T
642
+ t
643
+ eTRKi+1xTdτ − 2γ2
644
+ � t+T
645
+ t
646
+ dT
647
+ T Li+1xTdτ
648
+ = −
649
+ � t+T
650
+ t
651
+
652
+ xT
653
+ TQixT + (uT − e)TR(uT − e)
654
+ + γ2xT
655
+ T (Li)TLixT
656
+
657
+ dτ.
658
+ (50)
659
+ Step 3: (Cost function weight construction) Update cost
660
+ function weight Qi+1 by
661
+ � t+T
662
+ t
663
+ xT Qi+1xdτ
664
+ = −[x(t + T)TPix(t + T)− x(t)TPix(t)
665
+
666
+ � t+T
667
+ t
668
+ (2uTRKi+1x+ xT(Ki+1)TRKi+1x)dτ
669
+ −γ2
670
+ � t+T
671
+ t
672
+ (2dTLi+1x− xT(Li+1)TLi+1x)dτ].
673
+ (51)
674
+ Step 4: Stop if it converges. Otherwise, set i = i+1 and repeat
675
+ steps 2 to 4, .
676
+ Remark 2. Algorithm 2 does not need system dynamics.
677
+ Moreover, it iterates in single loop indicated by i, no inner-
678
+ loop iteration is needed.
679
+ C. Implementation and Analysis of Algorithm 2
680
+ In order to show how to implement data-driven IRL Al-
681
+ gorithm 2 using only data, first, consider Kronecker product
682
+ aTWb = (bT ⊗ aT)vec(W) for (50) and define the following
683
+ operators,
684
+ OxT xT = [x2
685
+ T1,2xT1xT2,...,x2
686
+ T2,2xT2xT3,...,x2
687
+ Tn]T;
688
+ dxT xT = [OxT xT (t + T)− OxT xT (t),...,
689
+ OxT xT (t + lT)− OxT xT (t + (l − 1)T)]T;
690
+ IxT xT = [
691
+ � t+T
692
+ t
693
+ OxT xT dτ,...,
694
+ � t+lT
695
+ t+(l−1)T OxT xT dτ]T;
696
+ IxT uT = [
697
+ � t+T
698
+ t
699
+ xT ⊗ uTdτ,...,
700
+ � t+lT
701
+ t+(l−1)T xT ⊗ uTdτ]T ;
702
+ IxT dT = [
703
+ � t+T
704
+ t
705
+ xT ⊗ dTdτ,...,
706
+ � t+lT
707
+ t+(l−1)T xT ⊗ dTdτ]T ;
708
+ IxT e = [
709
+ � t+T
710
+ t
711
+ xT ⊗ edτ,...,
712
+ � t+lT
713
+ t+(l−1)T xT ⊗ edτ]T;
714
+ Φp = [dxT xT ,−2IxT e(In ⊗ R),−2γ2IxT dT ]T;
715
+ ri = xT
716
+ TQixT + (uT − e)TR(uT − e)+ γ2xT
717
+ T(Li)T LixT;
718
+ Ψi
719
+ p = −[
720
+ � t+T
721
+ t
722
+ ridτ,...,
723
+ � t+lT
724
+ t+(l−1)T ridτ]T;
725
+ ˆPi = [Pi
726
+ 11,Pi
727
+ 12,...,Pi
728
+ 22,Pi
729
+ 23,...,Pi
730
+ nn]T,
731
+ (52)
732
+ where l is the group number of collected data and should be
733
+ l ≥ n(n+1)
734
+ 2
735
+ + nm + nz. Using batch least squares method [8],
736
+ [40], [41], ˆPi, Ki+1, Li+1 can be calculated by
737
+
738
+ ( ˆPi)T ,vec(Ki+1)T,vec(Li+1)T �T=(ΦT
739
+ pΦp)−1ΦT
740
+ pΨi
741
+ p.
742
+ (53)
743
+ Similarly, for (51), we define
744
+ Oxx = [x2
745
+ 1,2x1x2,...,x2
746
+ 2,2x2x3,...,x2
747
+ n]T;
748
+ dxx = [Oxx(t + T)− Oxx(t),...,
749
+ Oxx(t + kT)− Oxx(t + (k − 1)T)]T ;
750
+ ˆqi = [Qi
751
+ 11,Qi
752
+ 12,...,Qi
753
+ 22,Qi
754
+ 23,...,Qi
755
+ nn]T;
756
+ Φq = Ixx = [
757
+ � t+T
758
+ t
759
+ Oxxdτ,...,
760
+ � t+kT
761
+ t+(k−1)T Oxxdτ]T ;
762
+ Ii+1
763
+ q
764
+ (t) =
765
+ � t+T
766
+ t
767
+ (2uTRKi+1x+ xT(Ki+1)TRKi+1x)dτ
768
+ + γ2
769
+ � t+T
770
+ t
771
+ (2dTLi+1x− xT(Li+1)TLi+1x)dτ
772
+ Ψi+1
773
+ q
774
+ = −dxx ˆPi + [Ii+1
775
+ q
776
+ (t),...,Ii+1
777
+ q
778
+ (t + (k − 1)T)]T ,
779
+ (54)
780
+ where k is the group number of collected data and should be
781
+ k ≥ n(n+1)
782
+ 2
783
+ . Then, Qi+1 can be uniquely solved by
784
+ ˆqi+1 = (ΦT
785
+ q Φq)−1ΦT
786
+ q Ψi+1
787
+ q
788
+ .
789
+ (55)
790
+ By using (53) and (55), we solve Pi, Qi+1, Ki+1, Li+1 in a
791
+ data-driven mode.
792
+ Each step of Algorithm 1 yields a unique solution. Algo-
793
+ rithm 2 is developed based on Algorithm 1. To illustrate that
794
+ the solution obtained by Algorithm 2 estimates the solution
795
+ obtained by Algorithm 1, we show that equations (53) and
796
+ (55) yield unique solutions in the next result.
797
+
798
+ 7
799
+ Theorem 6. If there exist lo > 0, ko > 0, for all l ≥ lo and
800
+ k ≥ ko,
801
+ rank([IxT xT ,IxT uT ,IxT dT ]) = n(n + 1)
802
+ 2
803
+ + nm+ nz,
804
+ (56a)
805
+ rank(Ixx) = n(n + 1)
806
+ 2
807
+ ,
808
+ (56b)
809
+ then, (53) and (55) solve unique solution, respectively.
810
+ Proof: First, we show that (53) solves unique solution. This
811
+ is aiming to show that
812
+ ΦpΩ = 0
813
+ (57)
814
+ has only the trivial solution Ω = 0. Now, we prove Ω = 0
815
+ by contradiction. Assume Ω = [XT
816
+ v ,Y T
817
+ v ,ZT
818
+ v ]T ∈ R
819
+ n(n+1)
820
+ 2
821
+ +nm+nz
822
+ is a nonzero solution of (57), where Xv ∈ R
823
+ n(n+1)
824
+ 2
825
+ , Yv ∈ Rmn,
826
+ Zv ∈ Rnz. Then, Xv,Yv,Zv uniquely determine matrices X,Y,Z
827
+ by Xv = ˆX, Yv = vec(Y) and Zv = vec(Z), respectively, where
828
+ X is a symmetrical matrix.
829
+ Define
830
+ Inx = [
831
+ � t+T
832
+ t
833
+ xT ⊗ xTdτ,...,
834
+ � t+kT
835
+ t+(k−1)T xT ⊗ xTdτ]T.
836
+ (58)
837
+ Integrating (48) from t to t + T gives
838
+ ΦpΩ = Inxvec(E)+ 2IxT uT vec(G)+ 2IxTdT vec(F)= 0, (59)
839
+ where
840
+ E = ATX + XA− KT
841
+ T RY −YT RKT,
842
+ (60a)
843
+ G = BTX − RY,
844
+ (60b)
845
+ F = DTX − γ2Z.
846
+ (60c)
847
+ Since E is a symmetrical matrix, one has Inxvec(E) = IxT xT ˆE.
848
+ Using this in (59) yields
849
+ ΦpΩ = [IxT xT ,2IxT uT ,2IxT dT ]
850
+
851
+
852
+ ˆE
853
+ vec(G)
854
+ vec(F)
855
+
856
+  = 0.
857
+ (61)
858
+ Under (56a), we know that [Ixx,Ixu,Ixd] has full column rank,
859
+ and thus (61) has only the solution ˆE = 0, vec(G) = 0 and
860
+ vec(F) = 0. That is,
861
+ ATX + XA− KT
862
+ T RY −Y TRKT = 0,
863
+ (62a)
864
+ BTX = RY,
865
+ (62b)
866
+ DTX = γ2Z.
867
+ (62c)
868
+ Since A − BKT is Hurwitz, substituting (62b) and (62c) into
869
+ (62a) gives X = 0. This implies that Y = 0 and Z = 0 due to
870
+ R > 0 and γ2 > 0. In summary, we have Ω = 0. However, this
871
+ conflicts with the assumption that Ω is nonzero. Therefore, it
872
+ concludes that under (56a), (55) solves unique solution.
873
+ Second, from the integral RL work [8], we conclude that
874
+ when (56b) holds for (51), Qi+1 in (51) can be uniquely
875
+ determined by (55) with collected data.
876
+
877
+ VI. SIMULATION
878
+ We show three simulation experiments, a first one of the
879
+ data-driven Algorithm 2 to show its performance, a com-
880
+ parison simulation with the bilevel IRL method in [36] to
881
+ show the reduction of iteration steps of Algorithm 2, and
882
+ a second comparison simulation with the RL-based optimal
883
+ tracking control method in [6] to show the improvement of
884
+ control performance with the cost function weights correction
885
+ of Algorithm 2.
886
+ A. Simulation result of Algorithm 2
887
+ The system dynamics information of the target (1) and the
888
+ learner (7) for simulation is
889
+ A =
890
+
891
+ −1
892
+ 2
893
+ 2.2
894
+ 1.7
895
+
896
+ ,B =
897
+
898
+ 0
899
+ 3
900
+
901
+ ,D =
902
+
903
+ 1
904
+ 0
905
+
906
+ .
907
+ (63)
908
+ For the target agent (1), the actual target cost function objec-
909
+ tive (2) consists of QT = diag{8,12},RT = 2I1,γT = 3. The
910
+ disturbance is dT = 0.003rand(1). The expert’s LT, KT and PT
911
+ are
912
+ KT = [1.9869,3.5779],LT = [0.4162,0.1472],
913
+ PT =
914
+ � 3.7459
915
+ 1.3246
916
+ 1.3246
917
+ 2.3853
918
+
919
+ .
920
+ (64)
921
+ For the learner, the behaviour strategy to generate data
922
+ is Kb = [1.2129,
923
+ 2.2812], and the disturbance is d =
924
+ 0.003rand(1). To start Algorithm 2, the initial weights for cost
925
+ function, initial disturbance gain L0, and integral time period
926
+ T are given by
927
+ Q0 = diag{1,0.5},R = I1,γ = 40,L0 = [0, 0],T = 0.008s.
928
+ (65)
929
+ The Fig. 1(a) captures the iteration process from the initial
930
+ spot to the spot on ∥Ki+1−KT∥ ≤ 0.01. The final values of Ki,
931
+ Qi, Li, and Pi are K∗, Q∗, L∗, and P∗, respectively, as follows
932
+ K∗ =
933
+ � 1.9827
934
+ 3.5839 �
935
+ ,
936
+ Q∗ =
937
+
938
+ 2.2796
939
+ 2.6670
940
+ 2.6670
941
+ 6.0151
942
+
943
+ ,
944
+ L∗ = 10−3 ×
945
+
946
+ 0.4021
947
+ 0.4131
948
+
949
+ ,
950
+ P∗ =
951
+ � 0.6441
952
+ 0.6622
953
+ 0.6622
954
+ 1.1968
955
+
956
+ ,
957
+ (66)
958
+ where K∗ closely approximates the target KT in (64) with
959
+ ∥K∗ − KT∥ = 0.0073, while Q∗, L∗ and P∗ are not equal to
960
+ QT,LT and PT in (64), respectively. This is the multiple-
961
+ solution phenomenon. In Fig. 1(b), the learner’s state x can
962
+ mimic the trajectories of the target xT very well under the
963
+ learned K∗. Therefore, the proposed Algorithm 2 can learn an
964
+ appropriate cost function and optimal policy for the learner to
965
+ mimic the target trajectories.
966
+ B. Comparison simulation case 1
967
+ This subsection shows the simulation results of the bilevel
968
+ IRL method in [36] that iterates in two-loop to show the
969
+ reduction of computational complexity in terms of iteration
970
+ steps. The same expert-learner system, initial parameters for
971
+
972
+ 8
973
+ 0
974
+ 10
975
+ 20
976
+ 30
977
+ 40
978
+ 50
979
+ 0
980
+ 1
981
+ 2
982
+ ||Ki − KT||
983
+ 0
984
+ 10
985
+ 20
986
+ 30
987
+ 40
988
+ 50
989
+ 9
990
+ 10
991
+ 11
992
+ 12
993
+ ||Qi − QT||
994
+ 0
995
+ 10
996
+ 20
997
+ 30
998
+ 40
999
+ 50
1000
+ 0.44095
1001
+ 0.441
1002
+ 0.44105
1003
+ 0.4411
1004
+ ||Li − LT||
1005
+ 0
1006
+ 10
1007
+ 20
1008
+ 30
1009
+ 40
1010
+ 50
1011
+ Update steps i
1012
+ (a)
1013
+ 3.4
1014
+ 3.6
1015
+ ||P i − PT||
1016
+ 0
1017
+ 0.5
1018
+ 1
1019
+ 1.5
1020
+ 2
1021
+ Time(s)
1022
+ (b)
1023
+ -20
1024
+ -10
1025
+ 0
1026
+ 10
1027
+ 20
1028
+ x1
1029
+ x2
1030
+ xT1
1031
+ xT2
1032
+ Fig. 1. Convergence and imitation performance using Algorithm 2
1033
+ Algorithm 2 in (63)-(65) are used for this comparison method
1034
+ 1.
1035
+ Fig. 2 also captures the iteration process from the initial
1036
+ spot to the spot on ∥Ki+1 −KT∥ ≤ 0.01 as Fig. 1 to show the
1037
+ difference in iteration steps of the two methods. The inner-
1038
+ loop iteration figures are omitted since they are too many to
1039
+ put here. In Fig. 2, the final values of K j,Qj,Lj, and P j of
1040
+ the outer-loop iterations are
1041
+ K∗ =
1042
+
1043
+ 1.9822
1044
+ 3.5691
1045
+
1046
+ ,
1047
+ Q∗ =
1048
+ � 2.3186
1049
+ 2.6974
1050
+ 2.6974
1051
+ 6.0506
1052
+
1053
+ ,
1054
+ L∗ = 10−3 ×
1055
+ � 0.4053
1056
+ 0.4130 �
1057
+ ,
1058
+ P∗ =
1059
+ � 0.6486
1060
+ 0.6607
1061
+ 0.6607
1062
+ 1.1897
1063
+
1064
+ .
1065
+ (67)
1066
+ where K∗ approximates the target KT in (64) with ∥K∗−KT∥ =
1067
+ 0.01. Table I shows that the total iteration steps of the method
1068
+ is 3370, including 587 outer-loop updates (See Fig. 2) and
1069
+ 2783 inner-loop updates, while Algorithm 2 iterates 51 steps
1070
+ in total (See Fig. 1(a)). The time of the learning process of
1071
+ Algorithm 2 is 4.08s, while that of the comparison method 1 is
1072
+ 169.936s. It is proportional to the amount of utilized collected
1073
+ data. Algorithm 2 uses 510 groups of data, and comparison
1074
+ method 1 uses 21242 groups of data. Therefore, Algorithm 2
1075
+ costs much fewer data and time than the bilevel comparison
1076
+ method 1.
1077
+ 0
1078
+ 100
1079
+ 200
1080
+ 300
1081
+ 400
1082
+ 500
1083
+ 600
1084
+ 0
1085
+ 1
1086
+ 2
1087
+ ||Kj − KT||
1088
+ 0
1089
+ 100
1090
+ 200
1091
+ 300
1092
+ 400
1093
+ 500
1094
+ 600
1095
+ 8.5
1096
+ 9
1097
+ 9.5
1098
+ 10
1099
+ ||Qj − QT||
1100
+ 0
1101
+ 100
1102
+ 200
1103
+ 300
1104
+ 400
1105
+ 500
1106
+ 600
1107
+ 0.441
1108
+ 0.4411
1109
+ ||Lj − LT||
1110
+ 0
1111
+ 100
1112
+ 200
1113
+ 300
1114
+ 400
1115
+ 500
1116
+ 600
1117
+ Outer-loop update steps j
1118
+ 3.4
1119
+ 3.6
1120
+ ||P j − PT||
1121
+ Fig. 2. Convergence of K j,Qj,Lj, and Pj using the comparison method 1
1122
+ TABLE I
1123
+ ITERATION STEPS AND LEARNING TIME OF ALGORITHM 2 AND THE
1124
+ COMPARISON METHOD 1
1125
+ Methods
1126
+ Total updates
1127
+ Learning time
1128
+ Algorithm 2
1129
+ 51
1130
+ 4.08s
1131
+ Comparison method 1
1132
+ 3370
1133
+ 169.936s
1134
+ C. Comparison simulation case 2
1135
+ In this subsection, the typical RL-based optimal tracking
1136
+ control method [6] for linear disturbed systems, which com-
1137
+ putes optimal control policy given cost function weights, is
1138
+ simulated to show the advantage of Algorithm 2 in control
1139
+ performance by computing both optimal control policy and
1140
+ cost function weights.
1141
+ The same system and cost weights shown in (63)-(65) and
1142
+ discount factor α = 0.9 are used. The obtained optimal control
1143
+ law is u∗ = −[1.1760 1.9139 1.0044 1.7639][xT,rT]T, and the
1144
+ corresponding imitation performance in Fig. 3 is not as good
1145
+ as that of Algorithm 2 in Fig. 1(b). By evenly sampling the
1146
+ trajectory data, the imitation performance of the two methods
1147
+ is quantified by the error index defined as follows
1148
+ Te = 1
1149
+ n
1150
+ n
1151
+
1152
+ i=1
1153
+
1154
+ 1
1155
+ a
1156
+ a
1157
+
1158
+ k=1
1159
+ |xi(kT)− xTi(kT)|2
1160
+ where n = 2, a = 250, and T = 0.008s. As shown in Table II,
1161
+ Te of Algorithm 2 is much smaller than that of the comparison
1162
+ method 2. The reason is that Algorithm 2 can correct the
1163
+ given cost function weights when it is inappropriate, but the
1164
+ comparison method 2 cannot. Algorithm 2 thus obtains much
1165
+ better imitation performance.
1166
+ TABLE II
1167
+ IMITATION INDEX OF ALGORITHM 2 AND THE COMPARISON METHOD 2
1168
+ Methods
1169
+ Error index Te
1170
+ Algorithm 2
1171
+ 0.0162
1172
+ Comparison method 2
1173
+ 1.4461
1174
+
1175
+ 9
1176
+ 0
1177
+ 0.2
1178
+ 0.4
1179
+ 0.6
1180
+ 0.8
1181
+ 1
1182
+ 1.2
1183
+ 1.4
1184
+ 1.6
1185
+ 1.8
1186
+ 2
1187
+ -20
1188
+ -10
1189
+ 0
1190
+ 10
1191
+ 20
1192
+ Fig. 3. Imitation performance of learner’s x to target xT using the comparison
1193
+ method 2
1194
+ VII. CONCLUSION
1195
+ This paper proposes a novel data-driven off-policy IRL
1196
+ approach to determine both cost function and optimal con-
1197
+ trol policy to stabilize a learner agent suffering from non-
1198
+ cooperative disturbances by mimicking a target agent’s tra-
1199
+ jectories using data of both agents. The proposed approach
1200
+ does not need any system dynamics and guarantees stability,
1201
+ Nash optimality, and imitation performance with single-loop
1202
+ iteration. The rigorous theoretical proofs and simulation ex-
1203
+ periments verify its effectiveness.
1204
+ REFERENCES
1205
+ [1] T. Bas¸ar and P. Bernhard, H-infinity optimal control and related minimax
1206
+ design problems: a dynamic game approach.
1207
+ Springer Science &
1208
+ Business Media, 2008.
1209
+ [2] F. L. Lewis, D. Vrabie, and V. Syrmos, Optimal Control.
1210
+ John Wiley
1211
+ & Sons, Inc., Hoboken, NJ, USA., pages 444–453, 2012.
1212
+ [3] S. R. S. and B. A. G., Reinforcement learning: An introduction.
1213
+ MIT
1214
+ Press, Cambridge, USA., pages 73–88, 1998.
1215
+ [4] F. L. Lewis and D. Vrabie, “Reinforcement learning and adaptive
1216
+ dynamic programming for feedback control,” IEEE Circ. Syst. Mag.,
1217
+ vol. 9, no. 3, pp. 32–50, 2009.
1218
+ [5] L. R. G. Carrillo and K. Vamvoudakis, “Deep-learning tracking for
1219
+ autonomous flying systems under adversarial inputs,” IEEE Trans.
1220
+ Aerosp. Electron. Syst., vol. 56, no. 2, pp. 1444–1459, 2019.
1221
+ [6] H. Modares, F. L. Lewis, and Z. Jiang, “H∞ tracking control of com-
1222
+ pletely unknown continuous-time systems via off-policy reinforcement
1223
+ learning,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 10, pp.
1224
+ 2550–2562, 2015.
1225
+ [7] B. Kiumarsi, F. L. Lewis, and Z. Jiang, “H∞ control of linear discrete-
1226
+ time systems: Off-policy reinforcement learning,” Automatica, vol. 78,
1227
+ pp. 144–152, 2017.
1228
+ [8] H. Modares and F. L. Lewis, “Linear quadratic tracking control of
1229
+ partially-unknown continuous-time systems using reinforcement learn-
1230
+ ing,” IEEE Trans. Autom. Control, vol. 59, no. 11, pp. 3051–3056, 2014.
1231
+ [9] D. Kleinman, “On an iterative technique for riccati equation computa-
1232
+ tions,” IEEE Trans. Autom. Control, vol. 13, no. 1, pp. 114–115, 1968.
1233
+ [10] X. Chen, M. Monfort, B. D. Ziebart, and P. Carr, “Adversarial inverse
1234
+ optimal control for general imitation learning losses and embodiment
1235
+ transfer.” in Conf. Uncertain. Artif. Intell., 2016, pp. 1–10.
1236
+ [11] R. Self, K. Coleman, H. Bai, and R. Kamalapurkar, “Online observer-
1237
+ based inverse reinforcement learning,” arXiv:2011.02057., 2020.
1238
+ [12] S. Levine and V. Koltun, “Continuous inverse optimal control with
1239
+ locally optimal examples,” arXiv preprint arXiv:1206.4617, 2012.
1240
+ [13] N. Ab Azar, A. Shahmansoorian, and M. Davoudi, “From inverse
1241
+ optimal control to inverse reinforcement learning: A historical review.”
1242
+ Annu. Rev. Control, vol. 50, pp. 119–138, 2020.
1243
+ [14] R. E. Kalman, “When is a linear control system optimal?” J. Basic Eng.,
1244
+ vol. 86, no. 1, pp. 51–60, 1964.
1245
+ [15] W. M. Haddad and V. Chellaboina, Nonlinear dynamical systems and
1246
+ control: A Lyapunov-based approach.
1247
+ Princeton University Press,
1248
+ Princeton, USA, pages 519–540, 2011.
1249
+ [16] M. Johnson, N. Aghasadeghi, and T. Bretl, “Inverse optimal control for
1250
+ deterministic continuous-time nonlinear systems,” in Proc. 52nd IEEE
1251
+ CDC, 2013, pp. 2906–2913.
1252
+ [17] X. Cai and Z. Han, “Inverse optimal control of nonlinear systems with
1253
+ structural uncertainty,” IEE Proc-C, vol. 152, no. 1, pp. 79–83, 2005.
1254
+ [18] F. Ornelas, E. N. Sanchez, and A. G. Loukianov, “Discrete-time non-
1255
+ linear systems inverse optimal control: A control lyapunov function
1256
+ approach,” in Proc. IEEE Int. Conf. Control Autom., 2011, pp. 1431–
1257
+ 1436.
1258
+ [19] E. N. Sanchez and F. Ornelas-Tellez, Discrete-time inverse optimal
1259
+ control for nonlinear systems.
1260
+ CRC Press, Boca Raton, USA., pages
1261
+ 67–107, 2017.
1262
+ [20] T. L. Molloy, J. J. Ford, and T. Perez, “Finite-horizon inverse optimal
1263
+ control for discrete-time nonlinear systems,” Automatica, vol. 87, pp.
1264
+ 442–446, 2018.
1265
+ [21] ——, “Online inverse optimal control on infinite horizons,” in Proc.
1266
+ 57th IEEE CDC, 2018, pp. 1663–1668.
1267
+ [22] ——, “Online inverse optimal control for control-constrained discrete-
1268
+ time systems on finite and infinite horizons,” Automatica, vol. 87, pp.
1269
+ 1–8, 2020.
1270
+ [23] Y. Park, “Inverse optimal and robust nonlinear attitude control of rigid
1271
+ spacecraft,” Aerosp. Sci. Technol., vol. 28, no. 1, pp. 257–265, 2013.
1272
+ [24] W. Luo, Y. Chu, and K. V. Ling, “Inverse optimal adaptive control for
1273
+ attitude tracking of spacecraft,” IEEE Trans. Autom. Contr., vol. 50,
1274
+ no. 11, pp. 1639–1654, 2005.
1275
+ [25] D. Tsai, T. L. Molloy, and T. Perez, “Inverse two-player zero-sum
1276
+ dynamic games,” in Pro. 2016 AUCC, 2016, pp. 192–196.
1277
+ [26] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse reinforce-
1278
+ ment learning,” in Proc. 21st. Conf. Mach. Learn. ICML, 2004, pp. 1–8.
1279
+ [27] M. Wulfmeier, P. Ondruska, and I. Posner, “Maximum entropy deep
1280
+ inverse reinforcement learning,” arXiv preprint arXiv:1507.04888, 2015.
1281
+ [28] G. Neu and C. Szepesv´ari, “Apprenticeship learning using inverse
1282
+ reinforcement learning and gradient methods,” pp. 295–302, 2012.
1283
+ [29] B. D. Ziebart, A. Maas, J. Andrew Bagnell, and A. K. Dey, “Maximum
1284
+ entropy inverse reinforcement learning,” in Pro. 2008 AAAI., 2008, pp.
1285
+ 1433–1438.
1286
+ [30] S. Choi, S. Kim, and H. Jin Kim, “Inverse reinforcement learning control
1287
+ for trajectory tracking of a multirotor uav,” Int. J. Control Autom. Syst.,
1288
+ vol. 15, no. 4, pp. 1826–1834, 2017.
1289
+ [31] R. Self, M. Abudia, and R. Kamalapurkar, “Online inverse reinforcement
1290
+ learning for systems with disturbances,” in Proc. 2020 ACC., 2020, pp.
1291
+ 1118–1123.
1292
+ [32] K. Mombaur, A. Truong, and J. P. Laumond, “From human to humanoid
1293
+ locomotion: An inverse optimal control approach,” Auton. Robots.,
1294
+ vol. 28, no. 3, pp. 369–383, 2010.
1295
+ [33] R. Kamalapurkar, “Linear inverse reinforcement learning in continuous
1296
+ time and space.” in Proc. 2018 ACC, 2018, pp. 1683–1688.
1297
+ [34] W. Xue, K. P., J. Fan, L. B., T. Chai, and F. L. Lewis, “Inverse rein-
1298
+ forcement learning in tracking control based on inverse optimal control,”
1299
+ IEEE Trans. Cybern., doi: 10.1109/TCYB.2021.3061894, 2021.
1300
+ [35] W. Xue, L. B., J. Fan, T. Chai, and F. L. Lewis, “Inverse reinforcement
1301
+ learning in tracking control based on inverse optimal control,” IEEE
1302
+ Trans. Neural Netw. Learn., doi: 10.1109/TNNLS.2021.3106635, 2021.
1303
+ [36] B. Lian, W. Xue, F. L. Lewis, and T. Chai, “Online inverse reinforcement
1304
+ learning for nonlinear systems with adversarial attacks,” Int. J. Robust
1305
+ Nonlinear Control., vol. 31, no. 14, pp. 6646–6667, 2021.
1306
+ [37] P. Lancaster and L. Rodman, Algebraic Riccati equations.
1307
+ Clarendon
1308
+ Press, Oxford, UK., pages: 231–243, 1995.
1309
+ [38] M. Menner and M. N. Zeilinger, “Convex formulations and algebraic
1310
+ solutions for linear quadratic inverse optimal control problems,” in Proc.
1311
+ 17th ECC, 2018, pp. 2107–2112.
1312
+ [39] J. Inga, E. Bischoff, T. L. Molloy, M. Flad, and S. Hohmann, “Solution
1313
+ sets for inverse non-cooperative linear-quadratic differential games.”
1314
+ IEEE Control Syst. Lett., vol. 3, no. 4, pp. 871–876, 2019.
1315
+ [40] Y. Jiang and Z. Jiang, “Computational adaptive optimal control for
1316
+ continuous-time linear systems with completely unknown dynamics,”
1317
+ Automatica, vol. 48, no. 10, pp. 2699–2704, 2012.
1318
+ [41] Y. Jiang, J. Fan, T. Chai, J. Li, and F. L. Lewis, “Data-driven flotation
1319
+ industrial process operational optimal control based on reinforcement
1320
+ learning,” IEEE Trans. Ind. Informa., vol. 14, no. 5, pp. 1974–1989,
1321
+ 2018.
1322
+
O9A0T4oBgHgl3EQfC_9-/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
PdE2T4oBgHgl3EQfrgiA/content/tmp_files/2301.04050v1.pdf.txt ADDED
@@ -0,0 +1,1332 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.04050v1 [cs.RO] 10 Jan 2023
2
+ 1
3
+ Design, Modeling and Control of a Quadruped Robot SPIDAR:
4
+ Spherically Vectorable and Distributed Rotors Assisted
5
+ Air-Ground Amphibious Quadruped Robot
6
+ Moju Zhao1, Tomoki Anzai2, Takuzumi Nishio2
7
+ Abstract—Multimodal locomotion capability is an emerging
8
+ topic in robotics field, and various novel mobile robots have
9
+ been developed to enable the maneuvering in both terrestrial
10
+ and aerial domains. Among these hybrid robots, several state-of-
11
+ the-art bipedal robots enable the complex walking motion which
12
+ is interlaced with flying. These robots are also desired to have the
13
+ manipulation ability; however, it is difficult for the current forms
14
+ to keep stability with the joint motion in midair due to the cen-
15
+ tralized rotor arrangement. Therefore, in this work, we develop
16
+ a novel air-ground amphibious quadruped robot called SPIDAR
17
+ which is assisted by spherically vectorable rotors distributed in
18
+ each link to enable both walking motion and transformable flight.
19
+ First, we present a unique mechanical design for quadruped robot
20
+ that enables terrestrial and aerial locomotion. We then reveal the
21
+ modeling method for this hybrid robot platform, and further
22
+ develop an integrated control strategy for both walking and
23
+ flying with joint motion. Finally, we demonstrate the feasibility of
24
+ the proposed hybrid quadruped robot by performing a seamless
25
+ motion that involves static walking and subsequent flight. To
26
+ the best of our knowledge, this work is the first to achieve a
27
+ quadruped robot with multimodal locomotion capability, which
28
+ also shows the potential of manipulation in multiple domains.
29
+ Index Terms—Legged Robots; Aerial Systems: Mechanics and
30
+ Control; Motion Control
31
+ I. INTRODUCTION
32
+ During the last decade, robots with multimodal locomotion
33
+ capability have undergone intensive development, and demon-
34
+ strated the versatile maneuvering in multiple domains (i.e.,
35
+ terrestrial, aerial, and aquatic) [1]–[5] which can benefit the
36
+ performance in various situations, such as disaster response
37
+ and industrial surveillance. Among various forms for mul-
38
+ timodal locomotion, the legged type has the advantage in
39
+ unstructured terrains, and several bipedal models have been
40
+ developed to demonstrate the promising walking that is inter-
41
+ laced with flying motion [6], [7]. The legged robots are desired
42
+ to provide not only the advanced locomotion capability, but
43
+ also the manipulation ability by the limb end-effector. Then,
44
+ multilegged (multilimbed) is considered effective from the
45
+ aspect of both the stability in the terrestrial locomotion and
46
+ the freedom in manipulation. In spite of the achievement
47
+ of a simple arm motion in midair by the flying humanoid
48
+ robot in [7], the centralized rotor arrangement in most of the
49
+ existing robot platforms can hardly handle the large change of
50
+ Center-of-Gravity (CoG) caused by the joint motion in midair.
51
+ Besides, the external force at the limb end during the aerial
52
+ manipulation is also difficult to compensate by the centralized
53
+ 1 Department of Mechanical Engineering, The University of Tokyo, 2
54
+ Department of Mechano-Infomatics, The University of Tokyo, 7-3-1 Hongo,
55
+ Bunkyo-ku, Tokyo 113-8656, Japan. chou@hnl.t.u-tokyo.ac.jp
56
+ Digital Object Identifier (DOI): see top of this page.
57
+ (A)
58
+ (B)
59
+ Fig. 1.
60
+ Air-ground amphibious quadruped robot SPIDAR: SPherIcally
61
+ vectorable and Distributed rotors assisted Air-ground amphibious quadruped
62
+ Robot. (A) walk on the ground like an usual quadruped robot, but with the
63
+ assistance of thrust force; (B) fly and transform in midair.
64
+ rotors due to the large moment arm. Hence, a distributed rotor
65
+ arrangement is necessary for aerial manipulation. Then, we
66
+ propose a novel quadruped robot platform in this work, which
67
+ can both walk and fly by using the spherically vectorable rotors
68
+ distributed in each link unit as illustrated in Fig. 1.
69
+ One of the efficient type of air-ground hybrid robot plat-
70
+ forms equips an ordinary multirotor for flying, and then de-
71
+ ploys rolling cage or wheels to perform terrestrial locomotion
72
+ [2], [8], [9]. Although the rolling mechanism can achieve the
73
+ stable terrestrial locomotion without any complex control, it is
74
+ relatively difficult for this type to handle the unstructured ter-
75
+ rains (e.g., very few foothold). Then, legged model is proposed
76
+ in several researches [6], [7], [10]–[12] to solve this issue by
77
+ the walking motion. Most of these robots are bipedal model
78
+ which attaches the multirotor unit in their torso for aerial
79
+ maneuvering. Compared with the bipedal model, it is relatively
80
+ easier to achieve the walking stability by the multilegged
81
+ model because of the larger support polygon. Besides, the legs
82
+ can be considered as the limbs for manipulation in midair, and
83
+ thus more limbs can provide more end-effectors for complex
84
+ manipulation task. Therefore, we choose the quadruped model
85
+ that can offer both the stable terrestrial locomotion and the
86
+ potential of aerial manipulation.
87
+ For most of the quadruped robot, the form is bio-inspired
88
+ and specialized for terrestrial locomotion [13]–[15]. However,
89
+ in our work, the robot is also desired to perform manipulation
90
+ task in multiple domains. Several ape-like quadruped robots
91
+ show the manipulation ability by the hands attached on the leg
92
+ ends [16], [17]. The point symmetry is the crucial difference of
93
+ these robots from the skeleton design for common quadruped
94
+ robots. In our work, we also adopt the point symmetry for
95
+ our hybrid quadruped robot to enable the omni-directional
96
+ maneuvering and manipulation in both terrestrial and aerial
97
+
98
+ 2
99
+ domains. Regarding the rotor arrangement, it is difficult for
100
+ rotors centralized in the robot torso like [6] to handle the
101
+ change of CoG caused by the joint motion. Besides, the
102
+ external force acted at the end-effectors can also induce a
103
+ large rotational load for the centralized rotors due to the
104
+ large moment arm. To ensure a sufficient control margin for
105
+ the stable joint motion in midair, [11] proposes a distributed
106
+ rotor arrangement that deploys the thrust units at each limb
107
+ end. However, this rotor arrangement deprives the robot of
108
+ manipulation ability. Therefore, a fully-distributed rotor design
109
+ proposed by [18] is applied in this work. In this design,
110
+ spherically vectorable rotor apparatus is embedded in each link
111
+ and thus can generate individual three-dimensional thrust force
112
+ for the promising maneuvering and manipulation in midair as
113
+ presented in [19].
114
+ For the stable flying motion, the whole platform should be
115
+ lightweight, which leads a relatively compact and weak joint
116
+ actuator for legs. Hence, the thrust force is also required to
117
+ assist the walking motion by reducing the load from gravity.
118
+ For model with centralized rotor arrangement, both the model-
119
+ based [6] and the policy-based [20] methods are developed to
120
+ obtain the assistive thrust. However, these methods are not
121
+ suitable for the model with rotors distributed in all links.
122
+ Then, [21] proposes an assistive thrust control method for a
123
+ bipedal robot with the vectorable rotor attached at each foot,
124
+ whereas [19] presents a control method for a fully-distributed
125
+ rotor model in the aerial domains. Based on these methods, a
126
+ comprehensive investigation of the modeling and control for
127
+ the multilegged model is performed in this work to handle
128
+ multiple types of torques and forces (i.e., the joint torque, the
129
+ contact force on each limb end, the gravity of each link, and
130
+ the thrust force from each vectorable rotor).
131
+ The main contributions of this work can be summarized as
132
+ follows:
133
+ 1) We propose a unique mechanical design for air-ground
134
+ quadruped robot with the spherically vectorable rotors
135
+ distributed in all links.
136
+ 2) We present a modeling and control methods for this
137
+ multilegged platform for hybrid locomotion in both
138
+ terrestrial and aerial domains.
139
+ 3) We achieve the seamless and stable motion that involves
140
+ walking, flying and joint motion in midair by the proto-
141
+ type of quadruped robot.
142
+ The remainder of this paper is organized as follows. The
143
+ mechanical design for this unique quadruped robot is intro-
144
+ duced in Sec. II. The modeling of our robot is presented in
145
+ Sec. III, followed by the integrated control method for hybrid
146
+ locomotion in Sec. IV. We then show the experimental results
147
+ in Sec. V before concluding in Sec. VI.
148
+ II. DESIGN
149
+ In this section, we present the mechanical design for the
150
+ quadruped robot that is capable of terrestrial/aerial hybrid
151
+ locomotion. The key of the whole structure is the spherically
152
+ vectorable rotor embedded in each link unit, along with the
153
+ unique quadruped shape that differs from the common bio-
154
+ inspired type.
155
+ Fig. 2. Mechanical design for the air-ground hybrid quadruped robot.
156
+ (A) skeleton model for common bio-inspired mammal-type quadruped robot.
157
+ (B) proposed point-symmetric skeleton model for hybrid quadruped model.
158
+ (C1)/(C2) two-DoF joint module for each limb, where the yaw axis qi yaw
159
+ comes first followed by the pitch axis qi pitch. (D) spherically vectorable
160
+ rotor apparatus with two vectoring angles (φ, θ), and a combined thrust force
161
+ λi from the counter rotating dual rotors. There is a small offset between two
162
+ vectoring axes because two rods cannot intersect with each other.
163
+ A. Skeleton Model
164
+ As shown in Fig. 2(A), the common skeleton for quadruped
165
+ robot is mammal-type, which puts a priority on the forward
166
+ motion. Thus, the model is plane symmetric, and each leg has
167
+ three DoF (two in the hip, and one in knee). However, our
168
+ robot is desired to enable not only the terrestrial/aerial hybrid
169
+ locomotion, but also the manipulation in midair. Therefore, the
170
+ omni-directional movement is a critical feature for the skeleton
171
+ design. Then, a point symmetric structure is introduced as
172
+ depicted in Fig. 2(B). This is similar to the sprawling-type
173
+ quadruped design proposed by [22], which can provide s wider
174
+ supporting polygon and also a lower CoG than the mammal-
175
+ type. According to this design concept, each limb consists
176
+ of two links that have the same length, and is connected to
177
+ the center torso with a joint module that has two Degree-of-
178
+ Freedom (DoF). For this joint module, the yaw axis qi yaw
179
+ comes first, which is followed by the pitch axis qi pitch
180
+ to allow a larger swinging range for walking as shown in
181
+ Fig. 2(C1)/(C2). The crucial difference from the ordinary
182
+ sprawling-type is that we also introduce an identical two-
183
+ DoF joint module to connect neighboring links, which can
184
+ provide a four-DoF manipulation capability by each limb end
185
+ without the help of the torso motion. Eventually, this robot
186
+ is composed of 8 links with 16 joints for walking and flying.
187
+ Given that the lightweight design is significantly important for
188
+ the flight performance, we deploy a compact servo motor to
189
+ individually actuate each joint at the expense of the torque
190
+ power. Nevertheless, the shortage of the joint torque can be
191
+ compensated by the rotor thrust in our robot.
192
+ B. Spherically Vectorable Rotor
193
+ Rotors embedded in links are used to achieve flight with
194
+ arbitrary joint motion in midair. Besides, it is also necessary
195
+
196
+ (B)
197
+ (A)
198
+ qi+1_yaw
199
+ i+1_pitch
200
+ yaw
201
+ qi_pitch
202
+ (D)
203
+ C1 top view
204
+ (C2) side view3
205
+ to use the rotor thrust to assist leg lifts for walking, because
206
+ the joint actuator is weak due to the lightweight design as
207
+ mentioned in Sec. II-A. Therefore, the rotor is required to
208
+ point arbitrary direction to handle the change in link ori-
209
+ entation. In other words, it is required to generate a three-
210
+ dimensional thrust force by each rotor module to interact
211
+ with not only the gravity and also the external force (i.e.,
212
+ the contact force on each foot). Then a spherically vectorable
213
+ apparatus proposed by [18] is equipped in each link as depicted
214
+ in Fig. 2(D). To achieve the spherical vectoring around the
215
+ link unit, two rotation axes is necessary. We first introduce
216
+ a roll axis φi around the link rod. Then, we need the second
217
+ orthogonal vectoring axis. If we use a single rotor, the collision
218
+ between the propeller and the link rod will be inevitable
219
+ while performing the second vectoring. Therefore, we apply
220
+ the counter-rotating dual-rotor module to avoid the collision
221
+ as shown in Fig. 2(D). In addition, this dual-rotor can also
222
+ counteract the drag moment and gyroscopic moment. Then,
223
+ we define the pitch axis across dual rotors as the second
224
+ vectoring axis θi. Each vectoring axis is also actuated by an
225
+ individual compact servo motor. Regarding the thrust force,
226
+ since we assume that a pair of rotors rotate with the same
227
+ speed, it is possible to introduced a combined thrust λi for
228
+ each spherically vectorable rotor module. Eventually, there are
229
+ three control input (two vectoring angles φi, θi, and one thrust
230
+ λi) for each vectorable rotor module, and totally 8 sets are used
231
+ to control the whole quadruped model.
232
+ III. MODELING
233
+ In this section, we describe the modeling for this robot
234
+ which can be divided into two parts: the thrust model and
235
+ the whole dynamics model.
236
+ A. Spherically Vectorable Thrust
237
+ Based on the kinematic model depicted in Fig. 3, the three-
238
+ dimensional force fi generated by the i-th rotor module can
239
+ contact
240
+ contact
241
+ contact
242
+ free
243
+ Υ
244
+ Œ•>Ú
245
+ “••
246
+ Œ‰•
247
+ Ε
248
+ Ε>Ú
249
+ Ε>Û
250
+ Ε>Ü
251
+ “•>Ú•
252
+ <(Ü=
253
+ <%K)=
254
+ <.Ü=
255
+ Fig. 3.
256
+ Dynamics model of the proposed quadruped robot. The entire
257
+ dynamics involves the joint torque τj, the contact force at each limb end fci,
258
+ the gravity of each link mig, and the thrust force from each vectorable rotor
259
+ fi. {Li} and {Fi} denote the frame for the i-th link and rotor respectively,
260
+ whereas {CoG} is the CoG frame for the whole model. For the free leg
261
+ during walking, the contact force fci at the limb end disappears.
262
+ be written as:
263
+ fi = λiui,
264
+ (1)
265
+ ui = CoGRFi(q, φi, θi)
266
+ �0
267
+ 0
268
+ 1�T ,
269
+ (2)
270
+ where CoGRFi denotes a rotation matrix of the rotor frame
271
+ {Fi} w.r.t. the frame {CoG}. For this robot, we define the
272
+ frame {CoG} to have an origin at the CoG point as depicted in
273
+ Fig. 3, and a xyz coordinate that is identical to the baselink at
274
+ the center torso. ui denotes the unit vector for the spherically
275
+ vectorable mechanism that is effected by two vectoring angles
276
+ φi and θi. Besides, this vector also depends on the joint angles
277
+ q ∈ RNJ , NJ is the number of joints.
278
+ Then the total wrench in the frame {CoG} can be given by
279
+
280
+
281
+ τλ
282
+
283
+ =
284
+
285
+ 
286
+ Nr
287
+
288
+ i=1
289
+ fi
290
+ Nr
291
+
292
+ i=1
293
+ pi × fi
294
+
295
+ 
296
+ = Qλ,
297
+ (3)
298
+ Q =
299
+
300
+ u1
301
+ u2
302
+ · · ·
303
+ uNr
304
+ p1 × u1
305
+ p2 × u2
306
+ · · ·
307
+ pNr × uNr
308
+
309
+ ,
310
+ (4)
311
+ λ =
312
+ �λ1
313
+ λ2
314
+ · · ·
315
+ λNr
316
+ �T ,
317
+ where pi is the position of the frame {Fi} origin from the
318
+ frame {CoG} that is influenced by the joint angles q and the
319
+ first vectoring angle φi for the i-th rotor. Nr is the number of
320
+ rotors.
321
+ B. Dynamics of Multilinked Model
322
+ The whole dynamic model can be written as follows:
323
+ ˙PΣ =Rcfλ − mΣg +
324
+ Nc
325
+
326
+ i=1
327
+ fci,
328
+ (5)
329
+ ˙LΣ =τλ +
330
+ Nc
331
+
332
+ i=1
333
+ pci × RT
334
+ c fci,
335
+ (6)
336
+ MJ(q)¨q + c(q, ˙q) =τq +
337
+ Nc
338
+
339
+ i=1
340
+ JT
341
+ cifci
342
+ +
343
+ Nr
344
+
345
+ i=1
346
+ JT
347
+ rifi +
348
+ Ns
349
+
350
+ i=1
351
+ JT
352
+ simsig.
353
+ (7)
354
+ (5) and (6) denote the centroidal dynamics for the whole
355
+ multibody model. PΣ and LΣ are the entire linear and
356
+ rotational momentum described in the inertial frame {W}
357
+ and the frame {CoG}, respectively. These momentum are
358
+ both affected by the joint angles, vectoring angles, and their
359
+ velocities (i.e., q, ˙q, φ, ˙φ, θ, ˙θ). Rc is the orientatin of the
360
+ frame {CoG} w.r.t. the frame {W}, and is identical to Rb
361
+ that is the orientatin of the baselink. fλ and τλ corresponds
362
+ to the total wrench described in (3). fci is the contact force at
363
+ the i-th limb end (foot) w.r.t. the frame {W}, whereas pci is
364
+ the position of this contact point from the frame {CoG} which
365
+ is also influenced by the joint angles q. Nc is the number of
366
+ contact points (i.e., standing legs). mΣ is the total mass, and
367
+ g is a three-dimensional vector expressing gravity.
368
+
369
+ 4
370
+ (7) corresponds to the joint motion. MJ(q) denotes the
371
+ inertial matrix, whereas c(q, ˙q) is the term related to the
372
+ centrifugal and Coriolis forces in joint motion. J∗i ∈ R3×NJ
373
+ is the Jacobian matrix for the frame of the i-th contact point
374
+ (∗ → c), the i-th rotor (∗ → r), and the i-th segment’s CoG
375
+ (∗ → s), respectively. τq ∈ RNJ is the vector of joint torque
376
+ and fi is the vectoring thrust force corresponding to (1).
377
+ (5) ∼ (7) are highly complex due to the joint motion. Then
378
+ the realtime feedback control based on these nonlinear equa-
379
+ tions is significantly difficult for an onboard computational
380
+ resource. Therefore, for the joint motion, a crucial assumption
381
+ is introduced in our work to simplify the dynamics, i.e., all
382
+ the joints are actuated slowly by individual servo motors.
383
+ This is also called the quasi-static assumption that allows
384
+ ˙q ≈ 0; ¨q ≈ 0 during the joint motion.
385
+ Under this assumption, the original dynamic model can be
386
+ approximated as follows:
387
+ mΣ¨rc(q) = Rcfλ − mΣg +
388
+ Nc
389
+
390
+ i=1
391
+ fci,
392
+ (8)
393
+ IΣ(q) ˙ω + ω × IΣ(q)ω = τλ +
394
+ Nc
395
+
396
+ i=1
397
+ pci × fci,
398
+ (9)
399
+ 0 = τq +
400
+ Nc
401
+
402
+ i=1
403
+ JT
404
+ cifci +
405
+ Nr
406
+
407
+ i=1
408
+ JT
409
+ rifi +
410
+ Ns
411
+
412
+ i=1
413
+ JT
414
+ simsig,
415
+ (10)
416
+ where rc is the position of the frame {CoG} w.r.t the frame
417
+ {W}, which can be calculated using the forward-kinematics
418
+ from the baselink states with the joint angles q. ωc is the
419
+ angular velocity of the frame {CoG} w.r.t the frame of
420
+ {CoG}, and is identical to ωb that is the angular velocity
421
+ of the baselink. IΣ(q) is the total inertia tensor that is also
422
+ influenced by the joint angles q.
423
+ (8) and (9) show the property of a single rigid body, whereas
424
+ (10) indicates the equilibrium between the forces and torques
425
+ for the joint motion. Given that we apply the quasi-static
426
+ assumption for joint motion, only the slow terrestrial motion,
427
+ such as the static walk gait, is allowed.
428
+ IV. CONTROL
429
+ In this section, we first describe a unified control framework
430
+ as depicted in Fig. 4, and then present the modification for the
431
+ aerial and terrestrial locomotion, respectively.
432
+ Control
433
+ Allocation
434
+ Centroidal
435
+ Motion
436
+ Control
437
+ Robot
438
+ Dynamics
439
+ Model
440
+ Approximation
441
+ 4Ö×
442
+ ˜Ö×
443
+ 6˜Ö×
444
+ Ó‰×
445
+ �×
446
+ Ø× Â× Å×
447
+ ˜Õ
448
+
449
+ 6˜Õ
450
+ ÓÕ
451
+
452
+ —×
453
+ IŠ +Š
454
+ Vectorable Rotor Control
455
+ 4Ö ÓÖ
456
+ ˜Ö
457
+ 6˜Ö
458
+
459
+ Joint
460
+ PD Control
461
+ Îä×
462
+ Fig. 4.
463
+ Unified control framework for terrestrial/aerial locomotion.
464
+ “Model approximation” presented in Sec. III-B is followed by the vectorable
465
+ rotor control based on the centroidal motion. The joint control is performed
466
+ independently.
467
+ A. Centroidal Motion Control
468
+ For the approximated dynamics of (8) and (9), the position
469
+ feedback control based on an ordinary PID control is given by
470
+ f d
471
+ λ = mΣRT
472
+ c (Kf,per + Kf,i
473
+
474
+ er + Kf,d ˙er)
475
+ + RT
476
+ c (mΣg −
477
+ Nc
478
+
479
+ i=1
480
+ fci),
481
+ (11)
482
+ where er = rd
483
+ c − rc, and Kf,∗ are the PID gain diagonal
484
+ matrices.
485
+ The attitude control follows the SO(3) control method
486
+ proposed by [23]:
487
+ τ d
488
+ λ = IΣ(Kτ,peR + Kτ,i
489
+
490
+ eR + Kτ,deω)
491
+ + ωc × IΣωc −
492
+ Nc
493
+
494
+ i=1
495
+ pci × RT
496
+ c fci,
497
+ (12)
498
+ eR = 1
499
+ 2
500
+
501
+ RT
502
+ c Rd
503
+ c − RdT
504
+ c Rc
505
+ �∨ ,
506
+ (13)
507
+ eω = RT
508
+ c Rd
509
+ cωd
510
+ c − ωc,
511
+ (14)
512
+ where [⋆]∨ is the inverse of a skew map.
513
+ Then, the desired wrench w.r.t the frame {CoG} can be
514
+ summarized as follows:
515
+ wd =
516
+
517
+ f d
518
+ λ
519
+ τ d
520
+ λ
521
+ �T .
522
+ (15)
523
+ B. Control Allocation
524
+ The goal of vectorable rotor control is to obtain the control
525
+ input (the desired thrust λd and the desired vectoring angles
526
+ φd, θd) from the desired wrench wd. Meanwhile, it is also
527
+ important to suppress the rotor output and the joint load from
528
+ the aspect of the energy consumption. Then, an optimization
529
+ problem should be design to obtain the desired control input.
530
+ Since the vectoring angles φ and θ demand the trigono-
531
+ metric function, nonlinear constraints would appear in the
532
+ optimization problem and thus lead a complex computation.
533
+ To decrease the computational load during the realtime control
534
+ loop, we introduce an alternative three-dimensional forces f
535
+
536
+ i
537
+ that is the vectorable thrust w.r.t, the related link frame {Li}:
538
+ f
539
+
540
+ i = LiRFi(φi, θi)
541
+ �0
542
+ 0
543
+ λi
544
+ �T. The definition of the frames
545
+ of {Li} and {Fi} can be found in Fig. 3. Then the above
546
+ optimization problem can be modified as follows:
547
+ min
548
+ f ′
549
+ i ,τq,fci
550
+ w1
551
+ Nr
552
+
553
+ i=1
554
+ ∥f
555
+
556
+ i∥2 + w2∥τq∥2,
557
+ (16)
558
+ s.t.
559
+ wd =
560
+ Nr
561
+
562
+ i=1
563
+ Qif
564
+
565
+ i ,
566
+ Qi =
567
+ �E3×3
568
+ [pi×]
569
+
570
+ CoGRLi,
571
+ (17)
572
+ τq = −
573
+ Nc
574
+
575
+ i=1
576
+ JT
577
+ cifci −
578
+ Nr
579
+
580
+ i=1
581
+ JT
582
+ rifi −
583
+ Ns
584
+
585
+ i=1
586
+ JT
587
+ simsig,
588
+ (18)
589
+ 0 < λi < ¯λ,
590
+ (19)
591
+ − ¯τq < τqi < ¯τq,
592
+ (20)
593
+ 0 < fci(2),
594
+ (21)
595
+
596
+ 5
597
+ where w1 and w2 in (16) are the weights for the cost of rotor
598
+ thrust and joint torque, respectively. (17) is the modified form
599
+ of wrench allocation from (3) by using the alternative variable
600
+ f
601
+
602
+ i . pi is defined in (3), whereas CoGRLi is the orientation of
603
+ the frame {Li} w.r.t. the frame {CoG}. E3×3 is a 3 × 3
604
+ identity matrix and [·×] denotes the skew symmetric matrix
605
+ of a three dimensional vector. (18) denotes the equilibrium
606
+ between the joint torque τq, the contact force fci, the thrust
607
+ force fi, and the segment gravity msig to satisfy the joint
608
+ quasi-static assumption. (19) and (20) denote the bounds for
609
+ the rotor thrust and joint torque, respectively. The contact force
610
+ fci is also considered as the searching variable, and the z
611
+ element fci(2) should be always non-negative as shown in
612
+ (21).
613
+ Given that all constraints (17) ∼ (21) are linear, an ordinary
614
+ algorithm for quadratic problem can be applied. Once the
615
+ optimized thrust force ˜f
616
+
617
+ i is calculated, the true control input
618
+ for the spherically vector rotor apparatus can be obtained as
619
+ follows:
620
+ λi = ∥f
621
+
622
+ i∥,
623
+ (22)
624
+ φi = tan−1(−f
625
+
626
+ i(1)
627
+ f
628
+
629
+ i(2) ),
630
+ (23)
631
+ θi = tan−1(
632
+ f
633
+
634
+ i (0)
635
+ −f
636
+
637
+ i(1)sin(φi) + f
638
+
639
+ i(2)cos(φi)),
640
+ (24)
641
+ where f
642
+
643
+ i (0), f
644
+
645
+ i(1), and f
646
+
647
+ i(2) are the x, y, and z element of
648
+ the vector.
649
+ As a unique mechanical feature of the spherically vectorable
650
+ apparatus depicted in Fig. 2(D), the result of vectoring angles
651
+ φ and θ from (23) and (24) will deviate the position pi in
652
+ (17) because of the small offset between two vectoring axes
653
+ as depicted in Fig. 2(D). Then, the results of (22) ∼ (24) will
654
+ no longer satisfy the constraint (17) because Qi has changed.
655
+ To solve this problem, we apply the iteration process that is
656
+ based on the gradient of a residual term ǫ := wd − Q(θ, φ)λ,
657
+ and finally we can obtain the convergent values of φd, θd and
658
+ λd. The detail can be found in [19].
659
+ C. Joint Control
660
+ The proposed optimization problem of (16) can also pro-
661
+ vides the joint torque that however only satisfies the quasi-
662
+ static assumption for joint motion. In addition, the measure-
663
+ ment bias and noisy from the joint encoders along with the
664
+ slight deformation of the link and joint structure can also
665
+ induce the model error. To handle this model error, it is
666
+ necessary to apply a feed-back control to track the desired
667
+ position for joints. Therefore, a simple PD control for joint
668
+ position is introduced for each joint:
669
+ τ d
670
+ i = kj,p(qd
671
+ i − qi) − kj,d ˙qi,
672
+ (25)
673
+ where qd
674
+ i is the desired joint angle from the walking gait or
675
+ the aerial transformation planning. kj,p and kj,d are the P and
676
+ D control gains. It is also notable that we also used the same
677
+ PD control for the rotor vectoring angles φi and θi.
678
+ D. Aerial Locomotion
679
+ The control mode for aerial locomotion follows the flow
680
+ shown in Fig. 4 but without the contact force fci. Then the
681
+ constraint of (21) and the first term �Nc
682
+ i=1 JT
683
+ cifci at the right
684
+ side of (18) can be omitted. The joint control is executed
685
+ independently to follow the trajectory given by other task
686
+ planing.
687
+ E. Terrestrial Locomotion
688
+ 1) Torso altitude control: The terrestrial locomotion is
689
+ totally based on the quasi-static joint motion. Therefore the
690
+ centroidal motion should be also assumed to be static, which
691
+ results in a desired wrench only handling gravity (wd =
692
+ �0
693
+ 0
694
+ −mΣg
695
+ 0
696
+ 0
697
+ 0�
698
+ ) for (17). Despite of the joint
699
+ position control proposed in (25), a small error regarding
700
+ the torso (i.e., baselink) pose, particularly along the altitude
701
+ direction, would still remain mainly due to the influence of
702
+ gravity. Therefore, we apply a feedback control using the rotor
703
+ thrust for the torso altitude. Instead of the PID position control
704
+ for the centroidal motion as proposed in (11), a truncated
705
+ feedback control for the torso altitude is introduced as follows:
706
+ f d
707
+ z = kb(zd
708
+ b − zb),
709
+ (26)
710
+ where kb is the P gain, and zb is the torso altitude. We assume
711
+ this altitude control is for the “floating” baselink even in the
712
+ terrestrial locomotion mode. Therefore, instead of considering
713
+ f d
714
+ z in (17) and (18), we introduce another independent control
715
+ allocation to obtain the additional thrust force as follows:
716
+ ∆wd =
717
+ Nr
718
+ 2
719
+
720
+ i=1
721
+ Q2i∆f
722
+
723
+ 2i,
724
+ (27)
725
+ where ∆wd =
726
+
727
+ 0
728
+ 0
729
+ f d
730
+ z
731
+ 0
732
+ 0
733
+ 0
734
+ �T. It is notable that we
735
+ only choose the rotors in the inner link of each leg to suppress
736
+ the influence on the joint quasi-static motion as presented in
737
+ (18). Then ∆f
738
+
739
+ 2i can be given by
740
+ ∆f
741
+ ′ = ˜Q#∆wd,
742
+ (28)
743
+ ˜Q =
744
+ �Q0
745
+ Q2
746
+ · · ·
747
+ QNr
748
+
749
+ ,
750
+ ∆f
751
+ ′ =
752
+
753
+ ∆f
754
+
755
+ 0
756
+ ∆f
757
+
758
+ 2
759
+ · · ·
760
+ ∆f
761
+
762
+ Nr
763
+ �T ,
764
+ where ˜Q# is the psuedo-inverse matrix of ˜Q. Finally, f
765
+
766
+ 2i →
767
+ f
768
+
769
+ 2i + ∆f
770
+
771
+ 2i is performed before substituting it into (22)∼(24).
772
+ 2) Static walking gait: In this work, we only focus on the
773
+ static walking gait. Hence only one leg is allowed to lift during
774
+ walking. As the update of the foot step for the lifting leg,
775
+ we analytically solve the inverse-kinematics for the related
776
+ three joint angles: qi yaw, qi pitch, and qi+1 pitch as depicted
777
+ in Fig. 2, which can be uniquely determined. Regarding the
778
+ gait for linear movement, we design a creeping gait that lifts
779
+ the front-left, front-right, rear-right, and rear-left legs in order
780
+ for one gait cycle, and also solely moves the torso in standing
781
+ mode just after the two front legs have moved to the new
782
+ position. To enable the repetition of the gait cycle, the stride
783
+ length of all feet is set equal to the moving distance of torso.
784
+ We further assume the robot only walks on a flat floor, and
785
+ thus the height of feet should be always zero. Then, we first
786
+
787
+ 6
788
+ set an intermediate target position right above the new foot
789
+ step with a small height offset. Thus qi yaw and qi+1 pitch are
790
+ identical to the final target, whereas qi pitch is smaller than
791
+ the final value. Once the lifting leg moves to this intermediate
792
+ pose, the robot starts lowering the leg to reach the new foot
793
+ step only by changing qi pitch. Given that there is no tactile
794
+ sensor on the foot, we introduce a threshold ∆qc for the joint
795
+ angle error of qi pitch to detect touchdown. That is, if qd
796
+ i pitch−
797
+ qi pitch < ∆qc, then switch the lifting leg to the standing
798
+ mode, and thus the number of the contact force fci changes
799
+ from three to four.
800
+ V. EXPERIMENT
801
+ A. Robot Platform
802
+ In this work, we developed a prototype of SIDAR as shown
803
+ in Fig. 5, and the basic specification is summarized in Tab. I.
804
+ Given the lightweight design, we employed CFRP material for
805
+ link rod where cables can pass through. For the joint module,
806
+ we used the Aluminum sheet to connect links, whereas the
807
+ joint servo was Dynamixel XH430-V350R of which the torque
808
+ was enhanced by pulley made from PLA. The range of joint
809
+ angle was [−90◦ 90◦]. For the vectorable rotor module, a
810
+ pair of counter-rotating plastic propellers were enclosed by
811
+ ducts with the aim of safety and increase of thrust, whereas
812
+ Dynamixel XL430-W250T was used for the rotor vectoring.
813
+ Batteries are distributed in each link unit in parallel as shown
814
+ in Fig. 5(G) which can provide a flight duration up to 9 min
815
+ and a longer walk duration up to 20 min. A hemisphere foot
816
+ with anti-slip tape was equipped to ensure the stable point
817
+ contact during the terrestrial locomotion.
818
+ On the center torso as shown in Fig. 5(A), NVIDIA Jetson
819
+ TX2 and an original MCU board called Spinal were deployed
820
+ to perform the realtime control framework as presented in
821
+ Fig. 4. For each link unit, there was a distributed MCU
822
+ board called Neuron that served as relay node between Spinal
823
+ (C1)
824
+ (A)
825
+ (B)
826
+ (D)
827
+ (C2)
828
+ (G)
829
+ (F)
830
+ (A)
831
+ (B)
832
+ (C1)
833
+ (C2)
834
+ (D)
835
+ (E)
836
+ (E)
837
+ (F)
838
+ (G)
839
+ àÜ
840
+ öÜ
841
+ 1.1m
842
+ MÜ4w_ê
843
+ MÜ>54w_ê
844
+ MÜ4ngraf
845
+ MÜ>54ngraf
846
+ CAN
847
+ Fig. 5. Prototype of SPIDAR: (A) center torso that employed an original
848
+ red MCU called Spinal and a high level processor (Nvidia Jetson TX2); (B)
849
+ spherically vectorable dual-rotor module; (C1)(C2) two-DoF joint module
850
+ for the “hip” and the “knee”, respectively; (D) single leg (limb) that had the
851
+ maximum length of 1.1 m; (E) small relay board called “Neuron” for each
852
+ link unit that was connected with “Spinal” via CAN; (F) hemisphere foot
853
+ with anti-slip tape; (G) distributed battery attached at each link unit.
854
+ TABLE I
855
+ PROTOTYPE SPECIFICATIONS
856
+ 1. Main Feature
857
+ 3. Vectorable Rotor
858
+ Attribute
859
+ Value
860
+ Attribute
861
+ Value
862
+ total mass
863
+ 15.2 kg
864
+ rotor KV
865
+ 1550
866
+ max size (dia.)
867
+ 2.7 m
868
+ propeller diameter
869
+ 5 inch
870
+ max flight time
871
+ 9 min
872
+ max thrust (¯λ)
873
+ 42 N
874
+ max walk time
875
+ 20 min
876
+ pulley ratio
877
+ 1:1.5
878
+ max vectoring torque
879
+ 1.5 Nm
880
+ 2. Link and Joint
881
+ max vectoring speed
882
+ 4.2 rad/s
883
+ Attribute
884
+ Value
885
+ link length
886
+ 0.54 m
887
+ 4. Lipo Battery
888
+ joint pulley ratio
889
+ 1:2
890
+ Attribute
891
+ Value
892
+ max joint speed
893
+ 0.34 rad/s
894
+ capacity
895
+ 6S 3Ah
896
+ max torque (¯τq)
897
+ 6.5 Nm
898
+ amount
899
+ 8
900
+ and each actuator. Neurons and Spinal were connected by
901
+ CAN cable. The detail of the onboard communication can be
902
+ found in [18]. Besides, an external motion capture system was
903
+ applied in our experiment to obtain the state of the baselink
904
+ (i.e., rb, ˙rb, Rb, and ωb), which were used to calculate the
905
+ state of centroidal motion based on forward-kinematics.
906
+ B. Basic Experimental Evaluation
907
+ 1) Aerial transformation: A unique feature of SPIDAR is
908
+ the aerial maneuvering with joint motion (i.e., aerial transfor-
909
+ mation). To validate the stability during flight, simple transfor-
910
+ mation as shown in Fig. 6 was performed. All limbs changed
911
+ their joints with the same trajectories as plotted in Fig. 7(C).
912
+ (A)
913
+ (B)
914
+ Fig. 6. Stable joint motion in midair: (A) extended pose that has diameter
915
+ of 2.6 m; (B) standing pose, implying the feasibility to takeoff directly from
916
+ the terrestrial mode.
917
+ 32
918
+ 34
919
+ 36
920
+ 38
921
+ 40
922
+ 42
923
+ 44 [s]
924
+ (B)
925
+ (A)
926
+ (D)
927
+ 0.05
928
+ -0.05
929
+ 0
930
+ Š Aåã
931
+ Š Aåä
932
+ Š Aåå
933
+ Š Aåâßß Š AãÜçÖÛ Š AìÔê
934
+ [m]
935
+ 1.5
936
+ -1.5
937
+ -1.0
938
+ -0.5
939
+ 0.5
940
+ 1.0
941
+ 0
942
+ [;]
943
+ 6
944
+ 4
945
+ 2
946
+ 0
947
+ -2
948
+ -4
949
+ [Nm]
950
+ 32
951
+ 34
952
+ 36
953
+ 38
954
+ 40
955
+ 42
956
+ 44 [s]
957
+ (C)
958
+ 80
959
+ 60
960
+ 40
961
+ 20
962
+ 0
963
+ -20
964
+ [;]
965
+ Š M54ìÔê
966
+ Š M54ãÜçÖÛ
967
+ Š M64ìÔê
968
+ Š M64ãÜçÖÛ
969
+ Š ì54ìÔê
970
+ Š ì54ãÜçÖÛ
971
+ Š ì64ìÔê
972
+ Š ì64ãÜçÖÛ
973
+ Fig. 7. Plots related to Fig. 6 : (A) positional errors of {CoG}; (B) rotational
974
+ errors of {CoG} described in XYZ Euler angles; (C) joint trajectories for
975
+ leg1 (q1 yaw, q1 pitch, q2 yaw, and q2 pitch), other legs followed the same
976
+ joint trajectories; (D) torques for those joints.
977
+
978
+ MM
979
+ MwM
980
+ M装配件7
981
+ (A)
982
+ (B)
983
+ Fig. 8. lifting a single leg from standing mode: (A) standing mode where
984
+ all feet have contact with the ground; (B) lifting single leg and keeping the
985
+ raised pose with the assistance of rotor thrust.
986
+ For the control gains in (11) and (12), we set Kf,p, Kf,i, Kf,d,
987
+ Kτ,p, Kτ,i, and Kτ,d as D(3.6, 3.6, 2.8), D(0.03, 0.03, 1.2),
988
+ D(4, 4, 2.8), D(15, 15, 10), D(0.3, 0.3, 0.1), and D(5, 5, 5),
989
+ where D(∗, ∗, ∗) ∈ R3×3 is a diagonal matrix. For the
990
+ optimization problem of (16), we omitted the second term
991
+ (i.e., w2 = 0) to put a priority on the minimization of the
992
+ thrust force. Fig. 7(A) and (B) plotted the positional and
993
+ rotational errors during the flight and transformation, and the
994
+ RMS of those errors were [0.014, 0.023, 0.038] m and [0.81,
995
+ 0.69, 0.92]◦. The altitude error erz indicated a relatively large
996
+ deviation during the joint motion, which was caused by the
997
+ violation of the quasi-static assumption. Nevertheless, this
998
+ deviation rapidly decreased once the joint motion finished.
999
+ Fig. 7(C) and (D) showed that all joint were well controlled by
1000
+ the PD control as presented in (25). Eventually, these results
1001
+ demonstrated the stability of both the baselink pose and the
1002
+ joint motion in aerial locomotion.
1003
+ 2) Leg lifting: The key to achieve walking by legged robot
1004
+ is the stability while lifting the leg. Then, we evaluated the
1005
+ proposed control method by performing a long-term single
1006
+ leg lifting as shown in Fig. 8. The cost weights in (16) were
1007
+ set as w1 = 1, w2 = 1, and the bound for joint torque ¯τq
1008
+ was decreased to 1.5 Nm to ensure sufficient margin for joint
1009
+ control. Besides, the gain kb in (26) was set as 25. Leg1
1010
+ was lifted by changing q1 pitch from −16 ◦ to −28 ◦, and the
1011
+ lifting motion lasted around 30 s as shown in Fig. 9(A). Other
1012
+ joints were kept constant in the whole motion as shown in
1013
+ Fig. 9(A) and (C), and their torques were within the bounds as
1014
+ depicted in Fig. 9(B) and (D). These results demonstrated the
1015
+ stability of joint motion against the influence of thrust force.
1016
+ Besides the stability of the baselink pose can be confirmed
1017
+ in Fig. 9(E) and (F), where both the positional and rotational
1018
+ errors converged to the sufficiently small value (i.e., 0.01 m
1019
+ and 0.5 ◦). Fig. 9(G) showed the large increase of the thrust
1020
+ forces in the lifting leg, whereas Fig. 9(H) showed small
1021
+ changes in other standing legs. In addition, these plots also
1022
+ confirmed the stable transition between standing mode and
1023
+ leg lifting mode. In particular, the shift back to the standing
1024
+ model around 40 s demonstrated the smooth touchdown, which
1025
+ indicates the promising terrestrial locomotion.
1026
+ C. Seamless Terrestrial/Aerial Hybrid Locomotion
1027
+ We further evaluated the feasibility of seamless locomotion
1028
+ transition as shown in Fig. 10. Fig. 11(A) and (C) demon-
1029
+ strated the baselink pose trajectory during walking with five
1030
+ 15
1031
+ 20
1032
+ 25
1033
+ 30
1034
+ 35
1035
+ 40
1036
+ [s]
1037
+ 45
1038
+ 15
1039
+ 20
1040
+ 25
1041
+ 30
1042
+ 35
1043
+ 40
1044
+ [s]
1045
+ 45
1046
+ 15
1047
+ 20
1048
+ 10
1049
+ 5
1050
+ 10
1051
+ 8
1052
+ 6
1053
+ 4
1054
+ 2
1055
+ [N]
1056
+ [N]
1057
+ (F)
1058
+ (E)
1059
+ (G)
1060
+ (H)
1061
+ 0.02
1062
+ -0.02
1063
+ 0
1064
+ [m]
1065
+ -0.01
1066
+ 0.01
1067
+ 1.5
1068
+ -1.5
1069
+ -1.0
1070
+ -0.5
1071
+ 0.5
1072
+ 1.0
1073
+ 0
1074
+ [;]
1075
+ Š Aåã Š Aåä Š Aåå
1076
+ Š Aåâßß Š AãÜçÖÛ Š AìÔê
1077
+ Š ã5 Š ã6
1078
+ Š ã7 Š ã8 Š ã9 Š ã:
1079
+ (A)
1080
+ (B)
1081
+ (C)
1082
+ (D)
1083
+ 2
1084
+ 1
1085
+ 0
1086
+ -1
1087
+ -2
1088
+ 6
1089
+ 5
1090
+ [Nm]
1091
+ 4
1092
+ 2
1093
+ 1
1094
+ 0
1095
+ -1
1096
+ 3
1097
+ -30
1098
+ -25
1099
+ -20
1100
+ -15
1101
+ [;]
1102
+ 80
1103
+ [;]
1104
+ 86
1105
+ 84
1106
+ 82
1107
+ Š M54ãÜçÖÛ Š M74ãÜçÖÛ Š M94ãÜçÖÛ
1108
+ Š ì54ãÜçÖÛ Š ì74ãÜçÖÛ Š ì94ãÜçÖÛ
1109
+ Š M64ãÜçÖÛ Š M84ãÜçÖÛ Š M:4ãÜçÖÛ
1110
+ Š ì64ãÜçÖÛ Š ì84ãÜçÖÛ Š ì:4ãÜçÖÛ
1111
+ Fig. 9. Plots related to Fig. 8: (A) trajectories for hip pitch joints. q7 pitch
1112
+ was omitted due to the symmetric pose of leg4 related to leg2; (B) torques
1113
+ of joints in (A); (C) trajectories for knee pitch joints; (D) torques of joints in
1114
+ (C); (E) positional errors of baselink ; (F) rotational errors of baselink; (G)
1115
+ thrust forces in leg1; (H) thrust forces in other legs.
1116
+ gait cycles. We observed that the translational drift along the
1117
+ walking direction (x axis) and the orthogonal direction (y axis)
1118
+ finally grew to 0.18 m and 0.10 m, whereas the rotational drift
1119
+ along the yaw axis also increased to 9 ◦. These drifts can be
1120
+ attributed to the feed-froward gait planing where the target
1121
+ baselink pose was updated based on the last target values
1122
+
1123
+
1124
+ !
1125
+ "
1126
+ 0.2m
1127
+ 0.2m
1128
+ 0.2m
1129
+ 5 gait
1130
+ cycles
1131
+ gait cycle
1132
+ Fig. 10. Seamless Terrestrial/Aerial Hybrid Locomotion: 1⃝ ∼ 3⃝ shows
1133
+ the representative phases (moving the front-left leg, the torso, and rear-left
1134
+ leg) in one creeping gait cycle. After five gait cycles, robot switched to the
1135
+ aerial locomotion directly from the terrestrial pose as shown in 4⃝.
1136
+
1137
+ 82prMN8
1138
+ gait
1139
+ cycle1
1140
+ gait
1141
+ cycle2
1142
+ gait
1143
+ cycle3
1144
+ gait
1145
+ cycle4
1146
+ gait
1147
+ cycle5
1148
+ stand
1149
+ sprawl
1150
+ Š NKHH Š LEP?D Š U=S
1151
+ --- NKHH×, LEP?D×, U=S×
1152
+ -6
1153
+ 4
1154
+ 2
1155
+ 0
1156
+ -2
1157
+ -4
1158
+ -8
1159
+ -10
1160
+ takeoff
1161
+ land
1162
+ (B)
1163
+ (A)
1164
+ (C)
1165
+ (D)
1166
+ 1.2
1167
+ 0.8
1168
+ 1.0
1169
+ [;]
1170
+ -6
1171
+ 0
1172
+ -2
1173
+ -4
1174
+ -8
1175
+ -10
1176
+ [;]
1177
+ 0.6
1178
+ 0.4
1179
+ 0.2
1180
+ 0
1181
+ -0.2
1182
+ 0.8
1183
+ 0.6
1184
+ 0.4
1185
+ 0.2
1186
+ 0
1187
+ -0.2
1188
+ [m]
1189
+ [m]
1190
+ Š Në Š Nì Š Ní
1191
+ --- Në× --- Në× --- Në×
1192
+ --- U=S×
1193
+ 20
1194
+ 40
1195
+ 60
1196
+ 80
1197
+ 100
1198
+ 120 [s]
1199
+ 120
1200
+ 125
1201
+ 130
1202
+ 135
1203
+ [s]
1204
+ Fig. 11. Plots related Fig. 10.(A)/(B) trajectories of baselink position during
1205
+ the terrestrial locomotion and the aerial locomotion, respectively; (C)/(D)
1206
+ trajectories of baselink orientation during the terrestrial locomotion and the
1207
+ aerial locomotion, respectively.
1208
+ but not the actual values. Nevertheless, these drifts can be
1209
+ considered relatively small compared to the total displacement,
1210
+ and are possible to be suppressed by adding a feed-back loop
1211
+ in planning as a future work. Furthermore, the deviations
1212
+ regarding the z, roll, and pitch axes were sufficiently small,
1213
+ which demonstrated the efficiency of the proposed control
1214
+ method presented in Sec. IV.
1215
+ As shown in Fig. 11(B) and (D), the transition to the
1216
+ aerial locomotion was smooth and stable, and the stability in
1217
+ midair was also confirmed, Thus, these results demonstrated
1218
+ the feasibility of the mechanical design, modeling and control
1219
+ methods for the terrestrial/aerial hybrid quadruped platform.
1220
+ VI. CONCLUSION
1221
+ In this paper, we presented the achievement of the terres-
1222
+ trial/aerial hybrid locomotion by the quadruped robot SPIDAR
1223
+ that were equipped with the vectorable rotors distributed in all
1224
+ links. We first proposed the mechanical design for this unique
1225
+ quadruped platform, and then developed the modeling and
1226
+ control methods to enable static walking and transformable
1227
+ flight. The feasibility of the above methods were verified by
1228
+ the experiment of seamless terrestrial/aerial hybrid locomotion
1229
+ with the prototype of SPIDAR.
1230
+ A crucial issue remained in this work is the oscillation
1231
+ and deviation of the baselink pose and joint angles during
1232
+ walking. To improve the stability, the rotor thrust should be
1233
+ directly used in the joint position control to replace the current
1234
+ simple PD control. Furthermore, the gait planning should be
1235
+ also robust against the drift by adding a feed-back loop as
1236
+ discussed in Sec. V-C. Last but not least, the dynamic walking
1237
+ and the aerial manipulation will be investigated to enhance the
1238
+ versatility of this robot in both maneuvering and manipulation.
1239
+ REFERENCES
1240
+ [1] Koji Kawasaki, Moju Zhao, Kei Okada, and Masayuki Inaba. MUWA:
1241
+ Multi-field universal wheel for air-land vehicle with quad variable-pitch
1242
+ propellers. In 2013 IEEE/RSJ International Conference on Intelligent
1243
+ Robots and Systems, pp. 1880–1885, 2013.
1244
+ [2] Arash Kalantari and Matthew Spenko.
1245
+ Modeling and performance
1246
+ assessment of the HyTAQ, a hybrid terrestrial/aerial quadrotor. IEEE
1247
+ Transactions on Robotics, Vol. 30, No. 5, pp. 1278–1285, 2014.
1248
+ [3] Hiroya Yamada, et al.
1249
+ Development of amphibious snake-like robot
1250
+ ACM-R5. In the 36th International Symposium on Robotics (ISR), 2005.
1251
+ [4] Auke Jan Ijspeert, Alessandro Crespi, Dimitri Ryczko, and Jean-Marie
1252
+ Cabelguen. From swimming to walking with a salamander robot driven
1253
+ by a spinal cord model. Science, Vol. 315, No. 5817, pp. 1416–1420,
1254
+ 2007.
1255
+ [5] Hamzeh Alzu’bi, Iyad Mansour, and Osamah Rawashdeh. Loon Copter:
1256
+ Implementation of a hybrid unmanned aquatic–aerial quadcopter with
1257
+ active buoyancy control. Journal of Field Robotics, Vol. 35, No. 5, pp.
1258
+ 764–778, 2018.
1259
+ [6] Kyunam Kim, Patrick Spieler, Elena-Sorina Lupu, Alireza Ramezani,
1260
+ and Soon-Jo Chung. A bipedal walking robot that can fly, slackline,
1261
+ and skateboard. Science Robotics, Vol. 6, No. 59, p. eabf8136, 2021.
1262
+ [7] Tomoki Anzai, Yuta Kojio, Tasuku Makabe, Kei Okada, and Masayuki
1263
+ Inaba. Design and development of a flying humanoid robot platform with
1264
+ bi-copter flight unit. In 2020 IEEE-RAS 20th International Conference
1265
+ on Humanoid Robots (Humanoids), pp. 69–75, 2021.
1266
+ [8] Stella Latscha, et al. Design of a hybrid exploration robot for air and land
1267
+ deployment (H.E.R.A.L.D) for urban search and rescue applications.
1268
+ In 2014 IEEE/RSJ International Conference on Intelligent Robots and
1269
+ Systems, pp. 1868–1873, 2014.
1270
+ [9] Nitzan Ben David and David Zarrouk. Design and analysis of FCSTAR,
1271
+ a hybrid flying and climbing sprawl tuned robot. IEEE Robotics and
1272
+ Automation Letters, Vol. 6, No. 4, pp. 6188–6195, 2021.
1273
+ [10] Azumi Maekawa, Ryuma Niiyama, and Shunji Yamanaka.
1274
+ Pseudo-
1275
+ locomotion design with a quadrotor-assisted biped robot. In 2018 IEEE
1276
+ International Conference on Robotics and Biomimetics (ROBIO), pp.
1277
+ 2462–2466, 2018.
1278
+ [11] Daniele Pucci, Silvio Traversaro, and Francesco Nori.
1279
+ Momentum
1280
+ control of an underactuated flying humanoid robot. IEEE Robotics and
1281
+ Automation Letters, Vol. 3, No. 1, pp. 195–202, 2018.
1282
+ [12] Yuhang Li, et al. Jet-HR2: A flying bipedal robot based on thrust vector
1283
+ control. IEEE Robotics and Automation Letters, Vol. 7, No. 2, pp. 4590–
1284
+ 4597, 2022.
1285
+ [13] Michael P. Murphy, Aaron Saunders, Cassie Moreira, Alfred A. Rizzi,
1286
+ and Marc Raibert. The LittleDog robot. The International Journal of
1287
+ Robotics Research, Vol. 30, No. 2, pp. 145–149, 2011.
1288
+ [14] Marco Hutter, et al.
1289
+ ANYmal - a highly mobile and dynamic
1290
+ quadrupedal robot.
1291
+ In 2016 IEEE/RSJ International Conference on
1292
+ Intelligent Robots and Systems (IROS), pp. 38–44, 2016.
1293
+ [15] Benjamin Katz, Jared Di Carlo, and Sangbae Kim.
1294
+ Mini Cheetah:
1295
+ A platform for pushing the limits of dynamic quadruped control.
1296
+ In
1297
+ 2019 International Conference on Robotics and Automation (ICRA), pp.
1298
+ 6295–6301, 2019.
1299
+ [16] Paul Hebert, et al. Mobile manipulation and mobility as manipulation-
1300
+ design and algorithm RoboSimian. Journal of Field Robotics, Vol. 32,
1301
+ No. 2, pp. 255–274, 2015.
1302
+ [17] Kenji Hashimoto, et al.
1303
+ WAREC-1 - a four-limbed robot having
1304
+ high locomotion ability with versatility in locomotion styles. In 2017
1305
+ IEEE International Symposium on Safety, Security and Rescue Robotics
1306
+ (SSRR), pp. 172–178, 2017.
1307
+ [18] Moju Zhao, et al.
1308
+ Design, modeling, and control of an aerial robot
1309
+ DRAGON: A dual-rotor-embedded multilink robot with the ability
1310
+ of multi-degree-of-freedom aerial transformation. IEEE Robotics and
1311
+ Automation Letters, Vol. 3, No. 2, pp. 1176–1183, April 2018.
1312
+ [19] Moju Zhao, Kei Okada, and Masayuki Inaba. Versatile articulated aerial
1313
+ robot DRAGON: Aerial manipulation and grasping by vectorable thrust
1314
+ control. The International Journal of Robotics Research, 2022.
1315
+ [20] Fan Shi, Tomoki Anzai, Yuta Kojio, Kei Okada, and Masayuki In-
1316
+ aba. Learning agile hybrid whole-body motor skills for thruster-aided
1317
+ humanoid robots.
1318
+ In 2022 IEEE/RSJ International Conference on
1319
+ Intelligent Robots and Systems (IROS), pp. 12986–12993, 2022.
1320
+ [21] Zhifeng Huang, et al. Three-dimensional posture optimization for biped
1321
+ robot stepping over large ditch based on a ducted-fan propulsion system.
1322
+ In 2020 IEEE/RSJ International Conference on Intelligent Robots and
1323
+ Systems (IROS), pp. 3591–3597, 2020.
1324
+ [22] Satoshi Kitano, Shigeo Hirose, Gen Endo, and Edwardo F. Fukushima.
1325
+ Development of lightweight sprawling-type quadruped robot TITAN-
1326
+ XIII and its dynamic walking. In 2013 IEEE/RSJ International Confer-
1327
+ ence on Intelligent Robots and Systems, pp. 6025–6030, 2013.
1328
+ [23] T. Lee, M. Leok, and N. H. McClamroch. Geometric tracking control
1329
+ of a quadrotor UAV on SE(3). In 49th IEEE Conference on Decision
1330
+ and Control (CDC), pp. 5420–5425, 2010.
1331
+
1332
+ E
PdE2T4oBgHgl3EQfrgiA/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
QdAyT4oBgHgl3EQf7vpN/content/tmp_files/2301.00843v1.pdf.txt ADDED
@@ -0,0 +1,1564 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ CHEN et. al: EXPLICITLY SOLVABLE CONTINUOUS-TIME INFERENCE FOR PARTIALLY OBSERVED MARKOV PROCESSES
2
+ 1
3
+ Explicitly Solvable Continuous-time Inference for
4
+ Partially Observed Markov Processes
5
+ Daniel Chen, Alexander G. Strang, Andrew W. Eckford Senior Member, IEEE, Peter J. Thomas
6
+ Abstract—Many natural and engineered systems can be mod-
7
+ eled as discrete state Markov processes. Often, only a subset
8
+ of states are directly observable. Inferring the conditional prob-
9
+ ability that a system occupies a particular hidden state, given
10
+ the partial observation, is a problem with broad application.
11
+ In this paper, we introduce a continuous-time formulation of
12
+ the sum-product algorithm, which is a well-known discrete-time
13
+ method for finding the hidden states’ conditional probabilities,
14
+ given a set of finite, discrete-time observations. From our new
15
+ formulation, we can explicitly solve for the conditional probability
16
+ of occupying any state, given the transition rates and observations
17
+ within a finite time window. We apply our algorithm to a
18
+ realistic model of the cystic fibrosis transmembrane conductance
19
+ regulator (CFTR) protein for exact inference of the conditional
20
+ occupancy probability, given a finite time series of partial
21
+ observations.
22
+ I. INTRODUCTION
23
+ Markov processes—dynamic processes whose future be-
24
+ havior depends only on their present state—approximate a
25
+ wide variety of natural and engineered systems. Despite rapid
26
+ advances in high-throughput data acquisition and data pro-
27
+ cessing, many systems of interest contain important degrees
28
+ of freedom that cannot be directly observed. Inferring the
29
+ conditional probability that such a partially observed Markov
30
+ process occupies specific hidden states, given the available ob-
31
+ servations, is a ubiquitous problem in science and engineering.
32
+ Examples appear in robotics [1], ecology [2], neuroscience [3],
33
+ and algorithmic text analysis [4].
34
+ We are motivated by biological examples in the present
35
+ paper. Ion channels in excitable membranes, such as the
36
+ sodium (Na+) and potassium (K+) channels described in
37
+ Hodgkin and Huxley’s quantitative model for action potential
38
+ generation [5], [6], [7], provide an early example. Discrete
39
+ state Markov models based on Hodgkin and Huxley’s K+
40
+ channel contain five states, only one of which conducts an
41
+ ionic current; the other states are “silent” and cannot be distin-
42
+ guished by direct electrophysiological observation. Similarly,
43
+ This work was supported in part by National Institutes of Health BRAIN
44
+ Initiative grant R01 NS118606 and a National Science Foundation grant
45
+ DMS-2052109 to PJT, as well as research support from the Oberlin College
46
+ Libraries, and an NSERC Discovery grant to AWE.
47
+ D. Chen and P. J. Thomas are with the Department of Mathematics, Applied
48
+ Mathematics, and Statistics; Department of Electrical, Control and Systems
49
+ Engineering; Department of Computer and Data Science; Department of
50
+ Biology, Case Western Reserve University, Cleveland, OH 44106 USA (e-
51
+ mail: txc461/pjthomas@case.edu).
52
+ A. G. Strang is with Department of Statistics, University of Chicago,
53
+ Chicago, IL 60637 USA (email: alexstrang@uchicago.edu).
54
+ A. W. Eckford is with Department of Electrical Engineering and Computer
55
+ Science, York University, Toronto, ON M3J 1P3 Canada (e-mail: aeck-
56
+ ford@yorku.ca).
57
+ the Na+ channel has eight states: seven with zero conductance
58
+ and one with nonzero conductance. Colquhoun and Hawkes
59
+ introduced maximum likelihood methods for inferring the rate
60
+ constants of a partially observed Markov process representing
61
+ the nicotinic Acetylcholine receptor [8], [9], [10], [11], but
62
+ did not address the question of inferring microscopic state
63
+ occupancy from observable conductance time series. More
64
+ recently, research into the molecular biology of cystic fibrosis
65
+ (CF) has focused on the CF transmembrane conductance
66
+ regulator (CFTR), which can be modeled as a 7-state system
67
+ with two conducting states and five nonconducting states
68
+ [12] (detailed below in Section V). Beyond these biological
69
+ examples, problems of inferring or estimating hidden states
70
+ from incomplete observations are widely studied in the signal
71
+ processing literature [13].
72
+ The literature contains several approaches to approximating
73
+ the behavior of hidden states of partially observed Markov
74
+ processes. Sampling provides one common technique for
75
+ approximate inference [14]. As an example, recent work by
76
+ Fang et al. demonstrated an efficient algorithm for simulating
77
+ stochastic reaction networks with multiple separated time
78
+ scales using particle filters [15]. In general, Markov Chain
79
+ Monte Carlo is a widely employed sampling technique used
80
+ to infer hidden states [16], [17], that has also been applied to
81
+ ion channels [18]. For partially observed Bayesian networks
82
+ operating in discrete time, message passing algorithms on
83
+ factor graphs provide an efficient and exact inference method
84
+ [19]. The factor-graph formalism is highly flexible. Algorithms
85
+ based on the message passing concept have been extended to
86
+ applications in localization [20], compressed sensing [21], and
87
+ decision fusion [22]. Factor graphs are not limited to models
88
+ with a discrete number of variables. For example, Gaussian
89
+ message passing in linear Gaussian models (e.g. Kalman
90
+ filtering and smoothing) has been developed for continuous-
91
+ time models with discrete-time observations [23], [24], [25].
92
+ However, the state reconstruction problem for continuous-time
93
+ finite-state hidden Markov models has not been addressed in
94
+ the literature, to be best of our knowledge.
95
+ In this work, we extend the message-passing algorithm in
96
+ order to analytically interpolate state-occupancy probabilities
97
+ of a continuous-time system, given a discretely sampled time
98
+ series. That is, we show how to infer the time-dependent
99
+ conditional probabilities of latent states for continuous-time
100
+ discrete-state homogeneous Markov processes given a set of
101
+ partial observations over a finite time window. We derive
102
+ an equivalent formulation of the sum-product algorithm in
103
+ continuous time that allows one to find an explicit ana-
104
+ lytic solution for the state occupancy probability. Having
105
+ arXiv:2301.00843v1 [eess.SP] 2 Jan 2023
106
+
107
+ CHEN et. al: EXPLICITLY SOLVABLE CONTINUOUS-TIME INFERENCE FOR PARTIALLY OBSERVED MARKOV PROCESSES
108
+ 2
109
+ explicit solutions lowers the computational cost and, unlike
110
+ sampling-based approximate methods, does not sacrifice ac-
111
+ curacy. Furthermore, the continuous-time formalism leads to
112
+ elegant simplification of the analytic solutions. For certain
113
+ systems—like the three-state systems shown in Figure 2—the
114
+ conditional probability obeys a second-order inhomogeneous
115
+ linear ordinary differential equation. Finally, we demonstrate
116
+ the practical functionality of the algorithm with the 7-state
117
+ model for CFTR using simulated data.
118
+ The paper is organized as follows. Section II reviews the
119
+ message-passing algorithm for Markov processes with binary
120
+ observations. Section III displays the main result of the paper:
121
+ a continuous-time formulation of the sum-product algorithm.
122
+ We present the derivation of the conditional probability using
123
+ the message-passing approach in continuous time, and the
124
+ corresponding sum-product algorithm. Section IV discusses
125
+ the implications of the continuous-time formulation further.
126
+ We give examples of small systems to display how analytic
127
+ solutions may be found. In Section V we demonstrate the value
128
+ of the algorithm for a larger, realistic system.
129
+ II. THEORY OF THE SUM-PRODUCT ALGORITHM
130
+ The sum-product algorithm can be used generally for in-
131
+ ference on probabilistic models that can be written as factor
132
+ graphs [19]. There are many variants of the sum-product
133
+ algorithm, each suitable for accomplishing a different task.
134
+ For our purposes, we will focus on the forward/backward
135
+ algorithm for inference on hidden Markov models.
136
+ We consider a continuous-time, discrete-state homogeneous
137
+ Markov process on a finite state space Ω. Given a discrete,
138
+ uniformly spaced sampling interval, the continuous-time pro-
139
+ cess induces a discrete-time Markov process specified by some
140
+ column-stochastic transition matrix P that is invariant in time.
141
+ Let S ⊂ Ω be a subset of states, and let St ∈ Ω be the state
142
+ of the system at time t. We assume an observer can only
143
+ see whether St is in S or not. Accordingly, let Yt = m(St)
144
+ represent the observable where m(s) : Ω → {0, 1} is the
145
+ indicator function for the set S. The goal of the algorithm
146
+ is to infer the conditional probability of being at a particular
147
+ state, i ∈ Ω, given the binary observation.
148
+ The algorithm involves three vector-valued quantities: a for-
149
+ ward message αt, a backward message βt, and the observation
150
+ message χt. One can interpret the forward message as the
151
+ probability of arriving at a certain state from time 0 to time
152
+ t and the backward message as the likelihood of occupying
153
+ a certain state at time t conditioned on ending up in a given
154
+ target state, or a given target set of states, at the end of the
155
+ measurement T. On the other hand, the observation message
156
+ χt is an indicator function of the possible states given the
157
+ observation. For instance, if at time t, the observation of the
158
+ total system were Yt = 1, then χt would be a vector with 1’s
159
+ on the states in the observation set S and 0 otherwise. Using
160
+ superscripts to denote vector indices, i.e. v(i) denotes the i-
161
+ th element of vector v, we present pseudo-code for the sum-
162
+ product algorithm in Algorithm 1. Note that, the normalization
163
+ constant Z = �
164
+ k α(k)
165
+ t
166
+ β(k)
167
+ t
168
+ in Line 10 of Algorithm 1 is time
169
+ invariant [26].
170
+ Algorithm 1 Forward/Backward Algorithm
171
+ Input: The transition matrix P ∈ Rn×n, the observation
172
+ message χt for t ∈ {1, . . . , T}.
173
+ Output: The inferred probability pt for t ∈ {1, . . . , T}.
174
+ 1: Initialize the forward message α0 = π, the stationary
175
+ distribution of P
176
+ 2: Initialize the backward message β(i)
177
+ T
178
+ = 1, for all i
179
+ 3: for t from 2, . . . , T do
180
+ 4:
181
+ αt = diag(χt)Pαt−1
182
+ 5: end for
183
+ 6: for s from T − 1, . . . , 1 do
184
+ 7:
185
+ βs = P ⊺diag(χs+1)βs+1
186
+ 8: end for
187
+ 9: for t from 1, . . . , T do
188
+ 10:
189
+ pt =
190
+ αt⊙βt
191
+
192
+ k α(k)
193
+ t
194
+ β(k)
195
+ t
196
+ 11: end for
197
+ Fig. 1 illustrates the sum-product algorithm’s application to
198
+ a time series of discretely sampled observations. Consider a
199
+ three-state-chain with symmetric transition rates as shown in
200
+ the top-left of Figure 1. If the system takes states 1 or 2,
201
+ “0” will be observed, and “1” will be observed otherwise.
202
+ Using the sum-product algorithm, we can find the probability
203
+ of the system occupying each state given the discrete-time
204
+ observations. As shown in the bottom row, as the sampling
205
+ time step decreases, the conditional probabilities appear to
206
+ converge to a smooth curve within each interval with a fixed
207
+ observation (either “0” or “1”). Intuitively, there should exist
208
+ a continuous, perhaps piecewise differentiable, representation
209
+ of the conditional probability of a partially observed process.
210
+ We formalize this intuition below.
211
+ III. CONTINUOUS-TIME MESSAGE PASSING
212
+ In this section, we present the main result, namely the
213
+ derivation of the continuous-time message passing algorithm.
214
+ In this new formalism, messages are passed in the form
215
+ of linear differential equations on possible states given the
216
+ observable system. In order to guarantee the existence of the
217
+ continuous sum-product algorithm, we assume the following
218
+ conditions.
219
+ Assumptions:
220
+ A1 The continuous-time process {S(t); t ∈ [0, T]} takes
221
+ values in a finite state space Ω = {1, 2, . . . , N}.
222
+ A2 S(t) has the Markov property, and has exponentially
223
+ distributed waiting times parameterized by a rate matrix
224
+ W, with wji specifying the transition rate from state i to
225
+ state j. Note that W is constant in the interval [0, T].
226
+ A3 There is a distinguished subset S ⊂ Ω such that the
227
+ observable process Y(t) satisfies
228
+ Y(t) =
229
+
230
+ 1
231
+ if S(t) ∈ S,
232
+ 0
233
+ otherwise .
234
+ Further details appear in Appendix A.
235
+ Under these assumptions, we obtain a continuous-time ver-
236
+ sion of the sum-product algorithm by executing the following
237
+ steps (made rigorous in the proof of Theorem 1 below). Write
238
+
239
+ CHEN et. al: EXPLICITLY SOLVABLE CONTINUOUS-TIME INFERENCE FOR PARTIALLY OBSERVED MARKOV PROCESSES
240
+ 3
241
+ Fig. 1: Illustrating convergence of conditional state occupancy probabilities to a differentiable function for a three-state model.
242
+ (Top left) The state diagram. (Top middle) True simulated states. (Top right) Binary observation derived from true states.
243
+ (Bottom row) Inference of hidden states via the sum-product algorithm with time steps 2.5 sec (Bottom Left), 1.0 sec (Bottom
244
+ Middle) and 0.5 sec (Bottom Right).
245
+ out the matrix multiplication of the discrete-time algorithm
246
+ element-wise. Focus on one sojourn where the observation
247
+ doesn’t change. Within that time interval, take the limit as the
248
+ time step goes to zero to derive the continuous-time dynamics
249
+ of the conditional probabilities. Extend the solution to the
250
+ full time interval via appropriate boundary conditions at the
251
+ transition between each sojourn. The main result is stated in
252
+ the theorem below.
253
+ Theorem 1. Suppose processes S(t) and the associated
254
+ process Y(t) satisfies assumptions A1, A2, and A3 above.
255
+ Then, given a realization of the process Y(t), the conditional
256
+ probability p(t) = Pr[S(t)|Y(t)] exists, is piecewise smooth
257
+ (C∞), and is C∞ on all intervals where Y(t) is constant. In
258
+ particular, p(t) takes the form
259
+ p(t) =
260
+ ρ(t)
261
+
262
+ k ρ(k)(t) =
263
+ α(t) ⊙ β(t)
264
+
265
+ k α(k)(t) ⊙ β(k)(t)
266
+ (1)
267
+ where ⊙ denotes the element-wise product, and the quantities
268
+ α(t) and β(t) are functions of time that follow the linear
269
+ ordinary differential equations
270
+ dα(i)(t)
271
+ dt
272
+ =
273
+
274
+ k∈S\{i}
275
+ wkiα(k)(t) −
276
+
277
+ l̸=i
278
+ wilα(i)(t),
279
+ (2)
280
+ dβ(j)(t)
281
+ dt
282
+ = −
283
+
284
+ k∈S\{j}
285
+ wjkβ(k)(t) +
286
+
287
+ l̸=j
288
+ wjlβ(j)(t).
289
+ (3)
290
+ Proof. Without loss of generality, focus on the case where
291
+ Y(0) = Y(T) = 0, and Y(t) = 1 for 0 < t < T. We use
292
+ q(t) to denote a quantity, q, evolving in continuous time on
293
+ the interval [0, T], and qt to denote the same process sampled
294
+ at discrete times.
295
+ Let the time interval [0, T] be discretized with a step size
296
+ ∆t = T/n for some integer n ≫ 1. At each time step,
297
+ S(t) is sampled. Then, the sum-product algorithm can be used
298
+ to solve for pt. Writing the matrix multiplication out yields
299
+ the following set of equations for the forward and backward
300
+ messages in discrete time:
301
+ α(i)
302
+ t+∆t =
303
+
304
+ k
305
+ Pr[st+∆t = i|st = k]α(k)
306
+ t
307
+ χ(i)
308
+ t ,
309
+ (4)
310
+ β(i)
311
+ t
312
+ =
313
+
314
+ k
315
+ Pr[st+∆t = k|st = i]β(k)
316
+ t+∆tχ(k)
317
+ t+∆t.
318
+ (5)
319
+ We neglect states not in S because only the probability
320
+ conditioned on the observations is of interest. Then, for any
321
+ state i ∈ S, we argue that the corresponding forward message,
322
+ α(i)(t), and backward message, β(i)(t) in continuous time can
323
+ be written as solutions of systems of differential equations,
324
+ upon taking limits as ∆t → 0. For notational simplicity, for
325
+
326
+ true states
327
+ observation
328
+ 3
329
+ W2
330
+ 2
331
+ W/2
332
+ W23
333
+ 0
334
+ 0
335
+ 50
336
+ 100
337
+ 0
338
+ 50
339
+ 100
340
+ sample every 2.5 seconds
341
+ sample every 1 seconds
342
+ sample every 0.5 seconds
343
+ 1
344
+ 0.8
345
+ 0.8
346
+ 0.8
347
+ 0.6
348
+ 0.6
349
+ 0.6
350
+ 0.4
351
+ 0.4
352
+ 0.4
353
+ 0.2
354
+ 0.2
355
+ 0.2
356
+ 0
357
+ 0
358
+ 0
359
+ 20
360
+ 40
361
+ 60
362
+ 80
363
+ 100
364
+ 20
365
+ 40
366
+ 60
367
+ 80
368
+ 100
369
+ 20
370
+ 40
371
+ 60
372
+ 80
373
+ 100CHEN et. al: EXPLICITLY SOLVABLE CONTINUOUS-TIME INFERENCE FOR PARTIALLY OBSERVED MARKOV PROCESSES
374
+ 4
375
+ t > τ we let P(i,j)
376
+ t,τ
377
+ = Pr[S(t) = i|S(τ) = j].
378
+ dα(i)(t)
379
+ dt
380
+ = lim
381
+ ∆t→0
382
+ α(i)(t + ∆t) − α(i)(t)
383
+ ∆t
384
+ (6)
385
+ = lim
386
+ ∆t→0
387
+ 1
388
+ ∆t
389
+ � �
390
+ k
391
+ P(i,k)
392
+ t+∆t,tα(k)(t)χ(i)(t) − α(i)(t)
393
+
394
+ (7)
395
+ = lim
396
+ ∆t→0
397
+ 1
398
+ ∆t
399
+
400
+
401
+ k∈S\{i}
402
+ (wki∆t + o(∆t))α(k)(t) . . .
403
+
404
+
405
+ l̸=i
406
+ (wil∆t + o(t))α(i)(t)
407
+
408
+ (8)
409
+ =
410
+
411
+ k∈S\{i}
412
+ wkiα(k)(t) −
413
+
414
+ l̸=i
415
+ wilα(i)(t)
416
+ (9)
417
+ dβ(i)(t)
418
+ dt
419
+ = lim
420
+ ∆t→0
421
+ β(i)(t + ∆t) − β(i)(t)
422
+ ∆t
423
+ (10)
424
+ = lim
425
+ ∆t→0
426
+ 1
427
+ ∆t
428
+
429
+ β(i)(t + ∆t) . . .
430
+
431
+
432
+ k
433
+ P(k,i)
434
+ t+∆t,tβ(k)(t + ∆t)χ(k)(t + ∆t)
435
+
436
+ (11)
437
+ = lim
438
+ ∆t→0
439
+ 1
440
+ ∆t
441
+
442
+
443
+
444
+ k∈S\{i}
445
+ (wik∆t + o(∆t))β(k)(t + ∆t)
446
+ +
447
+
448
+ l̸=i
449
+ (wil∆t + o(t))β(i)(t + ∆t)
450
+
451
+ (12)
452
+ = −
453
+
454
+ k∈S\{i}
455
+ wikβ(k)(t) +
456
+
457
+ l̸=i
458
+ wilβ(i)(t)
459
+ (13)
460
+ where lim∆t→0 o(∆t)/∆t = 0. Readers could refer to Ap-
461
+ pendix A or consult existing literature such as [27] for the
462
+ relationship between transition probabilities and transition
463
+ rates of a Markov jump process.
464
+ The conditional probability can be found by solving the
465
+ differential equations, taking the component-wise product of
466
+ α(t) and β(t) for every t ∈ [0, T], and normalizing so as to
467
+ obtain a valid probability distribution.
468
+ The differential equation formulation is only applicable for
469
+ the time intervals where the observation Y(t) is constant.
470
+ When the observable Y(t) changes (when the systems transi-
471
+ tions from a state in S to a state not in S), the probability with
472
+ respect to time might not be differentiable; in some cases, it
473
+ is not even continuous. Therefore, we must specify boundary
474
+ conditions to connect the probabilities from one sojourn to
475
+ the next. The observable may change either by the system
476
+ entering S or else leaving S. Suppose a transition occurred
477
+ within time (t∗ −∆t, t∗] such that, for t < t∗ −∆t, S(t) ∈ S,
478
+ and S(t) ̸∈ S for t ≥ t∗. Call this event E. Then, we obtain
479
+ the following transition rule for the forward message.
480
+ Pr[S(t∗) = j|E]
481
+ =
482
+
483
+ i∈S Pj,i
484
+ t∗,t∗−∆tPr[S(t∗ − ∆t) = i]
485
+
486
+ k̸∈S
487
+
488
+ i∈S Pk,i
489
+ t∗,t∗−∆tPr[S(t∗ − ∆t) = i]
490
+ (14)
491
+ =
492
+
493
+ i∈S(wji∆t + o(∆t))Pr[S(t∗ − ∆t) = i]
494
+
495
+ k̸∈S
496
+
497
+ i∈S(wki∆t + o(∆t))Pr[S(t∗ − ∆t) = i]
498
+ (15)
499
+
500
+
501
+ i∈S wjiPr[S(t−
502
+ ∗ ) = i]
503
+
504
+ k̸∈S
505
+
506
+ i∈S wkiPr[S(t−
507
+ ∗ ) = i]
508
+ (16)
509
+ as ∆t → 0. Here Pr[S(t−
510
+ ∗ ) = i] is the probability of occupying
511
+ state i the instant before the transition, which can be found by
512
+ solving the differential equations introduced above.
513
+ We handle the boundary conditions at state transitions for
514
+ the backward message similarly. Define E as above and let s∗
515
+ be a particular goal state. Then:
516
+ Pr[S(T) = s∗|S(t∗ − ∆t) = j, E]
517
+ =
518
+
519
+ i̸∈S
520
+ Pr[S(T) = s∗, S(t∗) = i|S(t∗ − ∆t) = j, E]
521
+ =
522
+
523
+ i̸∈S Pr[S(T) = s∗|S(t∗) = i]Pi,j
524
+ t∗,t∗−∆t
525
+
526
+ k∈S
527
+
528
+ i̸∈S Ps∗,i
529
+ T,t∗Pi,k
530
+ t∗,t∗−∆t
531
+ (17)
532
+ =
533
+
534
+ i̸∈S Pr[S(T) = s∗|S(t∗) = i](wij∆t + o(∆t))
535
+
536
+ k∈S
537
+
538
+ i̸∈S Ps∗,i
539
+ T,t∗(wik∆t + o(∆t))
540
+ (18)
541
+ =
542
+
543
+ i̸∈S Pr[S(T) = s∗|S(t∗) = i](wij + o(∆t)
544
+ ∆t )
545
+
546
+ k∈S
547
+
548
+ i̸∈S Ps∗,i
549
+ T,t∗(wik + o(∆t)
550
+ ∆t )
551
+ (19)
552
+
553
+
554
+ i̸∈S wijPr[S(T) = s∗|S(t∗) = i]
555
+
556
+ k∈S
557
+
558
+ i̸∈S wikPr[S(T) = s∗|S(t∗) = i]
559
+ (20)
560
+ as ∆t → 0. Here, Pr[S(T) = s∗|S(t∗) = i] is a hitting
561
+ probability associated with the backward message at time
562
+ t∗, which can be found by solving the backward-message
563
+ differential equation. These boundary conditions, together with
564
+ the differential equations (2)-(3), give the continuous-time
565
+ evolution of the conditional probability for any finite-length
566
+ observations.
567
+ Note that the equations (2)-(3) extend to the case where
568
+ Y(0) = Y(T) = 1 and Y(t) = 0 for 0 < t < T by viewing
569
+ S ← Ω \ S. So, given a time series observation Y(t) where
570
+ observation (the value of Y(t)) changes at time 0 < t1 < t2 <
571
+ . . . tm, we can solve for the analytic solution at any interval
572
+ with consistent observation (ti, ti+1] using equation (2) and
573
+ (3). Then, use the result to compute the initial condition for the
574
+ next interval — namely, (ti+1, ti+2] for the forward message
575
+ and (ti−1, ti] for the backward message — as specified in (16)
576
+ and (20). Thus, the statement of Theorem 1 holds.
577
+ A general expression for the conditional probability can be
578
+ obtained, but it is not of great utility in most systems. Yet,
579
+ there are certain special cases that yield elegant solutions; we
580
+ introduce several examples in Section IV.
581
+ The continuous-time sum-product algorithm follows directly
582
+ from the derivation above, and is outlined in Algorithm 2.
583
+
584
+ CHEN et. al: EXPLICITLY SOLVABLE CONTINUOUS-TIME INFERENCE FOR PARTIALLY OBSERVED MARKOV PROCESSES
585
+ 5
586
+ The discrete algorithm passes information through matrix
587
+ multiplication of a truncated transition matrix; the continuous-
588
+ time algorithm does the same by solving a system of linear
589
+ differential equations using the truncated rate matrix. Since the
590
+ final conditional probability is only piecewise differentiable,
591
+ the boundary condition must be applied whenever a transition
592
+ in or out of the observable set S occurs.
593
+ Algorithm 2 Continuous-time Forward/Backward Algorithm
594
+ Input: The rate transition matrix W ∈ Rn×n, the observed
595
+ process Y(t).
596
+ Output: The inferred probability p(t) for t ∈ [0, T].
597
+ 1: Let [t1, t2, . . . , tm] be a list of times where transitions
598
+ occur
599
+ 2: τ ← 0
600
+ 3: α∗ ← π, the stationary distribution
601
+ 4: for j from 1, . . . , m do
602
+ 5:
603
+ αj ← solution to the forward message differential
604
+ equation (Equation 2) from τ to tj with initial condition
605
+ α∗
606
+ 6:
607
+ τ ← tj
608
+ 7:
609
+ α∗ ← distribution specified according to Equation 16
610
+ 8: end for
611
+ 9: τ ← T
612
+ 10: β∗ ← the uniform distribution
613
+ 11: for j from m, . . . , 1 do
614
+ 12:
615
+ βj ← solution to the backward message differential
616
+ equation (Equation 3) from τ to tj with initial condition
617
+ β∗
618
+ 13:
619
+ τ ← tj
620
+ 14:
621
+ β∗ ← distribution specified according to Equation 20
622
+ 15: end for
623
+ 16: α(t), β(t) ← concatenation αj’s and βj’s
624
+ 17: Compute ρ(t) = α(t)⊙β(t), the component-wise product
625
+ between α(t) and β(t) pointwise with respect to t
626
+ 18: Compute the conditional probability p(t) =
627
+ ρ(t)
628
+
629
+ k ρ(k)(t)
630
+ From a practical perspective, having the ability to solve
631
+ for the conditional probabilities exactly through differential
632
+ equations drastically lowers the computational cost of the
633
+ forward/backward algorithm. Traditionally, the discrete-time
634
+ algorithm propagates the forward and backward messages
635
+ through matrix operations at each time step. For long time-
636
+ series and/or high-dimensional systems, this is computation-
637
+ ally prohibitive. Through our continuous-time formalism, we
638
+ solve the differential equations analytically, which is an op-
639
+ eration that is independent of the length of the time-series,
640
+ to find the forward or backward message at any time point.
641
+ This difference effectively reduces the asymptotic scaling
642
+ from O(∆t−1) to O(1), with the later scaling only in the
643
+ number of observable transitions. In scenarios where finding
644
+ the appropriate boundary condition would require an iterative
645
+ procedure of solving the forward and backward messages
646
+ multiple times, our continuous time approach should be much
647
+ more efficient than the traditional discrete-time method. We
648
+ discuss the performance of the continuous-time message-
649
+ Fig. 2: State diagrams of two systems for which the
650
+ continuous-time message passing algorithm exhibit analytic
651
+ simplifications. (Left) 3-state chain with symmetric rates
652
+ w12 = w21. (Right) Irreversible 3-state loop. States marked
653
+ in red return Y(t) = 1 and blue return Y(t) = 0.
654
+ passing algorithm further in Section V.
655
+ IV. ANALYTIC SOLUTION
656
+ Theorem 1 in the previous section shows that the conditional
657
+ probability is always available analytically upon normalizing
658
+ the component-wise product of the forward and backward
659
+ messages,
660
+ i.e. p(t) = ρ(t)/Z where Z = �
661
+ k ρ(k)(t).
662
+ As
663
+ in the discrete-time case, the normalizing term Z is time-
664
+ invariant in the continuous-time case as well. See Appendix
665
+ B. The conditional probability may therefore be expressed in
666
+ a particularly elegant form in certain cases, namely as the
667
+ solution of a linear nonhomogeneous second-order differential
668
+ equation. We begin this section by considering two examples.
669
+ Following the examples, we consider extensions to higher
670
+ dimensions.
671
+ A. Symmetric 3-State Chain
672
+ Consider the three-state chain depicted in the left panel of
673
+ Figure 2, where states 1 and 2 are hidden. Assume that the per-
674
+ capita transition rates within the hidden block are symmetric,
675
+ i.e. w12 = w21 > 0, and assume w13 = w31 = 0. The rates
676
+ w23 > 0 and w32 > 0 may be arbitrary. These assumptions
677
+ result in the following rate matrix:
678
+ W =
679
+
680
+
681
+ −w21
682
+ w12
683
+ 0
684
+ w21
685
+ −(w12 + w32)
686
+ w23
687
+ 0
688
+ w32
689
+ −w23
690
+
691
+ � .
692
+ (21)
693
+ In this case, let S = {3}, the singleton set of state 3. When
694
+ Y(t) = 1 the inference problem is trivial since the system
695
+ takes state 3 with probability one. Thus, we emphasize the
696
+ intervals when Y(t) = 0.
697
+ First, consider the forward message given by the following
698
+ system of differential equations
699
+
700
+ dt =
701
+ �−w21
702
+ w12
703
+ w21
704
+ −(w12 + w32)
705
+
706
+ α .
707
+ (22)
708
+ Note that the matrix defining the system of equations corre-
709
+ sponds to the upper left block of W. To simplify notation, let
710
+ w21 = w12 = a and w32 = b. Then, the submatrix reduces to
711
+ the following form:
712
+
713
+ dt =
714
+ �−a
715
+ a
716
+ a
717
+ −a − b
718
+
719
+ α .
720
+ (23)
721
+
722
+ W
723
+ 13
724
+ W
725
+ W
726
+ 21
727
+ 32
728
+ 2
729
+ W
730
+ 32
731
+ W
732
+ W
733
+ 12
734
+ 23
735
+ W
736
+ 21
737
+ 2CHEN et. al: EXPLICITLY SOLVABLE CONTINUOUS-TIME INFERENCE FOR PARTIALLY OBSERVED MARKOV PROCESSES
738
+ 6
739
+ This is a linear system of differential equations that can
740
+ be solved exactly. The sub-matrix is real-symmetric, so is
741
+ diagonalizable. Therefore, the solution will be of the form:
742
+ α(t) = Aeλ1tv1 + Beλ2tv2.
743
+ (24)
744
+ where λi is an eigenvalue of the rate submatrix and vi is the
745
+ corresponding eigenvector. The eigenvalues and vectors are:
746
+ λ1/2 = a(−1 ±
747
+
748
+ 1 + γ2) − γ,
749
+ (25)
750
+ v1/2 =
751
+
752
+ γ ±
753
+
754
+ 1 + γ2
755
+ 1
756
+
757
+ ,
758
+ (26)
759
+ where γ = b/2a. Constants A and B are found through
760
+ the initial condition given below. In the previous section, the
761
+ initial forward message was set to the equilibrium distribution.
762
+ However, the chain structure leaves no ambiguity in the state
763
+ occupied when the observation changes from 1 to 0. So, the
764
+ initial forward message is the delta distribution on state 2:
765
+ α(0) =
766
+ �0
767
+ 1
768
+
769
+ .
770
+ (27)
771
+ After some time T, the system re-enters the visible state,
772
+ namely, state 3 again. By the same reasoning, we also have an
773
+ unambiguous boundary condition for the backward message:
774
+ β(T) =
775
+ �0
776
+ 1
777
+
778
+ .
779
+ (28)
780
+ Also, by the symmetry in the rates, the backward message
781
+ evolves according to the same equations as the forward mes-
782
+ sage, but backward in time. Thus, β(t) = α(T − t),
783
+ β(t) = Aeλ1(T −t)v1 + Beλ2(T −t)v2
784
+ (29)
785
+ where λi’s, vi’s, constants A and B all remain the same due
786
+ to symmetry.
787
+ The
788
+ conditional
789
+ probability
790
+ is
791
+ proportional
792
+ to
793
+ the
794
+ component-wise product ρ = α ⊙ β, which yields:
795
+ ρ(t) = A
796
+
797
+ eλ1(T −t)+λ2t + eλ1t+λ2(T −t)�
798
+ + B,
799
+ (30)
800
+ where
801
+ A = AB(v1 ⊙ v2) =
802
+ �−AB
803
+ AB�⊺,
804
+ (31)
805
+ B = A2eλ1T (v1 ⊙ v1) + B2eλ2T (v2 ⊙ v2).
806
+ (32)
807
+ To recover the conditional probability, we must normalize such
808
+ that the component sum evaluates to 1. In this case, since the
809
+ submatrix in Equation 22 is symmetric, the eigenvectors of the
810
+ submatrix are orthogonal to each other, which means the sum
811
+ of the components of v1⊙v2, or the inner-product between v1
812
+ and v2, evaluates to 0. Then, the component-wise sum of A is
813
+ zero, so the normalizing constant equals the component-wise
814
+ sum of B.
815
+ Write p(t) to represent the conditional probability. We write
816
+ Z = �
817
+ k B(k) to represent the normalizing constant. The final
818
+ equation describing the conditional probability can thus be
819
+ rewritten in the following form:
820
+ p(t) = 1
821
+ Z
822
+
823
+ Ae(λ1−λ2)teλ2T + Ae(λ2−λ1)teλ1T + B
824
+
825
+ . (33)
826
+ The components of p(t) may also be expressed as the solutions
827
+ of a second-order ordinary differential equation, cf. (51)-(52).
828
+ B. Irreversible 3-State Loop
829
+ Light-gated Channelrhodopsin-2 (ChR2) receptors can be
830
+ modeled with a 3-state chain where each vertex has out-degree
831
+ 1 and forms a cycle, as depicted in Figure 2, right panel [28],
832
+ [29]. Let state 1 be open, and states 2 and 3 be closed. That
833
+ is, S = {1}. The open/closed status of the channel is observed
834
+ through voltage recordings: high conductance indicates that the
835
+ channel is in the open state, and low conductance implies the
836
+ closed state. The rate matrix can be written as the following:
837
+ W =
838
+
839
+
840
+ −w21
841
+ 0
842
+ w13
843
+ w21
844
+ −w32
845
+ 0
846
+ 0
847
+ w32
848
+ −w13
849
+
850
+
851
+ (34)
852
+ where wji is the transition rate from state i to state j.
853
+ Conditioning on the channel being closed, the message-passing
854
+ algorithm takes the lower right 2 × 2 block as the transition
855
+ matrix.
856
+ When transitioning from S to a state not in S, the system
857
+ must enter state 2 first and exit through state 3. Thus the
858
+ boundary conditions for the forward and backward message
859
+ are
860
+ α(0) =
861
+ �1
862
+ 0
863
+
864
+ ,
865
+ β(T) =
866
+ �0
867
+ 1
868
+
869
+ (35)
870
+ where the first component corresponds to state 2 and second
871
+ state 3. Suppose w32 ̸= w13 and let γ =
872
+ w32
873
+ w13−w32 . Then, the
874
+ solution of the message-passing differential equations with the
875
+ initial condition enforced satisfies:
876
+ α(t) = e−w32t
877
+ �1
878
+ γ
879
+
880
+ − γe−w31t
881
+ �0
882
+ 1
883
+
884
+ ,
885
+ (36)
886
+ β(t) = e−w32(T −t)
887
+
888
+ 1
889
+ 0
890
+
891
+ + 1
892
+ γ e−w13(T −t)
893
+
894
+ −γ
895
+ 1
896
+
897
+ .
898
+ (37)
899
+ To get the conditional probability, first take the component-
900
+ wise product between the forward and backward message at
901
+ time t.
902
+ ρ(t) = e−w32t−w13(T −t)
903
+
904
+ −1
905
+ 1
906
+
907
+ +
908
+ � e−w32T
909
+ −e−w13T
910
+
911
+ (38)
912
+ As in the previous example, the normalizing constant is
913
+ invariant in time. In this case, Z = e−w32T − e−w13T . Thus,
914
+ the time evolution of the conditional probability can be written
915
+ p(t) = ρ(t)/Z.
916
+ (39)
917
+ Next, we consider a case in which the submatrix is not diag-
918
+ onalizable. We set w = w32 = w13, so that the corresponding
919
+ submatrix:
920
+ U =
921
+ �−w
922
+ 0
923
+ w
924
+ −w
925
+
926
+ (40)
927
+ admits the following Jordan normal form:
928
+ U =
929
+ �0
930
+ w
931
+ 1
932
+ 0
933
+ � �−w
934
+ 1
935
+ 0
936
+ −w
937
+ � � 0
938
+ 1
939
+ 1
940
+ w
941
+ 0
942
+
943
+ .
944
+ (41)
945
+ Using the same initial condition as Equation (35) to solve the
946
+ system of differential equations yields the following forward
947
+ message.
948
+ α(t) =
949
+ � e−wt
950
+ te−wt
951
+
952
+ (42)
953
+
954
+ CHEN et. al: EXPLICITLY SOLVABLE CONTINUOUS-TIME INFERENCE FOR PARTIALLY OBSERVED MARKOV PROCESSES
955
+ 7
956
+ We solve for the backward message by undergoing a similar
957
+ procedure and yield
958
+ β(t) =
959
+ �(T − t)e−w(T −t)
960
+ e−w(T −t)
961
+
962
+ .
963
+ (43)
964
+ Upon taking the component-wise product, we observe that the
965
+ evolution of conditional probability is independent of time:
966
+ ρ(t) = e−wT
967
+
968
+ T − t
969
+ t
970
+
971
+ ,
972
+ Z =
973
+ 1
974
+ Te−wT .
975
+ (44)
976
+ Since both the time entering and exiting the hidden states are
977
+ fixed, we can see that the probability flows linearly from one
978
+ state to the other at equal rates.
979
+ Time-invariant normalization is a fundamental property of
980
+ the sum-product algorithm [26]. In Appendix B we give an
981
+ elementary demonstration of this property for continuous-time
982
+ systems with time-homogeneous transition rates, as illustrated
983
+ by the two cases presented above.
984
+ C. Generalization
985
+ We show that under certain circumstances, the conditional
986
+ probability follows a second-order nonhomogeneous linear
987
+ ordinary differential equation.
988
+ Corollary 1. For 3-state systems where the truncated subma-
989
+ trix U has distinct eigenvalues, the conditional probability can
990
+ be written as the solution of a nonhomogeneous second-order
991
+ linear differential equation with constant coefficients.
992
+ Proof. Let (λi, vi) be eigenpairs for U and let (λi, wi) be
993
+ eigenpairs for U ⊺. Then the forward and backward messages
994
+ are given by the expressions:
995
+ α(t) = Aeλ1tv1 + Beλ2tv2,
996
+ (45)
997
+ β(t) = Ceλ1(T −t)w1 + Deλ2(T −t)w2.
998
+ (46)
999
+ Taking the component-wise product yields the form:
1000
+ ρ(t) = A
1001
+
1002
+ eλ1t+λ2(T −t)�
1003
+ + B
1004
+
1005
+ eλ1(T −t)+λ2t�
1006
+ + C,
1007
+ (47)
1008
+ = A
1009
+
1010
+ e(λ1−λ2)teλ2T �
1011
+ + B
1012
+
1013
+ e(λ2−λ1)teλ1T �
1014
+ + C,
1015
+ (48)
1016
+ where
1017
+ A = AD(v1 ⊙ w2),
1018
+ B = BC(v2 ⊙ w1),
1019
+ (49)
1020
+ C = ACeλ1T (v1 ⊙ w1) + BDeλ2T (v2 ⊙ w2).
1021
+ (50)
1022
+ Since the left and right eigenvectors corresponding to dif-
1023
+ ferent eigenvalues are orthogonal, all time-dependent terms
1024
+ cancel when normalizing. Thus the normalization constant
1025
+ Z = �
1026
+ k C(k). Upon differentiating p(t) = ρ(t)/Z twice with
1027
+ respect to time, we arrive at the second-order linear differential
1028
+ equation that describes the time evolution of the condition
1029
+ probability:
1030
+ d2p
1031
+ dt2 = (λ1 − λ2)2
1032
+ Z
1033
+
1034
+ Ae(λ1−λ2)teλ2T + Be(λ2−λ1)teλ1T �
1035
+ (51)
1036
+ = (λ1 − λ2)2
1037
+ Z
1038
+ (p − C).
1039
+ (52)
1040
+ This second order equation comes equipped with two bound-
1041
+ ary conditions set by fixing α(0) and β(T).
1042
+ Fig. 3: State diagram for CFTR. When the protein enters one of
1043
+ the red states, the ion channels will open and conduct a current.
1044
+ On the other hand, when CFTR is in one of the blue states,
1045
+ then the ion channels are closed and conducts no current. For
1046
+ this system S = {4, 5}.
1047
+ Corollary 2. For a system of arbitrary dimension, for which
1048
+ the truncated submatrix U has exactly two distinct eigenvalues
1049
+ and is diagonalizable, the conditional probability can be
1050
+ written as a second-order linear differential equation of the
1051
+ same form as Equation 52.
1052
+ Proof. Let λ1 and λ2 be the two distinct eigenvalues. Let vi be
1053
+ the sum of all right eigenvectors corresponding to eigenvalue
1054
+ λi, and let wi be the sum of all left eigenvectors corresponding
1055
+ to eigenvalue value λi. Then by diagonalizability, the proof for
1056
+ this corollary follows the proof of Corollary 1.
1057
+ This result extends Corollary 1 to higher dimensional sys-
1058
+ tems, under special conditions. These two corollaries match
1059
+ intuition: we are concerned with the state occupancy prob-
1060
+ ability conditioned on both the entrance and exit times of
1061
+ an observable state, so the probability flow obeys a second-
1062
+ order differential equation, which also requires specifying two
1063
+ boundary conditions. We note, however, that if the submatrix
1064
+ has three or more distinct eigenvalues, we do not expect a
1065
+ similar result to hold. Moreover, generic matrices typically
1066
+ have as many distinct eigenvalues as their dimension, so we
1067
+ do not expect this scenario to occur outside of special cases
1068
+ when the rate submatrix is highly regular. In addition, it would
1069
+ be difficult to check if a given rate submatrix satisfies these
1070
+ conditions through numerical solvers, as equality of repeated
1071
+ eigenvalues might be obscured by floating point arithmetic.
1072
+ Therefore, as much as the second-order differential equations
1073
+ interpretation is intuitively appealing, it is likely not a generic
1074
+ phenomenon that we should expect for arbitrary rate matrices.
1075
+ V. BIOLOGICAL EXAMPLE: CFTR
1076
+ Here, we show that our algorithm applies to a higher
1077
+ dimensional system, namely the 7-state model of the cystic
1078
+ fibrosis transmembrane conductance regulator (CFTR) protein.
1079
+ CF is a common life-threatening genetic disorder. CFTR is
1080
+ an important protein that regulates the opening and closing
1081
+ of ion channels. Loss of CFTR function causes pancreatic
1082
+ insufficiency as well as airway infection due to excessive
1083
+ mucus, which in turn can cause a variety of complications
1084
+ such as impaired innate immunity and respiratory failure [30].
1085
+ Mathematically, the behavior of CFTR can be captured
1086
+ with a 7-state hidden Markov process. Figure 3 illustrates
1087
+
1088
+ 2
1089
+ 3
1090
+ 4
1091
+ 5
1092
+ 7
1093
+ 6CHEN et. al: EXPLICITLY SOLVABLE CONTINUOUS-TIME INFERENCE FOR PARTIALLY OBSERVED MARKOV PROCESSES
1094
+ 8
1095
+ Fig. 4: The inference result of the continuous-time algorithm (top) and the discrete-time algorithm (middle) for the true state
1096
+ occupancy simulated from the Gillespie algorithm (bottom). Sampling time step ∆t = 10−4.
1097
+ the state diagram [12]. The ion channel opens (conducts an
1098
+ ionic current) when CFTR is in state four or five (marked in
1099
+ red). When in the nonconducting states (marked in blue) the
1100
+ ion channel is closed. Transmembrane conductance recordings
1101
+ report whether CFTR is in a conducting or a nonconducting
1102
+ state, but do not directly indicate which of the possible states
1103
+ is occupied. Using the numbering shown in Figure 3, the rate
1104
+ matrix is defined as follows:
1105
+ W =
1106
+
1107
+
1108
+
1109
+
1110
+
1111
+
1112
+
1113
+
1114
+
1115
+ −9.9
1116
+ 5.0
1117
+ 0
1118
+ 0
1119
+ 0
1120
+ 0
1121
+ 1.7
1122
+ 9.9
1123
+ −12.7
1124
+ 5.8
1125
+ 0
1126
+ 0
1127
+ 0
1128
+ 0
1129
+ 0
1130
+ 7.7
1131
+ −10.7
1132
+ 10.0
1133
+ 0
1134
+ 0
1135
+ 0
1136
+ 0
1137
+ 0
1138
+ 4.9
1139
+ −17.1
1140
+ 0
1141
+ 0
1142
+ 0
1143
+ 0
1144
+ 0
1145
+ 0
1146
+ 7.1
1147
+ −3.0
1148
+ 7.0
1149
+ 0
1150
+ 0
1151
+ 0
1152
+ 0
1153
+ 0
1154
+ 3.0
1155
+ −13.0
1156
+ 12.8
1157
+ 0
1158
+ 0
1159
+ 0
1160
+ 0
1161
+ 0
1162
+ 6.0
1163
+ −14.5
1164
+
1165
+
1166
+
1167
+
1168
+
1169
+
1170
+
1171
+
1172
+
1173
+ .
1174
+ (53)
1175
+ We used Gillespie’s exact stochastic simulation algorithm
1176
+ [31], [32], [33] to generate sample traces of the ion channel
1177
+ states and recordings. The simulation produces discrete state,
1178
+ continuous time trajectories. We introduced a finite sampling
1179
+ time step to discretize the simulated data along the time axis,
1180
+ consistent with data obtained through experimental recordings.
1181
+ Then, we place the generated data into discretized time bins
1182
+ where the size of each bin (one can think of this as the sam-
1183
+ pling time step) is a parameter that can be altered. We solved
1184
+ the differential equations giving the forward and backward
1185
+ messages exactly via function handles in Matlab. Figure 4
1186
+ compares the traces produced by the classical discrete-time
1187
+ algorithm, our continuous-time algorithm, and the true states,
1188
+ and shows excellent agreement among the respective curves.
1189
+ With a sufficiently small time step (∆t = 10−4), the contin-
1190
+ uous and discrete-time algorithms show no visible discrepancy,
1191
+ as expected. Figure 5 shows that the maximum discrepancy
1192
+ Fig. 5: First-order convergence of the message passing al-
1193
+ gorithms as a function of sampling time step. The mean
1194
+ maximum difference was plotted along with one standard
1195
+ deviation about the mean as the error bar for an ensemble
1196
+ of forty trajectories.
1197
+ (ℓ∞ norm) between the conditional probabilities generated by
1198
+ the continuous time and discrete time algorithms decreases
1199
+ linearly with the sampling time step ∆t. The figure shows
1200
+ the results from an ensemble of forty independent repeated
1201
+ trials for each sample size. Again, we emphasize that while
1202
+ the discrete time algorithm requires iterating over all samples,
1203
+ which scales O(∆t−1), the continuous time algorithm outputs
1204
+ a description of the conditional probability — that is, a
1205
+ function that returns a value at an exact time point queried
1206
+ — in O(1) time, scaling only with the number of transitions.
1207
+
1208
+ inferred probability of states: continuous
1209
+ 1234567
1210
+ 0.9
1211
+ 0.8
1212
+ 0.5
1213
+ 1
1214
+ 1.5
1215
+ 2
1216
+ 2.5
1217
+ 3
1218
+ 3.5
1219
+ 4
1220
+ 4.5
1221
+ 5
1222
+ ×104
1223
+ 0.7
1224
+ inferred probability of states: discrete
1225
+ 1234567
1226
+ 0.6
1227
+ 0.5
1228
+ 0.4
1229
+ 0.5
1230
+ 1
1231
+ 1.5
1232
+ 2
1233
+ 2.5
1234
+ 3
1235
+ 3.5
1236
+ 4
1237
+ 4.5
1238
+ 5
1239
+ ×104
1240
+ 0.3
1241
+ true states
1242
+ 0.2
1243
+ 134567
1244
+ 0.1
1245
+ 0.5
1246
+ 1.5
1247
+ 2
1248
+ 2.5
1249
+ 3.5
1250
+ 4.5
1251
+ 0
1252
+ 3
1253
+ 4
1254
+ 5
1255
+ time
1256
+ ×10410~2
1257
+ maximum difference
1258
+ 10~3
1259
+ 10~5
1260
+ 10~6
1261
+ 10-7
1262
+ 10-7
1263
+ 10-6
1264
+ 10-5
1265
+ 10-4
1266
+ 10-3
1267
+ size of sampling intervalCHEN et. al: EXPLICITLY SOLVABLE CONTINUOUS-TIME INFERENCE FOR PARTIALLY OBSERVED MARKOV PROCESSES
1268
+ 9
1269
+ VI. DISCUSSION & CONCLUSIONS
1270
+ This paper presents an algorithm for continuous-time infer-
1271
+ ence on partially observable Markov processes with discrete
1272
+ state spaces. We show that the well-known sum-product al-
1273
+ gorithm can be extended to the continuous-time domain via
1274
+ two sets of differential equations and pointwise normalization.
1275
+ In the continuous time setting, we were able to solve the
1276
+ trajectory of conditional probabilities exactly given a finite
1277
+ time-series. Moveover, we find that the dynamics of the state
1278
+ occupancy probabilities can be reduced to second-order dif-
1279
+ ferential equations under special circumstances. These results
1280
+ are valuable not only for their mathematical interest, but
1281
+ also because they have the potential to reduce the inference
1282
+ problem to solving systems of linear differential equations,
1283
+ with a potentially significant reduction in computational com-
1284
+ plexity for long time series. Numerically, the continuous-time
1285
+ algorithm is consistent with the discrete-time algorithm in the
1286
+ limit of small time step, but executes in approximately constant
1287
+ time rather than linearly in the number of time steps.
1288
+ Our formalism extends naturally to non-binary observations.
1289
+ Briefly, let S1, S2, . . . , Sm be a partition over the sample space
1290
+ Ω, and suppose the observable process Y is given as:
1291
+ Y(t) = i if S(t) ∈ Si.
1292
+ (54)
1293
+ For a sojourn with observation i, we can apply the forward
1294
+ and backward message-passing scheme as introduced for the
1295
+ binary case, viewing the observation as either in Si or Ω\Si. At
1296
+ the boundaries, the same technique (as in the proof of Theorem
1297
+ 1) can be used for finding the update rule by noting the
1298
+ possible transitions from Si to Sj, for all j ̸= i. This approach
1299
+ can finally be extended to an arbitrary collection of subsets
1300
+ of Ω where the elements are not necessarily disjoint. One
1301
+ may accomplish this extension by expanding all unions and
1302
+ intersections as disjoint sets possibly with the same observable.
1303
+ We defer detailed investigations in this direction to future
1304
+ work.
1305
+ Extending the continuous-time message passing to the case
1306
+ with inhomogeneous transition rates remains an open problem.
1307
+ We expect a derivation similar to the proof of the main theorem
1308
+ would be applicable, possibly with smoothness constraints
1309
+ on the transition rates. While the normalization constant will
1310
+ remain invariant in time, we do not expect a result such as
1311
+ Corollary 1 to hold beyond constant transition rates.
1312
+ Finally, we note the relationship between conditional prob-
1313
+ ability and a second-order differential equation is intuitively
1314
+ satisfying: the entry and exit times act as two boundary
1315
+ conditions that fix the endpoints of the evolution, whereas
1316
+ the unconstrained forward evolution equation, a first-order
1317
+ differential equation, requires only the starting condition. It
1318
+ is an interesting question for future work to investigate under
1319
+ which assumptions a similar result as Corollary 1 would hold
1320
+ for systems with more than two distinct eigenvalues.
1321
+ APPENDIX A
1322
+ NOTATION AND PRELIMINARIES
1323
+ For completeness, we define a continuous-time discrete-
1324
+ space Markov process with exponential waiting times.
1325
+ Definition 1 (Markov Process). Let {S(t); t ∈ [0, T]} be
1326
+ a discrete-space, continuous-time stochastic process where
1327
+ for each t, S(t) is a random variable with state space
1328
+ Ω = {1, 2, . . . , N}, N < ∞. Then, the process S(t) has the
1329
+ Markov Property if for any s1, s2, . . . , sm ∈ Ω, 0 < τ1 <
1330
+ τ2 < · · · < τm−1 < t,
1331
+ Pr[S(t) = sm|S(τ1) = s1, S(τ2) = s2, . . . , S(τm−1) = sm−1]
1332
+ = Pr[S(t) = sm|S(τm−1) = sm−1].
1333
+ (55)
1334
+ Furthermore, the process has exponential waiting times if for
1335
+ any i, j ∈ Ω, i ̸= j, there is a constant rate 0 ≤ wji < ∞
1336
+ such that
1337
+
1338
+ Pr[S(t + ∆t) = i|S(t) = i] = 1 − �
1339
+ k̸=i wki∆t + o(∆t)
1340
+ Pr[S(t + ∆t) = j|S(t) = i] = wji∆t + o(∆t)
1341
+ Pr[S(t + ∆t) = j, S(t + 2∆t) = k|S(t) = i] = o(∆t),
1342
+ ∀k
1343
+ for sufficiently small ∆t.
1344
+ The following table lists notation used in the paper.
1345
+ Symbol
1346
+ Meaning
1347
+ St
1348
+ discrete-time process with (integer) time index t
1349
+ S(t)
1350
+ continuous-time process with time index t
1351
+
1352
+ sample space of a process at fixed time
1353
+ S
1354
+ states that give observable “1”
1355
+ Y(t)
1356
+ the observed process (indicating S(t) ∈ S)
1357
+ P
1358
+ transition matrix of a Markov chain
1359
+ W
1360
+ transition rate matrix of Markov process
1361
+ αt; α(t)
1362
+ forward message
1363
+ βt; β(t)
1364
+ backward message
1365
+ χt; χ(t)
1366
+ observation message
1367
+ ρt; ρ(t)
1368
+ unnormalized conditional state-occupancy probability
1369
+ Z(t)
1370
+ normalizing constant for ρ(t)
1371
+ pt; p(t)
1372
+ conditional state-occupancy probability
1373
+ ∆t
1374
+ sampling time step
1375
+ APPENDIX B
1376
+ INVARIANT NORMALIZATION IN CONTINUOUS TIME
1377
+ Time-invariant invariant normalization is a fundamental
1378
+ property of the sum-product algorithm [26]. In the continuous
1379
+ time case, we observed that this property can be easily con-
1380
+ firmed when the submatrices are diagonalizable, because the
1381
+ left and right eigenvectors corresponding to different eigenval-
1382
+ ues are orthogonal. When the submatrix has nontrivial Jordan
1383
+ blocks, the time-dependent term cancels in less obvious ways.
1384
+ Here we show that time-independent normalization holds in
1385
+ general, using only elementary calculus without invoking the
1386
+ machinery of factor-graphs.
1387
+ Recall
1388
+ that
1389
+ the
1390
+ normalizing
1391
+ constant
1392
+ is
1393
+ Z(t)
1394
+ =
1395
+
1396
+ i α(i)(t)β(i)(t). Using Equation 2 and 3, we can obtain the
1397
+
1398
+ CHEN et. al: EXPLICITLY SOLVABLE CONTINUOUS-TIME INFERENCE FOR PARTIALLY OBSERVED MARKOV PROCESSES
1399
+ 10
1400
+ following series of expressions.
1401
+ dZ(t)
1402
+ dt
1403
+ = d
1404
+ dt
1405
+
1406
+ i∈S
1407
+ α(i)(t)β(i)(t)
1408
+ (56)
1409
+ =
1410
+
1411
+ i∈S
1412
+ dα(i)(t)
1413
+ dt
1414
+ β(i)(t) + α(i)(t)dβ(i)(t)
1415
+ dt
1416
+ (57)
1417
+ =
1418
+
1419
+ i∈S
1420
+
1421
+ � �
1422
+ k∈S\{i}
1423
+ wkiα(k) −
1424
+
1425
+ l̸=i
1426
+ α(i)
1427
+
1428
+ � β(i) . . .
1429
+ + α(i)
1430
+
1431
+ �−
1432
+
1433
+ k∈S\{i}
1434
+ wikβ(k) +
1435
+
1436
+ l̸=i
1437
+ β(i)
1438
+
1439
+
1440
+ (58)
1441
+ =
1442
+
1443
+ i∈S
1444
+
1445
+ k∈S\{i}
1446
+ wkiα(k)β(i) − wikα(i)β(k)
1447
+ (59)
1448
+ = 0
1449
+ (60)
1450
+ Since the rate of change of Z(t) is zero, the normalizing
1451
+ constant is invariant of time.
1452
+ REFERENCES
1453
+ [1] G. Grisettiyz, C. Stachniss, and W. Burgard, “Improving grid-based
1454
+ slam with Rao-Blackwellized particle filters by adaptive proposals and
1455
+ selective resampling,” in Proceedings of the 2005 IEEE International
1456
+ Conference on Robotics and Automation.
1457
+ IEEE, 2005, pp. 2432–2437.
1458
+ [2] L. E. Baum and J. A. Eagon, “An inequality with applications to
1459
+ statistical estimation for probabilistic functions of Markov processes and
1460
+ to a model for ecology,” Bulletin of the American Mathematical Society,
1461
+ vol. 73, no. 3, pp. 360–363, 1967.
1462
+ [3] D. F. Anderson, B. Ermentrout, and P. J. Thomas, “Stochastic repre-
1463
+ sentations of ion channel kinetics and exact stochastic simulation of
1464
+ neuronal dynamics,” Journal of Computational Neuroscience, vol. 38,
1465
+ no. 1, pp. 67–82, 2015.
1466
+ [4] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet allocation,”
1467
+ Journal of Machine Learning research, vol. 3, pp. 993–1022, 2003.
1468
+ [5] A. L. Hodgkin and A. F. Huxley, “A quantitative description of mem-
1469
+ brane current and its application to conduction and excitation in nerve,”
1470
+ The Journal of Physiology, vol. 117, no. 4, p. 500, 1952.
1471
+ [6] E. Skaugen and L. Walløe, “Firing behaviour in a stochastic nerve
1472
+ membrane model based upon the Hodgkin—Huxley equations,” Acta
1473
+ Physiologica Scandinavica, vol. 107, no. 4, pp. 343–363, 1979.
1474
+ [7] B. Hille, “Ionic channels in excitable membranes. current problems and
1475
+ biophysical approaches,” Biophysical Journal, vol. 22, no. 2, pp. 283–
1476
+ 294, 1978.
1477
+ [8] D. Colquhoun and A. G. Hawkes, “Relaxation and fluctuations of mem-
1478
+ brane currents that flow through drug-operated channels,” Proceedings
1479
+ of the Royal Society of London. Series B. Biological Sciences, vol. 199,
1480
+ no. 1135, pp. 231–262, 1977.
1481
+ [9] D. Colquhoun and A. Hawkes, “On the stochastic properties of single
1482
+ ion channels,” Proceedings of the Royal Society of London. Series B.
1483
+ Biological Sciences, vol. 211, no. 1183, pp. 205–235, 1981.
1484
+ [10] D. Colquhoun and A. G. Hawkes, “On the stochastic properties of bursts
1485
+ of single ion channel openings and of clusters of bursts,” Philosophical
1486
+ Transactions of the Royal Society of London. Series B, Biological
1487
+ Sciences, pp. 1–59, 1982.
1488
+ [11] F. Qin, A. Auerbach, and F. Sachs, “Maximum likelihood estimation
1489
+ of aggregated Markov processes,” Proceedings of the Royal Society of
1490
+ London. Series B: Biological Sciences, vol. 264, no. 1380, pp. 375–383,
1491
+ 1997.
1492
+ [12] M. D. Fuller, Z.-R. Zhang, G. Cui, and N. A. McCarty, “The block
1493
+ of CFTR by scorpion venom is state-dependent,” Biophysical Journal,
1494
+ vol. 89, no. 6, pp. 3960–3975, 2005.
1495
+ [13] H.-A. Loeliger, J. Dauwels, J. Hu, S. Korl, L. Ping, and F. R. Kschis-
1496
+ chang, “The factor graph approach to model-based signal processing,”
1497
+ Proceedings of the IEEE, vol. 95, no. 6, pp. 1295–1322, 2007.
1498
+ [14] D. Koller and N. Friedman, Particle-based Approximate Inference. MIT
1499
+ Press, 2012.
1500
+ [15] Z. Fang, A. Gupta, and M. Khammash, “Stochastic filtering for mul-
1501
+ tiscale stochastic reaction networks based on hybrid approximations,”
1502
+ Journal of Computational Physics, vol. 467, p. 111441, 2022.
1503
+ [16] O. Capp´e, C. P. Robert, and T. Ryd´en, “Reversible jump, birth-and-
1504
+ death and more general continuous time Markov chain Monte Carlo
1505
+ samplers,” Journal of the Royal Statistical Society: Series B (Statistical
1506
+ Methodology), vol. 65, no. 3, pp. 679–700, 2003.
1507
+ [17] P. M. Djuric and J.-H. Chun, “Estimation of nonstationary hidden
1508
+ Markov models by MCMC sampling,” in 1999 IEEE International
1509
+ Conference on Acoustics, Speech, and Signal Processing. Proceedings.
1510
+ ICASSP99 (Cat. No. 99CH36258), vol. 3.
1511
+ IEEE, 1999, pp. 1737–1740.
1512
+ [18] R. Rosales, J. A. Stark, W. J. Fitzgerald, and S. B. Hladky, “Bayesian
1513
+ restoration of ion channel records using hidden Markov models,” Bio-
1514
+ physical Journal, vol. 80, no. 3, pp. 1088–1103, 2001.
1515
+ [19] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and
1516
+ the sum-product algorithm,” IEEE Transactions on Information Theory,
1517
+ vol. 47, no. 2, pp. 498–519, 2001.
1518
+ [20] D. Jin, F. Yin, C. Fritsche, F. Gustafsson, and A. M. Zoubir, “Bayesian
1519
+ cooperative localization using received signal strength with unknown
1520
+ path loss exponent: Message passing approaches,” IEEE Transactions
1521
+ on Signal Processing, vol. 68, pp. 1120–1135, 2020.
1522
+ [21] S. Som and P. Schniter, “Compressive imaging using approximate
1523
+ message passing and a Markov-tree prior,” IEEE Transactions on Signal
1524
+ Processing, vol. 60, no. 7, pp. 3439–3448, 2012.
1525
+ [22] A. Abrardo, M. Barni, K. Kallas, and B. Tondi, “A message passing
1526
+ approach for decision fusion of hidden-Markov observations in the
1527
+ presence of synchronized attacks,” in Int. Conf. Advances in Multimedia
1528
+ (MMEDIA), Special Track on Models and Algorithms for Spatially and
1529
+ Temporally Correlated Data (STCD), Venice, Italy, 2017.
1530
+ [23] L. Bolliger, Digital Estimation of Continuous-Time Signals Using Factor
1531
+ Graphs, Hartung-Gorre Verlag, Konstanz, Series in Signal and Informa-
1532
+ tion Processing, vol. 22, 2012.
1533
+ [24] L. Bolliger, H.-A. Loeliger, and C. Vogel, “LMMSE estimation and
1534
+ interpolation of continuous-time signals from discrete-time samples
1535
+ using factor graphs,” arXiv preprint arXiv:1301.4793, 2013.
1536
+ [25] L. Bruderer and H.-A. Loeliger, “Estimation of sensor input signals that
1537
+ are neither bandlimited nor sparse,” in 2014 Information Theory and
1538
+ Applications Workshop (ITA).
1539
+ IEEE, 2014, pp. 1–5.
1540
+ [26] G. D. Forney Jr and P. O. Vontobel, “Partition functions of normal factor
1541
+ graphs,” arXiv preprint arXiv:1102.0316, 2011.
1542
+ [27] R. G. Gallager, Stochastic Processes: Theory for Applications.
1543
+ Cam-
1544
+ bridge University Press, 2013.
1545
+ [28] A. W. Eckford and P. J. Thomas, “The channel capacity of Channel-
1546
+ rhodopsin and other intensity-driven signal transduction receptors,” IEEE
1547
+ Transactions on Molecular, Biological and Multi-Scale Communications,
1548
+ vol. 4, no. 1, pp. 27–38, 2018.
1549
+ [29] G. Nagel, T. Szellas, W. Huhn, S. Kateriya, N. Adeishvili, P. Berthold,
1550
+ D. Ollig, P. Hegemann, and E. Bamberg, “Channelrhodopsin-2, a directly
1551
+ light-gated cation-selective membrane channel,” Proceedings of the
1552
+ National Academy of Sciences, vol. 100, no. 24, pp. 13 940–13 945,
1553
+ 2003.
1554
+ [30] D. Goetz and C. L. Ren, “Review of cystic fibrosis,” Pediatric Annals,
1555
+ vol. 48, no. 4, pp. e154–e161, 2019.
1556
+ [31] D. T. Gillespie, “Exact stochastic simulation of coupled chemical
1557
+ reactions,” The Journal of Physical Chemistry, vol. 81, no. 25, pp. 2340–
1558
+ 2361, 1977.
1559
+ [32] ——, “Stochastic simulation of chemical kinetics,” Annual Review of
1560
+ Physical Chemistry, vol. 58, pp. 35–55, 2007.
1561
+ [33] D. J. Wilkinson, Stochastic Modelling for Systems Biology.
1562
+ Chapman
1563
+ and Hall/CRC, 2018.
1564
+
QdAyT4oBgHgl3EQf7vpN/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
SNE0T4oBgHgl3EQf1wKp/content/tmp_files/2301.02704v1.pdf.txt ADDED
@@ -0,0 +1,704 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Revista Mexicana de Física 3 040909 (2022) 1–4
2
+ September 2022
3
+ Rivet and the analysis preservation in heavy-ion collisions experiments
4
+ Antonio Carlos Oliveira da Silva (for the ALICE Collaboration)
5
+ University of Tennessee, Knoxville, 1408 Circle Drive, Knoxville TN 37996-1200
6
+ Received 3 July 2022; accepted 15 September 2022
7
+ The comparison of experimental data and theoretical predictions is important for our understanding of the mechanisms for interactions and
8
+ particle production in hadron collisions, both at the Large Hadron Collider and at the Relativistic Heavy-Ion Collider experiments. Several
9
+ tools were ideated to help with that. Rivet (Robust Independent Validation of Experiment and Theory) is a framework that facilitates the
10
+ comparison between measurements from high-energy physics experiments and Monte Carlo event generators able to produce outputs using
11
+ the HepMC package. Rivet contains a repository with analysis algorithms developed by experiments, providing analysis documentation and
12
+ preservation.
13
+ The recent developments for the implementation of centrality and multiplicity classes in Rivet are presented in this contribution.
14
+ Keywords:
15
+ 1
16
+ Introduction
17
+ Currently, the data and analysis preservation in high-energy
18
+ physics experiments is becoming a common concern. Previ-
19
+ ous experiments and collaborations are losing the power of
20
+ reproducing their measurements since the data are not prop-
21
+ erly kept in a accessible way.
22
+ The old code, which con-
23
+ tains crucial and detailed information like detector accep-
24
+ tance, particle and event selections, and corrections, is no
25
+ longer maintained and it is very difficult, if possible, to be
26
+ run again. Comparisons of previous measurements with new
27
+ models is, therefore, very challenging.
28
+ Robust Independent Validation of Experiment and The-
29
+ ory (Rivet) [1] is a framework that aims to facilitate the com-
30
+ parison between data and Monte Carlo (MC) event genera-
31
+ tors.
32
+ 2
33
+ Rivet framework
34
+ Rivet analyses are written in C++ and it currently contains
35
+ more than 1000 analyses from several high-energy physics
36
+ collaborations. The data, when available, are downloaded di-
37
+ rectly from HepData [2]. Any model that is incorporated in
38
+ an event generator able to produce output that complies with
39
+ HepMC framework [3] can be used by Rivet for the compar-
40
+ ison with data. The integration of Rivet with HepMC and
41
+ HepData is pictured in the scheme presented in Fig. 1.
42
+ The references for the event generators in Fig.
43
+ 1 can
44
+ be found in [4–12]. Not all of them provide output using
45
+ HepMC standards.
46
+ In principle, an article presenting a measurement should
47
+ present enough information to make the measurement able
48
+ to be reproduced by another experiment or theoretician inter-
49
+ ested in comparing the data with a model. However, some
50
+ subtle details about detector acceptances, particle selections,
51
+ trigger conditions, etc, could be missing or not clearly de-
52
+ scribed. This can be the case even in internal notes in large
53
+ collaborations.
54
+ FIGURE 1. Schematic diagram showing how Rivet is integrated
55
+ with HepMC and HepData.
56
+ Rivet aims at preserving all the analysis details. Further-
57
+ more, it should reproduce the methods used in a measurement
58
+ as close as possible. One of the pillars of the Rivet philoso-
59
+ phy is that we should treat Monte Carlo simulations in the
60
+ same way as data.
61
+ In order to assure maximum fidelity to the original ac-
62
+ ceptances, selections and methods used in a measurement,
63
+ whenever possible, the rivet analysis should be implemented
64
+ by the collaboration that published the article containing the
65
+ measurement. Currently, ALICE has an official internal pro-
66
+ cedure for Rivet analysis approvals.
67
+ 3
68
+ Centrality and multiplicity determination
69
+ Measurements in heavy-ion collisions are commonly differ-
70
+ ential in centrality intervals to study different physical phe-
71
+ nomena. Therefore, centrality determination is a crucial fea-
72
+ ture Rivet has to provide in order to reproduce measurements
73
+ in heavy-ion collisions.
74
+ Centrality determination in ALICE is commonly pro-
75
+ vided by the V0 detector [13], which consists of two ar-
76
+ rays, V0-A and V0-C covering the pseudorapidity ranges 2.8
77
+ < η < 5.1 and 3.7 < η < 1.7 respectively.
78
+ Figure 2 presents the distribution of the total energy de-
79
+ arXiv:2301.02704v1 [physics.data-an] 6 Jan 2023
80
+
81
+ AMPT
82
+ FXR
83
+ HIJING
84
+ JETSCAPE
85
+ PYTHIA
86
+ Monte Carlo Mode
87
+ JEWEL
88
+ EPOS
89
+ PHSI
90
+ smash
91
+ HepMC
92
+ HEpData
93
+ Rivet2
94
+ ANTONIO CARLOS OLIVEIRA DA SILVA
95
+ posited in the V0 scintillators (amplitude). The most cen-
96
+ tral collisions are associated with those event with highest
97
+ V0 amplitude. The details of the centrality determination are
98
+ described in [14].
99
+ FIGURE 2. Distribution of the total amplitude in the V0 scintilla-
100
+ tors in black points. The data are fitted using a Negative Binomial
101
+ Distribution (NBD) using parameters from the Glauber model.
102
+ b
103
+ b
104
+ b
105
+ b
106
+ b b
107
+ b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b
108
+ b b b b b b b b b b
109
+ b b b b
110
+ b
111
+ b b b b b b b b b b b b b b
112
+ b b b b b b
113
+ b b b b b b
114
+ b b
115
+ b b b b
116
+ b b
117
+ b b b b b b b b b b b b b b b b b b b b b b b b
118
+ b b b b b
119
+ b b b b b b b b b b b b b b b b b b b b b b b b b b b b
120
+ b
121
+ b b b b
122
+ b
123
+ b
124
+ b
125
+ b b b b
126
+ b b b b b b b b
127
+ b b
128
+ b
129
+ b b b b
130
+ b b
131
+ b b b b b b b b b b
132
+ b
133
+ b b b b b b b
134
+ b b b b b b b b b b b b b b b
135
+ b
136
+ b b b
137
+ b
138
+ b b b b b
139
+ b b b
140
+ b b b
141
+ b b
142
+ b
143
+ b b b
144
+ b b b
145
+ b b
146
+ b
147
+ b
148
+ b b b b b b b b b b b
149
+ b
150
+ b b
151
+ b b b b b
152
+ b b
153
+ b b
154
+ b b
155
+ b
156
+ b
157
+ b b
158
+ b b b
159
+ b
160
+ b b b b b
161
+ b
162
+ b
163
+ b
164
+ b b
165
+ b b
166
+ b b
167
+ b
168
+ b
169
+ b
170
+ b b
171
+ b
172
+ b
173
+ b b
174
+ b
175
+ b b
176
+ b
177
+ b
178
+ b
179
+ b
180
+ b b b
181
+ b
182
+ b b b b
183
+ b
184
+ Data
185
+ calibration ALICE PbPb2760GeV
186
+ 0
187
+ 5000
188
+ 1.0·104
189
+ 1.5·104
190
+ 2.0·104
191
+ 2.5·104
192
+ 3.0·104
193
+ 3.5·104
194
+ 10−6
195
+ 10−5
196
+ 10−4
197
+ 10−3
198
+ 10−2
199
+ 10−1
200
+ 1
201
+ VZERO amplitude (a.u.) or ch. particle multiplicity
202
+ Events
203
+ FIGURE 3. V0 amplitude in arbitrary units (black markers) mea-
204
+ sured by ALICE and the charged particle multiplicity in the V0 ac-
205
+ ceptance calculated with Rivet from Pb–Pb collisions at 2.76 TeV
206
+ events simulated with PYTHIA 8 Angantyr (red line).
207
+ The centrality determination in Rivet uses the multiplic-
208
+ ity of charged particles in the acceptance of the V0. Since
209
+ the multiplicity of particles in heavy-ion collision events in
210
+ Monte Carlo event generators is model dependent, it is neces-
211
+ sary to create a calibration file that depends on collisions sys-
212
+ tem, energy and event generator. Figure 3 shows the V0 am-
213
+ plitude distribution measured by ALICE and the multiplicity
214
+ of charged particles in Pb–Pb collisions at √sNN = 2.76 TeV
215
+ generated with PYTHIA 8 Angantyr [6].
216
+ Rivet divides the charged particle multiplicity presented
217
+ in figure 3 (red line) in centrality percentiles.
218
+ So the
219
+ most central events are associated to the highest multiplic-
220
+ ity events. When running the Rivet analysis that requires
221
+ centrality determination, this calibration has to be provided.
222
+ A similar strategy is used for multiplicity determination in
223
+ pp and p–Pb collisions. Currently, ALICE is developing the
224
+ possibility to characterize the event using the self-normalized
225
+ charged particle multiplicity distribution. This development
226
+ is presented in sections 4 and 5.
227
+ 4
228
+ Self-normalized multiplicity
229
+ Forward-rapidity multiplicity classes can be defined in
230
+ ALICE using the V0 detector. Figure 4 shows the distribution
231
+ of the V0M amplitude, which is proportional to the number
232
+ of charged particles passing through the V0A and V0C de-
233
+ tectors, scaled by its average value ⟨V0M⟩ [15].
234
+ FIGURE 4. Distribution of the V0M amplitude scaled by its aver-
235
+ age value ⟨V0M⟩ used to determined forward-rapidity multiplicity
236
+ classes in pp collisions at √s = 13 TeV.
237
+ The Silicon Pixel Detector (SPD) [16, 17] is the closest
238
+ detector to the interaction point in ALICE. The SPD provides
239
+ mid-rapidity multiplicity classes determination using the re-
240
+ constructed tracklets, which are track segments that connects
241
+ hits in the two SPD layers pointing to the primary vertex. The
242
+ self-normalized estimator is obtained with the distribution of
243
+ SPD tracklets NSPD tracklets in -2 < η < 2 scaled by the av-
244
+ erage of its value ⟨NSPD tracklets⟩. The self-normalized SPD
245
+ tracklets distribution is presented in Fig. 5.
246
+ Supl. Rev. Mex. Fis. 3 040909
247
+
248
+ Yield (a.u.)
249
+ 10-3
250
+ 10-3
251
+ +
252
+ Data
253
+ Glauberfit
254
+ 80-90%
255
+ 70-80%
256
+ 60-70%
257
+ 10-4
258
+ 10-4
259
+ 500
260
+ 1000
261
+ 10-5
262
+ 50-60%
263
+ 40-50%
264
+ 0-40%
265
+ 20-30%
266
+ 10-20%
267
+ 10-6
268
+ 5-10%
269
+ -5%
270
+ 8
271
+ 0
272
+ 4000
273
+ 8000
274
+ 12000
275
+ 16000
276
+ 20000
277
+ VZERO Amplitude (a.u.)
278
+ ALI-PUB-89941103
279
+ ALICE
280
+ Forward Multiplicity Classes
281
+ Min. Bias data (%)
282
+ 102
283
+ Normalised counts
284
+ pp, Vs = 13 TeV
285
+ 0-1
286
+ 1-5
287
+ 5-10
288
+ 10-15
289
+ 10
290
+ 15-20
291
+ 20-30
292
+ 30-40
293
+ 40-50
294
+ 50-70
295
+ 70-100
296
+ High-Mult data (%)
297
+ 10-
298
+ 0-0.01
299
+ 0.01-0.1
300
+ 10-3
301
+ 10
302
+ 10
303
+ 5
304
+ 0
305
+ 2
306
+ 4
307
+ 6
308
+ 8
309
+ 10
310
+ VOM/VOM)
311
+ ALI-PUB-499489A LATEXTEMPLATE FOR THE RMF, RMF-E, SRMF
312
+ 3
313
+ FIGURE 5. Distribution of the number of SPD tracklets scaled by its
314
+ average value ⟨NSPD tracklets⟩ used to determine midrapidity mul-
315
+ tiplicity classes in pp collisions at √s = 13 TeV.
316
+ The event characterization using self-normalized multi-
317
+ plicity estimators in Rivet is under development in ALICE.
318
+ Similar to what was discussed in the previous section, instead
319
+ of using the V0M amplitude, Rivet uses the charged particle
320
+ multiplicity in the V0 acceptance. In particular, the forward-
321
+ rapidity self-normalized estimator uses the multiplicity of
322
+ charged particles in the V0 acceptance scaled by its average
323
+ value. Figure 6 shows the V0M/⟨V0M⟩ distribution calcu-
324
+ lated with Rivet using pp collisions at 13 TeV generated with
325
+ PYTHIA 8 Monash 2013 tune [4,18].
326
+ Rivet pp13TeV
327
+ 0
328
+ 2
329
+ 4
330
+ 6
331
+ 8
332
+ 10
333
+ 10−5
334
+ 10−4
335
+ 10−3
336
+ 10−2
337
+ 10−1
338
+ 1
339
+ V0M/⟨V0M⟩
340
+ Normalized counts
341
+ FIGURE 6. Self-normalized multiplicity distribution of charged par-
342
+ ticles in the acceptance of the V0 detector in pp collisions at √s =
343
+ 13 TeV generated with PYTHIA 8 Monash 2013.
344
+ Similarly to what is done for the V0M, the self-
345
+ normalized multiplicity estimator at mid-rapidity uses the
346
+ number of charged particles in the acceptance of the SPD.
347
+ Figure 7 shows the distribution of the charged particles in the
348
+ SPD acceptance scaled by its average value in pp collisions
349
+ at 13 TeV generated with PYTHIA 8 Monash 2013.
350
+ Rivet pp13TeV
351
+ 0
352
+ 2
353
+ 4
354
+ 6
355
+ 8
356
+ 10
357
+ 10−4
358
+ 10−3
359
+ 10−2
360
+ 10−1
361
+ 1
362
+ NSPD tracklets
363
+ SPD tracklets
364
+ SPD tracklets/⟨NSPD tracklets
365
+ SPD tracklets
366
+ SPD tracklets⟩
367
+ Normalized counts
368
+ FIGURE 7. Self-normalized multiplicity distribution of charged par-
369
+ ticles in the acceptance of the SPD detector in pp collisions at
370
+ √s = 13 TeV generated with PYTHIA 8 Monash 2013.
371
+ 5
372
+ Results using the self-normalized multiplic-
373
+ ity estimators
374
+ The self-normalized multiplicity estimators framework in
375
+ Rivet is currently work in progress and being tested using ar-
376
+ ticles published by ALICE that use such estimators. The first
377
+ measurement used to test the V0M/⟨V0M⟩ estimator was the
378
+ transverse momentum (pT) of jets in different multiplicity in-
379
+ tervals in pp collisions at √s = 13 TeV [19].
380
+ b
381
+ b
382
+ b
383
+ b
384
+ b
385
+ b
386
+ b
387
+ b
388
+ b
389
+ b
390
+ b
391
+ b
392
+ b
393
+ b
394
+ b
395
+ b
396
+ b
397
+ b
398
+ b
399
+ Data
400
+ Rivet [cent=GEN]
401
+ 10−6
402
+ 10−5
403
+ 10−4
404
+ 10−3
405
+ 10−2
406
+ 10−1
407
+ 1/Nevent d2N/dpTd
408
+ event d2N/dpTd
409
+ event d2N/dpTdηηη (GeV/ccc)))−1
410
+ −1
411
+ −1
412
+ b
413
+ b
414
+ b
415
+ b
416
+ b
417
+ b
418
+ b
419
+ b
420
+ b
421
+ b
422
+ b
423
+ b
424
+ b
425
+ b
426
+ b
427
+ b
428
+ b
429
+ b
430
+ 10
431
+ 20
432
+ 30
433
+ 40
434
+ 50
435
+ 60
436
+ 70
437
+ 80
438
+ 90
439
+ 100
440
+ 0.5
441
+ 0.6
442
+ 0.7
443
+ 0.8
444
+ 0.91
445
+ 1.1
446
+ 1.2
447
+ 1.3
448
+ 1.4
449
+ jet pT
450
+ pT
451
+ pT (GeV/ccc)))
452
+ MC/Data
453
+ FIGURE 8. Charged-particle jet transverse momentum distribution
454
+ in pp collisions at √s = 5.02 TeV for the 0-1% multiplicity
455
+ class corresponding to the self-normalized V0M-based multiplic-
456
+ ity estimator. Jets were reconstructed using jet resolution parame-
457
+ ter R = 0.2. Data (black markers) are compared with PYTHIA 8
458
+ Monash 2013 (red line).
459
+ Supl. Rev. Mex. Fis. 3 040909
460
+
461
+ 103
462
+ ALICE
463
+ Central Multiplicity Classes
464
+ Min. Bias data (%)
465
+ 102
466
+ pp, Vs = 13 TeV
467
+ Normalised counts
468
+ 0-1
469
+ 1-5
470
+ 5-10
471
+ 10-15
472
+ 10
473
+ 15-20
474
+ 20-30
475
+ 30-40
476
+ 40-50
477
+ 50-70
478
+ 70-100
479
+ 10
480
+ 10
481
+ 3
482
+ 10
483
+ 10
484
+ 5
485
+ 0
486
+ 2
487
+ 4
488
+ 6
489
+ 8
490
+ 10
491
+ KN
492
+ SPD Tracklet4
493
+ ANTONIO CARLOS OLIVEIRA DA SILVA
494
+ b
495
+ b
496
+ b
497
+ b
498
+ b
499
+ b
500
+ b
501
+ b
502
+ b
503
+ b
504
+ b
505
+ b
506
+ b
507
+ b
508
+ b
509
+ b
510
+ b
511
+ b
512
+ b
513
+ b
514
+ b
515
+ b
516
+ b
517
+ b
518
+ b
519
+ b
520
+ b
521
+ b
522
+ b
523
+ b
524
+ b
525
+ Data
526
+ Rivet SPD pp5TeV [cent=GEN]
527
+ 0
528
+ 5
529
+ 10
530
+ 15
531
+ 20
532
+ 25
533
+ dN/dη
534
+ dN/dη
535
+ dN/dη
536
+ b
537
+ b
538
+ b
539
+ b
540
+ b
541
+ b
542
+ b
543
+ b
544
+ b
545
+ b
546
+ b
547
+ b
548
+ b
549
+ b
550
+ b
551
+ b
552
+ b
553
+ b
554
+ b
555
+ b
556
+ b
557
+ b
558
+ b
559
+ b
560
+ b
561
+ b
562
+ b
563
+ b
564
+ b
565
+ b
566
+ -1.5
567
+ -1
568
+ -0.5
569
+ 0
570
+ 0.5
571
+ 1
572
+ 1.5
573
+ 0.5
574
+ 0.6
575
+ 0.7
576
+ 0.8
577
+ 0.91
578
+ 1.1
579
+ 1.2
580
+ 1.3
581
+ 1.4
582
+ ηηη
583
+ MC/Data
584
+ FIGURE 9. Charged particle pseudorapidity distribution in pp colli-
585
+ sions at √s = 5.02 TeV for the 0-1% multiplicity class correspond-
586
+ ing to the self-normalized SPD-based multiplicity estimator. Data
587
+ (black markers) are compared with PYTHIA 8 Monash 2013 (red
588
+ line).
589
+ The transverse momentum of jets reconstructed with
590
+ FastJet anti-kT algorithm [20] and resolution parameter R =
591
+ 0.2 in the multiplicity class 0-1% in pp collisions at √s =
592
+ 13 TeV is presented in figure 8. The measurement was com-
593
+ pared with PYTHIA 8 Monash 2013 using Rivet and the self-
594
+ normalized V0M multiplicity framework. The agreement of
595
+ the model to data is a positive indication that the framework
596
+ can reproduce the multiplicity determination method used by
597
+ ALICE. Other multiplicity classes presented a similar perfor-
598
+ mance.
599
+ The self-normalized estimator using the SPD was also
600
+ tested using the measurements in [15].
601
+ Figure 9 presents
602
+ the charged particle pseudorapidity distribution in pp colli-
603
+ sions at √s = 5.02 TeV. The ALICE data are compared
604
+ with PYTHIA 8 Monash 2013 using Rivet and the SPD self-
605
+ normalized framework. The results fairly reproduce the com-
606
+ parisons to MC presented in the cited article.
607
+ 6
608
+ Summary
609
+ Rivet is a valuable tool for analysis preservation and compar-
610
+ ison of data to Monte Carlo event generators. The develop-
611
+ ment of additional tools to facilitate the implementation of
612
+ Rivet analyses is an important contribution to the framework
613
+ and can be of benefit both for the experiment and the theory
614
+ side. The self-normalized multiplicity estimators are provid-
615
+ ing consistent results between MC curves in Rivet and those
616
+ provided by experiments. The final goal is to make this mul-
617
+ tiplicity framework available soon in the Rivet official frame-
618
+ work.
619
+ 1. A. Buckley, et al., Rivet user manual (2010).
620
+ 2. E. Maguire, L. Heinrich, and G. Watt, HEPData: a repository
621
+ for high energy physics data, Journal of Physics: Conference
622
+ Series 898 (2017) 102006,
623
+ 10.1088/1742-6596/898/
624
+ 10/102006
625
+ 3. M. Dobbs and J. B. Hansen, The HepMC C++ Monte Carlo
626
+ Event Record for High Energy Physics,
627
+ Tech. rep., CERN,
628
+ Geneva (2000), URL https://cds.cern.ch/record/
629
+ 684090, Revised version number 1 submitted on 2001-02-27
630
+ 09:54:32.
631
+ 4. T. Sjöstrand, S. Mrenna, and P. Z. Skands, A Brief Introduc-
632
+ tion to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852,
633
+ 10.1016/j.cpc.2008.01.036
634
+ 5. Z.-W. Lin, et al., Multiphase transport model for relativistic
635
+ heavy ion collisions, Physical Review C 72 (2005), 10.1103/
636
+ physrevc.72.064901
637
+ 6. C. Bierlich, et al., The Angantyr model for Heavy-Ion Col-
638
+ lisions in PYTHIA8,
639
+ JHEP 10 (2018) 134,
640
+ 10.1007/
641
+ JHEP10(2018)134
642
+ 7. J. H. Putschke, et al., The JETSCAPE framework (2019), 10.
643
+ 48550/ARXIV.1903.07706,
644
+ URL https://arxiv.
645
+ org/abs/1903.07706.
646
+ 8. J. Weil, et al., Particle production and equilibrium properties
647
+ within a new hadron transport approach for heavy-ion colli-
648
+ sions, Physical Review C 94 (2016), 10.1103/physrevc.
649
+ 94.054905
650
+ 9. T. Pierog, et al.,
651
+ EPOS LHC: Test of collective hadroniza-
652
+ tion with data measured at the CERN Large Hadron Collider,
653
+ Phys. Rev. C 92 (2015) 034906, 10.1103/PhysRevC.92.
654
+ 034906
655
+ 10. K. Zapp, et al., A Monte Carlo model for ‘jet quenching’, The
656
+ European Physical Journal C 60 (2009), 10.1140/epjc/
657
+ s10052-009-0941-2
658
+ 11. X.-N. Wang and M. Gyulassy, hijing: A Monte Carlo model
659
+ for multiple jet production in pp, pA, and AA collisions, Phys.
660
+ Rev. D 44 (1991) 3501, 10.1103/PhysRevD.44.3501
661
+ 12. W. Cassing and E. Bratkovskaya,
662
+ Parton–hadron–string dy-
663
+ namics: An off-shell transport approach for relativistic ener-
664
+ gies,
665
+ Nuclear Physics A 831 (2009) 215,
666
+ 10.1016/j.
667
+ nuclphysa.2009.09.007
668
+ 13. T. A. Collaboration, Performance of the ALICE VZERO sys-
669
+ tem, Journal of Instrumentation 8 (2013) P10016, 10.1088/
670
+ 1748-0221/8/10/p10016
671
+ 14. B. Abelev, J. Adam, and D. Adamov,
672
+ Centrality determina-
673
+ tion of Pb-Pb collisions at √sNN = 2.76 TeV with ALICE 88
674
+ (2013), 10.1103/physrevc.88.044909
675
+ 15. J. Adam et al.,
676
+ Pseudorapidity distributions of charged par-
677
+ ticles as a function of mid- and forward rapidity multiplic-
678
+ Supl. Rev. Mex. Fis. 3 040909
679
+
680
+ A LATEXTEMPLATE FOR THE RMF, RMF-E, SRMF
681
+ 5
682
+ ities in pp collisions at √s = 5.02, 7 and 13 TeV (2021),
683
+ 10.1140/epjc/s10052-021-09349-5
684
+ 16. ALICE Inner Tracking System (ITS): Technical Design Report,
685
+ Technical design report. ALICE (CERN, Geneva, 1999), URL
686
+ http://cds.cern.ch/record/391175.
687
+ 17. R. Santoro, et al., The ALICE Silicon Pixel Detector: readiness
688
+ for the first proton beam, Journal of Instrumentation 4 (2009)
689
+ P03023, 10.1088/1748-0221/4/03/p03023
690
+ 18. P. Skands, S. Carrazza, and J. Rojo,
691
+ Tuning PYTHIA 8.1:
692
+ the Monash 2013 tune, The European Physical Journal C 74
693
+ (2014), 10.1140/epjc/s10052-014-3024-y
694
+ 19. ALICE Collaboration,
695
+ Multiplicity dependence of charged-
696
+ particle jet production in pp collisions at √s = 13 TeV
697
+ (2022), 10.48550/ARXIV.2202.01548, URL https:
698
+ //arxiv.org/abs/2202.01548.
699
+ 20. M. Cacciari, G. P. Salam, and G. Soyez,
700
+ FastJet user man-
701
+ ual, The European Physical Journal C 72 (2012), 10.1140/
702
+ epjc/s10052-012-1896-2
703
+ Supl. Rev. Mex. Fis. 3 040909
704
+
SNE0T4oBgHgl3EQf1wKp/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,382 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf,len=381
2
+ page_content='Revista Mexicana de Física 3 040909 (2022) 1–4 September 2022 Rivet and the analysis preservation in heavy-ion collisions experiments Antonio Carlos Oliveira da Silva (for the ALICE Collaboration) University of Tennessee, Knoxville, 1408 Circle Drive, Knoxville TN 37996-1200 Received 3 July 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
3
+ page_content=' accepted 15 September 2022 The comparison of experimental data and theoretical predictions is important for our understanding of the mechanisms for interactions and particle production in hadron collisions, both at the Large Hadron Collider and at the Relativistic Heavy-Ion Collider experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
4
+ page_content=' Several tools were ideated to help with that.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
5
+ page_content=' Rivet (Robust Independent Validation of Experiment and Theory) is a framework that facilitates the comparison between measurements from high-energy physics experiments and Monte Carlo event generators able to produce outputs using the HepMC package.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
6
+ page_content=' Rivet contains a repository with analysis algorithms developed by experiments, providing analysis documentation and preservation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
7
+ page_content=' The recent developments for the implementation of centrality and multiplicity classes in Rivet are presented in this contribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
8
+ page_content=' Keywords: 1 Introduction Currently, the data and analysis preservation in high-energy physics experiments is becoming a common concern.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
9
+ page_content=' Previ- ous experiments and collaborations are losing the power of reproducing their measurements since the data are not prop- erly kept in a accessible way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
10
+ page_content=' The old code, which con- tains crucial and detailed information like detector accep- tance, particle and event selections, and corrections, is no longer maintained and it is very difficult, if possible, to be run again.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
11
+ page_content=' Comparisons of previous measurements with new models is, therefore, very challenging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
12
+ page_content=' Robust Independent Validation of Experiment and The- ory (Rivet) [1] is a framework that aims to facilitate the com- parison between data and Monte Carlo (MC) event genera- tors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
13
+ page_content=' 2 Rivet framework Rivet analyses are written in C++ and it currently contains more than 1000 analyses from several high-energy physics collaborations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
14
+ page_content=' The data, when available, are downloaded di- rectly from HepData [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
15
+ page_content=' Any model that is incorporated in an event generator able to produce output that complies with HepMC framework [3] can be used by Rivet for the compar- ison with data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
16
+ page_content=' The integration of Rivet with HepMC and HepData is pictured in the scheme presented in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
17
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
18
+ page_content=' The references for the event generators in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
19
+ page_content=' 1 can be found in [4–12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
20
+ page_content=' Not all of them provide output using HepMC standards.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
21
+ page_content=' In principle, an article presenting a measurement should present enough information to make the measurement able to be reproduced by another experiment or theoretician inter- ested in comparing the data with a model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
22
+ page_content=' However, some subtle details about detector acceptances, particle selections, trigger conditions, etc, could be missing or not clearly de- scribed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
23
+ page_content=' This can be the case even in internal notes in large collaborations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
24
+ page_content=' FIGURE 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
25
+ page_content=' Schematic diagram showing how Rivet is integrated with HepMC and HepData.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
26
+ page_content=' Rivet aims at preserving all the analysis details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
27
+ page_content=' Further- more, it should reproduce the methods used in a measurement as close as possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
28
+ page_content=' One of the pillars of the Rivet philoso- phy is that we should treat Monte Carlo simulations in the same way as data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
29
+ page_content=' In order to assure maximum fidelity to the original ac- ceptances, selections and methods used in a measurement, whenever possible, the rivet analysis should be implemented by the collaboration that published the article containing the measurement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
30
+ page_content=' Currently, ALICE has an official internal pro- cedure for Rivet analysis approvals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
31
+ page_content=' 3 Centrality and multiplicity determination Measurements in heavy-ion collisions are commonly differ- ential in centrality intervals to study different physical phe- nomena.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
32
+ page_content=' Therefore, centrality determination is a crucial fea- ture Rivet has to provide in order to reproduce measurements in heavy-ion collisions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
33
+ page_content=' Centrality determination in ALICE is commonly pro- vided by the V0 detector [13], which consists of two ar- rays, V0-A and V0-C covering the pseudorapidity ranges 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
34
+ page_content='8 < η < 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
35
+ page_content='1 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
36
+ page_content='7 < η < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
37
+ page_content='7 respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
38
+ page_content=' Figure 2 presents the distribution of the total energy de- arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
39
+ page_content='02704v1 [physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
40
+ page_content='data-an] 6 Jan 2023 AMPT FXR HIJING JETSCAPE PYTHIA Monte Carlo Mode JEWEL EPOS PHSI smash HepMC HEpData Rivet2 ANTONIO CARLOS OLIVEIRA DA SILVA posited in the V0 scintillators (amplitude).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
41
+ page_content=' The most cen- tral collisions are associated with those event with highest V0 amplitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
42
+ page_content=' The details of the centrality determination are described in [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
43
+ page_content=' FIGURE 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
44
+ page_content=' Distribution of the total amplitude in the V0 scintilla- tors in black points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
45
+ page_content=' The data are fitted using a Negative Binomial Distribution (NBD) using parameters from the Glauber model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
46
+ page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
47
+ page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
48
+ page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
49
+ page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
50
+ page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
51
+ page_content='b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
52
+ page_content='b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
53
+ page_content='b b b b b b b b b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
54
+ page_content='b b b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
55
+ page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
56
+ page_content='b b b b b b b b b b b b b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
57
+ page_content='b b b b b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
58
+ page_content='b b b b b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
59
+ page_content='b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
60
+ page_content='b b b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
61
+ page_content='b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
62
+ page_content='b b b b b b b b b b b b b b b b b b b b b b b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
63
+ page_content='b b b b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
64
+ page_content='b b b b b b b b b b b b b b b b b b b b b b b b b b b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
65
+ page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
66
+ page_content='b b b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
67
+ page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
68
+ page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
69
+ page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
70
+ page_content='b b b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
71
+ page_content='b b b b b b b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
72
+ page_content='b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
73
+ page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
74
+ page_content='b b b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
75
+ page_content='b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
76
+ page_content='b b b b b b b b b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
77
+ page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
78
+ page_content='b b b b b b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
79
+ page_content='b b b b b b b b b b b b b b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
80
+ page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
81
+ page_content='b b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
82
+ page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
83
+ page_content='b b b b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
84
+ page_content='b b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
85
+ page_content='b b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
86
+ page_content='b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
87
+ page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
88
+ page_content='b b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
89
+ page_content='b b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
90
+ page_content='b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
91
+ page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
92
+ page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
93
+ page_content='b b b b b b b b b b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
94
+ page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
95
+ page_content='b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
96
+ page_content='b b b b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
97
+ page_content='b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
98
+ page_content='b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
99
+ page_content='b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
100
+ page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
101
+ page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
102
+ page_content='b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
103
+ page_content='b b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
104
+ page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
105
+ page_content='b b b b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
106
+ page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
107
+ page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
108
+ page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
109
+ page_content='b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
110
+ page_content='b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
111
+ page_content='b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
112
+ page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
113
+ page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
114
+ page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
115
+ page_content='b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
116
+ page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
117
+ page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
118
+ page_content='b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
119
+ page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
120
+ page_content='b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
121
+ page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
122
+ page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
123
+ page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
124
+ page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
125
+ page_content='b b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
126
+ page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
127
+ page_content='b b b b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
128
+ page_content='b ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
129
+ page_content='Data ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
130
+ page_content='calibration ALICE PbPb2760GeV ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
131
+ page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
132
+ page_content='5000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
133
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
134
+ page_content='0·104 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
135
+ page_content='5·104 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
136
+ page_content='0·104 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
137
+ page_content='5·104 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
138
+ page_content='0·104 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
139
+ page_content='5·104 10−6 10−5 10−4 10−3 10−2 10−1 1 VZERO amplitude (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
140
+ page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
141
+ page_content=') or ch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
142
+ page_content=' particle multiplicity Events FIGURE 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
143
+ page_content=' V0 amplitude in arbitrary units (black markers) mea- sured by ALICE and the charged particle multiplicity in the V0 ac- ceptance calculated with Rivet from Pb–Pb collisions at 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
144
+ page_content='76 TeV events simulated with PYTHIA 8 Angantyr (red line).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
145
+ page_content=' The centrality determination in Rivet uses the multiplic- ity of charged particles in the acceptance of the V0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
146
+ page_content=' Since the multiplicity of particles in heavy-ion collision events in Monte Carlo event generators is model dependent, it is neces- sary to create a calibration file that depends on collisions sys- tem, energy and event generator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
147
+ page_content=' Figure 3 shows the V0 am- plitude distribution measured by ALICE and the multiplicity of charged particles in Pb–Pb collisions at √sNN = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
148
+ page_content='76 TeV generated with PYTHIA 8 Angantyr [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
149
+ page_content=' Rivet divides the charged particle multiplicity presented in figure 3 (red line) in centrality percentiles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
150
+ page_content=' So the most central events are associated to the highest multiplic- ity events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
151
+ page_content=' When running the Rivet analysis that requires centrality determination, this calibration has to be provided.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
152
+ page_content=' A similar strategy is used for multiplicity determination in pp and p–Pb collisions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
153
+ page_content=' Currently, ALICE is developing the possibility to characterize the event using the self-normalized charged particle multiplicity distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
154
+ page_content=' This development is presented in sections 4 and 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
155
+ page_content=' 4 Self-normalized multiplicity Forward-rapidity multiplicity classes can be defined in ALICE using the V0 detector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
156
+ page_content=' Figure 4 shows the distribution of the V0M amplitude, which is proportional to the number of charged particles passing through the V0A and V0C de- tectors, scaled by its average value ⟨V0M⟩ [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
157
+ page_content=' FIGURE 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
158
+ page_content=' Distribution of the V0M amplitude scaled by its aver- age value ⟨V0M⟩ used to determined forward-rapidity multiplicity classes in pp collisions at √s = 13 TeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
159
+ page_content=' The Silicon Pixel Detector (SPD) [16, 17] is the closest detector to the interaction point in ALICE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
160
+ page_content=' The SPD provides mid-rapidity multiplicity classes determination using the re- constructed tracklets, which are track segments that connects hits in the two SPD layers pointing to the primary vertex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
161
+ page_content=' The self-normalized estimator is obtained with the distribution of SPD tracklets NSPD tracklets in -2 < η < 2 scaled by the av- erage of its value ⟨NSPD tracklets⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
162
+ page_content=' The self-normalized SPD tracklets distribution is presented in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
163
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
164
+ page_content=' Supl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
165
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
166
+ page_content=' Mex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
167
+ page_content=' Fis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
168
+ page_content=' 3 040909 Yield (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
169
+ page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
170
+ page_content=') 10-3 10-3 + Data Glauberfit 80-90% 70-80% 60-70% 10-4 10-4 500 1000 10-5 50-60% 40-50% 0-40% 20-30% 10-20% 10-6 5-10% 5% 8 0 4000 8000 12000 16000 20000 VZERO Amplitude (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
171
+ page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
172
+ page_content=') ALI-PUB-89941103 ALICE Forward Multiplicity Classes Min.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
173
+ page_content=' Bias data (%) 102 Normalised counts pp, Vs = 13 TeV 0-1 1-5 5-10 10-15 10 15-20 20-30 30-40 40-50 50-70 70-100 High-Mult data (%) 10- 0-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
174
+ page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
175
+ page_content='01-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
176
+ page_content='1 10-3 10 10 5 0 2 4 6 8 10 VOM/VOM) ALI-PUB-499489A LATEXTEMPLATE FOR THE RMF, RMF-E, SRMF 3 FIGURE 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
177
+ page_content=' Distribution of the number of SPD tracklets scaled by its average value ⟨NSPD tracklets⟩ used to determine midrapidity mul- tiplicity classes in pp collisions at √s = 13 TeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
178
+ page_content=' The event characterization using self-normalized multi- plicity estimators in Rivet is under development in ALICE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
179
+ page_content=' Similar to what was discussed in the previous section, instead of using the V0M amplitude, Rivet uses the charged particle multiplicity in the V0 acceptance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
180
+ page_content=' In particular, the forward- rapidity self-normalized estimator uses the multiplicity of charged particles in the V0 acceptance scaled by its average value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
181
+ page_content=' Figure 6 shows the V0M/⟨V0M⟩ distribution calcu- lated with Rivet using pp collisions at 13 TeV generated with PYTHIA 8 Monash 2013 tune [4,18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
182
+ page_content=' Rivet pp13TeV 0 2 4 6 8 10 10−5 10−4 10−3 10−2 10−1 1 V0M/⟨V0M⟩ Normalized counts FIGURE 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
183
+ page_content=' Self-normalized multiplicity distribution of charged par- ticles in the acceptance of the V0 detector in pp collisions at √s = 13 TeV generated with PYTHIA 8 Monash 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
184
+ page_content=' Similarly to what is done for the V0M, the self- normalized multiplicity estimator at mid-rapidity uses the number of charged particles in the acceptance of the SPD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
185
+ page_content=' Figure 7 shows the distribution of the charged particles in the SPD acceptance scaled by its average value in pp collisions at 13 TeV generated with PYTHIA 8 Monash 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
186
+ page_content=' Rivet pp13TeV 0 2 4 6 8 10 10−4 10−3 10−2 10−1 1 NSPD tracklets SPD tracklets SPD tracklets/⟨NSPD tracklets SPD tracklets SPD tracklets⟩ Normalized counts FIGURE 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
187
+ page_content=' Self-normalized multiplicity distribution of charged par- ticles in the acceptance of the SPD detector in pp collisions at √s = 13 TeV generated with PYTHIA 8 Monash 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
188
+ page_content=' 5 Results using the self-normalized multiplic- ity estimators The self-normalized multiplicity estimators framework in Rivet is currently work in progress and being tested using ar- ticles published by ALICE that use such estimators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
189
+ page_content=' The first measurement used to test the V0M/⟨V0M⟩ estimator was the transverse momentum (pT) of jets in different multiplicity in- tervals in pp collisions at √s = 13 TeV [19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
190
+ page_content=' b b b b b b b b b b b b b b b b b b b Data Rivet [cent=GEN] 10−6 10−5 10−4 10−3 10−2 10−1 1/Nevent d2N/dpTd event d2N/dpTd event d2N/dpTdηηη (GeV/ccc)))−1 −1 −1 b b b b b b b b b b b b b b b b b b 10 20 30 40 50 60 70 80 90 100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
191
+ page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
192
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
193
+ page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
194
+ page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
195
+ page_content='91 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
196
+ page_content='1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
197
+ page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
198
+ page_content='3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
199
+ page_content='4 jet pT pT pT (GeV/ccc))) MC/Data FIGURE 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
200
+ page_content=' Charged-particle jet transverse momentum distribution in pp collisions at √s = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
201
+ page_content='02 TeV for the 0-1% multiplicity class corresponding to the self-normalized V0M-based multiplic- ity estimator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
202
+ page_content=' Jets were reconstructed using jet resolution parame- ter R = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
203
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
204
+ page_content=' Data (black markers) are compared with PYTHIA 8 Monash 2013 (red line).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
205
+ page_content=' Supl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
206
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
207
+ page_content=' Mex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
208
+ page_content=' Fis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
209
+ page_content=' 3 040909 103 ALICE Central Multiplicity Classes Min.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
210
+ page_content=' Bias data (%) 102 pp, Vs = 13 TeV Normalised counts 0-1 1-5 5-10 10-15 10 15-20 20-30 30-40 40-50 50-70 70-100 10 10 3 10 10 5 0 2 4 6 8 10 KN SPD Tracklet4 ANTONIO CARLOS OLIVEIRA DA SILVA b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b Data Rivet SPD pp5TeV [cent=GEN] 0 5 10 15 20 25 dN/dη dN/dη dN/dη b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
211
+ page_content='5 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
212
+ page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
213
+ page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
214
+ page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
215
+ page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
216
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
217
+ page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
218
+ page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
219
+ page_content='91 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
220
+ page_content='1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
221
+ page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
222
+ page_content='3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
223
+ page_content='4 ηηη MC/Data FIGURE 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
224
+ page_content=' Charged particle pseudorapidity distribution in pp colli- sions at √s = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
225
+ page_content='02 TeV for the 0-1% multiplicity class correspond- ing to the self-normalized SPD-based multiplicity estimator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
226
+ page_content=' Data (black markers) are compared with PYTHIA 8 Monash 2013 (red line).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
227
+ page_content=' The transverse momentum of jets reconstructed with FastJet anti-kT algorithm [20] and resolution parameter R = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
228
+ page_content='2 in the multiplicity class 0-1% in pp collisions at √s = 13 TeV is presented in figure 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
229
+ page_content=' The measurement was com- pared with PYTHIA 8 Monash 2013 using Rivet and the self- normalized V0M multiplicity framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
230
+ page_content=' The agreement of the model to data is a positive indication that the framework can reproduce the multiplicity determination method used by ALICE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
231
+ page_content=' Other multiplicity classes presented a similar perfor- mance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
232
+ page_content=' The self-normalized estimator using the SPD was also tested using the measurements in [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
233
+ page_content=' Figure 9 presents the charged particle pseudorapidity distribution in pp colli- sions at √s = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
234
+ page_content='02 TeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
235
+ page_content=' The ALICE data are compared with PYTHIA 8 Monash 2013 using Rivet and the SPD self- normalized framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
236
+ page_content=' The results fairly reproduce the com- parisons to MC presented in the cited article.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
237
+ page_content=' 6 Summary Rivet is a valuable tool for analysis preservation and compar- ison of data to Monte Carlo event generators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
238
+ page_content=' The develop- ment of additional tools to facilitate the implementation of Rivet analyses is an important contribution to the framework and can be of benefit both for the experiment and the theory side.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
239
+ page_content=' The self-normalized multiplicity estimators are provid- ing consistent results between MC curves in Rivet and those provided by experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
240
+ page_content=' The final goal is to make this mul- tiplicity framework available soon in the Rivet official frame- work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
241
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
242
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
243
+ page_content=' Buckley, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
244
+ page_content=', Rivet user manual (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
245
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
246
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
247
+ page_content=' Maguire, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
248
+ page_content=' Heinrich, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
249
+ page_content=' Watt, HEPData: a repository for high energy physics data, Journal of Physics: Conference Series 898 (2017) 102006, 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
250
+ page_content='1088/1742-6596/898/ 10/102006 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
251
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
252
+ page_content=' Dobbs and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
253
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
254
+ page_content=' Hansen, The HepMC C++ Monte Carlo Event Record for High Energy Physics, Tech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
255
+ page_content=' rep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
256
+ page_content=', CERN, Geneva (2000), URL https://cds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
257
+ page_content='cern.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
258
+ page_content='ch/record/ 684090, Revised version number 1 submitted on 2001-02-27 09:54:32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
259
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
260
+ page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
261
+ page_content=' Sjöstrand, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
262
+ page_content=' Mrenna, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
263
+ page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
264
+ page_content=' Skands, A Brief Introduc- tion to PYTHIA 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
265
+ page_content='1, Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
266
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
267
+ page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
268
+ page_content=' 178 (2008) 852, 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
269
+ page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
270
+ page_content='cpc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
271
+ page_content='2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
272
+ page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
273
+ page_content='036 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
274
+ page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
275
+ page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
276
+ page_content=' Lin, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
277
+ page_content=', Multiphase transport model for relativistic heavy ion collisions, Physical Review C 72 (2005), 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
278
+ page_content='1103/ physrevc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
279
+ page_content='72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
280
+ page_content='064901 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
281
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
282
+ page_content=' Bierlich, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
283
+ page_content=', The Angantyr model for Heavy-Ion Col- lisions in PYTHIA8, JHEP 10 (2018) 134, 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
284
+ page_content='1007/ JHEP10(2018)134 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
285
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
286
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
287
+ page_content=' Putschke, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
288
+ page_content=', The JETSCAPE framework (2019), 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
289
+ page_content=' 48550/ARXIV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
290
+ page_content='1903.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
291
+ page_content='07706, URL https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
292
+ page_content=' org/abs/1903.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
293
+ page_content='07706.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
294
+ page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
295
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
296
+ page_content=' Weil, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
297
+ page_content=', Particle production and equilibrium properties within a new hadron transport approach for heavy-ion colli- sions, Physical Review C 94 (2016), 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
298
+ page_content='1103/physrevc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
299
+ page_content=' 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
300
+ page_content='054905 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
301
+ page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
302
+ page_content=' Pierog, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
303
+ page_content=', EPOS LHC: Test of collective hadroniza- tion with data measured at the CERN Large Hadron Collider, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
304
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
305
+ page_content=' C 92 (2015) 034906, 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
306
+ page_content='1103/PhysRevC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
307
+ page_content='92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
308
+ page_content=' 034906 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
309
+ page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
310
+ page_content=' Zapp, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
311
+ page_content=', A Monte Carlo model for ‘jet quenching’, The European Physical Journal C 60 (2009), 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
312
+ page_content='1140/epjc/ s10052-009-0941-2 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
313
+ page_content=' X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
314
+ page_content='-N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
315
+ page_content=' Wang and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
316
+ page_content=' Gyulassy, hijing: A Monte Carlo model for multiple jet production in pp, pA, and AA collisions, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
317
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
318
+ page_content=' D 44 (1991) 3501, 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
319
+ page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
320
+ page_content='44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
321
+ page_content='3501 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
322
+ page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
323
+ page_content=' Cassing and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
324
+ page_content=' Bratkovskaya, Parton–hadron–string dy- namics: An off-shell transport approach for relativistic ener- gies, Nuclear Physics A 831 (2009) 215, 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
325
+ page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
326
+ page_content=' nuclphysa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
327
+ page_content='2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
328
+ page_content='09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
329
+ page_content='007 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
330
+ page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
331
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
332
+ page_content=' Collaboration, Performance of the ALICE VZERO sys- tem, Journal of Instrumentation 8 (2013) P10016, 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
333
+ page_content='1088/ 1748-0221/8/10/p10016 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
334
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
335
+ page_content=' Abelev, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
336
+ page_content=' Adam, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
337
+ page_content=' Adamov, Centrality determina- tion of Pb-Pb collisions at √sNN = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
338
+ page_content='76 TeV with ALICE 88 (2013), 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
339
+ page_content='1103/physrevc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
340
+ page_content='88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
341
+ page_content='044909 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
342
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
343
+ page_content=' Adam et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
344
+ page_content=', Pseudorapidity distributions of charged par- ticles as a function of mid- and forward rapidity multiplic- Supl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
345
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
346
+ page_content=' Mex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
347
+ page_content=' Fis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
348
+ page_content=' 3 040909 A LATEXTEMPLATE FOR THE RMF, RMF-E, SRMF 5 ities in pp collisions at √s = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
349
+ page_content='02, 7 and 13 TeV (2021), 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
350
+ page_content='1140/epjc/s10052-021-09349-5 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
351
+ page_content=' ALICE Inner Tracking System (ITS): Technical Design Report, Technical design report.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
352
+ page_content=' ALICE (CERN, Geneva, 1999), URL http://cds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
353
+ page_content='cern.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
354
+ page_content='ch/record/391175.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
355
+ page_content=' 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
356
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
357
+ page_content=' Santoro, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
358
+ page_content=', The ALICE Silicon Pixel Detector: readiness for the first proton beam, Journal of Instrumentation 4 (2009) P03023, 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
359
+ page_content='1088/1748-0221/4/03/p03023 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
360
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
361
+ page_content=' Skands, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
362
+ page_content=' Carrazza, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
363
+ page_content=' Rojo, Tuning PYTHIA 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
364
+ page_content='1: the Monash 2013 tune, The European Physical Journal C 74 (2014), 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
365
+ page_content='1140/epjc/s10052-014-3024-y 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
366
+ page_content=' ALICE Collaboration, Multiplicity dependence of charged- particle jet production in pp collisions at √s = 13 TeV (2022), 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
367
+ page_content='48550/ARXIV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
368
+ page_content='2202.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
369
+ page_content='01548, URL https: //arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
370
+ page_content='org/abs/2202.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
371
+ page_content='01548.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
372
+ page_content=' 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
373
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
374
+ page_content=' Cacciari, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
375
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
376
+ page_content=' Salam, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
377
+ page_content=' Soyez, FastJet user man- ual, The European Physical Journal C 72 (2012), 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
378
+ page_content='1140/ epjc/s10052-012-1896-2 Supl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
379
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
380
+ page_content=' Mex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
381
+ page_content=' Fis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
382
+ page_content=' 3 040909' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SNE0T4oBgHgl3EQf1wKp/content/2301.02704v1.pdf'}
TNAzT4oBgHgl3EQfXfzv/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
TtE4T4oBgHgl3EQfLwyC/content/tmp_files/2301.04941v1.pdf.txt ADDED
@@ -0,0 +1,491 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.04941v1 [math.RT] 12 Jan 2023
2
+ RIGID INTEGRAL REPRESENTATIONS OF QUIVERS REVISITED
3
+ WILLIAM CRAWLEY-BOEVEY
4
+ Abstract. In earlier work, the author classified rigid representations of a quiver by
5
+ means of finitely generated free modules over a principal ideal ring.
6
+ We show that
7
+ the classification of exceptional pointwise free lattices can be extended to arbitrary
8
+ commutative rings and that the classification of rigid lattices can be extended to reduced
9
+ commutative rings.
10
+ 1. Introduction
11
+ In [4] we studied rigid representations of a quiver over a principal ideal domain. Here
12
+ we generalize the results to more general commutative base rings.
13
+ Let R be a commutative ring (always non-zero). Given an R-module X and a homo-
14
+ morphism R → S we write XS for the induced S-module S ⊗R X. Recall that a finitely
15
+ generated projective R-module P has constant rank n if Pp is a free Rp-module of rank
16
+ n for each prime ideal p of R, or equivalently if dimK P K = n for all homomorphisms
17
+ R → K with K a field, which we may take to be algebraically closed.
18
+ Let Q = (Q0, Q1, h, t) be a finite quiver and let RQ be the path algebra of Q over R,
19
+ with a trivial path ei for each vertex i ∈ Q0. By an RQ-lattice we mean an RQ-module
20
+ which is finitely generated projective as an R-module. We say that an RQ-module X
21
+ is pointwise free if eiX is a free R-module for all i. We say that an RQ-lattice X has
22
+ rank vector α ∈ NQ0 if eiX has constant rank αi for each i, and that X has pointwise
23
+ constant rank if it has rank vector α for some α. If R → S is a homomorphism, then XS
24
+ is naturally an SQ-module.
25
+ We say that an RQ-module X is rigid if Ext1
26
+ RQ(X, X) = 0, and exceptional if also the
27
+ natural map R → EndRQ(X) is an isomorphism. If K is an algebraically closed field, then
28
+ by definition the possible dimension vectors of exceptional KQ-modules are the real Schur
29
+ roots for Q. We call the possible dimension vectors of rigid KQ-modules rigid dimension
30
+ vectors. By results of [2] or [3] these do not depend on the field K. If X is a rigid
31
+ (respectively exceptional) RQ-lattice of rank vector α, then XK is a rigid (respectively
32
+ exceptional) KQ-module of dimension vector α for any homomorphism R → K with K
33
+ a field (see Lemmas 3.1,3.2), and so α must be a rigid dimension vector (respectively real
34
+ Schur root).
35
+ Theorem A. For any commutative ring R and real Schur root α for Q, there is a unique
36
+ rigid pointwise free RQ-lattice with rank vector α and it is exceptional.
37
+ The existence follows easily from [4], and the uniqueness follows from the next result.
38
+ As mentioned, the case when R is a principal ideal domain is in [4]. The case when R is
39
+ a truncated polynomial ring K[ǫ]/(ǫn) is a special case of [6, Theorem 1.2]. Recall that a
40
+ commutative ring R is reduced if it has no nilpotent elements.
41
+ 2020 Mathematics Subject Classification. Primary 16G20; Secondary 16G30,16H20,13C10.
42
+ Key words and phrases. Quiver representations, Rigid representations, Lattices over orders.
43
+ Partially supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) –
44
+ SFB-TRR 358/1 2023 – 491392403.
45
+ 1
46
+
47
+ Theorem B. If R is reduced, then any rigid RQ-lattice X of pointwise constant rank
48
+ has a decomposition
49
+ X ∼= (X1 ⊗R P1) ⊕ · · · ⊕ (Xr ⊗R Pr)
50
+ where the Xi are pairwise non-isomorphic exceptional pointwise free RQ-lattices satisfying
51
+ Ext1
52
+ RQ(Xi, Xj) = 0 for all i, j and the Pi are finitely generated projective R-modules of
53
+ constant rank. Moreover this decomposition is unique up to isomorphism and reordering.
54
+ In particular any exceptional RQ-lattice is of the form Y ⊗R P with Y an exceptional
55
+ pointwise free RQ-module and P a projective R-module of constant rank 1.
56
+ Note that in general one doesn’t have uniqueness for rigid pointwise free lattices of a
57
+ given rank vector. For example let Q be the quiver 1 → 2 and R a reduced ring with a
58
+ stably free projective module P which is not free, say P ⊕Rn ∼= Rm. Then (RQe2⊗RP)⊕
59
+ (RQe1 ⊗R Rn) is pointwise free, but not isomorphic to (RQe2 ⊗R Rm−n) ⊕(RQe1 ⊗R Rn).
60
+ 2. Commutative rings
61
+ Concerning our definitions and results, note that every finitely generated projective
62
+ R-module has constant rank if and only if Spec R is connected, or equivalently R has no
63
+ idempotents other than 0 and 1, see for example Exercise 20.12 in [5].
64
+ Lemma 2.1. Let R be a commutative ring.
65
+ (i) If X is a finitely generated R-module, then X = 0 if and only if XK = 0 for all
66
+ homomorphisms R → K with K an algebraically closed field.
67
+ (ii) If θ : X → Y is a homomorphism of R-modules and Y is finitely generated, then
68
+ θ is onto if and only if θK is onto for all R → K with K an algebraically closed
69
+ field.
70
+ (iii) If R is reduced and X is a finitely generated R-module, then X is projective of
71
+ constant rank n if and only if dimK XK = n for all homomorphisms R → K with
72
+ K an algebraically closed field.
73
+ (iv) If R is reduced and θ : X → Y is a homomorphism with X, Y finitely generated
74
+ projective of constant rank, then θ is a split monomorphism if and only if θK is a
75
+ monomorphism for all R → K with K an algebraically closed field.
76
+ Proof. (i) Since X is finitely generated, if non-zero it has a map onto some R/m, and
77
+ taking K to be the algebraic closure of this field gives a surjective map XK → R/m⊗RK ∼=
78
+ K.
79
+ (ii) Clear.
80
+ (iii) See Exercise 20.13 in [5].
81
+ (iv) If θK is a monomorphism for all R → K, then Coker θK has constant dimension,
82
+ so Coker θ is projective of constant rank. Then Im θ is a summand of Y , so projective.
83
+ But then 0 → Ker θ → X → Im θ → 0 splits, so is exact after inducing to K. Thus
84
+ Ker θK = 0. Also Ker θ is summand of X, so finitely generated. Thus Ker θ is zero.
85
+
86
+ Lemma 2.2. Any commutative ring R can be written as a quotient R ∼= ˜R/I with ˜R an
87
+ integral domain and I is an ideal contained in the Jacobson radical of ˜R.
88
+ Proof. Let A = Z[xr : r ∈ R] be the polynomial ring over Z with indeterminates indexed
89
+ by the elements of R. There is a surjective homomorphism θ : A → R sending each xr
90
+ to r and the set
91
+ S = {a ∈ A : θ(a) is invertible}
92
+ is a multiplicative subset. We set ˜R to be the localization AS, an integral domain. The
93
+ homomorphism θ extends to a surjective homomorphism ˜θ : ˜R → R.
94
+ 2
95
+
96
+ Let x ∈ Ker ˜θ. If y ∈ ˜R, then xy ∈ Ker ˜θ. Write xy = as−1 with a ∈ A and s ∈ S.
97
+ Then θ(a) = 0, so s + a ∈ S. Thus 1 + xy = (s + a)s−1 is invertible in ˜R. Since this is
98
+ true for all y, it follows that x is in the Jacobson radical of ˜R.
99
+
100
+ 3. Lattices
101
+ Let R be a commutative ring and Q a quiver. Lemma 1 of [4] generalizes immediately
102
+ to this setting.
103
+ Lemma 3.1. If X is an RQ-lattice, then proj. dim X ≤ 1 and
104
+ Ext1
105
+ RQ(X, Y )S ∼= Ext1
106
+ SQ(XS, Y S)
107
+ for any homomorphism R → S and any RQ-module Y . In particular if X is a rigid
108
+ RQ-lattice, then XS is a rigid SQ-lattrice for all homomorphisms R → S. Conversely, if
109
+ X is an RQ-lattice and XK rigid for all homomorphisms R → K with K an algebraically
110
+ closed field, then X is rigid.
111
+ Proof. Letting S be the R-subalgebra of RQ with basis the trivial paths ei and B be the
112
+ free R-submodule of RQ with basis the arrows, the path algebra RQ is isomorphic to the
113
+ tensor algebra of B over S, so there is a standard resolution
114
+ 0 → RQ ⊗S B ⊗S RQ → RQ ⊗S RQ → RQ → 0,
115
+ or equivalently
116
+ 0 →
117
+
118
+ a∈Q1
119
+ RQeh(a) ⊗R et(a)RQ →
120
+
121
+ i∈Q0
122
+ RQei ⊗R eiR → RQ → 0.
123
+ Tensoring with the RQ-module X gives
124
+ 0 = TorRQ
125
+ 1 (RQ, X) →
126
+
127
+ a∈Q1
128
+ RQeh(a) ⊗R et(a)X →
129
+
130
+ i∈Q0
131
+ RQei ⊗R eiX → X → 0.
132
+ and this is a resolution of X by finitely generated projective RQ-modules. We denote it
133
+ by 0 → P1 → P0 → X → 0. Since X is projective over R, the induced sequence
134
+ 0 → P S
135
+ 1 → P S
136
+ 0 → XS → 0
137
+ is exact, so a resolution of XS by projective SQ-modules. Now if P is a finitely generated
138
+ projective RQ-module, then
139
+ HomRQ(P, Y )S ∼= HomSQ(P S, Y S).
140
+ Thus we get a commutative diagram with exact rows
141
+ HomRQ(P0, Y )S −−−→ HomRQ(P1, Y )S −−−→ Ext1
142
+ RQ(X, Y )S
143
+ −−−→ 0
144
+ �
145
+ �
146
+ HomSQ(P S
147
+ 0 , Y S) −−−→ HomSQ(P S
148
+ 1 , Y S) −−−→ Ext1
149
+ SQ(XS, Y S) −−−→ 0
150
+ in which the vertical maps are isomorphisms, and hence an isomorphism
151
+ Ext1
152
+ RQ(X, Y )S ∼= Ext1
153
+ SQ(XS, Y S).
154
+ Now Ext1
155
+ RQ(X, X) is a finitely generated R-module, so if Ext1
156
+ RQ(X, X)K = 0 for all
157
+ homomorphisms from R to an algebraically closed field K then Ext1
158
+ RQ(X, X) = 0, that
159
+ is, X is rigid.
160
+
161
+ 3
162
+
163
+ Over an algebraically closed field K, the isomorphism classes of representations X of
164
+ Q of dimension vector α correspond to orbits OX of a group GL(α) acting on an affine
165
+ space Rep(Q, α). Moreover X is rigid if and only if OX is open orbit. Since the affine
166
+ space it irreducible, it follows that there is at most one rigid module of dimension α, up
167
+ to isomorphism.
168
+ The general dimension of Hom(X, Y ) and Ext1(X, Y ) for X of dimension α and Y
169
+ of dimension β is denoted hom(α, β) and ext(α, β). In particular this is these are the
170
+ dimensions for X and Y rigid. Based on work of Schofield [11], it is proved in [3] that
171
+ hom(α, β) and ext(α, β) do not depend on the algebraically closed field K.
172
+ Lemma 3.2. If R is reduced, and if X, Y are rigid RQ-lattices of pointwise constant
173
+ rank α, β, then
174
+ HomRQ(X, Y )S ∼= HomSQ(XS, Y S)
175
+ for all homomorphisms R → S. Moreover Ext1
176
+ RQ(X, Y ) and HomRQ(X, Y ) are finitely
177
+ generated projective R-modules of constant rank ext(α, β) and hom(α, β).
178
+ Proof. For any R → K with K an algebraically closed field, Ext1
179
+ RQ(X, Y )K has constant
180
+ dimension ext(α, β), so Ext1
181
+ RQ(X, Y ) is projective over R of this rank by Lemma 2.1(iii).
182
+ Now the projective resolution 0 → P1 → P0 → X → 0 of X gives an exact sequence
183
+ 0 → HomRQ(X, Y ) → HomRQ(P0, Y ) → HomRQ(P1, Y ) → Ext1
184
+ RQ(X, Y ) → 0.
185
+ The last three are projective R-modules of constant rank, so this sequence splits. Thus
186
+ the first module is also projective over R. Moreover the sequence remains exact under
187
+ induction using a homomorphism R → S. It follows that
188
+ HomRQ(X, Y )S ∼= HomSQ(XS, Y S).
189
+ Considering the case when S is a field, we see that HomRQ(X, Y ) has constant rank
190
+ hom(α, β).
191
+
192
+ The following result is well known.
193
+ Lemma 3.3. The full subquiver of Q on the support of any rigid dimension vector α has
194
+ no oriented cycles.
195
+ Proof. If not, one can easily construct representations of Q of dimension α over an alge-
196
+ braically closed field K on which the trace of the oriented cycle is arbitrary, but the variety
197
+ of representations has a dense orbit, so the trace must be constant. (This argument is
198
+ already used in [4, Theorem 1] for real Schur roots.)
199
+
200
+ 4. Mutations
201
+ Lemma 4.1. If R is a commutative ring and α is real Schur root for Q, then there exists
202
+ an exceptional pointwise free RQ-lattice of dimension vector α.
203
+ Proof. By [4, Theorem 2], there is a (unique) exceptional ZQ-lattice X0 of rank vector
204
+ α. Now we obtain an RQ-lattice XR = X ⊗Z R, and it is exceptional by Lemmas 3.1
205
+ and 3.2.
206
+
207
+ The cited theorem [4, Theorem 2] depends on a braid group action for exceptional
208
+ sequences of lattices, defined using mutations of exceptional pairs.
209
+ The result about
210
+ mutations in turn depends on the construction of mutations of pairs of representations of
211
+ KQ where K is a field, for which [4] cites [10] and [2] cites [7]. We take this opportunity
212
+ to give a direct proof, based on the following generalization of the Happel-Ringel Lemma
213
+ [8, Lemma 4.1].
214
+ 4
215
+
216
+ Lemma 4.2. Let θ : X → Y be a homomorphism between finite-dimensional A-modules
217
+ for a hereditary algebra A and suppose that Ext1
218
+ A(Y, X) = 0. If Y is indecomposable, then
219
+ either θ is an epimorphism or the map X → Im(θ) is a split epimorphism.
220
+ Proof. The map θ gives exact sequences
221
+ ξ : 0 → Im(θ)
222
+ α−→ Y → Coker(θ) → 0
223
+ and
224
+ η : 0 → Ker(θ) → X
225
+ β−→ Im(θ) → 0.
226
+ From Ext1
227
+ A(Coker(θ), η) we get an exact sequence
228
+ · · · → Ext1
229
+ A(Coker(θ), X)
230
+ f−→ Ext1
231
+ A(Coker(θ), Im(θ)) → Ext2
232
+ A(Coker(θ), Ker(θ)) = 0
233
+ so ξ = f(ζ) for some ζ. Thus there is a commutative diagram
234
+ ζ : 0 −−−→
235
+ X
236
+ δ
237
+ −−−→ Z −−−→ Coker(θ) −−−→ 0
238
+ β
239
+ �
240
+ γ
241
+ �
242
+ ���
243
+ ξ : 0 −−−→ Im(θ)
244
+ α
245
+ −−−→ Y −−−→ Coker(θ) −−−→ 0
246
+ Now the sequence
247
+ 0 → X
248
+
249
+ δ
250
+ β
251
+
252
+
253
+ −−−→ Z ⊕ Im(θ)
254
+
255
+ γ
256
+ −α
257
+
258
+ −−−−−−→ Y → 0
259
+ is exact, so splits since Ext1
260
+ A(Y, X) = 0. Thus there are maps
261
+ �p
262
+ q�
263
+ : Z ⊕ Im(θ) → X
264
+ and
265
+
266
+ r
267
+ s
268
+
269
+ : Y → Z ⊕ Im(θ)
270
+ with
271
+
272
+ 1Z
273
+ 0
274
+ 0
275
+ 1Im(θ)
276
+
277
+ =
278
+
279
+ δ
280
+ β
281
+ � �p
282
+ q�
283
+ +
284
+
285
+ r
286
+ s
287
+ � �γ
288
+ −α�
289
+ .
290
+ Thus 1Im(θ) = βq − sα. Now if θ is not an epimorphism, then αs cannot be an auto-
291
+ morphism of Y . Since Y is indecomposable, αs is nilpotent. This implies that βq is
292
+ invertible, and hence that β is a split epimorphism.
293
+
294
+ If X is also indecomposable, one recovers the Happel-Ringel Lemma: if θ is non-
295
+ zero and not an epimorphism, then X → Im(θ) must be an isomorphism, so θ is a
296
+ monomorphism. Dually we have:
297
+ Lemma 4.3. Let θ : X → Y be a homomorphism between finite-dimensional A-modules
298
+ for a hereditary algebra A and suppose that Ext1
299
+ A(Y, X) = 0. If X is indecomposable,
300
+ then either θ is a monomorphism or the map Im(θ) → Y is a split monomorphism.
301
+ A sequence of exceptional RQ-lattices (X1, . . . , Xr) is called an exceptional sequence
302
+ provided that HomRQ(Xi, Xj) = Ext1
303
+ RQ(Xi, Xj) = 0 for all i > j. The result about
304
+ mutations is as follows.
305
+ Theorem 4.4. Suppose R is reduced. If (X, Y ) is an exceptional pair of RQ-lattices, then
306
+ there are exceptional pairs (LXY, X) and (Y, RY X) given as follows. If HomRQ(X, Y ) = 0
307
+ then LXY and RY X are given by the universal exact sequences
308
+ 0 → Y → LXY → X ⊗R Ext1
309
+ RQ(X, Y ) → 0,
310
+ 0 → Y ⊗R D Ext1
311
+ RQ(X, Y ) → RY X → X → 0.
312
+ where D = HomR(−, R). If HomRQ(X, Y ) ̸= 0, then the universal map
313
+ f : X ⊗R HomRQ(X, Y ) → Y
314
+ 5
315
+
316
+ is an epimorphism or a monomorphism, and LXY is its kernel or cokernel, and the
317
+ universal map
318
+ g : X → HomR(HomRQ(X, Y ), Y ) ∼= Y ⊗R D HomRQ(X, Y )
319
+ is an epimorphism or a monomorphism and RY X is its kernel or cokernel.
320
+ Proof. Since R is reduced and the lattices are rigid, the Hom and Ext spaces are projective
321
+ over R of constant rank, independent of R. Moreover using Lemma 2.1 we can, as in [4,
322
+ Lemma 4], reduce to the case when R = K is an algebraically closed field.
323
+ In this setting, the claim follows easily once one knows that if HomKQ(X, Y ) ̸= 0 then
324
+ Ext1
325
+ KQ(X, Y ) = 0, and that f and g are either epimorphisms or monomorphisms.
326
+ Now if θ ∈ HomKQ(X, Y ) is a non-zero map, then by the Happel-Ringel Lemma θ is
327
+ either an epimorphism or a monomorphism. In the first case we have a exact sequence
328
+ · · · → Ext1
329
+ KQ(X, X) → Ext1
330
+ KQ(X, Y ) → Ext2
331
+ KQ(X, Ker(θ)) = 0
332
+ and in the second case we have
333
+ · · · → Ext1
334
+ KQ(Y, Y ) → Ext1
335
+ KQ(X, Y ) → Ext2
336
+ KQ(Coker(θ), Y ) = 0.
337
+ Since Ext1
338
+ KQ(X, X) = Ext1
339
+ KQ(Y, Y ) = 0, in both cases we get Ext1
340
+ KQ(X, Y ) = 0.
341
+ If the map f : X ⊗K HomKQ(X, Y ) → Y is not an epimorphism, then the induced
342
+ map f ′ : X ⊗K HomKQ(X, Y ) → Im(f) is a split epimorphism by Lemma 4.2. Since
343
+ EndKQ(X) = K, the map f can be identified with the universal map from a direct sum
344
+ of copies of X to Y given by a basis of HomKQ(X, Y ), from which it is easy to see
345
+ that f is right minimal [1, §I.2]. Thus by [1, Corollary I.2.3] there is no non-zero direct
346
+ summand of the domain on which f vanishes. Thus f ′ is an isomorphism, and hence f
347
+ is a monomorphism. The argument for g is dual.
348
+
349
+ 5. Classification of rigids
350
+ We prove the following result. Once Theorem A is proved, it gives Theorem B. The
351
+ proof of the theorem is the same as Theorem 2(ii) of [4].
352
+ Theorem 5.1. Let R be reduced. For each real Schur root α, we choose an exceptional
353
+ pointwise free RQ-lattice X(α) of rank vector α. Any rigid RQ-lattice X of pointwise
354
+ constant rank has a decomposition
355
+ X ∼= (X(α1) ⊗R P1) ⊕ · · · ⊕ (X(αr) ⊗R Pr)
356
+ where the α1, . . . , αr are distinct real Schur roots, ext(αi, αj) = 0 for all i, j and the Pi
357
+ are finitely generated projective R-modules of constant rank. Moreover this decomposition
358
+ is unique up to isomorphism and reordering. In particular any exceptional RQ-lattice of
359
+ rank vector α is of the form X(α) ⊗R P with X exceptional pointwise free and P a
360
+ projective R-module of constant rank 1.
361
+ Proof. By Lemma 3.3, we may assume that Q has no oriented cycles. We fix temporarily
362
+ a homomorphism R → K with K an algebraically closed field. Then XK is rigid, so
363
+ decomposes as direct sum
364
+ XK ∼= Mm1
365
+ 1
366
+ ⊕ · · · ⊕ Mmr
367
+ r
368
+ .
369
+ with the Mi pairwise non-isomorphic exceptional KQ-modules, Ext1
370
+ KQ(Mi, Mj) = 0 for
371
+ all i, j and all mi > 0. By [8, Corollary 4.2], we can order the Mi so that (M1, . . . , Mr) is
372
+ an exceptional sequence, so Hom(Mi, Mj) = 0 for i > j. Let Mi have dimension vector αi.
373
+ We have Hom(X(αi), X(αj)) = 0 for i > j since dim Hom(Mi, Mj) = hom(αi, αj).
374
+ 6
375
+
376
+ Now Pr = HomRQ(X(αr), X) is a finitely generated projective R-module of constant
377
+ rank. Consider the evaluation map θ : X(αr) ⊗R Pr → X and let C be its cokernel. For
378
+ an arbitrary homomorphism R → K with K an algebraically closed field (no longer the
379
+ one fixed above), using Lemma 3.2, we can identify θK with the evaluation map
380
+ X(αr)K ⊗K HomKQ(X(αr)K, XK) → X
381
+ but we know that
382
+ XK ∼= (X(α1)K)m1 ⊕ · · · ⊕ (X(αr)K)mr
383
+ since both sides are rigid KQ-modules of the same dimension vector. Thus θK is the
384
+ inclusion of (X(αr)K)mr as a direct summand of XK. Thus by Lemma 2.1, θ is a split
385
+ monomorphism of R-modules, so C is projective over R. Also
386
+ CK ∼= Coker(θK) ∼= (X(α1)K)m1 ⊕ · · · ⊕ (X(αr−1)K)mr−1
387
+ so Ext1
388
+ KQ(CK, CK) = 0 and Ext1
389
+ KQ(CK, X(αr)K) = 0. Thus C is rigid and Ext1(C, Xr) =
390
+ 0. Thus X ∼= X(αr) ⊗R Pr ⊕C. Now the result follows by induction (on r or on the total
391
+ rank of X).
392
+ For uniqueness, note that if we have another decomposition
393
+ X = (X(β1) ⊗ P ′
394
+ 1) ⊕ · · · ⊕ (X(βs) ⊗ P ′
395
+ s)
396
+ with the βi being distinct real Schur roots and the P ′
397
+ i projective R-modules of constant
398
+ rank, then using a fixed homomorphism R → K and the uniqueness of rigid KQ-modules
399
+ of a given dimension vector, we see that s = r and that the βi are a permutation of the
400
+ αi. Thus we reduce to the case that βi = αi. But then
401
+ P ′
402
+ r ∼= HomRQ(X(αr), X) ∼= Pr
403
+ and then the corresponding cokernels of the evaluation maps are isomorphic, so by in-
404
+ duction P ′
405
+ i ∼= Pi for all i.
406
+ The special case of exceptional lattices follows.
407
+
408
+ 6. Uniqueness for exceptional pointwise frees
409
+ We now prove Theorem A. The existence part was Lemma 4.1. Suppose X is a point-
410
+ wise free lattice for RQ of rank vector α, a real Schur root. By Lemma 2.2 we can write
411
+ R ∼= ˜R/I with ˜R reduced and I contained in the Jacobson radical of ˜R.
412
+ We define a pointwise free ˜RQ-lattice ˜X by giving it as a representation of Q by free
413
+ ˜R-modules as follows. For each vertex i we take ei ˜X to be a free ˜R-module of rank αi,
414
+ and we fix an isomorphism
415
+ (ei ˜X)/I(ei ˜X) ∼= (ei ˜X)R ∼= eiX.
416
+ For each arrow a ∈ Q1, multiplication by a induces an R-linear map et(a)X → eh(a)X,
417
+ and we lift this to an ˜R-linear map et(a) ˜X → eh(a) ˜X. This defines ˜X as a representation
418
+ of Q and clearly we have ˜XR ∼= X.
419
+ Let E = Ext1
420
+ ˜RQ( ˜X, ˜X), a finitely generated ˜R-module. Now ER ∼= Ext1
421
+ RQ(X, X) = 0
422
+ by Lemma 3.1, so E = IE, so by Nakayama’s Lemma E = 0. Thus ˜X is rigid. (This
423
+ idea of lifting X to a rigid representation ˜X is taken from [6].)
424
+ By Theorem B we have ˜X ∼= X(α)⊗ ˜R ˜P, where X(α) is a chosen exceptional pointwise
425
+ free ˜RQ-lattice of rank vector α and ˜P is a finitely generated projective ˜R-module of
426
+ constant rank 1.
427
+ 7
428
+
429
+ Tensoring with R, we get X ∼= Y ⊗R P where Y = X(α)R is an exceptional pointwise
430
+ free RQ-lattice and P = ˜P R is a finitely generated projective R-module of constant
431
+ rank 1.
432
+ Now since X and Y are pointwise free of rank vector α, we have
433
+ Rαi ∼= eiX ∼= eiY ⊗R P ∼= Rαi ⊗R P ∼= P αi
434
+ for all i. Since α is a real root for Q, it is indivisible, that is, its components are coprime.
435
+ Thus we can find ai, bi ∈ N such that
436
+ 1 +
437
+
438
+ i
439
+ aiαi =
440
+
441
+ i
442
+ biαi.
443
+ Then
444
+ P ⊕ R
445
+
446
+ i aiαi ∼= P ⊕
447
+
448
+ i
449
+ (Rαi)ai ∼= P ⊕
450
+
451
+ i
452
+ (P αi)ai ∼=
453
+
454
+ i
455
+ (P αi)bi ∼=
456
+
457
+ i
458
+ (Rαi)bi ∼= R
459
+
460
+ i biαi.
461
+ Thus P is stably free. Now any stably free projective module of constant rank 1 for a
462
+ commutative ring is free, see for example [9, Theorem 4.11], so P ∼= R. Thus X ∼= Y .
463
+ We have already observed that Y is exceptional, hence so is X.
464
+ References
465
+ [1] M. Auslander, I. Reiten and S. O. Smalø, Representation theory of Artin algebras, Cambridge
466
+ Studies in Advanced Mathematics, 36. Cambridge University Press, Cambridge, 1995.
467
+ [2] W. Crawley-Boevey, Exceptional sequences of representations of quivers, in ‘Representations of
468
+ algebras’ (Ottawa, ON, 1992), 117-–124, CMS Conf. Proc., 14, Amer. Math. Soc., Providence, RI,
469
+ 1993.
470
+ [3] W. Crawley-Boevey, Subrepresentations of general representations of quivers, Bull. London Math.
471
+ Soc. 28 (1996), 363—366.
472
+ [4] W. Crawley-Boevey, Rigid integral representations of quivers, in ‘Representation theory of
473
+ algebras’ (Cocoyoc, 1994), 155-–163, CMS Conf. Proc., 18, Amer. Math. Soc., Providence, RI,
474
+ 1996.
475
+ [5] D. Eisenbud, Commutative algebra. With a view toward algebraic geometry, Graduate Texts in
476
+ Mathematics, 150. Springer-Verlag, New York, 1995.
477
+ [6] C. Geiß, B. Leclerc and J. Schr¨oer, Rigid modules and Schur roots. Math. Z. 295 (2020), no. 3-4,
478
+ 1245–1277.
479
+ [7] A. L. Gorodentsev, Exceptional bundles on surfaces with a moving anticanonical class (Russian),
480
+ Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), 740-–757, 895; translation in Math. USSR-Izv. 33
481
+ (1989), 67-–83.
482
+ [8] D. Happel and C. M. Ringel, Tilted algebras, Trans. Amer. Math. Soc. 274 (1982), 399-–443.
483
+ [9] T. Y. Lam, Serre’s problem on projective modules, Springer Monographs in Mathematics.
484
+ Springer-Verlag, Berlin, 2006.
485
+ [10] A. N. Rudakov, Exceptional collections, mutations and helices, in ‘Helices and vector bundles’,
486
+ 1-–6, London Math. Soc. Lecture Note Ser., 148, Cambridge Univ. Press, Cambridge, 1990.
487
+ [11] A. Schofield, General representations of quivers, Proc. London Math. Soc. (3) 65 (1992), 46-–64.
488
+ Fakult¨at f¨ur Mathematik, Universit¨at Bielefeld, 33501 Bielefeld, Germany
489
+ Email address: wcrawley@math.uni-bielefeld.de
490
+ 8
491
+
TtE4T4oBgHgl3EQfLwyC/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,326 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf,len=325
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
3
+ page_content='04941v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
4
+ page_content='RT] 12 Jan 2023 RIGID INTEGRAL REPRESENTATIONS OF QUIVERS REVISITED WILLIAM CRAWLEY-BOEVEY Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
5
+ page_content=' In earlier work, the author classified rigid representations of a quiver by means of finitely generated free modules over a principal ideal ring.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
6
+ page_content=' We show that the classification of exceptional pointwise free lattices can be extended to arbitrary commutative rings and that the classification of rigid lattices can be extended to reduced commutative rings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
7
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
8
+ page_content=' Introduction In [4] we studied rigid representations of a quiver over a principal ideal domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
9
+ page_content=' Here we generalize the results to more general commutative base rings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
10
+ page_content=' Let R be a commutative ring (always non-zero).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
11
+ page_content=' Given an R-module X and a homo- morphism R → S we write XS for the induced S-module S ⊗R X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
12
+ page_content=' Recall that a finitely generated projective R-module P has constant rank n if Pp is a free Rp-module of rank n for each prime ideal p of R, or equivalently if dimK P K = n for all homomorphisms R → K with K a field, which we may take to be algebraically closed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
13
+ page_content=' Let Q = (Q0, Q1, h, t) be a finite quiver and let RQ be the path algebra of Q over R, with a trivial path ei for each vertex i ∈ Q0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
14
+ page_content=' By an RQ-lattice we mean an RQ-module which is finitely generated projective as an R-module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
15
+ page_content=' We say that an RQ-module X is pointwise free if eiX is a free R-module for all i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
16
+ page_content=' We say that an RQ-lattice X has rank vector α ∈ NQ0 if eiX has constant rank αi for each i, and that X has pointwise constant rank if it has rank vector α for some α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
17
+ page_content=' If R → S is a homomorphism, then XS is naturally an SQ-module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
18
+ page_content=' We say that an RQ-module X is rigid if Ext1 RQ(X, X) = 0, and exceptional if also the natural map R → EndRQ(X) is an isomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
19
+ page_content=' If K is an algebraically closed field, then by definition the possible dimension vectors of exceptional KQ-modules are the real Schur roots for Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
20
+ page_content=' We call the possible dimension vectors of rigid KQ-modules rigid dimension vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
21
+ page_content=' By results of [2] or [3] these do not depend on the field K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
22
+ page_content=' If X is a rigid (respectively exceptional) RQ-lattice of rank vector α, then XK is a rigid (respectively exceptional) KQ-module of dimension vector α for any homomorphism R → K with K a field (see Lemmas 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
23
+ page_content='1,3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
24
+ page_content='2), and so α must be a rigid dimension vector (respectively real Schur root).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
25
+ page_content=' Theorem A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
26
+ page_content=' For any commutative ring R and real Schur root α for Q, there is a unique rigid pointwise free RQ-lattice with rank vector α and it is exceptional.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
27
+ page_content=' The existence follows easily from [4], and the uniqueness follows from the next result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
28
+ page_content=' As mentioned, the case when R is a principal ideal domain is in [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
29
+ page_content=' The case when R is a truncated polynomial ring K[ǫ]/(ǫn) is a special case of [6, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
30
+ page_content='2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
31
+ page_content=' Recall that a commutative ring R is reduced if it has no nilpotent elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
32
+ page_content=' 2020 Mathematics Subject Classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
33
+ page_content=' Primary 16G20;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
34
+ page_content=' Secondary 16G30,16H20,13C10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
35
+ page_content=' Key words and phrases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
36
+ page_content=' Quiver representations, Rigid representations, Lattices over orders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
37
+ page_content=' Partially supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – SFB-TRR 358/1 2023 – 491392403.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
38
+ page_content=' 1 Theorem B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
39
+ page_content=' If R is reduced, then any rigid RQ-lattice X of pointwise constant rank has a decomposition X ∼= (X1 ⊗R P1) ⊕ · · · ⊕ (Xr ⊗R Pr) where the Xi are pairwise non-isomorphic exceptional pointwise free RQ-lattices satisfying Ext1 RQ(Xi, Xj) = 0 for all i, j and the Pi are finitely generated projective R-modules of constant rank.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
40
+ page_content=' Moreover this decomposition is unique up to isomorphism and reordering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
41
+ page_content=' In particular any exceptional RQ-lattice is of the form Y ⊗R P with Y an exceptional pointwise free RQ-module and P a projective R-module of constant rank 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
42
+ page_content=' Note that in general one doesn’t have uniqueness for rigid pointwise free lattices of a given rank vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
43
+ page_content=' For example let Q be the quiver 1 → 2 and R a reduced ring with a stably free projective module P which is not free, say P ⊕Rn ∼= Rm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
44
+ page_content=' Then (RQe2⊗RP)⊕ (RQe1 ⊗R Rn) is pointwise free, but not isomorphic to (RQe2 ⊗R Rm−n) ⊕(RQe1 ⊗R Rn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
45
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
46
+ page_content=' Commutative rings Concerning our definitions and results, note that every finitely generated projective R-module has constant rank if and only if Spec R is connected, or equivalently R has no idempotents other than 0 and 1, see for example Exercise 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
47
+ page_content='12 in [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
48
+ page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
49
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
50
+ page_content=' Let R be a commutative ring.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
51
+ page_content=' (i) If X is a finitely generated R-module, then X = 0 if and only if XK = 0 for all homomorphisms R → K with K an algebraically closed field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
52
+ page_content=' (ii) If θ : X → Y is a homomorphism of R-modules and Y is finitely generated, then θ is onto if and only if θK is onto for all R → K with K an algebraically closed field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
53
+ page_content=' (iii) If R is reduced and X is a finitely generated R-module, then X is projective of constant rank n if and only if dimK XK = n for all homomorphisms R → K with K an algebraically closed field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
54
+ page_content=' (iv) If R is reduced and θ : X → Y is a homomorphism with X, Y finitely generated projective of constant rank, then θ is a split monomorphism if and only if θK is a monomorphism for all R → K with K an algebraically closed field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
55
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
56
+ page_content=' (i) Since X is finitely generated, if non-zero it has a map onto some R/m, and taking K to be the algebraic closure of this field gives a surjective map XK → R/m⊗RK ∼= K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
57
+ page_content=' (ii) Clear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
58
+ page_content=' (iii) See Exercise 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
59
+ page_content='13 in [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
60
+ page_content=' (iv) If θK is a monomorphism for all R → K, then Coker θK has constant dimension, so Coker θ is projective of constant rank.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
61
+ page_content=' Then Im θ is a summand of Y , so projective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
62
+ page_content=' But then 0 → Ker θ → X → Im θ → 0 splits, so is exact after inducing to K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
63
+ page_content=' Thus Ker θK = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
64
+ page_content=' Also Ker θ is summand of X, so finitely generated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
65
+ page_content=' Thus Ker θ is zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
66
+ page_content=' □ Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
67
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
68
+ page_content=' Any commutative ring R can be written as a quotient R ∼= ˜R/I with ˜R an integral domain and I is an ideal contained in the Jacobson radical of ˜R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
69
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
70
+ page_content=' Let A = Z[xr : r ∈ R] be the polynomial ring over Z with indeterminates indexed by the elements of R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
71
+ page_content=' There is a surjective homomorphism θ : A → R sending each xr to r and the set S = {a ∈ A : θ(a) is invertible} is a multiplicative subset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
72
+ page_content=' We set ˜R to be the localization AS, an integral domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
73
+ page_content=' The homomorphism θ extends to a surjective homomorphism ˜θ : ˜R → R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
74
+ page_content=' 2 Let x ∈ Ker ˜θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
75
+ page_content=' If y ∈ ˜R, then xy ∈ Ker ˜θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
76
+ page_content=' Write xy = as−1 with a ∈ A and s ∈ S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
77
+ page_content=' Then θ(a) = 0, so s + a ∈ S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
78
+ page_content=' Thus 1 + xy = (s + a)s−1 is invertible in ˜R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
79
+ page_content=' Since this is true for all y, it follows that x is in the Jacobson radical of ˜R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
80
+ page_content=' □ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
81
+ page_content=' Lattices Let R be a commutative ring and Q a quiver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
82
+ page_content=' Lemma 1 of [4] generalizes immediately to this setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
83
+ page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
84
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
85
+ page_content=' If X is an RQ-lattice, then proj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
86
+ page_content=' dim X ≤ 1 and Ext1 RQ(X, Y )S ∼= Ext1 SQ(XS, Y S) for any homomorphism R → S and any RQ-module Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
87
+ page_content=' In particular if X is a rigid RQ-lattice, then XS is a rigid SQ-lattrice for all homomorphisms R → S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
88
+ page_content=' Conversely, if X is an RQ-lattice and XK rigid for all homomorphisms R → K with K an algebraically closed field, then X is rigid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
89
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
90
+ page_content=' Letting S be the R-subalgebra of RQ with basis the trivial paths ei and B be the free R-submodule of RQ with basis the arrows, the path algebra RQ is isomorphic to the tensor algebra of B over S, so there is a standard resolution 0 → RQ ⊗S B ⊗S RQ → RQ ⊗S RQ → RQ → 0, or equivalently 0 → � a∈Q1 RQeh(a) ⊗R et(a)RQ → � i∈Q0 RQei ⊗R eiR → RQ → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
91
+ page_content=' Tensoring with the RQ-module X gives 0 = TorRQ 1 (RQ, X) → � a∈Q1 RQeh(a) ⊗R et(a)X → � i∈Q0 RQei ⊗R eiX → X → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
92
+ page_content=' and this is a resolution of X by finitely generated projective RQ-modules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
93
+ page_content=' We denote it by 0 → P1 → P0 → X → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
94
+ page_content=' Since X is projective over R, the induced sequence 0 → P S 1 → P S 0 → XS → 0 is exact, so a resolution of XS by projective SQ-modules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
95
+ page_content=' Now if P is a finitely generated projective RQ-module, then HomRQ(P, Y )S ∼= HomSQ(P S, Y S).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
96
+ page_content=' Thus we get a commutative diagram with exact rows HomRQ(P0, Y )S −−−→ HomRQ(P1, Y )S −−−→ Ext1 RQ(X, Y )S −−−→ 0 \uf8e6\uf8e6� \uf8e6\uf8e6� HomSQ(P S 0 , Y S) −−−→ HomSQ(P S 1 , Y S) −−−→ Ext1 SQ(XS, Y S) −−−→ 0 in which the vertical maps are isomorphisms, and hence an isomorphism Ext1 RQ(X, Y )S ∼= Ext1 SQ(XS, Y S).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
97
+ page_content=' Now Ext1 RQ(X, X) is a finitely generated R-module, so if Ext1 RQ(X, X)K = 0 for all homomorphisms from R to an algebraically closed field K then Ext1 RQ(X, X) = 0, that is, X is rigid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
98
+ page_content=' □ 3 Over an algebraically closed field K, the isomorphism classes of representations X of Q of dimension vector α correspond to orbits OX of a group GL(α) acting on an affine space Rep(Q, α).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
99
+ page_content=' Moreover X is rigid if and only if OX is open orbit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
100
+ page_content=' Since the affine space it irreducible, it follows that there is at most one rigid module of dimension α, up to isomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
101
+ page_content=' The general dimension of Hom(X, Y ) and Ext1(X, Y ) for X of dimension α and Y of dimension β is denoted hom(α, β) and ext(α, β).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
102
+ page_content=' In particular this is these are the dimensions for X and Y rigid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
103
+ page_content=' Based on work of Schofield [11], it is proved in [3] that hom(α, β) and ext(α, β) do not depend on the algebraically closed field K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
104
+ page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
105
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
106
+ page_content=' If R is reduced, and if X, Y are rigid RQ-lattices of pointwise constant rank α, β, then HomRQ(X, Y )S ∼= HomSQ(XS, Y S) for all homomorphisms R → S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
107
+ page_content=' Moreover Ext1 RQ(X, Y ) and HomRQ(X, Y ) are finitely generated projective R-modules of constant rank ext(α, β) and hom(α, β).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
108
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
109
+ page_content=' For any R → K with K an algebraically closed field, Ext1 RQ(X, Y )K has constant dimension ext(α, β), so Ext1 RQ(X, Y ) is projective over R of this rank by Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
110
+ page_content='1(iii).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
111
+ page_content=' Now the projective resolution 0 → P1 → P0 → X → 0 of X gives an exact sequence 0 → HomRQ(X, Y ) → HomRQ(P0, Y ) → HomRQ(P1, Y ) → Ext1 RQ(X, Y ) → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
112
+ page_content=' The last three are projective R-modules of constant rank, so this sequence splits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
113
+ page_content=' Thus the first module is also projective over R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
114
+ page_content=' Moreover the sequence remains exact under induction using a homomorphism R → S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
115
+ page_content=' It follows that HomRQ(X, Y )S ∼= HomSQ(XS, Y S).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
116
+ page_content=' Considering the case when S is a field, we see that HomRQ(X, Y ) has constant rank hom(α, β).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
117
+ page_content=' □ The following result is well known.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
118
+ page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
119
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
120
+ page_content=' The full subquiver of Q on the support of any rigid dimension vector α has no oriented cycles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
121
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
122
+ page_content=' If not, one can easily construct representations of Q of dimension α over an alge- braically closed field K on which the trace of the oriented cycle is arbitrary, but the variety of representations has a dense orbit, so the trace must be constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
123
+ page_content=' (This argument is already used in [4, Theorem 1] for real Schur roots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
124
+ page_content=') □ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
125
+ page_content=' Mutations Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
126
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
127
+ page_content=' If R is a commutative ring and α is real Schur root for Q, then there exists an exceptional pointwise free RQ-lattice of dimension vector α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
128
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
129
+ page_content=' By [4, Theorem 2], there is a (unique) exceptional ZQ-lattice X0 of rank vector α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
130
+ page_content=' Now we obtain an RQ-lattice XR = X ⊗Z R, and it is exceptional by Lemmas 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
131
+ page_content='1 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
132
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
133
+ page_content=' □ The cited theorem [4, Theorem 2] depends on a braid group action for exceptional sequences of lattices, defined using mutations of exceptional pairs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
134
+ page_content=' The result about mutations in turn depends on the construction of mutations of pairs of representations of KQ where K is a field, for which [4] cites [10] and [2] cites [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
135
+ page_content=' We take this opportunity to give a direct proof, based on the following generalization of the Happel-Ringel Lemma [8, Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
136
+ page_content='1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
137
+ page_content=' 4 Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
138
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
139
+ page_content=' Let θ : X → Y be a homomorphism between finite-dimensional A-modules for a hereditary algebra A and suppose that Ext1 A(Y, X) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
140
+ page_content=' If Y is indecomposable, then either θ is an epimorphism or the map X → Im(θ) is a split epimorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
141
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
142
+ page_content=' The map θ gives exact sequences ξ : 0 → Im(θ) α−→ Y → Coker(θ) → 0 and η : 0 → Ker(θ) → X β−→ Im(θ) → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
143
+ page_content=' From Ext1 A(Coker(θ), η) we get an exact sequence · · → Ext1 A(Coker(θ), X) f−→ Ext1 A(Coker(θ), Im(θ)) → Ext2 A(Coker(θ), Ker(θ)) = 0 so ξ = f(ζ) for some ζ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
144
+ page_content=' Thus there is a commutative diagram ζ : 0 −−−→ X δ −−−→ Z −−−→ Coker(θ) −−−→ 0 β \uf8e6\uf8e6� γ \uf8e6\uf8e6� ��� ξ : 0 −−−→ Im(θ) α −−−→ Y −−−→ Coker(θ) −−−→ 0 Now the sequence 0 → X \uf8eb \uf8edδ β \uf8f6 \uf8f8 −−−→ Z ⊕ Im(θ) � γ −α � −−−−−−→ Y → 0 is exact, so splits since Ext1 A(Y, X) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
145
+ page_content=' Thus there are maps �p q� : Z ⊕ Im(θ) → X and � r s � : Y → Z ⊕ Im(θ) with � 1Z 0 0 1Im(θ) � = � δ β � �p q� + � r s � �γ −α� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
146
+ page_content=' Thus 1Im(θ) = βq − sα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
147
+ page_content=' Now if θ is not an epimorphism, then αs cannot be an auto- morphism of Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
148
+ page_content=' Since Y is indecomposable, αs is nilpotent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
149
+ page_content=' This implies that βq is invertible, and hence that β is a split epimorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
150
+ page_content=' □ If X is also indecomposable, one recovers the Happel-Ringel Lemma: if θ is non- zero and not an epimorphism, then X → Im(θ) must be an isomorphism, so θ is a monomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
151
+ page_content=' Dually we have: Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
152
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
153
+ page_content=' Let θ : X → Y be a homomorphism between finite-dimensional A-modules for a hereditary algebra A and suppose that Ext1 A(Y, X) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
154
+ page_content=' If X is indecomposable, then either θ is a monomorphism or the map Im(θ) → Y is a split monomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
155
+ page_content=' A sequence of exceptional RQ-lattices (X1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
156
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
157
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
158
+ page_content=' , Xr) is called an exceptional sequence provided that HomRQ(Xi, Xj) = Ext1 RQ(Xi, Xj) = 0 for all i > j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
159
+ page_content=' The result about mutations is as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
160
+ page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
161
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
162
+ page_content=' Suppose R is reduced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
163
+ page_content=' If (X, Y ) is an exceptional pair of RQ-lattices, then there are exceptional pairs (LXY, X) and (Y, RY X) given as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
164
+ page_content=' If HomRQ(X, Y ) = 0 then LXY and RY X are given by the universal exact sequences 0 → Y → LXY → X ⊗R Ext1 RQ(X, Y ) → 0, 0 → Y ⊗R D Ext1 RQ(X, Y ) → RY X → X → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
165
+ page_content=' where D = HomR(−, R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
166
+ page_content=' If HomRQ(X, Y ) ̸= 0, then the universal map f : X ⊗R HomRQ(X, Y ) → Y 5 is an epimorphism or a monomorphism, and LXY is its kernel or cokernel, and the universal map g : X → HomR(HomRQ(X, Y ), Y ) ∼= Y ⊗R D HomRQ(X, Y ) is an epimorphism or a monomorphism and RY X is its kernel or cokernel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
167
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
168
+ page_content=' Since R is reduced and the lattices are rigid, the Hom and Ext spaces are projective over R of constant rank, independent of R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
169
+ page_content=' Moreover using Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
170
+ page_content='1 we can, as in [4, Lemma 4], reduce to the case when R = K is an algebraically closed field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
171
+ page_content=' In this setting, the claim follows easily once one knows that if HomKQ(X, Y ) ̸= 0 then Ext1 KQ(X, Y ) = 0, and that f and g are either epimorphisms or monomorphisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
172
+ page_content=' Now if θ ∈ HomKQ(X, Y ) is a non-zero map, then by the Happel-Ringel Lemma θ is either an epimorphism or a monomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
173
+ page_content=' In the first case we have a exact sequence · · → Ext1 KQ(X, X) → Ext1 KQ(X, Y ) → Ext2 KQ(X, Ker(θ)) = 0 and in the second case we have · · → Ext1 KQ(Y, Y ) → Ext1 KQ(X, Y ) → Ext2 KQ(Coker(θ), Y ) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
174
+ page_content=' Since Ext1 KQ(X, X) = Ext1 KQ(Y, Y ) = 0, in both cases we get Ext1 KQ(X, Y ) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
175
+ page_content=' If the map f : X ⊗K HomKQ(X, Y ) → Y is not an epimorphism, then the induced map f ′ : X ⊗K HomKQ(X, Y ) → Im(f) is a split epimorphism by Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
176
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
177
+ page_content=' Since EndKQ(X) = K, the map f can be identified with the universal map from a direct sum of copies of X to Y given by a basis of HomKQ(X, Y ), from which it is easy to see that f is right minimal [1, §I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
178
+ page_content='2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
179
+ page_content=' Thus by [1, Corollary I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
180
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
181
+ page_content='3] there is no non-zero direct summand of the domain on which f vanishes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
182
+ page_content=' Thus f ′ is an isomorphism, and hence f is a monomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
183
+ page_content=' The argument for g is dual.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
184
+ page_content=' □ 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
185
+ page_content=' Classification of rigids We prove the following result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
186
+ page_content=' Once Theorem A is proved, it gives Theorem B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
187
+ page_content=' The proof of the theorem is the same as Theorem 2(ii) of [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
188
+ page_content=' Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
189
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
190
+ page_content=' Let R be reduced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
191
+ page_content=' For each real Schur root α, we choose an exceptional pointwise free RQ-lattice X(α) of rank vector α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
192
+ page_content=' Any rigid RQ-lattice X of pointwise constant rank has a decomposition X ∼= (X(α1) ⊗R P1) ⊕ · · · ⊕ (X(αr) ⊗R Pr) where the α1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
193
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
194
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
195
+ page_content=' , αr are distinct real Schur roots, ext(αi, αj) = 0 for all i, j and the Pi are finitely generated projective R-modules of constant rank.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
196
+ page_content=' Moreover this decomposition is unique up to isomorphism and reordering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
197
+ page_content=' In particular any exceptional RQ-lattice of rank vector α is of the form X(α) ⊗R P with X exceptional pointwise free and P a projective R-module of constant rank 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
198
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
199
+ page_content=' By Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
200
+ page_content='3, we may assume that Q has no oriented cycles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
201
+ page_content=' We fix temporarily a homomorphism R → K with K an algebraically closed field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
202
+ page_content=' Then XK is rigid, so decomposes as direct sum XK ∼= Mm1 1 ⊕ · · · ⊕ Mmr r .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
203
+ page_content=' with the Mi pairwise non-isomorphic exceptional KQ-modules, Ext1 KQ(Mi, Mj) = 0 for all i, j and all mi > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
204
+ page_content=' By [8, Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
205
+ page_content='2], we can order the Mi so that (M1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
206
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
207
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
208
+ page_content=' , Mr) is an exceptional sequence, so Hom(Mi, Mj) = 0 for i > j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
209
+ page_content=' Let Mi have dimension vector αi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
210
+ page_content=' We have Hom(X(αi), X(αj)) = 0 for i > j since dim Hom(Mi, Mj) = hom(αi, αj).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
211
+ page_content=' 6 Now Pr = HomRQ(X(αr), X) is a finitely generated projective R-module of constant rank.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
212
+ page_content=' Consider the evaluation map θ : X(αr) ⊗R Pr → X and let C be its cokernel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
213
+ page_content=' For an arbitrary homomorphism R → K with K an algebraically closed field (no longer the one fixed above), using Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
214
+ page_content='2, we can identify θK with the evaluation map X(αr)K ⊗K HomKQ(X(αr)K, XK) → X but we know that XK ∼= (X(α1)K)m1 ⊕ · · · ⊕ (X(αr)K)mr since both sides are rigid KQ-modules of the same dimension vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
215
+ page_content=' Thus θK is the inclusion of (X(αr)K)mr as a direct summand of XK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
216
+ page_content=' Thus by Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
217
+ page_content='1, θ is a split monomorphism of R-modules, so C is projective over R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
218
+ page_content=' Also CK ∼= Coker(θK) ∼= (X(α1)K)m1 ⊕ · · · ⊕ (X(αr−1)K)mr−1 so Ext1 KQ(CK, CK) = 0 and Ext1 KQ(CK, X(αr)K) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
219
+ page_content=' Thus C is rigid and Ext1(C, Xr) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
220
+ page_content=' Thus X ∼= X(αr) ⊗R Pr ⊕C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
221
+ page_content=' Now the result follows by induction (on r or on the total rank of X).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
222
+ page_content=' For uniqueness, note that if we have another decomposition X = (X(β1) ⊗ P ′ 1) ⊕ · · · ⊕ (X(βs) ⊗ P ′ s) with the βi being distinct real Schur roots and the P ′ i projective R-modules of constant rank, then using a fixed homomorphism R → K and the uniqueness of rigid KQ-modules of a given dimension vector, we see that s = r and that the βi are a permutation of the αi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
223
+ page_content=' Thus we reduce to the case that βi = αi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
224
+ page_content=' But then P ′ r ∼= HomRQ(X(αr), X) ∼= Pr and then the corresponding cokernels of the evaluation maps are isomorphic, so by in- duction P ′ i ∼= Pi for all i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
225
+ page_content=' The special case of exceptional lattices follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
226
+ page_content=' □ 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
227
+ page_content=' Uniqueness for exceptional pointwise frees We now prove Theorem A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
228
+ page_content=' The existence part was Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
229
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
230
+ page_content=' Suppose X is a point- wise free lattice for RQ of rank vector α, a real Schur root.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
231
+ page_content=' By Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
232
+ page_content='2 we can write R ∼= ˜R/I with ˜R reduced and I contained in the Jacobson radical of ˜R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
233
+ page_content=' We define a pointwise free ˜RQ-lattice ˜X by giving it as a representation of Q by free ˜R-modules as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
234
+ page_content=' For each vertex i we take ei ˜X to be a free ˜R-module of rank αi, and we fix an isomorphism (ei ˜X)/I(ei ˜X) ∼= (ei ˜X)R ∼= eiX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
235
+ page_content=' For each arrow a ∈ Q1, multiplication by a induces an R-linear map et(a)X → eh(a)X, and we lift this to an ˜R-linear map et(a) ˜X → eh(a) ˜X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
236
+ page_content=' This defines ˜X as a representation of Q and clearly we have ˜XR ∼= X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
237
+ page_content=' Let E = Ext1 ˜RQ( ˜X, ˜X), a finitely generated ˜R-module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
238
+ page_content=' Now ER ∼= Ext1 RQ(X, X) = 0 by Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
239
+ page_content='1, so E = IE, so by Nakayama’s Lemma E = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
240
+ page_content=' Thus ˜X is rigid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
241
+ page_content=' (This idea of lifting X to a rigid representation ˜X is taken from [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
242
+ page_content=') By Theorem B we have ˜X ∼= X(α)⊗ ˜R ˜P, where X(α) is a chosen exceptional pointwise free ˜RQ-lattice of rank vector α and ˜P is a finitely generated projective ˜R-module of constant rank 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
243
+ page_content=' 7 Tensoring with R, we get X ∼= Y ⊗R P where Y = X(α)R is an exceptional pointwise free RQ-lattice and P = ˜P R is a finitely generated projective R-module of constant rank 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
244
+ page_content=' Now since X and Y are pointwise free of rank vector α, we have Rαi ∼= eiX ∼= eiY ⊗R P ∼= Rαi ⊗R P ∼= P αi for all i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
245
+ page_content=' Since α is a real root for Q, it is indivisible, that is, its components are coprime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
246
+ page_content=' Thus we can find ai, bi ∈ N such that 1 + � i aiαi = � i biαi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
247
+ page_content=' Then P ⊕ R � i aiαi ∼= P ⊕ � i (Rαi)ai ∼= P ⊕ � i (P αi)ai ∼= � i (P αi)bi ∼= � i (Rαi)bi ∼= R � i biαi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
248
+ page_content=' Thus P is stably free.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
249
+ page_content=' Now any stably free projective module of constant rank 1 for a commutative ring is free, see for example [9, Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
250
+ page_content='11], so P ∼= R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
251
+ page_content=' Thus X ∼= Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
252
+ page_content=' We have already observed that Y is exceptional, hence so is X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
253
+ page_content=' References [1] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
254
+ page_content=' Auslander, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
255
+ page_content=' Reiten and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
256
+ page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
257
+ page_content=' Smalø, Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics, 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
258
+ page_content=' Cambridge University Press, Cambridge, 1995.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
259
+ page_content=' [2] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
260
+ page_content=' Crawley-Boevey, Exceptional sequences of representations of quivers, in ‘Representations of algebras’ (Ottawa, ON, 1992), 117-–124, CMS Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
261
+ page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
262
+ page_content=', 14, Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
263
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
264
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
265
+ page_content=', Providence, RI, 1993.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
266
+ page_content=' [3] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
267
+ page_content=' Crawley-Boevey, Subrepresentations of general representations of quivers, Bull.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
268
+ page_content=' London Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
269
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
270
+ page_content=' 28 (1996), 363—366.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
271
+ page_content=' [4] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
272
+ page_content=' Crawley-Boevey, Rigid integral representations of quivers, in ‘Representation theory of algebras’ (Cocoyoc, 1994), 155-–163, CMS Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
273
+ page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
274
+ page_content=', 18, Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
275
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
276
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
277
+ page_content=', Providence, RI, 1996.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
278
+ page_content=' [5] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
279
+ page_content=' Eisenbud, Commutative algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
280
+ page_content=' With a view toward algebraic geometry, Graduate Texts in Mathematics, 150.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
281
+ page_content=' Springer-Verlag, New York, 1995.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
282
+ page_content=' [6] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
283
+ page_content=' Geiß, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
284
+ page_content=' Leclerc and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
285
+ page_content=' Schr¨oer, Rigid modules and Schur roots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
286
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
287
+ page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
288
+ page_content=' 295 (2020), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
289
+ page_content=' 3-4, 1245–1277.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
290
+ page_content=' [7] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
291
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
292
+ page_content=' Gorodentsev, Exceptional bundles on surfaces with a moving anticanonical class (Russian), Izv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
293
+ page_content=' Akad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
294
+ page_content=' Nauk SSSR Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
295
+ page_content=' Mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
296
+ page_content=' 52 (1988), 740-–757, 895;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
297
+ page_content=' translation in Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
298
+ page_content=' USSR-Izv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
299
+ page_content=' 33 (1989), 67-–83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
300
+ page_content=' [8] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
301
+ page_content=' Happel and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
302
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
303
+ page_content=' Ringel, Tilted algebras, Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
304
+ page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
305
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
306
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
307
+ page_content=' 274 (1982), 399-–443.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
308
+ page_content=' [9] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
309
+ page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
310
+ page_content=' Lam, Serre’s problem on projective modules, Springer Monographs in Mathematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
311
+ page_content=' Springer-Verlag, Berlin, 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
312
+ page_content=' [10] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
313
+ page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
314
+ page_content=' Rudakov, Exceptional collections, mutations and helices, in ‘Helices and vector bundles’, 1-–6, London Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
315
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
316
+ page_content=' Lecture Note Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
317
+ page_content=', 148, Cambridge Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
318
+ page_content=' Press, Cambridge, 1990.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
319
+ page_content=' [11] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
320
+ page_content=' Schofield, General representations of quivers, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
321
+ page_content=' London Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
322
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
323
+ page_content=' (3) 65 (1992), 46-–64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
324
+ page_content=' Fakult¨at f¨ur Mathematik, Universit¨at Bielefeld, 33501 Bielefeld, Germany Email address: wcrawley@math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
325
+ page_content='uni-bielefeld.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
326
+ page_content='de 8' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE4T4oBgHgl3EQfLwyC/content/2301.04941v1.pdf'}
U9E2T4oBgHgl3EQftwgF/content/tmp_files/2301.04072v1.pdf.txt ADDED
@@ -0,0 +1,993 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ The spectral reconstruction of inclusive rates
2
+ John Bulava 𝑎,∗
3
+ 𝑎Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
4
+ E-mail: john.bulava@desy.de
5
+ A recently re-discovered variant of the Backus-Gilbert algorithm for spectral reconstruction en-
6
+ ables the controlled determination of smeared spectral densities from lattice field theory correlation
7
+ functions. A particular advantage of this approach is the a priori specification of the kernel with
8
+ which the underlying spectral density is smeared, allowing for variation of its peak position,
9
+ smearing width, and functional form. If the unsmeared spectral density is sufficiently smooth
10
+ in the neighborhood of a particular energy, it can be obtained from an extrapolation to zero
11
+ smearing-kernel width at fixed peak position. A natural application for this approach is scattering
12
+ processes summed over all hadronic final states. As a proof-of-principle test, an inclusive rate
13
+ is computed in the two-dimensional O(3) sigma model from a two-point correlation function of
14
+ conserved currents. The results at finite and zero smearing radius are in good agreement with
15
+ the known analytic form up to energies at which 40-particle states contribute, and are sensitive to
16
+ the 4-particle contribution to the inclusive rate. The straight-forward adaptation to compute the
17
+ 𝑅-ratio in lattice QCD from two-point functions of the electromagnetic current is briefly discussed.
18
+ The 39th International Symposium on Lattice Field Theory,
19
+ 8th-13th August, 2022,
20
+ Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
21
+ ∗Speaker
22
+ © Copyright owned by the author(s) under the terms of the Creative Commons
23
+ Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).
24
+ https://pos.sissa.it/
25
+ arXiv:2301.04072v1 [hep-lat] 10 Jan 2023
26
+
27
+ The spectral reconstruction of inclusive rates
28
+ John Bulava
29
+ 1.
30
+ Introduction
31
+ Lattice QCD simulations proceed by computing 𝑛-point euclidean correlation functions of
32
+ (quasi-) local interpolating operators. Single-hadron states and finite-volume few-hadron states are
33
+ isolated from correlation functions in the asymptotic large euclidean time limit. However, some
34
+ hadronic phenomena are best studied by other means. As an example, this work considers inclusive
35
+ rates defined as a sum over all hadronic final states produced by an external current. At large
36
+ center-of-mass energies, a finite-volume approach to such a process is impractical since it requires
37
+ the isolation of all individual finite-volume levels with arbitrarily many particles. Such processes
38
+ are a cornerstone of QCD and connect the low-energy hadronic and high-energy perturbative
39
+ regimes [1], serving as a manifestation of ‘quark-hadron duality’ [2] whereby perturbative QCD in
40
+ terms of quarks and gluons becomes increasingly effective at computing inclusive rates summed
41
+ over final states consisting entirely of hadrons.
42
+ For concreteness, consider the QCD part of the process 𝑒+𝑒− → hadrons
43
+ 𝜌(𝑠) = 𝑅(𝑠)
44
+ 12𝜋2 ,
45
+ 𝑅(𝑠) = 𝜎 [𝑒+𝑒− → hadrons] (𝑠)
46
+ 4𝜋𝛼em(𝑠)2/(3𝑠)
47
+ ,
48
+ (1)
49
+ 𝜌𝜇𝜈(𝑘) = 1
50
+ 2𝜋
51
+ ˆ
52
+ 𝑑4𝑥 𝑒−𝑖𝑘·𝑥⟨Ω| ˆ𝑗em
53
+ 𝜇 (𝑥) ˆ𝑗em
54
+ 𝜈 (0)|Ω⟩ = (𝑔𝜇𝜈𝑘2 − 𝑘𝜇𝑘𝜈) 𝜌(𝑘2),
55
+ (2)
56
+ where ˆ𝑗em
57
+ 𝜇
58
+ is the quark-level electromagnetic current. The desired inclusive rate is given by the
59
+ spectral density 𝜌(𝑠), which is also present in the analogous infinite-volume Euclidean correlator
60
+ 𝐶(𝑡) =
61
+ ˆ
62
+ 𝑑3𝒙 ⟨Ω| ˆ𝑗em
63
+ 𝑧 (𝒙) 𝑒− ˆ𝐻𝑡 ˆ𝑗em
64
+ 𝑧 (0)†|Ω⟩ =
65
+ ˆ ∞
66
+ 0
67
+ 𝑑𝜔 𝜔2𝜌(𝜔2) 𝑒−𝜔𝑡 .
68
+ (3)
69
+ The direct determination of 𝜌(𝑠) in lattice QCD is not straightforward, however. First, the inversion
70
+ of integral equations like Eq. 3 using 𝐶(𝑡) evaluated at a finite number of discrete times with
71
+ statistical errors is notoriously ill-posed.
72
+ Furthermore, the finite volume introduces additional
73
+ complication. Even if the inverse problem were solved successfully and the finite-volume euclidean
74
+ correlator 𝐶𝐿(𝑡) used to determine its spectral density 𝜌𝐿(𝑠), it differs qualitatively from its infinite-
75
+ volume counterpart 𝜌(𝑠). While 𝜌𝐿(𝑠) is a sum over Dirac 𝛿-functions for each finite-volume state,
76
+ 𝜌(𝑠) is smooth apart from non-analyticities due to the opening of thresholds. In no way does 𝜌𝐿(𝑠)
77
+ ‘approach’ 𝜌(𝑠) as 𝐿 → ∞.
78
+ The bridge between finite and infinite volume is made more effectively using the smeared
79
+ spectral density
80
+ 𝜌𝜖 (𝐸) =
81
+ ˆ ∞
82
+ 0
83
+ 𝑑𝜔 𝛿𝜖 (𝐸 − 𝜔) 𝜌(𝜔) ,
84
+ (4)
85
+ where lim𝜖 →0 𝛿𝜖 (𝑥) = 𝛿(𝑥), 𝛿(𝑥) is the Dirac-delta function, and
86
+ ´ ∞
87
+ −∞ 𝑑𝑥 𝛿𝜖 (𝑥) = 1. This solves
88
+ (in principle) both of the difficulties mentioned above: the inverse problem can be made arbitrarily
89
+ mild by increasing in the smearing width 𝜖 and 𝜌𝐿,𝜖 (𝐸) approaches its infinite-volume counterpart
90
+ in a well-defined manner. The goal is now to take the ordered double limit [3]
91
+ 𝜌(𝐸) = lim
92
+ 𝜖 →0+ lim
93
+ 𝐿→∞ 𝜌𝐿,𝜖 (𝐸),
94
+ (5)
95
+ 2
96
+
97
+ The spectral reconstruction of inclusive rates
98
+ John Bulava
99
+ the asymptotic corrections to which are discussed in Sec. 21.
100
+ Although spectral reconstruction has a long history in lattice QCD, particularly at finite temper-
101
+ ature [4], the treatment of the inverse problem in Eq. 3 demands special care. In order to define the
102
+ result of the spectral reconstruction procedure, precise knowledge of the smearing kernel in Eq. 4
103
+ is required. As detailed in Sec. 2, the Backus-Gilbert approach [5, 6] is suitable in this respect2.
104
+ Since the estimator for the smeared spectral density ˆ𝜌𝜖 (𝐸) is simply a linear combination of the
105
+ input correlator data ˆ𝜌𝜖 (𝐸) = �
106
+ 𝑡 𝑔𝑡 (𝜖, 𝐸)𝐶(𝑡), the resultant smearing kernel is given by the same
107
+ linear combination of decaying exponentials in Eq. 3
108
+ ˆ𝜌𝜖 (𝐸) =
109
+ ˆ
110
+ 𝑑𝜔 ˆ𝛿𝜖 (𝐸, 𝜔) 𝜌(𝜔),
111
+ ˆ𝛿𝜖 (𝐸, 𝜔) =
112
+ ∑︁
113
+ 𝑡
114
+ 𝑔𝑡 (𝜖, 𝐸)𝜔2𝑒−𝜔𝑡.
115
+ (6)
116
+ Explicit knowledge of ˆ𝛿𝜖 (𝐸, 𝜔) is a minimum requirement for a well-defined spectral reconstruction
117
+ procedure.
118
+ Naively the Backus-Gilbert approach provides knowledge of the kernel in Eq. 6 only a posteriori
119
+ for a given choice of coefficients. However, the coefficients themselves can be chosen to approximate
120
+ a particular smearing kernel specified a priori [9]. This important innovation is employed here
121
+ and was applied to lattice field theory for the first time in Ref. [10]. In order to understand this
122
+ reconstruction algorithm, and in particular demonstrate control over the systematic errors, a test in a
123
+ controlled context is warranted. Such a test has been performed in Ref. [11] for the two-dimensional
124
+ O(3) sigma model together with attempts at saturating the ordered double limit of Eq. 5.
125
+ The remainder of this work is organized as follows. The spectral reconstruction method is
126
+ presented in Sec. 2 in the context of the O(3) model test mentioned above. Prospects for adapting
127
+ the method to current correlators in lattice QCD is discussed in Sec. 3 and Sec. 4 concludes.
128
+ 2.
129
+ O(3) model test
130
+ This section reviews a spectral reconstruction test which was recently published in Ref. [11].
131
+ It employs the spectral reconstruction procedure of Ref. [10] in the two-dimensional O(3) sigma
132
+ model. Consider the standard lattice discretization
133
+ 𝑆[𝜎] = 𝛽
134
+ 2
135
+ ∑︁
136
+ 𝑥∈Λ
137
+ 𝑎2 ∑︁
138
+ 𝜇
139
+ ˆ𝜕𝜇𝜎(𝑥) · ˆ𝜕𝜇𝜎(𝑥) = 𝛽
140
+ ∑︁
141
+ 𝑥∈Λ
142
+ ∑︁
143
+ 𝜇
144
+ [1 − 𝜎(𝑥) · 𝜎(𝑥 + 𝑎 ˆ𝜇)] ,
145
+ (7)
146
+ where 𝜎(𝑥) ∈ R3, |𝜎(𝑥)| = 1, and ˆ𝜕𝜇 𝑓 (𝑥) = 1
147
+ 𝑎 [ 𝑓 (𝑥 + 𝑎 ˆ𝜇) − 𝑓 (𝑥)]. This model has a conserved
148
+ current
149
+ 𝑗 𝑎
150
+ 𝜇(𝑥) = 𝛽𝜖 𝑎𝑏𝑐𝜎𝑏(𝑥) ˆ𝜕𝜇𝜎𝑐(𝑥)
151
+ (8)
152
+ at finite lattice spacing, and possesses a dynamically-generated mass gap 𝑚. The total zero spatial
153
+ momentum euclidean current-current correlation function analogous to Eq. 3 (but without the factor
154
+ 1Finite lattice spacing effects must also be removed by taking the continuum limit, which is here performed at fixed
155
+ 𝜖 and 𝐸.
156
+ 2Another spectral reconstruction algorithm for which the smearing kernel is formally known a posteriori is the
157
+ Chebyshev polynomial approach of Ref. [7]. Ref. [8] compares that approach to the one employed here.
158
+ 3
159
+
160
+ The spectral reconstruction of inclusive rates
161
+ John Bulava
162
+ n=2
163
+ n=4
164
+ 10
165
+ 20
166
+ 30
167
+ 40
168
+ 50
169
+ μ/m
170
+ 0.5
171
+ 1.0
172
+ 1.5
173
+ 2.0
174
+ 2.5
175
+ ρ(n)(μ)
176
+ Figure 1:
177
+ Left: exactly known 𝑛 = 2 and 𝑛 = 4 particle contributions to the (continuum, infinite-
178
+ volume) spectral density associated with the conserved current in the two-dimensional O(3) sigma model.
179
+ Contributions from states with more particles are insignificant in the energy range shown here. Right: the
180
+ four smearing kernels 𝛿x
181
+ 𝜖 (𝑥), where x = {g, c0, c1, c2}, defined in Eq. 9 plotted against 𝑥 with 𝜖 = 1 .
182
+ of 𝜔2) is computed by numerical simulations using the single-cluster algorithm of Ref. [12]. A
183
+ variety of ensembles are generated, with 𝑚𝐿 ≈ 30 − 60 and 𝑎𝑚 ∈ [0.01, 0.04] to assess finite
184
+ volume effects and take the continuum limit. In the continuum the contributions to the associated
185
+ spectral density 𝜌(𝜔) from each fixed-particle number sector can be computed exactly [13]. Below
186
+ energies 𝐸 < 50𝑚, only the 𝑛 = 2 and 𝑛 = 4 particle contributions are significant and are shown in
187
+ Fig.1.
188
+ In order to demonstrate the a priori specification of the smearing kernel, consider four kernels
189
+ with different profiles as a function of 𝑥 = 𝐸 − 𝜔:
190
+ 𝛿g
191
+ 𝜖 (𝑥) =
192
+ 1
193
+
194
+ 2𝜋𝜖
195
+ exp
196
+
197
+ − 𝑥2
198
+ 2𝜖2
199
+
200
+ ,
201
+ 𝛿c0
202
+ 𝜖 (𝑥) = 1
203
+ 𝜋
204
+ 𝜖
205
+ 𝑥2 + 𝜖2 ,
206
+ (9)
207
+ 𝛿c1
208
+ 𝜖 (𝑥) = 2
209
+ 𝜋
210
+ 𝜖3
211
+ (𝑥2 + 𝜖2)2 ,
212
+ 𝛿c2
213
+ 𝜖 (𝑥) = 8
214
+ 3𝜋
215
+ 𝜖5
216
+ (𝑥2 + 𝜖2)3 ,
217
+ (10)
218
+ including the gaussian (denoted ‘g’) and three Cauchy-like kernels denoted ‘c𝑛’, for which 𝑛 = 0, 1, 2
219
+ distinguishes the power of the pole. These kernels are depicted in Fig. 1.
220
+ The method advocated in Ref. [10] to reconstruct the smeared spectral density 𝜌x
221
+ 𝜖 (𝐸), where
222
+ x = {g, c0, c1, c2}, is based on two criteria. First, the reconstructed smearing kernel ˆ𝛿x
223
+ 𝜖 (𝐸, 𝜔)
224
+ should be close to the desired one 𝛿x
225
+ 𝜖 (𝐸 − 𝜔). Second, the coefficients {𝑔𝑡 (𝜖, 𝐸)} in Eq. 6 should
226
+ not induce a large statistical variance on the estimator ˆ𝜌x
227
+ 𝜖 (𝐸). These two considerations are encoded
228
+ in the functionals
229
+ 𝐴[𝑔] =
230
+ ˆ ∞
231
+ 𝐸0
232
+ 𝑑𝜔
233
+
234
+ 𝛿x
235
+ 𝜖 (𝐸 − 𝜔) − ˆ𝛿x
236
+ 𝜖 (𝐸, 𝜔)
237
+ �2 ,
238
+ (11)
239
+ 𝐵[𝑔] = Var[ ˆ𝜌x
240
+ 𝜖 (𝐸)] =
241
+ ∑︁
242
+ 𝑡𝑡′
243
+ 𝑔𝑡 (𝜖, 𝐸) 𝑔𝑡′(𝜖, 𝐸) Cov[𝐶(𝑡), 𝐶(𝑡′)]
244
+ (12)
245
+ respectively. The coefficients are then chosen to minimize the combination functional 𝐺𝜆[𝑔] = (1−
246
+ 𝜆)𝐴[𝑔]/𝐴[0] + 𝜆𝐵[𝑔], where the ‘trade-off’ parameter 𝜆 is introduced. For small 𝜆, the ‘accuracy’
247
+ functional 𝐴[𝑔] takes preference over the ‘precision’ one 𝐵[𝑔] resulting in small systematic but large
248
+ 4
249
+
250
+ The spectral reconstruction of inclusive rates
251
+ John Bulava
252
+ 3
253
+
254
+ 10
255
+ 2
256
+
257
+ 10
258
+ 1
259
+
260
+ 10
261
+ 1
262
+ 0.66
263
+ 0.67
264
+ 0.68
265
+ 0.69
266
+ 0.7
267
+ 0.71
268
+ 0.72
269
+ 0.73
270
+ (E)
271
+ ερ
272
+ = 0.20
273
+ c
274
+ λ
275
+ = 0.75m, gauss,
276
+ ε
277
+ E = 3.0m,
278
+ A[q]/A[0]
279
+ (E)
280
+ ερ
281
+ 1.5
282
+
283
+ 1
284
+
285
+ 0.5
286
+
287
+ 0
288
+ 0.5
289
+ 1
290
+ 1.5
291
+ 0.1
292
+ 0.15
293
+ 0.2
294
+ 0.25
295
+ 0.3
296
+ 0.35
297
+ 0.4
298
+ ε
299
+ )/
300
+ ω
301
+ (E-
302
+ ε
303
+ λ
304
+ δ
305
+ ε
306
+ ε
307
+ λ
308
+ δ
309
+ ε
310
+ Figure 2: Left: indicative illustration of the trade-off between statistical and systematic errors for a particular
311
+ choice of 𝐸 and 𝜖 on a single ensemble. Each point corresponds to a different 𝜆 and the horizontal band
312
+ indicates the chosen reconstruction (with 𝜆 = 𝜆c = 0.20) for which statistical errors dominate systematic ones.
313
+ Right: for this same setup and 𝜆 = 𝜆c, the reconstructed kernel ˆ𝛿g
314
+ 𝜖 (𝐸, 𝜔), together with the desired kernel
315
+ 𝛿g
316
+ 𝜖 (𝐸 − 𝜔) shown as a solid line. All reconstructions employ the correlator timeslices 𝑡 = 1𝑎, . . . , 160𝑎.
317
+ statistical errors. By contrast, large 𝜆 results in small statistical errors but a reconstructed smearing
318
+ kernel which does not resemble the desired one. The choice of the parameter 𝜆 is performed
319
+ automatically and results in an approximate balance of these two criteria. The effect of varying
320
+ 𝜆 is illustrated in Fig. 2 together with the reconstructed kernel ˆ𝛿g
321
+ 𝜖 (𝐸, 𝜔) for a sample setup. The
322
+ trade-off between statistical and systematic errors is familiar to lattice field theorists and the left
323
+ panel of Fig. 2 resembles the identification of a plateau in effective mass plots.
324
+ The procedure described above is performed for a variety of 𝐸 and 𝜖, and for all four smearing
325
+ kernels. Next, finite volume effects must be assessed and the continuum limit taken independently
326
+ for each 𝐸, 𝜖, and kernel. Finite-volume effects are assessed at a single lattice spacing by simulating
327
+ two additional ensembles with doubled spatial and temporal extents, respectively. The differences
328
+ Δ𝐿,𝑇 between the spectral reconstruction on the doubled lattices divided by the statistical error are
329
+ shown in Fig. 3, which show (at most) moderately significant hints for finite-𝐿 effects at energies
330
+ near the two-particle production threshold.
331
+ With the finite-volume effects demonstrably controlled for the (𝐸, 𝜖) values and the kernels in
332
+ question, the continuum limit can be investigated. Cutoff effects for ‘on-shell’ quantities in the two-
333
+ dimensional O(3) sigma model have a long history, due to their apparently linear behaviour which
334
+ is caused by large logarithmic corrections [14]. Unfortunately, the analysis there is incomplete
335
+ for the ‘off-shell’ smeared spectral density considered here. In order to explore the influence of
336
+ logarithmic cutoff effects, the fit forms
337
+ 𝑄(𝑎) = 𝑄(0) + 𝐶𝑎2𝛽𝑟,
338
+ 𝑟 = 0, 3, 6
339
+ (13)
340
+ are explored to extrapolate the smeared spectral densities to the continuum limit. A comparison
341
+ of the extrapolation forms is shown in Fig. 4. The continuum limits are generally mild and well-
342
+ constrained by the data, although the slope becomes steeper for increasing 𝐸.
343
+ Given the assessment of systematic errors due to spectral reconstruction, finite 𝐿 and 𝑇 effects,
344
+ and finite lattice spacing, it is time to confront the computations of 𝜌x
345
+ 𝜖 (𝐸) with the exact spectral
346
+ density 𝜌(𝜔) (comprised of the two-, four-, and six-particle contributions) smeared with the exact
347
+ 5
348
+
349
+ The spectral reconstruction of inclusive rates
350
+ John Bulava
351
+ Figure 3: The difference Δ𝐿,𝑇 between spectral reconstruction on ensembles using 𝐿 and 2𝐿 (top row), and
352
+ using ensembles with 𝑇 and 2𝑇 in the bottom row. In both cases Δ𝐿,𝑇 is divided by the statistical error on
353
+ the smaller ensemble. Perhaps some marginally significant hints for finite-𝐿 effects are observed at small 𝐸
354
+ near the two-particle production threshold.
355
+ Figure 4: The continuum limit for a single 𝐸, 𝜖, and smearing kernel using the ansatz of Eq. 13. The shaded
356
+ band indicates the fit, and the horizontal dotted region the extrapolated value for 𝑟 = 3, which is taken as the
357
+ final result.
358
+ 6
359
+
360
+ The spectral reconstruction of inclusive rates
361
+ John Bulava
362
+ Figure 5: Lattice results for 𝜌x
363
+ 𝜖 (𝐸) in the continuum limit (the data points shown in the legend) compared
364
+ against the exact spectral density including two-, four-, and six-particle contributions smeared with the exact
365
+ kernel 𝛿x
366
+ 𝜖 (𝐸 − 𝜔). The exact results are shown as lines in the top row, and the bottom row shows the ‘pull’
367
+ between the numerical data and the exact result, divided by the statistical and systematic error combined
368
+ in quadrature. A naive histogram of the differences, which ignores correlations among the data, is shown
369
+ horizontally in the bottom row and approximately resembles the unit gaussian.
370
+ smearing kernel 𝛿x
371
+ 𝜖 (𝐸 − 𝜔).
372
+ Such a comparison is performed in Fig. 5 where the numerical
373
+ computations are demonstrably consistent with the exact results, within the quoted errors. These
374
+ errors take into account the statistical errors due to the reconstruction, with any residual systematic
375
+ errors from finite-𝐿,𝑇 effects and the continuum limit added in quadrature.
376
+ At this point the verification of the spectral reconstruction approach of Ref. [10] is complete.
377
+ Smeared spectral densities in the two-dimensional O(3) sigma model have been reconstructed with
378
+ smearing kernels specified a priori, which are consistent with the exact result after the continuum
379
+ limit has been taken. Consider now the 𝜖 → 0 limit in Eq. 5. For this, an important property of the
380
+ unsmeared spectral density evident in Fig. 1 is required, namely that it varies increasingly slowly
381
+ with increasing 𝐸. This circumvents the limitations in reconstructing kernels with a fixed 𝜖 and
382
+ increasing 𝐸 evident in Fig. 5: larger smearing widths are sufficient at larger 𝐸. To this end, the
383
+ smearing width is scaled 𝜖 ∝ (𝐸 −2𝑚). Also, rather than using a single smearing kernel, 𝜌x
384
+ 𝜖 (𝐸) for
385
+ all kernels are used to perform constrained extrapolations. For this the small-𝜖 expansion is useful
386
+ 𝜌x
387
+ 𝜖 (𝐸) ≡
388
+ ˆ ∞
389
+ 0
390
+ 𝑑𝜔 𝛿x
391
+ 𝜖 (𝐸 − 𝜔) 𝜌(𝜔) = 𝜌(𝐸) +
392
+
393
+ ∑︁
394
+ 𝑘=1
395
+ 𝑤x
396
+ 𝑘𝑎𝑘(𝐸)𝜖 𝑘 ,
397
+ (14)
398
+ 7
399
+
400
+ The spectral reconstruction of inclusive rates
401
+ John Bulava
402
+ x
403
+ 𝑤x
404
+ 𝑘, even 𝑘
405
+ 𝑤x
406
+ 𝑘, odd 𝑘
407
+ 𝑤x
408
+ 1
409
+ 𝑤x
410
+ 2
411
+ 𝑤x
412
+ 3
413
+ 𝑤x
414
+ 4
415
+ g
416
+ 𝑘!
417
+ (−2)𝑘/2(𝑘/2)!
418
+ 0
419
+ 0
420
+ −1
421
+ 0
422
+ 3
423
+ c0
424
+ 1
425
+ 1
426
+ 1
427
+ 1
428
+ 1
429
+ 1
430
+ c1
431
+ (1 − 𝑘)
432
+ (1 − 𝑘)
433
+ 0
434
+ −1
435
+ −2
436
+ −3
437
+ c2
438
+ 1
439
+ 3 (𝑘 − 3)(𝑘 − 1)
440
+ 1
441
+ 3 (𝑘 − 3)(𝑘 − 1)
442
+ 0
443
+ −1/3
444
+ 0
445
+ 1
446
+ Table 1: The kernel-dependent coefficients 𝑤x
447
+ 𝑘 appearing in the small-𝜖 expansion of Eq. (14). For the c1
448
+ and c2 kernels, 𝑤c1
449
+ 3 and 𝑤c2
450
+ 5 (respectively) are the non-zero coefficients with lowest odd order.
451
+ where the contribution at the 𝑘th order in 𝜖 is the product of a kernel-independent factor
452
+ 𝑎𝑘(𝐸) =
453
+ ������
454
+ ������
455
+ (−1)𝑘/2
456
+ 𝑘!
457
+
458
+ 𝑑
459
+ 𝑑𝐸
460
+ � 𝑘
461
+ 𝜌(𝐸) ,
462
+ 𝑘 even
463
+ lim𝜂→0+ (−1) (𝑘−1)/2
464
+ 2𝜋
465
+ ´ ∞
466
+ −∞ d𝜔 𝜌(𝐸+𝜔)+𝜌(𝐸−𝜔)
467
+ (𝜔+𝑖𝜂)𝑘+1
468
+ ,
469
+ 𝑘 odd
470
+ .
471
+ (15)
472
+ which depends on the unsmeared spectral density, and a kernel-independent piece 𝑤(x)
473
+ 𝑘
474
+ which is
475
+ however independent of 𝜌(𝜔). The 𝑤(x)
476
+ 𝑘
477
+ for the kernels used here are given for all orders in Tab. 1.
478
+ The c0 kernel is however not practically useful in such extrapolations due to the O(𝜖) term.
479
+ A representative constrained extrapolation, in which all kernels (apart from c0) are used to fit
480
+ for 𝜌(𝐸) and the 𝑎𝑘(𝐸) up to a certain order, is shown in Fig. 6. A final estimate for 𝜌(𝐸) is chosen
481
+ with a statistical error larger than the variation between different extrapolation orders and ranges.
482
+ Repeating this procedure for all values of 𝐸 yields the final results for the spectral density 𝜌(𝐸)
483
+ shown in Fig. 10. Not only do the numerical results agree with the exact spectral density including
484
+ two-, four-, and six-particle contributions, but differ significantly from the two-particle contribution
485
+ alone, indicating the sensitivity to four-particle states. Furthermore, the largest energy of 𝐸 = 40𝑚
486
+ is statistically consistent with the two-loop perturbative result, demonstrating that 𝜌(𝐸) has been
487
+ computed up to the onset of the perturbative regime.
488
+ 3.
489
+ Prospects for QCD
490
+ It is in principle straightforward to adopt the analysis of the O(3) sigma model in Sec. 2 to the
491
+ lattice QCD computation of current spectral densities. However, while it is difficult to compare
492
+ the density of finite-volume states in one and three spatial dimensions, the O(3) model setup with
493
+ 𝑚𝐿 ≈ 30 may be difficult to achieve in QCD. Fortunately, the masterfield paradigm [15–17] offers
494
+ the possibility of large lattice volumes by accumulating statistics from widely-separated space-time
495
+ regions rather than widely-separated Markov chain elements.
496
+ Work in this direction has been detailed at this conference in talks by M. Cè and P. Fritzsch.
497
+ This section describes preliminary work toward the spectral reconstruction of the isovector vector
498
+ 8
499
+
500
+ The spectral reconstruction of inclusive rates
501
+ John Bulava
502
+ Figure 6: Left: a sample constrained extrapolation using the known coefficients in Tab. 1 up to and including
503
+ O(𝜖4) terms for a fixed energy 𝐸 = 14𝑚. The relative fit ranges of the different smearing kernels are adjusted
504
+ so that each kernel has an equal amount of support between the two-particle threshold 2𝑚 and 𝐸. Right:
505
+ variation of the extrapolated value of 𝜌(𝐸) for different extrapolation ranges and orders. The final result is
506
+ conservatively taken as the horizontal shaded region.
507
+ Figure 7: Left: a selection of some of values of 𝜖 (given in the legend) used in the 𝜖 → 0 extrapolation,
508
+ together with the exact smeared spectral density shown as solid lines for the gaussian kernel. Right: the
509
+ final extrapolated results for 𝜌(𝐸) together with the exact two-particle contribution to the spectral density
510
+ and the sum of the two-, four-, and six-particle contributions. The two-loop perturbative spectral density is
511
+ also shown.
512
+ current spectral density with the collaborators and setup mentioned in those talks. Using 𝑁f = 2+1
513
+ dynamical flavors of stabilized Wilson fermions [17] at 𝑎 = 0.09 fm, two ensembles were generated
514
+ with (𝐿/𝑎)4 = 964 and 1924. The analysis described below is based on two and five thermalized,
515
+ widely separated configuations on the 𝐿/𝑎 = 96 and 192 ensembles, respectively. Details about the
516
+ construction of the correlators and the estimation of the statistical errors were given by M. Cè. For
517
+ the data presented here, a variant of the bootstrap procedure is employed.
518
+ As suggested in Sec. 1, the prototypical QCD analogue of Sec. 2 is the hadronic component
519
+ to 𝑒+𝑒− → hadrons, which can be obtained by solving the inverse problem of the euclidean
520
+ current-current correlator projected onto zero spatial momentum in Eq. 3. However, including both
521
+ the isoscalar and isovector components of the electromagnetic current requires valence quark-line
522
+ 9
523
+
524
+ The spectral reconstruction of inclusive rates
525
+ John Bulava
526
+ disconnected Wick contractions, incurring additional computational cost and statistical variance.
527
+ Consider then the simpler case of the isovector-vector correlator. Phenomenologically this spectral
528
+ density can be accessed directly from hadronic decays of the tau lepton [18]. A state-of-the-art
529
+ phenomenological determination of the isovector-vector spectral density is performed in Ref. [19].
530
+ The spectral reconstruction approach of Sec. 2 is adopted nearly identically here, apart from
531
+ some key differences.
532
+ First, the basis functions provided by the correlator data in Sec. 2 are
533
+ 𝑏𝑡 (𝜔) = e−𝜔𝑡 + e−𝜔(𝑇 −𝑡), but those employed in this analysis from Eq. 3 are 𝑏𝑡 (𝜔) = 𝜔2 e−𝜔𝑡.
534
+ The flexibility of the formalism of Sec. 2 to handle these different basis functions is an advantage
535
+ over the Chebyshev approach of Ref. [7]. Also, for these large lattices the finite temporal extent
536
+ can be demonstrably ignored. For a first test of the approach in QCD, only the gaussian smearing
537
+ kernel from Eq. 9 is considered. All correlator timeslices from 𝑡min = 𝑎 to 𝑡max = 35𝑎 are used in
538
+ the reconstruction, and all arithmetic operations are performed with 400 bits of computer precision
539
+ using the Arb library [20].
540
+ Another innovation for this analysis compared to Sec. 2 is the procedure for choosing the 𝜆 at
541
+ which statistical errors dominate the systematic errors. As suggested by the left panel in Fig. 2, the
542
+ procedure in Sec. 2 which balances the two functionals 𝐴[𝑔]/𝐴[0] and 𝐵[𝑔] from Eq. 11 is perhaps
543
+ over-conservative and somewhat arbitrary. The alternative approach employed here makes use of
544
+ one of the possible constraints introduced in Ref. [11]. By the addition of a lagrange multiplier, it is
545
+ possible to enforce constraints on the reconstructed smearing kernel ˆ𝛿g
546
+ 𝜖 (𝐸, 𝜔). Ref. [11] describes
547
+ how to impose the coincidence of the reconstructed and desired kernels at a particular point
548
+ ˆ𝛿g
549
+ 𝜖 (𝐸, 𝜔∗) = 𝛿g
550
+ 𝜖 (𝐸 − 𝜔∗).
551
+ (16)
552
+ Although Ref. [11] only considers 𝜔 = 𝐸, the generalization to arbitrary 𝜔∗, even outside the
553
+ interval [𝐸0, ∞), is straightforward.
554
+ Using this ‘equal value’ constraint on the reconstructed kernel, it is possible to estimate how
555
+ small 𝐴[𝑔]/𝐴[0] must be for the statistical errors to dominate. An ‘ensemble’ of reconstructions
556
+ are performed with different values of 𝜔∗, in addition to the unconstrained one. The systematic error
557
+ estimate is then obtained from the variation of ˆ𝜌g
558
+ 𝜖 (𝐸) among this ensemble at similar 𝐴[𝑔]/𝐴[0].
559
+ The point at which this variation is smaller than the statistical error on the unconstrained result is
560
+ taken as the optimal reconstruction. Of course this procedure depends on the ensemble of constraint
561
+ points {𝜔∗} which are considered. However, it is sensitive the unsmeared spectral density 𝜌(𝜔), in
562
+ contrast to the approach of Ref. [11]. If additional values of 𝜔∗ are added for which 𝜌(𝜔∗) has little
563
+ support, these will likely differ little from the unconstrained case, apart from possible variations in
564
+ ˆ𝛿g
565
+ 𝜖 (𝐸, 𝜔) away from 𝜔∗ induced by the constraint at 𝜔∗. An illustration of this procedure is given
566
+ in Fig. 8.
567
+ After applying the procedure discussed above for a variety of 𝜖 and 𝐸 for the gaussian kernel
568
+ on each of the 𝐿 = 9 fm and 18 fm ensembles, finite volume effects can be examined. This is done
569
+ in Fig. 9, using 𝑣1(𝑠) = 2𝜋2𝜌(𝑠) for a variety of energies at two different values of the smearing
570
+ width 𝜖. While there are possibly hints of finite-volume effects at the one-to-few sigma level at both
571
+ 𝜖, these effects are generally under control. Additional volumes will however elucidate the situation
572
+ in the future.
573
+ We finally turn to a comparison of the reconstructed isovector vector spectral density with
574
+ experiment [21]. For this a preliminary value of the vector current renormalization factor 𝑍𝑉 is
575
+ 10
576
+
577
+ The spectral reconstruction of inclusive rates
578
+ John Bulava
579
+ 3
580
+
581
+ 10
582
+ 2
583
+
584
+ 10
585
+ 1
586
+
587
+ 10
588
+ 0.05
589
+ 0.06
590
+ 0.07
591
+ 0.08
592
+ 0.09
593
+ 0.1
594
+ 0.11
595
+ 0.12
596
+ 0.13
597
+ A[g]/A[0]
598
+ (E)
599
+ ε
600
+ g
601
+ ρ
602
+ π
603
+ = 0.5m
604
+ ε
605
+ ,
606
+ π
607
+ E = 2.5m
608
+ none
609
+ π
610
+ 2.5m
611
+ π
612
+ 2m
613
+ π
614
+ 3m
615
+ π
616
+ 4m
617
+ π
618
+ 5m
619
+ π
620
+ 6m
621
+ π
622
+ 7m
623
+ π
624
+ 8m
625
+ π
626
+ 9m
627
+ π
628
+ 10m
629
+ π
630
+ 11m
631
+ π
632
+ 12m
633
+ 2
634
+
635
+ 0
636
+ 2
637
+ 4
638
+ 6
639
+ 8
640
+ 10
641
+ 12
642
+ 0.05
643
+
644
+ 0
645
+ 0.05
646
+ 0.1
647
+ 0.15
648
+ 0.2
649
+ 0.25
650
+ 0.3
651
+ 0.35
652
+ 0.4
653
+ ε
654
+ - E)/
655
+ ω
656
+ (
657
+ εδ
658
+ ε
659
+ ε
660
+ g
661
+ δ
662
+ ε
663
+ none
664
+ π
665
+ 2.5m
666
+ π
667
+ 2m
668
+ π
669
+ 3m
670
+ π
671
+ 4m
672
+ π
673
+ 5m
674
+ π
675
+ 6m
676
+ π
677
+ 7m
678
+ π
679
+ 8m
680
+ π
681
+ 9m
682
+ π
683
+ 10m
684
+ π
685
+ 11m
686
+ π
687
+ 12m
688
+ Figure 8: Illustration of the method for choosing the optimal tradeoff parameter 𝜆 described in the text for the
689
+ gaussian reconstruction on the 𝐿 = 18 fm ensemble with 𝜖 = 0.5𝑚 𝜋 and 𝐸 = 2.5𝑚 𝜋. Left: different values of
690
+ 𝜆 for the unconstrained reconstruction and reconstructed kernels constrained to agree with 𝛿g
691
+ 𝜖 (𝐸 − 𝜔∗) at the
692
+ various values of 𝜔∗ indicated in the legend. The horizontal band indicates the chosen estimate for which the
693
+ statistical error on the unconstrained reconstruction covers the spread given by the ensemble of constraints.
694
+ For comparison, the method for balancing statistical and systematic errors of Sec. 2 (and Ref. [11]) chooses
695
+ the unconstrained point with 𝐴[𝑔]/𝐴[0] ≈ 0.0016. Right: the reconstructed smearing kernel compared
696
+ to the desired gaussian (solid line) for each member of the constraint ensemble near the chosen value of
697
+ 𝐴[𝑔]/𝐴[0] indicated by the horizontal band in the left plot. The residual variation between the different
698
+ constraints is evidently smaller than the statistical error on the constrained reconstruction, although perhaps
699
+ additional values of 𝜔∗ near 𝜔∗ − 𝐸 ≈ 2𝜖 should be added in the future.
700
+ 0
701
+ 0.2
702
+ 0.4
703
+ 0.6
704
+ 0.8
705
+ 1
706
+ 0
707
+ 0.2
708
+ 0.4
709
+ 0.6
710
+ 0.8
711
+ 1
712
+ 1.2
713
+ 1.4
714
+ 1.6
715
+ 1.8
716
+ )
717
+ 2
718
+ s (GeV
719
+ (s)
720
+ ε
721
+ 1,
722
+ g
723
+ v
724
+ π
725
+ = 0.5m
726
+ ε
727
+ L = 9 fm
728
+ L = 18 fm
729
+ 0
730
+ 0.5
731
+ 1
732
+ 1.5
733
+ 2
734
+ 2.5
735
+ 0.1
736
+ 0.2
737
+ 0.3
738
+ 0.4
739
+ 0.5
740
+ 0.6
741
+ 0.7
742
+ 0.8
743
+ 0.9
744
+ 1
745
+ )
746
+ 2
747
+ s (GeV
748
+ (s)
749
+ ε
750
+ 1,
751
+ g
752
+ v
753
+ π
754
+ = 1.0m
755
+ ε
756
+ L = 9 fm
757
+ L = 18 fm
758
+ Figure 9: Finite volume effects in the reconstructed vector isovector spectral density on the two masterfield
759
+ ensembles described in the text. Gaussian smearing is used for a variety of energies at smearing width
760
+ 𝜖 = 0.5𝑚 𝜋, shown on the left, and 𝜖 = 𝑚 𝜋, shown on the right. These effects are generally small apart from
761
+ some mild discrepancies near 𝑠 = 0.4 GeV2 for 𝜖 = 0.5𝑚 𝜋 and 𝑠 = 0.75GeV2 for 𝜖 = 𝑚 𝜋. Additional smaller
762
+ lattice volumes could further examine these potential finite volume effects.
763
+ 11
764
+
765
+ The spectral reconstruction of inclusive rates
766
+ John Bulava
767
+ 0
768
+ 0.5
769
+ 1
770
+ 1.5
771
+ 2
772
+ 2.5
773
+ 3
774
+ 3.5
775
+ 4
776
+ 0
777
+ 0.5
778
+ 1
779
+ 1.5
780
+ 2
781
+ 2.5
782
+ 3
783
+ )
784
+ 2
785
+ s (GeV
786
+ (s)
787
+ ε
788
+ 1,
789
+ g
790
+ v
791
+ = 265 MeV, a = 0.09 fm
792
+ π
793
+ L = 18 fm, m
794
+ π
795
+ = 0.5m
796
+ ε
797
+ π
798
+ = 0.75m
799
+ ε
800
+ π
801
+ = 1.0m
802
+ ε
803
+ π
804
+ = 1.25m
805
+ ε
806
+ 0
807
+ 0.5
808
+ 1
809
+ 1.5
810
+ 2
811
+ 2.5
812
+ 3
813
+ 0
814
+ 0.5
815
+ 1
816
+ 1.5
817
+ 2
818
+ 2.5
819
+ 3
820
+ 3.5
821
+ τ– → V–ντ
822
+ π–π0
823
+ π–3π0, 2π–π+π0, (6π)–
824
+ ωπ–, ηπ–π0, (KK
825
+ –(π))–
826
+ QCD prediction
827
+ parton model
828
+ s (GeV2)
829
+ v1(s)
830
+ ALEPH
831
+ Figure 10:
832
+ Comparison of the lattice QCD results for the isovector vector spectral density on the larger
833
+ 𝐿/𝑎 = 192 master field ensemble discussed in the text (shown on the left), with experimental results for
834
+ hadronic 𝜏-decays on the right. Statistical errors due to the scale setting and the renormalization of the vector
835
+ current are not yet taken into account.
836
+ employed, which was presented at this conference by J. Kuhlmann. The statistical error on 𝑍𝑉
837
+ is ignored in these preliminary results, as is the error on the lattice scale, which is crudely set
838
+ by assuming 𝑚 𝜋 = 265 MeV. The results are summarized in Fig. 10, and broadly resemble the
839
+ experimental plot, with a narrow peak likely due to the 𝜌(770) vector resonance followed by a slow
840
+ rise due to four-particle states. Particularly interesting is the mild indication of this rise in the lattice
841
+ QCD data, which (like in the O(3) model) show the effects of four-pion states. It should be noted
842
+ that the current state-of-the-art for the finite-volume approach to lattice QCD scattering amplitudes
843
+ is the numerical computation of (exclusive rather than inclusive) three-pion scattering amplitudes3.
844
+ 4.
845
+ Conclusions
846
+ Alternative techniques are required to compute phenomena arising from many hadronic states.
847
+ The spectral reconstruction of smeared spectral densities from euclidean correlator data not only
848
+ bridges the gap between finite and infinite volume, but also helps to regulate the ill-posed nature
849
+ of the problem. The application discussed here is the computation of inclusive rates summed over
850
+ all final states produced by an external current. In the two-dimensional O(3) model, after taking
851
+ the continuum limit, the algorithm presented in Sec. 2 (first proposed for lattice field theory in
852
+ Ref. [10]) results in smeared spectral densities consistent with known analytic results. Spectral
853
+ reconstruction algorithms based on the Backus-Gilbert approach [5, 6] enable a precise definition
854
+ of the smeared spectral density that has been computed, while the modification of Ref. [9] further
855
+ allows the a priori specification of a desired smearing kernel. The simple linear ansatz on which
856
+ these approaches are based enables the direct expression for the smearing kernel given in Eq. 6.
857
+ Smeared spectral densities are useful not only for inclusive decay rates. An incomplete list
858
+ of recent applications of the Backus-Gilbert approach includes the nucleon hadronic tensor [24],
859
+ 3For a review of the current status of computations of three-particle scattering amplitudes using the finite-volume
860
+ approach, see the presentation by F. Romero-López and the recent reviews in Refs. [22, 23].
861
+ 12
862
+
863
+ The spectral reconstruction of inclusive rates
864
+ John Bulava
865
+ the determination of PDFs from Ioffe time data [25], and the photon emissivity of the quark-
866
+ gluon plasma [26]. These applications do not employ the algorithmic variant enabling a priori
867
+ specification of the smearing kernel, but could perhaps benefit from it in the future. This a priori
868
+ specification of the kernel enabled in Refs. [9, 10] is also present in the Chebyshev approach of
869
+ Ref. [7], but the stabilizing effect of the functional 𝐵[𝑔] in Eq. 11 is naively not present. The work
870
+ of Ref. [8] is a first step towards comparing the two approaches.
871
+ The advantages of the a priori approach are leveraged in the two-dimensional O(3) model to
872
+ perform joint constrained 𝜖 → 0 extrapolations with several different kernels. The presence of the
873
+ narrow 𝜌(770) peak in the isovector vector spectral density in QCD discussed in Sec. 3 complicates
874
+ such an extrapolation and more work is required toward an implementation. A similar approach has
875
+ been employed to compute inclusive decay rates in Refs. [27, 28], and taken up by additional groups
876
+ in Refs. [8, 29, 30]. Work towards computing the 𝑅-ratio was reported in this conference [31], as
877
+ well as a similar analyses of the total hadronic tau decay rate [32, 33], albeit with a wider gaussian
878
+ smearing radius than employed here. The interplay between the spatial extent and the smallest
879
+ achievable smearing width requires further study. Furthermore, the a priori approach of Ref. [7]
880
+ led to the direct computation of the Borel transform of a current-current correlator required for
881
+ the Shifman-Vainshtein-Zakharov sum rule in Ref. [34], possibly opening the door for additional
882
+ interaction between lattice QCD and QCD sum rules. Another interesting application is pursued in
883
+ Ref. [35] in which fits to smeared spectral densities are considered as an alternative to ‘standard’
884
+ spectroscopy. Additional applications could appear in the future. The a priori approach in principle
885
+ enables the computation of exclusive scattering amplitudes using Refs. [36, 37], while the formalism
886
+ for inclusive rates was developed already in Refs. [3, 38].
887
+ References
888
+ [1] A. Pich, Precision physics with inclusive QCD processes, Prog. Part. Nucl. Phys. 117 (2021)
889
+ 103846, [arXiv:2012.04716].
890
+ [2] E. C. Poggio, H. R. Quinn, and S. Weinberg, Smearing the Quark Model, Phys. Rev. D 13
891
+ (1976) 1958.
892
+ [3] M. T. Hansen, H. B. Meyer, and D. Robaina, From deep inelastic scattering to heavy-flavor
893
+ semileptonic decays: Total rates into multihadron final states from lattice QCD, Phys. Rev. D
894
+ 96 (2017), no. 9 094513, [arXiv:1704.08993].
895
+ [4] O. Kaczmarek and H.-T. Shu, Spectral and Transport Properties from Lattice QCD, Lect.
896
+ Notes Phys. 999 (2022) 307–345, [arXiv:2206.14676].
897
+ [5] G. Backus and F. Gilbert, The resolving power of gross earth data, Geophysical Journal
898
+ International 16 (1968), no. 2 169–205.
899
+ [6] G. Backus and F. Gilbert, Uniqueness in the inversion of inaccurate gross earth data,
900
+ Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and
901
+ Engineering Sciences 266 (1970), no. 1173 123–192,
902
+ [http://rsta.royalsocietypublishing.org/content/266/1173/123.full.pdf].
903
+ 13
904
+
905
+ The spectral reconstruction of inclusive rates
906
+ John Bulava
907
+ [7] G. Bailas, S. Hashimoto, and T. Ishikawa, Reconstruction of smeared spectral function from
908
+ Euclidean correlation functions, PTEP 2020 (2020), no. 4 043B07, [arXiv:2001.11779].
909
+ [8] A. Barone, S. Hashimoto, A. Jüttner, T. Kaneko, and R. Kellermann, Inclusive semi-leptonic
910
+ 𝐵(𝑠) mesons decay at the physical 𝑏 quark mass, in 39th International Symposium on Lattice
911
+ Field Theory, 11, 2022. arXiv:2211.15623.
912
+ [9] F. Pijpers and M. Thompson, Faster formulations of the optimally localized averages method
913
+ for helioseismic inversions, Astronomy and Astrophysics 262 (08, 1992) L33–L36.
914
+ [10] M. Hansen, A. Lupo, and N. Tantalo, Extraction of spectral densities from lattice correlators,
915
+ Phys. Rev. D 99 (2019), no. 9 094508, [arXiv:1903.06476].
916
+ [11] J. Bulava, M. T. Hansen, M. W. Hansen, A. Patella, and N. Tantalo, Inclusive rates from
917
+ smeared spectral densities in the two-dimensional O(3) non-linear 𝜎-model, JHEP 07
918
+ (2022) 034, [arXiv:2111.12774].
919
+ [12] M. Luscher and U. Wolff, How to Calculate the Elastic Scattering Matrix in Two-dimensional
920
+ Quantum Field Theories by Numerical Simulation, Nucl. Phys. B339 (1990) 222–252.
921
+ [13] J. Balog and M. Niedermaier, Off-shell dynamics of the O(3) NLS model beyond Monte
922
+ Carlo and perturbation theory, Nucl. Phys. B 500 (1997) 421–461, [hep-th/9612039].
923
+ [14] J. Balog, F. Niedermayer, and P. Weisz, The Puzzle of apparent linear lattice artifacts in the
924
+ 2d non-linear sigma-model and Symanzik’s solution, Nucl. Phys. B 824 (2010) 563–615,
925
+ [arXiv:0905.1730].
926
+ [15] M. Lüscher, Stochastic locality and master-field simulations of very large lattices, EPJ Web
927
+ Conf. 175 (2018) 01002, [arXiv:1707.09758].
928
+ [16] L. Giusti and M. Lüscher, Topological susceptibility at 𝑇 > 𝑇c from master-field simulations
929
+ of the SU(3) gauge theory, Eur. Phys. J. C 79 (2019), no. 3 207, [arXiv:1812.02062].
930
+ [17] A. Francis, P. Fritzsch, M. Lüscher, and A. Rago, Master-field simulations of O(𝑎)-improved
931
+ lattice QCD: Algorithms, stability and exactness, Comput. Phys. Commun. 255 (2020)
932
+ 107355, [arXiv:1911.04533].
933
+ [18] M. Davier, A. Hocker, and Z. Zhang, The Physics of Hadronic Tau Decays, Rev. Mod. Phys.
934
+ 78 (2006) 1043–1109, [hep-ph/0507078].
935
+ [19] D. Boito, M. Golterman, K. Maltman, S. Peris, M. V. Rodrigues, and W. Schaaf, Strong
936
+ coupling at the 𝜏-mass scale from an improved vector isovector spectral function, in 16th
937
+ International Workshop on Tau Lepton Physics , 12, 2021. arXiv:2112.05413.
938
+ [20] F. Johansson, Arb: efficient arbitrary-precision midpoint-radius interval arithmetic, IEEE
939
+ Transactions on Computers 66 (2017) 1281–1292.
940
+ 14
941
+
942
+ The spectral reconstruction of inclusive rates
943
+ John Bulava
944
+ [21] ALEPH Collaboration, S. Schael et al., Branching ratios and spectral functions of tau
945
+ decays: Final ALEPH measurements and physics implications, Phys. Rept. 421 (2005)
946
+ 191–284, [hep-ex/0506072].
947
+ [22] M. T. Hansen and S. R. Sharpe, Lattice QCD and Three-particle Decays of Resonances, Ann.
948
+ Rev. Nucl. Part. Sci. 69 (2019) 65–107, [arXiv:1901.00483].
949
+ [23] M. Mai, U.-G. Meißner, and C. Urbach, Towards a theory of hadron resonances,
950
+ arXiv:2206.01477.
951
+ [24] XQCD Collaboration, J. Liang, T. Draper, K.-F. Liu, A. Rothkopf, and Y.-B. Yang, Towards
952
+ the nucleon hadronic tensor from lattice QCD, Phys. Rev. D 101 (2020), no. 11 114503,
953
+ [arXiv:1906.05312].
954
+ [25] J. Karpie, K. Orginos, A. Rothkopf, and S. Zafeiropoulos, Reconstructing parton distribution
955
+ functions from Ioffe time data: from Bayesian methods to Neural Networks, JHEP 04 (2019)
956
+ 057, [arXiv:1901.05408].
957
+ [26] M. Cè, T. Harris, A. Krasniqi, H. B. Meyer, and C. Török, Photon emissivity of the
958
+ quark-gluon plasma: A lattice QCD analysis of the transverse channel, Phys. Rev. D 106
959
+ (2022), no. 5 054501, [arXiv:2205.02821].
960
+ [27] P. Gambino, S. Hashimoto, S. Mächler, M. Panero, F. Sanfilippo, S. Simula, A. Smecca, and
961
+ N. Tantalo, Lattice QCD study of inclusive semileptonic decays of heavy mesons, JHEP 07
962
+ (2022) 083, [arXiv:2203.11762].
963
+ [28] P. Gambino and S. Hashimoto, Inclusive Semileptonic Decays from Lattice QCD, Phys. Rev.
964
+ Lett. 125 (2020), no. 3 032001, [arXiv:2005.13730].
965
+ [29] R. Kellermann, A. Barone, S. Hashimoto, A. Jüttner, and T. Kaneko, Inclusive semi-leptonic
966
+ decays of charmed mesons with Möbius domain wall fermions, in 39th International
967
+ Symposium on Lattice Field Theory, 11, 2022. arXiv:2211.16830.
968
+ [30] P. Gambino, S. Hashimoto, S. Mächler, M. Panero, F. Sanfilippo, S. Simula, A. Smecca, and
969
+ N. Tantalo, Inclusive semileptonic 𝐵-decays from lattice QCD, in 39th International
970
+ Symposium on Lattice Field Theory, 11, 2022. arXiv:2211.11833.
971
+ [31] C. Alexandrou et al., Lattice calculation of the R-ratio smeared with Gaussian kernel, in 39th
972
+ International Symposium on Lattice Field Theory, 12, 2022. arXiv:2212.12493.
973
+ [32] A. Evangelista, R. Frezzotti, G. Gagliardi, V. Lubicz, F. Sanfilippo, S. Simula, and
974
+ N. Tantalo, Direct lattice calculation of inclusive hadronic decay rates of the 𝜏 lepton, in
975
+ 39th International Symposium on Lattice Field Theory, 1, 2023. arXiv:2301.00796.
976
+ [33] C. Alexandrou et al., Probing the 𝑅-ratio on the lattice, arXiv:2212.08467.
977
+ [34] T. Ishikawa and S. Hashimoto, Spectral sum of current correlators from lattice QCD, Phys.
978
+ Rev. D 104 (2021), no. 7 074521, [arXiv:2103.06539].
979
+ 15
980
+
981
+ The spectral reconstruction of inclusive rates
982
+ John Bulava
983
+ [35] L. Del Debbio, A. Lupo, M. Panero, and N. Tantalo, Multi-Representation Dynamics of SU(4)
984
+ Composite Higgs Models: Chiral Limit and Spectral Reconstructions, arXiv:2211.09581.
985
+ [36] J. Bulava and M. T. Hansen, Scattering amplitudes from finite-volume spectral functions,
986
+ Phys. Rev. D 100 (2019), no. 3 034521, [arXiv:1903.11735].
987
+ [37] M. Bruno and M. T. Hansen, Variations on the Maiani-Testa approach and the inverse
988
+ problem, JHEP 06 (2021) 043, [arXiv:2012.11488].
989
+ [38] H. Fukaya, S. Hashimoto, T. Kaneko, and H. Ohki, Towards fully nonperturbative
990
+ computations of inelastic ℓ𝑁 scattering cross sections from lattice QCD, Phys. Rev. D 102
991
+ (2020), no. 11 114516, [arXiv:2010.01253].
992
+ 16
993
+
U9E2T4oBgHgl3EQftwgF/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
UtAyT4oBgHgl3EQf8voh/content/tmp_files/2301.00860v1.pdf.txt ADDED
@@ -0,0 +1,1105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.00860v1 [hep-ph] 2 Jan 2023
2
+ Dijet azimuthal decorrelation in e+e− annihilation
3
+ Hana Benslamaa, Yazid Delendaa,∗, Kamel Khelifa-Kerfab
4
+ aLaboratoire de Physique des Rayonnements et de leurs Interactions avec la Mati`ere,
5
+ D´epartement de Physique, Facult´e des Sciences de la Mati`ere,
6
+ Universit´e de Batna-1, Batna 05000, Algeria
7
+ bLaboratoire de Math´ematique et Applications,
8
+ D´epartement de Physique, Facult´e des Sciences et Technologies
9
+ Universit´e Ahmed Zabana de Relizane, Relizane 48000, Algeria
10
+ Abstract
11
+ We examine non-global and clustering logarithms in the distribution of the azimuthal decorrelation between
12
+ two jets in e+e− → dijet events, where the jets are defined with E-scheme recombination in the generalized kt
13
+ algorithm. We calculate at one loop and to all orders the leading global single logarithms in the distribution
14
+ of the said observable.
15
+ We also compute at fixed order up to four loops the non-global and clustering
16
+ logarithms, and numerically resum them to all orders in the large-Nc approximation.
17
+ We compare our
18
+ results at O(αs) and O(α2
19
+ s) with those of the EVENT2 fixed-order Monte Carlo program and find agreement
20
+ of the leading singular behavior of the azimuthal decorrelation distribution. We find that the impact of
21
+ non-global logarithms on the resummed distribution in the anti-kt algorithm is substantial, while it is
22
+ significantly smaller in the kt algorithm. Furthermore, the combined clustering and non-global logarithms
23
+ in the kt algorithm have an even smaller effect on the distribution. Finally, we use the program Gnole
24
+ to calculate the resummed distribution at NLL accuracy, thus achieving state-of-the-art accuracy for the
25
+ resummation of this quantity.
26
+ Keywords:
27
+ QCD, Jets, Resummation
28
+ 1. Introduction
29
+ The production of jets in e+e− collisions is a simple and clean environment, yet rich of physics, to test
30
+ QCD and the Standard Model. It will be used in future colliders such as the ILC and FCC-ee in order to
31
+ make precise measurements of QCD-related quantities, which together with detailed theoretical calculations
32
+ will pave the way towards potential discovery of new-physics phenomena.
33
+ At lowest order two correlated jets are produced back-to-back with a relative azimuthal angle equal to
34
+ π. At higher orders the jets manifest a decorrelation of azimuthal angle δφ which is enhanced near the
35
+ back-to-back limit. The quantity δφ, being sensitive to soft/collinear QCD effects, is of great interest in
36
+ the phenomenology of perturbative and non-perturbative QCD dynamics. For instance it has been used
37
+ to study unintegrated parton distribution functions in deep-inelastic e − p scattering (DIS) [1] and small-x
38
+ BFKL effects [2], as well as measurements of the QCD coupling at various scales [3]. Many studies have
39
+ been devoted to the distribution of δφ in various processes, such as dijet production in p − p [4, 5, 6] (and
40
+ even p − pb [7]) collisions and DIS [2, 8]. Experimentally, boson-jet (in pp collisions) [9] and lepton-jet or
41
+ photon-jet (in DIS) [10, 11] decorrelations have been measured.
42
+ Near the back-to-back limit, the distribution of the azimuthal decorrelation is characterized by large
43
+ logarithms preventing the convergence of the perturbative series, and thus need to be resummed to all
44
+ ∗Corresponding author.
45
+ Email addresses: hana.benslama@univ-batna.dz (Hana Benslama), yazid.delenda@univ-batna.dz (Yazid Delenda,
46
+ kamel.khelifakerfa@univ-relizane.dz (Kamel Khelifa-Kerfa)
47
+ Preprint submitted to Physics Letters B
48
+ January 4, 2023
49
+
50
+ orders. Depending on the nature of the algorithm being used to define the jets, the leading logarithms in
51
+ this distribution can be double or single logarithms. For instance, in pt-weighted recombination scheme of
52
+ the kt [12, 13, 14], anti-kt [15] and Cambridge/Aachen algorithms [16, 17], the leading logarithms are double,
53
+ αn
54
+ s L2n, while in E-scheme recombination they are single, αn
55
+ s Ln, with L = ln(1/δφ). In the former scheme,
56
+ the jets recoil against emissions everywhere in the phase space, and in particular soft and collinear emissions
57
+ to these jets, which leads to the double logarithms in δφ. On the other hand, in the latter (E-scheme), the
58
+ jets recoil only against emissions that do not get clustered to them, and hence only away-from-jets emissions
59
+ contribute to δφ, resulting in leading soft wide-angle single logarithmic contributions.
60
+ In addition to this, the classification of the δφ observable, in E-scheme definition, falls in the “non-global”
61
+ category, and as a consequence its distribution receives contributions from single non-global (NGLs) [18, 19]
62
+ and/or clustering (CLs) [20, 21] logarithms. The resummation of these logarithms is not straightforward,
63
+ and is usually performed numerically via Monte Carlo (MC) programs in the planar (large-Nc) limit.
64
+ In this letter, we are interested in the calculation of NGLs and/or CLs for the δφ distribution both in the
65
+ kt and anti-kt algorithms. We compute the coefficients of these logarithms as a function of the jet radius R
66
+ up to O(α3
67
+ s), and at O(α4
68
+ s) in the anti-kt algorithm at small R. We use the fixed-order MC program EVENT2
69
+ [22, 23] in order to compare the leading singular behavior of the δφ distribution with our results at O(αs)
70
+ and O(α2
71
+ s). We also compute the resummed NGLs and CLs at all orders in the large-Nc limit using the MC
72
+ code of refs. [18, 19] as well as the recently-published program Gnole [24, 25] (in the anti-kt algorithm).
73
+ The latter program is also used to compute the resummed differential δφ distribution at next-to-leading
74
+ logarithmic (NLL) accuracy, in which we additionally control all the sub-leading logarithms αn+1
75
+ s
76
+ Ln in the
77
+ exponent of the resummation, and quantify the corresponding scale uncertainties.
78
+ This letter is organized as follows. In the next section we compute at O(αs) the leading-order distribution
79
+ focusing on the logarithmic contribution, and compare with fixed-order MC programs at this order. In
80
+ section 3, we present the calculation of NGLs and CLs at O(α2
81
+ s) and show plots of the coefficients of these
82
+ logarithms as a function of the jet radius and comment on the relative size of these coefficients. We also
83
+ compare at this order the calculated δφ distribution with the output of the program EVENT2, thus confirming
84
+ our results. In section 4 we extend the calculation to O(α3
85
+ s) and (in the anti-kt algorithm and at small R)
86
+ O(α4
87
+ s), and point out the significantly different color structure of NGLs in kt clustering. In section 5 we
88
+ present the all-orders resummation of the NGLs and/or CLs in the large-Nc limit up to LL accuracy for the
89
+ kt algorithm, and NLL accuracy in the anti-kt clustering. Finally we draw our conclusions in section 6.
90
+ 2. One-loop calculation and the global form factor
91
+ In this letter we consider the process of dijet production in e+e− annihilation at centre-of-mass energy
92
+ √s. The jets are reconstructed with the kt [14] or anti-kt [15] algorithms, suited for e+e− annihilation, with
93
+ merging and stopping distances dij and di defined by
94
+ dij = min
95
+
96
+ E2p
97
+ i , E2p
98
+ j
99
+ � 1 − cos θij
100
+ 1 − cos R ,
101
+ di = E2p
102
+ i
103
+ ,
104
+ (1)
105
+ where p = +1 for the kt algorithm and p = −1 for the anti-kt algorithm. Here R is the jet radius, Ei
106
+ is the energy of the ith parton in the final state, and θij is the opening angle between partons i and j.
107
+ The algorithm sequentially merges objects i and j whenever dij is the smallest of all merging and stopping
108
+ distances, and if an object i has its stopping distance as the smallest then it gets admitted to the list of
109
+ final inclusive jets. The algorithm keeps recursing until all partons are clustered into jets. In this letter,
110
+ we assume the jet kinematics to be defined with E-scheme recombination, such that the 4-momentum of a
111
+ merged object simply equals the vectorial sum of the momenta of its constituents.
112
+ At the Born level, the two jets are produced back-to-back, and their relative azimuthal angle (with
113
+ respect to the beam axis) is exactly π. The observable we are interested in is the deviation from π of this
114
+ relative azimuthal angle, δφ, when soft gluons are emitted at higher orders. It is straightforward to obtain
115
+ the following expression for δφ in terms of the transverse momenta of the emitted gluons κti and their
116
+ 2
117
+
118
+ azimuthal angles ϕi, with respect to the beam axis
119
+ δφ =
120
+ ������
121
+
122
+ i/∈jets
123
+ κti
124
+ pt
125
+ sin ϕi
126
+ ������
127
+ ,
128
+ (2)
129
+ where pt is the jet transverse momentum. The (algebraic) sum is over all emitted gluons that are not clustered
130
+ to any of the two measured (leading) jets. This definition is valid only at single leading logarithmic (LL)
131
+ accuracy, and we shall give the proper definition, valid at NLL accuracy, in section 5. Furthermore, the
132
+ expression of δφ in eq. (2) only applies in E-scheme recombination. Alternative jet recombination schemes
133
+ exist for which the jet kinematics take a different form, e.g. the pt-weighted scheme, and the resummation
134
+ takes an entirely different structure [8].
135
+ At one loop the cumulative cross-section for events with azimuthal decorrelation δϕ less than some ∆,
136
+ normalized to the Born cross-section, reads
137
+ Σ1(∆) = −2 CF
138
+ � αs(kt)
139
+ π
140
+ dkt
141
+ kt
142
+ d cos θ
143
+ sin2 θ
144
+
145
+ 2π ωk
146
+ q¯q Θout(k) Θ (κt| sin ϕ|/pt − ∆) ,
147
+ (3)
148
+ where θ, φ and kt are the polar angle, azimuthal angle and transverse momentum of the emitted soft gluon
149
+ k, with respect to the jet (thrust) axis (the back-to-back outgoing jets are aligned along the z axis), CF
150
+ is the color factor associated with the emission of the gluon off the hard q¯q dipole, and αs is the strong
151
+ coupling with argument kt. The invariant antenna function ωk
152
+ q¯q is given by
153
+ ωk
154
+ q¯q = k2
155
+ t
156
+ 2
157
+ pq · p¯q
158
+ (pq · k)(p¯q · k) = 1 ,
159
+ (4)
160
+ with pi denoting the momentum of particle i
161
+ pq =
162
+ √s
163
+ 2 (1, 0, 0, 1) ,
164
+ (5a)
165
+ p¯q =
166
+ √s
167
+ 2 (1, 0, 0, −1) ,
168
+ (5b)
169
+ k = E (1, cos φ sin θ, sin φ sin θ, cos θ) ,
170
+ (5c)
171
+ where kt = E sin θ. The constraint Θout(k) restricts the emitted gluon to be outside the jets and forbids it
172
+ from being clustered to any of them in order to induce a non-zero azimuthal decorrelation. It depends on
173
+ the jet radius R and is given, in the generalized algorithm, by
174
+ Θout(k) = Θ (cos R − | cos θ|) .
175
+ (6)
176
+ Since the soft emission is restricted to be outside both jets then there are no collinear logarithms as-
177
+ sociated with this observable. This means that the leading logarithms are single, which allows us at LL
178
+ accuracy to simply change Θ(κt| sin ϕ|/pt − ∆) → Θ(2 kt/√s − ∆), since any factor multiplying kt will only
179
+ induce sub-leading logarithms. 1 We can then perform the integration over kt using the one-loop running
180
+ of the coupling (which formally enters the distribution at higher orders), and write the result in terms of
181
+ the evolution parameter t defined by
182
+ t(∆) ≡
183
+ � √s/2 αs(kt)
184
+ π
185
+ dkt
186
+ kt
187
+ Θ
188
+
189
+ 2 kt/√s − ∆
190
+
191
+ = −
192
+ 1
193
+ 2πβ0
194
+ ln(1 − 2λ) ,
195
+ (7)
196
+ where λ = αs(√s/2)β0 ln(1/∆) and β0 is the one-loop coefficient of the QCD beta function. The angular
197
+ integration is straightforward and we obtain
198
+ Σ1(∆) = −2 CF t(∆)
199
+ � 1
200
+ −1
201
+ dc
202
+ 1 − c2 Θ (cos R − |c|) = −2 CF t(∆) ln 1 + cos R
203
+ 1 − cos R ,
204
+ (8)
205
+ 1Notice that κt and ϕ are different from kt and φ.
206
+ 3
207
+
208
+ with c standing for cos θ. Note that since only emissions in the inter-jet (gap) region are integrated over,
209
+ this result may be cast in terms of the rapidity-gap width ∆η
210
+ ∆η ≡ ln 1 + cos R
211
+ 1 − cos R .
212
+ (9)
213
+ The all-orders resummed global form factor is simply the exponential of the one-loop distribution. That is
214
+ Σglobal(∆) = exp [−2 CF t(∆) ∆η] .
215
+ (10)
216
+ An identical expression was also arrived at in ref. [26] for jet shapes in e+e− annihilation.
217
+ The leading-order result can be verified by comparing it with the output of the MC program EVENT2 at
218
+ O(αs) [22, 23]. Specifically we compare the differential distribution
219
+
220
+ αs
221
+ dΣ1
222
+ dL = 4 CF ln 1 + cos R
223
+ 1 − cos R ,
224
+ (11)
225
+ where L = ln ∆, with the same MC distribution, for the chosen value of R = 0.5. We show in figure 1 a
226
+ plot of the difference between the MC distribution and the expansion of the resummation at O(αs), where,
227
+ as expected, this difference tends to zero in the logarithmically-enhanced region.
228
+ Figure 1: The difference between the leading-order EVENT2 differential distribution 2π/αs dΣ1/dL and the resummed distribu-
229
+ tion expanded at O(αs). The singular behavior of the MC distribution is exactly cancelled by the expanded result.
230
+ 3. Two-loops calculation: NGLs and CLs
231
+ When employing the kt or anti-kt clustering algorithms with E-scheme recombination, the resummation
232
+ of the azimuthal decorrelation distribution requires the treatment of NGLs and/or CLs. The corresponding
233
+ cumulative distribution at O(α2
234
+ s) can then be split into three contributions
235
+ Σ2(∆) = 1
236
+ 2! [Σ1(∆)]2 + ΣNG
237
+ 2
238
+ (∆) + ΣCL
239
+ 2 (∆) ,
240
+ (12)
241
+ with ΣCL
242
+ 2 (∆) = 0 for anti-kt clustering. Let us first discuss the NGLs contribution ΣNG
243
+ 2
244
+ (∆) in both algo-
245
+ rithms, and then compute the CLs contribution ΣCL
246
+ 2 (∆) for kt clustering.
247
+ 3.1. Calculation of NGLs
248
+ The origin of NGLs at two loops is the emission of a soft gluon k1 inside any of the two outgoing jets
249
+ which itself emits a softer gluon k2 outside the jets without being clustered back to them.
250
+ While this
251
+ configuration results in a non-zero δφ, its virtual correction (specifically when k2 is virtual) gives δφ = 0,
252
+ 4
253
+
254
+ and thus we have a real-virtual mis-cancellation of the soft singularities. We express the contribution of the
255
+ uncancelled virtual correction to the integrated azimuthal decorrelation distribution as follows
256
+ ΣNG
257
+ 2
258
+ (∆) = S2(R) t2
259
+ 2! ,
260
+ (13a)
261
+ S2(R) = −2 CF CA
262
+
263
+ dc1
264
+ 1 − c2
265
+ 1
266
+ dφ1
267
+
268
+ dc2
269
+ 1 − c2
270
+ 2
271
+ dφ2
272
+ 2π A12
273
+ q¯q ΞNG
274
+ 2
275
+ (R) ,
276
+ (13b)
277
+ where CA is the color factor associated with the non-Abelian emission of gluon k2 off k1. The irreducible
278
+ two-loops antenna function A12
279
+ q¯q is given by [27]
280
+ A12
281
+ q¯q = ω1
282
+ q¯q
283
+
284
+ ω2
285
+ q1 + ω2
286
+ 1¯q − ω2
287
+ q¯q
288
+
289
+ =
290
+ 1 − c1c2
291
+ 1 − c1c2 − s1s2 cos(φ1 − φ2) − 1 ,
292
+ (14)
293
+ with si ≡ sin θi. The function ΞNG
294
+ 2
295
+ restricts the angular phase-space of integration and is given, in the
296
+ anti-kt and kt algorithms respectively, by
297
+ ΞNG, akt
298
+ 2
299
+ = Θin(k1)Θout(k2) ,
300
+ (15a)
301
+ ΞNG, kt
302
+ 2
303
+ = Θin(k1)Θout(k2)Θ(d12 − d2) .
304
+ (15b)
305
+ The step function Θ(d12 − d2) forbids gluon k2 from being clustered back to the jet in the kt algorithm. It
306
+ is given by Θ(cos R − cos θ12), with cos θ12 = c1c2 + s1s2 cos(φ1 − φ2).
307
+ In the anti-kt algorithm the integration is simple and its result can be expressed in the same form as
308
+ that of the rapidity-gap NGLs coefficient found in ref. [19]
309
+ Sakt
310
+ 2
311
+ (R) = −CF CA
312
+ �π2
313
+ 6 + 2∆η2 − 2∆η ln
314
+
315
+ e2∆η − 1
316
+
317
+ − Li2
318
+
319
+ e−2∆η�
320
+ − Li2
321
+
322
+ 1 − e2∆η��
323
+ = −CF CA
324
+ �π2
325
+ 3 − R4
326
+ 8 − R6
327
+ 24 − 29 R8
328
+ 2560 + O
329
+
330
+ R10��
331
+ ,
332
+ (16)
333
+ where ∆η(R) is defined in eq. (9). The above formula shows that in the limit R → 0 the two-loops NGLs
334
+ coefficient does not vanish, but rather reaches its maximum value. This feature was observed in ref. [19]
335
+ and was ascribed to the fact that NGLs originate from the edge of jets, since this is the phase-space region
336
+ where gluons k1 and k2 are collinear and thus the amplitude squared (14) is most singular.
337
+ In the kt algorithm, and at small values of R (using small angles), we can write the NGLs coefficient as
338
+ Skt
339
+ 2 (R ∼ 0) = −8 CF CA
340
+ � 1
341
+ 0
342
+ dθ1
343
+ � ∞
344
+ 1
345
+ dθ2
346
+ � 2π
347
+ 0
348
+
349
+
350
+ 1
351
+ (θ2
352
+ 1 + θ2
353
+ 2) sec φ − 2 θ1 θ2
354
+ Θ
355
+
356
+ θ2
357
+ 1 + θ2
358
+ 2 − 2 θ1 θ2 cos φ − 1
359
+
360
+ = −2π2
361
+ 27 CF CA ,
362
+ (17)
363
+ where we made the following changes of variables: φ = φ1 − φ2 and θi → R θi. Away from the small-R
364
+ limit one may perform the integration numerically to obtain the full-R result for the two-loops coefficient of
365
+ NGLs. We present the results in the following subsection together with the CLs coefficient.
366
+ 3.2. CLs with kt clustering
367
+ To compute the CLs we consider the Abelian primary emission of two strongly-ordered gluons directly
368
+ off the hard q¯q dipole, whereby the harder gluon k1 is inside one of the two jets and the softer k2 is outside
369
+ both of them, with the constraint d12 < d2, such that gluon k2 gets clustered into the jet by gluon k1, which
370
+ leads to δφ = 0. However, when k1 is virtual then gluon k2 remains in the gap causing the hard jets to
371
+ decorrelate. In this case we obtain a large single logarithmic contribution to the δφ distribution given by
372
+ ΣCL
373
+ 2 (∆) = Ckt
374
+ 2 (R) t2
375
+ 2! ,
376
+ (18a)
377
+ Ckt
378
+ 2 (R) = 4 C2
379
+ F
380
+
381
+ dc1
382
+ 1 − c2
383
+ 1
384
+ dφ1
385
+
386
+ dc2
387
+ 1 − c2
388
+ 2
389
+ dφ2
390
+ 2π w1
391
+ q¯q w2
392
+ q¯q Θ(|c1| − cos R) Θ(cos R − |c2|) Θ(cos θ12 − cos R) .
393
+ (18b)
394
+ 5
395
+
396
+ Note again that Cakt
397
+ 2
398
+ (R) = 0, as there are no CLs for anti-kt clustering.
399
+ First, let us consider the small-R limit of this integral. In this case we may write
400
+ Ckt
401
+ 2 (R ∼ 0) = 8 C2
402
+ F
403
+ � 1
404
+ 0
405
+ dθ1
406
+ θ1
407
+ � ∞
408
+ 1
409
+ dθ2
410
+ θ2
411
+ � 2π
412
+ 0
413
+
414
+ 2π Θ
415
+
416
+ −θ2
417
+ 1 − θ2
418
+ 2 + 2 θ1 θ2 cos φ + 1
419
+
420
+ = 5π2
421
+ 27 C2
422
+ F .
423
+ (19)
424
+ Away from this small-R limit we perform the integration numerically. We show in figure 2 a plot of the
425
+ coefficients of NGLs and CLs at O(α2
426
+ s) as a function of the jet radius R. Also shown is the combined
427
+ coefficient of CLs and NGLs in the kt algorithm; Fkt
428
+ 2 = Skt
429
+ 2 + Ckt
430
+ 2 .
431
+ Figure 2: CLs and NGLs coefficients at two loops with kt and anti-kt clustering.
432
+ Notice that NGLs coefficient in the kt clustering algorithm is significantly smaller than that in the anti-
433
+ kt. The CLs coefficient is positive and quite small, with the advantage that it cancels the NGLs coefficient,
434
+ particularly at small values of R. Note that the overall coefficient F2 is less than 1 for values of R smaller
435
+ than about 0.5. For small R values, the anti-kt NGLs coefficient computed here is identical to that found
436
+ for the single hemisphere mass [28] and jet mass with a jet veto [26].
437
+ 3.3. Comparison to EVENT2
438
+ We compare our two-loops results with the exact MC distribution at O(α2
439
+ s) obtained with the EVENT2
440
+ program. The latter splits the distribution at NLO into three color contributions; O(C2
441
+ F), O(CF CA) and
442
+ O(CF Tf nf), with Tf = 1/2 being the normalization constant of the generators of the SU(3) group in the
443
+ fundamental representation and nf = 5 is the number of active quark flavors. The expansion of the resummed
444
+ distribution at this order, including running coupling effects, is written, after differentiating with respect to
445
+ L, as
446
+ �2π
447
+ αs
448
+ �2 dΣ2
449
+ dL =
450
+
451
+ C2
452
+ F 4
453
+
454
+ 4 ∆η2 + C2
455
+
456
+ − CF CA
457
+ 4
458
+ 3 (3 S2 + 11∆η) + CF Tf nf
459
+ 16
460
+ 3 ∆η
461
+
462
+ L + O(1) .
463
+ (20)
464
+ At this order this differential distribution is linear in L, but does not capture the O(1) constant, which, in
465
+ the cumulative integrated distribution, is an NLL O(α2
466
+ s L) term. We plot the difference between the MC
467
+ distribution and the expansion (20) for each color contribution separately. All curves should tend towards a
468
+ constant when L grows large and negative. The results are shown in figure 3. Here the O(C2
469
+ F) part contains
470
+ the CLs coefficient in kt clustering, while the O(CF CA) term contains the NGLs coefficient both in kt and
471
+ anti-kt algorithms. The O(CF Tf nf) contribution is algorithm independent at LL accuracy, but the NLL
472
+ O(1) constant does depend on the jet algorithm.
473
+ 6
474
+
475
+ Figure 3: The difference between the NLO EVENT2 differential distribution (2π/αs)2 dΣ2/dL and the resummed distribution
476
+ expanded at O(α2
477
+ s). The leading logarithmic behavior of the MC distribution O(α2
478
+ sL) is cancelled, leaving a constant behavior
479
+ at large values of L.
480
+ 4. NGLs and CLs at three loops
481
+ 4.1. NGLs at three loops
482
+ At O(α3
483
+ s), the cumulative distribution can be written as follows
484
+ Σ3(∆) = 1
485
+ 3! [Σ1(∆)]3 + Σ1(∆) × ΣNG
486
+ 2
487
+ (∆) + Σ1(∆) × ΣCL
488
+ 2 (∆) + ΣNG
489
+ 3
490
+ (∆) + ΣCL
491
+ 3 (∆) .
492
+ (21)
493
+ Focusing first on the pure NGLs contribution ΣNG
494
+ 3
495
+ (i.e., excluding the cross-talk between the one-loop global
496
+ and two-loops non-global logarithms) in the anti-kt algorithm, we may write it in the form
497
+ ΣNG,akt
498
+ 3
499
+ (∆) = Sakt
500
+ 3
501
+ (R) t3
502
+ 3! ,
503
+ (22a)
504
+ Sakt
505
+ 3
506
+ (R) = 2 CF C2
507
+ A
508
+ � � 3
509
+
510
+ i=1
511
+ dci
512
+ 1 − c2
513
+ i
514
+ dφi
515
+
516
+
517
+
518
+ A12
519
+ q¯q ¯
520
+ A13
521
+ q¯q Θin(k1)Θout(k2)Θout(k3) − B123
522
+ q¯q Θin(k1)Θin(k2)Θout(k3)
523
+
524
+ ,
525
+ (22b)
526
+ where we define ¯
527
+ A13
528
+ q¯q = A13
529
+ q¯q/ω1
530
+ q¯q, and the 3-loops irreducible cascade antenna function is given by
531
+ B123
532
+ q¯q = ω1
533
+ q¯q
534
+
535
+ A23
536
+ q1 + A23
537
+ 1¯q − A23
538
+ q¯q
539
+
540
+ .
541
+ (23)
542
+ It is worth mentioning that, for the cascade term, there is a non-negligible contribution from the configuration
543
+ in which gluon k1 is in one jet emitting gluon k2 in the other jet which itself emits the softest gluon k3 in
544
+ the gap between the two jets. At small values of R the integration is quite simple and yields the result
545
+ Sakt
546
+ 3
547
+ (R ∼ 0) = CF C2
548
+ A 2 ζ3 .
549
+ (24)
550
+ Notice that this result is twice that found for the hemisphere mass observable [29]. Away from the small-R
551
+ limit the integration can be performed numerically and we shall present the results in the next subsection.
552
+ The pure NGLs contribution in the kt algorithm is given by an identical form to that of the anti-kt (22a)
553
+ ΣNG,kt
554
+ 3
555
+ (∆) = Skt
556
+ 3 (R) t3
557
+ 3! .
558
+ (25)
559
+ We perform for the first time in the literature a calculation of NGLs in the kt algorithm beyond two loops.
560
+ Due to non-linearity of kt clustering we shall find a class of NGLs that have a non-standard color factor,
561
+ namely C2
562
+ F CA at O(α3
563
+ s).
564
+ Such terms usually (in anti-kt clustering) only arise in the cross-talk of the
565
+ expansion of the primary-emission global form factor (10) at O(αs) together with NGLs at O(α2
566
+ s), i.e., the
567
+ term Σ1(∆) × ΣNG
568
+ 2
569
+ (∆) in eq. (21). However, in the kt algorithm, we find them as “pure” irreducible NGLs.
570
+ That is, they are part of the term ΣNG
571
+ 3
572
+ (∆) in eq. (21).
573
+ 7
574
+
575
+ To proceed, we consider three types of emissions at O(α3
576
+ s), as shown in figure 4: (a) one primary + two
577
+ correlated emissions, (b) ladder emissions, and (c) cascade emissions. In each case we consider all possible
578
+ virtual-correction Feynman diagrams as well as angular configurations of the emitted gluons that affect the
579
+ clustering procedure, and look for a mis-match between the soft divergences of these emissions.
580
+ Figure 4: The three types of emissions to consider for NGLs calculation at O(α3
581
+ s): (a) one primary + two correlated emissions,
582
+ (b) ladder emissions, and (c) cascade emissions.
583
+ Starting first with type (a) contributions, there are three possible permutations of the gluons.
584
+ 2
585
+ For the permutation in which k3 is emitted in correlation with k2, and which has a squared amplitude
586
+ 4 C2
587
+ F CA ω1
588
+ q¯q A23
589
+ q¯q, we find that the angular phase space of integration that yields a logarithmic contribution
590
+ is given by
591
+ ΞNG,kt
592
+ 31
593
+ (R) = Θin(k1)Θin(k2)Θout(k3)Θ(d3 − d13)Θ(d23 − d3)+
594
+ + Θout(k1)Θin(k2)Θout(k3)Θ(d23 − d3)+
595
+ − Θin(k1)Θout(k2)Θout(k3)Θ(d13 − d3)Θ(d23 − d3)Θ(d2 − d12) .
596
+ (26)
597
+ To see how one obtains this result let us give one example of angular configurations that result in a logarithmic
598
+ contribution. There are four Feynman diagrams in this case, shown in figure 5. Consider the situation when
599
+ particles k3 and k2 are outside the jet regions, d3j > d3 and d2j > d2, while particle k1 is inside, d1j < d1. In
600
+ this scenario, both diagrams in which k1 is virtual (i.e., diagrams (3) and (4) in figure 5) yield δφ ̸= 0, since
601
+ in both diagrams particle k2 is real and remains in the gap region after applying the clustering. However,
602
+ these two diagrams contribute equally and with opposite signs, so they cancel each other. For the remaining
603
+ two diagrams, (1) and (2), we have a mismatch when particle k2 gets pulled inside the jet by the real particle
604
+ k1 while k3 remains in the gap. This happens when d12 is smaller than d2, and both d13 and d23 are greater
605
+ than d3. While in diagram (1) we have a real unclustered gluon k3 in the gap region (i.e., it forms a jet
606
+ on its own) giving δφ ̸= 0, in diagram (2) the gap is empty and the hard jets are exactly back-to-back
607
+ with δφ = 0. The virtual-correction diagram (2) contributes fully to the cumulative distribution while the
608
+ real-emission diagram (1) cancels this contribution only up to δφ = ∆, leaving uncancelled virtual-correction
609
+ contributions with a negative sign. This is the last term in eq. (26).
610
+ Figure 5: Feynman diagrams corresponding to the squared amplitude 4 C2
611
+ F CA ω1
612
+ q¯q A23
613
+ q¯q.
614
+ 2Note that for all permutations the transverse momenta of the three gluons are strongly ordered as follows: kt1 ≫ kt2 ≫ kt3.
615
+ 8
616
+
617
+ Similarly, we obtain for the second and third gluon permutations of type (a) diagrams, with squared
618
+ amplitudes 4 C2
619
+ F CA ω2
620
+ q¯q A13
621
+ q¯q and 4 C2
622
+ F CA ω3
623
+ q¯q A12
624
+ q¯q, respectively, as well as type (b) (ladder-emission) contri-
625
+ butions, with squared amplitude 2 CF C2
626
+ A ¯
627
+ A12
628
+ q¯q A13
629
+ q¯q, the same phase space function. It is given by
630
+ ΞNG,kt
631
+ 32
632
+ (R) = Θin(k1)Θin(k2)Θout(k3)Θ(d13 − d3)Θ(d3 − d23)+
633
+ + Θin(k1)Θout(k2)Θout(k3)Θ(d13 − d3)Θ(d3 − d23)+
634
+ + Θin(k1)Θout(k2)Θout(k3)Θ(d13 − d3)Θ(d23 − d3)Θ(d12 − d2) .
635
+ (27)
636
+ Finally, for type (c) (cascade emission) contributions, corresponding to the squared amplitude 2 CF C2
637
+ A B123
638
+ q¯q ,
639
+ the phase space function reads
640
+ ΞNG,kt
641
+ 33
642
+ (R) = − Θin(k1)Θin(k2)Θout(k3)Θ(d13 − d3)Θ(d23 − d3)−
643
+ − Θin(k1)Θout(k2)Θout(k3)Θ(d13 − d3)Θ(d23 − d3)Θ(d2 − d12) .
644
+ (28)
645
+ Before performing the integration, we subtract off the part of the phase space that produces the interfer-
646
+ ence term between the one-loop global primary logarithm and the two-loops NGLs, which only comes from
647
+ type (a) emissions. For the first permutation of gluons, this part of phase space is identified by the second
648
+ term in eq. (26), Θout(k1)Θin(k2)Θout(k3)Θ(d23 − d3), where gluon k1 reproduces the one-loop global term
649
+ (8) and the other correlated gluons, k2 and k3, give the two-loops NGLs (eq. (13b) with phase space (15b)).
650
+ However, for the other two gluon permutations of type (a) emissions, the phase space (27) does not simply
651
+ contain such interference terms. Strictly speaking, this means that NGLs do not cleanly factorize from the
652
+ global form factor in the kt algorithm. Nevertheless, we can manually add and subtract the interference
653
+ terms and write the total distribution in the factorizable form (21).
654
+ We can then write the “pure” NGLs coefficient Skt
655
+ 3 , given in eq. (25), in the following form
656
+ Skt
657
+ 3 (R) = S(a)
658
+ 3 (R) + S(b)+(c)
659
+ 3
660
+ (R) ,
661
+ (29)
662
+ where we split the result according to the color factor, such that for type (a) emissions we have
663
+ S(a)
664
+ 3 (R) = 4 C2
665
+ F CA
666
+ � � 3
667
+
668
+ i=1
669
+ dci
670
+ 1 − c2
671
+ i
672
+ dφi
673
+
674
+ � �
675
+ ω1
676
+ q¯q A23
677
+ q¯q �Ξ31(R) + ω2
678
+ q¯q A13
679
+ q¯q �Ξ32(R) + ω3
680
+ q¯q A12
681
+ q¯q �Ξ33(R)
682
+
683
+ ,
684
+ (30)
685
+ with modified phase space that subtracts away the interference terms
686
+ �Ξ31(R) = ΞNG,kt
687
+ 31
688
+ (R) − Θout(k1)Θin(k2)Θout(k3)Θ(d23 − d3) ,
689
+ (31a)
690
+ �Ξ32(R) = ΞNG,kt
691
+ 32
692
+ (R) − Θin(k1)Θout(k2)Θout(k3)Θ(d13 − d3) ,
693
+ (31b)
694
+ �Ξ33(R) = ΞNG,kt
695
+ 32
696
+ (R) − Θin(k1)Θout(k2)Θout(k3)Θ(d12 − d2) ,
697
+ (31c)
698
+ and for type (b) and (c) emissions
699
+ S(b)+(c)
700
+ 3
701
+ (R) = 2 CF C2
702
+ A
703
+ � � 3
704
+
705
+ i=1
706
+ dci
707
+ 1 − c2
708
+ i
709
+ dφi
710
+
711
+ � �
712
+ A12
713
+ q¯q ¯
714
+ A13
715
+ q¯q ΞNG,kt
716
+ 32
717
+ (R) + B123
718
+ q¯q ΞNG,kt
719
+ 33
720
+ (R)
721
+
722
+ .
723
+ (32)
724
+ We are now in a position to perform the integrations numerically as a function of the jet radius R. We
725
+ show the results in the next subsection, in which we also compute the clustering logarithmic contribution
726
+ at O(α3
727
+ s).
728
+ 4.2. CLs with kt clustering at three loops
729
+ Following the same steps as for NGLs calculation, the phase space clustering function at O(α3
730
+ s) for the
731
+ CLs contribution, which results from the mismatch of soft singularities between real and virtual emissions
732
+ 9
733
+
734
+ of three primary soft gluons, with a squared amplitude 8 C3
735
+ F w1
736
+ q¯q w2
737
+ q¯q w3
738
+ q¯q, is given by
739
+ ΞCL,kt
740
+ 3
741
+ (R) = − Θin(k1)Θin(k2)Θout(k3)Θ(d3 − d13)Θ(d3 − d23)−
742
+ − Θout(k1)Θin(k2)Θout(k3)Θ(d3 − d23)−
743
+ − Θin(k1)Θout(k2)Θout(k3)Θ(d3 − d13)−
744
+ − Θin(k1)Θout(k2)Θout(k3)Θ(d13 − d3)Θ(d23 − d3)Θ(d2 − d12) .
745
+ (33)
746
+ Note that the above phase-space clustering function is similar (but not exactly identical) to that found for
747
+ the jet mass observable [30]. Extracting the interference terms between the CLs at two loops and the global
748
+ logarithm at one loop, i.e., the term Σ1(∆) × ΣCL
749
+ 2 (∆) in eq. (21), we reduce the above phase space function
750
+ to that of the “pure” CLs contribution as
751
+ �ΞCL,kt
752
+ 3
753
+ (R) = − Θin(k1)Θin(k2)Θout(k3)Θ(d3 − d13)Θ(d3 − d23)+
754
+ + Θin(k1)Θout(k2)Θout(k3)Θ(d2 − d12)[1 − Θ(d13 − d3)Θ(d23 − d3)] .
755
+ (34)
756
+ Then, the clustering logarithmic contribution to the cumulative cross-section is given by
757
+ ΣCL
758
+ 3 (∆) = Ckt
759
+ 3 (R) t3
760
+ 3! ,
761
+ (35a)
762
+ Ckt
763
+ 3 (R) = 8 C3
764
+ F
765
+ � � 3
766
+
767
+ i=1
768
+ dci
769
+ 1 − c2
770
+ i
771
+ dφi
772
+
773
+
774
+ w1
775
+ q¯q w2
776
+ q¯q w3
777
+ q¯q �ΞCL,kt
778
+ 3
779
+ (R) .
780
+ (35b)
781
+ We show in figure 6 a plot of the coefficients of NGLs and CLs in the kt and anti-kt algorithms as a
782
+ function of the jet radius R. Shown also is the combined coefficient Fkt
783
+ 3 = Skt
784
+ 3 + Ckt
785
+ 3 for the kt algorithm.
786
+ Figure 6: CLs and NGLs coefficients at three loops with kt and anti-kt clustering.
787
+ As in the previous section, we notice that the NGLs coefficient in the anti-kt algorithm at this order is
788
+ also quite large. Clearly, the application of the kt clustering has reduced the significance of NGLs by almost
789
+ a factor of 30 for values less than R ∼ 0.6. The CLs coefficient is also small such that the overall coefficient
790
+ F3 is smaller in magnitude than the Sakt
791
+ 3
792
+ by about a factor of 3 for most values of R.
793
+ 5. Four loops and beyond
794
+ 5.1. Four-loops NGLs with anti-kt at small R
795
+ The calculation of NGLs with anti-kt clustering proceeds in a similar manner at fourth order, and can
796
+ easily be deduced from previous calculations of NGLs in the literature. In fact, the phase space of integration
797
+ 10
798
+
799
+ is similar to that of the hemisphere mass distribution reported in ref. [29], and thus the cumulative cross-
800
+ section, at this order, may be cast in the following way
801
+ Σakt
802
+ 4
803
+ (∆) = 1
804
+ 4! [Σ1(∆)]4+ 1
805
+ 2! [Σ1(∆)]2 ΣNG,akt
806
+ 2
807
+ (∆)+Σ1(∆) ΣNG,akt
808
+ 3
809
+ (∆)+ 1
810
+ 2!
811
+
812
+ ΣNG,akt
813
+ 2
814
+ (∆)
815
+ �2
816
+ +ΣNG,akt
817
+ 4
818
+ (∆) , (36)
819
+ with pure NGLs contribution given by
820
+ ΣNG,akt
821
+ 4
822
+ (∆) = Sakt
823
+ 4
824
+ (R) t4
825
+ 4! ,
826
+ (37a)
827
+ Sakt
828
+ 4
829
+ (R) = 2 CF C3
830
+ A
831
+ � � 4
832
+
833
+ i=1
834
+ dci
835
+ 1 − c2
836
+ i
837
+ dφi
838
+
839
+ � �
840
+ − A12
841
+ q¯q ¯
842
+ A13
843
+ q¯q ¯
844
+ A14
845
+ q¯q Θin(k1)Θout(k2)Θout(k3)Θout(k4)+
846
+ + 3 ¯
847
+ A12
848
+ q¯q B134
849
+ q¯q Θin(k1)Θout(k2)Θin(k3)Θout(k4) + U1234
850
+ q¯q
851
+ Θin(k1)Θin(k2)Θout(k3)Θout(k4)−
852
+ − C1234
853
+ q¯q
854
+ Θin(k1)Θin(k2)Θin(k3)Θout(k4)
855
+
856
+
857
+ − 2 CF C3
858
+ A
859
+
860
+ 1 − 2 CF
861
+ CA
862
+ � � � 4
863
+
864
+ i=1
865
+ dci
866
+ 1 − c2
867
+ i
868
+ dφi
869
+
870
+
871
+ A1234
872
+ q¯q
873
+ Θin(k1)Θin(k2)Θout(k3)Θout(k4) ,
874
+ (37b)
875
+ where the irreducible antenna functions read [27]
876
+ C1234
877
+ q¯q
878
+ = w1
879
+ q¯q
880
+
881
+ B234
882
+ q1 + B234
883
+ 1¯q − B234
884
+ q¯q
885
+
886
+ ,
887
+ (38a)
888
+ U1234
889
+ q¯q
890
+ = w1
891
+ q¯q
892
+
893
+ A23
894
+ q1 ¯
895
+ A24
896
+ q1 + A23
897
+ 1¯q ¯
898
+ A24
899
+ 1¯q − A23
900
+ q¯q ¯
901
+ A24
902
+ q¯q
903
+
904
+ ,
905
+ (38b)
906
+ A1234
907
+ q¯q
908
+ = ω1
909
+ q¯q ω2
910
+ q1
911
+ � ¯
912
+ A23
913
+ q¯q − ¯
914
+ A23
915
+ q1
916
+ � � ¯
917
+ A24
918
+ q1 − ¯
919
+ A24
920
+ 1¯q
921
+
922
+ + ω1
923
+ q¯q ω2
924
+ 1¯q
925
+ � ¯
926
+ A23
927
+ q¯q − ¯
928
+ A23
929
+ 1¯q
930
+ � � ¯
931
+ A24
932
+ 1¯q − ¯
933
+ A24
934
+ q1
935
+
936
+
937
+ − ω1
938
+ q¯q ω2
939
+ q¯q
940
+ � ¯
941
+ A23
942
+ q1 − ¯
943
+ A23
944
+ q¯q
945
+ � � ¯
946
+ A24
947
+ 1¯q − ¯
948
+ A24
949
+ q¯q
950
+
951
+ + k3 ↔ k4 .
952
+ (38c)
953
+ At small values of R the integration has been performed in ref. [29], and the corresponding result is
954
+ given by
955
+ Sakt
956
+ 4
957
+ (R ∼ 0) = −CF C3
958
+ A ζ4
959
+ �29
960
+ 4 −
961
+
962
+ 1 − 2 CF
963
+ CA
964
+ ��
965
+ .
966
+ (39)
967
+ 5.2. LL resummation
968
+ In this section we present numerical results for the resummation of NGLs and CLs in the large-Nc
969
+ approximation. For this we use the MC code first developed in refs. [18, 19] with modification of kt clustering
970
+ in terms of distances (1). The results are shown in figure 7 for the resummed cumulative distribution Σ as
971
+ a function of the evolution parameter t (7), for the particular value of the jet radius R = 0.5. Shown in the
972
+ figure are: results for the (primary) global distribution (black curve), obtained by running the MC program
973
+ using anti-kt clustering and allowing only for primary emissions, and the full anti-kt distribution (solid pink
974
+ curve) which additionally includes NGLs at large Nc. We observe the very large impact of NGLs on the
975
+ distribution, reducing the global form factor by a factor of 10 for t = 0.3.
976
+ We also show in the same figure the primary-emission distribution obtained by running the above-
977
+ mentioned program with kt clustering (solid green curve), which includes the global form factor together
978
+ with the resummed CLs, as well as the overall distribution in kt clustering which includes in addition the
979
+ resummed NGLs (solid purple curve). We observe that the distribution in kt clustering is affected by both
980
+ CLs and NGLs, but the combined impact of the two is noticeably small. This means that CLs tend to cancel
981
+ NGLs in kt clustering, as noted with the fixed-order calculations performed above.
982
+ Moreover, we show in figure 7 the analytical results for the resummed distribution in each case (dashed
983
+ lines), which are estimated from the observed pattern of exponentiation
984
+ Σ(∆) = exp [Σ1(∆)] exp
985
+ � ∞
986
+
987
+ i=2
988
+ ΣNG
989
+ i
990
+ (∆)
991
+
992
+ exp
993
+ � ∞
994
+
995
+ i=2
996
+ ΣCL
997
+ i
998
+ (∆)
999
+
1000
+ .
1001
+ (40)
1002
+ 11
1003
+
1004
+ Figure 7: Numerically resummed NGLs and CLs at large Nc.
1005
+ It is clear that the truncation of the series at i = 3 in the exponent, though quite close to the numerical
1006
+ result, does not give an accurate fit of the MC distribution. This means that higher-order contributions
1007
+ cannot be ignored.
1008
+ 5.3. NLL resummation with anti-kt
1009
+ We present here a resummed result for the azimuthal decorrelation distribution with anti-kt clustering
1010
+ at NLL accuracy in the large-Nc limit, obtained using the recently-published program Gnole [24, 25]. The
1011
+ distribution can be obtained from this program by defining our observable within the code, using the full
1012
+ definition rather than the LL approximation (2). Explicitly written the former reads
1013
+ δφ =
1014
+ ������
1015
+ sin−1 �
1016
+ i/∈jets
1017
+ k⊥i
1018
+ ptr
1019
+ ������
1020
+ ,
1021
+ (41)
1022
+ where k⊥i is the component of the transverse momentum of the emission i perpendicular to the thrust (or
1023
+ leading jet) axis, and ptr is the recoiling jet’s transverse momentum. For simplicity we take the jets to be
1024
+ at threshold, i.e., transverse to the beam direction.
1025
+ Figure 8: NLL numerical resummation of the δφ distribution at large Nc.
1026
+ In figure 8 we present the results for the NLL resummed distribution together with the LL one, both
1027
+ obtained with Gnole. We note here that the LL distribution is obtained using the definition of the observable
1028
+ (41), while that obtained with the MC code of refs. [18, 19] (figure 7) is essentially equivalent to the transverse
1029
+ 12
1030
+
1031
+ energy distribution (in other words, definition 2 without the sin φ part). This does in fact numerically affect
1032
+ the distribution even at LL accuracy. 3
1033
+ We observe that the NLL corrections to the distribution are quite important, just like the transverse
1034
+ energy distribution shown in ref. [25]. Furthermore, the scale-uncertainty band, obtained by varying the
1035
+ renormalization and resummation scales by factors of 2 and 1/2 around their central values (µR = √s
1036
+ and Q0 = √s/2, respectively, with √s = MZ), gets significantly reduced in the NLL curve. It is worth
1037
+ mentioning that one still needs to account for the matching in order to fully control all sub-leading NLL
1038
+ logarithms at the tail of the distribution.
1039
+ We note that the actual distribution does not possess a Sudakov peak at low values of δφ, instead it tends
1040
+ towards a constant value. This is explained by the fact that the very low values of δφ are not suppressed
1041
+ by soft emissions, but are rather enhanced by vectorial cancellation of semi-hard emissions.
1042
+ 6. Conclusions
1043
+ In this letter we have presented both fixed-order and all-orders results for the distribution of the azimuthal
1044
+ decorrelation observable for the specific QCD process e+e− annihilation into two jets. The said observable
1045
+ is of non-global nature and hence its distribution contains, in addition to the usual global logarithms, non-
1046
+ global and/or clustering logarithms. These logarithms are jet-algorithm dependent, and start to appear at
1047
+ two loops and are quite delicate to compute.
1048
+ For NGLs, we have calculated the full-R expression analytically at two loops and numerically at three
1049
+ loops for the anti-kt jet algorithm. At four loops, they have been determined only for small-R values for
1050
+ the same said jet algorithm. For the kt clustering algorithm, calculations have been performed up to three
1051
+ loops and only numerically.
1052
+ Moreover, CLs, which are absent in the anti-kt algorithm, have been computed numerically up to three
1053
+ loops. The usual reduction in the significance of NGLs due to kt clustering has been observed confirming
1054
+ previous findings. Furthermore, the combined impact of NGLs and CLs on the distribution is observed to
1055
+ be very small which has important phenomenological implications in terms of accuracy of the resummed
1056
+ distribution. Our results at two loops have been checked against the output of the MC program EVENT2.
1057
+ Numerical estimates of the all-orders distribution has been presented both at LL and NLL accuracy.
1058
+ The achievement of the latter accuracy has been made possible by the recently-published Gnole code. NLL
1059
+ resummation exhibits a better distribution both in terms of accuracy and scale uncertainty. It is thus worth
1060
+ investigating the impact of NLL effects with kt clustering. Of similar worthiness is computing NGLs and
1061
+ CLs at four loops with full-R dependence.
1062
+ Acknowledgements
1063
+ This work is supported by PRFU research project B00L02UN050120230003. The authors wish to thank
1064
+ the Algerian Ministry of Higher Education and Scientific Research and DGRSDT for financial support.
1065
+ The numerical calculations presented here have been performed in the HPC cluster at the University of
1066
+ Batna 2 (UB2-HPC).
1067
+ We thank Andrea Banfi for clarifications about using Gnole program.
1068
+ References
1069
+ [1] F. Hautmann, H. Jung, JHEP 10 (2008) 113. arXiv:0805.1049.
1070
+ [2] A. Aktas, et al. (H1), Eur. Phys. J. C 33 (2004) 477–493. arXiv:hep-ex/0310019.
1071
+ [3] M. Aaboud, et al. (ATLAS), Phys. Rev. D 98 (2018) 092004. arXiv:1805.04691.
1072
+ [4] G. Aad, et al. (ATLAS), Phys. Rev. Lett. 106 (2011) 172002. arXiv:1102.2696.
1073
+ [5] A. M. Sirunyan, et al. (CMS), Eur. Phys. J. C 78 (2018) 566. arXiv:1712.05471.
1074
+ [6] V. Abazov, et al. (D0), Phys. Rev. Lett. 94 (2005) 221801. arXiv:hep-ex/0409040.
1075
+ 3Note that it is not possible to change the definition of the observable in the MC code of refs. [18, 19].
1076
+ 13
1077
+
1078
+ [7] M. Aaboud, et al. (ATLAS), Phys. Rev. C 100 (2019) 034903. arXiv:1901.10440.
1079
+ [8] A. Banfi, M. Dasgupta, Y. Delenda, Phys. Lett. B 665 (2008) 86–91. arXiv:0804.3786.
1080
+ [9] S. Chatrchyan, et al. (CMS), Phys. Lett. B 722 (2013) 238–261. arXiv:1301.1646.
1081
+ [10] X. Liu, F. Ringer, W. Vogelsang, F. Yuan, Phys. Rev. D 102 (2020) 094022. arXiv:2007.12866.
1082
+ [11] H. Abramowicz, et al. (ZEUS), JHEP 01 (2018) 032. arXiv:1712.04273.
1083
+ [12] S. Catani, Y. L. Dokshitzer, M. H. Seymour, B. R. Webber, Nucl. Phys. B 406 (1993) 187–224.
1084
+ [13] S. D. Ellis, D. E. Soper, Phys. Rev. D 48 (1993) 3160–3166. arXiv:hep-ph/9305266.
1085
+ [14] M. Cacciari, G. P. Salam, G. Soyez, Eur. Phys. J. C 72 (2012) 1896. arXiv:1111.6097.
1086
+ [15] M. Cacciari, G. P. Salam, G. Soyez, JHEP 04 (2008) 063. arXiv:0802.1189.
1087
+ [16] Y. L. Dokshitzer, G. D. Leder, S. Moretti, B. R. Webber, JHEP 08 (1997) 001. arXiv:hep-ph/9707323.
1088
+ [17] M. Wobisch, T. Wengler, in: Workshop on Monte Carlo Generators for HERA Physics (Plenary Starting Meeting), pp.
1089
+ 270–279. arXiv:hep-ph/9907280.
1090
+ [18] M. Dasgupta, G. Salam, Phys. Lett. B 512 (2001) 323–330. arXiv:hep-ph/0104277.
1091
+ [19] M. Dasgupta, G. P. Salam, JHEP 03 (2002) 017. arXiv:hep-ph/0203009.
1092
+ [20] A. Banfi, M. Dasgupta, Phys. Lett. B 628 (2005) 49–56. arXiv:hep-ph/0508159.
1093
+ [21] Y. Delenda, R. Appleby, M. Dasgupta, A. Banfi, JHEP 12 (2006) 044. arXiv:hep-ph/0610242.
1094
+ [22] S. Catani, M. H. Seymour, Nucl. Phys. B 485 (1997) 291–419. arXiv:hep-ph/9605323, [Erratum: Nucl.Phys.B 510, 503–504
1095
+ (1998)].
1096
+ [23] S. Catani, M. H. Seymour, Phys. Lett. B 378 (1996) 287–301. arXiv:hep-ph/9602277.
1097
+ [24] A. Banfi, F. A. Dreyer, P. F. Monni, JHEP 10 (2021) 006. arXiv:2104.06416.
1098
+ [25] A. Banfi, F. A. Dreyer, P. F. Monni, JHEP 03 (2022) 135. arXiv:2111.02413.
1099
+ [26] K. Khelifa-Kerfa, JHEP 02 (2012) 072. arXiv:1111.2016.
1100
+ [27] Y. Delenda, K. Khelifa-Kerfa, Phys. Rev. D 93 (2016) 054027. arXiv:1512.05401.
1101
+ [28] A. Banfi, M. Dasgupta, K. Khelifa-Kerfa, S. Marzani, JHEP 08 (2010) 064. arXiv:1004.3483.
1102
+ [29] K. Khelifa-Kerfa, Y. Delenda, JHEP 03 (2015) 094. arXiv:1501.00475.
1103
+ [30] Y. Delenda, K. Khelifa-Kerfa, JHEP 09 (2012) 109. arXiv:1207.4528.
1104
+ 14
1105
+
UtAyT4oBgHgl3EQf8voh/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
V9AzT4oBgHgl3EQfJ_vP/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ecdb273477403d6ce012466ac7b13da23120e12d1cd4758bf601eb5fb1944b51
3
+ size 2490413
WdE1T4oBgHgl3EQfJAOq/content/tmp_files/2301.02947v1.pdf.txt ADDED
@@ -0,0 +1,1384 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.02947v1 [cond-mat.mes-hall] 7 Jan 2023
2
+ Chiral organic molecular structures supported by multilayer surfaces
3
+ Alexander V. Savin1, 2, ∗ and Yuri S. Kivshar3, †
4
+ 1Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
5
+ 2 Plekhanov Russian University of Economics, Moscow 117997, Russia
6
+ 3Nonlinear Physics Center, Department of Fundamental and Theoretical Physics,
7
+ Research School of Physics, Australian National University, Canberra ACT 2601, Australia
8
+ We study numerically the dynamics of acetanilide (ACN) molecules placed on a flat surface of
9
+ a multilayer hexagonal boron nitride structure. We demonstrate that the ACN molecules, being
10
+ achiral in three dimensions, become chiral after being placed on the substrate. Homochirality of the
11
+ ACN molecules leads to stable secondary structures stabilized by hydrogen bonds between peptide
12
+ groups of the molecules. Numerical simulations of systems of such molecules reveal that the structure
13
+ of the resulting hydrogen-bond chains depends on the isomeric composition of the molecules. If all
14
+ molecules are homochiral (i.e. only one isomer is present), they form secondary structures (chains
15
+ of hydrogen bonds in the shapes of arcs, circles, and spirals). If the molecules at the substrate
16
+ form a racemic mixture, then no regular secondary structures appear, and only curvilinear chains of
17
+ hydrogen bonds of random shapes can emerge. A hydrogen-bond chain can form a straight zigzag
18
+ only if it has an alternation of isomers. Such chains can create two-dimensional (2D) regular lattices,
19
+ or 2D crystals. The melting scenarios of such 2D crystals depend on density of its coverage of the
20
+ substrate. At 25% coverage, melting occurs continuously in a certain temperature interval. For a
21
+ complete coverage, melting occurs at 415 ÷ 470 K due to a shift of 11% of all molecules into the
22
+ second layer of the substrate.
23
+ I.
24
+ INTRODUCTION
25
+ Two-dimensional (2D) materials such as graphene (G)
26
+ and hexagonal boron nitride (h-BN) have attracted a lot
27
+ of attention due to their unique electronic [1–3] and me-
28
+ chanical [4–7] properties. Currently, heterogeneous lay-
29
+ ered materials of such 2D materials, which can exhibit
30
+ various novel physical properties compared to their ho-
31
+ mogeneous counterparts, became a special focus of such
32
+ studies [8–10]. For example, the use of hybrid G/h-BN
33
+ structures allows to achieve some desired electronic prop-
34
+ erties [11, 12] and also reduce significantly friction be-
35
+ tween the layers [13].
36
+ In general, such multilayer het-
37
+ erostructures are stabilized by van der Waals (vdW) in-
38
+ teractions between atoms of the neighboring layers.
39
+ The concept of vdW heterostructures can be extended
40
+ to the integration of 2D materials with molecular struc-
41
+ tures of different dimensions, such as nD/2D heterostruc-
42
+ tures, where n stands for the dimension (n = 0, 1, or
43
+ 3) [14], describing flat molecules (n = 0), polymer chains
44
+ (n = 1), or three-dimensional molecular objects (n = 3).
45
+ For molecules and molecular chains with benzol rings,
46
+ flat layers of G and h-BN are strong adsorbents [15–19].
47
+ Theoretical studies reveal that molecules adsorbed on G
48
+ and h-BN surfaces through non-covalent interactions can
49
+ modify the properties of the surface as solid-liquid, solid-
50
+ air, or solid-vacuum interfaces [20–22]. A strong stacking
51
+ interaction with a flat substrate allows such molecules
52
+ residing on a surface creating stable 2D supra-molecular
53
+ systems, as shown in the characteristic example of Fig. 1
54
+ ∗asavin@chph.ras.ru
55
+ †yuri.kivshar@anu.edu.au
56
+ FIG. 1:
57
+ Example of the molecular structures studied in
58
+ this paper. A spiral structure of 52 R-isomers of the ACN
59
+ molecules C6H5–NHCO–CH3 is stabilized on a h-BN multi-
60
+ layer surface.
61
+ By now,
62
+ the behavior of multifunctional organic
63
+ molecules placed on ideal metal surfaces has been stud-
64
+ ied in detail [23]. Such organometallic systems may ex-
65
+ hibit a variety of different structures induced by the sub-
66
+ strate. In many cases, complex organic molecules (such
67
+ as carboxylic acids, amino acids, anhydrides, and ring
68
+ systems) become self-organized on metal surfaces creat-
69
+ ing ordered super-structures stabilized by inter-molecular
70
+ interactions. Chirality is of a particular interest that can
71
+ appear for initially achiral metal surfaces by adsorbing
72
+ organic molecules [24]. Similar behavior is expected for
73
+ organic molecules adsorbed on flat surfaces of G and h-
74
+
75
+ 2
76
+ BN molecular structures.
77
+ In this paper, we study nu-
78
+ merically the formation of supra-molecular complexes by
79
+ acetanilide molecules placed on the surface of a multilayer
80
+ h-BN sheet, see Fig. 1, serving as an introductory figure
81
+ explaining our problem and results discussed below.
82
+ For poly-cyclic aromatic hydrocarbons (for molecules
83
+ of benzol C6H6, naphthalene C10H8, pyrene C16H10,...),
84
+ graphene is a strong adsorbent [15, 17, 19, 25]. The in-
85
+ teraction of graphene with such molecules often causes
86
+ specific reactions that can be used in new types of sensors
87
+ [26, 27]. Non-covalent functionalization of the graphene
88
+ surface can significantly expand its potential range of
89
+ applications [20, 21].
90
+ It has been shown experimen-
91
+ tally [25, 28] that benzol and pyrene molecules adsorbed
92
+ on graphene form densely packed monolayers.
93
+ For acetanilide (ACN, C6H5NHCOCH3) and parac-
94
+ etamol (PCM, C6H4OHNHCOCH3) molecules, graphene
95
+ and hexagonal boron nitride are also strong adsorbents.
96
+ Due to possible medical applications, much attention has
97
+ been paid to modeling the adsorption of PCM molecules,
98
+ which is a strong analgesic, on h-BN sheets and nan-
99
+ otubes [18, 29]. It has been shown in [30] that function-
100
+ alized graphene can be used as a highly sensitive parac-
101
+ etamol detection sensor.
102
+ An example of a 1D/2D heterostructure is a graphene
103
+ sheet with adsorbed Kevlar chains, kevlar-functionalized
104
+ graphene [31]. The presence of planar C6H4 benzol rings
105
+ and NHCO peptide groups in the polymer chain [–C6H4–
106
+ NHCO–]∞ provides a strong non-covalent (vdW) inter-
107
+ action of the chain with G and h-BN sheets. Such chains
108
+ on the surface of sheets G and h-BN will lie parallel to
109
+ the surface and form chains of hydrogen bonds between
110
+ each other · · ·HNCO· · ·HNCO· · ·.
111
+ Such 3D/2D heterostructures can form thin metal lay-
112
+ ers on the G and h-BN surfaces. In particular, numerical
113
+ modeling suggests that aluminum can form stable two-
114
+ layer structures on the G surface [32].
115
+ It has been shown in Refs. [33–42] that n-alkanes (lin-
116
+ ear polymer chains CH3(CH2)lCH3 with internal units
117
+ 2 ≤ l ≤ 388) form a dense ordered monolayer of parallel
118
+ linear chains on the graphite (graphene) surface. Inter-
119
+ est in alkanes is due to the fact that they belong to the
120
+ simplest families of polymer molecules, which members
121
+ of which differ only in their length. Placing linear poly-
122
+ mer chains on a flat graphite surface causes them to self-
123
+ assemble into 2D crystals. The self-assembly mechanism
124
+ depends on the chain length, temperature, and the level
125
+ of coverage of the substrate with chains [36, 40].
126
+ Adsorption by the surface of a long single-chain
127
+ polyethylene molecule leads to its two-dimensional crys-
128
+ tallization – it passes from the form of a three-
129
+ dimensional globule into the form of a parallel folded
130
+ linear chain lying in the plane parallel to the substrate
131
+ surface [43–45].
132
+ Thus, the flat surfaces of the G and h-BN substrates
133
+ create a 2D platform for flat molecules adsorbed on them
134
+ (for poly-cyclic aromatic hydrocarbons, for ACN and
135
+ PCM molecules, Kevlar chains, ...)
136
+ and linear poly-
137
+ mer molecules. At low temperatures, the molecules move
138
+ along the sheet, remaining parallel to its surface. They
139
+ interact with each other and form two-dimensional supra-
140
+ molecular structures. Such molecular adsorbents are con-
141
+ venient systems for studying phase transitions caused by
142
+ freedom restrictions.
143
+ To date, only phase transitions in monolayers of n-
144
+ alkanes have been well studied [33, 42, 46–48]. Modeling
145
+ and experimental studies show that a monolayer always
146
+ undergoes a transition from a solid-crystalline 2D phase
147
+ to a liquid phase (the transition occurs at a temperature
148
+ significantly lower than the desorption temperature of
149
+ molecules). The melting scenario depends on the poly-
150
+ mer chain length.
151
+ The melting temperature increases
152
+ monotonically with chain length, so for pentane, hep-
153
+ tane and nonane (l = 3, 5, 7) the melting temperature
154
+ is Tm = 92, 178 and 255K [46].
155
+ A characteristic fea-
156
+ ture associated with the adsorption of molecules is the
157
+ continuity of melting of a 2D crystal – melting occurs in
158
+ the temperature interval. Thus, for the longest synthe-
159
+ sized monodisperse alkane C390H782 (l = 388), continu-
160
+ ous melting occurs at 393 < T < 484 K [42].
161
+ Despite the large number of theoretical and experimen-
162
+ tal works on phase transitions in adsorbed monolayers of
163
+ alkanes and their derivatives, as far as we know, there
164
+ are no works on modeling phase transitions in adsorbed
165
+ monolayers of ACN, PCM, and Kevlar (para-aramid)
166
+ molecules.
167
+ A detailed description of adsorption simu-
168
+ lation methods is given in [49]. Unlike alkanes, the 2D
169
+ structures of these molecules adsorbed on a flat surface
170
+ are associated with the presence of chains of hydrogen
171
+ bonds. Molecules including amide and hydroxyl groups
172
+ can create 2D lattices and extended hydrogen chains.
173
+ We notice that the ACN molecules are often consid-
174
+ ered as a model system with chains of hydrogen bonds
175
+ between HNCO peptide groups. Acetanilide crystallizes
176
+ into an orthorhombic structure with ribbons of molecules
177
+ linked by hydrogen bonds [50]. The chains of hydrogen
178
+ bonds that stabilize the crystal structure are very similar
179
+ to the chains that stabilize the alpha-helices and beta-
180
+ sheets of proteins. Therefore, ACN was used as a model
181
+ for modeling the energy transfer of vibrations of peptide
182
+ groups along hydrogen bond chains in proteins [51–53].
183
+ Living matter, unlike non-living matter, has chiral pu-
184
+ rity: all proteins consist of left-handed amino acids, while
185
+ DNA and RNA are built on right-handed ribose. In ex-
186
+ periments on abiogenic synthesis, left and right isomers of
187
+ sugars and proteins are formed in equal proportions. It is
188
+ believed that if you try to build proteins from such a mix-
189
+ ture, they will not be able to fold into a stable form and
190
+ therefore will not work as enzymes. In three dimensions,
191
+ the need for chiral purity to form stable protein struc-
192
+ tures requires complex analysis.
193
+ The situation is dra-
194
+ matically simplified if we move from three-dimensional
195
+ space to two-dimensional. Such a transition can be made
196
+ if flat molecules are placed on a flat molecular sheet of
197
+ graphene or hexagonal boron nitride (h-BN). Such a non-
198
+ valent modification of the sheet surface actually creates
199
+
200
+ 3
201
+ FIG. 2: When an ACN molecule is placed on a flat surface
202
+ of a multilayer h-BN structure, it may create two isomers
203
+ with the mirror symmetry (shown by a straight line). Vectors
204
+ connecting the oxygen atom with the hydrogen atom of each
205
+ peptide group show the dipole moments. For the L-isomer,
206
+ the benzol ring is to the left of this vector, for the R-isomer
207
+ it is to the right. Gray balls stand for carbon atoms, white
208
+ balls – hydrogen, blue – nitrogen, red – oxygen, and green –
209
+ bromine atoms.
210
+ a 2D world for the flat molecules placed on it. At low
211
+ temperatures, the molecules move along the sheet all the
212
+ time remaining parallel to its surface. On the surface,
213
+ they can form complex two-dimensional structures.
214
+ An ACN molecule that is achiral in 3D becomes chiral
215
+ after being placed on a flat substrate (the chirality de-
216
+ pends on which side it lays on the surface of the sheet)
217
+ – see Fig. 2. It will be shown that the homochirality of
218
+ ACN molecules leads to the appearance on the surface
219
+ of the sheet of stable secondary structures stabilized by
220
+ hydrogen bonds: cyclic and spiral chains and complexes
221
+ of them. Modeling the formation of such structures will
222
+ make it possible to demonstrate the necessity of homochi-
223
+ rality (chiral purity) of biomolecules for the formation of
224
+ stable secondary molecular structures from them.
225
+ As a flat substrate, we consider a surface of a multilayer
226
+ h-BN structure, and for molecules we consider acetanilide
227
+ (ACN) C6H5NHCOCH3, as shown in Figs. 1 and 2. The
228
+ presence of a planar benzol ring C6H5 and a planar pep-
229
+ tide group (PG) HNCO leads to large interaction energy
230
+ of the molecule with the substrate, Esub = 0.762 eV.
231
+ Molecules can create chains of hydrogen bonds between
232
+ their peptide groups OCNH· · ·OCNH· · ·OCNH· · ·. Such
233
+ chains of hydrogen bonds stabilize the secondary struc-
234
+ tures of the protein molecules.
235
+ The paper is organized as follows. In the next section,
236
+ we describe our model. Section III is devoted to the study
237
+ of secondary structures of the ACN molecules placed on
238
+ a flat substrate. Self-assembly of such structures is simu-
239
+ lated numerically in Sec. IV. Then, in Sec. V we analyze
240
+ melting of 2D crystals. Section VI concludes the paper.
241
+ FIG. 3: Construction of a coarse-grained model of the ACN
242
+ molecule: (a) full-atomic view of the molecule, (b) coarse-
243
+ grained model (the used numbering of the united atoms is
244
+ shown).
245
+ II.
246
+ MODEL
247
+ For modeling of the dynamics of a system of the ACN
248
+ molecules, we will use the united-atoms approximation.
249
+ Let us consider the molecular groups CH and CH3 as
250
+ united atoms whose centers coincide with the centers of
251
+ carbon atoms. In this approximation, the ACN molecule
252
+ is described as a system of 11 united atoms – see Fig. 3.
253
+ The values of the masses of the united atoms are shown
254
+ in the table I.
255
+ To model a ACN molecule, we use the force field in
256
+ which distinct potentials describe the deformation of va-
257
+ lence bonds and valence, torsion and dihedral angles, and
258
+ non-valence atomic interacts [55]. In this model, the de-
259
+ formation energy of the valence bonds C–CH, CH–CH,
260
+ C–N, N–H, C=O and C–CH3 is described by the har-
261
+ monic potential:
262
+ V (ρ) = 1
263
+ 2K(ρ − ρ0)2,
264
+ (1)
265
+ where ρ and ρ0 are current and equilibrium bond lengths,
266
+ K is the bond stiffness. The values of potential parame-
267
+ ters for various valence bonds are presented in Table II.
268
+ TABLE I:
269
+ Masses and parameters of interaction potentials
270
+ for united atoms X of the ACN molecule: i – atom number,
271
+ Mi – atom mass (mp = 1.6603 × 10−27 kg – proton mass), εi
272
+ and ri are the energy and radius of the LJ interaction, qi is
273
+ the electric charge of the atom, ǫi and hi are the energy and
274
+ equilibrium distance for the interaction of an atom with a flat
275
+ substrate (with a crystal surface h- BN).
276
+ X
277
+ C
278
+ CH
279
+ N
280
+ H
281
+ C
282
+ O
283
+ CH3
284
+ i
285
+ 1
286
+ 2,3,4,5,6
287
+ 7
288
+ 8
289
+ 9
290
+ 10
291
+ 11
292
+ Mi (mp)
293
+ 12
294
+ 13
295
+ 14
296
+ 1
297
+ 12
298
+ 16
299
+ 15
300
+ εi (meV)
301
+ 4.284
302
+ 4.284
303
+ 4.080 0.434 4.284 6.344 4.284
304
+ ri (˚A)
305
+ 1.861
306
+ 1.861
307
+ 1.899 0.621 1.861 1.711 1.861
308
+ qi (e)
309
+ 0.066
310
+ 0
311
+ -0.463 0.286 0.580 -0.504 0.035
312
+ ǫi (meV)
313
+ 61.5
314
+ 87.3
315
+ 47.7
316
+ 31.3
317
+ 61.5
318
+ 42.8
319
+ 87.3
320
+ hi (˚A)
321
+ 3.52
322
+ 3.44
323
+ 3.43
324
+ 3.08
325
+ 3.52
326
+ 3.36
327
+ 3.44
328
+
329
+ (a)
330
+ H
331
+ (b)
332
+ CH
333
+ 6
334
+ 8
335
+ 5
336
+ CH3
337
+ 4
338
+ C
339
+ N
340
+ 1
341
+ 9
342
+ 11
343
+ 3
344
+ 2
345
+ 10R
346
+ T4
347
+ FIG. 4: Dimer of (a) RR and (b)LR isomers of the ACN
348
+ molecule on a flat substrate (shown in green). The vectors
349
+ show the dipole moments of the peptide groups. Hydrogen
350
+ bond energy of identical isomers Ehb = 0.330 eV, angle be-
351
+ tween dipole moments φhb = 17.05◦, for different isomers
352
+ Ehb = 0.322 eV, φhb = 33.98◦.
353
+ Energies of the deformation of the valence angles X–
354
+ Y–Z are described by the potential
355
+ U(u1, u2, u3) = U(φ) = ǫa(cos φ − cos φ0)2,
356
+ (2)
357
+ where the cosine of the valence angle φ is defined as
358
+ cos φ = −(v1, v2)/ρ1ρ2, with the vectors v1 = u2 − u1,
359
+ v2 = u3 − u2 and bond lengths ρ1 = |v1|, ρ2 = |v2|, the
360
+ vectors u1, u2, u3 specify the coordinates of the atoms
361
+ forming the valence angle φ, φ0 is the value of equilib-
362
+ rium valence angle. The values of potential parameters
363
+ used for various valence angles are presented in Table III.
364
+ Deformation of dihedral angles are described by the
365
+ potential
366
+ W(u1, u2, u3, u4) = ǫd(1 + zd cos kϕ),
367
+ (3)
368
+ where cos ϕ = (w1w2)/|w1||w2|, with the vectors w1 =
369
+ (u2 − u1) × (u3 − u2), w2 = (u3 − u2) × (u4 − u3). The
370
+ values of potential parameters used for various dihedral
371
+ angles are presented in Table IV.
372
+ For pairs of atoms Xi,Xj (i, j are the numbers of atoms
373
+ in the molecule) participating in the formation of the
374
+ dihedral angle Xi–Y–Z–Xj, their non-valence interaction
375
+ is also taken into account described by the Lennard-Jones
376
+ (LJ) potential
377
+ W0(r) = ε0[(r0/r)12 − 2(r0/r)6],
378
+ (4)
379
+ with halved interaction energy ε0 = √εiεj/2, where r is
380
+ current distance between interacting atoms, equilibrium
381
+ distance r0 = ri + rj. The LJ interaction of an oxygen
382
+ atom (i = 10) with two combined atoms CH (i = 2, 6)
383
+ was also taken into account with interaction energy ǫ0 =
384
+ TABLE II: Values of the harmonic potential parameters (1)
385
+ for different valence bonds X—Y.
386
+ X—Y
387
+ C–CH, CH–CH
388
+ C–N
389
+ N–H
390
+ C=O C–CH3
391
+ K (N/m)
392
+ 469
393
+ 427
394
+ 434
395
+ 570
396
+ 317
397
+ ρ0 (˚A)
398
+ 1.39
399
+ 1.405
400
+ 1.007
401
+ 1.222
402
+ 1.505
403
+ √ε2ε10 and equilibrium distance r0 = r2+r10. Parameter
404
+ values εi and ri are shown in Table I.
405
+ The interaction of two ACN molecules is described by
406
+ the potential
407
+ U(X1, X2) =
408
+ 11
409
+
410
+ i=1
411
+ 11
412
+
413
+ j=1
414
+ {εij[(¯rij/rij)12 − 2(¯rij/rij)6]
415
+ +κqiqj/rij},
416
+ (5)
417
+ where the 33-dimensional vector Xk = {uk,i}11
418
+ i=1 (k =
419
+ 1, 2) defines the coordinates of atoms of the k-th ACN
420
+ (vector uk,i specifies the coordinates of the i-th atom of
421
+ the k-th molecule), distance between atoms rij = |u1,i −
422
+ u2,j|.
423
+ Here energy εij = √εiεj, equilibrium distances
424
+ ¯rij = ri + rj, qi is the electric charge of i-th atom (i, j =
425
+ 1, ..., 11), coefficient κ = 14.400611 eV˚A/e2. The values
426
+ of the parameters εi, ri and qi are shown in Table I. All
427
+ values of parameters of interaction potentials (1), (2), (3)
428
+ and (5) are obtained from force field AMBER [55].
429
+ The van der Waals interactions of the atoms of the
430
+ ACN molecule with flat substrate are described by the
431
+ LJ potential (m, l)
432
+ W(X) =
433
+ 11
434
+
435
+ i=1
436
+ Wi(zi) =
437
+ 11
438
+
439
+ i=1
440
+ ǫi
441
+ l − m[m(hi/zi)l − n(hi/zi)m],
442
+ (6)
443
+ where zi is the distance from i-th atom to the outer sur-
444
+ face of the substrate, which is plane z = 0. Potential
445
+ Wi(zi) in Eq. (6) is the interaction energy of i-th atom as
446
+ a function of the distance to the substrate. This energy
447
+ was found numerically for different substrates [56, 57].
448
+ The calculations showed that interaction energy with
449
+ substrate Wi(z) can be described with a high accuracy
450
+ by LJ potential (6) with power l > k. Potential Wi(z)
451
+ has the minimum Wi(hi) = −ǫi (ǫi is the binding en-
452
+ ergy of the i-th atom with substrate). For the surface of
453
+ the h-BN crystal l = 10, m = 4.25. The values of the
454
+ parameters ǫi, hi, i = 1, ..., 11, are given in the table I.
455
+ The 10-layer fragment of h-BN crystal was used to find
456
+ values of this parameters. The interaction energy of an
457
+ atom with a substrate was found as the sum of all LJ
458
+ potentials (4) with parameters from the force field UFF
459
+ [58].
460
+ Thus,
461
+ the Hamiltonian of a system of N
462
+ ACN
463
+ molecules located on the flat surface of h-BN crystal has
464
+ the form
465
+ H =
466
+ N
467
+
468
+ n=1
469
+ 1
470
+ 2(M ˙Xn, ˙Xn) + P,
471
+ (7)
472
+ where the first term specifies the kinetic and the second
473
+ – potential energy of the system
474
+ P =
475
+ N
476
+
477
+ n=1
478
+ [V (Xn) + W(Xn)] +
479
+ N−1
480
+
481
+ n=1
482
+ N
483
+
484
+ k=n+1
485
+ U(Xn, Xk). (8)
486
+ Here the vector Xn = {un,i}11
487
+ i=1 specifies the coordinates
488
+ of the atoms of n-th ACN molecule, M is the diago-
489
+ nal matrix of atom masses of the molecule, V (Xn) and
490
+
491
+ a
492
+ b5
493
+ TABLE III: Values of the parameters of the potential of the valence angle X–Y–Z (2) for different atoms.
494
+ X–Y–Z
495
+ C–C–C
496
+ C–C–N
497
+ C–N–H
498
+ C–N–C
499
+ N–C–O
500
+ N–C–C
501
+ O–C–C
502
+ ǫa (eV)
503
+ 3.643
504
+ 3.823
505
+ 2.781
506
+ 4.888
507
+ 4.932
508
+ 3.758
509
+ 4.625
510
+ ϕ0 (◦)
511
+ 120
512
+ 117
513
+ 118
514
+ 128
515
+ 123
516
+ 116
517
+ 120
518
+ TABLE IV: Values of the parameters of the potential of the dihedral angle X–Y–Z–W (3) for different atoms.
519
+ X–Y–Z–W
520
+ C–C–C–C
521
+ C–C–C–N
522
+ C–C–N–H
523
+ C–C–N–C
524
+ C–N–C–O
525
+ C–N–C–CH3
526
+ ǫd (eV)
527
+ 0.63
528
+ 0.63
529
+ 0.21
530
+ 0.21
531
+ 0.42
532
+ 0.42
533
+ zd
534
+ -1
535
+ 1
536
+ -1
537
+ -1
538
+ -1
539
+ 1
540
+ k
541
+ 1
542
+ 1
543
+ 2
544
+ 2
545
+ 1
546
+ 1
547
+ W(Xn) are deformation energy and energy of interac-
548
+ tion with the substrate of n-th molecule, U(Xn, Xk) is
549
+ the interaction energy of n and k molecules.
550
+ III.
551
+ SECONDARY STRUCTURES OF ACN
552
+ MOLECULES ON A FLAT SUBSTRATE
553
+ The ACN molecule is achiral, but it becomes chiral
554
+ when placed on a flat substrate.
555
+ Depending on which
556
+ side it lies on the substrate, it can be either right (when
557
+ the benzol ring is located to the right of the dipole mo-
558
+ ment vector of the peptide group
559
+
560
+ OH) or left (the ben-
561
+ zol ring is located to the left). Two mirror-symmetrical
562
+ isomers of the molecule are shown in Fig. 2. To trans-
563
+ fer a molecule from one isomer to another, it must be
564
+ partially torn off the substrate and be placed on the sub-
565
+ strate with its other side. All this requires overcoming
566
+ the energy barrier ∆E = 0.466 eV. The total energy of
567
+ interaction with the h-BN substrate (desorption energy)
568
+ Esub = 0.762 eV. Therefore, the spontaneous transition
569
+ of the ACN molecule lying on the substrate from the L
570
+ to the R form and vice versa is possible only at temper-
571
+ atures T > 300 K. At lower temperatures, the molecule
572
+ will always stay on the substrate, adjoining it with the
573
+ same side, i.e. without changing the isomer type.
574
+ To find the stationary state of the system of N ACN
575
+ molecules lying on a flat h-BN substrate, it is necessary
576
+ to find the state of the system with a minimum potential
577
+ energy
578
+ P → min : {Xn}N
579
+ n=1.
580
+ (9)
581
+ The minimization problem (9) is solved numerically by
582
+ the conjugate gradient method. Choosing the starting
583
+ point of the minimization procedure, one can obtain all
584
+ the main stationary states of the molecular system.
585
+ Peptide groups of neighboring molecules can form hy-
586
+ drogen bonds, creating dimers – see Fig. 4. The numeri-
587
+ cal solution of the problem (9) shows that when molecules
588
+ are located on a flat substrate, two types of dimers are
589
+ FIG. 5:
590
+ Typical secondary structures of homochiral ACN
591
+ molecules on a flat substrate:
592
+ (a) arc (number of atoms
593
+ N = 15), (b) circle (N = 21), (c) single-beam spiral (N = 34),
594
+ (d) two-beam spiral (N = 23 + 23), (e) three-beam spiral
595
+ (N = 15 + 15 + 15), (f) nested circles (N = 12 + 24).
596
+ possible: dimers of molecules of the same and different
597
+ chirality. If a dimer is formed by identical isomers, then
598
+ its binding energy is slightly higher: the hydrogen bond
599
+ energy for RR and LL isomers is Ehb = 0.330 eV, and
600
+ for RL and LR isomers Ehb = 0.322 eV. This is due to
601
+ the fact that in this case the benzol rings C6H5 of the
602
+ molecules are on the same side and they make a larger
603
+ contribution to the interaction energy.
604
+ The hydrogen
605
+ bond angle also depends on the chirality of the dimer
606
+ molecules. For dimer molecules of the same chirality, the
607
+ angle between the dipole moments of the peptide groups
608
+ forming a hydrogen bond is φhb = 17◦, and for molecules
609
+ of different chirality φhb = 34◦.
610
+ Chains of hydrogen bonds of molecules of the same chi-
611
+ rality will always have benzol rings on one (outer) side,
612
+ so they will twist in the opposite (inner) direction and
613
+ have approximately the same curvature. On a plane, cir-
614
+ cular arcs, circles, and spirals have such properties. The
615
+ solution of the problem (9) has shown that on a flat sub-
616
+
617
+ b
618
+ a
619
+ C6
620
+ 10
621
+ 20
622
+ 30
623
+ 40
624
+ 50
625
+ −0.3
626
+ −0.2
627
+ −0.1
628
+ 1
629
+ 2
630
+ 3
631
+ 4
632
+ 5
633
+ 6
634
+ Es (eV)
635
+ N
636
+ FIG. 6: Dependence of the specific energy of the secondary
637
+ structure of the homochiral ACN molecules Es on the num-
638
+ ber of molecules N for an arc, a circle, one-beam, two-beam,
639
+ three-beam spiral and nested two circles (curves 1, 2, 3, 4,
640
+ 5 and 6). For the structure of two nested circles (curve 6),
641
+ the dependence on the number of atoms of the outer circle is
642
+ shown.
643
+ strate molecules of the same chirality form stable shape
644
+ structures with little changing curvature: arcs, spirals,
645
+ circles – see Fig. 1 and 5. Left isomers form structures
646
+ with a twist to the right, right – to the left.
647
+ Hydrogen bond chains of N ≤ 16 ACN molecules of
648
+ the same chirality form circular arcs of the same radius.
649
+ The step of such a chain (the distance between the oxy-
650
+ gen atoms of neighboring peptide groups) is a = 4.76 ˚A,
651
+ the angle between neighboring links is ϕ = 162◦, the ra-
652
+ dius of curvature by oxygen atoms is R = 15.2 ˚A – see
653
+ Fig. 5 (a). The specific energy of the chain Es = E/N
654
+ decreases monotonically with the growth of the number
655
+ of molecules N – see Fig. 6. When the number of links
656
+ is N > 16, the arcs cease to be stable; they either close
657
+ and form circular chains, or touch their ends and form
658
+ flat spirals – see Fig. 5 (b), (c).
659
+ Stable cyclic chains can be formed from N
660
+ ≥ 5
661
+ molecules of the same chirality. The dependence of the
662
+ specific energy of the cyclic chain Es on the number of
663
+ its links N is shown in Fig. 6. As can be seen from the
664
+ figure, the most energetically favorable are cyclic chains
665
+ of N = 20, 21, 22 links. Such chains form ring struc-
666
+ tures with inner R1 = 27.3, 28.8, 30.5 and outer radii
667
+ R2 = 40.4, 41.9, 43.6 ˚A.
668
+ The dependence Es(N) for a one-beam spiral actually
669
+ continues the dependence for an arc (see Fig. 6, curves
670
+ 1 and 3). Two-beam and three-beam spirals are bound
671
+ states of arc structures.
672
+ The specific energy of helical
673
+ structures decreases monotonically with an increase in
674
+ the number of molecules. For N > 27, helical structures
675
+ are more energy efficient than ring structures (this is due
676
+ to their denser structure).
677
+ The most energy-efficient are nested structures of two
678
+ circles with the number of atoms N = 14 + 26, 15+27,
679
+ 17+29 (the first number in the sum corresponds the num-
680
+ ber of atoms in the inner circle, the second – in the outer
681
+ FIG. 7: 2D crystals of ACN molecules on a flat substrate:
682
+ (a) with parallel packing of linear chains of hydrogen bonds
683
+ (periods ax = 9.81, ay = 10.24), (b) with antiparallel packing
684
+ (ax = 9.79, ay = 20.43 ˚A). On the surface of a flat substrate,
685
+ the chain of hydrogen bonds can be linear only if the L and
686
+ R isomers alternate. A crystal is formed by 6 linear chains of
687
+ 24 molecules (the total number of molecules is N = 6 × 24).
688
+ The flat substrate is shown in green.
689
+ circle) – see Fig. 6, curve 6.
690
+ If the chain of hydrogen bonds consists of a random
691
+ sequence of isomers, then it will look like an irregular
692
+ broken line. The chain has the shape of a straight zigzag
693
+ only if there is a strict alternation of L and R isomers.
694
+ In this case, the zigzag step (the distance between the
695
+ oxygen atoms of neighboring molecules) is a = 4.85 ˚A,
696
+ the zigzag angle is ϕ = 170◦. Such chains on a flat sub-
697
+ strate surface can form two-dimensional regular lattices
698
+ (2D crystals) with parallel and antiparallel packing of
699
+ neighboring chains – see Fig. 7. With parallel packing,
700
+ the crystal periods are ax = 9.81˚A, ay = 10.24˚A, the
701
+ specific energy is Es = −0.325 eV. With antiparallel
702
+ packing, periods are ax = 9.79˚A, ay = 20.43˚A, energy
703
+ is Es = −0.322 eV.
704
+ IV.
705
+ SELF-ASSEMBLY OF MOLECULAR
706
+ STRUCTURES
707
+ Let us simulate the self-organization of the molecular
708
+ structures of ACN molecules on the flat surface of the h-
709
+
710
+ a
711
+ b7
712
+ 100
713
+ 200
714
+ 300
715
+ 400
716
+ 500
717
+ 0.4
718
+ 0.6
719
+ 0.8
720
+ 1
721
+ nhb
722
+ (a)
723
+ 100
724
+ 200
725
+ 300
726
+ 400
727
+ 500
728
+ 1
729
+ 1.2
730
+ 1.4
731
+ T (K)
732
+ c
733
+ (b)
734
+ FIG. 8: Dependence of (a) the normalized number of hydro-
735
+ gen bonds nhb and (b) the dimensionless heat capacity c on
736
+ temperature T for a system of N = 1024 ACN molecules
737
+ located on a flat substrate with the periodic square compu-
738
+ tational cell of size 33 × 33 nm2. Solid (blue) lines show de-
739
+ pendencies for a system of homochiral molecules, dotted (red)
740
+ lines – dependencies for a racemic mixture of molecules. Verti-
741
+ cal dotted straight lines correspond to temperatures T = 250,
742
+ 330, and 480 K.
743
+ BN crystal. To do this, we take a square periodic cell of
744
+ size 33 × 33 nm2 on the surface of the substrate and ran-
745
+ domly place N = 1024 ACN molecules into it. Then we
746
+ immerse this molecular system in a Langevin thermostat
747
+ of temperature T and numerically simulate the dynamics
748
+ of the system during the time t = 10 ns. To do this, we
749
+ numerically integrate the system of Langevin equations
750
+ M ¨Xn = −
751
+
752
+ ∂Xn
753
+ H − ΓM ˙Xn − Ξn,
754
+ n = 1, ..., N,
755
+ (10)
756
+ where Γ
757
+ =
758
+ 1/tr is the friction coefficient,
759
+ Ξn
760
+ =
761
+ {ξn,i,k}11, 3
762
+ i=1,k=1 is 33-dimensional vector of normally dis-
763
+ tributed random Langevin forces with the following cor-
764
+ relations:
765
+ ⟨ξn1,i,k(t1)ξn2,j,l(t2)⟩ = 2MikBT Γδn1n2δijδklδ(t1 − t2).
766
+ Here Mi is mass of i-th atom of ACN molecule, kB is
767
+ Boltzmann constant, T is temperature of the Langevin
768
+ thermostat (temperature of the substrate), numbers
769
+ n1, n2 = 1, ..., N, i, j = 1, ..., 11, k, l = 1, 2, 3.
770
+ The parameter tr characterizes the intensity of energy
771
+ exchange between the molecular system and the ther-
772
+ mostat. Simulation of the dynamics of ACN molecules
773
+ on an h-BN sheet, taking into account the mobility of
774
+ the sheet atoms, makes it possible to estimate the relax-
775
+ ation time tr ∼ 100 ps. For the convenience of numer-
776
+ ical integration, we will use a smaller value tr = 10 ps.
777
+ FIG. 9: Structure of N = 1024 homochiral ACN molecules
778
+ appearing on the flat surface of the substrate at T = 240K.
779
+ The straight lines show the boundaries of the periodic calcu-
780
+ lation cell of size 33 × 33 nm2. The substrate surface is not
781
+ shown.
782
+ This makes it possible to significantly reduce the time of
783
+ numerical integration, which is sufficient to obtain reli-
784
+ able average values. After the dynamics of the molec-
785
+ ular system reaches the steady state, we will find the
786
+ time averages of the system energy ¯E(T ) and the num-
787
+ ber of hydrogen bonds ¯Nhb(T ). We assume that two ACN
788
+ molecules form a hydrogen bond if their interaction en-
789
+ ergy is greater than half of the hydrogen bond energy:
790
+ U(X1, X2) < −Ehb/2 = −0.16 eV.
791
+ The state of the system can be conveniently character-
792
+ ized by its dimensionless heat capacity
793
+ c =
794
+ 1
795
+ 33NkB
796
+ d ¯E(T )
797
+ dT
798
+ ,
799
+ (11)
800
+ and the normalized number of hydrogen bonds nhb =
801
+ ¯Nhb(T )/N. The dependence of these quantities on tem-
802
+ perature is shown in Fig. 8.
803
+ Numerical simulation shows the existence of three
804
+ characteristic temperature values T1 < T2 < T3.
805
+ At
806
+ T < T1 = 250K the molecules on a flat substrate form a
807
+ stable system of chains of hydrogen bonds. Here, almost
808
+ every molecule participates in the formation of one hy-
809
+ drogen bond (number nhb ≈ 1). The dimensionless heat
810
+ capacity of the system is c = 1. At T1 < T < T2 = 330K,
811
+ a slight decrease in the number of nhb bonds and a
812
+ monotonous increase in heat capacity begin to occur –
813
+ the process of melting of hydrogen bond chains begins.
814
+ At a temperature T > T2, the number of hydrogen bonds
815
+
816
+ 8
817
+ FIG. 10: Structure of N = 1024 homochiral ACN molecules
818
+ appearing on the flat surface of the substrate at T = 300K.
819
+ The straight lines show the boundaries of the periodic calcu-
820
+ lation cell of size 33 × 33 nm2.
821
+ decreases in proportion to the increase in temperature,
822
+ and the heat capacity reaches a constant value c ≈ 1.23.
823
+ Here we have a melt of short chains of hydrogen bonds
824
+ (the average length of the chains decreases proportion-
825
+ ally to the increase in temperature). At T > T3 = 480K,
826
+ individual molecules can already be detached from the
827
+ substrate – desorption of molecules begins.
828
+ The structure of the resulting system of hydrogen
829
+ bond chains depends on the isomeric composition of the
830
+ molecules. If all molecules are homochiral (only one iso-
831
+ mer is present), then secondary structures form on the
832
+ surface of the substrate.
833
+ These structures are circular
834
+ and spiral hydrogen bond chains – see Figs. 9 and 10. The
835
+ substrate surface become optically active, the left isomers
836
+ form chains with a right twist, and the right ones with a
837
+ left twist. As can be seen from Fig. 9 for T = 240K on
838
+ a flat substrate all possible circular secondary structures
839
+ (arcs, circles, spirals) are formed (Fig. 5). An increase in
840
+ temperature leads, first of all, to the destruction of spiral
841
+ structures. As a result, the number of cyclic chains of
842
+ average radius increases since they are the most stable –
843
+ see Fig. 10.
844
+ If the isomers of molecules are taken randomly, we get
845
+ their racemic mixture. In this case, no secondary struc-
846
+ tures are formed. There are only curvilinear chains of
847
+ random shape – see Fig. 11.
848
+ FIG. 11: Structure formed on the flat surface of the sub-
849
+ strate at T = 240K from a racemic mixture of N = 1024
850
+ ACN molecules. The straight lines show the boundaries of
851
+ the periodic calculation cell of size 33 × 33 nm2.
852
+ V.
853
+ MELTING OF 2D CRYSTALS
854
+ To simulate the dynamics of 2D crystals of ACN
855
+ molecules on a flat h-BN substrate, consider a crystal
856
+ formed by 22 linear chains of hydrogen bonds of 48
857
+ molecules (total number of molecules N = 22 × 48 =
858
+ 1056). A crystal with parallel chain packing has dimen-
859
+ sions of 23.3 × 22.5 nm2.
860
+ We place the crystal in the
861
+ center of the calculated periodic cell size 23.5×22.6 nm2.
862
+ In this case, the chains of hydrogen bonds located par-
863
+ allel to the x axis are closed, and the first chain begins
864
+ to come into contact with the last one – the 2D crystal
865
+ form a dense packing on the substrate that has no edges
866
+ and has normalized number of hydrogen bonds nhb = 1
867
+ (the number of hydrogen bonds is equal to the number of
868
+ molecules). To simulate a rectangular crystal with edges
869
+ (square crystallite), we take a periodic computational cell
870
+ of size 47 × 45.2 nm2. In this case, the 2D crystal (crys-
871
+ tallite) covers only 25% substrate surface, the chains of
872
+ hydrogen bonds are not closed, the normalized number
873
+ of hydrogen bonds is nhb = (N − 22)/N = 0.979.
874
+ Then we numerically integrate the system of equations
875
+ of motion (10) with the initial condition corresponding to
876
+ the stationary state of the crystal. At different thermo-
877
+ stat temperatures, we find the average values of the sys-
878
+ tem energy ¯E(T ), the normalized number of hydrogen
879
+ bonds nhb, and the fraction of molecules that left the
880
+ substrate from the first layer p (the fraction of molecules
881
+ located on the substrate at distance z > 5 ˚A). Next, using
882
+
883
+ 9
884
+ 100
885
+ 200
886
+ 300
887
+ 400
888
+ 500
889
+ 0.4
890
+ 0.6
891
+ 0.8
892
+ 1
893
+ 1
894
+ 2
895
+ (a)
896
+ nhb
897
+ 100
898
+ 200
899
+ 300
900
+ 400
901
+ 500
902
+ 1
903
+ 1.5
904
+ 2
905
+ 2.5
906
+ 3
907
+ 4
908
+ (b)
909
+ c
910
+ 100
911
+ 200
912
+ 300
913
+ 400
914
+ 500
915
+ 0
916
+ 5
917
+ 10
918
+ 6
919
+ 5
920
+ T (K)
921
+ p (%)
922
+ (c)
923
+ FIG. 12: Dependence of (a) the normalized number of hy-
924
+ drogen bonds nhb, (b) the dimensionless heat capacity c and
925
+ (c) the fraction of molecules that left the first layer p on the
926
+ temperature T for a 2D crystal of N = 1056 ACN molecules
927
+ located on a flat substrate with periodic computational cell
928
+ of size 46.6 × 45 nm2 (curves 1, 3, 5; 25% substrate coverage)
929
+ and 23.3 × 22.5 nm2 (curves 2, 4 , 6; 100% substrate cover-
930
+ age). Vertical dotted straight lines show temperature values
931
+ T = 295, 335, 365, 415, 445 and 470 K.
932
+ the formula (11), we find the temperature dependence of
933
+ the heat capacity of the molecular system c.
934
+ The dependence of nhb, c, and p on the thermostat
935
+ temperature (on the substrate temperature) T is shown
936
+ in Fig. 12. As can be seen from the figure, at 25% cover-
937
+ age of the substrate, the square crystallite begins to melt
938
+ at a temperature of T1 = 295K. At T < T1, the crystal
939
+ structure is preserved, the number of bonds, heat capac-
940
+ ity, and density of the first layer of the substrate coating
941
+ practically do not change with increasing temperature:
942
+ nhb(T ) ≡ nhb(0), c(T ) ≡ 1, p(T ) ≡ 0. Crystallite melt-
943
+ ing occurs in the temperature range T1 < T < T2 where
944
+ the upper temperature is T2 = 365 K. Here, a slight de-
945
+ crease in the number of bonds and an increase in heat
946
+ capacity begin to occur. The heat capacity reaches its
947
+ maximum value at the temperature Tm = 335 K. In the
948
+ temperature interval [T1, T2], an increasing destruction
949
+ of the edges of the initial crystallite occurs. The ends of
950
+ the chains peel off from the central part of the crystallite,
951
+ 100
952
+ 200
953
+ 300
954
+ 400
955
+ 500
956
+ 1
957
+ 1.5
958
+ 2
959
+ 2.5
960
+ c
961
+ 1
962
+ 2
963
+ 3
964
+ 4
965
+ T (K)
966
+ FIG. 13: Dependence of the dimensionless heat capacity c on
967
+ temperature T for a 2D square crystallite of N = 480, 1056,
968
+ 2376 of the ACN molecules located on a flat substrate with
969
+ periodic computational cell of the size 31.2× 30.68, 46.6× 45,
970
+ 70.2 × 67.5 nm2 (curves 1, 3, 5; 25% substrate coverage) and
971
+ for infinite 2D crystal (curve 4). Vertical dotted straight lines
972
+ mark the temperatures T = 315, 335, 365, and 445 K.
973
+ then break off and go to the free part of the substrate.
974
+ As a result of this ”continuous” melting, the crystallite
975
+ transforms into a melt consisting of short chains of hy-
976
+ drogen bonds, uniformly covering the entire substrate.
977
+ For T > T2, the number of hydrogen bonds decreases
978
+ in proportion to the increase in temperature, while the
979
+ heat capacity remains almost constant: c ≈ 1.4. It can
980
+ be concluded that a complete transition of the molecu-
981
+ lar system from a low-energy and low-entropy crystalline
982
+ state to a high-energy and high-entropy liquid state has
983
+ taken place. As a result of this transition, the substrate
984
+ is uniformly covered with a ”solution” of short chains of
985
+ hydrogen bonds. The chain lengths decreases monotoni-
986
+ cally with increasing temperature (on the Fig. 12 (a) this
987
+ manifests itself in a monotonous decrease in the number
988
+ of bonds). All molecules remain directly adjacent to the
989
+ substrate (p = 0), insignificant desorption is observed
990
+ only at T > 480 K – see Fig. 12 (c).
991
+ With 100% coverage of the substrate, due to the ab-
992
+ sence of edges in the crystal, its melting occurs at higher
993
+ temperatures and happens according to a different sce-
994
+ nario.
995
+ Here melting also occurs ”continuously” in the
996
+ temperature interval [T1, T2], where T1 = 415, T2 =
997
+ 470 K. The peak of the heat capacity at Tm = 445 K
998
+ becomes more pronounced. Melting occurs due to the
999
+ expulsion of some molecules from the first layer to the
1000
+ second, which manifests itself in a monotonous increase
1001
+ in the fraction of displaced molecules p at T1 < T < T2
1002
+ – see Fig. 12 (c).
1003
+ As a result, the density of the first
1004
+ layer during melting decreases by 11%, and after melting
1005
+ a dense melt of molecules is formed on the substrate, in
1006
+ which 11% of the molecules are located on the second
1007
+ layer from the substrate.
1008
+ Conventionally, the temperature value Tm, at which
1009
+
1010
+ 10
1011
+ the heat capacity has reached its maximum value, can
1012
+ be considered as the melting temperature of a 2D crystal.
1013
+ However melting occurs not discretely, but continuously
1014
+ in the temperature interval [T1, T2]. The value Tm is in
1015
+ the center of this interval.
1016
+ To study the dependence of the melting temperature
1017
+ on the crystallite size, we analyze numerically the melt-
1018
+ ing of 2D square crystallite of N = 480 and 2376 ACN
1019
+ molecules placed on a flat substrate with periodic com-
1020
+ putational cell of size 31.2 × 30.68 and 70.2 × 67.5 nm2.
1021
+ Our results show that melting occurs continuously for all
1022
+ crystallite sizes. When the crystallite size is increased,
1023
+ the melting interval [T1, T2] shifts to the right and, in
1024
+ the limit, coincides with the melting temperature inter-
1025
+ val of a 2D crystal with 100% coverage of the substrate,
1026
+ as shown in Fig. 13.
1027
+ Let us note that the continuum melting scenario also
1028
+ takes place for 2D n-alkane crystals lying on a flat sur-
1029
+ face of graphite [42].
1030
+ This allows us to conclude that
1031
+ the quasi-continuous melting scenario is a characteristic
1032
+ feature of 2D systems of molecules adsorbed by a flat
1033
+ surface.
1034
+ VI.
1035
+ CONCLUSION
1036
+ Our numerical simulations of the dynamics of the sys-
1037
+ tem of acetanilide molecules have revealed that the struc-
1038
+ tures achiral in three-dimensional space become chiral
1039
+ when being placed on a flat substrate: Depending on the
1040
+ side it touches the substrate, the molecule has two iso-
1041
+ mers L and R. The homochirality of the molecules leads
1042
+ to the appearance of stable secondary structures stabi-
1043
+ lized by hydrogen bonds on a flat substrate in the form
1044
+ of arc, cyclic, and helical chains of hydrogen bonds and
1045
+ their complexes.
1046
+ Hydrogen-bond chains of N ≤ 16 molecules of the same
1047
+ chirality form circular arcs of the same radius.
1048
+ When
1049
+ the number of molecules in the chain is N > 16, the
1050
+ arcs becomes unstable, they either collapse into circles,
1051
+ or touch their ends and form flat spirals.
1052
+ In addition
1053
+ to single-beam spirals, two- and three-beam spirals may
1054
+ exist being bound states of arc chains.
1055
+ Stable cyclic chains can be formed from N
1056
+ ≥ 5
1057
+ molecules of the same chirality.
1058
+ The most energeti-
1059
+ cally favorable are cyclic chains of 20, 21 and 22 links.
1060
+ The structures of two circles with the number of atoms
1061
+ N = 14 + 26, 15 + 27, 17 + 29 (where the first number of
1062
+ the sum is the number of atoms in the inner circle, and
1063
+ the second number is the number of atoms in the outer
1064
+ circle) are more energy efficient.
1065
+ If the chain of hydrogen bonds consists of a random
1066
+ sequence of isomers, it look like an irregular broken line.
1067
+ A chain can take the form of a rectilinear zigzag only if
1068
+ there is a strict alternation of the L and R isomers. Such
1069
+ chains can form regular two-dimensional crystals with
1070
+ parallel and antiparallel packing of the adjacent chains.
1071
+ Simulation of the dynamics of a system of molecules
1072
+ shows that the homochirality of molecules(the presence
1073
+ of only one isomer) leads to the appearance of stable sec-
1074
+ ondary structures on the surface of the substrate, i.e. to
1075
+ the appearance of chains of hydrogen bonds in the form
1076
+ of arcs, circles and spirals.
1077
+ As a result, the substrate
1078
+ surface becomes optically active, the left isomers form
1079
+ chains with a right twist, and the right ones form chain
1080
+ with a left twist. At temperature T ≤ 240 K, all possible
1081
+ secondary structures are formed on the substrate. An
1082
+ increase in temperature leads, first of all, to the disinte-
1083
+ gration of spiral structures. As a result, the number of
1084
+ more stable circular chains increases.
1085
+ If the molecules on the substrate form a racemic mix-
1086
+ ture, no regular secondary structures are formed, so only
1087
+ curvilinear chains of hydrogen bonds of random shape
1088
+ can appear. Thus, our results demonstrate the impor-
1089
+ tance of homochirality (chiral purity) of biomolecules for
1090
+ the formation of stable secondary molecular structures.
1091
+ Numerical simulations of the dynamics of a 2D crystal
1092
+ of the ACN molecules shows that the scenario of crystal
1093
+ melting depends on the density of its coverage of the
1094
+ substrate.
1095
+ At 25% coverage of the substrate the melting occurs
1096
+ ”continuously” in the temperature interval [T1, T2] from
1097
+ the edges of the initial crystallite (for crystallite of 1056
1098
+ ACN molecules temperatures T1 = 295, T2 = 365 K).
1099
+ The ends of the chains peel off from the central part of
1100
+ the crystallite, then break off and go to the free part
1101
+ of the substrate. As a result, the crystallite transforms
1102
+ into a melt consisting of short chains of hydrogen bonds,
1103
+ uniformly covering the entire substrate. When the size of
1104
+ the crystallite is increased, the melting interval [T1, T2]
1105
+ shifts to the right and, in the limit, will coincides with
1106
+ the melting temperature interval of infinite crystal with
1107
+ 100% coverage of the substrate.
1108
+ For 100% coverage of the substrate with no crystal
1109
+ edges, the melting occurs at higher temperatures 415 ÷
1110
+ 470 K by a shift of some molecules from the first to the
1111
+ second layer in the substrate. As a result, the density of
1112
+ the first layer during melting decreases by 11%, and after
1113
+ melting, 11% of the molecules move to the second layer
1114
+ formed on the substrate.
1115
+ A continual melting scenario (the presence of a melting
1116
+ temperature interval)has also been found in 2D n-alkane
1117
+ crystals lying on a flat surface of graphite [42]. All this
1118
+ leads us to conclusion that the quasi-continuous melt-
1119
+ ing scenario is a characteristic feature of 2D systems of
1120
+ molecules adsorbed by a flat surface.
1121
+ ACKNOWLEDGMENTS
1122
+ AVS acknowledges the use of the computational facilities
1123
+ provided by the Interdepartmental Supercomputer Cen-
1124
+ ter of the Russian Academy of Science. YSK acknowl-
1125
+ edges a support from the Australian Research Council
1126
+ (grant DP210101292) and the Strategic Fund of the Aus-
1127
+ tralian National University.
1128
+
1129
+ 11
1130
+ [1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y.
1131
+ Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov.
1132
+ Electric Field Effect in Atomically Thin Carbon Films.
1133
+ Science 306 (5696), 666-669 (2004).
1134
+ [2] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S.
1135
+ Novoselov and A. K. Geim. The electronic properties of
1136
+ graphene. Rev. Mod. Phys. 81, 109-162 (2009).
1137
+ [3] E. Koren, I. Leven, E. Lortscher, A. Knoll, O. Hod and
1138
+ U. Duerig. Coherent commensurate electronic states at
1139
+ the interface between misoriented graphene layers. Na-
1140
+ ture Nanotech. 11, 752-757 (2016).
1141
+ [4] J. C. Meyer, A. K. Geim, M. Katsnelson, K. Novoselov,
1142
+ T. Booth and S. Roth. The structure of suspended
1143
+ graphene sheets. Nature 446, 60-63 (2007).
1144
+ [5] C. Lee, X. Wei, J. W. Kysar and J. Hone. Measurement
1145
+ of the Elastic Properties and Intrinsic Strength of Mono-
1146
+ layer Graphene. Science 321, 385-388 (2008).
1147
+ [6] A. Falin, Q. Cai, E. J. G. Santos, D. Scullion, D. Qian, R.
1148
+ Zhang, Z. Yang, S. Huang, K. Watanabe, T. Taniguchi,
1149
+ M. R. Barnett, Y. Chen, R. S. Ruoff and L. H. Li.
1150
+ Mechanical properties of atomically thin boron nitride
1151
+ and the role of interlayer interactions. Nat. Commun. 8,
1152
+ 15815 (2017).
1153
+ [7] E. Han, J. Yu, E. Annevelink, J. Son, D. A. Kang, K.
1154
+ Watanabe, T. Taniguchi, E. Ertekin, P. Y. Huang and
1155
+ A. M. van der Zande. Ultrasoft slip-mediated bending in
1156
+ few-layer graphene. Nature Materials 19, 305-309 (2020).
1157
+ [8] I. Leven, D. Krepel, O. Shemesh, and O. Hod. Robust Su-
1158
+ perlubricity in Graphene/h-BN Heterojunctions. J. Phys.
1159
+ Chem. Lett. 4, 115-120 (2013).
1160
+ [9] A. Geim and I. Grigorieva. Van der Waals heterostruc-
1161
+ tures. Nature 499, 419-425 (2013).
1162
+ [10] K. S. Novoselov, A. Mishchenko, A. Carvalho and A.
1163
+ H. Castro Neto. 2D materials and van der Waals het-
1164
+ erostructures. Science 353 (6298), 461 (2016).
1165
+ [11] C. R. Woods, L. Britnell, A. Eckmann, R. S. Ma, J.
1166
+ C. Lu, H. M. Guo, X. Lin, G. L. Yu, Y. Cao, R. V.
1167
+ Gorbachev, A. V. Kretinin, J. Park, L. A. Ponomarenko,
1168
+ M. I. Katsnelson, Y. N. Gornostyrev, K. Watanabe, T.
1169
+ Taniguchi, C. Casiraghi, H. J. Gao, A. K. Geim and K. S.
1170
+ Novoselov. Commensurate-incommensurate transition in
1171
+ graphene on hexagonal boron nitride. Nature Phys. 10,
1172
+ 451-456 (2014).
1173
+ [12] G. J. Slotman, M. M. van Wijk, P. L. Zhao, A. Fasolino,
1174
+ M. I. Katsnelson and S. Yuan. Effect of Structural Relax-
1175
+ ation on the Electronic Structure of Graphene on Hexag-
1176
+ onal Boron Nitride. Phys. Rev. Lett. 115, 186801 (2015).
1177
+ [13] D. Mandelli, I. Leven, O. Hod and M. Urbakh. Sliding
1178
+ friction of graphene/hexagonal-boron nitride heterojunc-
1179
+ tions: a route to robust superlubricity. Sci. Rep. 7 (1),
1180
+ 10851 (2017).
1181
+ [14] D. Jariwala, T. J. Marks and M. C. Hersam. Mixed-
1182
+ dimensional van der Waals heterostructures. Nature
1183
+ Mater 16, 170-181 (2017).
1184
+ [15] O. V. Ershova, T. C. Lillestolen and E. Bichoutskaia.
1185
+ Study of polycyclic aromatic hydrocarbons adsorbed on
1186
+ graphene using density functional theory with empiri-
1187
+ cal dispersion correction. Phys. Chem. Chem. Phys., 12,
1188
+ 6483-6491 (2010).
1189
+ [16] E. G. Gordeev, M. V. Polynski and V. P. Ananikov.
1190
+ Fast and accurate computational modeling of adsorption
1191
+ on graphene: a dispersion interaction challenge. Phys.
1192
+ Chem. Chem. Phys., 15, 18815-18821 (2013).
1193
+ [17] J. Wang, Z. Chen and B. Chen. Adsorption of polycyclic
1194
+ aromatic hydrocarbons by graphene and graphene oxide
1195
+ nanosheets. Environ. Sci. Technol., 48, 4817-4825 (2014).
1196
+ [18] M. Castro and E. Chigo-Anota. BN and BN oxide
1197
+ nanosheets based nanosensor for Paracetamol adsorp-
1198
+ tion: A Density Functional investigation. Mex. J. Mat.
1199
+ Sci. Eng., 1, 21-29 (2014).
1200
+ [19] P. P. Zhou and R. Q. Zhang. Physisorption of benzene
1201
+ derivatives on graphene: critical roles of steric and stere-
1202
+ oelectronic effects of the substituent. Phys. Chem. Chem.
1203
+ Phys., 17, 12185-12193 (2015).
1204
+ [20] V. Georgakilas, M. Otyepka, A. B. Bourlinos, V. Chan-
1205
+ dra, N. Kim, K. C. Kemp, P. Hobza, R. Zboril and K.
1206
+ S. Kim. Functionalization of Graphene: Covalent and
1207
+ Non-Covalent Approaches, Derivatives and Applications.
1208
+ Chem. Rev., 112, 6156-6214 (2012).
1209
+ [21] V. Georgakilas, J. N. Tiwari, K. C. Kemp, J. A. Perman,
1210
+ A. B. Bourlinos, K. S. Kim, and R. Zboril. Noncovalent
1211
+ Functionalization of Graphene and Graphene Oxide for
1212
+ Energy Materials, Biosensing, Catalytic, and Biomedical
1213
+ Applications. Chem. Rev., 116, 5464-5519 (2016).
1214
+ [22] R. Thakkar, S. Gajaweera and J. Comer. Organic con-
1215
+ taminants and atmospheric nitrogen at the graphene-
1216
+ water interface: a simulation study. Nanoscale Adv., 4,
1217
+ 1741 (2022).
1218
+ [23] S. M. Barlow, R. Raval. Complex organic molecules at
1219
+ metal surfaces: bonding, organisation and chirality. Sur-
1220
+ face Science Reports, 50, 201-341 (2003).
1221
+ [24] H. Cao, M.-P. Van Den Eede, G. Koeckelberghs, K. S.
1222
+ Mali and S. De Feyter. Direct observation of the influence
1223
+ of chirality on the microstructure of regioregular poly-
1224
+ (3-alkylthiophene)s at the liquid/solid interface. Chem.
1225
+ Commun., 53, 153-156 (2017).
1226
+ [25] E. Bahn, H. Hedgeland, A. P. Jardine, P. F. Henry, T. C.
1227
+ Hansen and P. Fouquet. The structure of deuterated ben-
1228
+ zene films adsorbed on the graphite (0001) basal plane:
1229
+ what happens below and above the monolayer coverage?
1230
+ Phys. Chem. Chem. Phys., 16, 22116 (2014).
1231
+ [26] F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill,
1232
+ P. Blake, M. I. Katsnelson, K. S. Novoselov. Detection
1233
+ of individual gas molecules adsorbed on graphene. Nat.
1234
+ Mater., 6, 652-655 (2007).
1235
+ [27] Y. Shao, J. Wang, H. Wu, J. Liu, I. a. Aksay and Y. Lin.
1236
+ Graphene Based Electrochemical Sensors and Biosensors:
1237
+ A Review. Electroanalysis, 22, 1027-1036 (2010).
1238
+ [28] X. V. Zhen, E. G. Swanson, J. T. Nelson, Y. Zhang, Q.
1239
+ Su, S. J. Koester, and P. Buhlmann. Noncovalent Mono-
1240
+ layer Modification of Graphene Using Pyrene and Cy-
1241
+ clodextrin Receptors for Chemical Sensing. ACS Appl.
1242
+ Nano Mater. 1, 2718-2726 (2018).
1243
+ [29] Z. Iranmanesh-Zarandy and M. Dehestani. Molecular
1244
+ Dynamics Simulation of Paracetamol Drug Adsorption
1245
+ on Boron Nitride Nanotube:
1246
+ Effects of Temperature,
1247
+ Nanotube Length, Diameter, and Chirality. ChemistryS-
1248
+ elect, 4, 7866 -7873 (2019).
1249
+ [30] X. Kang, J. Wang, H. Wu, J. Liu, I. A. Aksay, Y. Lin.
1250
+ A graphene-based electrochemical sensor for sensitive de-
1251
+ tection of paracetamol. Talanta, 81, 754-759 (2010).
1252
+ [31] M. Lian,
1253
+ J. Fan,
1254
+ Z. Shi,
1255
+ H. Li,
1256
+ J. Yin. Kevlar-
1257
+
1258
+ 12
1259
+ functionalized graphene nanoribbon for polymer rein-
1260
+ forcement. Polymer, 55(10), 2578-2587 (2014).
1261
+ [32] S. Kumar. Graphene Engendered 2-D Structural Mor-
1262
+ phology of Aluminium Atoms: Molecular Dynamics Sim-
1263
+ ulation study. Materials Chemistry and Physics, 202,
1264
+ 329-339 (2017).
1265
+ [33] M. W. Roth, C. L. Pint and C. Wexler. Phase transitions
1266
+ in hexane monolayers physisorbed onto graphite. Phys.
1267
+ Rev. B, 71, 155427 (2005).
1268
+ [34] Cary L. Pint, M. W. Roth and C. Wexler. Behavior of
1269
+ hexane on graphite at near-monolayer densities: Molec-
1270
+ ular dynamics study. Phys. Rev. B, 73, 085422 (2006).
1271
+ [35] K. E. Becker. Accelerated molecular dynamics simulation
1272
+ of the thermal desorption of n-alkanes from the basal
1273
+ plane of graphite. J. Chem. Phys. 125, 184706 (2006).
1274
+ [36] Q. Chen, H.-J. Yan, C.-J. Yan, G.-B. Pan, L.-J. Wan, G.-
1275
+ Y. Wen, D.-Q. Zhang. STM investigation of the depen-
1276
+ dence of alkane and alkane (C18H38, C19H40) derivatives
1277
+ self-assembly on molecular chemical structure on HOPG
1278
+ surface. Surface Science, 602 1256-1266 (2008).
1279
+ [37] M. J. Connolly, M. W. Roth, P. A. Gray, and C. Wexler.
1280
+ Explicit Hydrogen Molecular Dynamics Simulations of
1281
+ Hexane Deposited onto Graphite at Various Coverages.
1282
+ Langmuir, 24(7), 3228-3234 (2008).
1283
+ [38] T. Yang, S. Berber, J.-F. Liu, G. P. Miller and D.
1284
+ Tomanek. Self-assembly of long chain alkanes and their
1285
+ derivatives on graphite. J. Chem. Phes., 128, 124709
1286
+ (2008).
1287
+ [39] M. W. Roth, L. Firlej, B. Kuchta, M. J. Connolly, E.
1288
+ Maldonado, and C. Wexler. Simulation and Characteri-
1289
+ zation of Tetracosane on Graphite: Molecular Dynamics
1290
+ Beyond the Monolayer. J. Phys. Chem. C, 120(2), 984-
1291
+ 994 (2016).
1292
+ [40] T. K. Piskorz, C. Gobbo, S. J. Marrink, S. De Feyter, A.
1293
+ H. de Vries, and J. H. van Esch. Nucleation Mechanisms
1294
+ of Self-Assembled Physisorbed Monolayers on Graphite.
1295
+ J. Phys. Chem. C 123(28), 17510-17520 (2019).
1296
+ [41] L. Y. Fang, Y. Hua, Z. Z. Meng, Z. Hui. Molecular
1297
+ dynamics simulations on the orientation of n-alkanes
1298
+ with different lengths on graphene. Surface Science, 690,
1299
+ 121468 (2019).
1300
+ [42] R. Zhang, W. S. Fall, K. W. Hall, G. A. Gehring, X. Zeng,
1301
+ G. Ungar. Quasi-continuous melting of model polymer
1302
+ monolayers prompts reinterpretation of polymer melting.
1303
+ Nat. Commun., 12, 1710 (2021).
1304
+ [43] H. Yang, X. J. Zhao, and M. Sun. Induced crystalliza-
1305
+ tion of single-chain polyethylene on a graphite surface:
1306
+ Molecular dynamics simulation. Phys. Rev. E, 84, 011803
1307
+ (2011).
1308
+ [44] M. Gulde, A. N. Rissanou, V. Harmandaris, M. M¨uller,
1309
+ S. Sch¨afer, and C. Ropers. Dynamics and Structure of
1310
+ Monolayer Polymer Crystallites on Graphene. Nano Lett.
1311
+ 16(11), 6994-7000 (2016).
1312
+ [45] Y. F. Liu, H. Yang, H. Zhang. Molecular dynamics simu-
1313
+ lation of the folding of single alkane chains with different
1314
+ lengths on single-walled carbon nanotubes and graphene.
1315
+ Journal of Molecular Modeling, 24, 140 (2018).
1316
+ [46] C. L. Pint. Different melting behavior in pentane and
1317
+ heptane monolayers on graphite:
1318
+ Molecular dynamics
1319
+ simulations. Phys. Rev. B, 73, 045415 (2006).
1320
+ [47] H.Yang, Z.-S. Li, Z.-Y. Lu, C.-C. Sun. Molecular dynam-
1321
+ ics simulations study on the melting process of n-heptane
1322
+ layer(s) adsorbed on the graphite (0 0 1) surface. Surface
1323
+ Science, 600(6), 1213-1220 (2006).
1324
+ [48] C. Wexler, L. Firlej, B. Kuchta, and M. W. Roth. Melting
1325
+ of Hexane Monolayers Adsorbed on Graphite: The Role
1326
+ of Domains and Defect Formation. Langmuir, 25(12),
1327
+ 6596-6598 (2009).
1328
+ [49] M. Pykal, P. Jurecka, F. Karlicky, and M. Otyepka.
1329
+ Modelling of Graphene Functionalization. Phys. Chem.
1330
+ Chem. Phys., 18, 6351-6372 (2016).
1331
+ [50] S. W. Johnson, J. Eckert, M. Barthes, R. K. McMullan,
1332
+ and M. Muller. Crystal Structure of Acetanilide at 15
1333
+ and 295 K by Neutron Diffraction. Lack of Evidence for
1334
+ Proton Transfer along the N-H...O Hydrogen Bond. J.
1335
+ Phys. Chem. 99(44), 16253-16260 (1995).
1336
+ [51] G. Careri, U. Buontempo, F. Galluzzi, A. C. Scott, E.
1337
+ Gratton, and E. Shyamsunder. Spectroscopic evidence
1338
+ for Davydov-like solitons in acetanilide. Phys. Rev. B 30,
1339
+ 4689 (1984).
1340
+ [52] A. Scott. Davydov’s soliton. Physics Reports 217(1), 1-
1341
+ 67 (1992).
1342
+ [53] L. Cruzeiro, H. Freedman. The temperature dependent
1343
+ amide I band of crystalline acetanilide. Physics Letters
1344
+ A 377, 1593-1596 (2013).
1345
+ [54] L. Cruzeiro. The Amide I Band of Crystalline Ac-
1346
+ etanilide:
1347
+ Old Data Under New Light. In:
1348
+ Archilla,
1349
+ J.,
1350
+ Jimenez,
1351
+ N., Sanchez-Morcillo,
1352
+ V., Garcia-Raffi,
1353
+ L.
1354
+ (eds)
1355
+ Quodons
1356
+ in
1357
+ Mica.
1358
+ Springer
1359
+ Series
1360
+ in
1361
+ Materials
1362
+ Science,
1363
+ 221,
1364
+ Springer,
1365
+ Cham.
1366
+ (2015)
1367
+ https://doi.org/10.1007/978-3-319-21045-2 17
1368
+ [55] W. D. Cornell, W. P. Cieplak, C. I. Bayly, I. R. Gould, K.
1369
+ M. Merz, D. M. Ferguson, D. C. Spellmeyer, T. Fox, J.
1370
+ W. Caldwell, P. A. Kollman. A second generation force
1371
+ field for the simulation of proteins, nucleic acids, and
1372
+ organic molecules, J. Am. Chem. Soc. 117(19) 5179-5197
1373
+ (1995).
1374
+ [56] A. V. Savin, E. A. Korznikova, and S. V. Dmitriev.
1375
+ Dynamics of surface graphene ripplocations on a flat
1376
+ graphite substrate. Phys. Rev. B 99, 235411 (2019).
1377
+ [57] A. V. Savin. Eigenmodes and resonance vibrations of
1378
+ graphene nanomembranes. Phys. Rev. B, 103, 195435
1379
+ (2021).
1380
+ [58] A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. God-
1381
+ dard III, and W. M. Skiff. UFF, a Full Periodic Table
1382
+ Force Field for Molecular Dynamics Simulations., J. Am.
1383
+ Chem. Soc. 114(25), 10024-10035 (1992).
1384
+
WdE1T4oBgHgl3EQfJAOq/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
XNAyT4oBgHgl3EQf9PpX/content/2301.00870v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ddfdeaf75fd96d5755f9110944c3fc8c7af9949e260adc01f3a80165c13f3cef
3
+ size 1047073
XNAyT4oBgHgl3EQfWPfd/content/tmp_files/2301.00161v1.pdf.txt ADDED
@@ -0,0 +1,1135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Active RISs: Signal Modeling, Asymptotic
2
+ Analysis, and Beamforming Design
3
+ Zijian Zhang∗, Linglong Dai∗, Fellow, IEEE, Xibi Chen∗, Changhao Liu∗, Fan Yang∗, Fellow, IEEE,
4
+ Robert Schober†, Fellow, IEEE, and H. Vincent Poor§, Life Fellow, IEEE
5
+ ∗Beijing National Research Center for Information Science and Technology (BNRist)
6
+ Department of Electronic Engineering, Tsinghua University, China
7
+ †Institute for Digital Communications, Friedrich-Alexander University Erlangen-N¨urnberg, Germany
8
+ §Department of Electrical and Computer Engineering, Princeton University, USA
9
+ E-mails: zhangzj20@mails.tsinghua.edu.cn; daill@tsinghua.edu.cn; cxb17@tsinghua.org.cn; liuch17@tsinghua.org.cn;
10
+ fan yang@tsinghua.edu.cn; robert.schober@fau.de; poor@princeton.edu
11
+ Abstract—Reconfigurable
12
+ intelligent
13
+ surfaces
14
+ (RISs)
15
+ have
16
+ emerged as a candidate technology for future 6G networks.
17
+ However, due to the “multiplicative fading” effect, the existing
18
+ passive RISs only achieve a negligible capacity gain in environ-
19
+ ments with strong direct links. In this paper, the concept of
20
+ active RISs is studied to overcome this fundamental limitation.
21
+ Unlike the existing passive RISs that reflect signals without
22
+ amplification, active RISs can amplify the reflected signals via
23
+ amplifiers integrated into their elements. To characterize the
24
+ signal amplification and incorporate the noise introduced by the
25
+ active components, we verify the signal model of active RISs
26
+ through the experimental measurements on a fabricated active
27
+ RIS element. Based on the verified signal model, we formulate
28
+ the sum-rate maximization problem for an active RIS aided
29
+ multi-user multiple-input single-output (MU-MISO) system and
30
+ a joint transmit precoding and reflect beamforming algorithm is
31
+ proposed to solve this problem. Simulation results show that, in
32
+ a typical wireless system, the existing passive RISs can realize
33
+ only a negligible sum-rate gain of 3%, while the active RISs can
34
+ achieve a significant sum-rate gain of 62%, thus overcoming the
35
+ “multiplicative fading” effect. Finally, we develop a 64-element
36
+ active RIS aided wireless communication prototype, and the
37
+ significant gain of active RISs is validated by field test.
38
+ I. INTRODUCTION
39
+ From the first generation (1G) to 5G wireless communica-
40
+ tions, the wireless channel has been considered to be uncon-
41
+ trollable. Recently, due to the advances in meta-materials, re-
42
+ configurable intelligent surfaces (RISs) have been proposed [1]
43
+ for the purpose of intelligently controlling wireless channels
44
+ to achieve improved communication performance. Specifically,
45
+ an RIS is an array composed of a very large number of passive
46
+ elements that reflects electromagnetic signals in a desired
47
+ manner so as to reconfigure the propagation properties of
48
+ wireless environment. As an important advantage of RIS, the
49
+ negligible noise introduced by passive RISs enables a high
50
+ array gain. Benefiting from this advantage, RISs are expected
51
+ to introduce significant capacity gains in wireless systems [2].
52
+ However, in practice, the expected capacity gains are typ-
53
+ ically only observed in communication environments where
54
+ the direct link between transmitter and receiver is completely
55
+ blocked or very weak. By contrast, in many scenarios where
56
+ the direct link is not weak, conventional RISs can only
57
+ achieve negligible capacity gains [3]. The reason behind this
58
+ phenomenon is the “multiplicative fading” effect introduced
59
+ by RISs, i.e., the equivalent path loss of the transmitter-RIS-
60
+ receiver link is the product (instead of the sum) of the path
61
+ losses of the transmitter-RIS and RIS-receiver links, which is
62
+ usually thousands of times larger than that of the direct link
63
+ [1]–[3]. As a result, the “multiplicative fading” effect makes
64
+ it almost impossible for passive RISs to achieve noticeable
65
+ capacity gains in many wireless environments. Therefore,
66
+ to advance the practicability of RISs in future 6G wireless
67
+ networks, a critical issue for RISs to be addressed is: How to
68
+ break the fundamental performance bottleneck caused by the
69
+ “multiplicative fading” effect?
70
+ To overcome the fundamental physical limitation of con-
71
+ ventional passive RISs imposed by the “multiplicative fading”
72
+ effect, in this paper, we investigate the concept of active RISs
73
+ to overcome the “multiplicative fading” effect. Different from
74
+ the existing passive RISs that passively reflect signals without
75
+ amplification, the key feature of active RISs is their ability
76
+ to actively reflect signals with amplification at the expense
77
+ of additional power consumption. Firstly, through the experi-
78
+ mental measurements on a fabricated active RIS element, we
79
+ verify the signal model of active RISs, which characterizes the
80
+ amplification of the incident signal and accounts for the non-
81
+ negligible thermal noise introduced by the active elements.
82
+ Based on the verified signal model, we further analyze the
83
+ asymptotic performance of active RISs and formulate a sum-
84
+ rate maximization problem for an active RIS aided multi-
85
+ user multiple-input single-output (MU-MISO) system. Then,
86
+ a joint transmit precoding and reflect beamforming algorithm
87
+ is proposed to solve this problem. Simulation results show
88
+ that, in a typical wireless system, the existing passive RISs
89
+ achieve only a negligible sum-rate gain of 3%, while the active
90
+ RISs are able to achieve a substantial sum-rate gain of 62%.
91
+ Finally, we develop a 64-element active RIS aided wireless
92
+ communication prototype, and field tests are conducted to
93
+ validate the significant gain of active RISs.
94
+ The rest of this paper is organized as follows. In Section II,
95
+ the concept of RISs and their signal models are introduced.
96
+ In Section III, the asymptotic performance of active RISs is
97
+ analyzed. In Section IV, a sum-rate maximization problem is
98
+ 978-1-6654-3540-6/22 © 2022 IEEE
99
+ arXiv:2301.00161v1 [cs.IT] 31 Dec 2022
100
+
101
+ formulated, and a joint precoding and beamforming design is
102
+ proposed to solve the problem. In Section V, simulation results
103
+ and experimental measurements are presented to validate the
104
+ signal model and evaluate the performance of active RISs.
105
+ Finally, conclusions are drawn in Section VI.
106
+ II. PASSIVE RISS AND ACTIVE RISS
107
+ A. Conventional Passive RISs
108
+ The RISs widely studied in most existing works are passive
109
+ [1]–[3]. In general, each passive RIS element consists of a re-
110
+ flective patch terminated with an impedance-adjustable circuit
111
+ for phase shifting. Thanks to the passive mode of operation,
112
+ the thermal noise at passive RISs is usually negligible [2].
113
+ Thereby, the signal model of an N-element passive RIS widely
114
+ used in the literature is given as follows:
115
+ y = Θx,
116
+ (1)
117
+ where x
118
+
119
+ CN denotes the incident signal, y
120
+
121
+ CN
122
+ denotes
123
+ the
124
+ signal
125
+ reflected
126
+ by
127
+ the
128
+ RIS,
129
+ and
130
+ Θ
131
+ :=
132
+ diag
133
+
134
+ ejθ1, · · · , ejθN �
135
+ ∈ CN×N denotes the phase shift matrix
136
+ of the RIS with diag(·) being the diagonalization operation.
137
+ By properly adjusting Θ to manipulate the N signals reflected
138
+ by the N RIS elements to coherently add with the same phase
139
+ at the receiver, a high array gain proportional to N 2 can be
140
+ achieved, which is expected to significantly increase the signal-
141
+ to-noise ratio (SNR) [1] at the receiver.
142
+ Unfortunately, this expected high capacity gain often cannot
143
+ be realized in practice, especially in communication scenarios
144
+ where the direct link between the transmitter and the receiver is
145
+ strong. The reason for this negative result is the “multiplicative
146
+ fading” effect introduced by passive RISs. Specifically, the
147
+ equivalent path loss of the transmitter-RIS-receiver reflected
148
+ link is the product (instead of the sum) of the path losses of
149
+ the transmitter-RIS and RIS-receiver links, and therefore, it is
150
+ thousands of times larger than that of the unobstructed direct
151
+ link. Thereby, for an RIS to realize a noticeable capacity gain,
152
+ thousands (or even millions) of RIS elements are required to
153
+ compensate for this extremely large path loss [3]. The resulting
154
+ high signaling overhead for channel estimation and the high
155
+ complexity of real-time beamforming make the application
156
+ of such a large number of passive RIS elements in practical
157
+ wireless networks very challenging.
158
+ B. Concept of Active RISs
159
+ To overcome the fundamental performance bottleneck
160
+ caused by the “multiplicative fading” effect of RISs, we study
161
+ the concept of active RISs as a promising solution1. As shown
162
+ in Fig. 1, similar to the existing passive RISs, active RISs
163
+ can also reflect the incident signals with reconfigurable phase
164
+ shifts. Different from passive RISs that just reflect the incident
165
+ signals without amplification, active RISs can further amplify
166
+ the reflected signals. To achieve this goal, the key component
167
+ 1Note that active RISs are fundamentally different from relay-type RISs
168
+ equipped with RF components and relays. Due to space constraints, we refer
169
+ to the journal version of this paper for a more detailed discussion [4, Remark
170
+ 1].
171
+ input
172
+ BS
173
+ RIS
174
+ Active RIS
175
+ user 1
176
+ user k
177
+ incident
178
+ signal
179
+ reflected signal
180
+ with amplification
181
+ phase-
182
+ shift
183
+ circuit
184
+ patch
185
+ reflection-type
186
+ amplifier
187
+ output
188
+ active element
189
+ power
190
+ supply
191
+ Fig. 1. The downlink transmission in an active RIS aided MU-MISO system.
192
+ of an active RIS element is the additionally integrated active
193
+ reflection-type amplifier, which can be realized by different
194
+ existing active components, such current-inverting converters
195
+ or some integrated circuits [5].
196
+ With reflection-type amplifiers supported by a power supply,
197
+ the reflected and amplified signal of an N-element active RIS
198
+ can be modeled as follows:
199
+ y =
200
+ PΘx
201
+ � �� �
202
+ Desired signal
203
+ +
204
+ PΘv
205
+ � �� �
206
+ Dynamic noise
207
+ +
208
+ ns
209
+ ����
210
+ Static noise
211
+ ,
212
+ (2)
213
+ where P := diag (p1, · · · , pN) ∈ RN×N denotes the amplifi-
214
+ cation factor matrix of the active RIS, wherein each element pn
215
+ can be larger than one thanks to the integrated reflection-type
216
+ amplifier. Due to the use of active components, active RISs
217
+ consume additional power for amplifying the reflected signals,
218
+ and the thermal noise introduced by active RIS elements
219
+ cannot be neglected as is done for passive RISs. Particularly,
220
+ as shown in (2), the introduced noise can be classified into
221
+ dynamic noise and static noise [5]. Specifically, v is related to
222
+ the input noise and the inherent device noise of the active RIS
223
+ elements [5], while the static noise ns is unrelated to P and
224
+ is usually negligible compared to the dynamic noise PΘv, as
225
+ will be verified by experimental results in Section V-A. Thus,
226
+ here we neglect ns and model v as v ∼ CN
227
+
228
+ 0N, σ2
229
+ vIN
230
+
231
+ ,
232
+ where CN(µ, Σ) denotes the complex multivariate Gaussian
233
+ distribution with mean µ and variance Σ, IL is an L × L
234
+ identity matrix, and 0L is an L × 1 zero vector.
235
+ C. Active RIS Aided MU-MISO System
236
+ Consider an active RIS aided downlink MU-MISO system
237
+ as shown in Fig. 1, where an M-antenna base station (BS)
238
+ serves K single-antenna users simultaneously with the aid
239
+ of an N-element active RIS. Let s := [s1, · · · , sK]T ∈ CK
240
+ denote the transmitted symbol vector for the K users and let
241
+ wk ∈ CM×1 denote the BS precoding vector for symbol sk.
242
+ According to (2), signal rk ∈ C received at user k can be
243
+ modeled as follows:
244
+ rk = (
245
+ hH
246
+ k
247
+ ����
248
+ Direct link
249
+ + f H
250
+ k PΘG
251
+
252
+ ��
253
+
254
+ Reflected link
255
+ )
256
+ �K
257
+ j=1wjsj +
258
+ f H
259
+ k PΘv
260
+
261
+ ��
262
+
263
+ Noise introduced by active RIS
264
+
265
+ +
266
+ zk
267
+ ����
268
+ Noise introduced at user k
269
+ ,
270
+ (3)
271
+ where [·]H denotes the conjugate-transpose operation; G ∈
272
+ CN×M, hH
273
+ k
274
+ ∈ C1×M, and f H
275
+ k
276
+ ∈ C1×N characterize the
277
+ channels between the BS and the RIS, between the BS and
278
+ user k, and between the RIS and user k, respectively; and zk
279
+ denotes the additive white Gaussian noise (AWGN) at user k
280
+ with zero mean and variance σ2.
281
+ III. PERFORMANCE ANALYSIS
282
+ In this section, we analyze the performance of active RISs to
283
+ reveal their notable capacity gains compared to passive RISs.
284
+ To this end, in order to make the problem analytically tractable
285
+ and get insightful results, in this section, we consider a single-
286
+ user single-input single-output (SU-SISO) system with M = 1
287
+ BS antenna and K = 1 user, while the general MU-MISO case
288
+ is studied in Section IV.
289
+ A. Asymptotic SNR for Passive RISs and Active RISs
290
+ To illustrate the capacity gain provided by passive/active
291
+ RIS aided reflected links, for the moment, we ignore the
292
+ direct link by setting hk to zero, as was done in, e.g., [6].
293
+ Furthermore, for simplicity, we assume that each active RIS
294
+ element has the same amplification factor (i.e., pn := p). For
295
+ a fair comparison with the asymptotic performance of passive
296
+ RISs, similar to [6], we assume Rayleigh-fading channels.
297
+ We first redefine the BS-RIS channel matrix and the RIS-
298
+ user channel vector as G := g ∈ CN×1 and fk := f ∈ CN×1,
299
+ respectively. Then, we recall the following lemma from [6] for
300
+ the asymptotic SNR achieved by passive RISs.
301
+ Lemma 1 (Asymptotic SNR for passive RISs): Assuming
302
+ f ∼ CN
303
+
304
+ 0N, ϱ2
305
+ fIN
306
+
307
+ , g ∼ CN
308
+
309
+ 0N, ϱ2
310
+ gIN
311
+
312
+ and letting N →
313
+ ∞, the asymptotic SNR γpassive of a passive RIS aided SU-
314
+ SISO system is given by
315
+ γpassive → N 2 P max
316
+ BS
317
+ π2ϱ2
318
+ fϱ2
319
+ g
320
+ 16σ2
321
+ ,
322
+ (4)
323
+ where P max
324
+ BS
325
+ denotes the maximum transmit power at the BS.
326
+ Proof: The proof can be found in [6, Proposition 2].
327
+ For comparison, under the same transmission conditions, we
328
+ provide the asymptotic SNR of an active RIS aided SU-SISO
329
+ system in the following lemma.
330
+ Lemma 2 (Asymptotic SNR for active RISs): Assuming
331
+ f ∼ CN
332
+
333
+ 0N, ϱ2
334
+ fIN
335
+
336
+ , g ∼ CN
337
+
338
+ 0N, ϱ2
339
+ gIN
340
+
341
+ and letting N →
342
+ ∞, the asymptotic SNR γactive of an active RIS aided SU-SISO
343
+ system is given by
344
+ γactive → N
345
+ P max
346
+ BS
347
+ P max
348
+ A
349
+ π2ϱ2
350
+ fϱ2
351
+ g
352
+ 16
353
+
354
+ P max
355
+ A
356
+ σ2vϱ2
357
+ f + P max
358
+ BS
359
+ σ2ϱ2g + σ2σ2v
360
+ �,
361
+ (5)
362
+ where P max
363
+ A
364
+ denotes the maximum reflect power of the active
365
+ RIS.
366
+ Proof: Please see the journal version [4, Appendix A].
367
+ Remark 1: From (5) we observe that, the asymptotic SNR
368
+ of an active RIS aided SU-SISO system depends on both the
369
+ BS transmit power P max
370
+ BS
371
+ and the reflect power of the active
372
+ RIS P max
373
+ A
374
+ . When P max
375
+ BS
376
+ → ∞, the asymptotic SNR will be
377
+ upper-bounded by γactive → NP max
378
+ A
379
+ π2ϱ2
380
+ f/
381
+
382
+ 16σ2�
383
+ , which is
384
+ independent of the BS-RIS channel g and the noise power at
385
+ the active RIS σ2
386
+ v. Similarly, if P max
387
+ A
388
+ → ∞, the asymptotic
389
+ SNR will be upper-bounded by γactive → NP max
390
+ BS π2ϱ2
391
+ g/16σ2
392
+ v,
393
+ which is independent of the RIS-user channel f and the noise
394
+ power at the user σ2. These results reveal that, to increase the
395
+ sum-rate of active RIS aided systems, the negative impact of
396
+ small g and large σ2
397
+ v on system performance can be alleviated
398
+ by increasing the BS transmit power P max
399
+ BS
400
+ , and the negative
401
+ impact of small f and large σ2 can be reduced by increasing
402
+ the reflect power of the active RIS P max
403
+ A
404
+ .
405
+ B. Comparisons between Passive RISs and Active RISs
406
+ We can observe from Lemma 1 and Lemma 2 that, compared
407
+ to the asymptotic SNR for passive RISs γpassive in (4) which is
408
+ proportional to N 2, the asymptotic SNR for active RISs γactive
409
+ in (5) is proportional to N due to the noises introduced by
410
+ the use of active components. At first glance, it seems that the
411
+ SNR achieved by passive RISs γpassive always exceeds the SNR
412
+ achieved by active RISs γactive. However, this is actually not the
413
+ case. The reason behind this counterintuitive behavior is that,
414
+ due to the large path loss caused by the “multiplicative fading”
415
+ effect and thanks to the use of the reflection-type amplifiers
416
+ in active RISs, only when N is unaffordably large can passive
417
+ RISs outperform active RISs.
418
+ To illustrate this claim, let us consider two different SU-
419
+ SISO systems, which are aided by an active RIS and a passive
420
+ RIS, respectively. Then, the following lemma specifies the
421
+ condition that has to be met for passive RISs to outperform
422
+ active RISs.
423
+ Lemma 3 (Case when passive RISs outperform active
424
+ RISs): Assuming the number of RIS elements N is large,
425
+ the required number of elements N for a passive RIS to
426
+ outperform an active RIS has to satisfy
427
+ N ≥ P max
428
+ BS-A
429
+ P max
430
+ BS-P
431
+ P max
432
+ A
433
+ σ2
434
+
435
+ P max
436
+ A
437
+ σ2vϱ2
438
+ f + P max
439
+ BS-Aσ2ϱ2g + σ2σ2v
440
+ �,
441
+ (6)
442
+ where P max
443
+ BS-A denotes the maximum BS transmit power for the
444
+ active RIS aided system and P max
445
+ BS-P denotes that for the passive
446
+ RIS aided system.
447
+ Proof: Please see the journal version [4, Appendix B].
448
+ Next, we consider a specific setup to compare the user’s
449
+ achievable SNRs in the above two systems. For a fair com-
450
+ parison, we constrain the total power consumption P max of
451
+ the two systems to 2 W by setting P max
452
+ BS-P = 2 W for the
453
+ passive RIS aided system and P max
454
+ BS-A = P max
455
+ A
456
+ = 1 W for
457
+ the active RIS aided system, respectively. Therefore, when
458
+ σ2 = σ2
459
+ v = −70 dBm and ϱ2
460
+ f = ϱ2
461
+ g = −70 dB, the required
462
+ number of elements N for the passive RIS to outperform the
463
+ active RIS is 2.5 × 106 according to (6), which is impractical
464
+ to realize with current technology. Conversely, for a more
465
+ practical number of elements of N = 256, according to (5)
466
+ and (4), the SNR achieved by the passive RIS is γpassive ≈ 9.0
467
+ dB, while the SNR achieved by the active RIS is γactive ≈ 49.0
468
+ dB, which is about 10, 000 times higher than γpassive.
469
+
470
+ IV. JOINT TRANSMIT PRECODING AND REFLECT
471
+ BEAMFORMING DESIGN
472
+ To investigate the capacity gain enabled by the use of
473
+ active RISs in typical wireless communication scenarios, in
474
+ this section, we consider more general MU-MISO systems.
475
+ According to the model in (3), the signal-to-interference-plus-
476
+ noise ratio (SINR) at user k can be obtained as
477
+ γk =
478
+ ��¯hH
479
+ k wk
480
+ ��2
481
+ �K
482
+ j=1,j̸=k
483
+ ��¯hH
484
+ k wj
485
+ ��2 +
486
+ ��f H
487
+ k PΘ
488
+ ��2σ2v + σ2 ,
489
+ (7)
490
+ wherein ¯hH
491
+ k = hH
492
+ k + fk
493
+ HPΘG ∈ C1×M is the equivalent
494
+ channel from the BS to user k, which includes both the direct
495
+ link and the reflected link. Therefore, the original problem of
496
+ sum-rate maximization, subject to the power constraints at the
497
+ BS and the active RIS, can be formulated as follows:
498
+ Po : max
499
+ w,P,Θ Rsum(w, P, Θ) =
500
+ �K
501
+ k=1 log2 (1 + γk),
502
+ (8a)
503
+ s.t. C1 :
504
+ �K
505
+ k=1 ∥wk∥2 ≤ P max
506
+ BS
507
+ ,
508
+ (8b)
509
+ C2 :
510
+ �K
511
+ k=1∥PΘGwk∥2+∥PΘ∥2 σ2
512
+ v ≤P max
513
+ A
514
+ , (8c)
515
+ where w :=
516
+
517
+ wT
518
+ 1 , · · · , wT
519
+ K
520
+ �T is the overall transmit precoding
521
+ vector for the K users; C1 and C2 are the power constraints at
522
+ the BS and active RIS, respectively. Due to the non-convexity
523
+ and the highly coupled variables in problem Po in (8), the
524
+ joint design of w, P, and Θ is challenging.
525
+ To efficiently solve the above problem, we develop a joint
526
+ precoding and beamforming algorithm based on alternating
527
+ optimization and fractional programming (FP). Note that P
528
+ and Θ always appear in product form in problem Po in
529
+ (8). Therefore, P and Θ can be merged as Ψ = PΘ =
530
+ diag
531
+
532
+ p1ejθ1, · · · , pNejθN �
533
+ ∈ CN×N. We refer to Ψ as the
534
+ RIS beamforming matrix. Next, to deal with the non-convex
535
+ sum-of-logarithms and fractions in (8), we exploit the FP
536
+ methods proposed in [7] to decouple the variables in problem
537
+ Po in (8). This leads to the following lemma.
538
+ Lemma 4 (Equivalent problem for sum-rate maximiza-
539
+ tion): By introducing auxiliary variables ρ := [ρ1, · · · , ρK] ∈
540
+ RK and ϖ := [ϖ1, · · · , ϖK] ∈ CK, the original problem Po
541
+ in (8) can be equivalently reformulated as follows
542
+ P1 :
543
+ max
544
+ w,Ψ,ρ,ϖ R′
545
+ sum(w, Ψ, ρ, ϖ) =
546
+ �K
547
+ k=1 ln (1 + ρk)−
548
+ �K
549
+ k=1 ρk +
550
+ �K
551
+ k=1 g(w, Ψ, ρk, ϖk),
552
+ s.t. C1, C2,
553
+ (9)
554
+ where function g(w, Ψ, ρk, ϖk) is defined as
555
+ g(w, Ψ, ρk, ϖk) = 2
556
+
557
+ (1 + ρk)R
558
+
559
+ ϖ∗
560
+ k¯hH
561
+ k wk
562
+
563
+
564
+ |ϖk|2
565
+ ��K
566
+ j=1
567
+ ��¯hH
568
+ k wj
569
+ ��2 +
570
+ ��f H
571
+ k Ψ
572
+ ��2σ2
573
+ v + σ2
574
+
575
+ .
576
+ (10)
577
+ Proof: Constructive proof can be found in [7, Subsection
578
+ III-C].
579
+ Strong convergence of the FP methods was proved in [7].
580
+ Thus, a locally optimal solution to (9) can be obtained by
581
+ alternately optimizing the variables. For clarity, we summarize
582
+ the proposed joint precoding and beamforming algorithm in
583
+ Algorithm 1, and the specific solutions for variables w, Ψ,
584
+ ρ, and ϖ are given in the following four steps, respectively.
585
+ Algorithm 1 Proposed joint transmit precoding and reflect
586
+ beamforming algorithm
587
+ Input:
588
+ Channels G, hk, and fk, ∀k ∈ {1, · · · , K}.
589
+ Output:
590
+ Optimized BS precoding vector w, amplification
591
+ factor matrix of active RIS P, phase shift matrix of active
592
+ RIS Θ, and sum-rate Rsum.
593
+ 1: Randomly initialize w, P and Θ;
594
+ 2: while no convergence of Rsum do
595
+ 3:
596
+ Update ρ by (11);
597
+ 4:
598
+ Update ϖ by (12);
599
+ 5:
600
+ Update w by solving problem P2 in (14);
601
+ 6:
602
+ Update Ψ by solving problem P3 in (15);
603
+ 7: end while
604
+ 8: Obtain P and Θ from Ψ;
605
+ 9: return Optimized w, P, Θ, and Rsum.
606
+ 1) Fix (w, Ψ, ϖ) and optimize ρ: After fixing precoding
607
+ vector w, beamforming matrix Ψ, and auxiliary variable ϖ,
608
+ the optimal ρ can be obtained by solving ∂R′
609
+ sum
610
+ ∂ρk
611
+ = 0 as
612
+ ρopt
613
+ k
614
+ = ξ2
615
+ k + ξk
616
+
617
+ ξ2
618
+ k + 4
619
+ 2
620
+ ,
621
+ ∀k ∈ {1, · · · , K},
622
+ (11)
623
+ where ξk = ℜ
624
+
625
+ ϖ∗
626
+ k¯hH
627
+ k wk
628
+
629
+ .
630
+ 2) Fix (w, Ψ, ρ) and optimize ϖ: After fixing the precod-
631
+ ing vector w, beamforming matrix Ψ, and auxiliary variable
632
+ ρ, the optimal ϖ can be derived by solving ∂R′
633
+ sum
634
+ ∂ϖk
635
+ = 0 as
636
+ ϖopt
637
+ k
638
+ =
639
+
640
+ (1 + ρk)¯hH
641
+ k wk
642
+ �K
643
+ j=1
644
+ ��¯hH
645
+ k wj
646
+ ��2+
647
+ ��f H
648
+ k Ψ
649
+ ��2σ2v + σ2 .
650
+ (12)
651
+ 3) Fix (Ψ, ρ, ϖ) and optimize w: To simplify the nota-
652
+ tions, we first introduce the following definitions:
653
+ bH
654
+ k =
655
+
656
+ (1 + ρk)ϖ∗
657
+ k¯hH
658
+ k , b =
659
+
660
+ bT
661
+ 1 , bT
662
+ 2 , · · · , bT
663
+ N
664
+ �T ,
665
+ (13a)
666
+ A=IK ⊗
667
+ �K
668
+ k=1|ϖk|2¯hk¯hH
669
+ k , Ξ=IK ⊗
670
+
671
+ GHΨHΨG
672
+
673
+ , (13b)
674
+ P max
675
+ m
676
+ = P max
677
+ A
678
+ − ∥Ψ∥2σ2
679
+ v,
680
+ (13c)
681
+ where ⊗ denotes the Kronecker product. Then, problem P1 in
682
+ (9) can be reformulated as follows:
683
+ P2 :
684
+ max
685
+ w
686
+ R
687
+
688
+ 2bHw
689
+
690
+ − wHAw,
691
+ s.t.
692
+ C1 : ∥w∥2 ≤ P max
693
+ BS
694
+ ,
695
+ C2 : wHΞw ≤ P max
696
+ m
697
+ .
698
+ (14)
699
+ Note that P2 in (14) is a standard quadratic constraint
700
+ quadratic programming (QCQP) problem, which can be solved
701
+ by alternating direction method of multipliers (ADMM).
702
+ 4) Fix
703
+ (w, ρ, ϖ)
704
+ and
705
+ optimize
706
+ Ψ:
707
+ Define
708
+ ψ
709
+ =
710
+
711
+ p1ejθ1, · · · , pNejθN �H as the vectorized RIS beamforming
712
+ matrix Ψ, i.e., diag
713
+
714
+ ψH�
715
+ := Ψ. While fixing w and ρ and
716
+ ϖ, problem P1 in (9) can be reformulated as follows:
717
+ P3 :
718
+ max
719
+ ψ
720
+ R
721
+
722
+ 2ψHυ
723
+
724
+ − ψHΩψ,
725
+ s.t. C2 : ψHΠψ ≤ P max
726
+ A
727
+ ,
728
+ (15)
729
+
730
+ spectrum
731
+ analyzer
732
+ LNA
733
+ vector network
734
+ analyzer
735
+ DC source
736
+ active RIS
737
+ element
738
+ circulator
739
+ pump
740
+ source
741
+ noise source
742
+ Fig. 2. The experimental devices and environment used for validating the signal model (2) of active RISs.
743
+ 2.359
744
+ 2.3595
745
+ 2.36
746
+ 2.3605
747
+ 2.361
748
+ -15
749
+ -10
750
+ -5
751
+ 0
752
+ 5
753
+ 10
754
+ 15
755
+ 20
756
+ 25
757
+ 30
758
+ Fig. 3. Experimental measurement result for reflection gain G versus signal
759
+ frequency f.
760
+ wherein
761
+ υ =
762
+ �K
763
+ k=1
764
+
765
+ (1 + ρk)diag
766
+
767
+ ϖ∗
768
+ kf H
769
+ k
770
+
771
+ Gwk−
772
+ �K
773
+ k=1 |ϖk|2diag
774
+
775
+ f H
776
+ k
777
+
778
+ G
779
+ �K
780
+ j=1 wjwH
781
+ j hk,
782
+ (16a)
783
+ Ω =
784
+ �K
785
+ k=1 |ϖk|2diag
786
+
787
+ f H
788
+ k
789
+
790
+ diag (fk) σ2
791
+ v+
792
+ �K
793
+ k=1 |ϖk|2 �K
794
+ j=1diag
795
+
796
+ f H
797
+ k
798
+
799
+ GwjwH
800
+ j GHdiag (fk), (16b)
801
+ Π =
802
+ �K
803
+ k=1 diag (Gwk) (diag (Gwk))H + σ2
804
+ vIN.
805
+ (16c)
806
+ Note that problem P3 in (15) is also a standard QCQP
807
+ problem. Thus, the optimal solution ψopt can be obtained by
808
+ adopting ADMM.
809
+ V. VALIDATION RESULTS
810
+ A. Validation Results for Signal Model
811
+ To validate the signal model (2), we designed and fabri-
812
+ cated an active RIS element with an integrated reflection-
813
+ type amplifier for experimental measurements in [8]. Note
814
+ that this design can be directly extended to the large-array
815
+ case. Particularly, since the phase-shifting ability of RISs has
816
+ been widely verified, we focus on studying the reflection gain
817
+ -15
818
+ -10
819
+ -5
820
+ 0
821
+ 5
822
+ 10
823
+ 15
824
+ 20
825
+ 25
826
+ -170
827
+ -165
828
+ -160
829
+ -155
830
+ -150
831
+ -145
832
+ -140
833
+ -135
834
+ -130
835
+ Fig. 4.
836
+ Experimental measurement result for the density of noise power
837
+ Gσ2
838
+ v + σ2
839
+ s versus reflection gain G.
840
+ and the noise introduced by an active RIS element. Thus, the
841
+ validation of signal model (2) is equivalent to validating
842
+ Py =
843
+ GPx
844
+ ����
845
+ Desired-signal power
846
+ + Gσ2
847
+ v + σ2
848
+ s
849
+
850
+ ��
851
+
852
+ noise power
853
+ ,
854
+ (17)
855
+ where Py is the power of the signals reflected by the active
856
+ RIS element; Px is the power of the incident signal; G := p2 is
857
+ the reflection gain of the active RIS element; Gσ2
858
+ v and σ2
859
+ s are
860
+ the powers of the dynamic noise and static noise introduced
861
+ by the active RIS element, respectively.
862
+ 1) Hardware platform: To validate the model in (17), we
863
+ first establish the hardware platform used for our experimental
864
+ measurements in Fig. 2. Due to space constraints, we refer
865
+ the reader to the journal version of this paper [4, Fig. 4] for
866
+ detailed information about the hardware platform.
867
+ 2) Reflection gain measurement: Using the measurement
868
+ system for the reflection gain depicted in [4, Fig. 4 (b)], we
869
+ first investigate the reflection gain G of the active RIS element.
870
+ Note that the reflection gain G can be reconfigured by the
871
+ input power of the pump source Pp. By setting the input
872
+ power of the vector network analyzer as Px = −50 dBm, the
873
+ reflection gain G as a function of the signal frequency can be
874
+ directly measured via a vector network analyzer. Then, in Fig.
875
+
876
+ -10
877
+ -5
878
+ 0
879
+ 5
880
+ 10
881
+ 15
882
+ 20
883
+ 25
884
+ 30
885
+ 0
886
+ 10
887
+ 20
888
+ 30
889
+ 40
890
+ 50
891
+ 60
892
+ 507%
893
+ Fig. 5. Simulation results for the sum-rate versus total power consumption
894
+ P max in scenario 1 with a weak direct link..
895
+ 3, we show the measurement results for reflection gain G as
896
+ a function of signal frequency f for different input powers of
897
+ the pump source Pp. We observe that the active RIS element
898
+ can achieve a reflection gain G of more than 25 dB, when
899
+ Pp = 18.24 dBm, which confirms the significant reflection
900
+ gains enabled by active RISs.
901
+ 3) Noise power measurement: We further study the noise
902
+ power introduced by the active RIS element, i.e., Gσ2
903
+ v + σ2
904
+ s
905
+ in (17), where Gσ2
906
+ v and σ2
907
+ s are the powers of the dynamic
908
+ noise and the static noise introduced at the active RIS element,
909
+ respectively. Using the noise measurement system in [4, Fig. 4
910
+ (c)], we show the measurement results for the spectral density
911
+ of noise power Gσ2
912
+ v + σ2
913
+ s as a function of G for different
914
+ operating frequencies in Fig. 4. We can observe that the noise
915
+ power increases nearly linearly with G, which verifies the
916
+ noise model Gσ2
917
+ v + σ2
918
+ s in (17). Particularly, for f = 2.3601
919
+ GHz, the spectral density of σ2
920
+ s is about −174 dBm/Hz, while
921
+ that of σ2
922
+ v is about −160 dBm/Hz, which is about 15 dB
923
+ higher. The reason for this is that the input noise is amplified
924
+ by the noise factor, and additional noises are also introduced
925
+ by the other active components such as the DC source used
926
+ to power the active RIS.
927
+ B. Simulation Results for Sum-Rate
928
+ 1) Simulation setup: We consider an active RIS aided MU-
929
+ MISO system. Particularly, we consider two scenarios with dif-
930
+ ferent channel conditions. In scenario 1, the direct link is weak
931
+ due to severe obstruction, while the direct link is strong in
932
+ scenario 2. To be specific, two different path loss models from
933
+ the 3GPP TS 36.814 standard are utilized to characterize the
934
+ large-scale fading of the channels: i) PLs = 37.3+22.0 log d;
935
+ ii) PLw = 41.2 + 28.7 log d, where d is the distance between
936
+ two devices. Path loss model PLw is used to generate the weak
937
+ BS-user link in scenario 1, while PLs is used to generate the
938
+ strong BS-user link in scenario 2. For both scenarios, PLs is
939
+ used to generate the BS-RIS and the RIS-user channels. To
940
+ account for small-scale fading, we adopt the Ricean fading
941
+ channel model for all channels involved and we assume the
942
+ Ricean factor as κ = 1.
943
+ -10
944
+ -5
945
+ 0
946
+ 5
947
+ 10
948
+ 15
949
+ 20
950
+ 25
951
+ 30
952
+ 0
953
+ 10
954
+ 20
955
+ 30
956
+ 40
957
+ 50
958
+ 60
959
+ 62%
960
+ Fig. 6. Simulation results for the sum-rate versus total power consumption
961
+ P max in scenario 2 with a strong direct link.
962
+ The BS and the active/passive RIS are located at (0, -60
963
+ m) and (200 m, 30 m), respectively. Four users are randomly
964
+ located in a circle with a radius of 5 m from the center (200
965
+ m, 0). The numbers of BS antennas and RIS elements are set
966
+ as M = 4 and N = 256, respectively. The noise power is set
967
+ as σ2 = σ2
968
+ v = −70 dBm. For fair comparison, we constrain
969
+ the total power consumption P max := P max
970
+ BS
971
+ + P max
972
+ A
973
+ . For the
974
+ active RIS, Algorithm 1 is employed for joint precoding and
975
+ beamforming design, while for the passive RIS, the algorithm
976
+ from [2] is adopted.
977
+ 2) Simulation results: In Fig. 5 and Fig. 6, we plot the
978
+ sum-rate versus the total consumed power P max for the two
979
+ considered scenarios, where the direct link is weak and strong,
980
+ respectively. Firstly, in scenario 1 with a weak direct link, the
981
+ passive RIS can indeed achieve a performance improvement,
982
+ while the active RIS achieves a much higher sum-rate gain.
983
+ Secondly, in scenario 2 with a strong direct link, the passive
984
+ RIS achieves only a negligible sum-rate gain, while the active
985
+ RIS still realizes a noticeable sum-rate gain. For example,
986
+ when P max = 10 dBW, the capacities without RIS, with
987
+ passive RIS, and with active RIS in scenario 1 are 5.34 bps/Hz,
988
+ 7.00 bps/Hz, and 32.41 bps/Hz respectively, while in scenario
989
+ 2, these values are 19.87 bps/Hz, 20.51 bps/Hz, and 32.18
990
+ bps/Hz, respectively. In this case, the passive RIS provides a
991
+ 31% gain in scenario 1 and a negligible 3% gain in scenario 2.
992
+ By contrast, the active RIS achieves noticeable sum-rate gains
993
+ of 507% in scenario 1 and 62% in scenario 2, which are much
994
+ higher than those achieved by the passive RIS.
995
+ C. Field Test for a 64-Element Active RIS Aided Wireless
996
+ Communication Prototype
997
+ 1) 64-element active RIS aided communication prototype:
998
+ To validate the significant gain of active RISs, we develop a
999
+ 64-element active RIS aided wireless communication proto-
1000
+ type, as shown in Fig. 7. Specifically, the hardware structure
1001
+ of this prototype consists of three parts including a BS, a 64-
1002
+ element active RIS, and a user. For the BS and the user, two
1003
+ horn antennas with 13 dBi antenna gain are used to transmit
1004
+
1005
+ Fig. 7. A photograph of the developed 64-element active RIS aided wireless
1006
+ communication system.
1007
+ and receive the signals, and the universal software radio
1008
+ peripherals (USRPs) are deployed to generate and process the
1009
+ baseband and RF signals (hardware version: USRP-2953R).
1010
+ By periodically expanding the active RIS elements designed
1011
+ in [8], the 64-element active RIS is an 8×8 plane array, of
1012
+ which each element has a reflection gain of G = 10 dB.
1013
+ 2) Experimental environment: Based on the developed pro-
1014
+ totype, we establish the experimental environment for further
1015
+ validation. To match the transceivers, we configure the oper-
1016
+ ating frequency of the active RIS to f = 3.5 GHz and the
1017
+ bandwidth to 40 MHz by adjusting the circuit impedance of
1018
+ active elements. The polarization of the antenna at the BS
1019
+ and that at the user are selected as vertical and horizontal,
1020
+ respectively. The transmit power is set to −10 mW. We fix the
1021
+ heights of the BS, the RIS, and the user as 1 m. The horizontal
1022
+ distance of the BS-RIS link and that of the RIS-user link are
1023
+ set to 2 m and 3.5 m, respectively. The angle of arrival (AoA)
1024
+ at the active RIS is fixed as 0◦, and the angle of departure
1025
+ (AoD) will be specified to evaluate the performance gain of
1026
+ active RISs at different orientations. To observe the reflection
1027
+ gain of the active RIS, we use a metal plate with the same
1028
+ aperture size as the active RIS for performance comparison.
1029
+ 3) Experimental results: By moving the user at different
1030
+ AoDs and configuring the phase shift of the active RIS with
1031
+ discrete Fourier transform (DFT) codebook, we obtain the
1032
+ experimental results shown in Table I. One can observe that,
1033
+ compared with the received power for the metal plate, the
1034
+ active RIS can always achieve a gain of about 10 dB. The data
1035
+ rate for the active RIS can hold at about 30 Mbps, while that
1036
+ for the metal plate only ranges from 1 Mbps to 2Mbps. The
1037
+ reason is that, the beamforming at the active RIS can make the
1038
+ reflected beam with high array gain and reflection gain, while
1039
+ the metal plate can only reflect the incident signals randomly
1040
+ without in-phase combination or amplification, which validates
1041
+ the significant gain of active RISs.
1042
+ VI. CONCLUSIONS
1043
+ In this paper, we have studied the concept of active RISs
1044
+ to overcome the fundamental limitation of the “multiplicative
1045
+ fading” effect. Firstly, we have verified the signal model of
1046
+ TABLE I
1047
+ EXPERIMENTAL RESULTS FOR THE DEVELOPED PROTOTYPE
1048
+ AoD
1049
+ Device
1050
+ Received Power
1051
+ Data Rate
1052
+ 15◦
1053
+ Metal plate
1054
+ -110 dBm
1055
+ 1.2 Mbps
1056
+ Active RIS
1057
+ -100 dBm
1058
+ 28.5 Mbps
1059
+ 30◦
1060
+ Metal plate
1061
+ -105 dBm
1062
+ 1.5 Mbps
1063
+ Active RIS
1064
+ -98 dBm
1065
+ 30.5 Mbps
1066
+ 45◦
1067
+ Metal plate
1068
+ -105 dBm
1069
+ 1.5 Mbps
1070
+ Active RIS
1071
+ -95 dBm
1072
+ 30 Mbps
1073
+ 60◦
1074
+ Metal plate
1075
+ -108 dBm
1076
+ 2 Mbps
1077
+ Active RIS
1078
+ -90 dBm
1079
+ 32 Mbps
1080
+ active RISs through the experimental measurements on a fab-
1081
+ ricated active RIS element. Based on the verified signal model,
1082
+ we have formulated the sum-rate maximization problem for
1083
+ an active RIS aided MU-MISO system and a joint precoding
1084
+ and beamforming algorithm has been proposed to solve this
1085
+ problem. Simulation results have shown that, in a typical
1086
+ application scenario, the existing passive RIS can realize only
1087
+ a negligible sum-rate gain of about 3%, while the active RIS
1088
+ can achieve a substantial sum-rate gain of about 62%, thus
1089
+ indeed overcoming the “multiplicative fading” effect. Finally,
1090
+ we have developed a communication wireless communication
1091
+ prototype aided by a 64-element active RIS, and the significant
1092
+ gain of active RISs is validated by field test. In the future,
1093
+ many research directions for active RISs are worth pursuing,
1094
+ such as hardware design, prototype development, channel
1095
+ estimation, and energy efficiency analysis.
1096
+ ACKNOWLEDGMENT
1097
+ This work was supported in part by the National Key
1098
+ Research and Development Program of China (Grant No.
1099
+ 2020YFB1805005), in part by the National Natural Science
1100
+ Foundation of China (Grant No. 62031019), and in part by the
1101
+ European Commission through the H2020-MSCA-ITN META
1102
+ WIRELESS Research Project under Grant 956256.
1103
+ REFERENCES
1104
+ [1] C. Huang, A. Zappone, G. C. Alexandropoulos, M. Debbah, and C. Yuen,
1105
+ “Reconfigurable intelligent surfaces for energy efficiency in wireless
1106
+ communication,” IEEE Trans. Wireless Commun., vol. 18, no. 8, pp.
1107
+ 4157–4170, Aug. 2019.
1108
+ [2] C. Pan, H. Ren, K. Wang, W. Xu, M. Elkashlan, A. Nallanathan,
1109
+ and L. Hanzo, “Multicell MIMO communications relying on intelligent
1110
+ reflecting surfaces,” IEEE Trans. Wireless Commun., vol. 19, no. 8, pp.
1111
+ 5218–5233, Aug. 2020.
1112
+ [3] M. Najafi, V. Jamali, R. Schober, and H. V. Poor, “Physics-based mod-
1113
+ eling and scalable optimization of large intelligent reflecting surfaces,”
1114
+ IEEE Trans. Commun., vol. 69, no. 4, pp. 2673–2691, Apr. 2021.
1115
+ [4] Z. Zhang, L. Dai, X. Chen, C. Liu, F. Yang, R. Schober, and H. V. Poor,
1116
+ “Active RIS vs. passive RIS: Which will prevail in 6G?” IEEE Trans.
1117
+ Commun., Dec. 2022.
1118
+ [5] J. Bousquet, S. Magierowski, and G. G. Messier, “A 4-GHz active
1119
+ scatterer in 130-nm CMOS for phase sweep amplify-and-forward,” IEEE
1120
+ Trans. Circuits Syst. I, vol. 59, no. 3, pp. 529–540, Mar. 2012.
1121
+ [6] Q. Wu and R. Zhang, “Intelligent reflecting surface enhanced wireless
1122
+ network via joint active and passive beamforming,” IEEE Trans. Wireless
1123
+ Commun., vol. 18, no. 11, pp. 5394–5409, Nov. 2019.
1124
+ [7] K. Shen and W. Yu, “Fractional programming for communication sys-
1125
+ tems—part I: Power control and beamforming,” IEEE Trans. Signal
1126
+ Process., vol. 66, no. 10, pp. 2616–2630, May 2018.
1127
+ [8] X. Chen and F. Yang, “Nonlinear electromagnetic surfaces: Theory,
1128
+ design and application,” Master Thesis in Tsinghua University, May 2020,
1129
+ [Online] Available: http://etds.lib.tsinghua.edu.cn/Thesis.
1130
+
1131
+ 3.5GHz
1132
+ 有源RIS
1133
+ 8 X 8 Active RIS
1134
+ BS
1135
+ User
XNAyT4oBgHgl3EQfWPfd/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,389 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf,len=388
2
+ page_content='Active RISs: Signal Modeling, Asymptotic Analysis, and Beamforming Design Zijian Zhang∗, Linglong Dai∗, Fellow, IEEE, Xibi Chen∗, Changhao Liu∗, Fan Yang∗, Fellow, IEEE, Robert Schober†, Fellow, IEEE, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
3
+ page_content=' Vincent Poor§, Life Fellow, IEEE ∗Beijing National Research Center for Information Science and Technology (BNRist) Department of Electronic Engineering, Tsinghua University, China †Institute for Digital Communications, Friedrich-Alexander University Erlangen-N¨urnberg, Germany §Department of Electrical and Computer Engineering, Princeton University, USA E-mails: zhangzj20@mails.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
4
+ page_content='tsinghua.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
5
+ page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
6
+ page_content='cn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
7
+ page_content=' daill@tsinghua.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
8
+ page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
9
+ page_content='cn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
10
+ page_content=' cxb17@tsinghua.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
11
+ page_content='org.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
12
+ page_content='cn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
13
+ page_content=' liuch17@tsinghua.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
14
+ page_content='org.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
15
+ page_content='cn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
16
+ page_content=' fan yang@tsinghua.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
17
+ page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
18
+ page_content='cn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
19
+ page_content=' robert.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
20
+ page_content='schober@fau.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
21
+ page_content='de;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
22
+ page_content=' poor@princeton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
23
+ page_content='edu Abstract—Reconfigurable intelligent surfaces (RISs) have emerged as a candidate technology for future 6G networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
24
+ page_content=' However, due to the “multiplicative fading” effect, the existing passive RISs only achieve a negligible capacity gain in environ- ments with strong direct links.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
25
+ page_content=' In this paper, the concept of active RISs is studied to overcome this fundamental limitation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
26
+ page_content=' Unlike the existing passive RISs that reflect signals without amplification, active RISs can amplify the reflected signals via amplifiers integrated into their elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
27
+ page_content=' To characterize the signal amplification and incorporate the noise introduced by the active components, we verify the signal model of active RISs through the experimental measurements on a fabricated active RIS element.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
28
+ page_content=' Based on the verified signal model, we formulate the sum-rate maximization problem for an active RIS aided multi-user multiple-input single-output (MU-MISO) system and a joint transmit precoding and reflect beamforming algorithm is proposed to solve this problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
29
+ page_content=' Simulation results show that, in a typical wireless system, the existing passive RISs can realize only a negligible sum-rate gain of 3%, while the active RISs can achieve a significant sum-rate gain of 62%, thus overcoming the “multiplicative fading” effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
30
+ page_content=' Finally, we develop a 64-element active RIS aided wireless communication prototype, and the significant gain of active RISs is validated by field test.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
31
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
32
+ page_content=' INTRODUCTION From the first generation (1G) to 5G wireless communica- tions, the wireless channel has been considered to be uncon- trollable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
33
+ page_content=' Recently, due to the advances in meta-materials, re- configurable intelligent surfaces (RISs) have been proposed [1] for the purpose of intelligently controlling wireless channels to achieve improved communication performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
34
+ page_content=' Specifically, an RIS is an array composed of a very large number of passive elements that reflects electromagnetic signals in a desired manner so as to reconfigure the propagation properties of wireless environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
35
+ page_content=' As an important advantage of RIS, the negligible noise introduced by passive RISs enables a high array gain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
36
+ page_content=' Benefiting from this advantage, RISs are expected to introduce significant capacity gains in wireless systems [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
37
+ page_content=' However, in practice, the expected capacity gains are typ- ically only observed in communication environments where the direct link between transmitter and receiver is completely blocked or very weak.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
38
+ page_content=' By contrast, in many scenarios where the direct link is not weak, conventional RISs can only achieve negligible capacity gains [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
39
+ page_content=' The reason behind this phenomenon is the “multiplicative fading” effect introduced by RISs, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
40
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
41
+ page_content=', the equivalent path loss of the transmitter-RIS- receiver link is the product (instead of the sum) of the path losses of the transmitter-RIS and RIS-receiver links, which is usually thousands of times larger than that of the direct link [1]–[3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
42
+ page_content=' As a result, the “multiplicative fading” effect makes it almost impossible for passive RISs to achieve noticeable capacity gains in many wireless environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
43
+ page_content=' Therefore, to advance the practicability of RISs in future 6G wireless networks, a critical issue for RISs to be addressed is: How to break the fundamental performance bottleneck caused by the “multiplicative fading” effect?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
44
+ page_content=' To overcome the fundamental physical limitation of con- ventional passive RISs imposed by the “multiplicative fading” effect, in this paper, we investigate the concept of active RISs to overcome the “multiplicative fading” effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
45
+ page_content=' Different from the existing passive RISs that passively reflect signals without amplification, the key feature of active RISs is their ability to actively reflect signals with amplification at the expense of additional power consumption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
46
+ page_content=' Firstly, through the experi- mental measurements on a fabricated active RIS element, we verify the signal model of active RISs, which characterizes the amplification of the incident signal and accounts for the non- negligible thermal noise introduced by the active elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
47
+ page_content=' Based on the verified signal model, we further analyze the asymptotic performance of active RISs and formulate a sum- rate maximization problem for an active RIS aided multi- user multiple-input single-output (MU-MISO) system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
48
+ page_content=' Then, a joint transmit precoding and reflect beamforming algorithm is proposed to solve this problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
49
+ page_content=' Simulation results show that, in a typical wireless system, the existing passive RISs achieve only a negligible sum-rate gain of 3%, while the active RISs are able to achieve a substantial sum-rate gain of 62%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
50
+ page_content=' Finally, we develop a 64-element active RIS aided wireless communication prototype, and field tests are conducted to validate the significant gain of active RISs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
51
+ page_content=' The rest of this paper is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
52
+ page_content=' In Section II, the concept of RISs and their signal models are introduced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
53
+ page_content=' In Section III, the asymptotic performance of active RISs is analyzed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
54
+ page_content=' In Section IV, a sum-rate maximization problem is 978-1-6654-3540-6/22 © 2022 IEEE arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
55
+ page_content='00161v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
56
+ page_content='IT] 31 Dec 2022 formulated, and a joint precoding and beamforming design is proposed to solve the problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
57
+ page_content=' In Section V, simulation results and experimental measurements are presented to validate the signal model and evaluate the performance of active RISs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
58
+ page_content=' Finally, conclusions are drawn in Section VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
59
+ page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
60
+ page_content=' PASSIVE RISS AND ACTIVE RISS A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
61
+ page_content=' Conventional Passive RISs The RISs widely studied in most existing works are passive [1]–[3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
62
+ page_content=' In general, each passive RIS element consists of a re- flective patch terminated with an impedance-adjustable circuit for phase shifting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
63
+ page_content=' Thanks to the passive mode of operation, the thermal noise at passive RISs is usually negligible [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
64
+ page_content=' Thereby, the signal model of an N-element passive RIS widely used in the literature is given as follows: y = Θx, (1) where x ∈ CN denotes the incident signal, y ∈ CN denotes the signal reflected by the RIS, and Θ := diag � ejθ1, · · · , ejθN � ∈ CN×N denotes the phase shift matrix of the RIS with diag(·) being the diagonalization operation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
65
+ page_content=' By properly adjusting Θ to manipulate the N signals reflected by the N RIS elements to coherently add with the same phase at the receiver, a high array gain proportional to N 2 can be achieved, which is expected to significantly increase the signal- to-noise ratio (SNR) [1] at the receiver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
66
+ page_content=' Unfortunately, this expected high capacity gain often cannot be realized in practice, especially in communication scenarios where the direct link between the transmitter and the receiver is strong.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
67
+ page_content=' The reason for this negative result is the “multiplicative fading” effect introduced by passive RISs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
68
+ page_content=' Specifically, the equivalent path loss of the transmitter-RIS-receiver reflected link is the product (instead of the sum) of the path losses of the transmitter-RIS and RIS-receiver links, and therefore, it is thousands of times larger than that of the unobstructed direct link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
69
+ page_content=' Thereby, for an RIS to realize a noticeable capacity gain, thousands (or even millions) of RIS elements are required to compensate for this extremely large path loss [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
70
+ page_content=' The resulting high signaling overhead for channel estimation and the high complexity of real-time beamforming make the application of such a large number of passive RIS elements in practical wireless networks very challenging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
71
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
72
+ page_content=' Concept of Active RISs To overcome the fundamental performance bottleneck caused by the “multiplicative fading” effect of RISs, we study the concept of active RISs as a promising solution1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
73
+ page_content=' As shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
74
+ page_content=' 1, similar to the existing passive RISs, active RISs can also reflect the incident signals with reconfigurable phase shifts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
75
+ page_content=' Different from passive RISs that just reflect the incident signals without amplification, active RISs can further amplify the reflected signals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
76
+ page_content=' To achieve this goal, the key component 1Note that active RISs are fundamentally different from relay-type RISs equipped with RF components and relays.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
77
+ page_content=' Due to space constraints, we refer to the journal version of this paper for a more detailed discussion [4, Remark 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
78
+ page_content=' input BS RIS Active RIS user 1 user k incident signal reflected signal with amplification phase- shift circuit patch reflection-type amplifier output active element power supply Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
79
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
80
+ page_content=' The downlink transmission in an active RIS aided MU-MISO system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
81
+ page_content=' of an active RIS element is the additionally integrated active reflection-type amplifier, which can be realized by different existing active components, such current-inverting converters or some integrated circuits [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
82
+ page_content=' With reflection-type amplifiers supported by a power supply, the reflected and amplified signal of an N-element active RIS can be modeled as follows: y = PΘx � �� � Desired signal + PΘv � �� � Dynamic noise + ns ���� Static noise , (2) where P := diag (p1, · · · , pN) ∈ RN×N denotes the amplifi- cation factor matrix of the active RIS, wherein each element pn can be larger than one thanks to the integrated reflection-type amplifier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
83
+ page_content=' Due to the use of active components, active RISs consume additional power for amplifying the reflected signals, and the thermal noise introduced by active RIS elements cannot be neglected as is done for passive RISs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
84
+ page_content=' Particularly, as shown in (2), the introduced noise can be classified into dynamic noise and static noise [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
85
+ page_content=' Specifically, v is related to the input noise and the inherent device noise of the active RIS elements [5], while the static noise ns is unrelated to P and is usually negligible compared to the dynamic noise PΘv, as will be verified by experimental results in Section V-A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
86
+ page_content=' Thus, here we neglect ns and model v as v ∼ CN � 0N, σ2 vIN � , where CN(µ, Σ) denotes the complex multivariate Gaussian distribution with mean µ and variance Σ, IL is an L × L identity matrix, and 0L is an L × 1 zero vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
87
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
88
+ page_content=' Active RIS Aided MU-MISO System Consider an active RIS aided downlink MU-MISO system as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
89
+ page_content=' 1, where an M-antenna base station (BS) serves K single-antenna users simultaneously with the aid of an N-element active RIS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
90
+ page_content=' Let s := [s1, · · · , sK]T ∈ CK denote the transmitted symbol vector for the K users and let wk ∈ CM×1 denote the BS precoding vector for symbol sk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
91
+ page_content=' According to (2), signal rk ∈ C received at user k can be modeled as follows: rk = ( hH k ���� Direct link + f H k PΘG � �� � Reflected link ) �K j=1wjsj + f H k PΘv � �� � Noise introduced by active RIS + zk ���� Noise introduced at user k , (3) where [·]H denotes the conjugate-transpose operation;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
92
+ page_content=' G ∈ CN×M, hH k ∈ C1×M, and f H k ∈ C1×N characterize the channels between the BS and the RIS, between the BS and user k, and between the RIS and user k, respectively;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
93
+ page_content=' and zk denotes the additive white Gaussian noise (AWGN) at user k with zero mean and variance σ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
94
+ page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
95
+ page_content=' PERFORMANCE ANALYSIS In this section, we analyze the performance of active RISs to reveal their notable capacity gains compared to passive RISs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
96
+ page_content=' To this end, in order to make the problem analytically tractable and get insightful results, in this section, we consider a single- user single-input single-output (SU-SISO) system with M = 1 BS antenna and K = 1 user, while the general MU-MISO case is studied in Section IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
97
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
98
+ page_content=' Asymptotic SNR for Passive RISs and Active RISs To illustrate the capacity gain provided by passive/active RIS aided reflected links, for the moment, we ignore the direct link by setting hk to zero, as was done in, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
99
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
100
+ page_content=', [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
101
+ page_content=' Furthermore, for simplicity, we assume that each active RIS element has the same amplification factor (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
102
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
103
+ page_content=', pn := p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
104
+ page_content=' For a fair comparison with the asymptotic performance of passive RISs, similar to [6], we assume Rayleigh-fading channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
105
+ page_content=' We first redefine the BS-RIS channel matrix and the RIS- user channel vector as G := g ∈ CN×1 and fk := f ∈ CN×1, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
106
+ page_content=' Then, we recall the following lemma from [6] for the asymptotic SNR achieved by passive RISs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
107
+ page_content=' Lemma 1 (Asymptotic SNR for passive RISs): Assuming f ∼ CN � 0N, ϱ2 fIN � , g ∼ CN � 0N, ϱ2 gIN � and letting N → ∞, the asymptotic SNR γpassive of a passive RIS aided SU- SISO system is given by γpassive → N 2 P max BS π2ϱ2 fϱ2 g 16σ2 , (4) where P max BS denotes the maximum transmit power at the BS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
108
+ page_content=' Proof: The proof can be found in [6, Proposition 2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
109
+ page_content=' For comparison, under the same transmission conditions, we provide the asymptotic SNR of an active RIS aided SU-SISO system in the following lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
110
+ page_content=' Lemma 2 (Asymptotic SNR for active RISs): Assuming f ∼ CN � 0N, ϱ2 fIN � , g ∼ CN � 0N, ϱ2 gIN � and letting N → ∞, the asymptotic SNR γactive of an active RIS aided SU-SISO system is given by γactive → N P max BS P max A π2ϱ2 fϱ2 g 16 � P max A σ2vϱ2 f + P max BS σ2ϱ2g + σ2σ2v �, (5) where P max A denotes the maximum reflect power of the active RIS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
111
+ page_content=' Proof: Please see the journal version [4, Appendix A].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
112
+ page_content=' Remark 1: From (5) we observe that, the asymptotic SNR of an active RIS aided SU-SISO system depends on both the BS transmit power P max BS and the reflect power of the active RIS P max A .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
113
+ page_content=' When P max BS → ∞, the asymptotic SNR will be upper-bounded by γactive → NP max A π2ϱ2 f/ � 16σ2� , which is independent of the BS-RIS channel g and the noise power at the active RIS σ2 v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
114
+ page_content=' Similarly, if P max A → ∞, the asymptotic SNR will be upper-bounded by γactive → NP max BS π2ϱ2 g/16σ2 v, which is independent of the RIS-user channel f and the noise power at the user σ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
115
+ page_content=' These results reveal that, to increase the sum-rate of active RIS aided systems, the negative impact of small g and large σ2 v on system performance can be alleviated by increasing the BS transmit power P max BS , and the negative impact of small f and large σ2 can be reduced by increasing the reflect power of the active RIS P max A .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
116
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
117
+ page_content=' Comparisons between Passive RISs and Active RISs We can observe from Lemma 1 and Lemma 2 that, compared to the asymptotic SNR for passive RISs γpassive in (4) which is proportional to N 2, the asymptotic SNR for active RISs γactive in (5) is proportional to N due to the noises introduced by the use of active components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
118
+ page_content=' At first glance, it seems that the SNR achieved by passive RISs γpassive always exceeds the SNR achieved by active RISs γactive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
119
+ page_content=' However, this is actually not the case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
120
+ page_content=' The reason behind this counterintuitive behavior is that, due to the large path loss caused by the “multiplicative fading” effect and thanks to the use of the reflection-type amplifiers in active RISs, only when N is unaffordably large can passive RISs outperform active RISs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
121
+ page_content=' To illustrate this claim, let us consider two different SU- SISO systems, which are aided by an active RIS and a passive RIS, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
122
+ page_content=' Then, the following lemma specifies the condition that has to be met for passive RISs to outperform active RISs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
123
+ page_content=' Lemma 3 (Case when passive RISs outperform active RISs): Assuming the number of RIS elements N is large, the required number of elements N for a passive RIS to outperform an active RIS has to satisfy N ≥ P max BS-A P max BS-P P max A σ2 � P max A σ2vϱ2 f + P max BS-Aσ2ϱ2g + σ2σ2v �, (6) where P max BS-A denotes the maximum BS transmit power for the active RIS aided system and P max BS-P denotes that for the passive RIS aided system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
124
+ page_content=' Proof: Please see the journal version [4, Appendix B].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
125
+ page_content=' Next, we consider a specific setup to compare the user’s achievable SNRs in the above two systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
126
+ page_content=' For a fair com- parison, we constrain the total power consumption P max of the two systems to 2 W by setting P max BS-P = 2 W for the passive RIS aided system and P max BS-A = P max A = 1 W for the active RIS aided system, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
127
+ page_content=' Therefore, when σ2 = σ2 v = −70 dBm and ϱ2 f = ϱ2 g = −70 dB, the required number of elements N for the passive RIS to outperform the active RIS is 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
128
+ page_content='5 × 106 according to (6), which is impractical to realize with current technology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
129
+ page_content=' Conversely, for a more practical number of elements of N = 256, according to (5) and (4), the SNR achieved by the passive RIS is γpassive ≈ 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
130
+ page_content='0 dB, while the SNR achieved by the active RIS is γactive ≈ 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
131
+ page_content='0 dB, which is about 10, 000 times higher than γpassive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
132
+ page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
133
+ page_content=' JOINT TRANSMIT PRECODING AND REFLECT BEAMFORMING DESIGN To investigate the capacity gain enabled by the use of active RISs in typical wireless communication scenarios, in this section, we consider more general MU-MISO systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
134
+ page_content=' According to the model in (3), the signal-to-interference-plus- noise ratio (SINR) at user k can be obtained as γk = ��¯hH k wk ��2 �K j=1,j̸=k ��¯hH k wj ��2 + ��f H k PΘ ��2σ2v + σ2 , (7) wherein ¯hH k = hH k + fk HPΘG ∈ C1×M is the equivalent channel from the BS to user k, which includes both the direct link and the reflected link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
135
+ page_content=' Therefore, the original problem of sum-rate maximization, subject to the power constraints at the BS and the active RIS, can be formulated as follows: Po : max w,P,Θ Rsum(w, P, Θ) = �K k=1 log2 (1 + γk), (8a) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
136
+ page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
137
+ page_content=' C1 : �K k=1 ∥wk∥2 ≤ P max BS , (8b) C2 : �K k=1∥PΘGwk∥2+∥PΘ∥2 σ2 v ≤P max A , (8c) where w := � wT 1 , · · · , wT K �T is the overall transmit precoding vector for the K users;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
138
+ page_content=' C1 and C2 are the power constraints at the BS and active RIS, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
139
+ page_content=' Due to the non-convexity and the highly coupled variables in problem Po in (8), the joint design of w, P, and Θ is challenging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
140
+ page_content=' To efficiently solve the above problem, we develop a joint precoding and beamforming algorithm based on alternating optimization and fractional programming (FP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
141
+ page_content=' Note that P and Θ always appear in product form in problem Po in (8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
142
+ page_content=' Therefore, P and Θ can be merged as Ψ = PΘ = diag � p1ejθ1, · · · , pNejθN � ∈ CN×N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
143
+ page_content=' We refer to Ψ as the RIS beamforming matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
144
+ page_content=' Next, to deal with the non-convex sum-of-logarithms and fractions in (8), we exploit the FP methods proposed in [7] to decouple the variables in problem Po in (8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
145
+ page_content=' This leads to the following lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
146
+ page_content=' Lemma 4 (Equivalent problem for sum-rate maximiza- tion): By introducing auxiliary variables ρ := [ρ1, · · · , ρK] ∈ RK and ϖ := [ϖ1, · · · , ϖK] ∈ CK, the original problem Po in (8) can be equivalently reformulated as follows P1 : max w,Ψ,ρ,ϖ R′ sum(w, Ψ, ρ, ϖ) = �K k=1 ln (1 + ρk)− �K k=1 ρk + �K k=1 g(w, Ψ, ρk, ϖk), s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
147
+ page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
148
+ page_content=' C1, C2, (9) where function g(w, Ψ, ρk, ϖk) is defined as g(w, Ψ, ρk, ϖk) = 2 � (1 + ρk)R � ϖ∗ k¯hH k wk � − |ϖk|2 ��K j=1 ��¯hH k wj ��2 + ��f H k Ψ ��2σ2 v + σ2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
149
+ page_content=' (10) Proof: Constructive proof can be found in [7, Subsection III-C].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
150
+ page_content=' Strong convergence of the FP methods was proved in [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
151
+ page_content=' Thus, a locally optimal solution to (9) can be obtained by alternately optimizing the variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
152
+ page_content=' For clarity, we summarize the proposed joint precoding and beamforming algorithm in Algorithm 1, and the specific solutions for variables w, Ψ, ρ, and ϖ are given in the following four steps, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
153
+ page_content=' Algorithm 1 Proposed joint transmit precoding and reflect beamforming algorithm Input: Channels G, hk, and fk, ∀k ∈ {1, · · · , K}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
154
+ page_content=' Output: Optimized BS precoding vector w, amplification factor matrix of active RIS P, phase shift matrix of active RIS Θ, and sum-rate Rsum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
155
+ page_content=' 1: Randomly initialize w, P and Θ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
156
+ page_content=' 2: while no convergence of Rsum do 3: Update ρ by (11);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
157
+ page_content=' 4: Update ϖ by (12);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
158
+ page_content=' 5: Update w by solving problem P2 in (14);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
159
+ page_content=' 6: Update Ψ by solving problem P3 in (15);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
160
+ page_content=' 7: end while 8: Obtain P and Θ from Ψ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
161
+ page_content=' 9: return Optimized w, P, Θ, and Rsum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
162
+ page_content=' 1) Fix (w, Ψ, ϖ) and optimize ρ: After fixing precoding vector w, beamforming matrix Ψ, and auxiliary variable ϖ, the optimal ρ can be obtained by solving ∂R′ sum ∂ρk = 0 as ρopt k = ξ2 k + ξk � ξ2 k + 4 2 , ∀k ∈ {1, · · · , K}, (11) where ξk = ℜ � ϖ∗ k¯hH k wk � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
163
+ page_content=' 2) Fix (w, Ψ, ρ) and optimize ϖ: After fixing the precod- ing vector w, beamforming matrix Ψ, and auxiliary variable ρ, the optimal ϖ can be derived by solving ∂R′ sum ∂ϖk = 0 as ϖopt k = � (1 + ρk)¯hH k wk �K j=1 ��¯hH k wj ��2+ ��f H k Ψ ��2σ2v + σ2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
164
+ page_content=' (12) 3) Fix (Ψ, ρ, ϖ) and optimize w: To simplify the nota- tions, we first introduce the following definitions: bH k = � (1 + ρk)ϖ∗ k¯hH k , b = � bT 1 , bT 2 , · · · , bT N �T , (13a) A=IK ⊗ �K k=1|ϖk|2¯hk¯hH k , Ξ=IK ⊗ � GHΨHΨG � , (13b) P max m = P max A − ∥Ψ∥2σ2 v, (13c) where ⊗ denotes the Kronecker product.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
165
+ page_content=' Then, problem P1 in (9) can be reformulated as follows: P2 : max w R � 2bHw � − wHAw, s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
166
+ page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
167
+ page_content=' C1 : ∥w∥2 ≤ P max BS , C2 : wHΞw ≤ P max m .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
168
+ page_content=' (14) Note that P2 in (14) is a standard quadratic constraint quadratic programming (QCQP) problem, which can be solved by alternating direction method of multipliers (ADMM).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
169
+ page_content=' 4) Fix (w, ρ, ϖ) and optimize Ψ: Define ψ = � p1ejθ1, · · · , pNejθN �H as the vectorized RIS beamforming matrix Ψ, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
170
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
171
+ page_content=', diag � ψH� := Ψ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
172
+ page_content=' While fixing w and ρ and ϖ, problem P1 in (9) can be reformulated as follows: P3 : max ψ R � 2ψHυ � − ψHΩψ, s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
173
+ page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
174
+ page_content=' C2 : ψHΠψ �� P max A , (15) spectrum analyzer LNA vector network analyzer DC source active RIS element circulator pump source noise source Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
175
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
176
+ page_content=' The experimental devices and environment used for validating the signal model (2) of active RISs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
177
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
178
+ page_content='359 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
179
+ page_content='3595 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
180
+ page_content='36 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
181
+ page_content='3605 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
182
+ page_content='361 15 10 5 0 5 10 15 20 25 30 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
183
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
184
+ page_content=' Experimental measurement result for reflection gain G versus signal frequency f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
185
+ page_content=' wherein υ = �K k=1 � (1 + ρk)diag � ϖ∗ kf H k � Gwk− �K k=1 |ϖk|2diag � f H k � G �K j=1 wjwH j hk, (16a) Ω = �K k=1 |ϖk|2diag � f H k � diag (fk) σ2 v+ �K k=1 |ϖk|2 �K j=1diag � f H k � GwjwH j GHdiag (fk), (16b) Π = �K k=1 diag (Gwk) (diag (Gwk))H + σ2 vIN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
186
+ page_content=' (16c) Note that problem P3 in (15) is also a standard QCQP problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
187
+ page_content=' Thus, the optimal solution ψopt can be obtained by adopting ADMM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
188
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
189
+ page_content=' VALIDATION RESULTS A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
190
+ page_content=' Validation Results for Signal Model To validate the signal model (2), we designed and fabri- cated an active RIS element with an integrated reflection- type amplifier for experimental measurements in [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
191
+ page_content=' Note that this design can be directly extended to the large-array case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
192
+ page_content=' Particularly, since the phase-shifting ability of RISs has been widely verified, we focus on studying the reflection gain 15 10 5 0 5 10 15 20 25 170 165 160 155 150 145 140 135 130 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
193
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
194
+ page_content=' Experimental measurement result for the density of noise power Gσ2 v + σ2 s versus reflection gain G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
195
+ page_content=' and the noise introduced by an active RIS element.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
196
+ page_content=' Thus, the validation of signal model (2) is equivalent to validating Py = GPx ���� Desired-signal power + Gσ2 v + σ2 s � �� � noise power , (17) where Py is the power of the signals reflected by the active RIS element;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
197
+ page_content=' Px is the power of the incident signal;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
198
+ page_content=' G := p2 is the re��ection gain of the active RIS element;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
199
+ page_content=' Gσ2 v and σ2 s are the powers of the dynamic noise and static noise introduced by the active RIS element, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
200
+ page_content=' 1) Hardware platform: To validate the model in (17), we first establish the hardware platform used for our experimental measurements in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
201
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
202
+ page_content=' Due to space constraints, we refer the reader to the journal version of this paper [4, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
203
+ page_content=' 4] for detailed information about the hardware platform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
204
+ page_content=' 2) Reflection gain measurement: Using the measurement system for the reflection gain depicted in [4, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
205
+ page_content=' 4 (b)], we first investigate the reflection gain G of the active RIS element.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
206
+ page_content=' Note that the reflection gain G can be reconfigured by the input power of the pump source Pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
207
+ page_content=' By setting the input power of the vector network analyzer as Px = −50 dBm, the reflection gain G as a function of the signal frequency can be directly measured via a vector network analyzer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
208
+ page_content=' Then, in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
209
+ page_content=' 10 5 0 5 10 15 20 25 30 0 10 20 30 40 50 60 507% Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
210
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
211
+ page_content=' Simulation results for the sum-rate versus total power consumption P max in scenario 1 with a weak direct link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
212
+ page_content='. 3, we show the measurement results for reflection gain G as a function of signal frequency f for different input powers of the pump source Pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
213
+ page_content=' We observe that the active RIS element can achieve a reflection gain G of more than 25 dB, when Pp = 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
214
+ page_content='24 dBm, which confirms the significant reflection gains enabled by active RISs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
215
+ page_content=' 3) Noise power measurement: We further study the noise power introduced by the active RIS element, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
216
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
217
+ page_content=', Gσ2 v + σ2 s in (17), where Gσ2 v and σ2 s are the powers of the dynamic noise and the static noise introduced at the active RIS element, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
218
+ page_content=' Using the noise measurement system in [4, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
219
+ page_content=' 4 (c)], we show the measurement results for the spectral density of noise power Gσ2 v + σ2 s as a function of G for different operating frequencies in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
220
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
221
+ page_content=' We can observe that the noise power increases nearly linearly with G, which verifies the noise model Gσ2 v + σ2 s in (17).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
222
+ page_content=' Particularly, for f = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
223
+ page_content='3601 GHz, the spectral density of σ2 s is about −174 dBm/Hz, while that of σ2 v is about −160 dBm/Hz, which is about 15 dB higher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
224
+ page_content=' The reason for this is that the input noise is amplified by the noise factor, and additional noises are also introduced by the other active components such as the DC source used to power the active RIS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
225
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
226
+ page_content=' Simulation Results for Sum-Rate 1) Simulation setup: We consider an active RIS aided MU- MISO system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
227
+ page_content=' Particularly, we consider two scenarios with dif- ferent channel conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
228
+ page_content=' In scenario 1, the direct link is weak due to severe obstruction, while the direct link is strong in scenario 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
229
+ page_content=' To be specific, two different path loss models from the 3GPP TS 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
230
+ page_content='814 standard are utilized to characterize the large-scale fading of the channels: i) PLs = 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
231
+ page_content='3+22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
232
+ page_content='0 log d;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
233
+ page_content=' ii) PLw = 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
234
+ page_content='2 + 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
235
+ page_content='7 log d, where d is the distance between two devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
236
+ page_content=' Path loss model PLw is used to generate the weak BS-user link in scenario 1, while PLs is used to generate the strong BS-user link in scenario 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
237
+ page_content=' For both scenarios, PLs is used to generate the BS-RIS and the RIS-user channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
238
+ page_content=' To account for small-scale fading, we adopt the Ricean fading channel model for all channels involved and we assume the Ricean factor as κ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
239
+ page_content=' 10 5 0 5 10 15 20 25 30 0 10 20 30 40 50 60 62% Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
240
+ page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
241
+ page_content=' Simulation results for the sum-rate versus total power consumption P max in scenario 2 with a strong direct link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
242
+ page_content=' The BS and the active/passive RIS are located at (0, -60 m) and (200 m, 30 m), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
243
+ page_content=' Four users are randomly located in a circle with a radius of 5 m from the center (200 m, 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
244
+ page_content=' The numbers of BS antennas and RIS elements are set as M = 4 and N = 256, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
245
+ page_content=' The noise power is set as σ2 = σ2 v = −70 dBm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
246
+ page_content=' For fair comparison, we constrain the total power consumption P max := P max BS + P max A .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
247
+ page_content=' For the active RIS, Algorithm 1 is employed for joint precoding and beamforming design, while for the passive RIS, the algorithm from [2] is adopted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
248
+ page_content=' 2) Simulation results: In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
249
+ page_content=' 5 and Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
250
+ page_content=' 6, we plot the sum-rate versus the total consumed power P max for the two considered scenarios, where the direct link is weak and strong, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
251
+ page_content=' Firstly, in scenario 1 with a weak direct link, the passive RIS can indeed achieve a performance improvement, while the active RIS achieves a much higher sum-rate gain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
252
+ page_content=' Secondly, in scenario 2 with a strong direct link, the passive RIS achieves only a negligible sum-rate gain, while the active RIS still realizes a noticeable sum-rate gain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
253
+ page_content=' For example, when P max = 10 dBW, the capacities without RIS, with passive RIS, and with active RIS in scenario 1 are 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
254
+ page_content='34 bps/Hz, 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
255
+ page_content='00 bps/Hz, and 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
256
+ page_content='41 bps/Hz respectively, while in scenario 2, these values are 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
257
+ page_content='87 bps/Hz, 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
258
+ page_content='51 bps/Hz, and 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
259
+ page_content='18 bps/Hz, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
260
+ page_content=' In this case, the passive RIS provides a 31% gain in scenario 1 and a negligible 3% gain in scenario 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
261
+ page_content=' By contrast, the active RIS achieves noticeable sum-rate gains of 507% in scenario 1 and 62% in scenario 2, which are much higher than those achieved by the passive RIS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
262
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
263
+ page_content=' Field Test for a 64-Element Active RIS Aided Wireless Communication Prototype 1) 64-element active RIS aided communication prototype: To validate the significant gain of active RISs, we develop a 64-element active RIS aided wireless communication proto- type, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
264
+ page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
265
+ page_content=' Specifically, the hardware structure of this prototype consists of three parts including a BS, a 64- element active RIS, and a user.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
266
+ page_content=' For the BS and the user, two horn antennas with 13 dBi antenna gain are used to transmit Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
267
+ page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
268
+ page_content=' A photograph of the developed 64-element active RIS aided wireless communication system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
269
+ page_content=' and receive the signals, and the universal software radio peripherals (USRPs) are deployed to generate and process the baseband and RF signals (hardware version: USRP-2953R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
270
+ page_content=' By periodically expanding the active RIS elements designed in [8], the 64-element active RIS is an 8×8 plane array, of which each element has a reflection gain of G = 10 dB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
271
+ page_content=' 2) Experimental environment: Based on the developed pro- totype, we establish the experimental environment for further validation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
272
+ page_content=' To match the transceivers, we configure the oper- ating frequency of the active RIS to f = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
273
+ page_content='5 GHz and the bandwidth to 40 MHz by adjusting the circuit impedance of active elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
274
+ page_content=' The polarization of the antenna at the BS and that at the user are selected as vertical and horizontal, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
275
+ page_content=' The transmit power is set to −10 mW.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
276
+ page_content=' We fix the heights of the BS, the RIS, and the user as 1 m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
277
+ page_content=' The horizontal distance of the BS-RIS link and that of the RIS-user link are set to 2 m and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
278
+ page_content='5 m, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
279
+ page_content=' The angle of arrival (AoA) at the active RIS is fixed as 0◦, and the angle of departure (AoD) will be specified to evaluate the performance gain of active RISs at different orientations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
280
+ page_content=' To observe the reflection gain of the active RIS, we use a metal plate with the same aperture size as the active RIS for performance comparison.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
281
+ page_content=' 3) Experimental results: By moving the user at different AoDs and configuring the phase shift of the active RIS with discrete Fourier transform (DFT) codebook, we obtain the experimental results shown in Table I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
282
+ page_content=' One can observe that, compared with the received power for the metal plate, the active RIS can always achieve a gain of about 10 dB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
283
+ page_content=' The data rate for the active RIS can hold at about 30 Mbps, while that for the metal plate only ranges from 1 Mbps to 2Mbps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
284
+ page_content=' The reason is that, the beamforming at the active RIS can make the reflected beam with high array gain and reflection gain, while the metal plate can only reflect the incident signals randomly without in-phase combination or amplification, which validates the significant gain of active RISs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
285
+ page_content=' VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
286
+ page_content=' CONCLUSIONS In this paper, we have studied the concept of active RISs to overcome the fundamental limitation of the “multiplicative fading” effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
287
+ page_content=' Firstly, we have verified the signal model of TABLE I EXPERIMENTAL RESULTS FOR THE DEVELOPED PROTOTYPE AoD Device Received Power Data Rate 15◦ Metal plate 110 dBm 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
288
+ page_content='2 Mbps Active RIS 100 dBm 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
289
+ page_content='5 Mbps 30◦ Metal plate 105 dBm 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
290
+ page_content='5 Mbps Active RIS 98 dBm 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
291
+ page_content='5 Mbps 45◦ Metal plate 105 dBm 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
292
+ page_content='5 Mbps Active RIS 95 dBm 30 Mbps 60◦ Metal plate 108 dBm 2 Mbps Active RIS 90 dBm 32 Mbps active RISs through the experimental measurements on a fab- ricated active RIS element.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
293
+ page_content=' Based on the verified signal model, we have formulated the sum-rate maximization problem for an active RIS aided MU-MISO system and a joint precoding and beamforming algorithm has been proposed to solve this problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
294
+ page_content=' Simulation results have shown that, in a typical application scenario, the existing passive RIS can realize only a negligible sum-rate gain of about 3%, while the active RIS can achieve a substantial sum-rate gain of about 62%, thus indeed overcoming the “multiplicative fading” effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
295
+ page_content=' Finally, we have developed a communication wireless communication prototype aided by a 64-element active RIS, and the significant gain of active RISs is validated by field test.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
296
+ page_content=' In the future, many research directions for active RISs are worth pursuing, such as hardware design, prototype development, channel estimation, and energy efficiency analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
297
+ page_content=' ACKNOWLEDGMENT This work was supported in part by the National Key Research and Development Program of China (Grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
298
+ page_content=' 2020YFB1805005), in part by the National Natural Science Foundation of China (Grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
299
+ page_content=' 62031019), and in part by the European Commission through the H2020-MSCA-ITN META WIRELESS Research Project under Grant 956256.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
300
+ page_content=' REFERENCES [1] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
301
+ page_content=' Huang, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
302
+ page_content=' Zappone, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
303
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
304
+ page_content=' Alexandropoulos, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
305
+ page_content=' Debbah, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
306
+ page_content=' Yuen, “Reconfigurable intelligent surfaces for energy efficiency in wireless communication,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
307
+ page_content=' Wireless Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
308
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
309
+ page_content=' 18, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
310
+ page_content=' 8, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
311
+ page_content=' 4157–4170, Aug.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
312
+ page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
313
+ page_content=' [2] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
314
+ page_content=' Pan, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
315
+ page_content=' Ren, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
316
+ page_content=' Wang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
317
+ page_content=' Xu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
318
+ page_content=' Elkashlan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
319
+ page_content=' Nallanathan, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
320
+ page_content=' Hanzo, “Multicell MIMO communications relying on intelligent reflecting surfaces,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
321
+ page_content=' Wireless Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
322
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
323
+ page_content=' 19, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
324
+ page_content=' 8, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
325
+ page_content=' 5218–5233, Aug.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
326
+ page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
327
+ page_content=' [3] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
328
+ page_content=' Najafi, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
329
+ page_content=' Jamali, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
330
+ page_content=' Schober, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
331
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
332
+ page_content=' Poor, “Physics-based mod- eling and scalable optimization of large intelligent reflecting surfaces,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
333
+ page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
334
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
335
+ page_content=' 69, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
336
+ page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
337
+ page_content=' 2673–2691, Apr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
338
+ page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
339
+ page_content=' [4] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
340
+ page_content=' Zhang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
341
+ page_content=' Dai, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
342
+ page_content=' Chen, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
343
+ page_content=' Liu, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
344
+ page_content=' Yang, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
345
+ page_content=' Schober, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
346
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
347
+ page_content=' Poor, “Active RIS vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
348
+ page_content=' passive RIS: Which will prevail in 6G?”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
349
+ page_content=' IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
350
+ page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
351
+ page_content=', Dec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
352
+ page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
353
+ page_content=' [5] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
354
+ page_content=' Bousquet, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
355
+ page_content=' Magierowski, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
356
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
357
+ page_content=' Messier, “A 4-GHz active scatterer in 130-nm CMOS for phase sweep amplify-and-forward,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
358
+ page_content=' Circuits Syst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
359
+ page_content=' I, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
360
+ page_content=' 59, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
361
+ page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
362
+ page_content=' 529–540, Mar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
363
+ page_content=' 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
364
+ page_content=' [6] Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
365
+ page_content=' Wu and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
366
+ page_content=' Zhang, “Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
367
+ page_content=' Wireless Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
368
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
369
+ page_content=' 18, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
370
+ page_content=' 11, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
371
+ page_content=' 5394–5409, Nov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
372
+ page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
373
+ page_content=' [7] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
374
+ page_content=' Shen and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
375
+ page_content=' Yu, “Fractional programming for communication sys- tems—part I: Power control and beamforming,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
376
+ page_content=' Signal Process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
377
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
378
+ page_content=' 66, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
379
+ page_content=' 10, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
380
+ page_content=' 2616–2630, May 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
381
+ page_content=' [8] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
382
+ page_content=' Chen and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
383
+ page_content=' Yang, “Nonlinear electromagnetic surfaces: Theory, design and application,” Master Thesis in Tsinghua University, May 2020, [Online] Available: http://etds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
384
+ page_content='lib.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
385
+ page_content='tsinghua.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
386
+ page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
387
+ page_content='cn/Thesis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
388
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
389
+ page_content='5GHz 有源RIS 8 X 8 Active RIS BS User' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNAyT4oBgHgl3EQfWPfd/content/2301.00161v1.pdf'}
ZdE5T4oBgHgl3EQfeA8r/content/tmp_files/2301.05615v1.pdf.txt ADDED
@@ -0,0 +1,475 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Linear Computation Coding:
2
+ Exponential Search and Reduced-State Algorithms
3
+ Hans Rosenberger, Johanna S. Fr¨ohlich, Ali Bereyhi and Ralf R. M¨uller
4
+ Institute for Digital Communications (IDC)
5
+ Friedrich-Alexander-Universit¨at Erlangen-N¨urnberg
6
+ Erlangen, Germany
7
+ {hans.rosenberger, johanna.froehlich, ali.bereyhi, ralf.r.mueller}@fau.de
8
+ Abstract
9
+ Linear computation coding is concerned with the compression of multidimensional linear
10
+ functions, i.e. with reducing the computational effort of multiplying an arbitrary vector to
11
+ an arbitrary, but known, constant matrix. This paper advances over the state-of-the art,
12
+ that is based on a discrete matching pursuit (DMP) algorithm, by a step-wise optimal search.
13
+ Offering significant performance gains over DMP, it is however computationally infeasible
14
+ for large matrices and high accuracy. Therefore, a reduced-state algorithm is introduced
15
+ that offers performance superior to DMP, while still being computationally feasible even for
16
+ large matrices. Depending on the matrix size, the performance gain over DMP is on the
17
+ order of at least 10 %.
18
+ Introduction
19
+ Multiplying a vector by a constant matrix is an ubiquitous task performed in various
20
+ technical and scientific applications. The main body of earlier work is focused on
21
+ speeding up the calculation of matrix-vector multiplications in a structure-oriented
22
+ fashion. A well-known example is the fast implementation of the discrete fourier
23
+ transform (DFT). Here, the structure of the DFT matrix is exploited to eliminate
24
+ redundant computations and reduce the number of required operations as compared
25
+ to a naive implementation. For arbitrary constant matrices, redundancies within the
26
+ finite-precision representation of the matrix entries can be exploited as well, a method
27
+ that is typically known as common subexpression sharing/elimination. Earlier work
28
+ in this respect has either targeted special cases of constant multiplication [1, 2] or has
29
+ proposed schemes with high computational complexity, such that their implementation
30
+ in practice is difficult for medium to large size matrices [3, 4].
31
+ Recently, linear computation coding (LCC) has been proposed in [5, 6, 7]. This
32
+ framework develops an information-theoretic scheme for the efficient calculation
33
+ of matrix-vector products that is especially well-suited for the implementation on
34
+ reconfigurable hardware, such as field programmable gate arrays (FPGAs) [8]. Similar
35
+ to rate-distortion theory, LCC is concerned with the tradeoff between distortion
36
+ and compression. However, instead of compressing data, LCC deals with the lossy
37
+ compression of multidimensional linear functions under a given fidelity constraint. An
38
+ This work was supported by Deutsche Forschungsgemeinschaft (DFG) under the project Compu-
39
+ tation Coding (MU-3735/8-1).
40
+ arXiv:2301.05615v1 [cs.IT] 13 Jan 2023
41
+
42
+ instance can be found in [7], where an optimal decomposition scheme is first defined
43
+ in terms of classical metrics for computation and distortion. A greedy approach is
44
+ then developed to approximate the proposed scheme sub-optimally with tractable
45
+ complexity.
46
+ Contributions
47
+ In this paper, we develop a new LCC scheme. Similar to earlier approaches discussed
48
+ in [7], the optimal decomposition deals with an exponentially complex problem. We first
49
+ address this problem via an exhaustive search procedure with a careful optimization.
50
+ This enables us to evaluate the performance of the optimal scheme for reasonable
51
+ matrix sizes. We then present a computationally tractable scheme by proposing a
52
+ reduced-state algorithm for the underlying search problem. Our investigations show
53
+ that the proposed algorithm can achieve a computation-distortion tradeoff close to the
54
+ exponentially-complex optimal scheme while drastically reducing the decomposition
55
+ complexity.
56
+ Notation
57
+ Vectors are denoted as lower-case boldface letters x and matrices as upper-case boldface
58
+ letters X. The Euclidean and the Frobenius norm are denoted by ∥ · ∥2 and ∥ · ∥F,
59
+ respectively. The symbol 0N×K denotes an N × K matrix with all zero elements,
60
+ IN×K denotes the augmented identity matrix of dimension N × K and 1j,K denotes
61
+ the j-th row unit vector in K dimensions.
62
+ Problem Formulation
63
+ We consider the problem of matrix-vector multiplication, i.e the calculation
64
+ y = Ax
65
+ (1)
66
+ for an arbitrary input vector x ∈ RK×1 and a constant matrix A ∈ RN×K. Commonly,
67
+ matrices are approximated by quantizing their entries independently. By using the
68
+ canonically signed digit (CSD) binary representation the quantization error can be
69
+ decreased on average by a factor of
70
+
71
+ 28 per CSD [9]. This still leaves room for
72
+ improvement. LCC instead suggests to approximate A by a product of matrices, i.e.
73
+ finding W and C such that
74
+ A ≈ W C.
75
+ (2)
76
+ The matrix C ∈ AN×K is termed the codebook matrix and W ∈ AN×N is termed the
77
+ wiring matrix in the sequel1. The entries of the wiring matrix are restricted to the set
78
+ of zero and signed powers of two (A ⊆ {0, ±2Z}).
79
+ Obtaining the wiring and codebook matrix jointly is typically NP-hard and infea-
80
+ sible. To overcome this computational intractability, [7] proposes a scheme where the
81
+ 1In [6] the multiplication order of the decomposed matrices is reversed. Please note that this
82
+ change makes no difference to the general idea of the decomposition and to the following algorithms.
83
+ It is equal to the transposed version of the algorithm presented in [7].
84
+
85
+ n-th row of the wiring matrix is determined by solving the following sparse recovery
86
+ problem for some design parameter S < N controlling the cost between distortion and
87
+ computation effort [10]
88
+ wn =
89
+ argmin
90
+ ω∈{ω=�S
91
+ s=1 is1js,N: is∈A, js∈{1,...,N} ∀s}
92
+ ∥an − ωC∥2
93
+ ∀n.
94
+ (3)
95
+ The new scheme is still NP-hard, but not in N, anymore, but in S. Thus, small values
96
+ of S are required, in practice.
97
+ In order to have a high accuracy despite small values of S, the factorization
98
+ procedure can be applied multiple times. Then the product Ci = W iCi−1 of the
99
+ previous wiring step acts as the new codebook for obtaining the following matrix
100
+ factor W i of the current wiring step. Hence, by setting2 C0 = IN×K, we obtain the
101
+ approximated matrix P after I wiring steps:
102
+ A ≈ P =
103
+ � I�
104
+ i=1
105
+ W i
106
+
107
+ C0.
108
+ (4)
109
+ To quantify the accuracy of a given approximation P we use the signal-to-
110
+ quantization-noise-ratio (SQNR)
111
+ SQNR(A, P ) =
112
+ ∥A∥2
113
+ F
114
+ ∥A − P ∥2
115
+ F
116
+ .
117
+ (5)
118
+ Computational Cost
119
+ In a binary number representation the multiplication by a signed power of two
120
+ corresponds only to a bitshift. On reconfigurable hardware, this shift can be realized
121
+ simply by appropriate wiring without the need for dedicated processing elements
122
+ such as adders [8]. The parameter S in (3) determines the number of vectors from
123
+ the codebook to be used in forming the linear combination to approximate a row
124
+ an of A. It therefore directly controls the computational cost, as in computing the
125
+ linear combination, exactly S − 1 additions are required. No multiplications, except
126
+ by signed powers of two, are necessary due to the specific structure of the wiring
127
+ matrix. Therefore, the separate product of the decomposed matrices with the input
128
+ vector y ≈ W (Cx) is much simpler to compute than calculating the product in (1)
129
+ straightforwardly.
130
+ The total computational cost Cadd of a decomposition in (4) is given by the number
131
+ of additions (or subtractions) required to form the linear combinations
132
+ Cadd = IN(S − 1).
133
+ (6)
134
+ 2In [6] this choice is termed the self-designing codebook. It was found to work very well for a
135
+ wide range of matrices.
136
+
137
+ Algorithms
138
+ In this section we will briefly look at the state of the art for solving the optimization
139
+ problem in (3) to obtain the wiring matrices and then introduce two improved novel
140
+ algorithms.
141
+ State-of-the-Art: Discrete Matching Pursuit
142
+ The discrete matching pursuit (DMP) follows the matching pursuit approach to
143
+ successively determine the wiring coefficients. The algorithm can be summarized in
144
+ the following key steps; for details see [6].
145
+ 1. Start with iteration s ← 0. Initialize ω ← 01×N
146
+ 2. Update ω in at most a single component, such that ∥an − ωC∥2 is minimized.
147
+ 3. Increment s.
148
+ 4. If s ≤ S, go to step 2, otherwise the procedure terminates.
149
+ It is straightforward to show that the time complexity of the DMP algorithm for
150
+ computing a single matrix factor scales with O(N 3S).
151
+ Exponential Search Algorithm
152
+ The row-wise optimization problem in (3) is NP-hard. However, for small S, reasonable
153
+ matrix sizes and some careful optimization it can be solved in a tractable timeframe. We
154
+ limit the set of scaling factors to a finite set of signed powers of two (Aexp ⊂ {0, ±2Z}),
155
+ as an exhaustive search over the whole set is infeasible. As the search procedure has
156
+ to be performed for each row of the target matrix individually, the time complexity
157
+ for the computation of each wiring step is given by O(N S|Aexp|S).
158
+ Generally, which and how many coefficients are included in the subset Aexp is a
159
+ design parameter and needs to be adapted to each specific decomposition. It depends
160
+ primarily on two factors. First, the current wiring step plays a crucial role. For
161
+ each additional wiring layer, the error between each row of the target matrix and
162
+ the approximated matrix decreases. Hence, for any subsequent wiring step, smaller
163
+ coefficients are needed to scale the rows of the newly found codebook matrix to
164
+ appropriately approximate the residual error. This also means that for high desired
165
+ accuracy the coefficient set needs to be chosen large, i.e. to include also many small
166
+ coefficients, to accurately approximate the error. Furthermore, relative variations
167
+ in the length of the row vectors of the target matrix require a larger coefficient
168
+ set to compensate for differences. Still, to keep the decomposition computationally
169
+ feasible, the number of elements in Aexp needs to be chosen as small as possible, as
170
+ the computational complexity scales exponentially in S with the product of the size
171
+ of the coefficient set |Aexp| and N as base.
172
+ A promising approach for further research is to adapt the coefficient set for each
173
+ wiring step dynamically based on the current fidelity of the approximation. The
174
+ coefficient set may then be determined from the probability distribution of the likely
175
+ entries of the wiring matrix.
176
+
177
+ Reduced-State Algorithm
178
+ The runtime of the exponential algorithm for a matrix with N = 64 rows is on the
179
+ order of an hour3, for larger matrices the runtime scales up accordingly and can
180
+ become infeasible. Hence, for some applications the computational burden of the
181
+ exponential algorithm might consequently not be feasible. A reasonable compromise
182
+ between complexity and performance is desirable.
183
+ Unlike in DMP, we do not immediately update the components of the wiring
184
+ vector for the reduced-state algorithm. Instead, we keep updating in each iteration a
185
+ list of the M best vectors, which minimize (3) and select at the termination of the
186
+ algorithm the vector with minimum error from the list. Specifically, we apply the
187
+ following successive, greedy procedure for the optimization problem in (3):
188
+ 1. Start with s ← 0. Initialize the set Ω with M all-zero vectors.
189
+ 2. For each ω ∈ Ω find the set Ωm of M mutually distinct vectors ω ˜m with
190
+ ˜m ∈ {1, ..., M} that minimize ∥an − ω ˜mC∥2 and differ from ω in at most a
191
+ single component.
192
+ 3. Update the set Ω by selecting from �M
193
+ m=1 Ωm the M distinct vectors ω with
194
+ minimum ∥an − ωC∥2
195
+ 4. Increment s.
196
+ 5. If s ≤ S, go to step 2, else, continue
197
+ 6. Return argmin
198
+ ω∈Ω
199
+ ∥an − ωC∥2
200
+ By tuning M, we are able to adjust the space of possible combinations that the
201
+ algorithm explores. For each wiring step, we have to evaluate O(SN 3M 2) combinations.
202
+ Compared to DMP the complexity is increased by a factor of M 2. Note that for
203
+ M = 1 the algorithm reduces to the DMP.
204
+ Numerical Evaluation
205
+ In this section, we compare the performance of the proposed algorithms to the baseline
206
+ DMP [7]. We decompose matrices whose entries are drawn i.i.d. from a Gaussian
207
+ distribution with zero mean and unit variance. Similar to DMP, the performance of the
208
+ improved versions of the algorithm hardly depends on the distribution of the matrix
209
+ elements. The algorithms are invariant to scaling of the variance, however it is crucial
210
+ that for the exponential search algorithm the coefficient set Aexp is scaled appropriately
211
+ as well, as to not compromise performance. Throughout the simulations, we select the
212
+ coefficient set for the exponential search algorithm to Aexp = {±2−40, .., ±23}.
213
+ As a first experiment, we compare all three algorithms for fixed matrix sizes in
214
+ Figure 1. We choose matrices with N = 64 rows and vary the number of columns K
215
+ 3For a multithreaded implementation in Python with Numba acceleration executed on an Intel
216
+ i9-12900@2.40 GHz and parameters S = 3, Aexp =
217
+
218
+ ±2−40, . . . , ±23�
219
+ .
220
+
221
+ 0
222
+ 100
223
+ 200
224
+ 300
225
+ 400
226
+ 500
227
+ 600
228
+ 700
229
+ 800
230
+ Cumulative number of additions
231
+ 0
232
+ 20
233
+ 40
234
+ 60
235
+ 80
236
+ 100
237
+ 120
238
+ SQNR [dB]
239
+ 64x4
240
+ 64x6
241
+ 64x8
242
+ Figure 1: Performance comparison for matrices with 64 rows and different aspect ratios.
243
+ Matrices of dimension 64×4 are indicated by crosses, 64×6 is indicated by squares and 64×8
244
+ is indicated by triangles. The solid lines refer to the exponential search algorithm (S = 3),
245
+ the dashed lines to the DMP [7] (S = 2) and the dashed-dotted lines to the reduced state
246
+ algorithm with memory size M = 10 and S = 3. Results are averaged over 104 matrix entries
247
+ for the exponential search algorithm and over 105 matrix entries for the other algorithms.
248
+ from four to eight. Hence, we can compare the performance for different aspect ratios
249
+ of the matrices4. To quantify performance, we plot the tradeoff between distortion
250
+ and computational cost. The latter being measured by the number of cumulative
251
+ additions Cadd required for a given wiring step.
252
+ As Figure 1 shows, for all three matrix sizes there is a performance gain by both
253
+ proposed algorithms against DMP. Further, for memory size M = 10, the reduced
254
+ state algorithm performs only slightly worse than exhaustive search.
255
+ For the first two wiring steps, the performance of all three algorithms is equal
256
+ for a given matrix size. This is due to the fact that for the first two steps we use
257
+ DMP with S = 2 for an initial refinement of the codebook5. Applying any of the
258
+ 4LCC works best for matrices with an exponential aspect ratio, i.e. for K ≈ log2 N. For square
259
+ matrices it is beneficial to cut these into multiple tall matrices and decompose each slice independently,
260
+ see [8] for details.
261
+ 5Using any of the novel algorithms with S = 2 is possible as well with very similar performance, i.e.
262
+ a slight increase in SQNR by 0.2 dB to 0.5 dB for the novel algorithms and matrix sizes considered.
263
+
264
+ 0
265
+ 100
266
+ 200
267
+ 300
268
+ 400
269
+ 500
270
+ 600
271
+ 700
272
+ 800
273
+ Cumulative number of additions
274
+ 0
275
+ 10
276
+ 20
277
+ 30
278
+ 40
279
+ 50
280
+ 60
281
+ 70
282
+ 80
283
+ SQNR [dB]
284
+ Increasing M
285
+ (2, 5, 10, 50)
286
+ DMP
287
+ Exponential Search
288
+ Reduced State (Variable M)
289
+ Figure 2: Performance comparison for different memory sizes M of the reduced state
290
+ algorithm of a 64 × 6 matrix. The solid line refers to the exponential search algorithm
291
+ (S = 3), the dashed line to the DMP [7] (S = 2) and the dashed-dotted lines to the reduced
292
+ state algorithm with 4 different memory sizes and S = 3. Results are averaged over 104
293
+ matrix entries for the exponential search algorithm and over 105 matrix entries for the other
294
+ algorithms.
295
+ algorithms with S ≥ 3 directly to the initial codebook C0 = IN×K would lead to
296
+ degraded performance for the first few wiring steps. Instead it is beneficial to set S = 2
297
+ to allow for more frequent updates of the codebook in the beginning. From empirical
298
+ investigations it seems that two wiring iterations with S = 2 are most beneficial for
299
+ the overall performance.
300
+ As the next experiment, we compare the performance of the reduced state algorithm
301
+ for different choices of the memory parameter M for given matrix size of 64 × 6 in
302
+ Figure 2.
303
+ From the figure we observe that even for small M the reduced state
304
+ algorithm offers a noticeable performance gain over DMP. As M grows, the reduced
305
+ state algorithm approaches the performance of the exponential search. The large
306
+ advantage of the reduced state algorithm is that the computation time is reduced
307
+ drastically6. For M = 1 the reduced state algorithm reduces to DMP and both lines
308
+ 6For the considered matrix size the execution time differs from an hour for the exponential
309
+ algorithm to a few seconds for the reduced state algorithm in practice.
310
+
311
+ 0
312
+ 100
313
+ 200
314
+ 300
315
+ 400
316
+ 500
317
+ 600
318
+ 700
319
+ 800
320
+ Cumulative number of additions
321
+ 0
322
+ 20
323
+ 40
324
+ 60
325
+ 80
326
+ 100
327
+ 120
328
+ SQNR [dB]
329
+ Increasing S
330
+ (3, 4, 8)
331
+ DMP
332
+ Exponential search (S = 3)
333
+ Reduced State (S = 3, 4, 8)
334
+ Figure 3: Performance comparison for different choices of the parameter S of a matrix
335
+ with dimension 64 × 4. The solid line refers to the exponential search algorithm (S = 3),
336
+ the dashed line to the DMP [7] (S = 2) and the dashed-dotted lines to the reduced state
337
+ algorithm with different choices of the parameter S and M = 10. Results are averaged over
338
+ 104 matrix entries for the exponential search algorithm and over 105 matrix entries for the
339
+ other algorithms.
340
+ coincide for any given matrix size.
341
+ Table 1 lists the relative performance gains over DMP for various matrix sizes and
342
+ configurations of the algorithms.
343
+ Practical Considerations for the Choice of S
344
+ Figure 3 shows the performance of the reduced state algorithm for varying S. Due to
345
+ the exponentially growing complexity in S, the exponential algorithm is not feasible
346
+ for S > 3, except for very small matrices. We can observe, that by choosing S = 4
347
+ for the reduced state algorithm, we approximately achieve the same distortion-cost
348
+ tradeoff as for the exponential algorithm with S = 3. For choosing S even larger the
349
+ gains increase likewise.
350
+ However for a practicable implementation S should not be chosen arbitrarily. In [8],
351
+ the performance of DMP is validated in an implementation on reconfigurable hardware
352
+ with S = 2. This means that on an FPGA exactly N adders are required per wiring
353
+ matrix. With the inputs depending only on the outputs of the previous wiring matrix,
354
+
355
+ Table 1: Relative average gain in terms of SQNR of the novel algorithms over the baseline
356
+ DMP algorithm with S = 2 (For at least 8 bit signed integer accuracy (10 log(SQNR) ≥
357
+ 47 dB)). Results are averaged over 104 matrix entries for the exponential search algorithm
358
+ and over 105 matrix entries for the other algorithms.
359
+ Exponential
360
+ Reduced State
361
+ search
362
+ S = 3
363
+ S = 4
364
+ S = 8
365
+ Matrix size
366
+ S = 3
367
+ M = 5
368
+ M = 10
369
+ M = 5
370
+ M = 10
371
+ M = 5
372
+ M = 10
373
+ 16 × 2
374
+ 17.8 %
375
+ 10.4 %
376
+ 13.4 %
377
+ 14.1 %
378
+ 17.8 %
379
+ 16.7 %
380
+ 21.9 %
381
+ 16 × 4
382
+ 34.5 %
383
+ 16.0 %
384
+ 24.5 %
385
+ 25.8 %
386
+ 32.7 %
387
+ 25.4 %
388
+ 34.4 %
389
+ 32 × 4
390
+ 15.7 %
391
+ 10.5 %
392
+ 12.9 %
393
+ 14.0 %
394
+ 17.2 %
395
+ 18.4 %
396
+ 22.3 %
397
+ 32 × 6
398
+ 25.3 %
399
+ 15.5 %
400
+ 19.0 %
401
+ 19.7 %
402
+ 24.5 %
403
+ 19.4 %
404
+ 26.0 %
405
+ 64 × 4
406
+ 12.9 %
407
+ 7.5 %
408
+ 9.8 %
409
+ 11.0 %
410
+ 13.8 %
411
+ 13.5 %
412
+ 16.8 %
413
+ 64 × 6
414
+ 14.9 %
415
+ 9.6 %
416
+ 11.4 %
417
+ 13.6 %
418
+ 16.5 %
419
+ 15.6 %
420
+ 19.0 %
421
+ the decomposition is well suited for parallel execution and pipelining [8]. Due to the
422
+ greedy, step-wise nature of DMP S > 2 does not offer significant performance gains
423
+ over S = 2. Both novel algorithms behave differently.
424
+ From an implementation point of view, S = 3 is even more suitable than S = 2
425
+ for an effective implementation in hardware due to the availability of efficient adders
426
+ with three inputs [11]. Interestingly, on modern FPGAs, these adders do not require
427
+ more hardware resources, in terms of Lookup-Tables (LUTs), than an adder with two
428
+ inputs. Any powers of two and three (S = 4, 8, 9, . . . ) can be realized efficiently as well
429
+ by the use of adder trees. However, it is questionable if choosing S > 4 is beneficial,
430
+ as performance gains over S = 3 or S = 4 are small and the desired fidelity of the
431
+ approximation cannot be chosen in a fine granularity anymore7.
432
+ Conclusion
433
+ In this paper, we have proposed two new algorithms for LCC, a framework for
434
+ the lossy compression of multidimensional linear functions. While the exponential
435
+ search algorithm shows the best performance, it is generally infeasible especially for
436
+ large matrices. The proposed reduced-state algorithm, performs close to exponential
437
+ search at a fraction of the computational complexity. The time complexity of the
438
+ decomposition compared to the baseline algorithm from earlier works is only mildly
439
+ increased, while the performance gains over the baseline DMP algorithm are on the
440
+ order of at least 10 %.
441
+ References
442
+ [1] Jason Thong and Nicola Nicolici, “An optimal and practical approach to single constant
443
+ multiplication,” IEEE Transactions on Computer-Aided Design of Integrated Circuits
444
+ and Systems, vol. 30, no. 9, pp. 1373–1386, Sep 2011.
445
+ [2] Yevgen Voronenko and Markus P¨uschel, “Multiplierless multiple constant multiplication,”
446
+ ACM Transactions on Algorithms, vol. 3, no. 2, May 2007.
447
+ 7For a matrix of dimension 64 × 4 the reduced state algorithm with S = 8 improves the SQNR
448
+ approximately by 70 dB per matrix factor.
449
+
450
+ [3] N. Boullis and A. Tisserand, “Some optimizations of hardware multiplication by constant
451
+ matrices,” in Proceedings 2003 16th IEEE Symposium on Computer Arithmetic, 2003,
452
+ pp. 20–27.
453
+ [4] Levent Aksoy, Paulo Flores, and Jose Monteiro, “A novel method for the approximation
454
+ of multiplierless constant matrix vector multiplication,” EURASIP Journal on Embedded
455
+ Systems, , no. 12, May 2016.
456
+ [5] Ralf R. M¨uller, Bernhard G¨ade, and Ali Bereyhi, “Efficient matrix multiplication:
457
+ The sparse power-of-2 factorization,” in 2020 Information Theory and Applications
458
+ Workshop (ITA), 2020, pp. 1–6.
459
+ [6] Ralf R. M¨uller, Bernhard G¨ade, and Ali Bereyhi, “Linear computation coding,” 2021,
460
+ arXiv:2102.00398.
461
+ [7] Ralf R. M¨uller, Bernhard M. W. G¨ade, and Ali Bereyhi, “Linear computation coding:
462
+ A framework for joint quantization and computing,” Algorithms, vol. 15, no. 7, 2022.
463
+ [8] Alexander Lehnert, Philipp Holzinger, Simon Pfenning, Ralf R. M¨uller, and Marc
464
+ Reichenbach, “Most ressource efficient matrix vector multiplication on FPGA,” IEEE
465
+ Access, 2022, Early Access.
466
+ [9] A. D. Booth, “A signed binary mutliplication technique,” The Quarterly Journal of
467
+ Mechanics and Applied Mathematics, vol. 4, no. 2, pp. 236 – 240, Jan 1951.
468
+ [10] Simon Foucart and Holger Rauhut,
469
+ A Mathematical Introduction to Compressive
470
+ Sensing, Springer New York, 2013.
471
+ [11] James M. Simkins and Brian D. Philofsky, “Structures and methods for implementing
472
+ ternary adders/subtractors in programmable logic devices,” Sep 2007,
473
+ US Patent
474
+ 7,274,211.
475
+
ZdE5T4oBgHgl3EQfeA8r/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,277 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf,len=276
2
+ page_content='Linear Computation Coding: Exponential Search and Reduced-State Algorithms Hans Rosenberger, Johanna S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
3
+ page_content=' Fr¨ohlich, Ali Bereyhi and Ralf R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
4
+ page_content=' M¨uller Institute for Digital Communications (IDC) Friedrich-Alexander-Universit¨at Erlangen-N¨urnberg Erlangen, Germany {hans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
5
+ page_content='rosenberger, johanna.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
6
+ page_content='froehlich, ali.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
7
+ page_content='bereyhi, ralf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
8
+ page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
9
+ page_content='mueller}@fau.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
10
+ page_content='de Abstract Linear computation coding is concerned with the compression of multidimensional linear functions, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
11
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
12
+ page_content=' with reducing the computational effort of multiplying an arbitrary vector to an arbitrary, but known, constant matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
13
+ page_content=' This paper advances over the state-of-the art, that is based on a discrete matching pursuit (DMP) algorithm, by a step-wise optimal search.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
14
+ page_content=' Offering significant performance gains over DMP, it is however computationally infeasible for large matrices and high accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
15
+ page_content=' Therefore, a reduced-state algorithm is introduced that offers performance superior to DMP, while still being computationally feasible even for large matrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
16
+ page_content=' Depending on the matrix size, the performance gain over DMP is on the order of at least 10 %.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
17
+ page_content=' Introduction Multiplying a vector by a constant matrix is an ubiquitous task performed in various technical and scientific applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
18
+ page_content=' The main body of earlier work is focused on speeding up the calculation of matrix-vector multiplications in a structure-oriented fashion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
19
+ page_content=' A well-known example is the fast implementation of the discrete fourier transform (DFT).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
20
+ page_content=' Here, the structure of the DFT matrix is exploited to eliminate redundant computations and reduce the number of required operations as compared to a naive implementation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
21
+ page_content=' For arbitrary constant matrices, redundancies within the finite-precision representation of the matrix entries can be exploited as well, a method that is typically known as common subexpression sharing/elimination.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
22
+ page_content=' Earlier work in this respect has either targeted special cases of constant multiplication [1, 2] or has proposed schemes with high computational complexity, such that their implementation in practice is difficult for medium to large size matrices [3, 4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
23
+ page_content=' Recently, linear computation coding (LCC) has been proposed in [5, 6, 7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
24
+ page_content=' This framework develops an information-theoretic scheme for the efficient calculation of matrix-vector products that is especially well-suited for the implementation on reconfigurable hardware, such as field programmable gate arrays (FPGAs) [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
25
+ page_content=' Similar to rate-distortion theory, LCC is concerned with the tradeoff between distortion and compression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
26
+ page_content=' However, instead of compressing data, LCC deals with the lossy compression of multidimensional linear functions under a given fidelity constraint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
27
+ page_content=' An This work was supported by Deutsche Forschungsgemeinschaft (DFG) under the project Compu- tation Coding (MU-3735/8-1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
28
+ page_content=' arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
29
+ page_content='05615v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
30
+ page_content='IT] 13 Jan 2023 instance can be found in [7], where an optimal decomposition scheme is first defined in terms of classical metrics for computation and distortion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
31
+ page_content=' A greedy approach is then developed to approximate the proposed scheme sub-optimally with tractable complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
32
+ page_content=' Contributions In this paper, we develop a new LCC scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
33
+ page_content=' Similar to earlier approaches discussed in [7], the optimal decomposition deals with an exponentially complex problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
34
+ page_content=' We first address this problem via an exhaustive search procedure with a careful optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
35
+ page_content=' This enables us to evaluate the performance of the optimal scheme for reasonable matrix sizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
36
+ page_content=' We then present a computationally tractable scheme by proposing a reduced-state algorithm for the underlying search problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
37
+ page_content=' Our investigations show that the proposed algorithm can achieve a computation-distortion tradeoff close to the exponentially-complex optimal scheme while drastically reducing the decomposition complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
38
+ page_content=' Notation Vectors are denoted as lower-case boldface letters x and matrices as upper-case boldface letters X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
39
+ page_content=' The Euclidean and the Frobenius norm are denoted by ∥ · ∥2 and ∥ · ∥F, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
40
+ page_content=' The symbol 0N×K denotes an N × K matrix with all zero elements, IN×K denotes the augmented identity matrix of dimension N × K and 1j,K denotes the j-th row unit vector in K dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
41
+ page_content=' Problem Formulation We consider the problem of matrix-vector multiplication, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
42
+ page_content='e the calculation y = Ax (1) for an arbitrary input vector x ∈ RK×1 and a constant matrix A ∈ RN×K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
43
+ page_content=' Commonly, matrices are approximated by quantizing their entries independently.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
44
+ page_content=' By using the canonically signed digit (CSD) binary representation the quantization error can be decreased on average by a factor of √ 28 per CSD [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
45
+ page_content=' This still leaves room for improvement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
46
+ page_content=' LCC instead suggests to approximate A by a product of matrices, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
47
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
48
+ page_content=' finding W and C such that A ≈ W C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
49
+ page_content=' (2) The matrix C ∈ AN×K is termed the codebook matrix and W ∈ AN×N is termed the wiring matrix in the sequel1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
50
+ page_content=' The entries of the wiring matrix are restricted to the set of zero and signed powers of two (A ⊆ {0, ±2Z}).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
51
+ page_content=' Obtaining the wiring and codebook matrix jointly is typically NP-hard and infea- sible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
52
+ page_content=' To overcome this computational intractability, [7] proposes a scheme where the 1In [6] the multiplication order of the decomposed matrices is reversed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
53
+ page_content=' Please note that this change makes no difference to the general idea of the decomposition and to the following algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
54
+ page_content=' It is equal to the transposed version of the algorithm presented in [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
55
+ page_content=' n-th row of the wiring matrix is determined by solving the following sparse recovery problem for some design parameter S < N controlling the cost between distortion and computation effort [10] wn = argmin ω∈{ω=�S s=1 is1js,N: is∈A, js∈{1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
56
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
57
+ page_content=',N} ∀s} ∥an − ωC∥2 ∀n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
58
+ page_content=' (3) The new scheme is still NP-hard, but not in N, anymore, but in S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
59
+ page_content=' Thus, small values of S are required, in practice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
60
+ page_content=' In order to have a high accuracy despite small values of S, the factorization procedure can be applied multiple times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
61
+ page_content=' Then the product Ci = W iCi−1 of the previous wiring step acts as the new codebook for obtaining the following matrix factor W i of the current wiring step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
62
+ page_content=' Hence, by setting2 C0 = IN×K, we obtain the approximated matrix P after I wiring steps: A ≈ P = � I� i=1 W i � C0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
63
+ page_content=' (4) To quantify the accuracy of a given approximation P we use the signal-to- quantization-noise-ratio (SQNR) SQNR(A, P ) = ∥A∥2 F ∥A − P ∥2 F .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
64
+ page_content=' (5) Computational Cost In a binary number representation the multiplication by a signed power of two corresponds only to a bitshift.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
65
+ page_content=' On reconfigurable hardware, this shift can be realized simply by appropriate wiring without the need for dedicated processing elements such as adders [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
66
+ page_content=' The parameter S in (3) determines the number of vectors from the codebook to be used in forming the linear combination to approximate a row an of A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
67
+ page_content=' It therefore directly controls the computational cost, as in computing the linear combination, exactly S − 1 additions are required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
68
+ page_content=' No multiplications, except by signed powers of two, are necessary due to the specific structure of the wiring matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
69
+ page_content=' Therefore, the separate product of the decomposed matrices with the input vector y ≈ W (Cx) is much simpler to compute than calculating the product in (1) straightforwardly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
70
+ page_content=' The total computational cost Cadd of a decomposition in (4) is given by the number of additions (or subtractions) required to form the linear combinations Cadd = IN(S − 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
71
+ page_content=' (6) 2In [6] this choice is termed the self-designing codebook.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
72
+ page_content=' It was found to work very well for a wide range of matrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
73
+ page_content=' Algorithms In this section we will briefly look at the state of the art for solving the optimization problem in (3) to obtain the wiring matrices and then introduce two improved novel algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
74
+ page_content=' State-of-the-Art: Discrete Matching Pursuit The discrete matching pursuit (DMP) follows the matching pursuit approach to successively determine the wiring coefficients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
75
+ page_content=' The algorithm can be summarized in the following key steps;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
76
+ page_content=' for details see [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
77
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
78
+ page_content=' Start with iteration s ← 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
79
+ page_content=' Initialize ω ← 01×N 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
80
+ page_content=' Update ω in at most a single component, such that ∥an − ωC∥2 is minimized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
81
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
82
+ page_content=' Increment s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
83
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
84
+ page_content=' If s ≤ S, go to step 2, otherwise the procedure terminates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
85
+ page_content=' It is straightforward to show that the time complexity of the DMP algorithm for computing a single matrix factor scales with O(N 3S).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
86
+ page_content=' Exponential Search Algorithm The row-wise optimization problem in (3) is NP-hard.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
87
+ page_content=' However, for small S, reasonable matrix sizes and some careful optimization it can be solved in a tractable timeframe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
88
+ page_content=' We limit the set of scaling factors to a finite set of signed powers of two (Aexp ⊂ {0, ±2Z}), as an exhaustive search over the whole set is infeasible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
89
+ page_content=' As the search procedure has to be performed for each row of the target matrix individually, the time complexity for the computation of each wiring step is given by O(N S|Aexp|S).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
90
+ page_content=' Generally, which and how many coefficients are included in the subset Aexp is a design parameter and needs to be adapted to each specific decomposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
91
+ page_content=' It depends primarily on two factors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
92
+ page_content=' First, the current wiring step plays a crucial role.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
93
+ page_content=' For each additional wiring layer, the error between each row of the target matrix and the approximated matrix decreases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
94
+ page_content=' Hence, for any subsequent wiring step, smaller coefficients are needed to scale the rows of the newly found codebook matrix to appropriately approximate the residual error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
95
+ page_content=' This also means that for high desired accuracy the coefficient set needs to be chosen large, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
96
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
97
+ page_content=' to include also many small coefficients, to accurately approximate the error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
98
+ page_content=' Furthermore, relative variations in the length of the row vectors of the target matrix require a larger coefficient set to compensate for differences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
99
+ page_content=' Still, to keep the decomposition computationally feasible, the number of elements in Aexp needs to be chosen as small as possible, as the computational complexity scales exponentially in S with the product of the size of the coefficient set |Aexp| and N as base.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
100
+ page_content=' A promising approach for further research is to adapt the coefficient set for each wiring step dynamically based on the current fidelity of the approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
101
+ page_content=' The coefficient set may then be determined from the probability distribution of the likely entries of the wiring matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
102
+ page_content=' Reduced-State Algorithm The runtime of the exponential algorithm for a matrix with N = 64 rows is on the order of an hour3, for larger matrices the runtime scales up accordingly and can become infeasible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
103
+ page_content=' Hence, for some applications the computational burden of the exponential algorithm might consequently not be feasible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
104
+ page_content=' A reasonable compromise between complexity and performance is desirable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
105
+ page_content=' Unlike in DMP, we do not immediately update the components of the wiring vector for the reduced-state algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
106
+ page_content=' Instead, we keep updating in each iteration a list of the M best vectors, which minimize (3) and select at the termination of the algorithm the vector with minimum error from the list.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
107
+ page_content=' Specifically, we apply the following successive, greedy procedure for the optimization problem in (3): 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
108
+ page_content=' Start with s ← 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
109
+ page_content=' Initialize the set Ω with M all-zero vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
110
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
111
+ page_content=' For each ω ∈ Ω find the set Ωm of M mutually distinct vectors ω ˜m with ˜m ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
112
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
113
+ page_content=', M} that minimize ∥an − ω ˜mC∥2 and differ from ω in at most a single component.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
114
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
115
+ page_content=' Update the set Ω by selecting from �M m=1 Ωm the M distinct vectors ω with minimum ∥an − ωC∥2 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
116
+ page_content=' Increment s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
117
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
118
+ page_content=' If s ≤ S, go to step 2, else, continue 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
119
+ page_content=' Return argmin ω∈Ω ∥an − ωC∥2 By tuning M, we are able to adjust the space of possible combinations that the algorithm explores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
120
+ page_content=' For each wiring step, we have to evaluate O(SN 3M 2) combinations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
121
+ page_content=' Compared to DMP the complexity is increased by a factor of M 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
122
+ page_content=' Note that for M = 1 the algorithm reduces to the DMP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
123
+ page_content=' Numerical Evaluation In this section, we compare the performance of the proposed algorithms to the baseline DMP [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
124
+ page_content=' We decompose matrices whose entries are drawn i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
125
+ page_content='i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
126
+ page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
127
+ page_content=' from a Gaussian distribution with zero mean and unit variance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
128
+ page_content=' Similar to DMP, the performance of the improved versions of the algorithm hardly depends on the distribution of the matrix elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
129
+ page_content=' The algorithms are invariant to scaling of the variance, however it is crucial that for the exponential search algorithm the coefficient set Aexp is scaled appropriately as well, as to not compromise performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
130
+ page_content=' Throughout the simulations, we select the coefficient set for the exponential search algorithm to Aexp = {±2−40, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
131
+ page_content='., ±23}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
132
+ page_content=' As a first experiment, we compare all three algorithms for fixed matrix sizes in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
133
+ page_content=' We choose matrices with N = 64 rows and vary the number of columns K 3For a multithreaded implementation in Python with Numba acceleration executed on an Intel i9-12900@2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
134
+ page_content='40 GHz and parameters S = 3, Aexp = � ±2−40, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
135
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
136
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
137
+ page_content=' , ±23� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
138
+ page_content=' 0 100 200 300 400 500 600 700 800 Cumulative number of additions 0 20 40 60 80 100 120 SQNR [dB] 64x4 64x6 64x8 Figure 1: Performance comparison for matrices with 64 rows and different aspect ratios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
139
+ page_content=' Matrices of dimension 64×4 are indicated by crosses, 64×6 is indicated by squares and 64×8 is indicated by triangles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
140
+ page_content=' The solid lines refer to the exponential search algorithm (S = 3), the dashed lines to the DMP [7] (S = 2) and the dashed-dotted lines to the reduced state algorithm with memory size M = 10 and S = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
141
+ page_content=' Results are averaged over 104 matrix entries for the exponential search algorithm and over 105 matrix entries for the other algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
142
+ page_content=' from four to eight.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
143
+ page_content=' Hence, we can compare the performance for different aspect ratios of the matrices4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
144
+ page_content=' To quantify performance, we plot the tradeoff between distortion and computational cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
145
+ page_content=' The latter being measured by the number of cumulative additions Cadd required for a given wiring step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
146
+ page_content=' As Figure 1 shows, for all three matrix sizes there is a performance gain by both proposed algorithms against DMP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
147
+ page_content=' Further, for memory size M = 10, the reduced state algorithm performs only slightly worse than exhaustive search.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
148
+ page_content=' For the first two wiring steps, the performance of all three algorithms is equal for a given matrix size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
149
+ page_content=' This is due to the fact that for the first two steps we use DMP with S = 2 for an initial refinement of the codebook5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
150
+ page_content=' Applying any of the 4LCC works best for matrices with an exponential aspect ratio, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
151
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
152
+ page_content=' for K ≈ log2 N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
153
+ page_content=' For square matrices it is beneficial to cut these into multiple tall matrices and decompose each slice independently, see [8] for details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
154
+ page_content=' 5Using any of the novel algorithms with S = 2 is possible as well with very similar performance, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
155
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
156
+ page_content=' a slight increase in SQNR by 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
157
+ page_content='2 dB to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
158
+ page_content='5 dB for the novel algorithms and matrix sizes considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
159
+ page_content=' 0 100 200 300 400 500 600 700 800 Cumulative number of additions 0 10 20 30 40 50 60 70 80 SQNR [dB] Increasing M (2, 5, 10, 50) DMP Exponential Search Reduced State (Variable M) Figure 2: Performance comparison for different memory sizes M of the reduced state algorithm of a 64 × 6 matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
160
+ page_content=' The solid line refers to the exponential search algorithm (S = 3), the dashed line to the DMP [7] (S = 2) and the dashed-dotted lines to the reduced state algorithm with 4 different memory sizes and S = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
161
+ page_content=' Results are averaged over 104 matrix entries for the exponential search algorithm and over 105 matrix entries for the other algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
162
+ page_content=' algorithms with S ≥ 3 directly to the initial codebook C0 = IN×K would lead to degraded performance for the first few wiring steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
163
+ page_content=' Instead it is beneficial to set S = 2 to allow for more frequent updates of the codebook in the beginning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
164
+ page_content=' From empirical investigations it seems that two wiring iterations with S = 2 are most beneficial for the overall performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
165
+ page_content=' As the next experiment, we compare the performance of the reduced state algorithm for different choices of the memory parameter M for given matrix size of 64 × 6 in Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
166
+ page_content=' From the figure we observe that even for small M the reduced state algorithm offers a noticeable performance gain over DMP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
167
+ page_content=' As M grows, the reduced state algorithm approaches the performance of the exponential search.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
168
+ page_content=' The large advantage of the reduced state algorithm is that the computation time is reduced drastically6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
169
+ page_content=' For M = 1 the reduced state algorithm reduces to DMP and both lines 6For the considered matrix size the execution time differs from an hour for the exponential algorithm to a few seconds for the reduced state algorithm in practice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
170
+ page_content=' 0 100 200 300 400 500 600 700 800 Cumulative number of additions 0 20 40 60 80 100 120 SQNR [dB] Increasing S (3, 4, 8) DMP Exponential search (S = 3) Reduced State (S = 3, 4, 8) Figure 3: Performance comparison for different choices of the parameter S of a matrix with dimension 64 × 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
171
+ page_content=' The solid line refers to the exponential search algorithm (S = 3), the dashed line to the DMP [7] (S = 2) and the dashed-dotted lines to the reduced state algorithm with different choices of the parameter S and M = 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
172
+ page_content=' Results are averaged over 104 matrix entries for the exponential search algorithm and over 105 matrix entries for the other algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
173
+ page_content=' coincide for any given matrix size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
174
+ page_content=' Table 1 lists the relative performance gains over DMP for various matrix sizes and configurations of the algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
175
+ page_content=' Practical Considerations for the Choice of S Figure 3 shows the performance of the reduced state algorithm for varying S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
176
+ page_content=' Due to the exponentially growing complexity in S, the exponential algorithm is not feasible for S > 3, except for very small matrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
177
+ page_content=' We can observe, that by choosing S = 4 for the reduced state algorithm, we approximately achieve the same distortion-cost tradeoff as for the exponential algorithm with S = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
178
+ page_content=' For choosing S even larger the gains increase likewise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
179
+ page_content=' However for a practicable implementation S should not be chosen arbitrarily.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
180
+ page_content=' In [8], the performance of DMP is validated in an implementation on reconfigurable hardware with S = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
181
+ page_content=' This means that on an FPGA exactly N adders are required per wiring matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
182
+ page_content=' With the inputs depending only on the outputs of the previous wiring matrix, Table 1: Relative average gain in terms of SQNR of the novel algorithms over the baseline DMP algorithm with S = 2 (For at least 8 bit signed integer accuracy (10 log(SQNR) ≥ 47 dB)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
183
+ page_content=' Results are averaged over 104 matrix entries for the exponential search algorithm and over 105 matrix entries for the other algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
184
+ page_content=' Exponential Reduced State search S = 3 S = 4 S = 8 Matrix size S = 3 M = 5 M = 10 M = 5 M = 10 M = 5 M = 10 16 × 2 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
185
+ page_content='8 % 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
186
+ page_content='4 % 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
187
+ page_content='4 % 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
188
+ page_content='1 % 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
189
+ page_content='8 % 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
190
+ page_content='7 % 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
191
+ page_content='9 % 16 × 4 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
192
+ page_content='5 % 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
193
+ page_content='0 % 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
194
+ page_content='5 % 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
195
+ page_content='8 % 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
196
+ page_content='7 % 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
197
+ page_content='4 % 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
198
+ page_content='4 % 32 × 4 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
199
+ page_content='7 % 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
200
+ page_content='5 % 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
201
+ page_content='9 % 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
202
+ page_content='0 % 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
203
+ page_content='2 % 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
204
+ page_content='4 % 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
205
+ page_content='3 % 32 × 6 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
206
+ page_content='3 % 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
207
+ page_content='5 % 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
208
+ page_content='0 % 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
209
+ page_content='7 % 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
210
+ page_content='5 % 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
211
+ page_content='4 % 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
212
+ page_content='0 % 64 × 4 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
213
+ page_content='9 % 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
214
+ page_content='5 % 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
215
+ page_content='8 % 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
216
+ page_content='0 % 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
217
+ page_content='8 % 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
218
+ page_content='5 % 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
219
+ page_content='8 % 64 × 6 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
220
+ page_content='9 % 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
221
+ page_content='6 % 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
222
+ page_content='4 % 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
223
+ page_content='6 % 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
224
+ page_content='5 % 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
225
+ page_content='6 % 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
226
+ page_content='0 % the decomposition is well suited for parallel execution and pipelining [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
227
+ page_content=' Due to the greedy, step-wise nature of DMP S > 2 does not offer significant performance gains over S = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
228
+ page_content=' Both novel algorithms behave differently.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
229
+ page_content=' From an implementation point of view, S = 3 is even more suitable than S = 2 for an effective implementation in hardware due to the availability of efficient adders with three inputs [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
230
+ page_content=' Interestingly, on modern FPGAs, these adders do not require more hardware resources, in terms of Lookup-Tables (LUTs), than an adder with two inputs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
231
+ page_content=' Any powers of two and three (S = 4, 8, 9, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
232
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
233
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
234
+ page_content=' ) can be realized efficiently as well by the use of adder trees.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
235
+ page_content=' However, it is questionable if choosing S > 4 is beneficial, as performance gains over S = 3 or S = 4 are small and the desired fidelity of the approximation cannot be chosen in a fine granularity anymore7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
236
+ page_content=' Conclusion In this paper, we have proposed two new algorithms for LCC, a framework for the lossy compression of multidimensional linear functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
237
+ page_content=' While the exponential search algorithm shows the best performance, it is generally infeasible especially for large matrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
238
+ page_content=' The proposed reduced-state algorithm, performs close to exponential search at a fraction of the computational complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
239
+ page_content=' The time complexity of the decomposition compared to the baseline algorithm from earlier works is only mildly increased, while the performance gains over the baseline DMP algorithm are on the order of at least 10 %.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
240
+ page_content=' References [1] Jason Thong and Nicola Nicolici, “An optimal and practical approach to single constant multiplication,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
241
+ page_content=' 30, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
242
+ page_content=' 9, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
243
+ page_content=' 1373–1386, Sep 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
244
+ page_content=' [2] Yevgen Voronenko and Markus P¨uschel, “Multiplierless multiple constant multiplication,” ACM Transactions on Algorithms, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
245
+ page_content=' 3, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
246
+ page_content=' 2, May 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
247
+ page_content=' 7For a matrix of dimension 64 × 4 the reduced state algorithm with S = 8 improves the SQNR approximately by 70 dB per matrix factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
248
+ page_content=' [3] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
249
+ page_content=' Boullis and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
250
+ page_content=' Tisserand, “Some optimizations of hardware multiplication by constant matrices,” in Proceedings 2003 16th IEEE Symposium on Computer Arithmetic, 2003, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
251
+ page_content=' 20–27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
252
+ page_content=' [4] Levent Aksoy, Paulo Flores, and Jose Monteiro, “A novel method for the approximation of multiplierless constant matrix vector multiplication,” EURASIP Journal on Embedded Systems, , no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
253
+ page_content=' 12, May 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
254
+ page_content=' [5] Ralf R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
255
+ page_content=' M¨uller, Bernhard G¨ade, and Ali Bereyhi, “Efficient matrix multiplication: The sparse power-of-2 factorization,” in 2020 Information Theory and Applications Workshop (ITA), 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
256
+ page_content=' 1–6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
257
+ page_content=' [6] Ralf R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
258
+ page_content=' M¨uller, Bernhard G¨ade, and Ali Bereyhi, “Linear computation coding,” 2021, arXiv:2102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
259
+ page_content='00398.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
260
+ page_content=' [7] Ralf R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
261
+ page_content=' M¨uller, Bernhard M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
262
+ page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
263
+ page_content=' G¨ade, and Ali Bereyhi, “Linear computation coding: A framework for joint quantization and computing,” Algorithms, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
264
+ page_content=' 15, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
265
+ page_content=' 7, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
266
+ page_content=' [8] Alexander Lehnert, Philipp Holzinger, Simon Pfenning, Ralf R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
267
+ page_content=' M¨uller, and Marc Reichenbach, “Most ressource efficient matrix vector multiplication on FPGA,” IEEE Access, 2022, Early Access.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
268
+ page_content=' [9] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
269
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
270
+ page_content=' Booth, “A signed binary mutliplication technique,” The Quarterly Journal of Mechanics and Applied Mathematics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
271
+ page_content=' 4, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
272
+ page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
273
+ page_content=' 236 – 240, Jan 1951.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
274
+ page_content=' [10] Simon Foucart and Holger Rauhut, A Mathematical Introduction to Compressive Sensing, Springer New York, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
275
+ page_content=' [11] James M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
276
+ page_content=' Simkins and Brian D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
277
+ page_content=' Philofsky, “Structures and methods for implementing ternary adders/subtractors in programmable logic devices,” Sep 2007, US Patent 7,274,211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ZdE5T4oBgHgl3EQfeA8r/content/2301.05615v1.pdf'}
_9E5T4oBgHgl3EQfSQ7q/content/tmp_files/2301.05528v1.pdf.txt ADDED
@@ -0,0 +1,725 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Harold Costales et al., International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 7076 - 7081
2
+ 7076
3
+
4
+
5
+
6
+ ABSTRACT
7
+
8
+ Rice is the number one staple food in the country, as this
9
+ serves as the primary livelihood for thousands of Filipino
10
+ households. However, as the tradition continues, farmers are
11
+ not familiar with the different types of rice leaf diseases that
12
+ might compromise the entire rice crop. The need to address
13
+ the common bacterial leaf blight in rice is a serious disease
14
+ that can lead to reduced yields and even crop loss of up to
15
+ 75%. This paper is a design and development of a rice leaf
16
+ disease detection mobile application prototype using an
17
+ algorithm used for image analysis. The researchers also used
18
+ the Rice Disease Image Dataset by Huy Minh Do available at
19
+ https://www.kaggle.com/
20
+ to
21
+ train
22
+ state-of-the-art
23
+ convolutional neural networks using transfer learning.
24
+ Moreover, we used image augmentation to increase the
25
+ number of image samples and the accuracy of the neural
26
+ networks as well.
27
+
28
+ Key words : deep neural networks, convolutional neural
29
+ networks, agriculture, transfer learning, rice diseases
30
+
31
+ 1 INTRODUCTION
32
+
33
+ Across the 20th century, our prospects of engineering have
34
+ rapidly changed. It was once thought of as impossible for
35
+ everyone, as all we had seen on earth showed us a manual
36
+ process that is uneasy for us; we would recognize as
37
+ technology. However, in the 21st century, our machines
38
+ continue to improve in what we conceive "Artificial
39
+ Intelligence," which makes it more even feasible for devices
40
+ to learn from experience, adjust to a high new level input and
41
+ perform human-like tasks. Methods such as the use of
42
+ convolutional neural networks may hold the key to
43
+ developing software applications, particularly in the field of
44
+ agriculture.
45
+
46
+ Portability, efficiency, and affordability of agricultural
47
+ technology and information continue to be a major
48
+ interference for improving agricultural productivity among
49
+ small enterprises in the country. The Department of
50
+ Agriculture, in partnership with the Department of
51
+ Information and Communications Technology (DICT), has
52
+ furnished a possible solution to enhance this kind of situation.
53
+
54
+
55
+ Recently, they have launched the HACKATON to address
56
+ further innovations that integrate software applications and
57
+ systems into the development of agricultural technology,
58
+ especially to farmers, which have been conducted nationwide.
59
+ They have currently established outstanding software
60
+ applications and systems to aid the farmers for better
61
+ understanding when it comes to e-agriculture.
62
+
63
+ This paper emphasizes the role of ICT and the functional
64
+ benefaction of software development to agriculture in the
65
+ Philippines. Data from Rice Disease Image Dataset by Huy
66
+ Minh Do available at https://www.kaggle.com are used to
67
+ train data using a convolutional neural network algorithm
68
+ using transfer learning. Moreover, we used image
69
+ augmentation to increase the number of image samples and
70
+ the neural network accuracy as well. It turns out that the
71
+ modified neural networks achieved a state-of-the-art result
72
+ with an accuracy closed to human-level performance. The
73
+ researchers have developed a prototype application for Rice
74
+ Leaf Disease Detection using Convolutional Neural Networks
75
+ (CNNs) for farmers in the local community. This application
76
+ will primarily install and use the said application on their
77
+ smartphone, simply took a picture of the infected area of the
78
+ rice leaf. Then the app gives a percentage of accuracy of rice
79
+ disease infected in rice leaf.
80
+
81
+ Farmers were also able to grasp the knowledge of the different
82
+ rice leaf diseases because of the information that the
83
+ application is providing. This paper recommends the adoption
84
+ of such software applications by institutions such as the
85
+ Department of Agriculture to improve provision for
86
+ appropriate decision making by agricultural farmers in the
87
+ country.
88
+
89
+ Related studies on rice leaf disease detection using neural
90
+ networks have been on-trend. According to [1] , "the use of
91
+ computational intelligence-based techniques has proven
92
+ successful in recent times for automated rice-disease detection
93
+ (p.21)". Another related study stated that [3] "an automated
94
+ system could have a feature on detection of diseases present in
95
+ a rice leaf using color image analysis". Furthermore, [4] cited
96
+ that "the management of perennial fruit crops requires close
97
+ monitoring especially for the management of diseases that can
98
+ affect production significantly and subsequently the
99
+ post-harvest life (p. 1)". Corollary to the contexts presented,
100
+ the researchers came up with a rice disease detection that
101
+
102
+ Development of a Prototype Application for Rice Disease
103
+ Detection Using Convolutional Neural Networks
104
+ Harold Costales1, Arpee Callejo-Arruejo2, Noel Rafanan3
105
+ 1 University of Northern Philippines, Philippines, hlcostales@unp.edu.ph
106
+ 2 University of Northern Philippines, Philippines, arpee.callejo@unp.edu.ph
107
+ 3 University of Northern Philippines, Philippines, noel.rafanan@unp.edu.ph
108
+ ISSN 2347 - 3983
109
+ Volume 8. No. 10, October 2020
110
+ International Journal of Emerging Trends in Engineering Research
111
+ Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter708102020.pdf
112
+ https://doi.org/10.30534/ijeter/2020/708102020
113
+
114
+
115
+
116
+
117
+ WARSEHarold Costales et al., International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 7076 - 7081
118
+ 7077
119
+
120
+
121
+ integrates the use of an algorithm, specifically CNNs and an
122
+ image analysis, for immediate monitoring of the rice crops.
123
+
124
+ Thus, this mobile application is needed to bring virtual IT
125
+ experts into the field to determine, examine, and to give
126
+ accurate results (on rice leaf diseases) that would inform the
127
+ farmers what to do next without any further expenses.
128
+ 1.1 Objectives of the Study
129
+ This study aimed to design and develop a mobile application
130
+ for rice disease detection. Specifically, it sought to answer the
131
+ following objectives:
132
+ 1. Propose an application to address the problem, issues
133
+ and challenges encountered;
134
+ 2. Identify an appropriate algorithm for the application; and
135
+ 3. Features for the Mobile application.
136
+
137
+ 1.2 Conceptual Framework
138
+
139
+
140
+
141
+ Figure 1: Paradigm of the Study
142
+
143
+ Figure 1 shows researcher used the input-process-output (IPO)
144
+ model as a guide in conducting the study. The Application is
145
+ proposed for the problems and issues encountered,
146
+ appropriate algorithm to be incorporated, and features for the
147
+ mobile application are the input of the study (input), which
148
+ served as the guide in designing the application. The software
149
+ development methodology, which is the Feature-Driven
150
+ Development Methodology, is the process for the
151
+ "Development of a Prototype Application for Rice Disease
152
+ Detection Using Convolutional Neural Networks"(output).
153
+
154
+ 2 METHODS
155
+
156
+ This part presents the algorithm and the software development
157
+ methodology used in the development of the mobile
158
+ application.
159
+
160
+ For the algorithm, the researchers chose Convolutional Neural
161
+ Networks (CNNs) for the mobile application. As stated by
162
+ [12], technological advancements in Computer Vision and
163
+ Deep Learning a subset of the Artificial Intelligence gains
164
+ more importance in the last decade especially in the field of
165
+ object detection using Convolutional Neural Networks (CNN)
166
+ became popular in many fields to address the current societal
167
+ issues.
168
+ 2.1 Convolutional Neural Networks Deep Learning
169
+ Algorithm for the Prototype Mobile App
170
+
171
+ A Convolutional Neural Network (CNN) is a deep learning
172
+ algorithm in which images serve as input to a learnable
173
+ process to analyze various aspects of the image and be able to
174
+ differentiate one from the other. A rice leaf is an input, and
175
+ images of diseases of rice leaves are stored in the database to
176
+ match the input. As cited by [11], many researchers use deep
177
+ learning method to classify an image automatically. The
178
+ purpose of classification is to arrange objects that will be
179
+ observed into categories that have been defined. Furthermore,
180
+ [14] cited that the detection technique assisted by simple
181
+ image processing in the evidence is very interesting to be
182
+ further researched. The researcher also utilized the method of
183
+ [16] for data processing for the realization of the study.
184
+
185
+ Convolutional Neural Networks (CNNs) is the most
186
+ appropriate model of Rice Disease Image Dataset since it uses
187
+ image analysis. It was proven by [6] that convolutional neural
188
+ networks (CNNs) have used in the field of computer vision for
189
+ decades. Moreover, [5] proposes a convolutional autoencoder
190
+ deep learning framework to support unsupervised image
191
+ features learning for lung nodule through unlabeled data,
192
+ which only needs a small amount of labeled data for efficient
193
+ feature learning. Below are the steps on how the researchers
194
+ came up with the integration of the CNNs for the developed
195
+ application following the process of the CNNs in the study of
196
+ [6].
197
+
198
+
199
+
200
+ Figure 2. A Typical Architecture of CNNs by Tajbakhsh
201
+ (2016)
202
+
203
+
204
+ Figure 2 presents a typical architecture of a CNN. It consists
205
+ of an input layer (images), convolutional layer, pooling layer,
206
+ a fully connected layer, a classifier and an output layer.
207
+
208
+ The convolutional layer is the most important layer in the
209
+ CNN hence the name Convolutional Neural Networks. It acts
210
+ as an automatic feature that extracts meaningful features of
211
+ the object in the image. In mathematics, convolution is the
212
+ operation of two functions to produce a third modified
213
+ function.
214
+
215
+
216
+ (1)
217
+
218
+ WNPOI
219
+ PROCESS
220
+ OUIPUTAplicationcanbeproposedtoaddress
221
+ Development
222
+ icationttheproblem,issues
223
+ Methodology
224
+ eafDiseasepuoue
225
+ ·DevelopanOverallencounterea
226
+ Model
227
+ CIgorithmforthe
228
+ ·BuildaFeatureListdevelopedapplication;
229
+ PlanbyFeatureand
230
+ ·DesignbyFeatureeFeaturesofthe
231
+ ·BuildbyFeatureproposedsystembird
232
+ Prird
233
+ sunset
234
+ Psunset
235
+ dog
236
+ cat
237
+ Pol
238
+ o
239
+ convolution+
240
+ maxpooling
241
+ vec
242
+ nonlinearity
243
+ convolution+pooling layers
244
+ fully connected layers
245
+ Nxbinaryclassification(f*g)(t) ≤
246
+ f(T)g(t - T) dT
247
+ 00Harold Costales et al., International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 7076 - 7081
248
+ 7078
249
+
250
+
251
+
252
+ In the context of CNNs, convolutional operation is simply a
253
+ matrix operation, specifically matrix multiplication and
254
+ addition. The byproduct of this operation called the feature
255
+ map.
256
+
257
+ The pooling layer is used to down sample the feature map to
258
+ reduce computational complexity. It is common in the
259
+ literature to add the pooling layer after the convolution layer.
260
+ There are two main types of pooling the max pooling and the
261
+ average pooling. In the literature max pooling is preferred. It
262
+ calculates the maximum value for each patch of the feature
263
+ map.
264
+
265
+
266
+ (2)
267
+
268
+ The fully connected layer, abbreviated FC is responsible for
269
+ vectorizing the features from the convolution and pooling
270
+ layers. This transforms the multi-dimensional feature map
271
+ into a row vector to be fed into a classifier.
272
+
273
+ The classifier is responsible in outputing the probibilities of
274
+ the output layer. There are two commonly used activation
275
+ functions used in classifiers, the sigmoid activation function
276
+ and the softmax activation function. Since the problem of
277
+ detecting disease on rice leaf images is a multi-class
278
+ classification problem, the appropriate function to be used is
279
+ the softmax activation function.
280
+
281
+
282
+
283
+ (3)
284
+
285
+
286
+ Another is the use of a software development methodology
287
+ which helped the researchers identify the problems, created an
288
+ overview of the concept for the mobile application and built
289
+ the application.
290
+
291
+ 2.2 Software Development Methodology
292
+
293
+ The researcher used the Feature-driven Development (FDD)
294
+ under the family of Agile methodology for the software
295
+ development because it is the most suitable and it has a
296
+ customer-centric process. Its iterative feature allowed the
297
+ researchers to develop the application while it is being tested.
298
+ In the study of [7] stated that, “the iterative feature of the
299
+ methodology allowed the proponents to capitalize on the
300
+ learning that was accumulated during the development of
301
+ earlier parts or versions of the solution”. The figure below
302
+ presents the phases of FDD methodology.
303
+
304
+ Figure 3: Feature-Driven Development Methodology
305
+
306
+ Figure
307
+ 3
308
+ shows
309
+ the
310
+ Feature-Driven
311
+ Development
312
+ Methodology which has five phases, which include the (a)
313
+ Development of an Overall Model, (b) Build a Feature List,
314
+ (c) Plan by Feature, (d) Design by Feature, and (e) Build by
315
+ Feature. The phases of development are presented as follows.
316
+
317
+ 2.2.1 Develop Overall Model
318
+
319
+ A stage where the researchers created a fundamental
320
+ foundation of the application and the variables it required.
321
+ This stage also identified the initial development of the
322
+ application. The researchers designed the application's overall
323
+ model and served it as a guideline in developing the
324
+ application. As the primary objective, the researchers develop
325
+ the mobile app for the farmers for the early detection of rice
326
+ diseases of rice-crops.
327
+
328
+ 2.2.2 Build Feature List
329
+
330
+ The researchers created concrete plans for each feature of the
331
+ mobile application. The researchers created a prototype of the
332
+ user interfaces for the conceptualization of the mobile
333
+ application.
334
+
335
+ 2.2.3 Plan by Feature
336
+
337
+ The researchers created concrete plans for each feature of the
338
+ mobile application. The researchers created a prototype of the
339
+ user interfaces for the conceptualization of the mobile
340
+ application.
341
+
342
+ 2.2.4 Design by Feature
343
+
344
+ The researchers designed the features individually using the
345
+ needed preferences. To fulfill this stage, the researchers
346
+ designed the identified features with the help of the needed
347
+ tools and processes.
348
+
349
+ 2.2.5 Build by Feature
350
+ The last stage of the methodology wherein the researchers
351
+ created the planned and designed features for the application.
352
+ With the previous step as a guide, the researchers turned the
353
+ details of the features into a working application, with the help
354
+ of the tools and processes. After an inspection via a test run by
355
+ the researchers, the researchers created the planned and
356
+ designed features for the application.
357
+
358
+
359
+
360
+ Mf(p) =max(f(q)-dmax(p-q))
361
+ 52berj
362
+ 1xa7Modeling
363
+ Initial
364
+ Model
365
+ Storming
366
+ DevelopanOverall
367
+ Bulld a Features
368
+ Planby
369
+ Designby
370
+ Buildby
371
+ Model
372
+ List
373
+ Feature
374
+ Feature
375
+ Feature
376
+ (moreshape
377
+ Alistoffeatures
378
+ A developmentplan
379
+ Adesign package
380
+ Completed
381
+ thancontant)
382
+ grouped into sets
383
+ Class owners
384
+ client-valued
385
+ and subjectareas
386
+ Features setowners
387
+ function
388
+ Anobjectmodel
389
+ (addmorecontent
390
+ +notes
391
+ to the object model)Harold Costales et al., International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 7076 - 7081
392
+ 7079
393
+
394
+
395
+ 3 RESULTS
396
+ 3.1 Prototype Mobile Application for Rice Disease
397
+ Detection
398
+
399
+
400
+ Figure 4: The Prototype of the Mobile Application
401
+
402
+ Figure 4 shows the rice disease detection of the mobile
403
+ application. The researchers designed and develop a mobile
404
+ application to assist the farmers in disease detection. It aims to
405
+ help the farmers who are the backbone of the country to
406
+ increase rice crop productivity. The lack of knowledge of
407
+ farmers in the detection of rice diseases made the researchers
408
+ conceptualize the integration of the field of agriculture and
409
+ medicine in detecting diseases of rice crops. Also, Duterte's
410
+ Administration supports Research and Development along
411
+ with agriculture. It is stated in the Philippine Development
412
+ Plan (PDP) 2017-2022 that there is a need to conduct
413
+ researches in the field because of rice-crop yield losses. Thus,
414
+ the PDP 2017-2022 established a plan to support the
415
+ initiatives of the agriculture sector along with R&D.
416
+
417
+ Moreover, the application is different from other similar apps
418
+ available in the market because it was developed specifically
419
+ for the Philippine agriculture setting. The application will be
420
+ stored with rice disease data exclusively for agriculture in the
421
+ northern Philippines and further validated by pathologists as
422
+ the researchers continue to gather data that will be for the
423
+ database of the system.
424
+ 3.2 Convolutional Neural Networks Deep Learning
425
+ Algorithm for the Prototype Application
426
+
427
+ The researchers utilized an Image Processing typical machine
428
+ learning workflow in the development of the model which
429
+ consists of the following Data Acquisition, Data Preparation,
430
+ and Training and Validation. As cited by [10] Image
431
+ processing is the method of using different manipulation
432
+ techniques and algorithms so that a desired features can be
433
+ extracted such as morphology, color and texture from an
434
+ image. Another study stated that [13] CNN proved to be best
435
+ among the results in terms of accuracy when compared to
436
+ other classifiers
437
+
438
+ 3.2.1. Image Acquisition
439
+
440
+ The
441
+ dataset
442
+ by
443
+ Huy
444
+ Minh
445
+ Do
446
+ available
447
+ at
448
+ https://www.kaggle.com/ containing 1,260 labeled rice leaf
449
+ images was used for creating the model. The images were
450
+ labeled as Leaf Blast, Brown Spot, and Hispa, which are the
451
+ (3) three rice leaf diseases that the model will try to classify.
452
+
453
+ 3.2.2. Image Preprocessing
454
+
455
+ The images were downscaled to 500 x 500 pixels to reduce
456
+ computational complexity. Image dataset were split into train
457
+ dataset (80% of the entire samples) and validation dataset
458
+ (20% of the entire samples). Image augmentation such as
459
+ flipping, shearing, and rescaling in order to increase dataset
460
+ samples as neural networks are data crunchers.
461
+
462
+ 3.2.3. Training and Validation
463
+
464
+ To fast track the training process the researchers employed
465
+ transfer learning. Transfer learning, in general, is the process
466
+ of taking a previously trained model used in a problem and
467
+ apply in to another related problem. It is referring to the
468
+ knowledge transfer from pretrained network in one domain to
469
+ your own problem in a different domain. .[8]
470
+
471
+ The researcher used MobileNet 2 [9] as the base model. It is a
472
+ state-of-the-art CNN model trained from ImageNet and one of
473
+ the winners of the ImageNet Large Scale Visual Recognition
474
+ Challenge (ILSVRC), a prestigious computer vision
475
+ competition. Since the target dataset is small and somewhat
476
+ different from the dataset where MobileNet 2 was trained, the
477
+ top layer of the network needs to be frozen.
478
+
479
+ First Iteration
480
+ Base model mobile net Version 2.0
481
+ Hyper-parameters:
482
+ Top layer = false
483
+ Initialweights
484
+
485
+
486
+
487
+ .a58%12:57.PM
488
+ agDetect
489
+ blast
490
+ 50.13%
491
+ brownspol
492
+ bacterial_leaf_blight
493
+ 0.14%Harold Costales et al., International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 7076 - 7081
494
+ 7080
495
+
496
+
497
+ Second Iteration
498
+ Base model mobile net Version 2.0
499
+ Hyper-parameters:
500
+ Top layer = false
501
+ Initialweights = imagenet
502
+ Loss = categorical cross entropy
503
+ Metrics = accuracy
504
+ Optimization = ADAM
505
+ EPOCHS= 10
506
+ TRAINABLE = FALSE
507
+ Result= 97% trained data set, 94% validation
508
+ Suffered from overfitting
509
+
510
+ Third Iteration
511
+ Base model mobile net Version 2.0,
512
+ image augmentation
513
+ Hyper-parameters:
514
+ Top layer = false
515
+ Initialweights = imagenet
516
+ Loss = categorical cross entropy
517
+ Metrics = accuracy
518
+ Optimization = ADAM
519
+ EPOCHS= 20
520
+ TRAINABLE = true
521
+ Result= 98.9% trained data set, 98% validation
522
+ Overfitting was solved
523
+
524
+ The third iteration proved that the process for the image
525
+ analysis on the training and testing for the data sets was
526
+ validated with an accuracy rate of 98% from 94% from the
527
+ second iteration. This proved that the CNNs algorithm of the
528
+ mobile application was proven for use.
529
+ 3.3 Features of the Prototype Mobile Application
530
+
531
+ The features of the application include (1) real-time detection,
532
+ (2) artificial intelligence, and (3) image analysis.
533
+
534
+ 3.3.1 Real-time Detection
535
+
536
+ One of the features of the mobile application is a real-time
537
+ detection. The application helps in the identification of the
538
+ rice leaf diseases using convolutional neural networks that
539
+ match the input data and the data stored in the database of the
540
+ application.
541
+
542
+ The embed camera of the mobile application can detect the
543
+ diseases in real-time. This feature helps farmers to detect the
544
+ diseases even without the instruction of plant pathologists.
545
+
546
+ 3.3.2 Artificial Intelligence
547
+
548
+ Experts in the field of Agriculture are marginal, especially in
549
+ rice leaf disease detection. This feature of the mobile
550
+ application replicates the knowledge about rice leaf disease
551
+ detection in the field, which is one of the features of the
552
+ mobile application. As data grows on the database of the
553
+ mobile application, the more accurate results it can give.
554
+
555
+ 3.3.3 Image Analysis
556
+
557
+ Another feature is Image Analysis. This feature uses the
558
+ CNNs algorithm aspects and features of images were stored,
559
+ enabling the mobile application to analyze the rice leaf for
560
+ disease detection through the following steps of the algorithm.
561
+ 4 CONCLUSION
562
+ In summary, the researchers have developed a mobile
563
+ application, which could help the agricultural sector.
564
+ Specifically, the researchers conclude that the mobile
565
+ application will help in the realization of the high-yield of rice
566
+ crops against rice diseases for preventive measures. Thus, this
567
+ study is helpful to the country, particularly the agricultural
568
+ sector.
569
+ 5 RECOMMENDATION
570
+
571
+ The
572
+ researchers
573
+ came
574
+ up
575
+ with
576
+ the
577
+ following
578
+ recommendations:
579
+ (1) The output of the Mobile Application will have its
580
+ validation of experts in rice disease for accuracy of the
581
+ information from the mobile application, (2) the mobile
582
+ application will have a series of tests for the implementation
583
+ for future use. Lastly, (3) the researchers highly recommend
584
+ that the application shall be introduced to the Department of
585
+ Agriculture for dissemination.
586
+
587
+ ACKNOWLEDGEMENT
588
+
589
+ The researchers would like to thank the following people: the
590
+ active UNP Research Office- Science and Technology
591
+ Coordinator, Prof. Redentor S. Rojas, the ever-supportive
592
+ UNP Research Director, Dr. Edelyn Cadorna and the dynamic
593
+ UNP President, Dr. Erwin F. Cadorna for pushing us to
594
+ enhance our research knowledge and capabilities. Also, the
595
+ researchers would like to thank the IMPACT HACKATON
596
+ 2050 for organizing the IMPACT HACKATON 2019, where
597
+ they conceptualized this research study. Above all, thanks to
598
+ Almighty God for all the blessings for our families and the
599
+ society.
600
+ REFERENCES
601
+ 1. E. G. Emberda, D. L. Dumas, and T. M. Rentillo,
602
+ Forecasting Coconut Yield: A Comparative Study
603
+ between the Use of Traditional Forecasting and Feed
604
+ Forward
605
+ Back
606
+ Propagation
607
+ Artificial
608
+ Neural
609
+ Network, UIC Research Journal, 18(2), 2012.
610
+ 2. K. B. Francisco, J. D. Concepcion, A. R. Mojica, and , S.
611
+ B Montes. Philippines First: An Edutainment 3d
612
+ Game
613
+ For
614
+ Android
615
+ Mobile
616
+ Platform
617
+ Using
618
+ Separating Axis Theorem (Sat) Algorithm, Innovatus,
619
+ 2(1). 2019.
620
+ 3. Pugoy, Reinald Adrian D. L. and Mariano Vladimir Y.
621
+ Automated rice leaf disease detection using color image
622
+
623
+ Harold Costales et al., International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 7076 - 7081
624
+ 7081
625
+
626
+
627
+ analysis,
628
+ Proc.
629
+ SPIE
630
+ 8009,
631
+ Third
632
+ International
633
+ Conference on Digital Image Processing. 2011.
634
+ 4. P. Revathi and M. Hemalatha. Advance computing
635
+ enrichment evaluation of cotton leaf spot disease
636
+ detection using Image Edge detection, 2012 Third
637
+ International Conference on Computing, Communication
638
+ and Networking Technologies. 2012.
639
+ 5. Talingdan, J. A., & Llanda, C. R., Assessment of the
640
+ effectiveness of learning theories using gamified
641
+ Android app in teaching C programming. Int. Proc.
642
+ IOP Conf. Ser. Mater. Sci. Eng, 482-1,1-6, 2019.
643
+ 6. S. Chen, B. Mulgrew, and P. M. Grant. A clustering
644
+ technique
645
+ for
646
+ digital
647
+ communications
648
+ channel
649
+ equalization using radial basis function networks,,
650
+ IEEE Trans. on Neural Networks, 4, 570-578, 1993.
651
+ 7. N. Tajbakhsh. Convolutional Neural Networks for
652
+ Medical Image Analysis: Full Training or Fine
653
+ Tuning?, IEEE Transactions on Medical Imaging, 35-5,
654
+ 1299-1312, 2016.
655
+ 8. A. Aitken and V. Ilango A Comparative Analysis of
656
+ Traditional Software Engineering and Agile Software
657
+ Development, 46th Hawaii International Conference on
658
+ System Sciences, Wailea, Maui, HI, 4751-4760, 2013.
659
+ 9. M. Elgendy, Deep Learning for Vision Systems.
660
+ Manning Publications, 2019.
661
+ 10. Olga Russakovsky, et al. ImageNet Large Scale Visual
662
+ Recognition
663
+ Challenge,
664
+ International
665
+ Journal
666
+ of
667
+ Comput. Vis. 115. 1-42, 2015.
668
+ 11. W. Eustaquio and J. Dioses Jr., Artificial Neural
669
+ Network For Classification Of Immature And
670
+ Mature
671
+ Coffee
672
+ Beans
673
+ Using
674
+ RGB
675
+ Values,
676
+ International Journal of Emerging Technologies in
677
+ Engineering
678
+ Research,
679
+ 9-4,
680
+ 2020.
681
+ https://doi.org/10.30534/ijeter/2020/41882020
682
+ 12. Devi Devani, Alethea Suryadibrata, Julio Christian,
683
+ Young, Implementation of Siamese Convolutional
684
+ Neural Network from Cell Images for Malaria
685
+ Disease
686
+ Identification.
687
+ International
688
+ Journal
689
+ of
690
+ Advanced Trends in Computer Science and Engineering,
691
+ 9-4, 2020. https://doi.org/10.30534/ijatcse/2020/0494
692
+ 13. Handayani, Indri, Supriyanti, Dedeh, Maulani, Giandari,
693
+ Liutfani, Ninda, Real Time Multi-Scale Facial Mask
694
+ Detection and Classification Using Deep Transfer
695
+ Learning
696
+ Techniques.
697
+ International
698
+ Journal
699
+ of
700
+ Advanced Trends in Computer Science and Engineering,
701
+ 9-4,
702
+ 2020.
703
+ https://doi.org/10.30534/ijatcse/2020/33942020
704
+ 14. Simhadri Chinna Gopi et al., Fuzzy Based Classification
705
+ of X-Ray Images with Convolution Neural Network,
706
+ International Journal of Emerging Trends in Engineering
707
+ Research,
708
+ 8(8),
709
+ 4433
710
+ -
711
+ 4436
712
+ ,
713
+ 2020.
714
+ https://doi.org/10.30534/ijeter/2020/63882020
715
+ 15. Fitria Hidayanti et al., Upper Stomach Disorder
716
+ Detection System using Backpropagation Artificial
717
+ Neural Network, International Journal of Emerging
718
+ Trends in Engineering Research, 8(8), 4426 - 4432 ,
719
+ 2020. https://doi.org/10.30534/ijeter/2020/62882020
720
+ 16. Lamarca, Bryan Irvin J, et al, The Development of a
721
+ Performance Appraisal System Using Decision Tree
722
+ Analysis and Fuzzy Logic, International Journal of
723
+ Intelligent Engineering and Systems, 11-4, 2018. DOI:
724
+ 10.22266/ijies2018.0831.02
725
+
_9E5T4oBgHgl3EQfSQ7q/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,315 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf,len=314
2
+ page_content='Harold Costales et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
3
+ page_content=', International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 7076 - 7081 7076 \uf020 ABSTRACT Rice is the number one staple food in the country, as this serves as the primary livelihood for thousands of Filipino households.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
4
+ page_content=' However, as the tradition continues, farmers are not familiar with the different types of rice leaf diseases that might compromise the entire rice crop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
5
+ page_content=' The need to address the common bacterial leaf blight in rice is a serious disease that can lead to reduced yields and even crop loss of up to 75%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
6
+ page_content=' This paper is a design and development of a rice leaf disease detection mobile application prototype using an algorithm used for image analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
7
+ page_content=' The researchers also used the Rice Disease Image Dataset by Huy Minh Do available at https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
8
+ page_content='kaggle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
9
+ page_content='com/ to train state-of-the-art convolutional neural networks using transfer learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
10
+ page_content=' Moreover, we used image augmentation to increase the number of image samples and the accuracy of the neural networks as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
11
+ page_content=' Key words : deep neural networks, convolutional neural networks, agriculture, transfer learning, rice diseases 1 INTRODUCTION Across the 20th century, our prospects of engineering have rapidly changed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
12
+ page_content=' It was once thought of as impossible for everyone, as all we had seen on earth showed us a manual process that is uneasy for us;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
13
+ page_content=' we would recognize as technology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
14
+ page_content=' However, in the 21st century, our machines continue to improve in what we conceive "Artificial Intelligence," which makes it more even feasible for devices to learn from experience, adjust to a high new level input and perform human-like tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
15
+ page_content=' Methods such as the use of convolutional neural networks may hold the key to developing software applications, particularly in the field of agriculture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
16
+ page_content=' Portability, efficiency, and affordability of agricultural technology and information continue to be a major interference for improving agricultural productivity among small enterprises in the country.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
17
+ page_content=' The Department of Agriculture, in partnership with the Department of Information and Communications Technology (DICT), has furnished a possible solution to enhance this kind of situation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
18
+ page_content=' Recently, they have launched the HACKATON to address further innovations that integrate software applications and systems into the development of agricultural technology, especially to farmers, which have been conducted nationwide.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
19
+ page_content=' They have currently established outstanding software applications and systems to aid the farmers for better understanding when it comes to e-agriculture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
20
+ page_content=' This paper emphasizes the role of ICT and the functional benefaction of software development to agriculture in the Philippines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
21
+ page_content=' Data from Rice Disease Image Dataset by Huy Minh Do available at https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
22
+ page_content='kaggle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
23
+ page_content='com are used to train data using a convolutional neural network algorithm using transfer learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
24
+ page_content=' Moreover, we used image augmentation to increase the number of image samples and the neural network accuracy as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
25
+ page_content=' It turns out that the modified neural networks achieved a state-of-the-art result with an accuracy closed to human-level performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
26
+ page_content=' The researchers have developed a prototype application for Rice Leaf Disease Detection using Convolutional Neural Networks (CNNs) for farmers in the local community.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
27
+ page_content=' This application will primarily install and use the said application on their smartphone, simply took a picture of the infected area of the rice leaf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
28
+ page_content=' Then the app gives a percentage of accuracy of rice disease infected in rice leaf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
29
+ page_content=' Farmers were also able to grasp the knowledge of the different rice leaf diseases because of the information that the application is providing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
30
+ page_content=' This paper recommends the adoption of such software applications by institutions such as the Department of Agriculture to improve provision for appropriate decision making by agricultural farmers in the country.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
31
+ page_content=' Related studies on rice leaf disease detection using neural networks have been on-trend.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
32
+ page_content=' According to [1] , "the use of computational intelligence-based techniques has proven successful in recent times for automated rice-disease detection (p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
33
+ page_content='21)".' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
34
+ page_content=' Another related study stated that [3] "an automated system could have a feature on detection of diseases present in a rice leaf using color image analysis".' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
35
+ page_content=' Furthermore, [4] cited that "the management of perennial fruit crops requires close monitoring especially for the management of diseases that can affect production significantly and subsequently the post-harvest life (p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
36
+ page_content=' 1)".' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
37
+ page_content=' Corollary to the contexts presented, the researchers came up with a rice disease detection that Development of a Prototype Application for Rice Disease Detection Using Convolutional Neural Networks Harold Costales1, Arpee Callejo-Arruejo2, Noel Rafanan3 1 University of Northern Philippines, Philippines, hlcostales@unp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
38
+ page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
39
+ page_content='ph 2 University of Northern Philippines, Philippines, arpee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
40
+ page_content='callejo@unp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
41
+ page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
42
+ page_content='ph 3 University of Northern Philippines, Philippines, noel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
43
+ page_content='rafanan@unp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
44
+ page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
45
+ page_content='ph ISSN 2347 - 3983 Volume 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
46
+ page_content=' No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
47
+ page_content=' 10, October 2020 International Journal of Emerging Trends in Engineering Research Available Online at http://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
48
+ page_content='warse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
49
+ page_content='org/IJETER/static/pdf/file/ijeter708102020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
50
+ page_content='pdf https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
51
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
52
+ page_content='30534/ijeter/2020/708102020 WARSEHarold Costales et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
53
+ page_content=', International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 7076 - 7081 7077 integrates the use of an algorithm, specifically CNNs and an image analysis, for immediate monitoring of the rice crops.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
54
+ page_content=' Thus, this mobile application is needed to bring virtual IT experts into the field to determine, examine, and to give accurate results (on rice leaf diseases) that would inform the farmers what to do next without any further expenses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
55
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
56
+ page_content='1 Objectives of the Study This study aimed to design and develop a mobile application for rice disease detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
57
+ page_content=' Specifically, it sought to answer the following objectives: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
58
+ page_content=' Propose an application to address the problem, issues and challenges encountered;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
59
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
60
+ page_content=' Identify an appropriate algorithm for the application;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
61
+ page_content=' and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
62
+ page_content=' Features for the Mobile application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
63
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
64
+ page_content='2 Conceptual Framework Figure 1: Paradigm of the Study Figure 1 shows researcher used the input-process-output (IPO) model as a guide in conducting the study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
65
+ page_content=' The Application is proposed for the problems and issues encountered, appropriate algorithm to be incorporated, and features for the mobile application are the input of the study (input), which served as the guide in designing the application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
66
+ page_content=' The software development methodology, which is the Feature-Driven Development Methodology, is the process for the "Development of a Prototype Application for Rice Disease Detection Using Convolutional Neural Networks"(output).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
67
+ page_content=' 2 METHODS This part presents the algorithm and the software development methodology used in the development of the mobile application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
68
+ page_content=' For the algorithm, the researchers chose Convolutional Neural Networks (CNNs) for the mobile application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
69
+ page_content=' As stated by [12], technological advancements in Computer Vision and Deep Learning a subset of the Artificial Intelligence gains more importance in the last decade especially in the field of object detection using Convolutional Neural Networks (CNN) became popular in many fields to address the current societal issues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
70
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
71
+ page_content='1 Convolutional Neural Networks Deep Learning Algorithm for the Prototype Mobile App A Convolutional Neural Network (CNN) is a deep learning algorithm in which images serve as input to a learnable process to analyze various aspects of the image and be able to differentiate one from the other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
72
+ page_content=' A rice leaf is an input, and images of diseases of rice leaves are stored in the database to match the input.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
73
+ page_content=' As cited by [11], many researchers use deep learning method to classify an image automatically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
74
+ page_content=' The purpose of classification is to arrange objects that will be observed into categories that have been defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
75
+ page_content=' Furthermore, [14] cited that the detection technique assisted by simple image processing in the evidence is very interesting to be further researched.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
76
+ page_content=' The researcher also utilized the method of [16] for data processing for the realization of the study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
77
+ page_content=' Convolutional Neural Networks (CNNs) is the most appropriate model of Rice Disease Image Dataset since it uses image analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
78
+ page_content=' It was proven by [6] that convolutional neural networks (CNNs) have used in the field of computer vision for decades.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
79
+ page_content=' Moreover, [5] proposes a convolutional autoencoder deep learning framework to support unsupervised image features learning for lung nodule through unlabeled data, which only needs a small amount of labeled data for efficient feature learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
80
+ page_content=' Below are the steps on how the researchers came up with the integration of the CNNs for the developed application following the process of the CNNs in the study of [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
81
+ page_content=' Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
82
+ page_content=' A Typical Architecture of CNNs by Tajbakhsh (2016) Figure 2 presents a typical architecture of a CNN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
83
+ page_content=' It consists of an input layer (images), convolutional layer, pooling layer, a fully connected layer, a classifier and an output layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
84
+ page_content=' The convolutional layer is the most important layer in the CNN hence the name Convolutional Neural Networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
85
+ page_content=' It acts as an automatic feature that extracts meaningful features of the object in the image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
86
+ page_content=' In mathematics, convolution is the operation of two functions to produce a third modified function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
87
+ page_content=' (1) WNPOI PROCESS OUIPUTAplicationcanbeproposedtoaddress Development icationttheproblem,issues Methodology eafDiseasepuoue ·DevelopanOverallencounterea Model CIgorithmforthe ·BuildaFeatureListdevelopedapplication;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
88
+ page_content=' PlanbyFeatureand ·DesignbyFeatureeFeaturesofthe ·BuildbyFeatureproposedsystembird Prird sunset Psunset dog cat Pol o convolution+ maxpooling vec nonlinearity convolution+pooling layers fully connected layers Nxbinaryclassification(f*g)(t) ≤ f(T)g(t - T) dT 00Harold Costales et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
89
+ page_content=', International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 7076 - 7081 7078 In the context of CNNs, convolutional operation is simply a matrix operation, specifically matrix multiplication and addition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
90
+ page_content=' The byproduct of this operation called the feature map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
91
+ page_content=' The pooling layer is used to down sample the feature map to reduce computational complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
92
+ page_content=' It is common in the literature to add the pooling layer after the convolution layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
93
+ page_content=' There are two main types of pooling the max pooling and the average pooling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
94
+ page_content=' In the literature max pooling is preferred.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
95
+ page_content=' It calculates the maximum value for each patch of the feature map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
96
+ page_content=' (2) The fully connected layer, abbreviated FC is responsible for vectorizing the features from the convolution and pooling layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
97
+ page_content=' This transforms the multi-dimensional feature map into a row vector to be fed into a classifier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
98
+ page_content=' The classifier is responsible in outputing the probibilities of the output layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
99
+ page_content=' There are two commonly used activation functions used in classifiers, the sigmoid activation function and the softmax activation function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
100
+ page_content=' Since the problem of detecting disease on rice leaf images is a multi-class classification problem, the appropriate function to be used is the softmax activation function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
101
+ page_content=' (3) Another is the use of a software development methodology which helped the researchers identify the problems, created an overview of the concept for the mobile application and built the application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
102
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
103
+ page_content='2 Software Development Methodology The researcher used the Feature-driven Development (FDD) under the family of Agile methodology for the software development because it is the most suitable and it has a customer-centric process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
104
+ page_content=' Its iterative feature allowed the researchers to develop the application while it is being tested.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
105
+ page_content=' In the study of [7] stated that, “the iterative feature of the methodology allowed the proponents to capitalize on the learning that was accumulated during the development of earlier parts or versions of the solution”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
106
+ page_content=' The figure below presents the phases of FDD methodology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
107
+ page_content=' Figure 3: Feature Driven Development Methodology Figure 3 shows the Feature-Driven Development Methodology which has five phases, which include the (a) Development of an Overall Model, (b) Build a Feature List, (c) Plan by Feature, (d) Design by Feature, and (e) Build by Feature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
108
+ page_content=' The phases of development are presented as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
109
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
110
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
111
+ page_content='1 Develop Overall Model A stage where the researchers created a fundamental foundation of the application and the variables it required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
112
+ page_content=' This stage also identified the initial development of the application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
113
+ page_content=" The researchers designed the application's overall model and served it as a guideline in developing the application." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
114
+ page_content=' As the primary objective, the researchers develop the mobile app for the farmers for the early detection of rice diseases of rice-crops.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
115
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
116
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
117
+ page_content='2 Build Feature List The researchers created concrete plans for each feature of the mobile application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
118
+ page_content=' The researchers created a prototype of the user interfaces for the conceptualization of the mobile application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
119
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
120
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
121
+ page_content='3 Plan by Feature The researchers created concrete plans for each feature of the mobile application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
122
+ page_content=' The researchers created a prototype of the user interfaces for the conceptualization of the mobile application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
123
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
124
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
125
+ page_content='4 Design by Feature The researchers designed the features individually using the needed preferences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
126
+ page_content=' To fulfill this stage, the researchers designed the identified features with the help of the needed tools and processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
127
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
128
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
129
+ page_content='5 Build by Feature The last stage of the methodology wherein the researchers created the planned and designed features for the application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
130
+ page_content=' With the previous step as a guide, the researchers turned the details of the features into a working application, with the help of the tools and processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
131
+ page_content=' After an inspection via a test run by the researchers, the researchers created the planned and designed features for the application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
132
+ page_content=' Mf(p) =max(f(q)-dmax(p-q)) 52berj 1xa7Modeling Initial Model Storming DevelopanOverall Bulld a Features Planby Designby Buildby Model List Feature Feature Feature (moreshape Alistoffeatures A developmentplan Adesign package Completed thancontant) grouped into sets Class owners client-valued and subjectareas Features setowners function Anobjectmodel (addmorecontent +notes to the object model)Harold Costales et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
133
+ page_content=', International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 7076 - 7081 7079 3 RESULTS 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
134
+ page_content='1 Prototype Mobile Application for Rice Disease Detection Figure 4: The Prototype of the Mobile Application Figure 4 shows the rice disease detection of the mobile application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
135
+ page_content=' The researchers designed and develop a mobile application to assist the farmers in disease detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
136
+ page_content=' It aims to help the farmers who are the backbone of the country to increase rice crop productivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
137
+ page_content=' The lack of knowledge of farmers in the detection of rice diseases made the researchers conceptualize the integration of the field of agriculture and medicine in detecting diseases of rice crops.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
138
+ page_content=" Also, Duterte's Administration supports Research and Development along with agriculture." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
139
+ page_content=' It is stated in the Philippine Development Plan (PDP) 2017-2022 that there is a need to conduct researches in the field because of rice-crop yield losses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
140
+ page_content=' Thus, the PDP 2017-2022 established a plan to support the initiatives of the agriculture sector along with R&D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
141
+ page_content=' Moreover, the application is different from other similar apps available in the market because it was developed specifically for the Philippine agriculture setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
142
+ page_content=' The application will be stored with rice disease data exclusively for agriculture in the northern Philippines and further validated by pathologists as the researchers continue to gather data that will be for the database of the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
143
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
144
+ page_content='2 Convolutional Neural Networks Deep Learning Algorithm for the Prototype Application The researchers utilized an Image Processing typical machine learning workflow in the development of the model which consists of the following Data Acquisition, Data Preparation, and Training and Validation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
145
+ page_content=' As cited by [10] Image processing is the method of using different manipulation techniques and algorithms so that a desired features can be extracted such as morphology, color and texture from an image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
146
+ page_content=' Another study stated that [13] CNN proved to be best among the results in terms of accuracy when compared to other classifiers 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
147
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
148
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
149
+ page_content=' Image Acquisition The dataset by Huy Minh Do available at https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
150
+ page_content='kaggle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
151
+ page_content='com/ containing 1,260 labeled rice leaf images was used for creating the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
152
+ page_content=' The images were labeled as Leaf Blast, Brown Spot, and Hispa, which are the (3) three rice leaf diseases that the model will try to classify.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
153
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
154
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
155
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
156
+ page_content=' Image Preprocessing The images were downscaled to 500 x 500 pixels to reduce computational complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
157
+ page_content=' Image dataset were split into train dataset (80% of the entire samples) and validation dataset (20% of the entire samples).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
158
+ page_content=' Image augmentation such as flipping, shearing, and rescaling in order to increase dataset samples as neural networks are data crunchers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
159
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
160
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
161
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
162
+ page_content=' Training and Validation To fast track the training process the researchers employed transfer learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
163
+ page_content=' Transfer learning, in general, is the process of taking a previously trained model used in a problem and apply in to another related problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
164
+ page_content=' It is referring to the knowledge transfer from pretrained network in one domain to your own problem in a different domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
165
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
166
+ page_content=' [8] The researcher used MobileNet 2 [9] as the base model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
167
+ page_content=' It is a state-of-the-art CNN model trained from ImageNet and one of the winners of the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), a prestigious computer vision competition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
168
+ page_content=' Since the target dataset is small and somewhat different from the dataset where MobileNet 2 was trained, the top layer of the network needs to be frozen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
169
+ page_content=' First Iteration Base model mobile net Version 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
170
+ page_content='0 Hyper-parameters: Top layer = false Initialweights .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
171
+ page_content='a58%12:57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
172
+ page_content='PM agDetect blast 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
173
+ page_content='13% brownspol bacterial_leaf_blight 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
174
+ page_content='14%Harold Costales et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
175
+ page_content=', International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 7076 - 7081 7080 Second Iteration Base model mobile net Version 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
176
+ page_content='0 Hyper-parameters: Top layer = false Initialweights = imagenet Loss = categorical cross entropy Metrics = accuracy Optimization = ADAM EPOCHS= 10 TRAINABLE = FALSE Result= 97% trained data set, 94% validation Suffered from overfitting Third Iteration Base model mobile net Version 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
177
+ page_content='0, image augmentation Hyper-parameters: Top layer = false Initialweights = imagenet Loss = categorical cross entropy Metrics = accuracy Optimization = ADAM EPOCHS= 20 TRAINABLE = true Result= 98.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
178
+ page_content='9% trained data set, 98% validation Overfitting was solved The third iteration proved that the process for the image analysis on the training and testing for the data sets was validated with an accuracy rate of 98% from 94% from the second iteration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
179
+ page_content=' This proved that the CNNs algorithm of the mobile application was proven for use.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
180
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
181
+ page_content='3 Features of the Prototype Mobile Application The features of the application include (1) real-time detection, (2) artificial intelligence, and (3) image analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
182
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
183
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
184
+ page_content='1 Real time Detection One of the features of the mobile application is a real-time detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
185
+ page_content=' The application helps in the identification of the rice leaf diseases using convolutional neural networks that match the input data and the data stored in the database of the application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
186
+ page_content=' The embed camera of the mobile application can detect the diseases in real-time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
187
+ page_content=' This feature helps farmers to detect the diseases even without the instruction of plant pathologists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
188
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
189
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
190
+ page_content='2 Artificial Intelligence Experts in the field of Agriculture are marginal, especially in rice leaf disease detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
191
+ page_content=' This feature of the mobile application replicates the knowledge about rice leaf disease detection in the field, which is one of the features of the mobile application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
192
+ page_content=' As data grows on the database of the mobile application, the more accurate results it can give.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
193
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
194
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
195
+ page_content='3 Image Analysis Another feature is Image Analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
196
+ page_content=' This feature uses the CNNs algorithm aspects and features of images were stored, enabling the mobile application to analyze the rice leaf for disease detection through the following steps of the algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
197
+ page_content=' 4 CONCLUSION In summary, the researchers have developed a mobile application, which could help the agricultural sector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
198
+ page_content=' Specifically, the researchers conclude that the mobile application will help in the realization of the high-yield of rice crops against rice diseases for preventive measures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
199
+ page_content=' Thus, this study is helpful to the country, particularly the agricultural sector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
200
+ page_content=' 5 RECOMMENDATION The researchers came up with the following recommendations: (1) The output of the Mobile Application will have its validation of experts in rice disease for accuracy of the information from the mobile application, (2) the mobile application will have a series of tests for the implementation for future use.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
201
+ page_content=' Lastly, (3) the researchers highly recommend that the application shall be introduced to the Department of Agriculture for dissemination.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
202
+ page_content=' ACKNOWLEDGEMENT The researchers would like to thank the following people: the active UNP Research Office- Science and Technology Coordinator, Prof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
203
+ page_content=' Redentor S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
204
+ page_content=' Rojas, the ever-supportive UNP Research Director, Dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
205
+ page_content=' Edelyn Cadorna and the dynamic UNP President, Dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
206
+ page_content=' Erwin F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
207
+ page_content=' Cadorna for pushing us to enhance our research knowledge and capabilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
208
+ page_content=' Also, the researchers would like to thank the IMPACT HACKATON 2050 for organizing the IMPACT HACKATON 2019, where they conceptualized this research study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
209
+ page_content=' Above all, thanks to Almighty God for all the blessings for our families and the society.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
210
+ page_content=' REFERENCES 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
211
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
212
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
213
+ page_content=' Emberda, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
214
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
215
+ page_content=' Dumas, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
216
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
217
+ page_content=' Rentillo, Forecasting Coconut Yield: A Comparative Study between the Use of Traditional Forecasting and Feed Forward Back Propagation Artificial Neural Network, UIC Research Journal, 18(2), 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
218
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
219
+ page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
220
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
221
+ page_content=' Francisco, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
222
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
223
+ page_content=' Concepcion, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
224
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
225
+ page_content=' Mojica, and , S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
226
+ page_content=' B Montes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
227
+ page_content=' Philippines First: An Edutainment 3d Game For Android Mobile Platform Using Separating Axis Theorem (Sat) Algorithm, Innovatus, 2(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
228
+ page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
229
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
230
+ page_content=' Pugoy, Reinald Adrian D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
231
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
232
+ page_content=' and Mariano Vladimir Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
233
+ page_content=' Automated rice leaf disease detection using color image Harold Costales et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
234
+ page_content=', International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 7076 - 7081 7081 analysis, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
235
+ page_content=' SPIE 8009, Third International Conference on Digital Image Processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
236
+ page_content=' 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
237
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
238
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
239
+ page_content=' Revathi and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
240
+ page_content=' Hemalatha.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
241
+ page_content=' Advance computing enrichment evaluation of cotton leaf spot disease detection using Image Edge detection, 2012 Third International Conference on Computing, Communication and Networking Technologies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
242
+ page_content=' 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
243
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
244
+ page_content=' Talingdan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
245
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
246
+ page_content=', & Llanda, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
247
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
248
+ page_content=', Assessment of the effectiveness of learning theories using gamified Android app in teaching C programming.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
249
+ page_content=' Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
250
+ page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
251
+ page_content=' IOP Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
252
+ page_content=' Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
253
+ page_content=' Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
254
+ page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
255
+ page_content=' Eng, 482-1,1-6, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
256
+ page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
257
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
258
+ page_content=' Chen, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
259
+ page_content=' Mulgrew, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
260
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
261
+ page_content=' Grant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
262
+ page_content=' A clustering technique for digital communications channel equalization using radial basis function networks,, IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
263
+ page_content=' on Neural Networks, 4, 570-578, 1993.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
264
+ page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
265
+ page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
266
+ page_content=' Tajbakhsh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
267
+ page_content=' Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
268
+ page_content=', IEEE Transactions on Medical Imaging, 35-5, 1299-1312, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
269
+ page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
270
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
271
+ page_content=' Aitken and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
272
+ page_content=' Ilango A Comparative Analysis of Traditional Software Engineering and Agile Software Development, 46th Hawaii International Conference on System Sciences, Wailea, Maui, HI, 4751-4760, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
273
+ page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
274
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
275
+ page_content=' Elgendy, Deep Learning for Vision Systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
276
+ page_content=' Manning Publications, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
277
+ page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
278
+ page_content=' Olga Russakovsky, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
279
+ page_content=' ImageNet Large Scale Visual Recognition Challenge, International Journal of Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
280
+ page_content=' Vis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
281
+ page_content=' 115.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
282
+ page_content=' 1-42, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
283
+ page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
284
+ page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
285
+ page_content=' Eustaquio and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
286
+ page_content=' Dioses Jr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
287
+ page_content=', Artificial Neural Network For Classification Of Immature And Mature Coffee Beans Using RGB Values, International Journal of Emerging Technologies in Engineering Research, 9-4, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
288
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
289
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
290
+ page_content='30534/ijeter/2020/41882020 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
291
+ page_content=' Devi Devani, Alethea Suryadibrata, Julio Christian, Young, Implementation of Siamese Convolutional Neural Network from Cell Images for Malaria Disease Identification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
292
+ page_content=' International Journal of Advanced Trends in Computer Science and Engineering, 9-4, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
293
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
294
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
295
+ page_content='30534/ijatcse/2020/0494 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
296
+ page_content=' Handayani, Indri, Supriyanti, Dedeh, Maulani, Giandari, Liutfani, Ninda, Real Time Multi-Scale Facial Mask Detection and Classification Using Deep Transfer Learning Techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
297
+ page_content=' International Journal of Advanced Trends in Computer Science and Engineering, 9-4, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
298
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
299
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
300
+ page_content='30534/ijatcse/2020/33942020 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
301
+ page_content=' Simhadri Chinna Gopi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
302
+ page_content=', Fuzzy Based Classification of X-Ray Images with Convolution Neural Network, International Journal of Emerging Trends in Engineering Research, 8(8), 4433 - 4436 , 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
303
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
304
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
305
+ page_content='30534/ijeter/2020/63882020 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
306
+ page_content=' Fitria Hidayanti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
307
+ page_content=', Upper Stomach Disorder Detection System using Backpropagation Artificial Neural Network, International Journal of Emerging Trends in Engineering Research, 8(8), 4426 - 4432 , 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
308
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
309
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
310
+ page_content='30534/ijeter/2020/62882020 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
311
+ page_content=' Lamarca, Bryan Irvin J, et al, The Development of a Performance Appraisal System Using Decision Tree Analysis and Fuzzy Logic, International Journal of Intelligent Engineering and Systems, 11-4, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
312
+ page_content=' DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
313
+ page_content='22266/ijies2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
314
+ page_content='0831.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
315
+ page_content='02' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E5T4oBgHgl3EQfSQ7q/content/2301.05528v1.pdf'}
adE3T4oBgHgl3EQfdAqs/content/tmp_files/2301.04531v1.pdf.txt ADDED
@@ -0,0 +1,925 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.04531v1 [physics.optics] 11 Jan 2023
2
+ Unified Model for Nonlinear Pulse Propagation in Composites and Optimization of
3
+ THz Generation
4
+ A. Husakou∗
5
+ Max Born Institute, Max Born Str.
6
+ 2a, D-12489 Berlin, Germany
7
+ O. Fedotova, R. Rusetsky, and O. Khasanov
8
+ Scientific-Practical Materials Research Centre of National Academy
9
+ of Sciences of Belarus, P.Brovki str.
10
+ 19, 220072 Minsk, Belarus
11
+ T. Smirnova and A. Fedotov
12
+ Belarus State University, Niezalieˇznasci ave 4, 220030 Minsk, Belarus
13
+ T. Apostolova
14
+ Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences,
15
+ Tsarigradsko Chausse 72, 1784 Sofia, Bulgaria and
16
+ Institute for Advanced Physical Studies, New Bulgarian University, 1618 Sofia, Bulgaria
17
+ I. Babushkin
18
+ Institute of Quantum Optics, Leibniz University Hannover, Welfengarten 1, 30167, Hannover, Germany
19
+ Cluster of Excellence PhoenixD (Photonics, Optics,
20
+ and Engineering-Innovation Across Disciplines), 30167, Hannover, Germany and
21
+ Max Born Institute, Max-Born-Str. 2a, 12489, Berlin, Germany
22
+ U. Sapaev
23
+ Tashkent State Technical University, University street 2, 100097 Tashkent, Uzbekistan
24
+ We describe a unified numerical model which allows fast and accurate simulation of nonlinear light
25
+ propagation in nanoparticle composites, including various effects such as group velocity dispersion,
26
+ second- and third-order nonlinearity, quasi-free-carrier formation and plasma contribution, exciton
27
+ dynamics, scattering and so on. The developed software package SOLPIC is made available for
28
+ the community. Using this model, we analyze and optimize efficient generation of THz radiation
29
+ by two-color pulses in ZnO/fused silica composite, predicting an efficiency of 3%. We compare the
30
+ role of various nonlinear effects contributing to the frequency conversion, and show that optimum
31
+ conditions of THz generation differ from those expected intuitively.
32
+ I.
33
+ INTRODUCTION
34
+ THz technology has attracted a lot of attention in
35
+ the recent years, since it provides unique experimental
36
+ tools and techniques in nonlinear and time-domain spec-
37
+ troscopy, biology and medicine, remote sensing, security
38
+ screening, as well as information and communication sys-
39
+ tems (see e.g. [1–4]). For generation of THz radiation,
40
+ different techniques were proposed, such as two-color ion-
41
+ izing femtosecond pulses in gases [5–10] and plasmas,
42
+ produced at the surface of solids (e.g. metal foil) with
43
+ high intensities [11] that are free from optical damage
44
+ threshold and phase-matching drawbacks; optical rectifi-
45
+ cation of the transmitted intense ultrashort laser pulses
46
+ in non-linear crystals [12–16], which provide a basis for
47
+ compact low-intensity devices.
48
+ The needs of the THz
49
+ technology require, however, extension of the range of
50
+ the available techniques and materials, in order to pro-
51
+ vide flexible designs required in multifarious applications.
52
+ ∗ gusakov@mbi-berlin.de
53
+ Following this line, investigations of THz generation in
54
+ various media such as water [17] and strongly magnetized
55
+ plasmas [18] were performed. Emission of terahertz radi-
56
+ ation with broad bandwidth by femtosecond photoexcita-
57
+ tion of spintronic materials (ferromagnetic and synthetic
58
+ multiferroic heterostructures) was also reported recently
59
+ [19, 20].
60
+ Nanoparticle composites were actively investigated in
61
+ the past as a nonlinear material, e.g. [21–23], and their
62
+ particular strength lies in the flexibility of their design
63
+ leading to unusual properties such as e.g. negative re-
64
+ fractive index [24].
65
+ However, surprisingly, up to our
66
+ knowledge they have not attracted attention as a medium
67
+ for THz generation. In this paper, we close this gap by
68
+ developing a numerical model suitable for simulation of
69
+ THz generation in nanocomposites.
70
+ A range of linear
71
+ and nonlinear effects such as group velocity dispersion,
72
+ second- and third-order nonlinearity, quasi-free-carrier
73
+ formation, exciton dynamics and so on are encompassed
74
+ by the developed model. We use it to explore THz gen-
75
+ eration by two-color pulses in nanoparticle composites,
76
+ to elucidate the contributions of different frequency con-
77
+ version mechanisms, and to predict efficiencies in few-
78
+
79
+ 2
80
+ percent range.
81
+ The applicability of the above model is, in fact, much
82
+ broader than mere simulation of THz generation; a wide
83
+ range of nonlinear effects such as soliton dynamics and
84
+ supercontinuum generation, frequency conversion, multi-
85
+ level dynamics and electromagnetically-induced trans-
86
+ parency and so on can be studied using this unified ap-
87
+ proach. With this is mind, we have created the extensive
88
+ documentation of the code and made the code publicly
89
+ available [25], in a hope that it will be useful to the optical
90
+ community for investigations of the nonlinear processes
91
+ in nanocomposites and other materials.
92
+ The paper is organized as follows. In Section 2, we
93
+ present the numerical model, including detailed formal-
94
+ ism for all the relevant mechanisms.
95
+ In Section 3, we
96
+ optimize the THz generation by two-color pulses, and
97
+ analyze the role of different parameters. A summary of
98
+ the paper is given in the conclusion.
99
+ II.
100
+ THEORETICAL MODEL
101
+ We consider a composite consisting of two components,
102
+ a homogeneous host material and spherical nanoparticles
103
+ (inclusions) randomly distributed in space. We assume
104
+ a sufficiently low (typically few percent or below) filling
105
+ fraction of the inclusions so that neither percolation nor
106
+ interaction between the inclusions play a role. We con-
107
+ sider homogeneous inclusions to be sufficiently small with
108
+ diameter below the light wavelength so that effective-
109
+ medium theory can be applied.
110
+ Note that we do not
111
+ place any limitations on the nature of host and inclu-
112
+ sion materials, i.e., either of them could be a dielectric,
113
+ a metal, or a semiconductor. We do not require point
114
+ symmetry in host material or in the inclusions, so that
115
+ the second-order susceptibility can be non-zero in either
116
+ material.
117
+ The model is designed to simulate propaga-
118
+ tion over relatively short distances of few millimeters, be-
119
+ low the damage threshold, and without back-reflection,
120
+ therefore (1+1)D treatment using unidirectional propa-
121
+ gation equation [26] is the most suitable.
122
+ Under these conditions, the following effects have to
123
+ be taken into account: linear dispersion including intrin-
124
+ sic and scattering losses, second- and third-order optical
125
+ nonlinearities and photoionization accompanied by ion-
126
+ ization losses and plasma dynamics. In addition, transi-
127
+ tions between excitonic states can play a significant role
128
+ in the inclusion response, in particular for the genera-
129
+ tion of new frequencies in the THz range. Among the
130
+ effects which were neglected in this treatment are ther-
131
+ mal effects (due to slow ns-scale response), coupling to
132
+ phonons (because of relatively slow ps-scale response),
133
+ Raman scattering (which is typically weaker than in-
134
+ stantaneous nonlinearities), anisotropy of the host ma-
135
+ terial (due to manufacturing limitations for composites),
136
+ deviations of the inclusion form from a sphere (because
137
+ of typical manufacturing conditions), and generation of
138
+ high-order harmonics (because of the considered inten-
139
+ sity ranges).
140
+ The following unidirectional propagation equation is
141
+ used to model the light propagation in a homogeneous
142
+ medium [26, 27]:
143
+ ∂E(z, ω)
144
+ ∂z
145
+ = −i
146
+
147
+ [
148
+
149
+ ǫ(ω) − ng]ω
150
+ c
151
+ − β(ω0)
152
+
153
+ E(z, ω)
154
+
155
+
156
+ 2c
157
+
158
+ ǫ(ω)
159
+ PNL(z, ω),
160
+ (1)
161
+ where E(z, ω) = ˆFE(z, t) =
162
+ � ∞
163
+ −∞ E(z, t) exp(−iωt)dt
164
+ is the Fourier transform ˆF of the electric field E(z, t), z
165
+ is the propagation coordinate, ǫ(ω) is the linear dielec-
166
+ tric permittivity (generally speaking, complex-valued to
167
+ include loss mechanisms), ng is the group refractive in-
168
+ dex, ω0 is a characteristic frequency of the pulse spec-
169
+ trum, β(ω) =
170
+
171
+ ǫ(ω)ω/c, and PNL(z, ω) is the Fourier
172
+ transform of the nonlinear part of the polarization. We
173
+ would like to empathise that no slowly-varying envelope
174
+ approximation is used, and E(z, t) represents the real-
175
+ valued field including the carrier oscillations. This ap-
176
+ proach yields a unified treatment for a pulse with arbi-
177
+ trary spectral content, which is particularly important
178
+ for extremely broad spectra.
179
+ A.
180
+ Linear dispersion
181
+ The effective-medium theory allows to substitute the
182
+ composite material by a homogenised medium with ap-
183
+ propriately defined effective material parameters.
184
+ The
185
+ effective refractive index of a composite can be expressed
186
+ as [27]
187
+ neff =
188
+
189
+ (1 − f)ǫh + fǫi
190
+ 3ǫh
191
+ 2ǫh + ǫi
192
+ + 2i
193
+ � ǫh − ǫi
194
+ 2ǫh + ǫi
195
+ �2 �rNPω√ǫh
196
+ c
197
+ �3�1/2
198
+ ,
199
+ (2)
200
+ where f is the volume filling factor of the inclusions,
201
+ rNP is their radius, and ǫh,i are the frequency-dependent
202
+ dielectric functions of the host and of the inclusions, cor-
203
+ respondingly. The last term in the square brackets de-
204
+ scribes scattering losses.
205
+ B.
206
+ Second- and third-order nonlinearities
207
+ The second- and third-order nonlinear processes can
208
+ also be described in the framework of the effective-
209
+ medium theory. The expressions for the effective second-
210
+ order susceptibility looks like [28]
211
+
212
+ 3
213
+ χ(2)
214
+ eff (ω1 = ω2 + ω3; ω2, ω3) = (1 − f)χ(2)
215
+ h
216
+ +
217
+ + fx(ω1)x(ω2)x(ω3)χ(2)
218
+ i ,
219
+ (3)
220
+ where χ(2)
221
+ h
222
+ and χ(2)
223
+ i
224
+ are the susceptibilities of host and
225
+ inclusion materials, correspondingly. Note that we ne-
226
+ glected the frequency dependence of the susceptibilities
227
+ of host and inclusions, which is a good assumption far
228
+ from resonances. Quantity x(ω) is the ratio of local field
229
+ inside the inclusion and the incident field:
230
+ x(ω) =
231
+ 3ǫh(ω)
232
+ 2ǫh(ω) + ǫi(ω).
233
+ (4)
234
+ Here we note that, due to photoionization as described
235
+ below, the ǫi(ω) and therefore x, strictly speaking, de-
236
+ pend on time due to buildup of plasma during the pulse.
237
+ However, in the current simulation we neglect this de-
238
+ pendence, assuming that corresponding change of ǫi(ω)
239
+ is small and that we are far from the plasmonic resonance
240
+ given by 2ǫh(ω) = −ǫi(ω).
241
+ Similarly, for the effective third-order susceptibility we
242
+ write [28]
243
+ χ(3)
244
+ eff (ω1 = ω2 + ω3 + ω4; ω2, ω3, ω4) = (1 − f)χ(3)
245
+ h
246
+ +
247
+ + fx(ω1)x(ω2)x(ω3)x(ω4)χ(3)
248
+ i ,
249
+ (5)
250
+ where χ(3)
251
+ h
252
+ and χ(3)
253
+ i
254
+ are the susceptibilities of host and
255
+ inclusion materials, correspondingly. The final expres-
256
+ sions which were used to calculate the corresponding po-
257
+ larizations look like
258
+ Pχ(2)(z, ω) = (1 − f)ǫ0χ(2)
259
+ h
260
+ ˆFE(z, t)2 +
261
+ + fǫ0χ(2)
262
+ i
263
+ ˆF[ ˆF −1{E(z, ω)x(ω)}2],
264
+ (6)
265
+ Pχ(3)(z, ω) = (1 − f)ǫ0χ(3)
266
+ h
267
+ ˆFE(z, t)3 +
268
+ + fǫ0χ(3)
269
+ i
270
+ ˆF[ ˆF −1{E(z, ω)x(ω)}3].
271
+ (7)
272
+ C.
273
+ Plasma dynamics
274
+ Let us turn to the description of plasma formation and
275
+ dynamics. In the framework of SOLPIC, we consider a
276
+ case when the ionization potential Ip of the inclusions
277
+ is lower than that of the host material, so that due to
278
+ the sensitive dependence of the polarization rate on the
279
+ ionization potential we can neglect plasma formation in
280
+ host material.
281
+ The contribution from the plasma is determined by the
282
+ average displacement ⟨d⟩(z, t) of the electron from the
283
+ equilibrium position in the parent ”molecule”, whereby
284
+ by a ”molecule” we denote an atom or a group of atoms of
285
+ the solid-state material which can provide a single ioniza-
286
+ tion event. Furthermore, it is determined by the relative
287
+ ionization of the solid state ρ(z, t), which is the ratio of
288
+ the conduction-band electron density to the density of
289
+ ”molecules”:
290
+ Pplasma(z, ω) = −Nmole ˆF[⟨d⟩(z, t)ρ(z, t)]
291
+ (8)
292
+ Here Nmol is the concentration of the molecules and
293
+ e = 1.6×10−19 is the electron charge. The above expres-
294
+ sion would be valid in a homogeneous medium; however,
295
+ as it refers to a polarization which occurs inside of inclu-
296
+ sions, in contrast to averaged macroscopic polarization,
297
+ in the case of effective-medium theory it has to be addi-
298
+ tionally multiplied by x(ω). For the origin of this factor
299
+ and further details see Ref. [28].
300
+ The dynamics of the quantity ⟨d⟩(z, t)ρ(z, t) is given
301
+ by [33]
302
+ ∂(⟨d⟩(z, t)ρ(z, t))
303
+ ∂t
304
+ = ⟨v⟩(z, t) + x0Γ(t),
305
+ (9)
306
+ where ⟨v⟩ is the average velocity of electrons and
307
+ x0 ≃ −Ip/eE(t) is the initial displacement of the elec-
308
+ tron immediately after the ionization event, Ip being the
309
+ bandgap. It can be shown that the second term describes
310
+ the energy loss of the pulse due to photoionization. The
311
+ dynamics of the ⟨v⟩(z, t)ρ(z, t) is given by second New-
312
+ ton’s law as
313
+ ∂(⟨d⟩(z, t)ρ(z, t))
314
+ ∂t
315
+ = −eE(z, t)
316
+ me
317
+ ρ,
318
+ (10)
319
+ where me is the effective electron mass near the bot-
320
+ tom of the conduction band. Here we neglect the initial
321
+ displacement and velocity of electron just after the ion-
322
+ ization.
323
+ The dynamics of the relative plasma density ρ is given
324
+ by
325
+ ∂ρ
326
+ ∂t = Γ( ˆF −1[x(ω)E(z, ω)]),
327
+ (11)
328
+ where x(ω)E(z, ω) is the local field inside of inclusions
329
+ which determines the photoionization rate Γ.
330
+ D.
331
+ Ionization rate
332
+ Depending on the relation between the frequency of
333
+ pump light and the ionization potential of inclusions, we
334
+ consider two models for the ionization rate. For the case
335
+ when the energy of pump photons is much smaller than
336
+ the ionization potential, the photoionization occurs ei-
337
+ ther by multiphoton regime or by tunneling regime, as
338
+ determined by intensity and Keldysh parameter. Here we
339
+
340
+ 4
341
+ 10-4
342
+ 10-3
343
+ 10-2
344
+ 0.1
345
+ 1
346
+ 1
347
+ 2
348
+ 3
349
+ 4
350
+ 5
351
+ (a)
352
+ I(ω) (arb. units)
353
+ ω (fs-1)
354
+ -6
355
+ -4
356
+ -2
357
+ 0
358
+ 2
359
+ 4
360
+ 6
361
+ -40
362
+ -20
363
+ 0
364
+ 20
365
+ 40
366
+ 0
367
+ 0.005
368
+ 0.01
369
+ (b)
370
+ E (GV/m)
371
+ ρ
372
+ t (fs)
373
+ FIG. 1. Dependence of the spectra (a) and the electric field
374
+ (b) on the propagation length. 15-fs pulses at 2.26 fs−1 and
375
+ 4.58 fs−1 are considered, with intensity of 1 TW/cm2 and
376
+ propagation length of 0.75 µm (magenta curves), 2.25 µm
377
+ (green curves), and 6.75 µm (bluecurves). In (b), additionally
378
+ the relative plasma density is shown for propagation length
379
+ of 6.75 µm. A composite of ZnO inclusions with f = 0.03 in
380
+ fused silica is considered.
381
+ utilize so-called Yudin-Ivanov model [29], which provides
382
+ a formalism for both of these regimes in a unified way.
383
+ This model was initially developed for isolated atoms; its
384
+ use for solid state is justified in a case a negligible an-
385
+ harmonicity of the bands in the center of the Brillouin
386
+ zone.
387
+ The cycle-resolved ionization rate Γ is given (in atomic
388
+ units, that is, with frequency ω, time t and field E mea-
389
+ sured in the corresponding Hartree units ωa = 0.26
390
+ rad/as, ta = 24.2 as, xa = 0.0529 nm, and Ea = 514.2
391
+ V/nm) by
392
+ Γ(z, t) = π
393
+ τT
394
+ exp
395
+
396
+ −σ0
397
+ ⟨2E(z, t)2⟩
398
+ ω3
399
+ � �
400
+ 2κ3
401
+
402
+ ⟨2E(z, t)2⟩
403
+ �2Z/κ
404
+ × exp
405
+
406
+ −E(z, t)2
407
+ 2ω3
408
+ σ1
409
+
410
+ .
411
+ (12)
412
+ Here τT = κ/E(z, t), κ =
413
+
414
+ Ip/(ℏωa), σ0 =
415
+ 1
416
+ 2(γ2 +
417
+ 1
418
+ 2) ln C − 1
419
+
420
+
421
+ 1 + γ2, γ = ωτT , Z is the effective atomic
422
+ charge, C = 1 + 2γ
423
+
424
+ 1 + γ2 + 2γ2, and σ1 = ln C-
425
+ 2γ/
426
+
427
+ 1 + γ2.
428
+ The quantity ⟨E(z, t)2⟩ is the averaged
429
+ value of the squared electric field over few past periods
430
+ (5 fs is assumed in this work).
431
+ The Yudin-Ivanov model was initially derived for gases;
432
+ its applicability for solid state, while generally justi-
433
+ fied for materials with tight binding, is not strictly es-
434
+ tablished.
435
+ We have benchmarked Yudin-Ivanov model
436
+ by comparing it to the numerical solution of the time-
437
+ dependent Schrodinger equation in single active electron
438
+ approximation [30]. In this approach the empirical pseu-
439
+ dopotential method was used for describing the electron
440
+ band structure of ZnO [31]. We have found that the dif-
441
+ ference of the ionization rate does not typically exceed
442
+ one order of magnitude. This difference is, in fact, not
443
+ very significant: because of the threshold-like behavior of
444
+ the ionization rate, it leads to only a slight shift of the
445
+ intensity at which a strong plasma generation is reached.
446
+ For the specal case when the energy of pump photons
447
+ is around two ionization potentials, it is preferable to
448
+ use the two-photon formalism [32] and write the cycle-
449
+ resolved ionization rate Γ (in SI units) as
450
+ Γ(z, t) =
451
+ 2e4x4
452
+
453
+ ℏ4ω2
454
+ 0[(2ω0 − Ip/ℏ)2 + ν2 ⟨E(z, t)2⟩E(z, t)2,
455
+ (13)
456
+ where ν is the relaxation constant of the two-photon
457
+ transition.
458
+ E.
459
+ Contribution by excitons
460
+ Finally, we include the nonlinear polarization due to
461
+ excitons into treatment. We consider multiple excitonic
462
+ levels and utilize the standard Bloch equations for the de-
463
+ scription of the ionization. The dynamics of the density
464
+ matrix ρe is given by (see e.g. [32])
465
+ iℏ∂ρe
466
+ ∂t = [H, ρe],
467
+ (14)
468
+ where H = H0 + Hint, H0 is the Hamiltonian of the
469
+ system in the absence of excitation, Hint is the interaction
470
+ Hamiltonian, which components Hij are related with the
471
+ corresponding dipole transition moments eMij:
472
+ Hij = eMij ˆF −1[E(z, ω)x(ω)].
473
+ (15)
474
+ In addition, polarization decay (decay of the off-
475
+ diagonal elements of ρe) with decay time T2 and decay
476
+ of the population to the ground state with decay time T1
477
+ are included. In order to avoid numerical instabilities,
478
+ the normalization of the density matrix ρ is performed
479
+ each few steps in time, by a) enforcing 0 ≤ ρe,ii ≤ 1, b)
480
+ enforcing T r(ρe) = 1, and c) adjusting the non-diagonal
481
+ elements which exceed the maximum possible value de-
482
+ termined by the corresponding level populations.
483
+ The excitonic polarization is then defined in a standard
484
+ way as
485
+ Pexc(z, ω) = x(ω) ˆF[fTr(ρeM)].
486
+ (16)
487
+ We solve the propagation equation by an extended
488
+ split-step method, whereby each of the contributions to
489
+
490
+ 5
491
+ the polarization is treated subsequently, which allows to
492
+ reduce the accumulation of numerical error. Nonlinear
493
+ steps are performed using the Runge-Kutta approach,
494
+ the order of which can be selected between 1,2, and 4.
495
+ Fixed step of the grid both in time and in the propa-
496
+ gation coordinate is used. The appearance of numerical
497
+ artifacts during the propagation is monitored by tracing
498
+ the total pulse energy as well as the total energy absorbed
499
+ at the boundaries of the numerical time window.
500
+ III.
501
+ NUMERICAL RESULTS AND DISCUSSION
502
+ In order to exemplify the above model and function-
503
+ ing of SOLPIC, we present in this section a simulation of
504
+ THz generation. We consider a composite of ZnO inclu-
505
+ sions in SiO2 matrix. Phenomenological Sellmeyer-type
506
+ expressions were used to describe dispersion on ZnO [35]
507
+ and SiO2 [36]. Similarly, experimental data on second-
508
+ order [37] and third-order [38] susceptibility of bulk ZnO
509
+ and third-order susceptibility of SiO2 [40] were used. We
510
+ estimated the value of T2 as 50 fs from Ref. [41] and used
511
+ T1 = 2T2. For ZnO, the typical exciton size is larger than
512
+ interatomic distance, meaning that we are dealing with
513
+ Wannier-Mott type of excitons. In a case of sufficiently
514
+ small inclusions, the exciton is bounded by the inclu-
515
+ sion boundaries, therefore its wavefunctions (as well as
516
+ energy levels and dipole momenta) are better described,
517
+ instead of hydrogen-like potential, by a constant poten-
518
+ tial inside a sphere [42] with a step on its boundary. We
519
+ have taken into account 5 lowest excitonic levels, and
520
+ typical values of the off-diagonal dipole momenta, as cal-
521
+ culated by this approach, are around 3×10−28 C·m, for
522
+ same-size nanoparticles with a radius of 2.5 nm which
523
+ are considered here and hereafter.
524
+ For the permanent
525
+ dipole momenta of ZnO, we have adopted a typical value
526
+ of 6.66×10−30 C·m per ZnO molecule, which was used
527
+ to define the on-diagonal elements of the dipole matrix.
528
+ We used the ionization potential of 3.37 eV equal to the
529
+ bandgap of ZnO to characterize the transition from va-
530
+ lence band to conduction band, and all the presented
531
+ numerical results correspond to the conditions below the
532
+ damage threshold of ZnO [43].
533
+ The evolution of the field profile and spectra with prop-
534
+ agation is illustrated in Fig. 1, for two-color pulsed exci-
535
+ tation with pump pulses around 800 nm and 400 nm, for
536
+ conditions given in the caption. In Fig. 1(a) one can see
537
+ that initial stages of the propagation are characterized by
538
+ self-phase modulation with typical spectral side lobes. At
539
+ later stages, spectrum becomes irregular and transform
540
+ into a supercontinuum extending up to the absorption
541
+ edge given by the bandgap. The evolution of the tempo-
542
+ ral profile, shown in Fig. 1(b), shows gradual reduction
543
+ of the enegry of electric field, as well as significantly ir-
544
+ regular envelope for longer propagation. This reduction
545
+ of the maximum field determines the saturation of the
546
+ THz generation efficiency and is caused both by strong
547
+ group-velocity dispersion for broad spectrum and energy
548
+ absorption due to transition to conduction band. One
549
+ can see from the red curve in Fig.
550
+ 1(b) that relative
551
+ plasma density reaches values of roughly 0.01 after the
552
+ pulse, which is sufficient to induce significant energy ab-
553
+ sorption.
554
+ 10-4
555
+ 10-3
556
+ 10-2
557
+ 0.1
558
+ 1
559
+ 10
560
+ 20
561
+ 30
562
+ I(ν) (arb. units)
563
+ ν (THz)
564
+ FIG. 2. Dependence of the spectra in the THz range on the
565
+ propagation distance. We consider 1-TW/cm2, 15-fs pump
566
+ pulses at 2.26 fs−1 and 4.58 fs−1, in a composite of ZnO
567
+ nanoparticles with filling fraction of f = 0.03 in a fused-silica
568
+ matrix, after propagation length of 5 µm (magenta curve),
569
+ 15 µm (green curve), 45 µm (blue curve), and 50 µm (yellow
570
+ curve).
571
+ In Fig. 2 the evolution of the spectrum in the THz
572
+ range is shown. One can see that while the spectrum is
573
+ flat at early stages of propagation, for larger propagation
574
+ lengths the spectrum is localized around 28 THz, proba-
575
+ bly due to phase-matching effects with a phase-mismatch
576
+ length of 10.5 µm for the four-wave mixing between the
577
+ two photons at 2.26 fs−1, one photon at 4.58 fs−1, and a
578
+ THz photon. Losses around 15 THz and below can also
579
+ contribute to saturation of generation. After 45 µm prop-
580
+ agation length, the efficiency of the generation reaches
581
+ 3.05%, which is sufficiently high for practical applica-
582
+ tions.
583
+ In order to determine the optimum conditions of the
584
+ THz generation, in Fig. 3 we plot the dependence of the
585
+ generation efficiency on the distribution of energy be-
586
+ tween the 830-nm pulse and 412-nm pulse (a), intensity
587
+ of pulses (b), and wavelength of the short-wavelength
588
+ pulse (c). One can see that the efficiency of THz gen-
589
+ eration is non-zero but very small for the cases when
590
+ only one of the pulses is present (energy fraction of 0
591
+ or 1). This indicates that the optical rectification based
592
+ the second-order susceptibility of ZnO cannot efficiently
593
+ generate THz for the considered conditions, and that
594
+ the dominant contribution comes from the third-order
595
+ susceptibility of ZnO nanoparticles, third-order suscep-
596
+ tibility of SiO2 being comparatively weak. In an ideal
597
+ case without pump pulses modification, the efficiency of
598
+ the THz generation is proportional to E2
599
+ 830(Etot − E830),
600
+ where E830 is the energy of the pulse at 830 nm and
601
+ Etot = E830 + E412 is the total energy of the pulses. The
602
+ maximum efficiency is then reached at E830/Etot = 1/3,
603
+
604
+ 6
605
+ 0%
606
+ 0.5%
607
+ 1%
608
+ 1.5%
609
+ 2%
610
+ 2.5%
611
+ 3%
612
+ 0
613
+ 0.25
614
+ 0.5
615
+ 0.75
616
+ 1
617
+ (a)
618
+ THz efficiency
619
+ Energy fraction of 800-nm pulse
620
+ 0%
621
+ 0.5%
622
+ 1%
623
+ 1.5%
624
+ 2%
625
+ 2.5%
626
+ 3%
627
+ 0
628
+ 0.25
629
+ 0.5
630
+ 0.75
631
+ 1
632
+ 1.25
633
+ 1.5
634
+ (b)
635
+ THz efficiency
636
+ I, TW/cm2
637
+ 0%
638
+ 0.5%
639
+ 1%
640
+ 1.5%
641
+ 2%
642
+ 2.5%
643
+ 3%
644
+ 405
645
+ 410
646
+ 415
647
+ 420
648
+ 425
649
+ 430
650
+ (c)
651
+ THz efficiency
652
+ λ (nm)
653
+ FIG. 3. Dependence of the THz generation efficiency on en-
654
+ ergy fraction of the 800-nm pulse (a), intensity of each of the
655
+ pump pulses (b), and the wavelength of the second-harmonic
656
+ pulse (c). A composite of ZnO nanoparticles with f = 0.03 in
657
+ fused silica is considered. In (a), 15-fs pulses at 2.26 fs−1 and
658
+ 4.58 fs−1 are considered, with total intensity of 2 TW/cm2
659
+ and propagation length of 50 µm. In (b) we consider 15-fs
660
+ (red curve) and 150-fs (green curve) pulses at 2.26 fs−1 and
661
+ 4.58 fs−1. In (c), 1 TW/cm2, 15-fs pulses are considered, with
662
+ IR pulse frequency of 2.26 fs−1 and propagation length of 50
663
+ µm.
664
+ however, as shown in Fig. 3(a), maximum numerical ef-
665
+ ficiency is achieved for E830/Etot = 0.5. This could be
666
+ due to strong SPM-induced spectral spreading of high-
667
+ frequency pulse during the propagation, which needs to
668
+ be compensated by relatively higher value of E412. In
669
+ Fig. 3(b), the dependence of the efficiency on the pulse
670
+ intensity is shown, exhibiting saturation and decrease
671
+ after a certain intensity as well as lower efficiencies for
672
+ longer pulses. We attribute these features to detrimen-
673
+ tal contribution of the accumulated plasma, which grows
674
+ with intensity and pulse duration [cf. Fig. 4(a)]. In Fig.
675
+ 3(c), the dependence of the efficiency on the wavelength
676
+ of the short-wavelength pulse exhibits several maxima.
677
+ Note that while one might expect an optimum THz gen-
678
+ eration for 415 nm, which would correspond to generation
679
+ of frequencies near zero, our simulation in fact predict a
680
+ minimum around this value, determined most probably
681
+ by phase mismatch and losses below 15 THz.
682
+ Finally, in order to access the role of plasma and ex-
683
+ citons in the THz generation in composites, in Fig. 4
684
+ we compare the spectra for plasma contribution (a) and
685
+ exciton contribution (b) switched on/off. One can see
686
+ that the plasma contribution is significant, both due to
687
+ contribution to refractive index and due to losses, and
688
+ absence of plasma contribution leads to a notable (more
689
+ than twofold) increase of the efficiency.
690
+ On the other
691
+ hand, from Fig.
692
+ 4(b) one can see that exciton polar-
693
+ ization do not provide a strong contribution to the effi-
694
+ ciency for the considered parameters. Also, additionally
695
+ including the permanent dipole momenta, described in
696
+ 10-3
697
+ 10-2
698
+ 0.1
699
+ 1
700
+ 10
701
+ 20
702
+ 30
703
+ (a)
704
+ I(ν) (arb. units)
705
+ ν (THz)
706
+ 10-3
707
+ 10-2
708
+ 0.1
709
+ 1
710
+ 10
711
+ 20
712
+ 30
713
+ (b)
714
+ I(ν) (arb. units)
715
+ ν (THz)
716
+ FIG. 4. Spectra in the THz range with (a) plasma contri-
717
+ bution on (red) and off (green) and (b) exciton contribution
718
+ on (red) and off (green), as well including both exciton con-
719
+ tribution and permanent dipole moment (blue). We consider
720
+ 1-TW/cm2, 15-fs pump pulses at 2.26 fs−1 and 4.58 fs−1, in a
721
+ composite of ZnO inclusions with filling fraction of f = 0.03
722
+ in a fused-silica matrix, after propagation length of 10 µm (a)
723
+ and 0.75 µm (b).
724
+ the model above, does not significantly increase the effi-
725
+ ciency of THz generation, as indicated by the blue curve
726
+ in Fig. 4(b) which is close to the red and green curves.
727
+ We note, however, that this conclusion is of limited gen-
728
+ erality; for other parameters of the medium excitons can
729
+ provide the key mechanism of THz generation (see e.g.
730
+ [44, 45] and references therein).
731
+ IV.
732
+ CONCLUSION
733
+ In this paper we have established a comprehensive nu-
734
+ merical model for the simulation of light propagation in
735
+ composites, including all the relevant physical effects for
736
+ a broad range of parameters, such as linear dispersion
737
+ of the composite, second- and third-order nonlinear ef-
738
+ fects, plasma contribution, excitons contribution and so
739
+ on. The model was applied to simulate the generation of
740
+ THz radiation in a ZnO-SiO2 composite. We have per-
741
+ formed optimization of the frequency conversion process,
742
+ predicting an efficiency of 3.05%.
743
+ We show that sim-
744
+ ulations provide insights into the optimization, such as
745
+ the power distribution between the pump pulses, which
746
+ would not be accessible intuitively. We hope that the nu-
747
+ merical model and the corresponding software solution,
748
+ which we make available for the community, will con-
749
+ tribute to the capacity of the simulations in the area of
750
+ nonlinear optics.
751
+ ACKNOWLEDGMENTS
752
+ Authors acknowledge financial support
753
+ from Eu-
754
+ ropean Union project H2020-MSCA-RISE-2018-823897
755
+ ”Atlantic”. I.B. thanks Cluster of Excellence PhoenixD
756
+ (EXC 2122, project ID 390833453) for financial support.
757
+
758
+ 7
759
+ [1] M. Tonouchi, ”Cutting-edge terahertz technology” Nat.
760
+ Photon. 1, 97–105 (2007).
761
+ [2] K. Sakai (ed.),
762
+ Terahertz Optoelectronics,
763
+ Springer,
764
+ Berlin, 2005.
765
+ [3] D.
766
+ Mittleman,
767
+ Sensing
768
+ with
769
+ Terahertz
770
+ Radiation
771
+ Springer, Berlin, 2002.
772
+ [4] J. Liu, J. Dai, S. L. Chin, and X. C. Zhang, ”Broadband
773
+ terahertz wave remote sensing using coherent manipula-
774
+ tion of fluorescence from asymmetrically ionized gases”,
775
+ Nat Photon 4, 627–631 (2010).
776
+ [5] D. J. Cook and R. M. Hochstrasser, ”Intense terahertz
777
+ pulses by four-wave rectification in air”, Opt. Lett. 25,
778
+ 1210–1212 (2000).
779
+ [6] M. Kress, T. Loffler, S. Eden, M. Thomson, and H. G.
780
+ Roskos, ”Terahertz-pulse generation by photoionization
781
+ of airwith laser pulses composed of both fundamental
782
+ and second-harmonic waves”, Opt. Lett. 29, 1120–1122
783
+ (2004).
784
+ [7] T. Bartel, P. Gaal, K. Reimann, M. Woerner, and T. El-
785
+ saesser, ”Generation of single-cycle THz transients with
786
+ high electric-field amplitudes”, Opt. Lett. 30, 2805–2807
787
+ (2005).
788
+ [8] X. Xie, J. Dai, and X.-C. Zhang, ”Coherent control of
789
+ THz wave generation in ambient air”, Phys. Rev. Lett.
790
+ 96, 075005 (2006).
791
+ [9] M. D. Thomson, M. Kress, T. Loffler, and H. G. Roskos,
792
+ ”Broadband THz emission from gas plasmas induced by
793
+ femtosecond optical pulses: From fundamentals to appli-
794
+ cations”, Laser Photon. Rev. 1, 349–368 (2007).
795
+ [10] I. Babushkin, S. Skupin, A. Husakou, C. Kohler, E.
796
+ Cabrera-Granado, L. Berge and J. Herrmann, ”Tailoring
797
+ terahertz radiation by controlling tunnel photoionization
798
+ events in gases”, New J. Phys. 13, 123029 (2011).
799
+ [11] S. Herzer, A. Woldegeorgis, J. Polz, A. Reinhard, M. Al-
800
+ massarani, B. Beleites, F. Ronneberger, R. Grosse, G.G.
801
+ Paulus, U. H¨ubner, T. May, A. Gopal, “An investigation
802
+ on THz yield from laser-produced solid density plasmas
803
+ at relativistic laser intensities”, New J. Phys. 20 , 063019,
804
+ ((2018)
805
+ [12] F. Blanchard, B. E. Schmidt, X. Ropagnol, N. Thir´e,
806
+ T. Ozaki, R. Morandotti, D. G. Cooke, and F. Legare,
807
+ “Terahertz pulse generation from bulk GaAs by a tilted-
808
+ pulse-front excitation at 1.8 µm,” Appl. Phys. Lett. 105,
809
+ 241106 (2014).
810
+ [13] K. Aoki, J. Savolainen, and M. Havenith, “Broadband
811
+ terahertz pulse generation by optical rectification in GaP
812
+ crystals,” Appl. Phys. Lett. 110, 201103 (2017).
813
+ [14] G. L. Dakovski, B. Kubera, and J. Shan, “Localized ter-
814
+ ahertz generation via optical rectification in ZnTe,” J.
815
+ Opt. Soc. Am. B 22, 1667–1670 (2005).
816
+ [15] S.-C. Zhong, J. Li, Z.-H. Zhai, L.-G. Zhu, J. Li, P. W.
817
+ Zhou, J. H. Zhao, and Z. R. Li, “Generation of 0.19-mJ
818
+ THz pulses in LiNbO3 driven by 800-nm femtosecond
819
+ laser,” Opt. Express 24, 14828–14835 (2016).
820
+ [16] T. Apostolova, B. Obreshkov “High harmonic generation
821
+ in crystalline silicon irradiated by an intense ultrashort
822
+ laser pulse,” The European Physical Journal D. 75, 1
823
+ (2021).
824
+ [17] Q. Jin, E. Yiwen, K. Williams, J. Dai, and X.-C. Zhang,
825
+ ”Observation of broadband terahertz wave generation
826
+ from liquid water”, Appl. Phys. Lett. 111, 071103 (2017).
827
+ [18] C. Tailliez, X. Davoine, A. Debayle, L. Gremillet, and
828
+ L. Berge, ”Terahertz Pulse Generation by Strongly Mag-
829
+ netized, Laser-Created Plasmas”, Phys. Rev. Lett. 128,
830
+ 174802.
831
+ [19] C. Zhou, Y. P. Liu, Z. Wang, S. J. Ma, M. W. Jia, R.
832
+ Q. Wu, L. Zhou, W. Zhang, M. K. Liu, Y. Z. Wu, J. Qi,
833
+ Phys. Rev. Lett. , 121, 086801, 2018
834
+ [20] P. Agarwal, L. Huang, S. Ter Lim, R. Singh, Nat. Com-
835
+ mun. , 13, 4072, 2022
836
+ [21] D.Ricard, ”Nonlinear optics in composites and in hetero-
837
+ geneous media”, Physica A 157, 301-308 (1989).
838
+ [22] V. M. Shalaev, Nonlinear Optics of Random Media,
839
+ Springer, Berlin, 2000.
840
+ [23] R. Driben, A. Husakou, and J. Herrmann, ”Supercon-
841
+ tinuum generation in aqueous colloids containing silver
842
+ nanoparticles”, Opt. Lett. 34, 2132-2134 (2009).
843
+ [24] J. B. Pendry, ”Negative Refraction Makes a Perfect Lens”
844
+ Phys. Rev. Lett. 85, 3966-3969 (2000).
845
+ [25] https://github.com/F1Ulia/SOLPIC/tree/main
846
+ [26] A. Husakou and J. Herrmann, ”Supercontinuum Gen-
847
+ eration of Higher-Order Solitons by Fission in Photonic
848
+ Crystal Fibers”, Physical Review Letters 87 (20), 203901
849
+ (2001).
850
+ [27] J. C. Maxwell Garnett, ”Colours in Metal Glasses and in
851
+ Metallic Films”, Philos. Trans. R. Soc. London 203, 385
852
+ (1904).
853
+ [28] J. E. Sipe and R. W. Boyd, ”Nonlinear susceptibility
854
+ of composite optical materials in the Maxwell Garnett
855
+ model”, Phys. Rev. A 46, 1614 (1992).
856
+ [29] G. L. Yudin and M. Y. Ivanov, ”Nonadiabatic tunnel
857
+ ionization: Looking inside a laser cycle”, Phys. Rev. A
858
+ 64, 013409 (2001).
859
+ [30] T. Apostolova and B. Obreshkov, ”High harmonic gener-
860
+ ation from bulk diamond driven by intense femtosecond
861
+ laser pulse”, Diam. Relat. Mater. 82, 165 (2018).
862
+ [31] Fan, W. J.; Abiyasa, A. P.; Tan, S. T.; Yu, S. F.; Sun,
863
+ X. W.; Xia, J. B.; Yeo, Y. C.; Li, M. F.; Chong, T. C,
864
+ ”Electronic structures of wurtzite ZnO and ZnO/MgZnO
865
+ quantum well” Journal of Crystal Growth 287, 28 (2006)
866
+ [32] L. S. Meng, ”Continuous-wave Raman laser in H2 : semi-
867
+ classical theory and diode-pumping experiments”, PhD
868
+ thesis, Montana State University, 2002.
869
+ [33] A. Husakou and J. Herrmann,
870
+ ”High-power,
871
+ high-
872
+ coherence supercontinuum generation in dielectric-coated
873
+ metallic hollow waveguides”, Opt. Express 17, 12481
874
+ (2009).
875
+ [34] P. J¨urgens, B. Liewehr, B. Kruse, C. Peltz, D. Engel,
876
+ A. Husakou, T. Witting, M. Ivanov, M. J. J. Vrakking,
877
+ T. Fennel and A. Mermillod-Blondin, ”Origin of strong-
878
+ field-induced low-order harmonic generation in amor-
879
+ phous quartz”, Nature Physics 16, 1035–1039 (2020).
880
+ [35] I. Bodurov, I. Vlaeva, A. Viraneva, T. Yovcheva, S.
881
+ Sainov,
882
+ ”Modified design of a laser refractometer”,
883
+ Nanoscience Nanotechnology 16, 31-33 (2016).
884
+ [36] C. Z. Tan, ”Determination of refractive index of silica
885
+ glass for infrared wavelengths by IR spectroscopy”, J.
886
+ Non-Cryst. Solids 223, 158-163 (1998).
887
+ [37] G. Wang, G. K. L. Wong, and J. B. Ketterson, ”Rede-
888
+ termination of second-order susceptibility of zinc oxide
889
+ single crystals,” Appl. Opt. 40, 5436-5438 (2001).
890
+
891
+ 8
892
+ [38] M. C. Larciprete, D. Haertle, A. Belardini, M. Bertolotti,
893
+ F. Sarto and P. G¨unter, ”Characterization of second and
894
+ third order optical nonlinearities of ZnO sputtered films”,
895
+ Appl. Phys. B 82, 431–437 (2006).
896
+ [39] V. V. Multian, J. Riporto, M. Urbain, Y. Mugnier, G.
897
+ Djanta, S. Beauquis, C. Galez, V. Ya Gayvoronsky, and
898
+ R. Le Dantec, ”Averaged third-order susceptibility of
899
+ ZnO nanocrystals from Third Harmonic Generation and
900
+ Third Harmonic Scattering”, Optical Materials 84, 579-
901
+ 585 (2018).
902
+ [40] D. Milam, ”Review and assessment of measured values of
903
+ the nonlinear refractive-index coefficient of fused silica,”
904
+ Appl. Opt. 37, 546-550 (1998).
905
+ [41] D. Golde, T. Meier, and S. W. Koch, ”High harmon-
906
+ ics generated in semiconductor nanostructures by the
907
+ coupled dynamics of optical inter- and intraband exci-
908
+ tations”, Phys. Rev. B 77, 075330 (2008).
909
+ [42] I. Babushkin, L. Shi, A. Demircan, U. Morgner, J. Her-
910
+ rmann, and A. Husakou, ”Metallic nanostructures as
911
+ electronic billiards”, https://arxiv.org/abs/2104.14637
912
+ [43] C. Li, D. Feng, T. Jia, H. Sun, X. Li, S. Xu, X. Wang,
913
+ and Z. Xu, ”Ultrafast dynamics in ZnO thin films irradi-
914
+ ated by femtosecond lasers”, Solid State Communications
915
+ 136, 389-394 (2005).
916
+ [44] O. Khasanov, O. Fedotova, G. Rusetsky and V. Niki-
917
+ forov, ”Echo-Spectroscopy of Nanocomposites”, Laser
918
+ Physics 29, 124011 (2019).
919
+ [45] O. Fedotova, A. Husakou, G. Rusetsky, O. Khasanov,
920
+ A. Fedotov, T. Smirnova, U. Sapaev, and I. Babushkin,
921
+ ”Mechanisms of Terahertz Generation under Femtosec-
922
+ ond Pulses propagation in Nanocomposites”, jsii 1 4,
923
+ CLEO-Europe - European Quantum Electronics Confer-
924
+ ence, Munich, Germany (2021).
925
+
adE3T4oBgHgl3EQfdAqs/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
b9E_T4oBgHgl3EQfzxyC/content/tmp_files/2301.08325v1.pdf.txt ADDED
@@ -0,0 +1,1411 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Advanced Scaling Methods for VNF deployment with
2
+ Reinforcement Learning
3
+ Namjin Seoa, DongNyeong Heoa, Heeyoul Choia
4
+ aHandong Global University, Pohang, 37554, Gyeongbuk, South Korea
5
+ Abstract
6
+ Network function virtualization (NFV) and software-defined network (SDN)
7
+ have become emerging network paradigms, allowing virtualized network func-
8
+ tion (VNF) deployment at a low cost. Even though VNF deployment can be
9
+ flexible, it is still challenging to optimize VNF deployment due to its high
10
+ complexity. Several studies have approached the task as dynamic program-
11
+ ming, e.g., integer linear programming (ILP). However, optimizing VNF de-
12
+ ployment for highly complex networks remains a challenge. Alternatively, re-
13
+ inforcement learning (RL) based approaches have been proposed to optimize
14
+ this task, especially to employ a scaling action-based method which can de-
15
+ ploy VNFs within less computational time. However, the model architecture
16
+ can be improved further to generalize to the different networking settings.
17
+ In this paper, we propose an enhanced model which can be adapted to more
18
+ general network settings. We adopt the improved GNN architecture and a
19
+ few techniques to obtain a better node representation for the VNF deploy-
20
+ ment task. Furthermore, we apply a recently proposed RL method, phasic
21
+ policy gradient (PPG), to leverage the shared representation of the service
22
+ function chain (SFC) generation model from the value function. We evaluate
23
+ the proposed method in various scenarios, achieving a better QoS with min-
24
+ imum resource utilization compared to the previous methods. Finally, as a
25
+ qualitative evaluation, we analyze our proposed encoder’s representation for
26
+ the nodes, which shows a more disentangled representation.
27
+ Keywords:
28
+ Network Function Virtualization, Software Defined Networking,
29
+ Reinforcement Learning, Graph Neural Network
30
+ Preprint submitted to
31
+ January 23, 2023
32
+ arXiv:2301.08325v1 [cs.NI] 19 Jan 2023
33
+
34
+ 1. Introduction
35
+ Softwarization of the Internet network, such as software-defined network-
36
+ ing (SDN) and network function virtualization (NFV), has emerged as a
37
+ new network paradigm. In this paradigm, the network functions provided
38
+ by hardware-based middleboxes (e.g., Network Address Translation (NAT),
39
+ Firewall, Proxy) are replaced with virtualized network functions (VNFs),
40
+ running on virtual machines as VNF instances. By decoupling the network
41
+ functions from the hardware, NFV allows the network service providers to
42
+ deploy VNFs with low capital expenses (CAPEX) and operating expenses
43
+ (OPEX). In addition, the traffics and network devices are managed and
44
+ monitored by NFV orchestration (NFVO) in the centralized NFV frame-
45
+ work. Hence, the VNF instances can be deployed by NFVO adaptable to the
46
+ traffic requirements, which is the VNF deployment task.
47
+ Even though VNF deployment can be accomplished dynamically with
48
+ flexibility, requirements for the VNF deployment task are also getting more
49
+ complex.
50
+ The first requirement is that the service function chain (SFC)
51
+ should be generated efficiently while maintaining an acceptable quality of
52
+ service (QoS). SFC requires the traffics of a request to be routed through
53
+ multiple stages of VNFs in NFV. Fig. 1 shows an example of SFC where the
54
+ SFC request (Req1) demands an SFC: “NAT (‘N’) → Firewall(‘F’)”. This
55
+ SFC request should be sequentially processed at these VNF instances as it
56
+ travels from its ingress to its egress.
57
+ These types of VNF should be de-
58
+ ployed, taking into account the path of the requests, to meet the pre-defined
59
+ service-level agreement (SLA) for QoS. Another requirement is to optimize
60
+ resource utilization while satisfying the QoS. Redundantly deployed VNF in-
61
+ stances could preserve high QoS, but it incurs unnecessary operating costs
62
+ and energy consumption. Therefore, it is essential to improve the QoS while
63
+ maintaining minimized resource consumption for the efficient management
64
+ of VNF deployment.
65
+ To achieve such efficient management of VNF deployment, the existing
66
+ works have exploited dynamic programming algorithms, like integer linear
67
+ programming (ILP) [1, 2, 3]. However, even though the ILP-based approach
68
+ exhibits acceptable performance in networks with a low level of complex-
69
+ ity, its computational cost becomes too expensive as the network scales up.
70
+ Therefore, the ILP-based approach is not suitable for large-scale networks
71
+ and the dynamical adjustment for traffic lifespans.
72
+ As an alternative solution, ML-based approaches have been proposed
73
+ 2
74
+
75
+ Figure 1: Overview of VNF Deployment task: SFC requests are required to pass through
76
+ the VNFs sequentially as well as satisfy the SLA. Optimal deployment (Right) takes
77
+ into account the paths of SFC requests, while sub-optimal deployment (Left) is deployed
78
+ regardless of the paths of SFC request. Red boxes indicate inefficiently deployed VNF
79
+ instances, which are on the wrong path and redundant.
80
+ employing deep learning models, and reinforcement learning (RL) for VNF
81
+ deployment [4, 5, 6, 7]. Especially, an RL-based method for VNF deployment
82
+ was proposed to scale in and out VNFs on the network nodes [8].
83
+ They
84
+ adapted the graph neural network (GNN) model and RL algorithms on top
85
+ of previously deployed VNF instances. Their action controls the number of
86
+ VNFs on each node by scaling in, scaling out, or doing nothing. It showed
87
+ that the agent was able to make appropriate scaling decisions for all the nodes
88
+ and VNF types with a single forwarding process, involving fewer computation
89
+ times for VNF deployment compared to other ML-based VNF deployment
90
+ approaches. However, their model could not obtain the node representations
91
+ in a general deployment setting where the networks include some nodes which
92
+ cannot have VNF instances (e.g., switches) deployed on them due to its model
93
+ setting for the node features.
94
+ In this paper, we propose to enhance the neural network model and adapt
95
+ new learning techniques so that the model can be adapted to the general
96
+ deployment setting.
97
+ First, we redesign the GNN architecture, and adapt
98
+ a few techniques motivated from other domains, such as natural language
99
+ processing and image processing [9, 10, 11, 12, 13], to effectively obtain a
100
+ node representation of the networking information for the VNF deployment
101
+ task. As the new GNN-based architecture, we employ the graph attention
102
+ network (GAT) [14] and separately process different types of nodes: VNF
103
+ deployable or non-deployable nodes.
104
+ This architecture allows an effective
105
+ propagation of node information from the network with different types of
106
+ nodes. In addition, we adapt the positional encoding [11] to preserve the
107
+ 3
108
+
109
+ SFC
110
+ Qos
111
+ SFC
112
+ Qos
113
+ Delay > SLA
114
+ SRC→NF→DST
115
+ Delay < SLA
116
+ F
117
+ N
118
+ F
119
+ Npositional information in the node representations.
120
+ Furthermore, we apply a recently proposed RL algorithm, phasic policy
121
+ gradient (PPG) [15], which is a variation of the policy gradient algorithm to
122
+ optimize the policy network efficiently. By jointly optimizing the objectives
123
+ of the policy network and the value network, the policy network can share
124
+ representation with the value network, which helps the policy network obtain
125
+ a more effective representation for the VNF deployment task.
126
+ In the experiment, our approach optimizes the policy network to obtain a
127
+ higher reward with rapid convergence compared to the previous approaches.
128
+ Also, it proves that our approach can work in various scenarios. In addition,
129
+ we analyze the result of our approach to show the robustness in the various
130
+ topology and compare the processing time with ILP to show the practicality
131
+ for the dynamic adaptation of the traffic lifespans. Finally, as a qualitative
132
+ evaluation, we analyze the representation from the encoder of the policy
133
+ network, and it demonstrates that our method obtains more disentangled
134
+ representations of nodes.
135
+ 2. Background
136
+ In this section, we briefly review graph neural networks and reinforcement
137
+ learning for VNF deployment.
138
+ 2.1. Graph Neural Network
139
+ Graph neural networks (GNN) [16] were proposed to effectively handle
140
+ the graph-structured data consisting of a set of nodes V = {v1, · · · , v|V|} and
141
+ edges E = {ˆeij|vi, vj ∈ V} [17, 18, 19, 14, 20, 21]. GNNs aim to address
142
+ graph-related tasks (e.g., node/edge/graph classification) in an end-to-end
143
+ manner with neural network model [17]. In the training process, GNNs are
144
+ trained to extract nodes’ representations which reflect the graph information
145
+ for the target tasks.
146
+ In GNNs, a graph is represented as the following two matrix forms: the
147
+ adjacency matrix A and the node feature matrix X. The adjacency matrix
148
+ A ∈ R|V|×|V| represents the connections between pairs of nodes. The node
149
+ feature matrix X contains node features xi ∈ R|V|×d. With A, X is trans-
150
+ formed into node representation H = [h1, ..., h|V|]. Finally, these node repre-
151
+ sentations are adapted to the target task in an end-to-end manner, which is
152
+ implemented with a multi-layer perceptron (MLP) and a softmax layer.
153
+ 4
154
+
155
+ GNN models are designed under the assumption that a node represen-
156
+ tation for the target task is trained by propagating node information to its
157
+ neighbors [17]. There are many different types of GNN models depending on
158
+ the way how the node information propagates, like recurrent connection, con-
159
+ volution, or attention. Among many GNN models, we review and compare
160
+ gated graph neural network (GGNN) and graph attention network (GAT)
161
+ which are used in the baseline and our approach, respectively.
162
+ 2.1.1. Gated Graph Neural Network
163
+ In gated graph neural network (GGNN) [19], propagation between neigh-
164
+ bors is implemented as recurrent connection as in recurrent neural networks
165
+ (RNNs), and the node representation is calculated iteratively by RNN-like
166
+ updates. For the recurrent connection, they use gated recurrent unit (GRU)
167
+ [9], and the node representations are updated as follows:
168
+ h′
169
+ i = GRU(hi,
170
+
171
+ j∈Ni
172
+ Whj),
173
+ (1)
174
+ where GRU is the GRU-like update function, Ni are the neighbors of node
175
+ vi, W is a weight matrix, and the initial node representation is set to X.
176
+ The recurrent updates are repeated a fixed number of times. Then, node
177
+ representations are fed into the output layers.
178
+ 2.1.2. Graph Attention Network
179
+ Graph attention network (GAT) [14] was proposed to update node repre-
180
+ sentations with attention mechanism [10], while node information is propa-
181
+ gated through recurrent steps in GGNN. GAT computes the attention scores
182
+ of its neighbors so that the node representations can be updated according
183
+ to the different importance of its neighbors as follows:
184
+ h′
185
+ i =
186
+
187
+ j∈Ni∪{i}
188
+ ˆαijWhi,
189
+ (2)
190
+ ˆαij =
191
+ exp(σ(a⊤ [Whi||Whj||Weˆeij]))
192
+
193
+ j′∈Ni∪{i} exp(σ(a⊤ [Whi||Whj′||Weˆeij′])),
194
+ (3)
195
+ where αij is the attention score of node vj for node vi, and ˆeij is edge at-
196
+ tributes between nodes vi and vj. W, We, and a are weight matrices, σ is a
197
+ non-linear function, and [·||·] indicates concatenation.
198
+ 5
199
+
200
+ 2.2. Reinforcement Learning
201
+ Reinforcement learning (RL) trains an agent to maximize the expected
202
+ reward by interacting with the environment. It formulates the task as Markov
203
+ decision process (MDP) described as a sequence of state st, action at, and
204
+ reward rt over discrete time steps. At discrete time-step t, the agent observes
205
+ the state st of the environment and takes an action at. Subsequently, the
206
+ current state st transitions into the next state st+1 along with the transition
207
+ probability P(st+1|st, at), and finally, the agent receives a reward rt+1. This
208
+ process is repeated until the agent reaches the terminal state which ends one
209
+ episode. As the agent experiences many episodes, the agent could maximize
210
+ the return, Gt = rt+1 + γrt+2 + γ2rt+3 + · · · , where γ is the discount factor.
211
+ To maximize Gt over an episode, the RL agent needs to update policy
212
+ π(at|st), a probability distribution of possible actions given state st.
213
+ To
214
+ estimate how good the action is at discrete time t, the agent should learn the
215
+ state value V (st) = E[Gt|st] (or action-state value Q(st, at) at action-state
216
+ pair (at, st)). In other words, the goal of an RL agent is to optimize its π(a|s)
217
+ based on the trained state value V (s) (or action value Q(s, a)) to maximize
218
+ the expected return in any episode.
219
+ 2.2.1. Policy Gradient
220
+ Policy gradient (PG) is an RL method to model policy π(a|s) as a param-
221
+ eterized function with neural networks called the policy network πθ(a|s). It
222
+ trains the parameter of the policy network optimizing the objective function
223
+ defined as follows:
224
+ LPG(θ) = Et
225
+
226
+ log πθ(at|st) ˆAt
227
+
228
+ ,
229
+ (4)
230
+ where ˆAt is the advantage estimator. For example, the REINFORCE algo-
231
+ rithm [22] trains the parameters of the policy network defining advantage
232
+ estimator ˆAt as return Gt.
233
+ 2.2.2. Proximal Policy Optimization
234
+ Proximal policy optimization (PPO) [23] is one of the actor-critic (AC)
235
+ based RL algorithms [24] with the trust-region method [25].
236
+ In addition
237
+ to the policy network, the AC algorithm employs the value network Vθ(s)
238
+ estimating the state value V (st) in order to mitigate the variance in the
239
+ training process. Furthermore, PPO has an additional constraint on the step
240
+ size of the policy update to prevent inappropriate update of parameters,
241
+ 6
242
+
243
+ called the trust-region method [25, 26]. Let ˆrt(θ) be the probability ratio
244
+ ˆrt(θ) =
245
+ πθ(at|st)
246
+ πθold(at|st), then PPO maximizes
247
+ LPPO(θ) = Et
248
+
249
+ min(ˆrt(θ) ˆAt, clip(ˆrt(θ), 1 − ϵ, 1 + ϵ) ˆAt)
250
+
251
+ ,
252
+ (5)
253
+ where clip(·, x, y) is an operation clamping in range over x and y, and ϵ
254
+ is a hyper-parameter of the clipping. The clipping operation constrains the
255
+ probability ratio ˆrt to be close to 1 so that the parameters cannot be updated
256
+ radically.
257
+ 2.2.3. Phasic Policy Gradient
258
+ The phasic policy gradient (PPG) [15] algorithm was proposed to share
259
+ parameters between the policy and value networks in the AC algorithms.
260
+ Even though parameter sharing allows both networks to learn features jointly
261
+ with a higher level of sample reuses, it is unclear whether it optimizes effi-
262
+ ciently both networks jointly or not. Thus, they employ two value networks
263
+ to avoid conflicts between competing objectives of the policy and value net-
264
+ works. The one is value network VθV (s) not sharing parameters, and the
265
+ other shares the parameter, called the auxiliary value head Vθπ(s).
266
+ The PPG algorithm divides the policy and value network training phases
267
+ into policy and auxiliary phases. In the policy phase, the policy is optimized
268
+ in the same manner as PPO. Then, in every NPPG
269
+ th iterations, an auxiliary
270
+ loss is minimized in the auxiliary phase, and the auxiliary loss is defined by
271
+ Laux = Et
272
+ �1
273
+ 2(Vθπ(st) − VθV (st))2
274
+
275
+ + βcloneEt [KL [πθold(·|st), πθ(·|st)]] ,
276
+ (6)
277
+ where βclone is the hyper-parameter controlling how much the original policy
278
+ is preserved.
279
+ 2.3. Scaling Agent for VNF Deployment
280
+ Scaling of VNF deployment monitors VNF instances deployed in a net-
281
+ work and adjusts the number of instances to maintain reliable QoS at min-
282
+ imized cost by scaling in (removing instances), keeping, and scaling out
283
+ (adding new instances). An RL-based method was proposed for VNF scaling
284
+ [8] to optimize QoS and resource utilization, simultaneously. They adapted
285
+ the graph neural network (GNN) models and RL algorithms on top of pre-
286
+ viously deployed VNF instances. The GNN-based model inputs the network
287
+ 7
288
+
289
+ information, and then produces the probabilities of scaling actions: scale
290
+ in/out and keep. The parameters of the model were updated by PG-based
291
+ RL algorithms, such as REINFORCE [22] and PPO [23]. In this section, we
292
+ briefly review the model of the policy network and the RL formulation in [8].
293
+ 2.3.1. GNN based Policy Network
294
+ The policy network has an encoder-decoder architecture. The encoder re-
295
+ ceives the network information (e.g., network topology, deployed VNFs, and
296
+ SFC requests.) and outputs the node representation reflecting the network
297
+ information.
298
+ The decoder reads the representations and produces action
299
+ probabilities for ‘scaling in/out and keep’ of nodes and VNF types. To com-
300
+ pute node representations that reflect diverse network topologies, the encoder
301
+ is designed based on GNN [27], which is implemented with Gated Graph
302
+ Neural Network (GGNN) [19]. Additionally, the network topology-related
303
+ knowledge is transferred from the trained model for the SFC task, and the
304
+ parameters are frozen so that the model could obtain proper representations
305
+ of the network information.
306
+ 2.3.2. RL formulation for VNF scaling
307
+ In the RL formulation, the RL agent observes the VNF deployment and
308
+ a set of SFC requests as the initial state and produces the scaling actions for
309
+ all the nodes and VNF types from the policy network. Then, after scaling
310
+ from the initial VNF deployment, the reward is computed 1, which is defined
311
+ as follows:
312
+ R = − 1
313
+ Nreq
314
+
315
+ k
316
+ δk
317
+ δk
318
+ SLA
319
+ − α
320
+
321
+ vnf
322
+ Nvnf,
323
+ (7)
324
+ where Nreq and Nvnf are the number of SFC requests and the instances of
325
+ VNF type vnf ∈ {Firewall, NAT, · · · }. δk and δk
326
+ SLA are the traversing delay
327
+ and SLA of request k, and α is the coefficient of penalty for restriction of
328
+ resource utilization. The RL scenario is illustrated in Fig. 2.
329
+ 3. Proposed Method
330
+ In this paper, we propose to enhance the neural network model and adapt
331
+ new learning techniques. First, we enhance the previous VNF scaling model
332
+ 1The traversing path of the requests is generated by GNN-based SFC model [27].
333
+ 8
334
+
335
+ Figure 2: Overview of the RL pipeline for VNF scaling: 1) The initial deployment is ob-
336
+ served as the state from the environment. 2) Then, the RL agent updates the deployment
337
+ by scaling action. 3) Finally, the reward is given, and one episode ends.
338
+ [8] so that the model can be adaptable to more general deployment settings
339
+ which includes nodes which cannot have any VNF instances deployed on
340
+ them. Then, we apply new RL algorithms like PPG to train the model more
341
+ efficiently.
342
+ 3.1. Model Architecture
343
+ As in [8], the encoder-decoder based model reads the network information
344
+ and produces the action probabilities for all the nodes and VNF types. The
345
+ pipeline of the model architecture is presented in Fig. 3.
346
+ The encoder computes the node representations H(k) by forwarding the
347
+ pair of the adjacency matrix A and node feature matrix X(k) for each SFC
348
+ request, where X(k) = [x(k)
349
+ 1 , · · · , x(k)
350
+ |V|] is the node feature matrix for SFC
351
+ request k. Specifically, node vi’s feature is defined by
352
+ x(k)
353
+ i
354
+ = [src(k)(i), N (k)
355
+ i,Firewall, N (k)
356
+ i,NAT, · · · , dst(k)(i)],
357
+ (8)
358
+ where src(k)(i) and dst(k)(i) indicate whether node vi is the ingress or egress
359
+ of request k. N (k)
360
+ i,Firewall, N (k)
361
+ i,NAT, · · · are the instance numbers of VNF type
362
+ vnf ∈ {Firewall, NAT, · · · } deployed on node vi if needed for request k,
363
+ otherwise set to 0. After encoding all the SFC requests, the encoder outputs
364
+ the sets of node representations {H(k)}. Then, {H(k)} are averaged into a
365
+ single representation ¯H, which is broadcasted and concatenated with each
366
+ VNF embeddings evnf ∈ {eFirewall, eNAT, · · · } to make target VNF represen-
367
+ tations ¯hi,vnf at the target nodes.
368
+ The RNN-based decoder consisting of GRU and MLP layers reads the
369
+ target representation ¯hi,vnf at each decoding step i, then outputs the action
370
+ probabilities of the target VNF type vnf on target node vi. The actions
371
+ 9
372
+
373
+ GNN-based
374
+ RNN-based
375
+ Encoder
376
+ Decoder
377
+ Initial
378
+ Scaled
379
+ Compute
380
+ Deployment
381
+ Deployment
382
+ QoS&Resource(a) Encoding
383
+ (b) Decoding (Example of Firewall as target VNF type)
384
+ Figure 3: The proposed model architecture and the pipeline. (a) Node representations
385
+ {H(k)} are obtained from all the pairs of an SFC request and the VNF deployment,
386
+ and the target representation ¯hi,vnf for the target VNF type vnf on target node vi is
387
+ obtained by averaging the node representations {H(k)} and concatenating with target
388
+ VNF embeddings evnf as well as a positional encoding li (“P.E.”). (b) The decoder reads
389
+ the target representation ¯hi,vnf to make a decision for scaling action of the target at the
390
+ decoding step i. Over every decoding step, the decoder generates actions for the target
391
+ VNF type, and the iteration stops after the number of target nodes. Scaling for all the
392
+ VNF types can be performed in parallel.
393
+ include three types of scaling actions for the target: ‘scale-in’, ‘scale-keep’,
394
+ and ‘scale-out’.
395
+ Over every decoding step, the decoder generates actions
396
+ for the target VNF type, and the iteration stops after the number of target
397
+ nodes. Scaling for all the VNF types can be performed in parallel, with this
398
+ single process.
399
+ 3.1.1. GAT-based Encoder
400
+ We apply the graph attention network (GAT) for the encoder instead of
401
+ GGNN [27]. GAT has several training advantages compared to GGNN for
402
+ VNF deployment. First, GAT could effectively propagate the node informa-
403
+ tion from the previous layers through the attention mechanism, while GGNN
404
+ 10
405
+
406
+ Ex.)
407
+ Reqk5→NEP→1
408
+ X
409
+ N
410
+ X
411
+ GAT-based
412
+ Encoder
413
+ d
414
+ Auxiliary
415
+ ModuleDecoder
416
+ Decoder
417
+ Decoder
418
+ N
419
+ N
420
+ Erelies on RNN-like updates. Next, GAT updates the node representation with
421
+ different importance of the neighbor nodes as the attention score, which is
422
+ helpful to train the model for requests with multiple hops between ingress
423
+ and egress. Due to the fact that the VNF deployment is highly related to
424
+ the paths of the requests, it is essential to train the importance of neighbors
425
+ on the paths.
426
+ The input of the GAT encoder is the adjacency matrix A and the in-
427
+ put node feature matrix X given the input pair of the VNF deployment
428
+ and an SFC request.
429
+ The encoder produces node representation matrix
430
+ H =
431
+
432
+ h1, ..., h|V|
433
+
434
+ .
435
+ The input node features and edge weights defined as
436
+ link latency are first forwarded through a shared linear transformation, pa-
437
+ rameterized by weight matrices W, We, where W, We are weight matrices
438
+ for node features and edge latency.
439
+ Then, self-attention is performed on
440
+ the nodes, where attention scores αij between node vi and vj are computed
441
+ only for neighbor nodes, which is defined by Eq. 3. In addition, we employ
442
+ multi-head attention to stabilize the learning process [14]. Finally, the node
443
+ representation hi is updated as a weighted sum with the attention scores over
444
+ nodes.
445
+ 3.1.2. Auxiliary Encoding Module with Node Embedding
446
+ In the general deployment setting, the nodes in the network can be classi-
447
+ fied into 2 different types: non-resource-allocating nodes (“non-deployable”)
448
+ and resource-allocating nodes (“deployable”). As defined in Eq. 8, node fea-
449
+ ture xi contains the number of instances for each VNF type, which are always
450
+ zero-valued for the non-deployable nodes (N (k)
451
+ i,vnf = 0). Fig. 4a represents an
452
+ example of node features.
453
+ Given the different node types, the model cannot update enough the
454
+ representation of non-deployable nodes since the zero-valued features cannot
455
+ have enough attention, which could cause a bottleneck when propagating
456
+ node information through these nodes. To overcome the issue, we designed
457
+ an auxiliary encoding module that provides additional neighbor information
458
+ to the GNN-based encoder, as illustrated in Fig. 4b. This information is then
459
+ utilized by the next module of the encoder to complement for information
460
+ propagation when updating the representation of deployable nodes.
461
+ The auxiliary encoding module consists of vectorized embeddings and a
462
+ GAT layer. We first initialize vectorized embeddings {n1, n2, · · · } randomly
463
+ and assign them to each non-deployable node, and then update them along
464
+ with other parameters. As these embeddings are optimized during the train-
465
+ 11
466
+
467
+ (a)
468
+ Illustrative
469
+ example
470
+ of
471
+ how
472
+ non-
473
+ deployable nodes could be bottlenecks,
474
+ which hinder the information propagation
475
+ from node#5 to node#1.
476
+ (b) The auxiliary module provides the neighboring infor-
477
+ mation of non-deployable nodes so that the GNN-based
478
+ encoder could update node representation efficiently.
479
+ Figure 4: Example of the general deployment setting and architecture of the encoder.
480
+ ing process, the model could provide the non-deployable nodes’ neighboring
481
+ information to mitigate the bottleneck effect. We refer to these embeddings
482
+ as node embeddings (‘N.E.’). In addition, we define and assign the same node
483
+ embedding n0 to all deployable nodes, allowing the module to focus on non-
484
+ deployable cases. Subsequently, we process these node embeddings through
485
+ a GAT layer to further reflect relations between multi-hops neighbors. We
486
+ implement the GAT layer of this auxiliary module with less parameters than
487
+ the encoder’s GAT layers to avoid over-fitting.
488
+ Finally, we concatenate the output of the auxiliary module and the output
489
+ of the GNN-based encoder’s first layer (refer to Fig. 4b) and forward to the
490
+ second layer of the encoder to get a final nodes representations Hk.
491
+ 3.1.3. Positional Encoding
492
+ To pass spatial information of nodes, we employ positional encoding, as in
493
+ the Transformer [11]. Positional encoding could alleviate the decoder’s bur-
494
+ den of transferring knowledge from previous nodes to decode hidden states.
495
+ Before forwarding the aggregated representation ¯H, the location vector li is
496
+ computed with sine and cosine functions of different frequencies as in the
497
+ Transformer, then concatenated with ¯hi.
498
+ Finally, the decoder inputs the
499
+ representation of node vi partitioned into three parts: aggregated node vi’s
500
+ representation ¯hi, target VNF embeddings evnf, and location vector li.
501
+ 12
502
+
503
+ Ex.)
504
+ Reqk
505
+ 5
506
+ N
507
+ 1→1
508
+ Bottleneck
509
+ N
510
+ P
511
+ XE.
512
+ #1
513
+ 0
514
+ 0
515
+ 1
516
+ 0
517
+ 0
518
+ X#2
519
+ 0
520
+ 0
521
+ 0
522
+ 0
523
+ 0
524
+ 0
525
+ GAT
526
+ GAT
527
+ H
528
+ ...
529
+ 1#5
530
+ 0
531
+ 0
532
+ 0
533
+ 0
534
+ 0
535
+ Additional Info
536
+ Node Feature Mat. Xk
537
+ forefficientpropagation
538
+ #1
539
+ n
540
+ X#2 -
541
+ ni
542
+ X#3 >
543
+ n2
544
+ GAT
545
+ #5一
546
+ no
547
+ NodeEmb3.2. RL for VNF Deployment
548
+ In this section, we discuss how we optimize the policy network with RL
549
+ algorithms. We follow the setting for RL formation and the perturbation
550
+ scenario as in [8]. In the perturbation scenario where the VNF deployment
551
+ is perturbed from the optimal deployment, the RL agent needs to remove
552
+ the redundant VNFs or add necessary VNF instances to reconstruct optimal
553
+ deployment by making scaling decisions for all the nodes and VNF types in
554
+ the current deployment.
555
+ In the perturbation scenario, we optimize the proposed model as the
556
+ policy network. Moreover, we propose an architecture of the value network
557
+ to apply the PPG algorithm, with which the policy network can leverage the
558
+ shared representation of the SFC generation from the value network. The
559
+ new value network architecture is described in the next section.
560
+ 3.2.1. Auxiliary Value Head for PPG
561
+ The PPG algorithm jointly optimizes the objectives of the policy network
562
+ and value function, where the policy network and value function share the
563
+ parameters. In the optimization process, the objective of the value function
564
+ is to minimize the error of the estimation for the state value, and the value
565
+ function extracts the useful representation for the estimation of the SFC
566
+ generation. The policy network can incorporate the representation from the
567
+ value function to achieve a better policy.
568
+ However, to avoid a conflict between both objectives of the policy and
569
+ value network, PPG utilizes the auxiliary value head Vaux(s) as well as the
570
+ value network V (s) to estimate the state value. The value head shares the
571
+ parameters with the policy network, while the value network is implemented
572
+ with the separated parameters. Thus, we design these two value functions
573
+ and then apply the PPG to update the policy network.
574
+ Fig. 5 presents the architectures of the value network and the auxiliary
575
+ value head. The value network is implemented as a 2-layer MLP forwarding
576
+ the mean of the aggregated representations ¯H to produce the state value
577
+ V (st). For the auxiliary value head, we design the architecture to reflect the
578
+ action’s state value for the node at each decoding step. The value head is
579
+ implemented as a 2-layer MLP which is connected to the GRU layer of the
580
+ decoder of the policy network. The value head estimates Vi when the policy
581
+ network produces the node vi’s action probabilities. Finally, the state value
582
+ 13
583
+
584
+ Vaux(st) is computed by averaging ¯Vi over nodes. This can be formulated by
585
+ Vaux(s) = 1
586
+ |V|
587
+
588
+ vi∈V
589
+ Vi,
590
+ (9)
591
+ where Vi = f aux(�
592
+ vnf zi,vnf), zi,vnf is the output of the decoder’s GRU layer
593
+ from target VNF representation ¯hi,vnf, and f aux is the MLP layer of the
594
+ auxiliary value head.
595
+ Figure 5: Architectures of the value network and the auxiliary value head: PPO optimizes
596
+ the policy and the value networks (orange box). In addition, PPG optimizes the auxiliary
597
+ value head (green box) sharing parameters with the policy network.
598
+ We apply the PPG algorithms with the value network and the auxiliary
599
+ value head. After one episode, the agent gets reward R from the updated
600
+ deployment, and then it stores the tuple (R, st, πθ(at|st)) in the buffer. Then,
601
+ for NPPO episodes, the agent updates the parameter of the policy network
602
+ to optimize the surrogate objective defined in Eq. 5. At the same time,
603
+ the RL agent updates the parameter of the value network to minimize the
604
+ mean squared error (MSE) between the return and the estimated state value.
605
+ Lastly, for NPPG episodes, the parameter of the auxiliary value head is up-
606
+ dated to minimize the auxiliary loss, defined in Eq. 6, which jointly updates
607
+ the parameter of the policy network.
608
+ 14
609
+
610
+ GRU4. Experiments
611
+ 4.1. Dataset and Configuration
612
+ In this section, we describe the experiment settings and configurations
613
+ to train the proposed model. The dataset was created from two networks:
614
+ Internet2 [28] and Mobile Edge Computing (MEC), represented in Fig. 6.
615
+ In the Internet2 network, the topology consists of 12 nodes with 15 links.
616
+ SFC requests are created by normalizing Abilene traffic matrices proposed
617
+ by [4]. In the MEC network, the topology consists of 14 nodes with 13 links.
618
+ We followed [4] for other configurations, and specifically for the generation
619
+ of SFC requests, we set the SLA as 95% of the latency computed from the
620
+ SFC path generated by ILP [1]. The SFC requests contain the ingress and
621
+ egress nodes, and the SFC path includes 3 or 4 services out of 5 VNF types.
622
+ (a) Internet2
623
+ (b) MEC
624
+ Figure 6: Internet2 and MEC networks in the experiment settings. The nodes with ‘X’
625
+ are non-deployable nodes like switches.
626
+ First, we generated the ILP-based deployment to determine the optimal
627
+ number and location of VNF instances for the set of active requests at each
628
+ interval. Then, we created a VNF deployment dataset of which each entry
629
+ contains an ILP-based deployment and a set of SFC requests. The dataset
630
+ was then divided into training, validation, and testing sets with the ratio
631
+ of 8:1:1.
632
+ Lastly, we implemented a simulation environment for the same
633
+ topology with each network and calculated the latency of the requests in the
634
+ same manner as [27].
635
+ Then, we trained the models on perturbed deployments by perturbing the
636
+ ILP-based deployment. To perturb the deployment, an integer noise -1, 0 or
637
+ +1 is added on nodes and VNF types, and these deployments are set as the
638
+ 15
639
+
640
+ X
641
+ 70
642
+ 23
643
+ 86
644
+ 209
645
+ 26
646
+ 129
647
+ 54
648
+ 63
649
+ 58
650
+ 84
651
+ 36
652
+ 90
653
+ X
654
+ 117
655
+ 6812000
656
+ 1000
657
+ 1000
658
+ 5000
659
+ 5000
660
+ 1000
661
+ X
662
+ 100
663
+ 100
664
+ 100
665
+ 100
666
+ 100
667
+ 100
668
+ 100initial states. Furthermore, we made random and zero deployments to evalu-
669
+ ate the generalizability of the models. We set the number of VNF instances
670
+ as 0 or 1 for the random deployment and only 0 for the zero deployment.
671
+ For the details of hyper-parameters, we mainly followed the setting of [27]
672
+ to pre-train the encoder and the configurations shown in Table 1 to train the
673
+ decoder. The decoder architecture is implemented with layer normalization,
674
+ 1-layer GRU with 64 hidden units.
675
+ We use three linear layers with the
676
+ same number of hidden units in the decoder for the value function. As the
677
+ activation function, ReLU (Rectified Linear Unit) is used. On each epoch,
678
+ we measured the average reward in the validation set, and after the training,
679
+ we selected the final model with the best reward in the validation set.
680
+ Table 1: Hyper-Parameters for Training.
681
+ Parameter
682
+ Value
683
+ Learning rate (LR)2
684
+ 3e-4
685
+ Decoder dim. (GRU)
686
+ 32
687
+ Decoder dim. (decoder-layer1)
688
+ 32
689
+ Decoder dim. (decoder-layer2)
690
+ 32
691
+ Decoder dim. (VNF embedding)
692
+ 5
693
+ Decoder dim. (Positional Encoding)
694
+ 4
695
+ Discount factor (γ)
696
+ 0.995
697
+ PPO value network dim. (layer1)
698
+ 128
699
+ PPO value network dim. (layer2)
700
+ 64
701
+ PPO aux. value head dim. (layer1)
702
+ 32
703
+ PPO aux. value head dim. (layer2)
704
+ 32
705
+ PPO epsilon (ϵ)
706
+ 0.2
707
+ PPO epoch (K)
708
+ 4
709
+ PPO minibatch size (M)
710
+ 4
711
+ PPO interval & PPG interval (policy phase) (NP P O)
712
+ 16
713
+ PPG interval (auxiliary phase) (NP P G)
714
+ 64
715
+ PPG hyper-parameter (βclone)
716
+ 1
717
+ 4.2. Quantitative Results
718
+ We evaluate the performance of the method in both networks: Internet2
719
+ and MEC.
720
+ Internet2 Network:
721
+ Table 2 shows an ablation study on Internet2 where we trained the models
722
+ with PPO and tested them. For the metric, we measured the average number
723
+ 16
724
+
725
+ of VNF instances (‘Avg. #VNF’), the average of delay time, and the average
726
+ SLA violation ratio (‘Avg. SLAV’), as well as a reward (Eq. 7). Furthermore,
727
+ we train the agent with different coefficient value (α) of instance penalty in
728
+ Eq. 7 to show the effect of restriction for the level of the resource utilization,
729
+ which controls the trade-off between the resource utilization and the QoS. We
730
+ trained the agent with different seeds three times and reported the averages.
731
+ Models (SFC)
732
+ α
733
+ Reward
734
+ Avg. #VNF
735
+ Avg. Delay
736
+ Avg. SLAV
737
+ ILP (GGNN)
738
+ -
739
+ -0.922
740
+ 12.86
741
+ 575.57
742
+ 0.197
743
+ ILP (GAT)
744
+ -
745
+ -0.881
746
+ 12.86
747
+ 545.42
748
+ 0.167
749
+ ILP (GAT+N.E.)
750
+ -
751
+ -0.876
752
+ 12.86
753
+ 542.11
754
+ 0.162
755
+ GGNN (GGNN)
756
+ 0.15
757
+ -1.796
758
+ 19.89
759
+ 1158.01
760
+ 0.279
761
+ GGNN (GGNN)
762
+ 0.20
763
+ -1.877
764
+ 18.44
765
+ 1226.94
766
+ 0.260
767
+ GGNN (GGNN)
768
+ 0.25
769
+ -2.345
770
+ 16.57
771
+ 1580.09
772
+ 0.354
773
+ GAT(GAT)
774
+ 0.15
775
+ -1.376
776
+ 17.81
777
+ 868.16
778
+ 0.141
779
+ GAT(GAT)
780
+ 0.20
781
+ -1.580
782
+ 17.58
783
+ 1018.22
784
+ 0.179
785
+ GAT(GAT)
786
+ 0.25
787
+ -2.018
788
+ 16.40
789
+ 1343.65
790
+ 0.255
791
+ GAT+N.E. (GAT+N.E.)
792
+ 0.15
793
+ -1.062
794
+ 17.71
795
+ 641.21
796
+ 0.086
797
+ GAT+N.E. (GAT+N.E.)
798
+ 0.20
799
+ -1.314
800
+ 16.04
801
+ 836.31
802
+ 0.117
803
+ GAT+N.E. (GAT+N.E.)
804
+ 0.25
805
+ -1.345
806
+ 15.75
807
+ 860.86
808
+ 0.122
809
+ GAT+P.E. (GAT)
810
+ 0.15
811
+ -1.084
812
+ 16.59
813
+ 665.61
814
+ 0.093
815
+ GAT+P.E. (GAT)
816
+ 0.20
817
+ -1.283
818
+ 15.89
819
+ 815.00
820
+ 0.122
821
+ GAT+P.E. (GAT)
822
+ 0.25
823
+ -1.409
824
+ 15.17
825
+ 911.44
826
+ 0.135
827
+ GAT+P.E.+N.E. (GAT+N.E.)
828
+ 0.15
829
+ -1.029
830
+ 17.39
831
+ 619.91
832
+ 0.081
833
+ GAT+P.E.+N.E. (GAT+N.E.)
834
+ 0.20
835
+ -1.240
836
+ 15.85
837
+ 784.09
838
+ 0.108
839
+ GAT+P.E.+N.E. (GAT+N.E.)
840
+ 0.25
841
+ -1.499
842
+ 14.87
843
+ 978.89
844
+ 0.139
845
+ Table 2: Comparison of different models in the Internet2 network. The models are used
846
+ to adjust VNF deployment based on scaling in/out/keep, while the methods in the paren-
847
+ theses indicate how the SFC path was created for evaluation.
848
+ Each row indicates the method to make VNF deployments and the method
849
+ to generate SFC paths. For example, the row “ILP (GAT)” shows the re-
850
+ sults when VNFs were deployed by the ILP method and the deployments
851
+ were evaluated on the path generated by GAT for SFC. For the RL models,
852
+ the same encoders were used for the policy networks and for the SFC path
853
+ generation, though positional encoding was not used for SFC.
854
+ From the table, we can see that the GAT-based models (‘GAT’) outper-
855
+ form the baseline models (i.e., GGNN-based models). For example, ‘GAT
856
+ (GAT)’ decreases the SLA violation rates from 0.279 (by ‘GGNN(GGNN)’)
857
+ to 0.141 when the coefficient α for the instance penalty is 0.15. Furthermore,
858
+ it improved the level of QoS and decreased the delay time with less number of
859
+ instances. We believe that GAT models can be trained more efficiently, while
860
+ GGNN-based models are hard to be optimized on our deployment settings,
861
+ including many non-deployable nodes.
862
+ 17
863
+
864
+ Moreover, ‘GAT+N.E.’ models outperform GGNN as well as GAT mod-
865
+ els.
866
+ They decrease the SLA violation rate, the number of instances and
867
+ the delay time. This means that the node embedding-based approach, de-
868
+ scribed in Section 3.1.2 can get better representations separating the VNF
869
+ deployable and non-deployable nodes. In addition, the positional encoding
870
+ (‘GAT+P.E.’) shows an even further improvement on SLAV compared to
871
+ the corresponding methods. It implies that the positional encoding provides
872
+ more distinguishable information for the policy network to find a better pol-
873
+ icy for deployment. Lastly, we trained GAT models with both positional en-
874
+ coding and node embedding (GAT+P.E.+N.E.). This method increases the
875
+ reward and SLAV, while keeping the same level of the other metrics (‘Avg.
876
+ #VNF’ and ‘Avg. Delay’), compared to the GAT-based models using only
877
+ the positional encoding.
878
+ MEC network:
879
+ We experimented in the MEC network, where 5 nodes out of a total of
880
+ 12 nodes are non-deployable.
881
+ We train the models with PPG, and com-
882
+ pare GAT-based models to ILP approaches, which is summarized in Table
883
+ 3. The reward is computed using the SFC model, which employs the same
884
+ architecture as the policy network. In the table, we can see that Positional
885
+ Encoding (‘GAT+P.E.’) significantly decreases the SLA violation rate, the
886
+ number of instances as well as the delay time. For the node embedding-
887
+ based approach, ‘GAT+P.E.+N.E.’ has similar performance as ‘GAT+P.E.’.
888
+ It means node embedding does not have additional information compared
889
+ to positional embedding. Actually, as shown in Fig. 6, MEC has a regu-
890
+ lar structure separating deployable and non-deployable nodes, which might
891
+ be a possible explanation of why ‘N.E.’ does not additionally increase the
892
+ performance on top of ‘GAT+P.E.’
893
+ For the GGNN-based approach, it does not optimize the reward effec-
894
+ tively, because links of the MEC network contain high latency3 and high
895
+ variance, which hinders updating node representation in the model. Espe-
896
+ cially, GGNN uses a weighted sum of its node representation with the edge
897
+ attribute when updating the node representation, which causes it to under-
898
+ estimate of the information from nodes connected with high latency. On the
899
+ other hand, the GAT-based approach employs the attention mechanism to
900
+ 3The edge attribute is set as the reciprocal of latency.
901
+ 18
902
+
903
+ Models (SFC)
904
+ α
905
+ Reward
906
+ Avg. #VNF
907
+ Avg. Delay
908
+ Avg. SLAV
909
+ ILP (GAT)
910
+ 0
911
+ -0.702
912
+ 13.00
913
+ 29097.86
914
+ 0.046
915
+ ILP (GAT+N.E.)
916
+ -
917
+ -0.707
918
+ 13.00
919
+ 29282.68
920
+ 0.045
921
+ GAT (GAT)
922
+ 0.15
923
+ -1.658
924
+ 20.33
925
+ 74682.66
926
+ 0.121
927
+ GAT (GAT)
928
+ 0.20
929
+ -1.867
930
+ 18.75
931
+ 87157.00
932
+ 0.146
933
+ GAT (GAT)
934
+ 0.25
935
+ -2.136
936
+ 18.75
937
+ 97987.34
938
+ 0.174
939
+ GAT+P.E. (GAT)
940
+ 0.15
941
+ -0.887
942
+ 16.84
943
+ 37044.12
944
+ 0.052
945
+ GAT+P.E. (GAT)
946
+ 0.20
947
+ -0.956
948
+ 16.25
949
+ 41100.82
950
+ 0.060
951
+ GAT+P.E. (GAT)
952
+ 0.25
953
+ -1.316
954
+ 15.41
955
+ 58091.53
956
+ 0.096
957
+ GAT+P.E.+N.E. (GAT+N.E.)
958
+ 0.15
959
+ -0.915
960
+ 16.55
961
+ 38930.56
962
+ 0.055
963
+ GAT+P.E.+N.E. (GAT+N.E.)
964
+ 0.20
965
+ -1.119
966
+ 16.29
967
+ 48965.09
968
+ 0.075
969
+ GAT+P.E.+N.E. (GAT+N.E.)
970
+ 0.25
971
+ -1.350
972
+ 15.95
973
+ 60878.52
974
+ 0.099
975
+ Table 3: Comparison of different models in the MEC network. The positional encoding
976
+ helps the training process more effective, while the node embedding does not additionally
977
+ increase the performance on top of ‘GAT+P.E.’.
978
+ compute the different importance of its neighbors and the edges so that it
979
+ could mitigate the underestimation problem.
980
+ 4.2.1. Comparison of Various RL algorithms
981
+ Since we propose to use the PPG algorithms, we compare them to other
982
+ RL algorithms in the Internet2 network. In the experiment, we trained the
983
+ GAT-based models with positional encoding with the various RL algorithms.
984
+ As a result, the PPG algorithms can obtain better rewards, compared to
985
+ DQN and PPO. PPG decreases the SLA violation rate and the delay time
986
+ with a similar number of VNFs as presented in Table 4.
987
+ Method
988
+ α
989
+ Reward
990
+ Avg. #VNF
991
+ Avg. Delay
992
+ Avg. SLAV
993
+ DQN
994
+ 0.15
995
+ -1.317
996
+ 32.00
997
+ 718.56
998
+ 0.112
999
+ DQN
1000
+ 0.20
1001
+ -1.311
1002
+ 25.00
1003
+ 765.22
1004
+ 0.174
1005
+ DQN
1006
+ 0.25
1007
+ -2.701
1008
+ 21.90
1009
+ 1793.06
1010
+ 0.285
1011
+ PPO
1012
+ 0.15
1013
+ -1.084
1014
+ 16.59
1015
+ 665.62
1016
+ 0.093
1017
+ PPO
1018
+ 0.20
1019
+ -1.283
1020
+ 15.89
1021
+ 815.00
1022
+ 0.122
1023
+ PPO
1024
+ 0.25
1025
+ -1.409
1026
+ 15.17
1027
+ 911.44
1028
+ 0.135
1029
+ PPG
1030
+ 0.15
1031
+ -1.053
1032
+ 16.30
1033
+ 644.77
1034
+ 0.091
1035
+ PPG
1036
+ 0.20
1037
+ -1.164
1038
+ 16.19
1039
+ 726.24
1040
+ 0.101
1041
+ PPG
1042
+ 0.25
1043
+ -1.353
1044
+ 15.51
1045
+ 868.61
1046
+ 0.130
1047
+ Table 4: Comparison of the various RL algorithms. PPG can optimize the reward more
1048
+ effectively compared to DQN and PPO.
1049
+ Moreover, as shown in Fig.
1050
+ 7, PPG can optimize the average loss of
1051
+ the policy network more effectively than PPO. We believe that the auxiliary
1052
+ 19
1053
+
1054
+ Figure 7: Comparison of policy loss (α = 0.2) in training process.
1055
+ The loss of PPG
1056
+ decreases faster than PPO after around 40k iterations.
1057
+ Initial Deployment
1058
+ Reward
1059
+ Avg. #VNF
1060
+ Avg. Delay
1061
+ Avg. SLAV
1062
+ ILP-perturbed
1063
+ -1.029
1064
+ 17.03
1065
+ 622.59
1066
+ 0.087
1067
+ Random
1068
+ -1.060
1069
+ 16.95
1070
+ 646.12
1071
+ 0.090
1072
+ Zero
1073
+ -1.060
1074
+ 16.94
1075
+ 646.00
1076
+ 0.090
1077
+ Table 5: Evaluations from different initial deployments in testing for the trained GAT
1078
+ model with α = 0.2.
1079
+ value head helps the policy network converge more efficiently, even though
1080
+ parameter sharing might make the training slow at the beginning of the
1081
+ training process.
1082
+ 4.2.2. Analysis with Random and Zero Deployments
1083
+ To analyze further the performance of the trained models, we trained the
1084
+ GAT-based model (α = 0.2) optimized with PPG as before, and tested the
1085
+ trained model on different settings, where initial deployment is random or no
1086
+ VNFs are deployed (random deployment or zero deployment). The experi-
1087
+ ment results are presented in Table 5, where “Random” and “Zero” initial
1088
+ deployments are compared to the ILP-perturbed initial deployment. As the
1089
+ result, the performance on both initial deployments shows the same level of
1090
+ QoS and resource utilization as the ILP-perturbed case. It demonstrates that
1091
+ our approach can work on any sub-optimal initial deployment. Furthermore,
1092
+ our method can deploy VNFs without the ILP-based initial deployment.
1093
+ 20
1094
+
1095
+ Avg. Policy Loss
1096
+ PPG
1097
+ agent: PPO
1098
+ 0
1099
+ -0.01
1100
+ -0.02
1101
+ -0.03
1102
+ -0.04
1103
+ -0.05
1104
+ Valid/iter
1105
+ 20k
1106
+ 40k
1107
+ 60k
1108
+ 80kMethod
1109
+ Avg. Time (sec)
1110
+ ILP
1111
+ 14.06
1112
+ GAT
1113
+ 0.431
1114
+ Table 6: Average of execution times of 10 VNF-deployments.
1115
+ Figure 8: The VNF deployment generated from the model (Left), target SFC requests
1116
+ (Middle), and generated paths (Right). Given the target SFC request, VNF deployment
1117
+ and path are generated by the proposed method and the SFC model.
1118
+ 4.2.3. Execution Time
1119
+ To show how fast our method works, we measured the average execution
1120
+ times to make decisions for VNF deployments and compared the proposed
1121
+ GAT-based model to ILP. The execution time includes the VNF deployment
1122
+ actions by the agent as well as SFC path generation by the SFC model [27].
1123
+ Each approach makes 10 deployments on a machine with 24 x 12-Core AMD
1124
+ Ryzen 9 3900X CPUs. Table 6 presents the average results of each approach.
1125
+ Our method can process VNF deployment about 30 times faster than ILP.
1126
+ 4.3. Qualitative Evaluation
1127
+ In this section, we discuss the quality of the results by our approach. We
1128
+ analyze the VNF deployment generated from the agent and plot t-SNE [29]
1129
+ of the representation computed from the encoder of the policy networks.
1130
+ 4.3.1. Generated Deployment
1131
+ We plot the VNF deployment generated from the GAT-based model
1132
+ trained with PPG as presented in Fig. 8, which shows VNF deployment
1133
+ generated from the SFC requests, and paths generated for the requests by
1134
+ the SFC model [27]. The VNF deployment is generated with more than 20
1135
+ requests, so we omitted the other requests in the figure for simplicity.
1136
+ 21
1137
+
1138
+ Req1
1139
+ 6 →
1140
+ 个N
1141
+
1142
+ 6→1→1→11→8 (275.0 / 735)
1143
+ NW
1144
+ Req2
1145
+ ←m
1146
+ N
1147
+
1148
+ 个山
1149
+ 7
1150
+ 3→10→4→4→7 (765.0 / 722)
1151
+ 23
1152
+ 86
1153
+ 209
1154
+ 26
1155
+ N
1156
+ Req3
1157
+
1158
+ 个N
1159
+ H个山
1160
+
1161
+ 7
1162
+ 5→1→4→4→7 (420.0 /723)
1163
+ 129
1164
+ 63
1165
+ Req4
1166
+ 2 →
1167
+ 个N
1168
+ 8个
1169
+ 2→ 11→ 11→ 11→ 8 (172.0 / 729)
1170
+ 主E
1171
+ W
1172
+ 36
1173
+ 90
1174
+ WNPN
1175
+ 117
1176
+ 189
1177
+ Req23
1178
+ S个d个个
1179
+ 4→1→1→5 (225.0 /700)
1180
+ Req24
1181
+ 个个M个F个N个
1182
+ 0→1→1→1→4→4(179.0 /705)The most VNF instances are deployed in the middle of the shortest paths
1183
+ for the traffics. For example, the first traffic (‘Req1’) has node 6 and node 8
1184
+ as the ingress and egress, and is required to pass through NAT (‘N’), Firewall
1185
+ (‘F’), and IDS (‘I’). In the network, the traffic goes through NAT at node 1,
1186
+ Firewall at node 11, and IDS at node 8. This traffic takes 275 ms while SLA
1187
+ for the SFC path is 735 ms. That is, all the VNFs of ‘Req1’ are deployed on
1188
+ the shortest path of its ingress and its egress.
1189
+ In addition, the generated deployment needs to meet the QoS with the
1190
+ optimized amount of resources. As shown in Fig. 8, VNF instances are de-
1191
+ ployed on the intersection of the shortest paths for the traffics. For example,
1192
+ the VNF instances at node 1 process more than four requests, like NAT for
1193
+ ‘Req1’, ‘Req2’, ‘Req23’ and ‘Req24’. That is, our approach can deploy the
1194
+ instances at the shared nodes of the paths for many requests, which can
1195
+ reduce the number of VNF instances.
1196
+ 4.3.2. Node Representations by t-SNE
1197
+ In the section, to analyze how the network information is represented by
1198
+ the encoder, we plot the 2D representation of node embeddings by t-SNE [29]
1199
+ as in Fig. 9, which shows the representations from the GGNN-based encoder
1200
+ and our proposed GAT-based encoder.
1201
+ Each dot represents one node of
1202
+ network, and the nodes are located in the Internet2 network as shown in Fig.
1203
+ 6a.
1204
+ (a) GGNN
1205
+ (b) GAT
1206
+ Figure 9: Node representations by t-SNE. The GAT-based model gets more disentangled
1207
+ representations, compared to the GGNN-based model.
1208
+ Even though the GGNN-based encoder has multiple clusters, the nodes
1209
+ within each cluster are not distinguishable. However, the GAT-based en-
1210
+ coder’s representations are disentangled so that each cluster contains only
1211
+ 22
1212
+
1213
+ 0
1214
+ 60
1215
+ 1
1216
+ 2
1217
+ 40
1218
+ 3
1219
+ 4
1220
+ 5
1221
+ 20
1222
+ 6
1223
+ 0
1224
+ 8
1225
+ 9
1226
+ -20
1227
+ 10
1228
+ -40
1229
+ -60
1230
+ -80
1231
+ -60
1232
+ -40
1233
+ -20
1234
+ 0
1235
+ 20
1236
+ 40
1237
+ 600
1238
+ 60
1239
+ 1
1240
+ 2
1241
+ 40
1242
+ 3
1243
+ 4
1244
+ 20
1245
+ 5
1246
+ 6
1247
+ 7
1248
+ 0
1249
+ 8
1250
+ 9
1251
+ -20
1252
+ 10
1253
+ 11
1254
+ -40
1255
+ -60
1256
+ -80
1257
+ -60
1258
+ -40
1259
+ -20
1260
+ 0
1261
+ 20
1262
+ 40
1263
+ 60
1264
+ 80one or two nodes. Furthermore, the representations of neighbors in the net-
1265
+ work are close to each other in the plot.
1266
+ For example, clusters for node
1267
+ 8 (‘brown’) and node 2 (‘green’) are close to each other, which reflects its
1268
+ neighborhood with the same node type as presented in Fig. 6a. This demon-
1269
+ strates the representation by GAT-based model reflects the network topology
1270
+ effectively.
1271
+ 5. Conclusion
1272
+ In this paper, we proposed enhanced models which can be adapted to
1273
+ more general network settings. We proposed an improved GNN architecture
1274
+ and a few techniques to obtain a better node representation for the VNF
1275
+ deployment task. Furthermore, we optimized the model with PPG, a variant
1276
+ policy gradient-based algorithm. In the experiment, we evaluated the pro-
1277
+ posed method in various scenarios, achieving a better QoS with minimum
1278
+ resource utilization compared to the previous methods. Finally, we analyzed
1279
+ the generated VNF deployment and compare the node representations of our
1280
+ model to the baseline.
1281
+ Acknowledgement
1282
+ This research was supported by Basic Science Research Program through
1283
+ the National Research Foundation of Korea funded by the Ministry of Edu-
1284
+ cation (NRF-2022R1A2C1012633), and by Institute for Information & com-
1285
+ munications Technology Promotion (IITP) grant funded by the Korea gov-
1286
+ ernment(MSIT) (No. 2018-0-00749, Development of virtual network man-
1287
+ agement technology based on artificial intelligence).
1288
+ References
1289
+ [1] M. F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, On orchestrating
1290
+ virtual network functions, in: 2015 11th International Conference on
1291
+ Network and Service Management (CNSM), 2015, pp. 50–56. doi:10.
1292
+ 1109/CNSM.2015.7367338.
1293
+ [2] H. Moens, F. D. Turck, VNF-P: A model for efficient placement of virtu-
1294
+ alized network functions, in: 10th International Conference on Network
1295
+ and Service Management (CNSM) and Workshop, 2014, pp. 418–423.
1296
+ doi:10.1109/CNSM.2014.7014205.
1297
+ 23
1298
+
1299
+ [3] M. A. Abdelaal, G. A. Ebrahim, W. R. Anis, Efficient placement of
1300
+ service function chains in cloud computing environments, Electronics
1301
+ 10 (3) (2021). doi:10.3390/electronics10030323.
1302
+ URL https://www.mdpi.com/2079-9292/10/3/323
1303
+ [4] S. Lange, A. Grigorjew, T. Zinner, P. Tran-Gia, M. Jarschel, A multi-
1304
+ objective heuristic for the optimization of virtual network function chain
1305
+ placement, in: 2017 29th International Teletraffic Congress (ITC 29),
1306
+ Vol. 1, IEEE, 2017, pp. 152–160.
1307
+ [5] M. Karimzadeh-Farshbafan, V. Shah-Mansouri, D. Niyato, A dynamic
1308
+ reliability-aware service placement for network function virtualization
1309
+ (nfv), IEEE Journal on Selected Areas in Communications 38 (2) (2020)
1310
+ 318–333. doi:10.1109/JSAC.2019.2959196.
1311
+ [6] N. He, S. Yang, F. Li, S. Trajanovski, F. A. Kuipers, X. Fu, A-ddpg:
1312
+ Attention mechanism-based deep reinforcement learning for nfv, in:
1313
+ 2021 IEEE/ACM 29th International Symposium on Quality of Service
1314
+ (IWQOS), 2021, pp. 1–10. doi:10.1109/IWQOS52092.2021.9521285.
1315
+ [7] P. Sun, J. Lan, J. Li, Z. Guo, Y. Hu, Combining deep reinforcement
1316
+ learning with graph neural networks for optimal VNF placement, IEEE
1317
+ Communications Letters 25 (1) (2021) 176–180. doi:10.1109/LCOMM.
1318
+ 2020.3025298.
1319
+ [8] N. Seo, D. Heo, J. Hong, H.-G. Kim, J.-H. Yoo, J. W.-K. Hong, H. Choi,
1320
+ Updating VNF deployment with scaling actions using reinforcement al-
1321
+ gorithms (2022).
1322
+ [9] K. Cho, B. van Merrienboer, C¸. G¨ul¸cehre, F. Bougares, H. Schwenk,
1323
+ Y. Bengio, Learning phrase representations using RNN encoder-decoder
1324
+ for statistical machine translation, CoRR abs/1406.1078 (2014). arXiv:
1325
+ 1406.1078.
1326
+ URL http://arxiv.org/abs/1406.1078
1327
+ [10] D. Bahdanau, K. Cho, Y. Bengio, Neural machine translation by jointly
1328
+ learning to align and translate (2014).
1329
+ doi:10.48550/ARXIV.1409.
1330
+ 0473.
1331
+ URL https://arxiv.org/abs/1409.0473
1332
+ 24
1333
+
1334
+ [11] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
1335
+ L. Kaiser, I. Polosukhin, Attention is all you need, in: I. Guyon, U. V.
1336
+ Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, R. Garnett
1337
+ (Eds.), Advances in Neural Information Processing Systems, Vol. 30,
1338
+ Curran Associates, Inc., 2017.
1339
+ [12] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
1340
+ T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
1341
+ J. Uszkoreit, N. Houlsby, An image is worth 16x16 words:
1342
+ Trans-
1343
+ formers for image recognition at scale, CoRR abs/2010.11929 (2020).
1344
+ arXiv:2010.11929.
1345
+ URL https://arxiv.org/abs/2010.11929
1346
+ [13] H. Lee, H. Choi, Partitioning image representation in contrastive learn-
1347
+ ing (2022). doi:10.48550/ARXIV.2203.10454.
1348
+ URL https://arxiv.org/abs/2203.10454
1349
+ [14] P. Veliˇckovi´c, G. Cucurull, A. Casanova, A. Romero, P. Li`o, Y. Bengio,
1350
+ Graph Attention Networks, International Conference on Learning Rep-
1351
+ resentations (2018).
1352
+ URL https://openreview.net/forum?id=rJXMpikCZ
1353
+ [15] K. Cobbe, J. Hilton, O. Klimov, J. Schulman, Phasic policy gradient
1354
+ (2020). doi:10.48550/ARXIV.2009.04416.
1355
+ URL https://arxiv.org/abs/2009.04416
1356
+ [16] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, G. Monfardini, The
1357
+ graph neural network model, IEEE Transactions on Neural Networks
1358
+ 20 (1) (2009) 61–80.
1359
+ [17] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li,
1360
+ M. Sun, Graph neural networks: A review of methods and applications,
1361
+ AI Open 1 (2020) 57–81. doi:https://doi.org/10.1016/j.aiopen.
1362
+ 2021.01.001.
1363
+ [18] T. N. Kipf, M. Welling, Semi-supervised classification with graph con-
1364
+ volutional networks (2016). doi:10.48550/ARXIV.1609.02907.
1365
+ URL https://arxiv.org/abs/1609.02907
1366
+ 25
1367
+
1368
+ [19] Y. Li, D. Tarlow, M. Brockschmidt, R. Zemel, Gated graph sequence
1369
+ neural networks (2015). doi:10.48550/ARXIV.1511.05493.
1370
+ URL https://arxiv.org/abs/1511.05493
1371
+ [20] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, G. E. Dahl, Neural
1372
+ message passing for quantum chemistry (2017). doi:10.48550/ARXIV.
1373
+ 1704.01212.
1374
+ URL https://arxiv.org/abs/1704.01212
1375
+ [21] X. Wang, H. Ji, C. Shi, B. Wang, P. Cui, P. Yu, Y. Ye, Heterogeneous
1376
+ graph attention network (2019). doi:10.48550/ARXIV.1903.07293.
1377
+ URL https://arxiv.org/abs/1903.07293
1378
+ [22] R. S. Sutton, D. McAllester, S. Singh, Y. Mansour, Policy gradient
1379
+ methods for reinforcement learning with function approximation, in:
1380
+ Proceedings of the 12th International Conference on Neural Informa-
1381
+ tion Processing Systems, NIPS’99, MIT Press, Cambridge, MA, USA,
1382
+ 1999, p. 1057–1063.
1383
+ [23] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov, Proximal
1384
+ policy optimization algorithms (2017).
1385
+ doi:10.48550/ARXIV.1707.
1386
+ 06347.
1387
+ URL https://arxiv.org/abs/1707.06347
1388
+ [24] V. Konda, J. Tsitsiklis, Actor-critic algorithms, in: S. Solla, T. Leen,
1389
+ K. M¨uller (Eds.), Advances in Neural Information Processing Systems,
1390
+ Vol. 12, MIT Press, 1999.
1391
+ [25] A. Conn, N. Gould, P. Toint, Trust Region Methods, MPS-SIAM Series
1392
+ on Optimization, Society for Industrial and Applied Mathematics, 2000.
1393
+ URL https://books.google.co.kr/books?id=5kNC4fqssYQC
1394
+ [26] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, P. Abbeel, Trust region
1395
+ policy optimization (2015). doi:10.48550/ARXIV.1502.05477.
1396
+ URL https://arxiv.org/abs/1502.05477
1397
+ [27] D. Heo, S. Lange, H.-G. Kim, H. Choi, Graph neural network based
1398
+ service function chaining for automatic network control (2020). doi:
1399
+ 10.48550/ARXIV.2009.05240.
1400
+ URL https://arxiv.org/abs/2009.05240
1401
+ 26
1402
+
1403
+ [28] Internet2 research network topology and traffic matrix.
1404
+ URL
1405
+ https://www.cs.utexas.edu/$\sim$yzhang/research/
1406
+ AbileneTM/
1407
+ [29] L. van der Maaten, G. Hinton, Visualizing data using t-SNE, Journal of
1408
+ Machine Learning Research 9 (86) (2008) 2579–2605.
1409
+ URL http://jmlr.org/papers/v9/vandermaaten08a.html
1410
+ 27
1411
+